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Abstract 

Huntington’s disease (HD) is a progressive inherited neurodegenerative disorder, causing involuntary movement and 
cognitive problems, severely affecting the quality of life.  Controlling upper limb function is a core feature of daily activity
and can prove problematic for people with HD. The Money Box Test (MBT) has been developed with a purpose of 
quantifying the involuntary movement frequently seen in people with HD. In this research, wearable and highly sensitive 
accelerometers are used to collect the acceleration of the hands and chest during the performance of the MBT. Using this 
data, a new approach is proposed to automatically classify the participants into two classes, healthy and HD, on the basis of 
the time series accelerometer data. A set of 90 time domain features is extracted from the accelerometer data, a feature 
selection technique is used to analyse the feature significance and to reduce the dimensionality of the dataset,  and finally an
SVM classifier is used to classify subjects into healthy and HD classes. The data of seven healthy controls and 15 HD 
patients are used in this study. The highest accuracy with the most significant eight features is 86.36% with the sensitivity 
and the specificity values being 87.50%, and 83.33% respectively. 
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1. Introduction  

Huntington’s disease (HD) is a progressive neurodegenerative genetic disorder caused by a cytosine-adenine-
guanine (CAG) repeat mutation in the HTT gene [1,2,3]. This results in degeneration of the striatum, the largest 
component of the basal ganglia. This is a group of nuclei located in the cerebrum highly connected to virtually 
all regions of the brain.  
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One of the symptoms associated with HD is impairment in motor control, categorised by chorea and dystonia. 
This, combined with the cognitive and behavioural symptoms [1] can affect common daily activities such as 
multitasking. The onset of disease is diagnosed clinically when motor abnormalities begin, termed “motor 
manifest” which is typically between 30-50 years of age. However, cognitive and behavioural symptoms [3] can 
be detected many years (even decades) prior to motor symptoms  which progressively impacts the quality of life 
of people with HD. As there is currently no cure for HD, most of the current research in this area focuses on 
identifying the deficits at the early stage of the disease, in order to benefit from future medical interventions that 
may help delaying the progress of the disease [4].

Upper limb dexterity is a core component of hand function and loss of dexterity can impact upon the 
completion of daily activities such as eating and getting dressed. Many of these tasks are often carried out whilst 
doing other tasks, such as talking, which for someone without neurological impairment may be considered easy 
[5]. However, for people with a neurological disorder, such as HD, added cognitive load can result in reduced 
performance in either one or both tasks being performed [6]. As the basal ganglia is heavily involved in the 
automaticity of movement [7], it is likely that degeneration of this neural circuitry in people with HD results in 
decreased automatic control of movement. This may then lead to an increased requirement for cognitive 
resources to control movements, thus limiting the attentional capacity for any additional, concurrent tasks. In 
terms of daily activity, this is not only dangerous under certain conditions but can also affect the quality of life 
of an individual. Many HD studies relentlessly look for ways to slow the progression of disease and improve the 
quality of life. With this in mind, sensitive, quantitative outcome measures are essential and must be designed 
and utilised to accurately detect any improvement in disease symptoms, such as upper limb and cognitive 
function, following an intervention.  

The Moneybox test (MBT) is a newly developed multi-task assessment of bilateral, upper motor function 
aiming to tackle the lack of quantitative functional outcome measures specific to symptoms associated with HD.  
This relatively simple task is unique as it can be used individually as a single, dual or triple task or as a three test 
assessment with added difficulty. The MBT is currently being validated in people across all stages of HD, with 
the aim for it to be used as a sensitive outcome measure for people with HD and potentially other neurological 
diseases in the future. 

Recently, wearable sensors have been used for diagnostic as well as monitoring applications [8,9]. 
Accelerometers are an example of this kind of sensors, they measure the acceleration of moving objects.   With 
the advances of sensing technology, accelerometers are now capable of collecting and storing acceleration 
values with high sampling frequency over long periods of time. Therefore many studies have used 
accelerometers for activity recognition, sleeping patterns and lifestyle monitoring, diagnostic applications, and 
rehabilitation monitoring [10,11,12]. Effective algorithms are needed to extract the patterns from this data in a 
meaningful way; machine learning techniques have been shown to be very effective in classifying accelerometer 
data [13]. 

