

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/92324/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Diz, Paula and Barker, Stephen 2016. Approaches and constraints to the reconstruction of palaeoproductivity from Cape Basin abyssal benthic foraminifera (South Atlantic). Journal of Micropalaeontology 35, pp. 195-204. 10.1144/jmpaleo2015-045

Publishers page: http://dx.doi.org/10.1144/jmpaleo2015-045

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1	
2	Approaches and constraints to the reconstruction of palaeoproductivity
3	from Cape Basin abyssal benthic foraminifera (South Atlantic)
4	
5	
6	Short title: Palaeoproductivity abyssal benthic foraminifera
7	
8	
9	
10	
11	Paula Diz ¹ and Stephen Barker ²
12	
13	
14	¹ Department of Geociencias Marinas y Ordenación del Territorio, Facultad de Ciencias
15	del Mar, Universidad de Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
16	Corresponding author
17	
18	² School of Earth and Ocean Science, Cardiff University, Cardiff C10 3AT, United
19	Kingdom
20	
21	
22	
23	
24	
25	
26	
27	

28 ABSTRACT:

29

30	The characteristics of benthic foraminiferal assemblages from well oxygenated deep-sea
31	settings have been used to reconstruct past productivity conditions. None of the different
32	approaches that have been developed are without complications or apply in all settings. In this
33	study we assess the use of benthic foraminifera (accumulation rates and assemblages
34	composition) as proxies for palaeoproductivy changes during the last glacial period (25-95
35	kyr) in an abyssal core located in the south of Cape Basin (41.1°S, 7.8°E, 4981 m water
36	depth). Assemblage characteristics indicate a generally food-limited environment receiving
37	episodic inputs of labile organic carbon of variable strength. High seasonality in the delivery
38	of organic material to the sea floor in the form of phytodetritus influences the assemblage
39	characteristics because the corresponding response does not involve the whole community.
40	Benefiting from this occasionally high organic input is the opportunistic species,
41	Epistominella exigua, that reproduces rapidly to build up large populations. In general, the
42	rest of the species (i.e., less opportunistic compared to E. exigua) show only subtle variations
43	in their population densities and fauna composition. Under those circumstances benthic
44	foraminiferal accumulation rates seem to be independent of the amount of organic flux
45	arriving at the sediment surface and respond instead to the strength of phytoplankton blooms.
46	
47	
48	
49	Key words: benthic foraminifera, palaeoproductivity, seasonality, abyssal, phytodetritus
50	
51	INTRODUCTION

- 2 -

The fossil record of benthic foraminifera has been widely used as a proxy for past 52 53 environmental conditions (for reviews see Gooday 2003; Gooday & Jorissen 2012; Jorissen et 54 al. 2007; Murray 2006). Despite the complexity of factors playing a role in foraminiferal distribution and the effect of post-depositional processes (Jorissen et al. 2007; Murray 2001), 55 56 there is a general agreement that benthic foraminifera from deep sea environments largely 57 respond to a few parameters: the organic carbon flux, bottom-water hydrodynamics (and related grain size), bottom and pore-water oxygenation and carbonate saturation (see reviews 58 59 in Mackensen et al., 1995; Jorissen et al. 2007). Within these parameters, the estimation of 60 past changes in the primary production (and organic carbon flux to the sea floor) from benthic foraminifera has received major attention in palaeoceanographic studies because of the 61 62 implications of changes in the biological pump on past and future climate. Based on 63 knowledge of the ecology of benthic foraminifera, a number of studies have suggested the 64 abundance of benthic foraminifera (benthic foraminiferal accumulation rates, Herguera & 65 Berger 1991), the contribution of different foraminiferal morphotypes (Corliss & Chen 1988) 66 and species composition (e.g., Altenbach et al. 1999) as quantitative and qualitative proxies 67 for past organic carbon fluxes arriving at the seafloor. Faunal composition might also provide 68 information about the quality (refractory versus labile) of the organic carbon (e.g., Fontanier 69 et al. 2005). The input of labile organic carbon to the sea floor derived from seasonal or 70 episodic phytoplankton blooms at the surface also influences assemblage composition (e.g., 71 Smart et al. 1994; Sun et al. 2006) and diversity (e.g., Corliss et al. 2009; Enge et al. 2011; 72 Gooday et al. 2010, 2012) so providing information about the periodicity of the organic carbon flux. 73

Evaluating the extent to which benthic foraminifera can be used to infer a particular set of past environmental conditions and understanding the complicating factors and limitations of such reconstructions is fundamental to advancing the use of proxy methods based on these

- 3 -

organisms. In this study we discuss palaeoenvironmental inferences based on benthic
foraminiferal assemblage characteristics from an abyssal core located in the south of Cape
Basin (South Atlantic). We examine the consistency of the most typical palaeoproductivity
proxies by comparing information provided by our assemblages with environmental
parameters from independent proxies obtained in the same core and other proxy archives.

82

83 MATERIAL AND METHODS

84 The marine sediment core discussed in this study (TNO57-21) was recovered in the south 85 Cape Basin, slightly north of the Agulhas ridge in the southeast Atlantic Ocean (41.1°S, 7.8°E, 4981 m of water depth, 13.8 m long, Fig. 1). It is presently bathed by the poorly ventilated, 86 87 cold and fresh Antarctic Bottom Water (AABW). The location lies below at the Subtropical 88 Convergence (STC) front that separates the cold low-salinity Subantarctic waters to the south 89 and warm saline Subtropical waters to the north. The complex interaction of physico-90 chemical factors associated with cross-frontal mixing of subantarctic and subtropical waters 91 and the intense turbulence and eddy activity (Baker-Yeboah et al. 2010; Llido et al. 2004) 92 results in relatively elevated pulses or episodes of primary production in the surface waters of 93 the study area (Froneman et al. 1997; Machu et al. 2005). 94 Several previous micropalaeontological studies have been carried out on core TN057-21. The 95 palaeoceanographic significance of planktonic foraminifera assemblages are discussed in 96 Barker et al. (2009, 2010) and (Barker & Diz 2014). The linkages between the record of the 97 benthic foraminifera Epistominella exigua and millennial-scale climate variability during the 98 last 95 kyr are considered in Diz & Barker (2015). However, detailed information about 99 benthic assemblage composition from ~25 to 95 kyr, and relevant additional

100 palaeoenvironmental information, were beyond the scope of these earlier papers and are

101 therefore addressed in the present study. The age model used in this study is described in

- 4 -

Barker & Diz (2014) and the methods for the study of benthic fauna are indicated in Diz & 102 103 Barker (2015). Briefly, for a re picked from the $> 125 \mu$ m fraction, mounted on 104 faunal slides and identified following the generic assignations of (Loeblich & Tappan 1987) 105 and published illustrations (see Table 1). The study of benthic foraminifera in the >125 µm 106 size fraction potentially underestimate the abundance of small (63-125 µm) opportunistic taxa 107 such as Alabaminella weddellensis which are typically abundant in areas characterized by 108 episodic phytoplankton blooms (e.g., Diz et al. 2007; Smart et al. 2010; Thomas et al. 1995). 109 On the other hand, it allows for studying a feasible number of samples still showing major 110 faunal patterns (e.g., Poli et al. 2012, Schönfeld et al. 2012). Raw counts can be found in Diz 111 & Barker (2015) and the most characteristic species of benthic foraminifera are illustrated in 112 this study (Plate I). The assemblages are largely dominated by Epistominella exigua (>40% 113 on average), a phytodetritus related species. In order to assess the ecological significance of 114 the other relevant species we discuss the assemblages after removing the contribution of E. 115 exigua (i.e., the "phytodetritus free assemblage", see also Thomas et al. 1995). Additionally, 116 we examined the record of benthic foraminiferal accumulation rate (BFAR, total number of for a minifera x cm^{-2} x kyr⁻¹) and phytodetritus free benthic for a miniferal accumulation rate 117 (BFAR_{phfree}). BFARs are calculated as the number of individuals per gram of total dry bulk 118 sediment (#bf x g⁻¹, Diz & Barker 2015) x linear sedimentation rates (cm x kyr⁻¹) x density (g 119 120 $x \text{ cm}^{-3}$). Sedimentation rates are taken from the age model developed by Barker & Diz (2014) and vary from 8 to 16 cm kyr⁻¹. It is considered that the age model is sufficiently robust as to 121 122 assume that differences in BFAR are not mainly caused by inaccuracies in the calculation of 123 sedimentation rates. In the absence of direct measurements of dry or wet bulk density, we 124 used the algorithm developed by Sachs & Anderson (2003) for the calculation of, which is 125 based on the percentage of calcium carbonate in order to calculate densities in core TNO57-126 21. To do this, the high resolution % CaCO₃ record of core TNO57-21 (Sachs & Anderson

