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This paper forms a Virtual Energy Storage System (VESS) and validates that VESS is an innovative and
cost-effective way to provide the function of conventional Energy Storage Systems (ESSs) through the
utilization of the present network assets represented by the flexible demand. The VESS is a solution to
convert to a low carbon power system and in this paper, is modelled to store and release energy in
response to regulation signals by coordinating the Demand Response (DR) from domestic refrigerators
in a city and the response from conventional Flywheel Energy Storage Systems (FESSs). The coordination
aims to mitigate the impact of uncertainties of DR and to reduce the capacity of the costly FESS. The VESS
is integrated with the power system to provide the frequency response service, which contributes to the
reduction of carbon emissions through the replacement of spinning reserve capacity of fossil-fuel
generators. Case studies were carried out to validate and quantify the capability of VESS to vary the stored
energy in response to grid frequency. Economic benefits of using VESS for frequency response services
were estimated.

� 2016 Published by Elsevier Ltd.
1. Introduction

The power system is rapidly integrating smart grid technologies
to move towards an energy efficient future with lower carbon
emissions. The increasing integration of Renewable Energy Sources
(RES), such as the photovoltaic and the wind, causes uncertainties
in electricity supply which are usually uncontrollable. Hence, it is
even more challenging to meet the power system demand. More
reserve from partly-loaded fossil-fuel generators, which are costly
and exacerbate the carbon emissions, is consequently required in
order to maintain the balance between the supply and demand.
The grid frequency indicates the real-time balance between
generation and demand and is required to be maintained at around
50 Hz (for the Great Britain (GB) power system). The integration of
RES through power electronics reduces the system inertia. A low
inertia power system will encounter faster and more severe
frequency deviations in cases of sudden changes in supply or
demand [1]. Therefore, the system operator is imperative to seek
for smart grid technologies that can provide faster response to
frequency changes.

The Energy Storage System (ESS) is one solution to facilitate the
integration of RES by storing or releasing energy immediately in
response to the system needs. A large-scale ESS is able to replace
the spinning reserve capacity of conventional generators and hence
reduces the carbon emissions. There are different types of ESS for
different applications as shown in Fig. 1 [2]. In terms of the forms
of ESS, ESS is classified as electrochemical, mechanical, electrical
and thermal energy storage. In terms of the functions of ESS, ESS
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Fig. 1. Types of energy storage system [2].
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is classified as high power rating ESS (e.g. flywheels, super capacity
and conventional batteries) for power management applications
and high energy rating ESS (e.g. compressed air and pumped
hydro) for energy management applications [3].

The use of ESS for grid frequency regulation can be dated back
to the 1980s [4,5], e.g. the Beacon Power Corporation has already
implemented flywheels to provide fast frequency regulation ser-
vices [6].

However, ESS remains to be an expensive technology although
there are declinations in the cost in recent years. For instance, the
cost of installing a 20 MW/10 MW h Flywheel Energy Storage
Systems (FESS) is approx. £25 m–£28 m [7]. The large-scale
deployment of ESS is still not feasible in a short term.

Aggregated Demand Response (DR) can resemble a Virtual
Energy Storage System (VESS) because DR can provide functions
similar to charging/discharging an ESS by intelligently managing
the power and energy consumption of loads. By well-utilizing the
existing network assets, i.e. the flexible demand such as the
domestic fridge-freezers, wet appliances and industrial heating
loads, DR can be deployed at scale with a lower cost compared
with the installation of the ESS.

The control of demand to provide frequency support to the
power system has been studied including both centralised and
decentralised control. Centralised control of the flexible demand
relies on the Information and Communications Technology (ICT)
infrastructure to establish communications between the flexible
demand and its centralised controller, such as an aggregator or
Distributed Network Operator (DNO) [8]. To reduce the communi-
cation costs and latency, decentralised demand control has also
been investigated. The controller in [9] regulates the temperature
set-points of refrigerators to vary in line with the frequency
deviations and therefore controls the refrigerator’s power con-
sumption. A dynamic decentralised controller was developed in
[10] which changes the aggregated power consumption of refriger-
ators in linear with the frequency changes. The controller aims not
to undermine the primary cold storage functions of refrigerators
and the impact of the grid-scale DR on the grid frequency control
was investigated.

