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ABSTRACT
We used wide-area surveys over 39 deg2 by the HerMES (Herschel Multi-tiered Extragalactic
Survey) collaboration, performed with the Herschel Observatory SPIRE multiwavelength
camera, to estimate the low-redshift, 0.02 < z < 0.5, monochromatic luminosity functions
(LFs) of galaxies at 250, 350 and 500 μm. Within this redshift interval, we detected 7087
sources in five independent sky areas, ∼40 per cent of which have spectroscopic redshifts,
while for the remaining objects photometric redshifts were used. The SPIRE LFs in different
fields did not show any field-to-field variations beyond the small differences to be expected
from cosmic variance. SPIRE flux densities were also combined with Spitzer photometry
and multiwavelength archival data to perform a complete spectral energy distribution fitting
analysis of SPIRE detected sources to calculate precise k-corrections, as well as the bolometric
infrared (IR; 8–1000 μm) LFs and their low-z evolution from a combination of statistical
estimators. Integration of the latter prompted us to also compute the local luminosity density
and the comoving star formation rate density (SFRD) for our sources, and to compare them
with theoretical predictions of galaxy formation models. The LFs show significant and rapid
luminosity evolution already at low redshifts, 0.02 < z < 0.2, with L∗

IR ∝ (1 + z)6.0±0.4 and
�∗

IR ∝ (1 + z)−2.1±0.4, L∗
250 ∝ (1 + z)5.3±0.2 and �∗

250 ∝ (1 + z)−0.6±0.4 estimated using the IR
bolometric and the 250 μm LFs, respectively. Converting our IR LD estimate into an SFRD
assuming a standard Salpeter initial mass function and including the unobscured contribution
based on the UV dust-uncorrected emission from local galaxies, we estimate an SFRD scaling
of SFRD0 + 0.08z, where SFRD0 � (1.9 ± 0.03) × 10−2 [M� Mpc−3] is our total SFRD
estimate at z ∼ 0.02.

Key words: galaxies: evolution – galaxies: luminosity function, mass function – galaxies:
statistics – submillimetre: galaxies.
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1 IN T RO D U C T I O N

Observations carried out in roughly the past 20 years have revealed
a rapid evolution of cosmic sources, both normal, actively star-
forming and AGN-dominated galaxies, over the last several billion
years. This was mostly achieved from continuum rest-frame UV
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photometric imaging in the optical (e.g. Lilly et al. 1995) and H α

or [O II] line spectroscopy (e.g. Gallego et al. 1995), all, however,
including very uncertain dust extinction corrections. GALEX has
also been used for similar purposes by Martin et al. (2005) and
Bothwell et al. (2011), among others.

In the far-IR (FIR), the pioneering exploration by the IRAS satel-
lite revealed a particularly dramatic evolution of the galaxy luminos-
ity functions (LFs; Saunders et al. 1990), illustrating the importance
of local studies at infrared (IR) wavelengths. This result was later
confirmed up to z � 1 by ISO (Pozzi et al. 2004) and Spitzer stud-
ies using the Multi-Band Imaging Photometer (MIPS) 24 μm (Le
Floc’h et al. 2005; Marleau et al. 2007; Rodighiero et al. 2010)
and 70 μm (Frayer et al. 2006; Huynh et al. 2007; Magnelli et al.
2009; Patel et al. 2013) channels. At longer, submillimetre wave-
lengths, the Balloon-borne Large Aperture Submillimeter Telescope
(BLAST) was able to estimate the galaxy LF at low z and map its
evolution (Eales et al. 2009), although with limited statistics and
uncertain identification of the sources. Finally, surveys in the radio
bands have also been exploited, with the necessity to include large
bolometric corrections, for LF estimates (Condon 1989; Serjeant,
Gruppioni & Oliver 2002).

Interpretations of these fast evolutionary rates are actively de-
bated in the literature, with various processes being claimed as
responsible (like gas fuel consumption in galaxies, heating of the
gas so as to prevent cooling and collapse, decreasing rates of galaxy
interactions with time, etc.). Indeed, galaxy evolution codes have
often found it difficult to reproduce these data, and slower evolution
seems predicted by the models than it is observed.