- 5 -

2003) was re-sampled and values interpolated to the lower resolution record of benthic
foraminiferal abundance using the program Analyseries (Paillard *et al.* 1996). Then, density
values were calculated using Sachs and Anderson' formula. Calculated values vary between
0.5 to 0.7 g x cm⁻³.

131 The core TNO57-21 was recovered from deep waters that are currently undersaturated with 132 respect to calcium carbonate (4891 m water depth, see Supplementary Information by Barker 133 et al. 2010). Several episodes of increased carbonate dissolution have been identified in planktonic foraminiferal (Barker & Diz 2014; Barker et al. 2009, 2010) as well as benthic 134 135 foraminiferal (Diz & Barker 2015) assemblages By considering the information provided by 136 multiple proxies (e.g., % of coarse fraction, % CaCO₃, foraminiferal abundances, composition 137 of assemblages) it was indicated that carbonate dissolution does not seem to exert an overall 138 control on benthic abundance or species distribution with the exception of the Holocene (not 139 considered in this study) and Greenland Stadial (GS) events GS19 and 21. Those poorly 140 preserved periods (indicated in figure 2 by bars) are characterized by low percent of calcium 141 carbonate, very low foraminiferal abundances and low number of benthic taxa. They are not 142 used to infer palaeoenvironmental conditions (see detailed discussion in Diz & Barker 2015). 143 The comparison of the composition of the "dissolved assemblages" with modern samples 144 (Mackensen et al. 1993) indicates that Nutallides umboniferus is very rare along core TNO57-145 21 (see Plate). N. umboniferus is generally related to corrosive bottom waters in the South 146 Atlantic (Mackensen et al. 1993; Harloff & Mackensen, 1997; Schmield et al. 1997). It might 147 suggest that other factors more than carbonate undersaturated waters are playing a role in this 148 species distribution (i.e. oligotrophic conditions and absence of phytodetritus deposition, 149 Smart & Gooday, 1997; Kurbejeweit et al. 2000; Carman & Keigwin, 2004).

150

151 **RESULTS**

- 6 -

152 The foraminifera fauna of core TNO57-21 comprises 39 benthic species dominated by 153 calcareous forms. The Shannon H diversity Index averages 1.9 (Figure 2a). High diversity 154 values occur when the relative contribution of the dominant phytodetritus-related species 155 Epistominella exigua (Brady) are diminished. The averaged relative contribution of this 156 species is as high as 47% (Fig. 2b). Other, relatively common species are Pullenia osloensis 157 (Feyling-Hanssen) (average percentage 11.9%, Fig. 2d), Oridorsalis umbonatus (Reuss) (6%, 158 Fig. 2h), Fontbotia wuellerstorfi (Schwager) (7.9%, Fig. 2g) and the group of species 159 belonging to the suborder Lagenina called "Lagenina group" (see Table 1, 11.9%, Fig. 2c). 160 Secondary calcareous species (<10 % on average) showing high abundances at particular 161 intervals are *Pyrgo murrinha* (Schwager) (Fig. 2j), *Globocassidulina subglobosa* (Brady) 162 (Fig. 2i), Melonis spp. (comprised of M. zaandamae (Van Voothuysen), Melonis pompilioides 163 (Fichtel and Moll) and Melonis sp., Fig. 2f) and Rutherfordoides tenuis (Phleger and Parker) 164 (Fig. 21). Calcareous species with short-lived peaks are *Uvigerina auberiana* (d'Orbigny) 165 (Fig. 2m) and *Quinqueloculina* cf. seminula (Fig. 2n). The most characteristic agglutinated 166 foraminifera is the calcareous agglutinated Siphotextularia rolshauseni (Phleger and Parker, 167 Fig.2e) with Eggerella bradyi (Cushman) as secondary species (Fig. 2k). 168 The BFAR values in core TNO57-21 show large fluctuations ranging from 30 to 1100 169 for a 170 northern stadial events occurring during MIS 3 than over MIS 5 (Fig. 3a). The lowest BFAR 171 values occur during GS19 and GS21 (also the Holocene, not shown) when benthic 172 foraminiferal dissolution was inferred (Diz & Barker 2015) and thus they are excluded from 173 interpretation (Fig. 3a). In general, episodes of peak BFAR values are largely driven by the 174 phytodetritus-related species Epistominella exigua (Fig. 3a), and show a tight temporal 175 correspondence with abrupt climate changes occurring in the North Atlantic Ocean and 176 concomitant antiphase response in the South Atlantic (see Fig. 3 and Diz & Barker 2015).

- 7 -

177 Episodes of high BFAR_{phfree} coincide with BFAR although they are of much lower magnitude

and sharpness (Fig. 3a, grey shaded area). The highest BFAR_{phfree} values coincide with a

179 single peak in *Quinqueloculina* cf. seminula (Fig. 2n) at ~45 kyr and near the beginning of

180 MIS 3 (~56-58 kyr) with high relative abundances of *G. subglobosa*, *F. wuellerstorfi* and *O*.

181 *umbonatus* (see Figure 2).

182

183 **DISCUSSION**

184 **Reconstructing the flux of organic carbon to the seafloor from benthic foraminifera**

185 Benthic foraminiferal accumulation rates. The benthic foraminiferal accumulation rate (BFAR, number of foraminifera x cm^{-2} x kyr⁻¹) has been suggested as a palaeoproductivity 186 proxy (Herguera 1992, 2000; Herguera & Berger 1991). However, several studies indicated 187 188 that obtaining a quantitative estimation of primary production or export production from 189 BFAR values might be limited by several factors, with the difficulty of obtaining reliable 190 calibrations, carbonate dissolution and taphonomical processes being the most important (see 191 review in Jorissen *et al.* 2007). In this study no attempts have been made to estimate absolute 192 palaeoproductivity or palaeo-carbon fluxes, but we evaluate the potential use of the calculated 193 BFAR as a semi-quantitative proxy for food supply to the ocean floor (e.g., Thomas et al. 194 1995; Alegret & Thomas 2009) in core TNO57-21.