Considering the availability of refrigerators to provide fre-
quency response depicted by [11], it is estimated that 20 MW of
response requires approx. 1.5 million refrigerators. The total cost
is approx. £3 m [9]. This is far smaller than the cost of FESS (approx.
£25 m–£28 m [7]) that also provides the 20 MW of response. It is
estimated in [7] that DR has the potential to reduce the ESS market
size by 50% in 2030.

However, the challenges of DR include the uncertainty of the
response and the consequent reduction in the diversity amongst
loads [11]. Simultaneous connection of loads may occur in several
minutes after the provision of response to a severe drop in the
frequency, which causes another frequency drop and hence chal-
lenges the system stability.

A number of studies have been conducted to investigate the
capability of ESS or DR to provide frequency response to the power
system. However, the combination of both technologies for grid
Please cite this article in press as: Cheng M et al. Benefits of using virtual energy
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frequency response while mitigating the impact of uncertainties
of DR and reducing the capacity of the costly ESSs has not yet been
fully explored. Therefore, in this research, a VESS is firstly formu-
lated by coordinating large numbers of distributed entities of ESS
and DR. The coordination of both technologies aims to provide fast
and reliable firm amount of dynamic frequency response with a
lower cost compared to conventional ESSs. Moreover, the idea of
merging both technologies into a single operation profile is defined
and the benefits of operating a VESS for the delivery of frequency
response service is analysed.

In this paper, a VESS is formed as a single entity to provide the
function of ESS for the delivery of frequency response in the power
system. In Section 2, the concept and potential application of VESS
is discussed. A VESS consisting of DR from domestic refrigerators in
a large city and the response from small-size FESSs is modelled and
controlled. The proposed control of VESS maintains the load diver-
sity and the primary functions of cold storage of refrigerators while
reducing the number of charging and discharging of each FESS and
prolonging the lifetime of the costly FESS. Case studies were
carried out in Section 3 to quantify the capability of VESS for fre-
quency response. The results of using the VESS and the conven-
tional FESS for frequency response were compared in Section 4.
Discussions and the potential economic benefits of using VESS to
participate in the GB frequency response market were also
discussed.
2. Virtual energy storage system

2.1. Concept

A Virtual Energy Storage System (VESS) aggregates various
controllable components of energy systems, which include
conventional energy storage systems, flexible loads, distributed
generators, Microgrids, local DC networks and multi-vector energy
systems. Through the coordination of each unit, a VESS is formed as
a single high capacity ESS with reasonable capital costs. It is inte-
grated with power network operation and is able to vary its energy
exchange with the power grid in response to external signals. A
VESS allows the flexible loads, small-capacity ESS, distributed
RES, etc. to get access to the wholesale market and to provide both
transmission and distribution level services to the power system.

Different from the Virtual Power Plant (VPP) that aggregates
distributed energy resources to act as a single power plant, VESS
aims to store the surplus electricity or release the electricity
according to system needs.
2.2. Potential applications

A VESS is able to form a synthetic ESS at both transmission and
distribution levels with different capacities as a result of the
aggregation. In the project ‘‘hybrid urban energy storage” [12], dif-
ferent distributed energy systems in buildings (e.g. heat pumps or
combined heat and power systems (CHPs)), central and decentral
storage system for power system frequency response. Appl Energy (2016),

http://dx.doi.org/10.1016/j.apenergy.2016.06.113


M. Cheng et al. / Applied Energy xxx (2016) xxx–xxx 3
energy storage systems are coordinated to create a Virtual Energy
Storage System (VESS). The resources utilise the existing potentials
of energy balancing components in cities for grid ancillary services
with reduced costs. A VESS therefore presents the characteristics of
both high power rating ESS and high energy rating ESS, and hence
covers a wide spectrum of applications. The potential capabilities
of VESS are listed below based on [13]:

� Facilitate the integration of RES in the distribution networks

A VESS can charge/discharge to smooth the power output vari-
ations of renewable generation [14,15]. Additionally, it can
increase the distribution network hosting capacity for RES [16],
where the integration of RES is limited by the voltage and thermal
constraints [17].