However, the estimates of the low-redshift LFs of galaxies, and
correspondingly the total star formation and AGN accretion rates,
still contain some significant uncertainties. In particular, due to
the moderate volumes sampled at low redshift, an essential pre-
requisite for determining the local luminosity functions (LLFs) is
the imaging of large fields, where it is difficult however to achieve
the required multiwavelength homogeneous coverage and complete
redshift information.

In the very local Universe, at z < 0.02, a sample of a few hun-
dred sources from the Early Release Compact Source Catalogue
by the Planck all-sky survey (Planck Collaboration VII 2011) have
been used by Negrello et al. (2013) to estimate LFs at 350, 500
and 850 μm. Although the authors were very careful to account for
various potentially problematic factors, namely the photometric cal-
ibration from the large Planck beam, removal of Galactic emission
and CO line contribution to the photometry, their estimate might
not be completely immune to the effects of large inhomogeneities
(like the Virgo cluster) inherent in their very local spatial sampling
(see Section 5 for further details).

Vaccari et al. (2010) report a preliminary determination of the
local submillimetre LFs of galaxies, exploiting the much im-
proved angular resolution and mapping speed of the SPIRE in-
strument (Griffin et al. 2010) on the Herschel Space Observatory
(Pilbratt et al. 2010). They used data from the Lockman Hole
(LH) and Extragalactic First Look Survey (XFLS) fields of the
Herschel Multi-tiered Extragalactic Survey (HerMES) programme
(http://hermes.sussex.ac.uk; Oliver et al. 2012) over about 15 deg2

observed during the Herschel Science Demonstration Phase (SDP),
and including a few hundred sources to a flux limit of about 40 mJy
in all three SPIRE bands (250, 350, 500 μm). Their published func-
tions were integrated over a wide redshift interval at 0 < z < 0.2.
Because of the limited source statistics, Vaccari et al. (2010) could
not take into account any evolutionary corrections, while significant
evolution is expected to be present over this large redshift bin.

Still based on the HerMES data base, but using a much larger
total area, many more independent sky fields and deeper fluxes,
this paper reports on a systematic effort to characterize the local
and low-redshift LFs of galaxies in the submillimetre bins. The
Herschel survey catalogue has been cross-correlated with existing
optical photometry and spectroscopy in the fields, as well as with
photometric data in the mid-IR (MIR) and FIR from Spitzer (Werner
et al. 2004). By fitting the source-by-source multiwavelength pho-
tometry with spectral templates, the bolometric IR luminosities and
bolometric LFs can also be estimated. Importantly, the much im-
proved statistics allows us to work in narrow redshift bins, so as to
disentangle LF shapes from evolution, and to obtain the most ro-
bust and complete statistical characterization over the last few Gyr
of galaxy evolution. By combining this long-wavelength informa-
tion with similar analyses in the optical–UV, we can determine the
local bolometric luminosity density and comoving star formation
rate (SFR) and their low-z evolution.

The paper is structured as follows. In Section 2, we describe the
multiwavelength data set that we use, as well as the selection of
the samples, source identification and spectral energy distribution
(SED) fitting. In Section 3, we detail the statistical methods used in
our data analysis and the various adopted LF estimators, including
the Bayesian parametric recipe that we develop. Our results are
reported in Section 4, including the multiwavelength LFs, the local
luminosity densities (LLDs) and the SFRs. Our results are then
discussed in Section 5 and our main conclusions summarized in
Section 6.

Throughout the paper, we adopt a standard cosmology with
�M = 0.3, �� = 0.7 and H0 = 70 km s−1 Mpc−1.

2 T H E H E R M E S W I D E S A M P L E

HerMES is a Herschel Guarantee Time Key Programme (Oliver
et al. 20121) and the largest single project on Herschel, for a total
900 h of observing time. HerMES was designed to comprise a num-
ber of tiers of different depths and areas, and has performed obser-
vations with both SPIRE (Griffin et al. 2010) and PACS (Poglitsch
et al. 2010), surveying approximately 70 deg2 over 12 fields whose
sizes range from 0.01 to 20 deg2.

To estimate the SPIRE LLF, we use HerMES L5/L6 SPIRE ob-
servations (see table 1 in Oliver et al. 2012 for more details on the
observations) covering five fields: LH, XFLS, Bootes, ELAIS-N1
(EN1) and XMM-Large Scale Structure (XMM-LSS). In the fol-
lowing, these fields and the SPIRE sample arising from them will
collectively be referred to as the HerMES Wide Fields and Sample,
respectively. These fields are the widest Herschel HerMES fields
where imaging data are available with both Spitzer Infrared Array
Camera (IRAC) and MIPS, thus enabling the detailed study of the
full IR SED of a significant number of sources in the local Universe.

