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Abstract
Background: New methods are needed for research into non-model organisms, to monitor the effects
of toxic disruption at both the molecular and functional organism level. We exposed earthworms
(Lumbricus rubellus Hoffmeister) to sub-lethal levels of copper (10–480 mg/kg soil) for 70 days as a real-
world situation, and monitored both molecular (cDNA transcript microarrays and nuclear magnetic
resonance-based metabolic profiling: metabolomics) and ecological/functional endpoints (reproduction
rate and weight change, which have direct relevance to population-level impacts).

Results: Both of the molecular endpoints, metabolomics and transcriptomics, were highly sensitive, with
clear copper-induced differences even at levels below those that caused a reduction in reproductive
parameters. The microarray and metabolomic data provided evidence that the copper exposure led to a
disruption of energy metabolism: transcripts of enzymes from oxidative phosphorylation were significantly
over-represented, and increases in transcripts of carbohydrate metabolising enzymes (maltase-
glucoamylase, mannosidase) had corresponding decreases in small-molecule metabolites (glucose,
mannose). Treating both enzymes and metabolites as functional cohorts led to clear inferences about
changes in energetic metabolism (carbohydrate use and oxidative phosphorylation), which would not have
been possible by taking a 'biomarker' approach to data analysis.

Conclusion: Multiple post-genomic techniques can be combined to provide mechanistic information
about the toxic effects of chemical contaminants, even for non-model organisms with few additional
mechanistic toxicological data. With 70-day no-observed-effect and lowest-observed-effect
concentrations (NOEC and LOEC) of 10 and 40 mg kg-1 for metabolomic and microarray profiles, copper
is shown to interfere with energy metabolism in an important soil organism at an ecologically and
functionally relevant level.
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Background
Understanding biological responses to individual toxic
chemicals and chemical classes is clearly of key impor-
tance for pollution assessment, both for monitoring expo-
sure to existing environmental contamination and for
informing the risk assessment of off-target effects. How-
ever, ecotoxicological research frequently focuses only on
easily measurable endpoints, typically mortality,
although more sensitive tests on effect endpoints such as
reproduction and growth are also used widely. Thus, a
major challenge for ecotoxicology is understanding toxic
mechanisms at a molecular level, and how these molecu-
lar changes relate to functional changes at the organism
and population level [1]. The 'ecotoxicogenomic' post-
genomic approach has clear benefits, and is currently gen-
erating interest from end users such as regulatory authori-
ties as well as from research scientists [2,3]. In order for
this potential to be realised, a solid bedrock of research is
needed to characterise the fundamental responses of
important test organisms to a range of model toxins cov-
ering a wide chemical space. It will be important to deter-
mine just how specific omic fingerprints of toxicity are,
and whether they can be used successfully to distinguish
between different modes of toxic action, and hence yield
novel information on mechanistic toxicology. This 'sys-
tems toxicology' approach has been applied in widely
used model organisms such as the laboratory rat and
other vertebrates [4-7]. However, these animal models
have the benefit of many more existing data [8,9]. In addi-
tion, it is often easier to perform manipulative experi-
ments, and there is a much greater scope for
complementary mechanistic cell-based work, such as his-
topathology. In contrast, the situation with non-model,
ecologically relevant species is quite different.

The term 'ecologically relevant' is not precisely defined:
clearly the most relevant level for studying the effects of
chemicals is the community and/or ecosystem, and there
are approaches which aim to understand, or at least quan-
tify, responses to pollution at this level (see, for example,
[10-14]). Here, however, we refer to controlled studies on
single species that may already be widely studied but are
not classic model organisms; for example, animals used in
regulatory ecotoxicity tests fall into this category, such as
the earthworm Eisenia fetida, the enchytraeid Enchytraeus
albidus, and collembolans Folsomia candida and Orchesella
cincta for terrestrial, and Daphnia magna, Gammarus pulex,
chironomid larvae and Mytilus species for aquatic testing.
Working with these animals presents some common chal-
lenges: none has a fully sequenced genome; it is not gen-
erally possible to obtain antibodies against specific
molecular targets; they are often so small as to preclude
ready dissection of internal organs or tissues; it is impos-
sible or extremely difficult to modulate gene activity, for
example by creating knockout strains; and there is in gen-

eral much less knowledge about fundamental biological
systems, such as signalling pathways or gene regulation, in
these organisms. Modern omic approaches offer a poten-
tial opportunity to circumvent some of these drawbacks
[15-22]. In particular, metabolomics and metabonomics
have one great advantage for work with non-model organ-
isms: because metabolites are detected directly, and pri-
mary metabolites at least are identical across different
species, samples can trivially be analysed with no need for
prior knowledge of the gene and protein sequences [23].
Metabolomics also reports on the final integrated pheno-
type of an organism, as metabolism is the final down-
stream product of gene and enzyme regulation [24-27]. As
a consequence, we decided to carry out an integrative
study of the metabolic response of Lumbricus rubellus to
copper, using both nuclear magnetic resonance (NMR)-
based metabolic profiling and cDNA microarrays for tran-
script profiling.

The earthworm L. rubellus is a common species with a
worldwide distribution [28-31]. It is found even in shal-
low and contaminated soils, so it is appropriate for both
laboratory and field studies [32]. It has also been the sub-
ject of an expressed sequence tag (EST) sequencing
project, permitting the construction of cDNA microarrays
[33]. Copper is an essential element that is also highly
toxic to soil invertebrates in high concentrations. Hence,
as well as inducing general toxic-response pathways, there
will also be specific biological mechanisms for copper
handling that may be expected to be perturbed, and thus
copper is an excellent model toxin for demonstrating an
integrative ecotoxicogenomics approach. We exposed
worms to sub-lethal levels of copper in a semi-field situa-
tion using buried mesocosms, and monitored the dose
response using transcriptomics (using a cDNA microarray
fabricated with 8,129 EST reporters representative of all
consensus gene objects generated from 17,225 high-qual-
ity ESTs) and metabolomics (using proton NMR spectros-
copy). We also measured changes in reproduction and
general condition as measured by body weight and by a
well-characterised cellular bioassay; monitoring these
functional endpoints is important for phenotypic anchor-
ing of the omic data [15,34]. Our aim was to look for links
between the different levels of information (metabolism,
transcription and functional) to obtain stronger infer-
ences about the mechanistic effects of copper than could
be gathered from the individual datasets alone. A second-
ary aim was to test the hypothesis that copper exposure
up-regulates histidine metabolism in L. rubellus [35,36].

Results and discussion
Ecological and functional endpoints (survival, weight
change, reproduction rate and neutral red retention by
coelomocytes) have been reported in a previous study
[37]. In brief, there was no effect on mortality, confirming
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that the exposure was appropriate for probing sub-lethal
molecular responses, but the other functional assays all
showed a response at medium to high levels of copper (40
to 160 mg/kg and above).