The BFAR values during the Holocene and late deglaciation (not plotted but calculated on the basis of Diz & Barker (2015) data; <100 foraminifera cm-2 kyr-1) are within the range of values for abyssal core tops from the Pacific open ocean at water depths > 4000 m likely affected by carbonate dissolution (Herguera 1992; Herguera & Berger 1991). However, peak BFAR values from MIS 3 to MIS 5 are four to eight times Holocene values (Figure 3). These accumulation rates are substantially higher than maxima values recorded in core-top samples

- 8 -

201 from widely distributed open-ocean areas at various depths in the Pacific. Following the use 202 of BFAR as a palaeoproductivity proxy, these results might suggest past increases in the 203 organic carbon flux to the sea floor up to several times the present conditions. According to 204 modern primary production distributions (see Machu et al. 2005, their Fig. 5) this might be 205 equivalent to a change from oligotrophic subtropical open ocean areas to high productivity 206 upwelling centres (e.g., Benguela upwelling). In fact, peaks of BFAR reach values found in 207 continental shelf areas affected by seasonal upwelling such as Cape Blanc upwelling 208 (Guichard et al. 1999; Zarriess & Mackensen 2010) or the Southwest African upwelling 209 (Schmiedl & Mackensen 1997). Such a change in the palaeoenvironmental conditions, if ithad occurred, would have involved a large change in assemblage composition, i.e. from low 210 211 productivity faunas (low abundances) to a high productivity assemblage (high BFAR). This 212 seems to be unrealistic considering that assemblage changes are subtle in comparison to 213 BFAR fluctuations (see Figure 2-3) and they do not involve the appearance of species related 214 to eutrophic conditions (see next section). In fact, variations in BFAR are mainly driven by 215 the phytodetritus-related species Epistominella exigua (Table 1, Figure 3a). In the absence of 216 this species fluctuations in BFAR_{phfree} (BFAR phytodetritus free; "phfree") are of much lower 217 magnitude and suggest only subtle changes in organic carbon fluxes.

218 This could be explained by the fact of that when large quantities of fresh marine organic 219 matter (phytodetritus) are available, even for short periods of time, opportunistic species, such 220 as *Epistominella exigua*, reproduce rapidly and produce a large number of tests (see Thiel *et* 221 al. 1989). The accumulation of foraminifera is not related in a predictable manner to organic 222 flux and, in these circumstances, BFAR should not be used as a quantitative (or 223 semiquantitative) proxy (Thomas et al., 1995; Diz et al., 2007; Smart, 2008; Zarriess & 224 Mackensen, 2010) for the organic carbon flux reaching the sea floor. BFAR is rather related 225 to the strength of the phytoplankton blooms. The episodic and labile nature of the

- 9 -

phytodetritus aggregates reaching the sea floor (Beaulieu 2002; Smith *et al.*, 2008) could explain the weak correlation (r= -0.24, p= 0.000, n=467) between BFAR (also BFAR_{phfree}) and the alkenones flux, a proxy for averaged organic carbon flux to the seafloor (Sachs & Anderson 2003) obtained in the same core (Fig. 3c).

230

Benthic foraminiferal assemblage composition. The use of benthic foraminiferal 231 232 assemblages as palaeo-productivity proxies is based on the relation of faunal composition to 233 organic flux rates (e.g., Morigi et al. 2001). Again, the quantification of flux regimes from the 234 relative abundance of major species is complicated by ecological factors, broad adaptability of 235 some species to organic carbon fluxes and uncertainties related to estimations of carbon flux (Altenbach et al. 1999; Gooday 2003; Jorissen et al. 2007). Thus, the information provided by 236 the faunal composition of core TNO57-21 is used here as qualitative proxy for the organic 237 238 carbon flux or its quality/periodicity.

239 The relative abundance of particular species or group of species is related qualitatively to the 240 predominance of a particular flux regime (i.e., high, intermediate, low-flux species), quality 241 (i.e., labile, refractory) or seasonality of the flux (i.e., seasonal, sustained). In this study, 242 groups are defined based on representative species with well-known ecology (see the 243 ecological attributions of characteristic species in Table 1). Because organic flux dependent 244 patterns should be best analysed within the environmental optimum of species (Altenbach et 245 al. 1999) those species with percentages lower than 10% for most of the record (e.g., 246 Eggerella bradyi, Quinqueloculina cf. seminula, Rutherfordoides tenuis, see Plate) and/or 247 those species for whom the ecology is not well-constrained are not included in any of the groups. An example of the later is the high contribution to the assemblage of individuals 248 belonging to the "Lagenina group" (>10%, Fig. 2c, see Plate). Unfortunately their ecology is 249

- 10 -

poorly known (see Table 1) and consequently the contribution to the paleoenvironmentalunderstanding of the assemblage changes is limited.

252 The most abundant species throughout the core is *Epistominella exigua*, an epifaunal/shallow 253 infaunal abyssal deep-sea opportunistic foraminifera that flourishes and rapidly reproduces in 254 the presence of phytodetritus aggregates (see ecological attributions in Table 1). Thus, high relative abundance of *E. exigua* (Figure 2b) along core TNO57-21 indicates overall low 255 256 organic carbon fluxes punctuated by episodic phytoplankton blooms that resulted in the 257 deposition of phytodetrital inputs (i.e., labile organic carbon). This interpretation is supported 258 by the "phytodetritus free" assemblage which is composed by species typical of oligotrophic 259 ("low flux") to moderately mesotrophic ("intermediate") environmental conditions. 260 The "low-flux species" are the epifaunal Fontbotia wuellerstorfi, Pyrgo murrinha and the 261 shallow infaunal Oridorsalis umbonatus and Globocassidulina subglobosa (see Table 1). All 262 together these represent > 30% of the phytodetritus free assemblage (Fig. 3f) reaching up to 263 60% during early MIS3. For some of these species (i.e. G. subglobosa, F. wuellerstorfi, P. 264 *murrinha*) a relationship to phytodetritus input (See Table 1) has also been suspected. 265 However, their downcore relative abundance does not covary with BFAR or percentages of 266 phytodetritus-related species E. exigua (Figure 3). Instead, they must respond to a different 267 type of phytodetritus or, more likely, they prefer sustained (and low) organic carbon flux to 268 the sea floor rather than pulsed (see also Smart, 2008).

269 The group of species considered indicative of an "intermediate -flux" regime are mainly

270 represented by the relatively common shallow infaunal Pullenia osloensis together with

271 Melonis spp. and Siphotextularia rolshauseni (Figure 3e, Table 1). Those species show a

statistically significant negative correlation (p < 0.000) to the relative contribution of the

273 species belonging to low - flux group (r _{O. umbon-S. rolshaseni} =-0.38; r _{P. osloensis-P. murrinha}= -0.39; r _{P.}

274 osloensis-F. wuellerstorfi =-0.28; r P. osloensis-G.subglobosa =-0.23; r O. umbonatus-Melonis spp. =-0.35). The relative

275	contribution of the "intermediate-flux" group indicates slightly more eutrophic conditions
276	during MIS 5 and MIS 4 than during MIS 3. Peaks of the intermediate flux fauna occurring
277	over MIS 4 are mainly caused by noticeably increased contributions of <i>Melonis</i> spp. and <i>S</i> .
278	rolshauseni (Figure 2d-f, Figure 3e) occurring in coincidence with high relative contribution
279	of Epistominella exigua (Fig. 2-3) and the substantial increase in the alkenone flux measured
280	during glacial MIS 4 (Fig. 3c). These two species show affinity for degraded organic carbon
281	(Table 1) suggesting that during MIS 4 part of the sedimentary organic compounds are of low
282	nutritional value. This might be explained by a different type and/or fate of phytodetrital
283	material arriving to the seafloor which could promote the response of species that benefit
284	from the bloom indirectly (i.e., bacteria colonizing aggregates, Koho et al., 2008). In fact, it
285	has been inferred (Diz & Barker 2015) that a slightly different physical conditions promoting
286	phytoplankton blooms in the surface waters occurred during MIS 4/MIS 5 transition and early
287	MIS 4 (seasonality and windiness) than during MIS 3 and late MIS 5 (mainly eddy activity).
288	Notably, that assemblage change does not trigger a parallel increase in the $BFAR_{phfree}$
289	indicating that a change in the food quality does not force a change in the absolute numbers of
290	benthic foraminiferal accumulation rate but only in the assemblage composition.
291	
292	
293	CONSTRAINTS AND APPROACHES: OVERVIEW
294	

295 Benthic foraminifera (BFAR and assemblage composition) were analysed in abyssal core

296 TN057-21. Episodic phytoplankton blooms represents the main source of "disturbance" to the

297 benthic environment and have important consequences for the structure and taxonomic