This paper introduces a new approach to automatically classify the subjects into healthy and HD using 
accelerometers during the MBT. To achieve this purpose, the proposed algorithm employs signal processing 
techniques, feature selection methods and automatic classification techniques. The data of seven healthy 
controls and 15 people across all stages of HD were used in this study. The highest accuracy with the most 
significant eight features is 86.36% with the sensitivity and the specificity values being 87.50%, and 83.33% 
respectively.
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2. The Money Box Test (MBT) 

The MBT is an assessment test that focusses on bilateral, upper motor function recently developed at Cardiff 
University.  It has been developed in accordance with translational neuroscience and physiological principles, 
aiming to tackle the lack of quantitative and functional outcome measures available for the broad disease 
manifestation witnessed in people with HD, figure 1 to show Moneybox test contents. During the test subject is 
asked to sit in a hard backed chair with the moneybox positioned in front of him/her.  Eight tokens are set in 
decreasing order of size from the top to the bottom. The subject is asked to take each token using the non-
dominant hand, pass it to the dominant hand and put it in the box; he/she is asked to do that as quickly as 
possible.  The subject is asked to stay as still as possible throughout the test. During the baseline MBT, the 
subject is asked to transfer the tokens in order of size only, while during the dual task MBT the subject is asked 
to transfer the tokens in order of their value, starting with the highest value to the lowest value as quickly as 
they can. During the triple task MBT, the subject is asked to transfer the tokens in order of their value whilst 
simultaneously reciting the alphabet as fast as they can.  In this paper only the data from the baseline MBT is 
used.  

 Fig. 1: The Moneybox test enclosed in the case when not in use (left) and open ready for testing (right) 

3. Experimental setup

This section introduces the proposed approach to analysis and classification of the acceleration data, 
describes the main stages of this approach in detail: data collection, data analysis. Finally, it presents the 
produced results. 

3.1 Data collection  

Three GENEActiv triaxle accelerometers (Activinsights Ltd, Cambridgeshire, UK) have been used to capture 
the movement of the subjects during the MBT.  The number of subjects recruited for the test was 22, out of 
which 15 were HD patients and 7 were healthy controls. The average age of each group is 48.5 and 25.6 
respectively. For the MBT tests, every participant wore one accelerometer on their right wrist, one on their left 
wrist and one in the center of the chest. A sampling frequency of 100 Hz is used to collect the data, uploaded 
accelerometer data is converted to 15s epoch .csv files using GENEActiv PC software. The data is a time 
stamped stream of the acceleration in three dimensions (X, Y, and Z). Figure 2 shows a sample of the 
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accelerometer data; Figures 1 a, b, and c show healthy subject’s  left hand, right hand, and chest acceleration 
signals, while Figures 1 d, e, and f show the HD patient’s data.  

3.2 Data analysis  

This section explains the main stages of the system and the main purpose of each stage.  Figure 3 shows the 
system diagram consisting of three main stages: feature extraction, feature selection and classification stages.  
The process starts by extracting from the raw acceleration data a set of features that can represent the movement 
signature of a patient. In previous research, a variety of features have been used to represent the nonlinear 
signals such as motion acceleration. Based on an extensive literature review, a set of 90 time domain features is 
extracted for each subject; ten features foreach of three axis of the three accelerometers.  

a d 

b e 

c f 

Fig. 2. a, b, and c show healthy subject’s  left hand, right hand, and chest acceleration signals, d, e, and f show the HD patient’s data. 
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Employing nonlinear analysis techniques to acceleration data exhibiting complex behaviour, may provide 
insight about the movement signature. Recurrence Quantification Analysis (RQA) [14] can provide useful 
information regarding the pattern and structure of the signals even for the non-stationary data. Four features can 
be extracted based on RQA:  Recurrence rate in the signal, recurrence structure complexity, ratio of recurrence 
points, and average time that signal segments remain the same. Another nonlinear parameter is used to quantify 
the chaotic behaviour of the signals; Lyapunov exponent (LE) [15] is a typical measure of the chaos. Finally, 
two features measure the complexity of the signal; Sample entropy  [16], and Permutation entropy [17].  Table 1 
shows the list of the extracted time domain features. 

Feature selection is a technique used to analyse the significance of features for classification tasks. It is an 
important tool for reducing the dimensionality of a dataset and improving the performance of automatic 
classification algorithms by selecting the features with high discriminative ability, consequently rejecting 
insignificant or redundant features [18]. 

Filter feature selection methods are common methods because of their simplicity and computational 
efficiency, and in addition they are classifier-independent techniques. Many measures are used to analyse the 
feature significance such as Mutual Information [19] which is widely used measure; it measures the amount of 
information the feature shares with the class label.  