� Defer transmission networks reinforcements

A VESS can increase the utilization of transmission networks by
providing immediate actions following a system contingency
[18,2]. Additionally, a VESS can effectively mitigate the potential
network congestions, and therefore postpones the transmission
reinforcements.

� Reduce generation margins

A VESS can reduce the required spinning reserve capacity and
increase the generators loading capacity [18]. With smart grid
technologies, the available VESS capacity can be reported to the
system operator in advance and even every second [19,20].

� Provide ancillary services

During system contingencies and system emergencies [21], a
VESS can provide voltage support and frequency support. In addi-
tion, primary frequency response requirements which are at pre-
sent mainly met by the costly frequency-sensitive generation is
expected to increase by 30–40% in the next 5 years in the GB power
system [13]. A VESS is technically feasible to provide such services
because it is able to provide faster response, higher ramp rates and
higher flexibilities than the conventional generating units [22].
Fig. 3. Temperature control of On/Off state of refrigerators.
2.3. Model and control of VESS

A VESS is formed to firmly provide the required amount of fre-
quency response to the power system in order to participate in the
GB Firm Frequency Response (FFR) market as an aggregator. The
FFR market is considered as the most lucrative ancillary services
available on the MW basis [23] in the GB power system.

DR from domestic refrigerators in a city is implemented to meet
the required amount of frequency response while the conventional
FESS is used to compensate for the uncertainties caused by the DR.
Other units with similar characteristics and capability of storing
energy, such as EVs [22] or other ESS types, can be added further
to increase the total VESS capacity.
Tdelay
1
s

Pref_FESS Pelec1

Converters
Flywh

Fig. 2. Simplified m
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2.3.1. Model of FESS
FESS is a mechanical ESS with high power density. FESS is

essentially an electrical machine coupled with a high inertia fly-
wheel and is connected to the grid through back-to-back convert-
ers. The electromechanical equation of the electrical machine is:

J
dx
dt

¼ �Tin ¼ � Pelec

x
ð1Þ

where J is the moment of inertia of the electrical machine rotor plus
the flywheel (kg m2), x (rad/s) is the rotating speed, Tin (N m) is the
input torque of the flywheel and Pelec (W) is the electrical machine
power that is controlled by converters.

A first-order lag is used to simplify the control of the power con-
verters on a given reference power Pref_FESS (W). Tdelay (s) is the time
constant of the power converter control loop:

Pelec ¼ Pref FESS
1

1þ sTdelay

� �
ð2Þ

A simplified model of FESS was developed as shown in Fig. 2. It
has been validated with a detailed model which includes all the
main components and control of converters [24,25]. The simplified
model provided accurate results with a significant reduction in the
computational time. The simplified model facilitates the system
level studies considering large numbers of small-size distributed
flywheels.
2.3.2. Model of domestic refrigerators
In order not to undermine the cold storage function of each

refrigerator, a thermodynamic model of refrigerators was devel-
oped as illustrated in [11].

Fig. 3 shows the temperature control of refrigerators. The
variation of internal temperature (T) of a refrigerator with time is
modelled and dynamically compared with the temperature set-
points Tlow and Thigh. If T rises to Thigh, a refrigerator is switched
on. When a refrigerator is at ON-state, it is equivalent to the charg-
ing of an energy storage unit which consumes power and causes
the decrease of T. Alternatively if T decreases to Tlow, a refrigerator
is switched off. An OFF-state refrigerator is considered as a dis-
charging process which causes the increase of T. In a refrigerator,
1
Js

ω 

T PFESSeels

odel of FESS.
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temperature inherently controls the charging and discharging
process.

2.3.3. Distributed control in a VESS
A control algorithm is developed for the units in a VESS to

charge/discharge in response to regulation signals. In this paper,
grid frequency (f) is used as the regulation signal.