Metabolomic analysis
We were able to reliably profile 42 different small-mole-
cule metabolites across all samples using 1H NMR spec-
troscopy and software for assisted manual fitting of
chemical standards (Table 1). The manual fitting
approach has been shown to give high-quality data on
single compound concentrations [38]. The metabolomic
analysis rests critically on the quality of the data obtained
from this step; given the high degree of spectral overlap in
one-dimensional proton spectra, and consequent diffi-
culty in fitting the data, care is needed for reliable assign-
ment. As well as assignment, the quality and
reproducibility of the spectral fitting step is also a valid
concern. We acquired data for one sample for five instru-
mental replicates; hierarchical cluster analysis (HCA) of
all compound concentrations shows that these replicates
are more similar than any other two sample spectra (Fig-
ure 1). This confirms not only, as expected, the high

instrument precision of NMR [39], but also that our fit-
ting of compounds was very reproducible. Compound
assignments were made on the basis of the chemical shift
and multiplicity of standards in the Chenomx software
library and from online databases [40]. In addition, a two-
dimensional correlated spectroscopy (COSY) spectrum
was acquired for a representative sample, and used to help
confirm assignments. We have assigned 2-hexyl-5-ethyl-
furan-3-sulfonic acid (HEFS) previously, and lombricine
is assigned on the basis of its structure and expected high
concentration in earthworms [41-44]. We also ran spectra
of authentic compounds and spiked them into the sample
when assignments were doubtful, for example, for purine
nucleotides, which have singlet resonances in the aro-
matic region that are close in frequency, and are thus usu-
ally unreliable to assign from database values alone. In
addition, a compound which we had previously tenta-
tively assigned as N-α-methylhistidine [45] was found to
be N,N-α-dimethylhistidine (DMH) after comparison
with authentic standards. However, we could not obtain a
sufficiently pure sample of DMH to use for quantitation,
so we averaged concentrations for 1-methylhistidine and
dimethylglycine, fitted to the imidazole and N-methyl

Hierarchical cluster analysis of samples according to fitted metabolite concentrations (scaled to unit variance)Figure 1
Hierarchical cluster analysis of samples according to fitted metabolite concentrations (scaled to unit variance). 
Samples 40_1r1 to 40_1r5 represent five instrument replicates, demonstrating that neither the machine variation nor the peak 
fitting procedure introduce significant amounts of error compared with the within-group biological variation.
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protons of DMH, respectively. We were able to fit almost
all of the peaks in the spectra (Additional file 1). The few
remaining unfitted resonances include some at around
8.00 and 6.00 ppm (probable pyrimidine nucleotides),
6.60 and 1.16 ppm (believed to be an uncharacterised
metabolite/breakdown product of HEFS) and 5.50 ppm
(probable phosphosugar on the basis of its multiplicity
and chemical shift, neither glucose-1-phosphate nor glu-
cose-1,6-bisphosphate by comparison with authentic
standards). However, these unfitted peaks represent only
a tiny fraction of the overall intensity. Finally, one sample

in the 480 mg/kg dose group had a very high xanthine
concentration (more than 20 times higher than the aver-
age for all other worms), which had high leverage in mul-
tivariate analyses, and so this one data point (not the
whole sample) was treated as a missing value.

Factor analysis showed a clear relationship with copper on
axes 1 and 2; in addition, it was obvious that at the high-
est-concentration dose (480 mg/kg soil) the worms were
very different to the others along the second orthogonal
axis (Figure 2). This was also true following varimax axis

Table 1: List of NMR-visible metabolites assigned in earthworm extracts

Compound Relative concentrationa Abbreviation Numberb Functional classc

Acetate 10 Ac 1 Organic acid
Adenosine 9.3 Ado 2 Nucleoside

ADP 5.9 ADP 3 Energy
Alanine 62 Ala 4 AA
AMP 5.8 AMP 5 Energy

Asparagine 11 Asp 6 Basic AA
Aspartate 5.8 Asp 7 AA

ATP 0.76 ATP 8 Energy
Betaine 11 Bet 9 Membrane
Choline 2.9 Cho 10 Membrane

Dimethylamine 1.7 DMA 11 Other
N,N-dimethylhistidine 5.6 DMH 12 His compound

Fumarate 3.1 Fum 13 Organic acid
Glucose 27 Gluc 14 Sugar

Glucose-6-phosphate 0 G6P 15 Sugar
Glutamate 52 Glu 16 AA
Glutamine 34 Gln 17 Basic AA

Glycine 23 Gly 18 Membrane
HEFS 100 HEFS 19 Membrane

Histidine 2.4 His 20 His compound
Inosine 13 Ino 21 Nucleoside

myo-Inositol 12 m-Ins 22 Membrane
scyllo-inositol 9.9 s-Ins 23 Membrane

Isoleucine 6 Ile 24 Lipophilic AA
Lactate 47 Lac 25 Organic acid
Leucine 17 Leu 26 Lipophilic AA

Lombricine 78 Lom 27 Energy
Lysine 18 Lys 28 Basic AA
Malate 43 Mal 29 Organic acid

Mannose 3.3 Man 30 Sugar
Methionine 1 Met 31 AA

3-Methylhistidine 0.27 3MH 32 His compound
Nicotinate 2.9 Nic 33 Nucleoside

Phenylalanine 7.2 Phe 34 Lipophilic AA
Phosphoethanolamine 21 PE 35 Membrane

Succinate 15 Succ 36 Organic acid
Threonine 10 Thr 37 AA
Tryptophan 2 Trp 38 Lipophilic AA

Tyrosine 6.4 Tyr 39 Lipophilic AA
Uridine 1.3 Uri 40 Nucleoside
Valine 8.9 Val 41 Lipophilic AA

Xanthine 7.2 Xan 42 Nucleoside

aMean value, expressed as a percentage of the most concentrated metabolite (HEFS).
bNumber refers to label in Additional file 1.
cCorresponds to the labels in Figure 2. AA, amino acid.
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rotation, although, in this case, the copper-related differ-
ences dropped down to axes 2 and 3. HCA showed that
the high-concentration samples (480 and 160 mg/kg)
formed a separate cluster to the low-concentration sam-
ples (0 and 10 mg/kg), with the intermediate 40 mg/kg
worms falling into both of these clusters (Figure 1). Given
that not many samples were available for cross-validation,
and that the metabolic responses to copper were clearly

non-linear, we chose not to use additional supervised
multivariate methods.