2.1 Spire source extraction

Source confusion is the most serious challenge for Herschel and
SPIRE source extraction and identification. In particular, confusion
is an important driver in determining the optimal survey depth. By
making a maximum use of the full spectrum of ancillary data, it
is possible to limit the confusion problem at the source detection
and identification steps. For this reason, the choice of HerMES sur-
vey fields has been largely driven by the availability of extensive
multiwavelength ancillary data at both optical and IR wavelengths.

1 http://hermes.sussex.ac.uk/
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In particular, Roseboom et al. (2010, and Roseboom et al. 2012)
developed a new method for SPIRE source extraction, hereafter
referred to as XID, which improves upon more conventional tech-
niques (e.g. Smith et al. 2012; Wang et al. 2014) based on existing
source extraction algorithms optimized for Herschel purposes.

The XID technique makes use of a combination of linear in-
version and model selection techniques to produce reliable cross-
identification catalogues based on Spitzer MIPS 24 μm source posi-
tions. The tiered nature of HerMES is well matched to the variable
quality of the Spitzer data, in particular the MIPS 24 μm observa-
tions. This is confirmed by simulation performed using pre-Herschel
empirical models (e.g. Fernandez-Conde et al. 2008; Le Borgne
et al. 2009; Franceschini et al. 2010) which shared the compara-
ble sensitivities of the 250 and 24 μm source densities. Since the
HerMES Wide Fields are homogeneously covered by the Spitzer
Data Fusion (described in Section 2.3), which provides homoge-
neous MIPS 24 μm source lists, the SPIRE flux densities used in
this paper are obtained with the XID technique using the Spitzer
Data Fusion MIPS 24 μm positional priors (or, in other words, the
MIPS 24 μm positions are used as a prior to guide the SPIRE flux
extraction on the SPIRE maps).

As reported in Roseboom et al. (2010), using a prior for the SPIRE
source identification based on MIPS 24 μm detections could, in
principle, introduce an additional incompleteness related to the rel-
ative depth at 24 μm catalogues used in the process and the distribu-
tion of intrinsic SED shapes. However, Roseboom et al. (2010) show
how incompleteness would affect only the fainter SPIRE sources
with the higher 250 μm/24 μm flux density ratios, which are very
likely to be ultra-red high-redshift objects. We can therefore be
confident that for relatively nearby sources the XID catalogues are
complete at the relatively bright flux limits used in this work. This
relatively complex procedure of association is reported in the ded-
icated papers by Roseboom et al. (2010, 2012), to which we refer
the reader for further details about this method.

2.2 Spire sample selection

To define the sample to be used for our LLF determinations, we
use SPIRE flux density estimates obtained using the XID method
(Roseboom et al. 2010 and Roseboom et al. 2012), applied to SPIRE
maps produced by Levenson et al. (2010) and using MIPS 24 μm
positional priors based on the Spitzer Data Fusion detailed in Sec-

tion 2.3. The SPIRE 250 μm channel is the most sensitive of the
three SPIRE bands and thus we select sources on the basis of a
SPIRE 250 μm reliability criterion (discussed in Roseboom et al.
2010) defined as χ2

250 < 5 and SNRT250 > 4, where the first criterion
is the χ2 of the source solution in the neighbourhood of a source
(7 pixel radius) and the second is the signal-to-noise ratio (SNR) at
a given selection λ, including confusion, and referred to as ‘total’
SNRλ or SNRTλ.

The SPIRE 250 μm catalogues of L5/L6 HerMES observa-
tions are highly complete and reliable down to approximately
25/30/35 mJy at 250/350/500 μm, respectively, as shown in Fig. 1
(left). In order to combine the data collected in these different fields,
we have to ensure a uniform completeness both in flux and in red-
shift coverage across fields; thus, due to some minor differences
across the fields, we decided to cut our sample at 30 mJy at 250
μm. These minor differences are visible in Fig. 1 (right) where we
compare SPIRE 250 μm number counts estimated for the five wide
fields and for the COSMOS deep field (the COSMOS sample is
from Vaccari et al., in preparation). These discrepancies are con-
sistent with the levels of cosmic variance predicted by theoretical
models for fields of this size (Moster et al. 2011), as well as with the
slightly different depths of MIPS 24 μm observations available for
these fields, which were used to guide HerMES XID source extrac-
tion. In any case, differences are on the whole small and have major
effects only at low flux densities, well below our selected limit. The
greatest discrepancy is shown in XFLS, where the SPIRE 250 μm
completeness reflects the slightly brighter flux limit of the XFLS
MIPS 24 μm and IRAC catalogues, due to a shorter exposure time
in comparison with the other fields.