The proposed approach employs a recently developed feature selection method, Joint Mutual Information 
Maximisation (JMIM) method [20]. This is a nonlinear filter technique that employs the joint mutual 
information and maximum of the minimum criteria. The method has been reported to outperform the state of the 
art methods.  The method selects the features that maximise the following formula: 

(1) 
Where F is the original feature set, S is the selected subset feature,    is the candidate feature,  the 

selected feature.  

3.3 Classification  

Fig. 3. The proposed automatic classification system

The selected features are used to train an SVM classifier with linear kernel from the Matlab Statistics 
Toolbox. Classification accuracy, sensitivity, and specificity are used as the performance measures of the 
proposed approach. The classification accuracy is tested using leave one out cross-validation; training and 
testing are performed after adding each feature to the subset. Therefore, the produced classification accuracy, 
sensitivity, and specificity reflect the discriminative power of the whole subset after adding the new selected 
feature and is not based on the newly selected feature only. 
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Table 1. The list of the extracted time domain features 

Feature 
No. of 

attributes per 
subject

Feature description  

Recurrence rate 9 
It is the Recurrence rate in the signal, the probability that any state will 
recur again. 

R
ecurrence

Q
uantification

A
nalysis (R

Q
A

) 

R_ Entropy 9 Measure the recurrence structure complexity 
Determinism 9 It is the ratio of recurrence points 

Average
Diagonal line 

9 Average time that signal segments remain the same. 

LE 9 
Lypaunov  exponents, it  measures the level of chaos in the time series 
signal 

Sample entropy 9 Assesses  the complexity of the time series signal  
Permutation 

entropy 
9 Assesses  the complexity of the time series signal  

Standard 
deviation 

9 The standard deviation of the time series signal  

Mean 9 The mean of acceleration signal  
Correlation

between axis 
9 Correlation between each two axis for each accelerometer  

3.3  Results 

The most 10 significant time domain features are shown in Table 2. Sample entropy and Lypaunov exponent 
are shown as the most important measures for the discrimination between healthy control and HD subject. The 
result shows that the level of chaos for right and left hands is a powerful measure. For the chest accelerometer, 
the complexity level of the chest sensor signals is important, the correlation between the chest Y axis and Z axis 
is shown to be significant  as well as the mean of chest X axis. Due to the chorea and dystonia, HD patient are 
likely to make uncontrollable limb movements, this type of movements are reflected as a chaos in the 
accelerations signals. The chest accelerometer showed that the HD patients tend to lean forward during the test.  

The results of the classifiers with time domain features are shown in the following Figures; Figure 4 shows 
the classification accuracy of the SVM classifier, with the highest accuracy of 86.36% achieved using the most 
significant 8 features. Figure 5 shows the corresponding values of sensitivity and the specificity, which are 
87.50%, and 83.33% respectively. 

Table 2. The ten most significant time domain features 

No Feature 
1 Chest Sample entropy X axis  
2 Left hand Lypaunov  exponents Y axis 
3 Right hand Lypaunov  exponents X axis 
4 Left hand Lypaunov  exponents Z axis 
5 Left hand Lypaunov  exponents X axis 
6 Right hand Lypaunov  exponents Y axis 
7 Chest  Y axis and Z axis correlation  
8 Right hand Lypaunov  exponents Z axis 
9 Chest Sample entropy Y axis  
10 Chest  X axis mean  
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Fig. 4. Classification accuracy 

Fig. 5. Sensitivity and specificity   

4. Conclusion and future work 

This paper presents the results of research aimed at using accelerometers to assess the severity of some of the 
functional symptoms associated HD patients. A set of 90 time domain features has been extracted for each 
subject from the data collected using three accelerometers, which were used to describe the movement signature 
of each of the assessed subjects. State of the art feature selection method was used to identify the most 
important features for the purpose of discriminating between healthy and HD cases. The results of the 
experiments with 22 participants indicate that the most important features, which provide high level of 
classification accuracy are:  the features measuring the level of chaos in the raw accelerometer data (Lyapunov 
exponent) for the right and left hand accelerometers, the features measuring the complexity of chest 
accelerometer signals (sample entropy) as well as the correlation between the axis of chest accelerometer. The 
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results also show that the subset of the most significant 8 features produce high accuracy as well as high 
sensitivity and specificity values. 

Future work includes research on extracting frequency domain features, high level features, such as the time 
of each take and release task, trajectory of the hand movement and orientation of the hands. It is also important 
that the proposed approach is tested with a larger number of participants and that features and classification are 
translated into terms that are accessible to patients and clinicians to allow engagement and compliance with a 
resulting clinical tool. 
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