Metabolic changes
There is currently no 'metabolite ontology' database that
allows one to systematically annotate individual com-
pounds into different groups; approaches based on net-
work topology for the definition of elementary modes are

Factor analysis of NMR spectral data showing relationship between metabolite profiles and copper exposureFigure 2
Factor analysis of NMR spectral data showing relationship between metabolite profiles and copper exposure. 
(A) Scores plot, axes 1 and 2. (B) Scores plot following Kaiser varimax rotation, axes 2 and 3. Data are shown for both individ-
ual samples and for dose group means ± standard deviation (SD); groups are joined in dose order by dashed line. (C) Loadings 
plot, axes 1 and 2. (D) Loadings plot following varimax rotation, axes 2 and 3. Loadings for individual metabolites are identified 
by abbreviations given in Table 1.
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exciting, but are still under development, and cannot be
applied at the whole-organism level for metazoans [46].
Hence, we performed a simple annotation based on exist-
ing biochemical knowledge. We note that our annotations
were not performed systematically; it is also important to
realise that many metabolites should be annotated to
multiple categories, which we did not attempt to do. Nev-
ertheless, this simple approach may be a useful first step
in interpreting metabolomics data.

Several metabolite groups exhibited a coordinated
response; this was especially clear for the lipophilic amino
acids (Figure 2). Several other possible coordinated
responses were identified, including sugars, nucleotides,
organic acids (including several synthesised through the
citric acid cycle) and, possibly most interestingly, 'cell
membrane compounds' (Figure 2). It should be noted
that attempting to assign 'metabolite ontologies', at how-
ever limited a level, offers an option that simply does not
exist to any great extent for genes: that of chemical simi-
larity. (Some kind of chemical classification of genes
might also be made, for example, on the basis of percent-
age occurrence of DNA bases, but this would be of very
limited applicability.) Of the groups we have labelled in
Figure 2, the 'cell membrane' group does not include any
compounds that directly form cell membranes, but,
instead, those that could be involved in either the anabo-
lism or catabolism of lipid compounds. It should be
noted that this is the most structurally diverse group that
we labelled, containing an amino acid (glycine, which is a
direct precursor to serine and, hence, sphingolipid metab-
olism, and is a breakdown product of choline and
betaine), as well as metabolites that form polar lipid head
groups (inositol compounds and phosphoeth-
anolamine). In addition, we assigned the earthworm
metabolite HEFS to this group: the very high tissue con-
centration of HEFS implies it has some kind of structural
or stabilising role. As amphiphilic compounds are known
to stabilise cell membranes during desiccation stress [47],
and desiccation is a common and severe hazard faced by
earthworms, we argue that the high HEFS concentrations
probably reflect a role in membrane stabilisation.

Having identified these potential groups through multi-
variate pattern-recognition analysis, we examined the
actual data for coordinated functional group responses in
more detail; selected groups are shown in Figure 3, which
represents the percentage difference compared with con-
trols (that is, directly equivalent to fold change). The coor-
dinated response of the lipophilic amino acids is, again,
very clear, and shows a non-linear response to copper: all
of these metabolites are reduced at intermediate concen-
trations, and increased again at the highest level of 480
mg/kg (Figure 3A). In contrast, the membrane compound
group shows a definite increase in response to copper

(Figure 3B). The HEFS response also fits well within this
group, supporting its classification as a 'membrane com-
pound'. Even within these functional groups, fine-scale
inter-metabolite relationships can be observed: myo-inosi-
tol and scyllo-inositol are the two most highly correlated
metabolites within this group, with an apparently sigmoi-
dal response to copper, presumably indicating metabo-
lism through a common enzyme from lipid breakdown/
turnover. The organic acids also show a sigmoidal-type
relationship, with the compounds directly produced by
the citric acid cycle the most closely related; lactate should
probably not be considered part of the same functional
group (Figure 3C). The remaining plots do not show
grouping to the same extent: the sugars glucose and man-
nose both decrease in response to copper, but glucose-6-
phosphate is not evidently correlated with these in any
way (Figure 3D). Similarly, there is no obvious correlated
response for the nucleosides as a group (Figure 3E);
although nicotinate and uridine are both very highly cor-
related, the fold changes for these two compounds are
very small, less than 10%. Larger changes are seen for ino-
sine and xanthine, which decreased in response to copper;
both of these are breakdown products, of purine and pyri-
midine nucleotides respectively. Finally, the amino acids
(excluding glycine and the lipophilic amino acids)
showed little overall grouping. 3-Methylhistidine
decreases in response to copper, while glutamine shows
large variations (Figure 3F). In general, the fold changes
are very small, with the large majority being less than two-
fold up or down. This contrasts with the transcript data,
where larger fold changes are observed.

Non-targeted metabolite profiling has often been explic-
itly categorised as a biomarker discovery tool [48,49],
with the implication that the aim of a metabolomic study
is to discover a small number of biomarkers in amongst
the biological noise. This approach may be advantageous
when the desired outcome is a screening tool (for
instance, for disease, or for environmental pollution),
when a single (or few) robust biomarker(s) will enable the
use of simpler and more robust predictive models (for
example, classical linear discriminant analysis [49]) and
targeted detection. An additional advantage not often
made explicit is that this greatly enhances the transferabil-
ity between different laboratories and, hence, the overall
potential use and scientific value of the biomarkers. How-
ever, this approach is limited when seeking to integrate
large datasets and to relate these to biological functions.
In the current study, considering the coordinated
responses of functionally related metabolites showed
clear group responses, which would not have been obvi-
ous if only the most strongly changing metabolites had
been investigated.
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Histidine compound metabolism
Gibb et al [35] reported that histidine increased in earth-
worm tissue in response to copper contamination at levels
comparable to the present study (up to 160 mg/kg soil),
and speculated that this might represent a metabolite-
level cellular response for direct detoxification of copper,
as observed for the increase in free histidine seen in plant
tissues in response to nickel [51]. In addition, histidine
and DMH in L. rubellus were affected by metal contamina-
tion in worms sampled from the field [45]. We thus had a

particular interest in histidine and related compounds,
and examined their responses to copper in detail in addi-
tion to the general analysis above. We looked at both tis-
sue and normalised concentrations (relative to alanine); it
should be noted that the calculation of tissue concentra-
tions assumed 100% extraction of metabolites and,
hence, these values are likely to slightly underestimate
true concentrations. There was a weak negative correlation
with copper for histidine and 3-methylhistidine, and no
apparent relationship with DMH (Figure 4). The earlier