298 composition of the benthic foraminifera record. The inferred phytodetritus deposition does not

- 12 -

299 seem to trigger a response by the whole community but it is limited to a single species, 300 leading to a decrease in the diversity of the assemblages. The species benefiting from 301 phytodetritus input is the opportunistic (r-strategist) Epistominella exigua which reacts 302 quickly, producing high numbers of individuals and consequently high benthic foraminiferal 303 accumulation rates. The response of the remaining fauna (the so called "phytodetritus free 304 assemblage") to phytodetritus input is mainly constrained to a concomitant moderate increase 305 in the foraminiferal abundance (BFAR_{phfree}) with overall little variations in the assemblage 306 composition. This could be explained by the different ecological preferences of species with 307 lower reproductive potential (k-strategists) and likely benefiting from other type organic 308 carbon (less labile). All these data together suggest BFAR could not be a reliable proxy for 309 palaeoproductivity in abyssal (food limited) environments when benthic foraminifera are 310 highly dependent on the rate and nature of the input of labile organic material generated in the 311 euphotic zone. Under these circumstances fluctuations in BFAR do not reflect the flux of 312 organic carbon to the seafloor but rather the strength of phytoplankton blooms in the surface 313 waters. In this case, the assemblage composition is relevant for interpreting 314 palaeoenvironmental conditions.

315

316

317 ACKNOWLEDGEMENTS

318 Authors wish to thank the reviewers Christopher Smart and Andrew Gooday for their

319 suggestions that improved the manuscript. This work was supported by the UK Natural

320 Environmental Research Council NE/J008133/1 and R+D contract CO-078-10 (Ref. UVigo).

321 P. D. was supported by Xunta de Galicia (Programa Investigadores Isidro Parga Pondal) and

322 University of Vigo (Programa Retención de Talento 2015).

- 13 -

323

324 **REFERENCES**

325	Alegret, L. & Thomas, E. 2009. Food supply to the seafloor in the Pacific Ocean after the
326	Cretaceous/Paleogene boundary event. Marine Micropaleontology, 73(1-2): 105-116
327	Altenbach, A.V., Pflaumann, U., Schiebel, R., Thies, A., Timm, S. & Trauth, M. 1999.
328	Scaling percentages and distributional patterns of benthic foraminifera with flux rates of
329	organic carbon. Journal of Foraminiferal Research, 29: 173-185.
330	Alve, E. 2010. Benthic foraminiferal responses to absence of fresh phytodetritus: A two-
331	year experiment. <i>Marine Micropaleontology</i> , 76 (3-4): 67-75.
332	Anderson, J.B. 1975. Factors controlling CaCO3 dissolution in the Weddell sea from
333	foraminiferal distribution patterns. Marine Geology, 19: 315-332.
334	Baker-Yeboah, S., Byrne, D.A. & Watts, D.R. 2010. Observations of mesoscale eddies in
335	the South Atlantic Cape Basin: Baroclinic and deep barotropic eddy variability. Journal of
336	Geophysical Research: Oceans, 115(C12): C12069, doi: 10.1029/2010jc006236.
337	Barker, S., Diz, P., Vautravers, M.J., Pike, J., Knorr, G., Hall, I.R. & Broecker, W.S.
338	2009. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature,
339	457 (7233): 1097-1102.
340	Barker, S., Knorr, G., Vautravers, M.J., Diz, P. & Skinner, L.C. 2010. Extreme deepening
341	of the Atlantic overturning circulation during deglaciation. <i>Nature Geoscience</i> , 3 (8): 567-571.
342	Barker, S., Knorr, G., Edwards, R.L., Parrenin, F., Putnam, A.E., Skinner, L.C., Wolff, E.
343	& Ziegler, M. 2011. 800,000 Years of Abrupt Climate Variability. Science, 334(6054): 347-
344	351.
345	Barker, S. & Diz, P. 2014. Timing of the descent into the last Ice Age determined by the
346	bipolar seesaw. <i>Paleoceanography</i> : 2014PA002623, 29 (6): 489-507.
347	Beaulieu, S.E. 2002. Accumulation and fate of phytodetritus on the sea floor.
348	Oceanography and Marine Biology Annual Review, 40: 171-232.
349	Boltovskoy, E. & Boltovskoy, D. 1989. Paleocene-Pleistocene Benthic Foraminiferal
350	Evidence of Major Paleoceanographic Events in the eastern South Atlantic (DSDP Site 525,
351	Walvis Ridge). Marine Micropaleontology, 14: 283-316.

352 353 354	Burke, S.K., Berger, W.H., Coulbourn, W.T. & Vincent, E. 1993. Benthic foraminifera in box core ERDC 112, Ontong Java Plateau. <i>Journal of Foraminiferal Research</i> , 23 (1): 19-39, doi: 10.2113/gsjfr.23.1.19.
355 356	Caralp, H.M. 1989. Abundance of Bulimina exilis and Melonis barleeanum: relationship to the qualityof marina organic matter. <i>Geo-Marine Letters</i> , 9 : 37-43.
357 358	Carman, M.R. & Keigwin, L.D. 2004. Preservation and color differences in Nuttallides umbonifera <i>Journal of Foraminiferal Research</i> , 34 (2): 102-108.
359 360	Corliss, B.H. & Chen, C. 1988. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. <i>Geology</i> , 16 : 716-719.
361 362 363	Corliss, B.H. 1979. Recent deep-sea benthonic for aminiferal distributions in the southeast Indian Ocean: Inferred bottom-water routes and ecological implications. <i>Marine Geology</i> , 31 (1–2): 115-138.
364 365 366	Corliss, B.H. 1983. Distribution of Holocene deep-sea benthonic foraminifera in the southwest Indian Ocean. <i>Deep Sea Research Part A, Oceanographic Research Papers</i> , 30 (2): 95-117.
367 368 369	Corliss, B.H., Brown, C.W., Sun, X. & Showers, W.J. 2009. Deep-sea benthic diversity linked to seasonality of pelagic productivity. <i>Deep Sea Research Part I: Oceanographic Research Papers</i> , 56 (5): 835-841.
370371372373	Cornelius, N. & Gooday, A.J. 2004. 'Live' (stained) deep-sea benthic foraminiferans in the western Weddell Sea: trends in abundance, diversity and taxonomic composition along a depth transect. <i>Deep Sea Research Part II: Topical Studies in Oceanography</i> , 51 (14–16): 1571-1602.
374 375 376	De, S. & Gupta, A.K. 2010. Deep-sea faunal provinces and their inferred environments in the Indian Ocean based on distribution of Recent benthic foraminifera. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 291 (3-4): 429-442.
377 378 379	Diz, P. & Barker, S. 2015. Linkages between rapid climate variability and deep-sea benthic foraminifera in the deep Subantarctic South Atlantic during the last 95 kyr. <i>Paleoceanography</i> , 30 (6): 601-611.
380	Diz, P., Hall, I.R., Zahn, R. & Molyneux, E.G. 2007. Paleoceanography of the southern

Agulhas Plateau during the last 150 ka: Inferences from benthic foraminiferal assemblages
and multispecies epifaunal carbon isotopes. *Paleoceanography*, **22**(4): PA4218.