2.3 The Spitzer Data Fusion

As previously mentioned, the HerMES fields were chosen so as to
have the best multiwavelength data for sky areas of a given size.
In particular, the fields used in this work are covered by Spitzer
seven-band IRAC and MIPS imaging data which enable not only
an improved identification process but also the detailed characteri-
zation of the IR SEDs of Herschel sources.

In this work, we exploit the Spitzer Data Fusion (Vaccari et al.
2010 and Vaccari et al., in preparation, http://www.mattiavaccari.
net/df). The Spitzer Data Fusion combines Spitzer MIR and FIR

Figure 1. SPIRE 250 µm source counts (right) and completeness (left) based on XID catalogues from Roseboom et al. (2012) for the HerMES Wide Fields
sample used to estimate the SPIRE LLFs, compared with COSMOS estimates from Vaccari et al. (in preparation). The black solid line signs the flux limit of
our selection.
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data from the Spitzer Wide-area InfraRed Extragalactic (SWIRE;
Lonsdale et al. 2003) survey in six fields, the Spitzer Deep-Wide
Field Survey (SDWFS, PI: Daniel Stern, Spitzer PID 40839), the
Spitzer XFLS (PI: Tom Soifer, Spitzer PID 26), with photometric
data at UV, optical and near-infrared (NIR) wavelengths, as well
as optical spectroscopy over about 70 deg2 in total. It thus makes
full use of public survey data from the Galaxy Evolution Explorer
(GALEX), the Sloan Digital Sky Survey (SDSS), the Issac Newton
Telescope Wide Field Survey (INT WFS), the 2 Micron All-Sky Sur-
vey (2MASS), the UKIRT Infrared Deep Sky Survey (UKIDSS) and
the Visible and Infrared Survey Telescope for Astronomy (VISTA)
projects, as well as further optical imaging obtained by the SWIRE,
SDWFS and XFLS teams. It also provides spectroscopic infor-
mation variously available from SDSS, NASA/IPAC Extragalactic
Database (NED; http://ned.ipac.caltech.edu), recent literature and
proprietary follow-up programmes.

The Spitzer Data Fusion thus represents an ideal starting point to
perform statistical studies of IR galaxy populations, such as detailed
SED fitting analyses to estimate photometric redshifts and masses,
as well as SFRs; an early version of the data base has already been
used to that effect by Rowan-Robinson et al. (2013). It has been
used to validate Herschel SDP observations within the HerMES
consortium team and to produce current and future public HerMES
catalogues.2 Since this paper only uses the Spitzer Data Fusion to
derive SPIRE LLF estimates, we refer the reader to Vaccari et al.
(in preparation) for a complete description of the data base and in
the following we only summarize its basic properties as they relate
to this work.

The Spitzer Data Fusion is constructed by combining Spitzer
IRAC and MIPS source lists, as well as ancillary catalogues, follow-
ing a positional association procedure. Source extraction of IRAC
four-band images and of MIPS 24 μm images is carried out us-
ing SEXTRACTOR (Bertin & Arnouts 1996), whereas MIPS 70 and
160 μm source extraction is carried out using APEX (Makovoz &
Marleau 2005). Catalogue selection is determined by a reliable
IRAC 3.6 or IRAC 4.5 μm detection. We then associate MIPS
24 μm detections with IRAC detections using a 3 arcsec search
radius, while MIPS 70 and 160 μm catalogues are matched against
MIPS 24 μm positions using a search radius of 6 and 12 arcsec, re-
spectively. UV, optical and NIR catalogues are then matched against
IRAC positions using a 1 arcsec search radius. This multistep ap-
proach increases the completeness and reliability of the longer
wavelength associations, while better pin-pointing MIPS sources
using their IRAC positions.