Metabolite functional group responses to copper, concentrations expressed as a percentage of the mean control valueFigure 3
Metabolite functional group responses to copper, concentrations expressed as a percentage of the mean con-
trol value. (A) Lipophilic amino acids: black = aliphatic; blue = aromatic. (B) Cell membrane-related metabolites. Black = Bet, 
PE, Gly, HEFS; red = m-Ins, s-Ins. (C) Nucleosides. Blue = Nic, Uri; red = Xan, Ino; Black = Ado. (D) Organic acids. Blue = Mal, 
Fum, Succ; black = Ac; red = Lac. (E) Sugars and sugar phosphates. Blue = Mann; Red = Gluc; Black = G6P.
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study used an aqueous tissue extraction [35], which
would not prevent metabolic activity, especially as earth-
worm proteases are particularly active [52], and therefore
their results may have included contributions from pro-
tein-bound histidine. It is certainly likely that a histidine-
rich protein could be responsible for detoxification by
binding copper [53]. Thus, we also extracted earthworm
tissue in water, which was left at room temperature for 24
hours to allow any enzymatic activity to go to completion,
and re-analysed the samples using NMR spectroscopy.
Aqueous extraction causes extensive proteolysis, inferred
from a large increase in free amino acid concentrations,
which is effectively complete after one or two hours (data
not shown). In general, the observed concentrations of

amino acids were approximately two orders of magnitude
higher than in chloroform/methanol extracts, and the
separation of the different copper dose groups by factor
analysis had completely disappeared (data not shown).
Considering the histidine compounds only, there were
essentially no dose-related differences compared with the
chloroform/methanol extracts, indicating that there was
no increase in protein-bound histidine that might reflect
an increase in metal-binding proteins. We currently have
no sure explanation of why our results are different to
those previously observed. However, a note of caution has
been sounded about the genetic variability of Lumbricus
species used in laboratory tests [54], and we have previ-
ously observed high variability in histidine levels in L.

Effects of copper on histidine compoundsFigure 4
Effects of copper on histidine compounds. All values presented as either μmol metabolite per gram dry weight tissue or 
as relative concentration (percentage of alanine). 'Aq.' indicates sample extracted in water, allowing enzymatic proteolysis. 
'C.M.' indicates sample extracted in chloroform/methanol, preventing further enzymatic activity.
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rubellus that may have resulted from genetic differences
between populations [45]. The population used by Gibb
et al [35] may have had a different genetic background.

Lipid analysis
In addition to the polar fraction, we also analysed the
total lipid fraction by 1H NMR. Lipid spectra are domi-
nated by resonances from fatty acids; because these are all
chemically similar, it is not usually possible to identify

individual compounds by NMR, and thus it should be
thought of as a way of obtaining information on the rela-
tive distribution of different moieties, which still consti-
tutes useful biochemical information [55]. Given this, it
was not possible to fit individual compound concentra-
tions as for the polar compound data, and so we used a
different approach for data analysis. A set of 57 integral
regions was selected manually (Additional file 2); note
that this does not equate to 57 separate compounds. A

Analysis of 1H NMR lipid dataFigure 5
Analysis of 1H NMR lipid data. (A) Hierarchical cluster analysis of spectral regions (Euclidean distance) and heat-map show-
ing fold-change relative to control group. (B) PCA, scores on axis 2. (C) PCA, loadings on axis 2. Area of point represents sig-
nificance (-log(P), where P is probability from Student's t test; group 1, 480 mg/kg sample worms; group 2, 0, 10 and 40 mg/kg 
sample worms). Point labels in blue correspond to spectral regions shown in Additional file 7.
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heat map of fold change relative to the control group
shows quite clearly that the worms at the highest dose
level, 480 mg/kg, are very different from the other groups
(Figure 5). This is also visible on a single-sample (that is,
not averaged) basis (Additional file 3). Factor analysis
showed that one sample (one of the 480 mg/kg dose
group) was an extreme outlier, which was also apparent
on examining the original spectra, and so we excluded this
sample and re-analysed the data. This showed clearly,
using two different forms of scaling, that the 480 mg/kg
worms were separated from the control and low-dose
group worms along axis 2, while the 160 mg/kg worms
were intermediate (Figure 5). Inspection of the original

spectra confirmed that there were real and visible differ-
ences in spectral features (Additional file 4). Regions A
and C-I represent signals that were decreased by copper
exposure; A represents vinylic protons from unsaturated
fatty acids, E represents protons allylic to two double
bonds from polyunsaturated lipids and G probably repre-
sents protons from allylic methylenes that are not adja-
cent to another double bond. C represents glycerol peaks
from triacylglycerols and D represents glycerol peaks from
glycerophospholipids. F possibly represents plasmalo-
gens, and H and I both represent signals from terminal
methyls. (All assignments based on Sze and Jardetzky
[55].) Region B contains a peak from an unassigned

Transcript profiles for copper exposed worms, 329 transcripts significantly differently expressed as a result of copper treat-ment (ANOVA)Figure 6
Transcript profiles for copper exposed worms, 329 transcripts significantly differently expressed as a result of 
copper treatment (ANOVA). (A) Hierarchical cluster analysis and heat map, individual replicates. Colours of heat map 
indicate up-regulation (red) and down-regulation (green) of transcripts. (B) hierarchical cluster analysis and heat map, dose 
group averages. (C) PCA, first two components. (D)-(G) relative expression profiles (transcripts significantly different at the p 
= 0.05 level) fall into four clusters (K-means). Colours of different groups for (D)-(G) are for visualisation only.
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metabolite that is only present in the copper-treated
worms, and is absent in the controls. Even though this
peak is of very low intensity compared with the largest sig-
nals in the spectrum (for example, 0.0075% of the inten-
sity of the main unsaturated methylene resonance
following local baseline correction), it is a very specific
response and so could still prove a useful future biomar-
ker, possibly using some more sensitive detection method
following compound identification.

Microarray analysis
There were 8,029 cDNA reporters on the microarray. Of
these, 7,107 consistently yielded high-quality data and
1,705 exhibited a change in the level of transcription of
more than twofold in one treatment group (Additional
file 5). One-way analysis of variance (ANOVA), with cor-
rection of the error rate for multiple tests following the
approach of Benjamini and Hochberg [56], revealed 329
of these transcripts as significantly altered (p < 0.05; see
Additional file 6). Direct functional information relating
to earthworm transcripts is negligible. However, approxi-
mately one-third display a significant homology (BlastX
significance greater than 10-10) to human orthologues,
and so we concentrated on these transcripts for further
analyses. There were clear differences of expression in the
different dose groups (Figures 6A and 6B). Pattern recog-
nition analysis using principal components analysis
(PCA) indicated that the major effect was at the two high-

est dose groups, which were clearly separated from the
other samples (Figure 6C).