- 15 -

383	Eberwein, A. & Mackensen, A. 2006. Regional primary productivity differences off
384	Morocco (NW Africa) recorded by modern benthic foraminiferal and their stable carbon
385	isotopic composition. Deep-Sea Research I, 53: 1379-1405.
386	Enge, A.J., Nomaki, H., Ogawa, N.O., Witte, U., Moeseneder, M.M., Lavik, G.,
387	Ohkouchi, N., Kitazato, H., Kucera, M. & Heinz, P. 2011. Response of the benthic
388	foraminiferal community to a simulated short-term phytodetritus pulse in the abyssal North
389	Pacific. Marine Ecology Progress Series, 438: 129-142.
390	Epica, Community & Members. 2006. One-to-one coupling of glacial climate variability
391	in Greenland and Antarctica. Nature, 444: 195-198.
392	Fontanier, C., Jorissen, F.J., Chaillou, G., Anschutz, P., Grémare, A. & Griveaud, C.
393	2005. Live foraminiferal faunas from a 2800 m deep lower canyon station from the Bay of
394	Biscay: Faunal response to focusing of refractory organic matter. Deep-Sea Research I, 52:
395	1189-1227.
396	Fontanier, C., Jorissen, F.J., Licari, L., Alexandre, A., Anschutz, P. & Carbonel, P. 2002.
397	Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and
398	microhabitats. Deep-Sea Research I, 49: 751-785.
399	Froneman, P.W., Perissinotto, R. & Pakhomov, E.A. 1997. Biogeographical structure of
400	the microphytoplankton assemblages in the region of the Subtropical Convergence and across
401	a warm-core eddy during austral winter. Journal of Plankton Research, 19(4): 519-531.
402	Gooday, A.J. 1988. A response by benthic Foraminifera to the deposition of phytodetritus
403	in the deep sea. <i>Nature</i> , 332 : 70-73.
404	Gooday, A.J. 1993. Deep-sea benthic foraminiferal species which exploit phytodetritus:
405	Characteristic features and controls on distribution. Marine Micropaleontology, 22: 187-205.
406	Gooday, A.J. 2003. Benthic foraminifera (protista) as tools in deep-water
407	palaeoceanography: Environmental influences on faunal characteristics. Advances in Marine
408	Biology. Academic Press: 1-90.

- Gooday, A.J., Malzone, M.G., Bett, B.J. & Lamont, P.A. 2010. Decadal-scale changes in
 shallow-infaunal foraminiferal assemblages at the Porcupine Abyssal Plain, NE Atlantic.
- 411 Deep Sea Research Part II: Topical Studies in Oceanography, **57**(15): 1362-1382.
- Gooday, A., Bett, B., Jones, D. & Kitazato, H. 2012. The influence of productivity on
 abyssal foraminiferal biodiversity. Marine Biodiversity, 42(4) : 1-17.

414	Gooday, A.J. & Jorissen, F.J. 2012. Benthic Foraminiferal Biogeography: Controls on
415	Global Distribution Patterns in Deep-Water Settings. Annual Review of Marine Science, 4(1):
416	237-262.
417	Guichard, S., Jorissen, F. & Peypouquet, J.P. 1999. Late Quaternary benthic foraminiferal
418	records testifying lateral variability of the Cape Blanc upwelling signal. Comptes Rendus de
419	l'Academie de Sciences - Serie IIa: Sciences de la Terre et des Planetes, 329 (4): 295-301.
420	Gupta, A.K. 1997. Paleoceanographic and paleoclimatic history of the Somali Basin
421	during the Pliocene-Pleistocene; multivariate analyses of benthic foraminifera from DSDP
422	Site 241 (Leg 25). Journal of Foraminiferal Research, 27(3): 196-208.
423	Gupta, A.K. & Thomas, E. 2003. Initiation of Northern Hemisphere glaciation and
424	strengthening of the northeast Indian monsoon: Ocean drilling program site 758, eastern
425	equatorial Indian Ocean. Geology, 31 (1): 47-50.
426	Harloff, J. & Mackensen, A. 1997. Recent benthic foraminifera associations and ecology
427	of the Scotia Sea and Argentine Basin. Marine Micropaleontology, 31: 1-29.
428	Herguera, J.C. & Berger, W.H. 1991. Paleoproductivity from benthic foraminifera
429	abundance: Glacial to postglacial change in the west-equatorial Pacific. Geology, 19: 1173-
430	1176.
431	Herguera, J.C. 1992. Deep-Sea benthic foraminifera and biogenic opal: Glacial to
432	postglacial productivity changes in the western equatorial Pacific. Marine Micropaleontology,
433	19 : 79-98.
434	Herguera, J.C. 2000. Last glacial paleoproductivity patterns in the eastern equatorial
435	Pacific: benthic foraminifera records. Marine Micropaleontology, 40: 259-275.
436	Jorissen, F.J., Fontanier, C. & Thomas, E. 2007. Chapter Seven Paleoceanographical
437	Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics.
438	Developments in marine geology 1, Elsevier, 263-325.
439	Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G.,
440	Minster, B., Nouet, J., Barnola, J.M., Chappellaz, J., Fischer, H., Gallet, J.C., Johnsen, S.,
441	Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud,
442	D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen,
443	J.P., Stenni, B., Stocker, T.F., Tison, J.L., Werner, M. & Wolff, E.W. 2007. Orbital and

444 Millennial Antarctic Climate Variability over the Past 800,000 Years. *Science*, **317**(5839):
445 793-796.

446 Koho, K.A., Langezaal, A.M., van Lith, Y.A., Duijnstee, I.A.P. & van der Zwaan, G.J. 447 2008. The influence of a simulated diatom bloom on deep-sea benthic foraminifera and the 448 activity of bacteria: A mesocosm study. Deep-Sea Research I, 55: 696-719. 449 Kurbjeweit, F., Schimiedl, G., Schiebel, R., Hemleben, C., Pfannkuche, O., Wallmann, 450 K. & Schäfer, P. 2000. Distribution, biomass and diversity of benthic foraminifera in relation to sediment geochemistry in the Arabian Sea. Deep-Sea Research II, 47: 2913-2955. 451 452 Kurihara, K. & Kennett, J.P. 1986. Neogene benthic foraminifers: distribution in depth 453 traverse, southwest Pacific. In: Kennett, J.P., von der Borch, C. C., and others (Ed) Initial 454 Reports of the Deep Sea Drilling Project, Volume 90 (Part 2). US. Government Printing 455 Office, Washington, 1037-1077.

Linke, P. & Lutze, G.F. 1993. Microhabitat preferences of benthic foraminifera a static
concept or a dynamic adaptation to optimize food acquisition? *Marine Micropaleontology*,
20: 215-234.

Llido, J., Machu, E., Sudre, J., Dadou, I. & Garçon, V. 2004. Variability of the biological
front south of Africa from SeaWiFS and a coupled physical-biological model. *Journal of Marine Research*, 62: 595-609.

Lobegeier, M.K. & Sen Gupta, B.K. 2008. Foraminifera of Hydrocarbon seeps, Gulf of
Mexico. *Journal of Foraminiferal Research*, 38(2): 93-116.

Loeblich, A.R. & Tappan, H. 1987. Foraminifera Genera and Their Classification. Van
Nostrand Reinhold, New York.

Machu, E., Biastoch, A., Oschlies, A., Kawamiya, M., Lutjeharms, J.R.E. & Garçon, V.
2005. Phytoplankton distribution in the Agulhas system from a coupled physical-biological
model. *Deep-Sea Research Part I: Oceanographic Research Papers*, 52(7): 1300-1318.

469 Mackensen, A., Grobe, H., Kuhn, G. & Fütterer, D.K. 1990. Benthic foraminiferal

470 assemblages from the eastern Weddell Sea between 68 and 73°S: Distribution, ecology and

471 fossilization potential. *Marine Micropaleontology*, **16**: 241-283.

472 Mackensen, A., Fütterer, D.K., Grobe, H. & Schmiedl, G.E.P.d. 1993. Benthic

473 for aminiferal assemblages from the eastern South Atlantic Polar Front region between 35° and

474 57°S: Distribution, ecology and fossilization potential. *Marine Micropalentology*, **22**: 33-69.