A general local controller that can be applied to both refrigera-
tors and FESS is developed as shown in Fig. 4. The control measures
f constantly. For an FESS, the output is the change of power output.
For a refrigerator, the output is the change of On/Off state and
hence the power consumption.

Each unit in the VESS is assigned a pair of frequency set-points,
FON and FOFF. The range of FON is 50–50.5 Hz and the range of FOFF is
49.5–50 Hz which is consistent with the steady-state limits of grid
frequency in the GB power system.

The input f constantly compares with the set-points FON and
FOFF. If f rises higher than FON of a unit, the unit will start charg-
ing/switch on as a result of the frequency rise. If f is higher than
50 Hz but lower than FON, the unit will standby.

Alternatively, if f drops lower than FOFF, the unit will start
discharging/switch off as a result of the frequency drop. If f is lower
than 50 Hz but higher than FOFF, the unit will standby.

FON and FOFF vary linearly with the State of Charge (SoC) of
each unit as shown in Fig. 4. For FESS, x indicates SoC. A low
x designates a low SoC and vice versa. For refrigerators, T indi-
cates SoC. A high T indicates a low SoC and vice versa. When f
drops, the units in the VESS will start discharging from the one
with the highest SoC. The more f drops, the more number of
units will be committed to start discharging. Therefore, the
more power will be discharged from FESS and the more power
consumption of refrigerators will be reduced. Alternatively,
when f rises, the units will start charging from the one with
the lowest SoC. The more f rises, the more number of units will
Please cite this article in press as: Cheng M et al. Benefits of using virtual energy
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be committed to start charging. Therefore, the more power will
be consumed by the refrigerators and the more power will
charge the FESS. A set of logic gates (‘Logic operation’ in
Fig. 4) is used to determine the final state of each unit.

The control considers a priority list based on SoC when commit-
ting the units. Compared with the conventional frequency control
of FESS, in which all units will start charging/discharging simulta-
neously according to the frequency deviations using the droop con-
trol, the proposed control with a priority list of commitment will
reduce the number of charging/discharging cycles and hence pro-
longs the lifetime of units.

However, when the frequency deviation is small, the proposed
control based on the priority list will commit fewer FESS units
(i.e. not all FESS units) to start charging/discharging according to
frequency deviations using the droop control. The total power out-
put from FESS is therefore smaller than that without the proposed
control which commits all FESS units. To mitigate this impact and
increase the output from FESS units even when the frequency devi-
ation is small, an adaptive droop control is applied to replace the
conventional droop control when determining the amount of
power output changes of each committed FESS unit as shown in
Fig. 4.

The adaptive droop control value (Radaptive) is inversely propor-
tional to frequency deviations as shown in (3). This is because a
small frequency deviation (df) triggers only a small number of FESS
units to commit. Therefore, a droop value Radaptive greater than the
conventional droop value R is required in order to increase the
change of power output. When the frequency deviation increases
and reaches the frequency deviation limits (±0.5 Hz in the GB
power system), all FESS units will be triggered to commit. The
droop value Radaptive equals to R.

Radaptive ¼ dfmax

df
� R ð3Þ
storage system for power system frequency response. Appl Energy (2016),
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where dfmax is the steady-state limit of grid frequency (0.5 Hz in the
GB power system). R is the conventional droop value and is set to
1%. This indicates that a FESS will provide 100% power output
change if frequency deviation is equal to or higher than 1% of the
nominal frequency value.

It is to be noted that, the inherent control of each unit takes the
priority in determining the final charging/discharging state. For
refrigerators, the inherent control refers to the temperature control
as illustrated in Fig. 3. For FESS, the inherent control is the charging
control which limits the minimum andmaximum rotating speed of
each FESS.

In summary, the proposed control in Fig. 4 is a distributed con-
trol on each unit in a VESS, but it is coordinated amongst all units
by assigning frequency set-points based on SoC. The proposed con-
trol ensures that the aggregated response from a population of
units is in linear with frequency deviations. This is similar to the
droop control of frequency-sensitive generators. Each unit in the
VESS has equal opportunity to charge/discharge. The lifetime of
units is hence prolonged. Specifically for refrigerators, the control
does not undermine the cold storage and the impact of the reduc-
tion in load diversity is mitigated.