We used a K-means clustering approach to show that the
transcripts fell into four response groups (clusters), which
displayed similar dose-dependent profiles with respect to
copper exposure. One group comprised of genes showing
a general dose-dependent increase with respect to copper
(Figure 6D), and two groups displayed the converse rela-
tionship being separated by the degree of down-regula-
tion observed in the two lower copper doses (Figure 6E).
The most intriguing cluster, however, were those tran-
scripts that were up-regulated when exposed to a low dose
of copper with a subsequent down-regulation at higher
doses (Figure 6F). This profile indicates that the organ-
isms' hormetic response to copper is also manifest at the
level of transcription [57].

To complement the purely statistical approaches that pro-
vide insight into the coordination of transcript response,
we also analysed the bias in gene function within tran-
scripts (selected by unsophisticated filtering) to identify
those that displayed more than twofold changes in tran-
script level in response to any of the copper exposures. We
chose this group to be 'inclusive' because, although we
recognise that it includes a small quantity of noise due to
the quantity of transcripts analysed, it provided a more
complete representation of functional group effects. This

Transcript profiles for copper exposed worms, transcripts selected on the basis of expected response to copper (that is, prior knowledge)Figure 7
Transcript profiles for copper exposed worms, transcripts selected on the basis of expected response to cop-
per (that is, prior knowledge). All transcript levels are shown on a log10 scale ranging from 0.1- to 10-fold induction. (A) 
Invariant genes (blue) compared with all other selected genes (red). (B) Metallothionein genes. (C) Heat shock protein genes. 
(D) Genes involved in glutathione metabolism. (E) Genes involved in DNA repair mechanisms. (F) Regulators of apoptosis.
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was especially desirable given that, because functional
assignment was based on the top human orthologues,
only about one-third of the reporters could be assigned
confidently. We used a background created by those
human orthologues assigned to the complete reporter set
to calculate the representation bias for gene ontology
terms for those orthologues assigned to transcripts exhib-
iting copper-induced twofold change in expression [58].
The ontology groups that were significantly overrepre-
sented (p < 0.1) are summarised in Additional file 7. The
clear disruption in genes associated with mitochondrial
electron transport strongly implies a copper-induced
mitochondrial dysfunction, consistent with previous
observations in other organisms [59-61]. Even a slight
reduction in the capacity for adenosine triphosphate
(ATP) production by aerobic respiration would result in a
redistribution of energy production through anaerobic
processes, and this is indeed evident through the changes
in genes involved with sugar mobilisation for energy pro-
duction (Additional file 7). We also observed transcript
changes that we interpret as representing functional inter-
actions between copper and other essential metal ions, in
particular changes in expression of calcium- and iron-
binding proteins. Finally, there were clear alterations in
lipid metabolism at the transcript level, complementing
the observations made at the metabolite level.

The power of calculating functional representational bias
is inherent in the cumulative nature of the data obtained
from a profiling approach. However, it is also important
to extract specific transcript profiles of genes with an
established and expected functional link to copper (Figure
7, and Additional file 8). For example, metallothioneins
are widely responsive to metal exposure, including copper
for particular isoforms, in a large number of organisms.
Hence, we were interested in determining any such spe-
cific responses to copper in L. rubellus. The observed up-
regulation of multiple reporters (Figure 7B) indicates that
earthworm metallothionein, surprisingly [62,63], is
induced by copper at a far lower exposure concentration
level than by cadmium. Copper exposure also increased
general toxic stress in the worms, as shown by the induc-
tion of HSP70 and HSP40 (Figure 7C); our observations
here from the transcript profiles are consonant with previ-
ous targeted immunochemical analyses of HSP70 levels in
earthworms exposed to copper and metalliferous soils
[64,65]. Copper toxicity also causes an increase in genera-
tion of reactive oxygen species, as a result of the mito-
chondrial dysfunction discussed above. This could
explain the increase we observed in specific glutathione-S-
transferases (Figure 7D), also previously seen in response
to copper toxicity [66]. These reactive oxygen species also
damage DNA [67,68]. Similar DNA damage is also highly
likely to have been a factor in the current study, as
reflected by the alteration in levels of DNA repair enzymes

and of enzymes implicated in cell cycle control, with both
increases and decreases in transcript levels observed in
response to copper (Figure 7E). Ultimately, copper-
induced damage leads to apoptosis [69,70], which again
is consistent with the transcriptomic data, with down-reg-
ulation of apoptotic regulators (Figure 7F). Summarising,
the responses discussed here all represent plausible modes
of cellular disruption, and all of them have been demon-
strated previously to be induced by copper exposure. In
sharp contrast, when we consider the response of a
number of established control genes [71] and compare
them with the other groups we have selected here, we see
that they are not copper responsive (Figure 7A). This
strongly supports the technical and biological validity of
the transcript data. Further external validation is given by
comparison with the metabolomic data, where the obser-
vations of metabolites are highly consistent with the met-
abolic changes suggested by the microarray data.

Samples for both microarray and metabolomic analysis
were chosen by selecting worms with the best condition
from each independent mesocosm, thus avoiding obvi-
ously diseased and/or parasitised worms. This has two
major advantages for the molecular data. First, it avoids
major confounding factors, for example, from chance-
affected worms. Secondly, even in the case that there
would be an interaction with copper treatment, for exam-
ple, through copper toxicity decreasing the resistance to
external factors, one would expect the molecular mecha-
nisms induced to be general and stress-related. Thus, even
though we may have selected individuals that did not pro-
vide the most accurate representation of ecological fitness
under metal stress, the molecular endpoints will be more
closely related to specific copper-induced mechanisms.

Integration of the different datasets
There are multiple possibilities for integrating omic data-
sets, but these can be considered essentially to fall into
two categories: statistical, that is, relying wholly on data-
driven associations between variables (for example,
[4,72]); and knowledge-based, that is, using prior knowl-
edge about biological organisation and pathways/net-
works (for example, [73,74]). Clearly, an optimal solution
would use information from both of these approaches;
but then this, in the limit, effectively becomes a full model
of metabolism, and this is not currently achievable, even
for highly controllable unicellular model organisms. Here
we have chosen a separate analysis of datasets and subse-
quent combination of observations.

Specific genes that are up- or down-regulated were identi-
fied from the transcriptomic data (Table 2). Relatively few
could be unambiguously annotated to metabolic
enzymes; two of these are from carbohydrate metabolism,
mannosidase and maltase-glucoamylase. Fortuitously, the
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metabolic substrate and product of these enzymes, respec-
tively, could be identified in the NMR spectra. Figure 8
shows that in both cases there is a negative correlation
between transcript and metabolite levels. This can be
readily rationalised for the mannose/mannosidase rela-
tionship, that is, increase in the catabolic enzyme results
in a decrease in substrate concentrations, but the opposite
argument should hold for glucose/maltase-glucoamylase.
This is a useful reminder that it may be dangerous to over-
interpret metabolite pair relationships such as these, as
the most important factor, metabolic fluxes, cannot be
inferred directly from gene transcript levels or metabolite
concentrations alone. More interestingly, these molecular

data could be very clearly related to ecologically impor-
tant endpoints. It is clear that a high-sugar/low-transcript
level is, in both cases, associated with the low copper
doses, and there is a distinct change in both metabolite
and transcript concentration for the high-dose samples
(Figure 8). Moreover, the worms have a positive energy
balance for the first condition (low-dose/high-sugar/low-
catabolic mRNA level), that is, they gain weight over the
course of the experiment, but a negative energy balance,
losing weight, for the second condition (high-dose/low-
sugar/high-catabolic mRNA level).