475	Mackensen, A., Schmiedl, G., Harloff, J. & Giese, M. 1995. Deep-sea foraminifera in the
476	South Atlantic Ocean: Ecology and assemblage composition. <i>Micropaleontology</i> , 41 : 342-
477	358.
478	Miao, Q. & Thunell, R.C. 1993. Recent deep-sea benthic foraminiferal distributions in
479	the South China and Sulu Seas. Marine Micropaleontology, 22(1-2): 1-32.
480	Morigi C. Jorissen F.I. Gervais A. Guisbard S. & Borsetti A.M. 2001 Benthic
400	foraminiferal faunas in surface sediments off NW A frica: Relationship with organic flux to
182	the ocean floor. <i>Journal of Foraminiferal Pasaarch</i> 31 : 350-368
402	the occan noon. <i>Journal of Porumityeral Research</i> , 31 . 550-508.
483	Murgese, D.S. & De Deckker, P. 2007. The Late Quaternary evolution of water masses in
484	the eastern Indian Ocean between Australia and Indonesia, based on benthic foraminifera
485	faunal and carbon isotopes analyses. Palaeogeography, Palaeoclimatology, Palaeoecology,
486	247(3-4): 382-401.
487	Murray, J.W. 2001. The niche of benthic foraminifera, critical thresholds and proxies.
488	Marine Micropaleontology, 41 : 1-7.
489	Murray, J.W. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge
490	University Press, Cambridge (UK).
491	Nees, S. & Struck, U. 1994. The biostratigraphic and paleoceanographic significance of
492	Siphotextularia rolshauseni Phleger and Parker in Norwegian-Greenland Sea sediments.
493	Journal of Foraminiferal Research, 24 (4): 233-240.
494	Nees S 1997 Late Quaternary nalaeoceanography of the Tasman Sea: The benthic
495	foraminiferal view. <i>Palaeogeography</i> , <i>Palaeoclimatology</i> , <i>Palaeoecology</i> , 131 (3-4): 365-389.
496	Paillard, D., Labeyrie, L. & Yiou, P. 1996. Macintosh Program Performs Time-Series
497	Analysis. Eos, Transactions, American Geophysical Union, 77: 379.
498	Parker, F.L. 1958. Eastern Mediterranean Foraminifera. Reports of the Swedish Deep Sea
499	<i>Expedition</i> 8 , 217-283.
500	Peterson, L.C. 1983. Recent Abyssal benthic foraminiferal biofacies of the Eastern
501	Equatorial Indian Ocean. Marine Micropaleontology, 8: 479-519.
502	Phleger, F.B., Parker, F.L. & Peirson, J.F. 1953. North Atlantic foraminifera. Reports of
503	the Swedish Deep Sea Expedition, 7:1-122.

504	Poli, M.S., Meyers, P.A., Thunell, R.C. & Capodivacca, M. 2012. Glacial-interglacial
505	variations in sediment organic carbon accumulation and benthic foraminiferal assemblages on
506	the Bermuda Rise (ODP Site 1063) during MIS 13 to 10. Paleoceanography, 27(3): PA3216,
507	doi: 10.1029/2012pa002314.
508	Rasmussen, T.L., Oppo, D.W., Thomsen, E. & Lehman, S.J. 2003. Deep sea records from
509	the southeast Labrador Sea: Ocean circulation changes and ice-rafting events during the last
510	160, 000 years. Paleoceanography, 18(1): 18-11.
511	Rathburn, A.E. & Corliss, B.H. 1994. The ecology of living (stained) deep-sea benthic
512	foraminifera from the Sulu Sea. Paleoceanography, 9: 87-150.
513	Sachs, J.P. & Anderson, R.F. 2003. Fidelity of alkenone paleotemperatures in southern
514	Cape Basin sediment drifts. <i>Paleoceanography</i> , 18 (4): 1082, doi: 10.1029/2002pa000862.
515	Sachs, J.P. & Anderson, R.F. 2005. Increased productivity in the subantarctic ocean
516	during Heinrich events. Nature, 434(7037): 1118-1121.
517	Schmiedl, G. & Mackensen, A. 1997. Late Quaternary paleoproductivity and deep water
518	circulation in the eastern South Atlantic Ocean: Evidence from benthic foraminifera.
519	Palaeogeography, Palaeoclimatology, Palaeoecology, 130: 43-80.
520	Schmiedl, G., Mackensen, A. & Müller, P.J. 1997. Recent benthic foraminifera from the
521	eastern South Atlantic Ocean: Dependence on food supply and water masses. Marine
522	<i>Micropaleontology</i> , 32 (3-4): 249-287.
523	Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S. & Spezzaferri, S. 2012. The
524	FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardised protocol for
525	soft-bottom benthic foraminiferal monitoring studies. Marine Micropaleontology, 94-95: 1-
526	13.
527	Smart, C.W., King, S.C., Gooday, A.J., Murray, J.W. & Thomas, E. 1994. A benthic
528	foraminiferal proxy of pulsed organic matter paleofluxes. Marine Micropaleontology, 23: 89-
529	99.
530	Smart, C.W. & Gooday, A.J. 1997. Recent benthic foraminifera in the abyssal Northeast
531	Atlantic Ocean; relation to phytodetrital inputs. Journal of Foraminiferal Research, 27(2): 85-
532	92.
533	Smart, C.W. 2008. Abyssal NE Atlantic benthic foraminifera during the last 15 kyr:
534	Relation to variations in seasonality of productivity. Marine Micropaleontology, 69: 193-211.

535 536 537	Smart, C.W., Waelbroeck, C., Michel, E. & Mazaud, A. 2010. Benthic foraminiferal abundance and stable isotope changes in the Indian Ocean sector of the Southern Ocean during the last 20km: Palaeoceanographic implications. <i>Palaeoceanography</i> . <i>Palaeoceanography</i> .
538	Palaeoecology, 297 (3–4): 537-548.
539 540 541	Smith, P.B. 1964. Ecology of Benthonic species : A discussion of depth distribution of Foraminifera and ecologic factors off El Salvador, including a comparison with other Pacific coast areas. U.S. Government Printing Office.
542 543 544	Smith, C.R., De Leo, F.C., Bernardino, A.F., Sweetman, A.K. & Arbizu, P.M. 2008. Abyssal food limitation, ecosystem structure and climate change. <i>Trends in ecology & evolution</i> , 23 (9): 518-528.
545 546	Struck, U. 1995. Stepwise postglacial migration of benthic foraminifera into the abyssal northeastern Norwegian Sea. <i>Marine Micropaleontology</i> , 26 (1–4): 207-213.
547 548 549	Suhr, S.B., Pond, D.W., Gooday, A.J. & Smith, G.R. 2003. Selective feeding by benthic foraminifera on phytodetritus on the western Antarctic Peninsula shelf: evidence from fatty acid biomarker analysis. <i>Marine Ecology Progress Series</i> , 262 : 153-162.
550 551 552	Sun, X., Corliss, B.H., Brown, C.W. & Showers, W.J. 2006. The effect of primary productivity and seasonality of deep-sea benthic foraminifera in the North Atlantic. <i>Deep-Sea Research I</i> , 53 : 28-47.
553 554 555	Szarek, R., Kuhnt, W., Kawamura, H. & Nishi, H. 2006. Distribution of recent benthic foraminifera along continental slope of the Sunda Shelf (South China Sea). <i>Marine Micropaleontology</i> , 71 (1–2): 41-59.
556 557 558 559	Thiel, H., Pfannkuche, O., Schriever, G., Lochte, K., Gooday, A.J., Hemleben, C., Mantoura, R.F.G., Turley, C.M., Patching, J.W. & Riemann, F. 1989. Phytodetritus on the Deep-Sea Floor in a Central Oceanic Region of the Northeast Atlantic. <i>Biological</i> <i>Oceanography</i> , 6 (2): 203-239.
560 561 562	Thomas, E., Booth, L., Maslin, M. & Shackleton, N.J. 1995. Northeastern Atlantic benthic foraminifera during the last 45,000 years: Changes in productivity seen from the bottom up. <i>Palaeoceanography</i> , 10 (3): 545-562.
563	Zarriess, M. & Mackensen, A. 2010. The tropical rainbelt and productivity changes off

northwest Africa: A 31,000-year high-resolution record. *Marine Micropaleontology*, **76**(3–4):
76-91.