2.3.4. Coordination of refrigerators and FESS in a VESS
If a VESS tenders for the participation in the FFR market, the

VESS is required to illustrate the firm capability of providing a con-
stant amount of dynamic or non-dynamic frequency response (at
least 10 MW in the GB power system) during a specific time win-
dow [26]. However, the high cost of ESS limits the grid-scale
deployment. The uncertainty of DR makes it difficult to ensure
the provision of a constant amount of response at all times. There-
fore in a VESS, the coordination of FESS and DR aims to provide the
capability of delivering a certain amount of frequency response at a
lower cost.

In this study, a two-way communication network is assumed to
be available for the centralized VESS controller. The communica-
tion can be established through the Internet network protocols
[27], smart meter infrastructure or other smart grid technologies
[28,29] in the near future.

In the coordination, the VESS tenders for the provision of
dynamic FFR. The maximum response is constantly fixed (deter-
mined by the total installed capacity of units in a VESS) when
the frequency changes outside the limits, i.e. ±0.5 Hz. Within the
frequency limits, the response varies dynamically with frequency
deviations.
Please cite this article in press as: Cheng M et al. Benefits of using virtual energy
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Therefore, the amount of frequency response of VESS
(PVESS_req (MW) in Fig. 5) is determined by the grid frequency
through the droop control with the value of 1% as shown in
Fig. 5. The distributed controller of refrigerators responds to the
grid frequency f through the distributed controller (depicted in
Fig. 4). While the distributed controller of FESS units responds to
the power mismatch (PFESS-req. (MW) in Fig. 5) between the
required frequency response PVESS_req and the aggregated response
of refrigerators (DPfrig (MW) in Fig. 5) in order to compensate for
the uncertain response of refrigerators. This power mismatch
PFESS-req. is converted to a modified frequency value f0 (Hz) through
the droop setting RFESS_ref in (4). The distributed controller of FESS
(Fig. 4) then responds to the modified frequency f0 rather than
the grid frequency f0

RFESS ref ¼ dfmax

PFESS capacity
ð4Þ

where PFESS_capacity (MW) is the total capacity of FESS, dfmax is the
steady-state limit of grid frequency (0.5 Hz in the GB power
system). f0 is hence obtained by (5):

f 0 ¼ RFESS ref � PFESS req ð5Þ
3. Case studies

The performance of the model and control of VESS for the pro-
vision of frequency response service is evaluated by a series of sim-
ulations. The design of the case study is illustrated below.

There are 3,220,300 households in London in 2014 [30]. It is
assumed that the refrigerator (0.1 kW) in each household is
equipped with the frequency controller in Section 2.3.3. The
amount of frequency response from refrigerators is estimated
considering the time of day as shown in Fig. 6 [11]. A maximum
reduction in power consumption (‘red1 line’) is 18.5% at 18:00
and a minimum reduction is 13.2% at 6:00. Considering the number
of refrigerators in London, a maximum power reduction of 60 MW
and a minimum power reduction of 40 MW is expected. Similarly,
an availability of refrigerators to be switched on is approx. 50–56%
which expects a minimum power increase of approx. 160 MW and
a maximum power increase of approx. 180 MW from all refrigera-
storage system for power system frequency response. Appl Energy (2016),

http://dx.doi.org/10.1016/j.apenergy.2016.06.113


Time of day

Availability to be 
switched on

Availability to be 
switched off

Fig. 6. Availability of refrigerators to be switched on and off over a day based on field measurements [11].

- ∆Ploss

TurbineGovernor

PSR

govsT+1
1

2

1

1
1
sT
sT

+
+

turbsT+1
1

DsHeq +2

1

1

∑

System and load iner�as 
and dumping factor

∆f

VESS
∆PVESS

Re-heater

Fig. 7. Simplified GB power system.

6 M. Cheng et al. / Applied Energy xxx (2016) xxx–xxx
tors. This reveals that refrigerators have more potential to provide
response to the frequency rise than to the frequency drop.