Integration of transcript, metabolite and functional endpoints: relation to copperFigure 8
Integration of transcript, metabolite and functional endpoints: relation to copper. (A) Mannosidase versus man-
nose. (B) Maltase-glucoamylase versus glucose. For both, size of points represents added copper as ordered factor (that is, 
smallest points represent 0 mg/kg copper, largest points represent 480 mg/kg copper). Colour scale represents weight change 
(%), data taken from Spurgeon et al [37].
Page 13 of 21
(page number not for citation purposes)



BMC Biology 2008, 6:25 http://www.biomedcentral.com/1741-7007/6/25

Page 14 of 21
(page number not for citation purposes)

Impact of copper on oxidative phosphorylation and on glycolysis/gluconeogenesisFigure 9
Impact of copper on oxidative phosphorylation and on glycolysis/gluconeogenesis. Human orthologues of tran-
scripts exhibiting more than twofold alterations in their transcript level upon copper exposure were mapped onto the KEGG 
pathways [92] representing (A) oxidative phosphorylation (adapted from KEGG ID: hsa00190) and (B) glycolysis/gluconeogen-
esis (adapted from KEGG ID: hsa00010). Transcripts with more than twofold alterations are outlined in red, and those with 
less than twofold alterations are outlined in blue. Transcripts that are not outlined were not present in the gene set used for 
the cDNA microarrays. (C) The transcript levels on a log10 scale for the genes marked in (A). For genes represented by more 
than one transcript (multiple ESTs), mean values are shown. The black dotted line indicates no gene induction. (D) The tran-
script levels for the genes marked in (B) (red lines); phosphoenolpyruvate carboxykinase is also represented (blue line), 
although it is not shown in (B).
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In addition, a more powerful approach than looking for
alterations in single genes is to search for functional gene
groups that are co-ordinately regulated. This is achievable
for the transcript data, given that Gene Ontology (GO)
classifications are available. Figure 9 shows that a number
of transcripts represented with overrepresented ontology
groups mapped onto specific Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, and it illustrated
the impact of copper on genes involved in the electron
transport pathway and converse impact on glycolysis, thus
indicating the severe remodelling in energetic metabolism
upon exposure to copper. The majority of transcripts for
electron transport were up-regulated (Figure 9C), and this
picture was even clearer for the glycolytic transcripts,
which were all up-regulated (Figure 9D). Conversely,
phosphoenolpyruvate carboxykinase (PEPCK) transcript
levels were decreased by copper (PEPCK was a member of
the GO class on which the analysis was based, even
though it is not shown on the pathway fragment in Figure
9). Although this represents only one enzyme, it indicates
that the gluconeogenic enzymes, as would be expected,
were regulated oppositely to the glycolytic enzymes.

These observations are directly reflected by the metabo-
lomic data, where a set of organic acids that are citric acid
cycle intermediates were altered as a functional group,
and there was a decrease in free sugar concentrations (Fig-
ure 3). In addition, when these observations are consid-
ered together with the links to specific transcripts and
functional endpoints (Figure 7), and the changes in
metabolites directly involved in maintaining cellular
energy levels (vide infra), it is clear that energy metabolism
in L. rubellus was profoundly impacted by copper treat-
ment.

Interpretation of energy reserve data
Some copper-responsive metabolites were those related to
maintenance of cellular energy levels, in particular adeno-
sine phosphates. In general, adenosine monophosphate
(AMP) and adenosine diphosphate (ADP) levels were
both high and correlated to each other, and also showed
some positive correlation to copper. This, combined with
the lack of any detectable 1H signal for phospholombri-
cine, implies that the worms' cellular energy reserves were
exhausted, and thus not truly representative of in vivo
metabolism. This is not a simple artefact of the extraction
procedure: for comparison, a neutralised 6% perchloric
acid extract tells a similar story about the energetic state,
that is, AMP and ADP both higher in concentration than
ATP, and also completely lacking a signal from phos-
pholombricine (Additional file 9). The worms were sam-
pled under conditions that would have preserved
metabolic integrity, by flash-freezing into liquid nitrogen,
storage at -80°C, and lyophilised tissues extracted directly
into ice-cold solvent/water mixtures. In addition, the high

quality of the mRNA extracted for the microarray analyses
confirms the preservation of the biological integrity of the
samples. Thus, we conclude that the general trend of the
adenosine phosphates (AXP) data (ATP decreasing, and
AMP and ADP increasing, with increased soil copper) is a
reflection of a general disturbance in energy metabolism,
as also shown by decreases in free sugars, and up-regula-
tion of transcripts for breakdown of these sugars and
catabolism of energy reserves, even if it may not be a true
'snapshot' of in vivo metabolism. Indeed, any extraction
procedure is necessarily selective and different protocols
will give different windows on the metabolome. Tech-
niques such as high-resolution magic-angle-spinning of
tissue biopsies (and even larger samples) are increasingly
used for biochemical and biomedical investigations [75],
even though this will lead to far more extensive enzymatic
changes than the extractions used here.

Sensitivity
There was a clear impact on both metabolomic and micro-
array profiles at the second-lowest additional copper con-
centration of 40 mg/kg. This is either as sensitive or more
sensitive than the functional parameters measured, such
as weight change, reproduction and the neutral red reten-
tion time (NRRT) bioassay, all of which had lowest-
observed-effect concentrations (LOECs) of 160 mg/kg or
higher, and much more sensitive than an endpoint based
on mortality for which no significant effect was found at
any of the tested exposure concentrations (that is, no-
observed-effect concentration (NOEC) greater than 480
mg/kg) [37]. This sensitivity seems a fairly general rule, at
least for laboratory experiments, where metabolomics has
been shown to be extremely sensitive to individual chem-
icals compared with traditional endpoints [76]. Such sen-
sitivity provides an interesting insight into the likely value
of such analyses for regulatory testing regimes. Here omic
approaches may provide insights on low effect level met-
abolic dysfunctions which may have implication over a
life-time exposure, but may not be revealed in the time-
limited chronic bioassays that form a cornerstone of mod-
ern chemicals policy [77].