- 21 -

566	
567	FIGURE CAPTIONS:
568	
569	Figure 1:
570	Location of core TN057-21 in the South Atlantic Southern Ocean (map elaborated using
571	Ocean Data View, Schlitzer, R., http://odv.awi.de, 2015). Detailed information about modern
572	hydrography and primary productivity patterns can be found in Llido et al. (2004) and Machu
573	<i>et al.</i> (2005).
574	
575	Figure 2: Benthic foraminiferal assemblages in core TN057-21
576	
577	Shannon-H diversity index (a) and the relative abundance of <i>Epistominella exigua</i> (b) and the
578	most characteristic species of benthic foraminifera in core TNO57-21 (c-n). Percentages are
579	shown in the total assemblage (grey line) and in the phytodetritus free assemblages (black
580	filled area). Percentages are calculated on the basis of samples containing > 50 specimens and
581	non affected by dissolution. Intensely dissolved intervals that correspond to Greenland
582	Stadials 19 and 21 are indicated by vertical bars. The ecological preferences for the most
583	characteristic benthic foraminiferal species or group of species are summarized in Table 1.
584	
585	Figure 3: Paleoproductivity from benthic foraminiferal accumulation rates and
586	assemblage composition
587	
588	The Benthic Foraminiferal Accumulation Rate (BFAR, total number of foraminifera >125 μ m
589	cm ⁻² kyr ⁻¹) is indicated as a shaded black areas and Benthic Foraminiferal Accumulation Rate
590	calculated on phytodetritus free basis (i.e., discounting the contribution of the phytodetritus-

- 22 -

591	related species <i>Epistominella exigua</i> , $BFAR_{phfree}$) is indicated by a grey shaded area (a).
592	Consequently, the difference between the two shaded areas is the BFAR of E. exigua
593	(BFAR _{<i>E.exigua</i>}). Figure c displays the flux of alkenones (ng cm ⁻² kyr ⁻¹) in core TNO57-21, a
594	proxy for organic carbon flux to the seafloor (Sachs & Anderson, 2005) plotted on Barker &
595	Diz (2014) age model. The group of "low flux" species (e) is composed by shallow infaunal
596	O. umbonatus, G. subglobosa and epifaunal P. murrinha and F. wuellerstorfi. Intermediate
597	flux species (light grey line, d) is constituted by individuals belonging to P. osloensis, S.
598	rolhsauseni (medium grey line) and Melonis spp. (dark grey line). Percentages are calculated
599	on the phytodetritus free assemblage basis. Records of Southern Hemisphere ice core
600	temperature (f, Antarctica Epica Dome C δD, Jouzel <i>et al.</i> , 2007, 3 points running average)
601	and Northern Hemisphere ice core temperature record (b, Greenland NGRIP δ^{18} O; EPICA,
602	2006) are showed as reference. Figures b and f are plotted on GICC05/NALPS timescale
603	(Barker et al., 2011). Black crosses on the top indicate tie points and sedimentation rates
604	respectively used in the age model construction and BFAR calculations. Grey line on the top
605	plot shows density values calculated using model proposed by Sachs & Anderson (2003).
606	
607	
608	
609	TABLE CAPTIONS:
610	
611	Table 1: Ecological attributions of the most characteristic benthic foraminiferal species in
612	core TNO57-21
613	