Therefore, the VESS is planned to provide a linear dynamic
frequency response of a maximum of 60 MW (Preq) to the power
system when frequency drops outside the limit (49.5 Hz) and of
180 MW when frequency rises outside the limit (50.5 Hz) over a
day. For periods of the day that refrigerators cannot provide the
required response, FESS is used to compensate for the mismatch
between Preq and DPr. Because the maximum mismatch is
20 MW, 400 FESS (50 kW/30 kW h) are used in the VESS.

The VESS is connected to a simplified GB power system model
(see Fig. 7) [31] to assess the VESS capability to provide low
frequency response and high frequency response to the power sys-
tem. In the GB power system model (Fig. 7), the synchronous
power plants (coal, gas, hydro, etc.) characteristics are modelled
as governor, actuator and turbine transfer functions [32]. The sys-
tem inertia is represented by Heq and the damping effect of
frequency-sensitive loads was represented by a damping factor
(D) [32,33]. The flow of active and reactive power in transmission
networks are assumed independent and only the active power is
considered.

The time constants of the governor, re-heater, turbine, and the
load damping constant were set to: Tgov = 0.2 s, T1 = 2 s, T2 = 12 s,
Tturb = 0.3 s and D = 1.

Based on [34], the system inertia was estimated to be 4.5 s and
the equivalent system droop (RPS) was 9%. The parameters of the
model were calibrated with a real frequency record following a
1220 MW loss of generation on the GB power system [35].

Three case studies were carried out: Case 1 – low frequency
response, Case 2 – high frequency response and Case 3 – continu-
ous frequency response. Case 1 and Case 2 were undertaken on the
simplified GB power system model. The system demand was
Please cite this article in press as: Cheng M et al. Benefits of using virtual energy
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20 GW representing a summer night and the following three sce-
narios were compared.

Scenario 1: S1 (‘No ESS/VESS’): assumes that there is no ESS or
VESS connected to the power system.

Scenario 2: S2 (‘ESS’): connects 1200 FESS units each of
50 kW/30 kW h to the GB power system and tenders for the
provision of 60 MW of frequency response. This case uses only
conventional ESS.

Scenario 3: S3 (‘VESS’): connects the VESS model including all
refrigerators in London and 400 FESS units (50 kW/30 kW h)
to the GB power system and tenders for the provision of
60 MW of frequency response. The FESS provides a maximum
of 20 MW of response to the mismatch between Preq and DPr.

In Case 3, the behaviour of VESS in the provision of continuous
frequency response is studied.
4. Results and discussions

4.1. Case 1: low frequency response

The VESS is procured to provide a proportional low frequency
response of a maximum of 60 MW. Simulations were carried out
by applying a loss of generation of 1.8 GW to the GB power system.
This case simulates the discharging phase of the VESS. Results are
shown in Figs. 8–10.

The frequency drop in Fig. 8 is reduced with 60 MW of response
(see Fig. 9a)) from either ESS (S2) or VESS (S3). Since 60 MW of
response is small in a 20 GW system, the improvements of
frequency is approx. 0.01 Hz and seems hardly noticeable. If the
storage system for power system frequency response. Appl Energy (2016),
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Fig. 8. Variation of grid frequency after the loss of generation.
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Fig. 9. (a) Change in power output of VESS, ESS; (b) change of power consumption of refrigerators and FESS power output in the VESS.
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Fig. 10. Change of power output of generators after the loss of generation.
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installed capacity of units in the VESS is higher, the frequency drop
will be significantly reduced. The number of FESS in the VESS (S3)
was only one third of that in S2, however, VESS provided similar
amount of frequency response to that of ESS in S2. The reduced
capacity of FESS in S3 will reduce the cost significantly compared
to S2.

Fig. 10 shows the change of power output of generators in the
three scenarios. It can be seen, with ESS (S2) or VESS (S3), the
required capacity of the costly frequency-responsive generators
is reduced.

4.2. Case 2: high frequency response

The VESS is acquired to provide a maximum of 180 MW of high
frequency response to the power system over a day when fre-
quency rise outside the limit (50.5 Hz). A sudden loss of demand
of 1 GW was applied to the GB power system. This case depicts
the charging phase of the VESS. Results are shown in Figs. 11–13.