Like some of the observed phenotypic responses (for
example, reproduction rate and weight change), the omic
data (both transcripts and metabolites) very clearly dem-
onstrate a non-linear response to copper. This was also
true for the weight change data, with an initial increase in
body weight followed by a clear decrease at higher con-
centrations. It has been argued that hormesis is a very gen-
eral response to potential toxins, with low-level exposure
either being beneficial or stimulating a compensatory
response [57]. While the response seen for copper may
merely represent the fact that this metal is both essential
and toxic for earthworms, it is currently the case more gen-
erally that a mechanistic basis for understanding such
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'hormetic' responses is lacking. While initial suggestions
have been made to explain hormesis in terms of an over-
compensation of homeostasis to disruption that is medi-
ated by the different affinities of stimulatory and
inhibitory regulatory pathways [78], such suggestions
have yet to be confirmed or refuted in empirical studies.
Our data clearly show that the hormetic response in this
case is manifest at a molecular level, indicating a possible
role for metabolomics in understanding the mechanistic
nature of the response.

Conclusion
Drawing reliable inferences from omic data is often diffi-
cult, especially for non-model organisms which may be
less well annotated than standard laboratory models.
Here we have used a dual metabolomic and transcrip-
tomic strategy, with each element providing complemen-
tary data, thus reinforcing the inferences made from the
independent datasets. Interpreting the data in terms of
functional groups, for both transcript and metabolite
data, showed clear molecular group responses to copper.
The integrated dataset indicated a clear alteration of
energy metabolism as a result of sub-lethal copper expo-
sure, with an increased switch to metabolism of stored
carbohydrates, presumably as a consequence of copper
interfering with mitochondrial function and reducing the
amount of energy available from oxidative phosphoryla-
tion. These molecular impacts resulted in higher-level
endpoints, including a reduction in body weight at high
copper levels, reflecting the changes in energy metabo-
lism, and a decrease in lysosomal integrity, indicating
effects on membranes that could parallel the observed
impacts on mitochondrial function.

Methods
Exposure and sampling
A full description of the earthworm exposure and sam-
pling conditions is given by Spurgeon et al [37]. Briefly,
worms were exposed for 70 days under field conditions in
mesocosms to controlled levels of soil copper (0, 10, 40,
160 and 480 mg additional copper per kilogram dry
weight soil; original copper content of the soil was 16.1
mg/kg), with four replicate mesocosms per dose level. A
number of functional endpoints were measured including
survival, weight change (average value per mesocosm),
NRRT and cocoon production rate. Fifteen adult worms
were exposed per mesocosm, and at the end of the exper-
iment, three worms were used to measure tissue copper
concentrations; four worms were used to measure NRRT
and the three worms maintaining highest condition in
each replicate were pooled and used for both transcrip-
tomic and metabolomic analysis. This avoided inclusion
of diseased or heavily parasitised worms within the omic
experiments that may have otherwise confounded results.
The worms were flash-frozen in liquid nitrogen, and

ground to powder in a mortar and pestle under liquid
nitrogen to obtain a single sample for each mesocosm.
Total mRNAs from the samples were then isolated using
established protocols [79,80]. The remaining sample was
lyophilised without allowing the sample to thaw, and
stored at -80°C until extracted for metabolomic analysis.

cDNA microarrays
The L. rubellus EST project [80] has established a database
of over 17,000 ESTs from unexposed and chemically
exposed earthworms (see [82] for details). All sequences
were assembled into clusters and annotated using the Par-
tiGene pipeline [83]. To fabricate the glass slide cDNA
microarray, a representative EST (usually the longest) was
selected from each of the 8,029 clusters assembled from
the ESTs (see [82] for full details). This sequence was
polymerase chain reaction (PCR)-amplified and aliquots
(5 μl) of concentrated products mixed in 384 well plates
with an equal volume of dimethyl sulphoxide (DMSO).
These were then printed onto Ultra-GAP glass slides
(Corning) using 48 SMP3 pins (Telecham) mounted in a
Spotarray 72 (Perkin-Elmer). Landmarks were introduced
at the left-hand corner of each sub-array by the introduc-
tion of five replicates of the Lucida Scorecard (Amersham)
gene reporters, which show no cross-reactivity to earth-
worm transcripts. All reporters were cross-linked to the
slide by baking at 80°C for 2 hours, and UV cross-linking.

Lucida Scorecard test spike (Amersham Life Sciences) was
added to 10 μg of total RNA prior to oligo-dT reverse tran-
scription and coupling to Cy3 using an indirect amino
amyl procedure. Clean-up of labelled targets, yield and
integrity were all measured according to Owen et al [82].
A reference design was used in which approximately 30
pmol of Cy3 labelled target RNA was hybridised against
the common oligonucleotide reference (representing 30
pmol of Cy5). The reference used was a 65–70 mer oligo-
nucleotide designed against the vector sequence between
the amplification primer binding site and cDNA insert.
Use of this universal reference design allowed a compari-
son of slides to be made both within and between experi-
ments. After hybridisation (18 hours), slides were washed
and imaged according to Owen et al [82]. Array images
were subjectively quality controlled for artefacts that
would compromise quantification such as background
effects and spot morphology prior to image analysis with
Imagene 5.0 (Biodiscovery). Subsequently, the calibration
standards from the Lucida Scorecard were analysed to
objectively assess the sensitivity range and to define both
saturation and background readings (Additional file 10).
The microarray data can be accessed through the NEBC
file store [84] (EnvBase accession number
[EGCAT:4024]).
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Statistical analysis of microarray data
Numeric data were imported into LimmaGUI [85,86]
which allowed the subtraction of background measure-
ments, generation of additional quality control plots and
subsequent normalisation using a within-array Tiplowess
manipulation. Abnormally distributed samples were
excluded from further analysis. Normalised data were
subsequently imported into GeneSpring 7.3 (Agilent
Technologies, Stockport, UK) and represented relative to
the median expression within the control group. Final,
quantity assessment was performed by visualising a box
plot of the normalised data together with the generation
of MA plots for the average data from each dose (Addi-
tional file 11). Abnormally distributed samples were
excluded from the analysis.

Using GeneSpring, the three control slides and three slides
for the exposure concentration that most closely matched
the cocoon production EC10 for each chemical were used
to identify chemically responsive genes. The data were
first filtered to include only spots flagged as present in 3
out of the 15 slides. This filtered dataset was then used to
generate three gene lists for each dataset. These were: (1)
genes with a more than twofold difference in mean
expression between control and exposed samples; (2)
genes with significantly different (p < 0.05) expression
between control and exposed samples after correction for
multiple sample testing [56].