	SPECIES	MICROHABITAT	ECOLOGICAL SIGNIFICANCE
Low Flux	Fontbotia wuellerstorfi (Schwager)= Anomalina wuellerstorfi Schwager, 1866. See Phleger et al. 1953, Pl. 11, Fig. 1-2. This work, Plate I, Fig. 8.	Epifaunal/ Epibenthic	<i>F. wuellerstorfi</i> is an epibenthic species (Linke & Lutze, 1993) that lives in well oxygenated and ventilated bottom waters away from high productivity coastal environments. Global distributional patterns indicate that it prefers organic fluxes below 2 gCm ⁻² yr ⁻¹ (Altenbach <i>et al.</i> 1999). In the South Atlantic, the distribution of this species coincides with relatively sustained food fluxes in areas were carbonate dissolution is not too severe (Mackensen <i>et al.</i> , 1995). In deep sea sediments of the Indian Ocean <i>F. wuellerstorfi</i> co-occurs with the phytodetritus species <i>E. exigua</i> . On ocean wide scale it co-occurs with <i>Uvigerina peregrina</i> (a typical high-flux species) on the lower range of organic carbon fluxes of the later (Altenbach et al., 1999). This information suggest that <i>F. wuellerstorfi</i> is adapted to a wide range of environmental conditions, including strongly pulsed supply of organic carbon in the Indian Ocean (Gupta, 1997; De & Gupta, 2010).
Low Flux	Oridorsalis umbonatus (Reuss) = Rotalina umbonata Reuss 1851. See Smith, 1964, Pl. 4, Fig. 8 as Pseudoeponides umbonatus. This work, Plate I, Fig 15. Most of the individuals found in core TN057-21 are juvenile forms.	Shallow infaunal	On an ocean wide scale, <i>O. umbonatus</i> seems to be distributed in areas receiving low organic carbon fluxes (Altenbach <i>et al.</i> 1999). Mackensen <i>et al.</i> (1995) suggest that the distribution of <i>O. umbonatus</i> in the South Atlantic is related to relatively well-oxygenated pore waters receiving a relatively low but sustained food supply. It co-occurs with <i>E. exigua</i> in the carbonate supersaturated and low organic carbon areas of the Weddell sea continental Shelf (Mackensen <i>et al.</i> 1990). In the eastern Indian Ocean, Murgese & DeDecker (2005) found the assemblage composed by <i>O. umbonatus-E. exigua</i> and <i>P. murrhina</i> indicator of low organic carbon. In Sulu area, Miao & Thunell (1993) indicated <i>O. umbonatus</i> as a species inhabiting shallow infaunal low organic carbon, well oxygenated sediments in agreement with Rathburn & Corliss (1994). Likewise, Burke <i>et al.</i> (1993), include <i>O. umbonatus</i> together with <i>Eggerella bradyi</i> within the group of low productivity species in the central Pacific. Conversely Gupta (1997) interpret the group of <i>O. umbonatus</i> , <i>Eggerella bradyi</i> , and <i>Melonis pompilioides</i> as reflect intermediate flux of relatively degraded organic matter and Kaiho (1999) consider <i>O. umbonatus</i> as an indicator of low-oxygen conditions.
Low Flux	Pyrgo murrhina (Schwager)= Biloculina murrhina Schwager 1866. See Phleger et al. 1953, Pl. 5, Fig. 22-24.	Epifaunal	<i>Pyrgo murrinha</i> is an epifaunal species (Corliss & Chen, 1988) found in areas of low organic carbon fluxes (Altenbach et al., 1999) and high oxygenation such as the South Central Indian Ocean (De & Gupta, 2010) or eastern Indian Ocean (Murgese & De Deckker, 2005). Conversely, Gupta & Thomas (2003) interpret the abundance of <i>P. murrinha</i> in Indian cores as related to pulsed food and good carbonate preservation.
Low Flux	Globocassidulina subglobosa (Brady)= Cassidulina subglobosa Brady, 1881. See Parker 1958, Pl. 4, Fig. 13. This work, Plate I, Fig. 10.	Epifaunal/ Infaunal	In the North Atlantic Sun <i>et al</i> . (2006) found an inverse correlation of the <i>G. subglobosa- N. umbonifera</i> assemblage with seasonality of the organic matter. In the Southeast Atlantic, this species characterize sandy sediments of the Walvis Ridge (South Atlantic) with low organic carbon and high calcium carbonate content and enhanced bottom current velocities (Schmield <i>et al</i> . 1997). However, <i>G. subglobosa</i> has been associated with deposition of phytodetritus in the Northeast Atlantic Abyssal Plain Gooday (1988, 1993), North West Africa (Eberwein & Mackensen (2006) and the Antarctic shelf (Suhr <i>et al</i> . 2003).
Episodic phytoplankton blooms	Epistominella exigua (Brady)= Pulvinulina exigua Brady, 1884. See Lobegeier & Sen Gupta, 2008, Pl. I, Fig. 18. This work, Plate I, Fig. 9.	Epifaunal/ Shallow infaunal	This is an opportunistic species that rapidly colonizes and feeds on aggregates of phytodetritus produced by episodic phytoplankton blooms (e.g., Gooday, 1988, 1993, Cornelius & Gooday, 2004; Sun <i>et al.</i> 2006; Gooday <i>et al.</i> 2010). <i>Epistominella exigua</i> is well adapted to oligotrophic conditions well away from areas where the productivity is high and the flux of organic matter is continuous (Mackensen <i>et al.</i> 1995). In the eastern South Atlantic <i>E. exigua</i> is found in association with <i>F. wuellerstorfi</i> in low organic carbon areas on the flanks of the Walvis Ridge (Schmield <i>et al.</i> 1997). It is also abundant in the deep western South Atlantic (Harloff & Mackensen, 1997) the deep Weddell Sea continental slope (Anderson, 1975; Cornelius & Gooday, 2004) and South West Indian Ocean (Peterson, 1983; Corliss, 1983).
Intermediate Flux	<i>Pullenia osloensis</i> Feyling- Hanssen, 1954. See Diz <i>et al</i> . 2007- Suplementary information, Pl. II, Fig. 5 This work, Plate I, Fig. 16.	Not very well constrained Shallow to deep infaunal	The ecology of <i>Pullenia osloensis</i> is not well known. This species is described in deep and abyssal areas of the South Cape Basin (Boltovskoy & Boltovskoy, 1989), Southwest Indian Ocean (Corliss, 1979) and the Agulhas retroflection area (Diz <i>et al.</i> 2007). Most authors interpret the group of <i>Pullenia</i> spp. (mainly <i>Pullenia bulloides</i>) as indicator of areas of high organic supply (Rasmussen <i>et al.</i> 2003) or high but varying surface productivity (Mackensen <i>et al.</i> 1995). In the Indian Ocean, the assemblage dominated by <i>Epistominella exigua</i> with <i>Pullenia osloensis</i> and <i>Pullenia salisburyi</i> as secondary species is considered indicator of low to intermediate organic flux and high seasonality (Gupta & Thomas, 2003). <i>Pullenia osloensis</i> is common along core TNO57-21 suggesting that it is adapted to a wide range of carbon flux regimes (from low to intermediate) and organic carbon qualities (i.e., labile and refractory). <i>Pullenia salisburyi</i> is also present in core TNO57-21 (Plate, Fig. 17) even though its relative contributions are lower than <i>P. osloensis</i> .
Intermediate Flux	Melonis zaandamae (Van Voothuysen) = Melonis barleeanum var. zaandamae van Voorthuysen, 1952. See Mackensen et al. 1993, Pl.3, Fig. 4-5. This work, Plate I, Fig. 13.	Shallow infaunal	<i>Melonis</i> spp. species (in this core mainly <i>M. zaandamae</i>) are intermediate infaunal foraminifera that tolerates moderate oxygen depletion (Fontanier et al., 2002). It is generally associated to intermediate organic carbon flux and reflactory organic matter (Caralp, 1989; Alve, 2010). Mackensen <i>et al.</i> (1993, 1995) refer to the assemblage comprising <i>Melonis pompiloides, M. zaandamae</i> , and <i>O. umbonatus</i> as South Atlantic deep sea high productivity fauna.
Intermediate Flux	<i>Siphotextularia rolshauseni</i> Phleger and Parker, 1951. See Phleger <i>et al</i> . 1953, Pl. 5, Fig. 7. This work, Plate I, Fig. 2.	Not well constrained	Siphotextularia rolshauseni is an agglutinated species composed of calcareous fragments of various sizes and it is considered a junior synonym of Siphotextularia catenata Cushman (Corliss, 1979, Nees & Struck, 1994). There are a few references to this species in superficial sediments of the North Atlantic (see review Nees & Struck, 1994), Southwest Pacific (Kurihara & Kennett, 1986), South China Sea (Szarek et al., 2006), the Indian Ocean (Corliss, 1979, Nees et al. 1997). Similarly, this species is reported as rare in South Atlantic superficial sediments by Mackensen et al. (1993, Siphotextularia sp.), Schmield et al. (1997, S. catenata) as well as in Pleistocene and Miocene sediments of the Walvis Ridge (Boltovskoy & Boltovskoy, 1989). Nees & Struck (1994) and Struck (1995) relate the occurrence of S. rolshauseni in the Greenland-Norwegian Seas during MIS 2 with a period of low trophic quality. This interpretation is also suggested by the downcore distribution of S. rolshauseni in core TNO57-21 which peaks together with Melonis spp. during MIS 4 (see text).
	The called "Lagenina Group" is		- 24 -
Flux Range?	composed by several species belonging to genus <i>Amphycorina,</i> <i>Bifarilaminella, Cushmanina</i> , Fissurina, <i>Homaloedra</i> ;	Unknown	The species belonging to the called "Lagenina group" are found as rare representatives of the living and recently dead assemblages in different marine settings. Thus, the ecological significance of this group is not well constrained. Some of the species belonging to Lagenina group are illustrated in Plate I: <i>Fissuring stanbyllearia</i> (Plate Fig. 3)

Some of the species belonging to Lagenina group are illustrated in Plate I: Fissurina staphyllearia (Plate, Fig. 3).

615	
616	PLATE I CAPTION:
617	PLATE I:
618	1. <i>Eggerella bradyi</i> (Cushman), scale bar 100 μm.
619	2. Siphotextularia rolshauseni Phleger and Parker, scale bar 100 µm.
620	3. <i>Fissurina staphyllearia</i> Schwager, scale bar 100 μm.
621	4. <i>Oolina globosa</i> (Montagu), scale bar 100 μm.
622	5. <i>Lagena hispidula</i> Cushman, 1913, scale bar 100 μm.
623	6. <i>Parafissurina felsinea</i> (Fornasini), scale bar 100 μm.
624	7. <i>Quinqueloculina</i> cf. <i>seminula</i> , scale bar 100 μm.
625	8. Fontbotia wuellerstorfi (Schwager), scale bar 100 μm.
626	9. <i>Epistominella exigua</i> (Brady), 9a, spiral side, 9b umbilical side, scale bars 100 μ m.
627	10. <i>Globocassidulina subglobosa</i> (Brady), scale bar 200 μm.
628	11. Rutherfordoides tenuis (Phleger and Parker), scale bar 200 µm.
629	12. <i>Gyroidinoides</i> cf. <i>polius</i> , scale bar 100 μm.
630	13. <i>Melonis zaandamae</i> (Van Voorthuysen), scale bar 100 μm.
631	14. <i>Nutallides umboniferus</i> (Cushman), scale bar 100 μm.
632	15. Oridorsalis umbonatus (Reuss), 4a, umbilical side, 4b spiral side, scale bars 100 μm.
633	16. <i>Pullenia osloensis</i> Feyling-Hanssen, scale bar 100 μm.
634	17. <i>Pullenia salisburyi</i> Stewart and Stewart, scale bar 100 μm.
635	18. Uvigerina auberiana d'Orbigny, scale bar 200 μm.
636	

Plate I