The HerMES Wide Fields used in this work are part of the Spitzer
Data Fusion and are all covered both by Spitzer seven-band IR
imaging and by SDSS five-band optical imaging and optical spec-
troscopy (Csabai et al. 2007; Abazajian et al. 2009; Carliles et al.
2010; Bolton et al. 2012). They also benefit by a vast quantity of
additional homogeneous multiwavelength observations and addi-
tional spectroscopic redshifts available from NED, as well as the
recent literature, and our own Spitzer/Herschel proprietary follow-
up programmes. We thus associate a reliable spectroscopic redshift
with our sources whenever this is available and otherwise rely on
SDSS photometric redshift estimates based on a KD-tree nearest-
neighbour search (see Csabai et al. 2007 for more details). In so
doing, we follow a commonly adopted photometric reliability cri-
terion for SDSS good photometry, only selecting detections with
SDSS cmodelmag rAB < 22.2, thus avoiding unreliable photomet-

2 available at http://hedam.oamp.fr/HerMES/

ric redshifts. In Fig. 2, we report SDSS rAB and redshift histograms
of the HerMES Wide sample. In order to avoid effects of incom-
pleteness in redshift, we limit our HerMES Wide sample to z �
0.5, below the completeness and reliability limit of SDSS redshift
estimates. Moreover, to avoid the possible redshift incompleteness
that affects the very bright and nearby galaxies in SDSS data, we cut
our sample to the lowest redshift of z = 0.02, as suggested by e.g.
Montero-Dorta & Prada (2009). As discussed in Roseboom et al.
(2010), the SPIRE source extraction works very well for point-like
sources, but can underestimate the fluxes of the extended sources;
cutting the sample at z > 0.02 also avoids this problem since the
vast majority of extended sources are located at lower redshifts.
The numbers of sources of the HerMES Wide sample are detailed
in Table 1.

2.4 SED fitting

Thanks to the Spitzer Data Fusion, we are able to perform the multi-
wavelength SED fitting analysis of our HerMES Wide Fields sample
and thus estimate the IR bolometric (8-1000 μm) and monochro-
matic rest-frame luminosities and relative k-corrections. We per-
form the SED fitting analysis using LE PHARE (Arnouts et al. 1999
and Ilbert at al. 2006). To perform the fit, we use SDSS ugriz,
2MASS JHKs, IRAC-3.6, IRAC-4.5, IRAC-5.8, IRAC-8.0, MIPS-
24, MIPS-70, MIPS-160, SPIRE-250, SPIRE-350 and SPIRE-500
flux densities, which are available over the whole area covered by
our sample. As template SEDs we use two different set of empirical
templates according to the range of wavelengths we are fitting: in
the optical–MIR range (up to 7 μm rest-frame), we use the same
templates and extinction laws exploited by the COSMOS team to
estimate the COSMOS photometric redshifts as in IIlbert et al.
(2009), while to fit the IR/submm range (from 7 μm rest-frame up-
wards) we use the SWIRE templates of Polletta et al. (2007) and
their slightly modified version described in Gruppioni et al. (2010),
for a total of 32 and 31 SEDs, respectively; this includes elliptical,
spiral, AGN, irregular and starburst spectral types as summarized in
Table 2. As an example we report two typical examples of our SED
fitting results in Fig. 3. Splitting the overall wavelength coverage
into two provides us with a particularly good fit to the FIR bump
and a reasonably good fit at all other wavelengths for all sources,
with a mean value of the reduced χ2 of around 0.5. In Fig. 2 (upper
panels), we report the L–z distribution for both the L250 and the LIR

rest-frame luminosities obtained through the SED fitting procedure.
Thanks to this multiwavelength SED fitting, we are able to also