NMR spectroscopy
Tissue samples (20–30 mg) were homogenised into 3 ml
of extraction solvent (Heidolph SilentCrusher S) using a
modified Bligh and Dyer protocol [87,88], in which a
monophasic chloroform/methanol/water extraction is
followed by the addition of water and chloroform, split-
ting the sample into two phases. The proportion of water
was adjusted for the fact that lyophilised tissue was used,
assuming a 90% water content in normal tissue. Both frac-
tions were dried at 40°C using a rotary vacuum concentra-
tor. The polar fraction was then resuspended in 0.65 ml of
NMR buffer (100 mM phosphate buffer pH 7.0 in 2H2O,
also containing 0.98 mM sodium trimethylsilyl-2,2,3,3-
2H4-propionate (TSP); the 2H2O provided a field fre-
quency lock for the spectrometer and reduced the signal
from water protons) and centrifuged (5 minutes, 16,000
g). The supernatant (0.6 ml) was then transferred to 5 mm
NMR tubes. The aqueous samples were analysed at 300 K
on a 14.1 T DRX600 Avance NMR spectrometer (Bruker
BioSpin, Rheinstetten, Germany) with a 600 MHz proton
resonance frequency, equipped with a 5 mm broadband
inverse probe. The samples were run using an automatic
tube changer, over a period of about 12 hours, during
which time they were kept at room temperature; the sam-
ples were loaded onto the tube changer in randomised
blocks. A one-dimensional NOESY sequence with a mix-

ing time of 100 ms was used for water suppression of the
residual HOD in the NMR buffer, using a 30 Hz presatu-
ration pulse. The spectra were acquired for 128 transients,
with four dummy scans, into 32 K data points over a 12
kHz spectral width. A 3.5-second longitudinal relaxation
recovery delay was added for each transient, giving a recy-
cle time of 5 seconds. The chloroform fraction was resus-
pended in 0.65 ml of CDCl3 containing 0.03%
tetramethylsilane (TMS) and transferred to 5 mm NMR
tubes. The lipid samples were then analysed using a Carr-
Purcell-Meiboom-Gill (CPMG) sequence, with a 8.65-sec-
ond longitudinal relaxation delay giving an approxi-
mately 10-second recycle time (the CPMG sequence gave
improved baselines and slight reduction of broad reso-
nances compared to a simple pulse-acquire experiment).
The raw data (free induction decays (FIDs)) for all spectra,
and the fitted compound data for the polar extracts (vide
infra), are available through the NEBC file store [84] (Env-
Base accession number [EGCAT:4024]). The fitted com-
pound data are also provided as Additional file 12.

NMR processing and data analysis
The spectra were initially processed using iNMR 2.2.7
(Nucleomatica, Molfetta, Italy). The summed FIDs were
multiplied by an exponential window function equivalent
to 0.5 or 1 Hz line broadening (aqueous and lipid spectra,
respectively). They were then zero-filled by a factor of 1.5,
and Fourier transformed. Phasing was carried out using
the automatic 'metabolomic phase correction' option,
and adjusted manually where necessary; baseline correc-
tion was performed using an automatic first-order poly-
nomial fit. All spectra were referenced to TSP/TMS at 0
ppm. The spectra from polar (aqueous) samples were fur-
ther analysed using Chenomx NMR Suite 4.6 (Chenomx,
Edmonton, AB, Canada). This software fits idealised spec-
tra made up of combinations of Lorentzian line shapes,
based on spectra of authentic standards, and estimates
compound concentrations using TSP as an internal quan-
titation standard. Compounds were fitted using the pro-
prietary Chenomx 600 MHz library, to which we added
standards for glucose-6-phosphate, HEFS and lombricine.
HEFS and lombricine are not commercially available; we
purified HEFS from earthworm tissues using solid-phase
extraction with a mixed-mode C18/anion exchange
phase. Only a single peak for lombricine was fitted, based
on a spectrum of an existing tissue extract acquired under
fully relaxed conditions, and concentration estimated by
comparing this with the integral of a known concentra-
tion of TSP. Thus, it is likely that the absolute accuracy of
the lombricine concentrations will be lower than for the
other compounds reported in this study, although the rel-
ative levels (precision) will be comparable. The fitted
compound concentrations are available in Additional file
12.
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For pattern recognition, data were normalised following
the method of Dieterle et al [89] in which each profile is
compared with a representative reference (in our case, a
median of all sample profiles). The relative fold change
for each variable in turn is calculated, and all values for a
spectrum are then divided by the median fold change for
that spectrum. Data were log-transformed by log(ni +
0.018) for concentrations (expressed as mM); the value of
0.018 was chosen because it effectively removed the corre-
lation between intensity and standard deviation for a
series of five technical replicates, that is, increasing homo-
scedasticity (the principle is discussed elsewhere [90,91]).
Factor analysis and hierarchical cluster analysis on non-
centred data was carried out using Aabel 2.2 (Gigawiz,
Tulsa, OH, USA). (Note that the factor analysis here is
exactly equivalent to PCA carried out using the correlation
matrix, but we have retained the term 'factor analysis' for
consistency with the terms used in the software package.)
The lipid spectra were integrated within selected regions
using iNMR (integral boundaries given in Table 2).
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Additional file 1
A 600 MHz 1H NMR spectrum of typical earthworm extract, polar frac-
tion. (A) and (B) have an expanded vertical scale compared with (C) and 
(D). Resonance from HEFS (compound 19) at 6.19 ppm is not repre-
sented at its full height. Metabolite labels correspond to numbers given in 
Table 1. * represents an unknown compound that is a probable breakdown 
product of HEFS.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-6-25-S1.pdf]

Additional file 2
Chemical shift regions for integrals of lipid extract spectral data ('missing' 
int01 was for internal standard TMS).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-6-25-S2.doc]

Additional file 3
NMR integrals of lipid data, heatmap showing individual replicates.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-6-25-S3.pdf]

Additional file 4
600 MHz 1H spectra of lipid extracts. Samples only shown from control 
(blue) and highest (red) dose groups. One spectrum from red group was 
excluded as an outlier and is not shown here. (A) Vinylic protons from 
unsaturated fatty acids; (B) unassigned; (C) glycerol protons from tria-
cylglycerols; (D) glycerol peaks from glycerophospholipids; (E) protons 
allylic to two double bonds; (G) protons allylic to one double bond; (H) 
and (I) terminal methyls.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-6-25-S4.pdf]

Additional file 5
Table of transcripts showing more than twofold change in expression as a 
consequence of copper exposure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-6-25-S5.xls]

Additional file 6
Table of transcripts significantly changed in earthworms exposed to cop-
per. ANOVA, p < 0.05, Benjamini and Hochberg [56] FDR correction.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-6-25-S6.xls]

Additional file 7
Table of GO terms overrepresented in transcripts whose expression is 
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