In Figs. 11 and 12, ESS in S2 provides approx. 45 MW of
response (see Fig. 12a)) from the 1200 FESS and the maximum
frequency rise is slightly reduced by 0.01 Hz compared with s1.
However, the VESS in S3 provides approx. 140 MW after the sud-
den loss of demand which is much higher than the response of
ESS in S2 and the frequency rise is reduced by 0.05 Hz. In Fig. 12b,
following the sudden loss of demand, the power consumption of
refrigerators is increased by approx. 120 MW from 66 MW to
186 MW while the power output of FESS in S3 is 20 MW (charg-
ing). By the response from both VESS and generators, the frequency
is recovered to 50.2 Hz almost immediately. As a number of
refrigerators were switched on following the frequency rise, their
temperature started to drop. It took several minutes before the
temperature reached the low set-point and refrigerators started
Please cite this article in press as: Cheng M et al. Benefits of using virtual energy
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to switch off. Therefore, FESS start discharging following the fre-
quency recovery. Because of the limitation of the capacity of FESS
(20 MW), the total response was not in linear with the frequency
recovery. However, the VESS in S3 provides much more response
following the frequency rise than that of ESS in S2. This is specifi-
cally critical for the future power system with a low inertia.

Fig. 13 also depicts that both ESS and VESS are able to reduce
the required capacity of spinning reserve of frequency-responsive
generators. The VESS in S3 shows a greater reduction compared
with the ESS in S2.

4.3. Case 3: continuous frequency regulation

The VESS is applied to provide continuous frequency response
in proportion to frequency changes. The VESS have maximum
charging power of 60 MW when grid frequency drops to 49.5 Hz
and maximum discharging power of 180 MW when grid frequency
increases to 50.5 Hz. Simulations were implemented by injecting a
profile recording the GB power system frequency into the VESS
[36]. The behaviour of the VESS in response to the continuous fluc-
tuations of frequency is shown in Fig. 14.

It can be seen, the power output of VESS dynamically changes
following the frequency deviations. Because refrigerators have
greater capability to be switched on, the VESS is able to provide
greater high frequency response than low frequency response as
depicted by Fig. 14.

4.4. Benefits of VESS

The VESS coordinates different types of distributed energy
resources, such as ESS, flexible loads and DGs, in order to facilitate
the connection of intermittent generation and also to provide
storage system for power system frequency response. Appl Energy (2016),

http://dx.doi.org/10.1016/j.apenergy.2016.06.113
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services to network operators, energy suppliers and service aggre-
gators. Therefore, the benefits of using VESS for different services
can be massive. In this paper, the benefit of VESS for the provision
of frequency response service is briefly estimated as an example.

The investment costs of FESS in S2 and of VESS in S3 were
roughly estimated first. It is assumed that the lifetime of FESS is
approx. 20 years and the lifetime of refrigerators is 13 years [37].
Considering a timescale of 20 years and using the investment costs
shown in Table 1, the investment cost of FESS in S2 providing
60 MW of response is estimated to be approx. £75m–£84m [7].
The investment cost of VESS in S3 providing 60 MW includes the
cost of installing controllers on 3,220,300 refrigerators which is
approx. £9.66 m [9] for 13 years and therefore will be approx.
£14.86 m for 20 years (see Table 1). In addition, the cost of FESS
in the VESS providing 20 MW of response is approx.
£25 m–£28 m. Therefore, the investment cost of VESS in S3 is
approx. £39.8m–£42.8m which is less costly compared with the
cost of ESS in S2. However, establishing the VESS communications
was not considered in the VESS total investment costs.

The economic incomes of using ESS and VESS for frequency
response services are calculated based on the present regulation
of the GB frequency response market. The payment of participating
in the FFR service [38,39] consists of the availability fee per day
and the utilization fee per day. The availability fee (£/MW h) is
the payment to the service provider to make a certain amount of
Table 1
Investment costs for different scenarios.