investigate the relation between monochromatic rest-frame lumi-
nosities at different wavelengths. As an example we report in Fig. 4 a
comparison between SPIRE 250 μm and PACS 100 μm monochro-
matic rest-frame luminosities plotted against the IR bolometric lu-
minosity. Historically, the monochromatic rest-frame luminosity at
60-100 μm has been considered a good indicator of the IR bolo-
metric luminosity, due to a strong correlation between the two [e.g.
Patel et al. (2013) used the relation between MIPS 70 μm and LIR].
In Fig. 4, we show that we confirm this trend in our SED fitting re-
sults while, on the other hand, the SPIRE 250 μm luminosity does
not show a strong correlation with the IR bolometric luminosity
and thus cannot be used as a reliable indicator of the total IR emis-
sion of the galaxy. As also confirmed by other HerMES works that
have carefully studied the SED shape of the HerMES sources (e.g.
Symeonidis et al. 2013), we find that the SEDs in the FIR regime
of our local HerMES sample peak close to the PACS 100 μm band
and thus the monochromatic luminosity at this wavelength best
traces the total IR bolometric luminosity integrated between 8 and
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Figure 2. Top: SPIRE 250 µm (expressed as νLν ) and IR bolometric luminosity versus redshift. Bottom: SDSS rAB (left) and redshift histograms (right) for
the HerMES Wide Fields sample used to estimate the SPIRE LLFs. The L–z plots are colour-coded according to the SED best-fitting class obtained by the
SED fitting procedure following the list reported in Section 2.4. The histograms report the relative quantities for the photometric and spectroscopic samples in
blue and in green, respectively, with the total sample illustrated in red.

Table 1. Number of 0.02 < z � 0.5 sources used to estimate the SPIRE
LLFs. The number of sources with spectroscopic/photometric redshifts is
indicated in parentheses after the total number of sources. The 250 µm
sample is cut at S250 > 30 mJy, according to the SPIRE 250 µm completeness
(see the text for details). ‘Set’ refers to table 1 in Oliver et al. (2012) and
identifies the HerMES specific observing mode in each field.

Field 250 µm detections Area (deg2) Set

LH 2336 (942/1394) 11.29 34
XFLS 801 (427/374) 4.19 40
BOOTES 1792 (1220/572) 9.93 37
EN1 693 (246/447) 3.91 35
XMM 1606 (367/1239) 9.59 36
Total 7087 (3195/3892) 38.9

1000 μm. It is also interesting to notice the very different behaviour
of the k-corrections estimated at SPIRE 250 μm and PACS 100 μm
(lowest panels of Fig. 4). The differences between these two are
remarkable, and this is reflected in the different behaviour of the
resulting luminosities.

While a detailed physical analysis of our sample is beyond the
scope of this paper, we did exploit our SED fitting analysis and

the IRAC colour–colour criteria by Lacy et al. (2004) and Donley
et al. (2012) to search for any potential AGN contamination in our
sample. On the whole, the vast majority of our sources show galaxy-
or starburst-like best-fitting SEDs with less than 10 per cent of the
sample being best fitted by AGN-like SEDs (SED classes between
17 and 25 and between 28 and 31 as reported in Table 2). These
numbers do not change significantly even if we fit a single SED
template to the whole range of available photometry (from optical
to SPIRE bands). Fig. 5 confirms that our objects mostly lie within
the starburst-dominated region of the IRAC colour–colour plot, with
only a small fraction of the sources (mainly located at z > 0.25)
sitting in the area usually occupied by AGN-like objects. On the
whole, we find that about 20 per cent of our sources sit in the AGN
region identified by Lacy et al. (2004), with less than 6 per cent at z ≤
0.2 and about 30 per cent at 0.2 < z ≤ 0.5. These fractions change
significantly if we apply the selection reported in Donley et al.
(2012) which is able to better discriminate pure bona fide AGNs
from samples that are contaminated by low- and high-redshift star-
forming galaxies as the one selected by Lacy’s criterion. We find that
only 3 per cent of our total sample is identified as AGN-dominated
by Donley’s criterion, less than 2 per cent at z ≤ 0.2 and 4 per cent
at 0.2 < z ≤ 0.5.

MNRAS 456, 1999–2023 (2016)
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Table 2. List of the SEDs used to perform the SED fitting analysis in the
IR/submm. The ‘Spectral type’ column shows the grouping procedure we
implemented in order to collect together those SED classes with similar
properties in terms of FIR colours.