Scenario VESS unit Unit price Capacity or
no. of units

To

S2 FESS £1.25 m–£1.4 m/MW [7] 60 MW £7

S3 FESS £1.25 m–£1.4 m/MW [7] 20 MW £2
Refrigerator’s controller £3 [9] 3,220,300 �

�

Table 2
Parameters and values of calculating the income of providing frequency response services

Parameters Meaning

MWprimary Amount of primary response
MWsecondary Amount of secondary response
MWhigh Amount of high response
tprimary_utilization Nominated hours of primary response
tsecondary_utilization Nominated hours of secondary respon
thigh_utilization Nominated hours of high response pe
Availability unit priceprimary Unit price of available primary respon
Availability unit pricesecondary Unit price of available secondary resp
Availability unit pricehigh Unit price of available high response p
Utilization unit priceprimary Unit price of utilized primary respons
Utilization unit pricesecondary Unit price of utilized secondary respo
Utilization unit pricehigh Unit price of utilized high response pe

Please cite this article in press as: Cheng M et al. Benefits of using virtual energy
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response service available for the tendered hours of a day. The uti-
lization fee (£/MW h) is the payment to the service provider for the
utilization volume during the tendered hours of a day. The utiliza-
tion volume is the amount of response that has been delivered to
the system and it depends on the system frequency changes.
Table 2 provided the unit price of the availability fee and the uti-
lization fee. The payments of both ESS in S2 and VESS in S3 are
therefore calculated by (6) for the availability fee and by (7) for
the utilization fee.

Availablity fee¼MWprimary � tprimary utilization

� availability unit priceprimary

þMWsecondary � tsecondary utilization

�Availability unit pricesecondary
þMWhigh � thigh utilization �Availability unit pricehigh

ð6Þ

Utilization fee¼MWprimary � tprimary utilization �Utilization unit priceprimary

þMWsecondary� tsecondary utilization

�Utilization unit pricesecondary
þMWhigh � thigh utilization �Utilization unit pricehigh

ð7Þ

where the meaning and value of all parameters are listed in Table 2.
Based on (6) and (7), the income of ESS in S2 providing 60 MW of
primary, secondary and high response is £29.168 k/day. For
20-year timescale, the total income is hence £213m. The income
of VESS in S3 providing 60 MW of primary and secondary response
and 180 MW of high response is £43.946 k/day. For 20-year
timescale, the total income is £321m which is greater than the
ESS because the VESS is able to provide much more high frequency
response. Therefore, it is predicted that VESS will achieve more eco-
nomic benefits in the long term.
5. Conclusions

A VESS is formed by coordinating the DR of domestic refrigera-
tors and the response of FESS in order to provide functions similar
tal investment cost for 20 years

5m–£84m

5m–£28m £39.8m–£42.8m
£9.66 m for 13 years lifetime
£14.86m for 20 years lifetime (£9.66 m � 20 year/13 year)

in the GB power system.

Value Unit

60 MW
60 MW
60 (ESS) or 180 (VESS) MW

per day 15.97 h
se per day 11.53 h
r day 18.66 h
se per day 8.7791 £/MW h
onse per day 8.7791 £/MW h
er day 4.3896 £/MW h
e per day 4.4204 £/MW h
nse per day 4.4204 £/MW h
r day 2.2102 £/MW h

storage system for power system frequency response. Appl Energy (2016),
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to conventional ESS with higher capacity and lower costs. The
model and control algorithm of the VESS were developed. Amongst
the population of distributed units in the VESS, the control is
coordinated in order to provide an aggregated response which
varies in linear with the regulation signals. The control minimizes
the charging/discharging cycles of each unit and hence prolongs
the lifetime of each unit. The control also maintains the primary
function of loads and mitigates the impact of the reduction in load
diversity amongst the population. Case studies were undertaken to
evaluate the capability of VESS to provide the frequency response
service by connecting the VESS model to a simplified GB power
system model. Simulation results showed that VESS is able to pro-
vide low, high and continuous frequency response in a manner
similar to the conventional ESS. The economic benefits of using
ESS and VESS were compared considering the timescale of
20 years. Compared with the case that only uses ESS, VESS is esti-
mated to obtain higher profits.
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