Index SED class Spectral type Reference

01 Ell13 Elliptical Polletta+07
02 Ell5 Elliptical Polletta+07
03 Ell2 Elliptical Polletta+07
04 S0 Spiral Polletta+07
05 Sa Spiral Polletta+07
06 Sb Spiral Polletta+07
07 Sc Spiral Polletta+07
08 Sd Spiral Polletta+07
09 Sdm Spiral Polletta+07
10 Spi4 Spiral Polletta+07
11 N6090 Starburst Polletta+07
12 M82 Starburst Polletta+07
13 Arp220 Starburst Polletta+07
14 I20551 Starburst Polletta+07
15 I22491 Starburst Polletta+07
16 N6240 Starburst Polletta+07
17 Sey2 Obscured AGN Polletta+07
18 Sey18 Obscured AGN Polletta+07
19 I19254 Obscured AGN Polletta+07
20 QSO2 Unobscured AGN Polletta+07
21 Torus Unobscured AGN Polletta+07
22 Mrk231 Obscured AGN Polletta+07
23 QSO1 Unobscured AGN Polletta+07
24 BQSO1 Unobscured AGN Polletta+07
25 TQSO1 Unobscured AGN Polletta+07
26 Sb Spiral Gruppioni+10
27 Sdm Spiral Gruppioni+10
28 Sey2 Obscured AGN Gruppioni+10
29 Sey18 Obscured AGN Gruppioni+10
30 Mrk231 Obscured AGN Gruppioni+10
31 qso_high Unobscured AGN Gruppioni+10

3 STAT I S T I C A L M E T H O D S

Accurately estimating the LF is difficult in observational cosmol-
ogy since the presence of observational selection effects like flux
detection thresholds can make any given galaxy survey incomplete
and thus introduce biases into the LF estimate.

Numerous statistical approaches have been developed to over-
come this limit, but, even though they all have advantages, it is only
by comparing different and complementary methods that we can
be confident about the reliability of our results. For this reason, to
estimate the LLFs in the SPIRE bands reported in this paper, we
exploit different LF estimators: the 1/Vmax approach of Schmidt
(1968) and the modified version φest of Page & Carrera (2000); the
Bayesian parametric maximum likelihood (ML) method of Kelly,
Fan & Vestergaard (2008) and Patel et al. (2013); and the semi-
parametric approach of Schafer (2007). All these methods are ex-
plained in the following sections.

3.1 1/Vmax Estimator

Schmidt (1968) introduced the intuitive and powerful 1/Vmax esti-
mator for LF evaluation. The quantity Vmax for each object repre-
sents the maximum volume of space which is available to such an
object to be included in one sample accounting for the survey flux
limits and the redshift bin in which the LF is estimated. Vmax thus
depends on the distribution of the objects in space and the way in
which detectability depends on distance. Once the Vmax (or Vmax(Li),
since it depends on the luminosity of each object) is defined, the LF
can be estimated as

�(Bj−1 < L � Bj ) =
∑

Bj−1<L�Bj

1

Vmax(Li)
, (1)

in which its value is computed in bins of luminosity, within the
boundary luminosities of a defined bin [Bj − 1, Bj]. It is usually
expressed in the differential form as

φ1/Vmax (L, z) = 1

�L

N∑
i=1

1

Vmax,i

, (2)

Figure 3. Typical LE PHARE SED fits. The two best-fitting SEDs used to fit short- and long-wavelength photometry are shown by the red and magenta solid line,
respectively. The black solid circles are the photometric data used to perform the fit. The ID and the redshift of the source are reported on top of each panel.
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Figure 4. Top: relation between rest-frame SPIRE 250 µm or PACS 100 µm luminosities and IR bolometric luminosity colour-coded as a function of redshift.
Middle: relations between rest-frame SPIRE 250 µm/PACS 100 µm luminosities and IR bolometric luminosity colour-coded according to the SED best-fitting
class obtained by the SED fitting procedure following the list reported in Table 2. Bottom: SPIRE 250 µm and PACS 100 µm k-corrections as a function of
redshift colour-coded according to the SED best-fitting class.

where N is the number of objects within some volume–luminosity
region. Errors in the LF can be evaluated using Poisson statistics:

σ 2
φ(L) =

∑
Bj−1<L�Bj

1

(Vmax(Li))2
. (3)

In our case, there are three main selection factors that may constrain
the Vmax for each object in our sample: the limit in r magnitude
that guides the photometric redshift estimates in the SDSS survey,
rAB < 22.2; the MIPS 24 μm flux limit that guides the SPIRE
250 μm extraction, S24 > 300 μJy; and finally the flux density limit
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Figure 5. IRAC colour–colour plot as from Lacy et al. (2004) and Donley et al. (2012). In the left- and right-hand panels, respectively, the complete samples
of sources in the two redshift ranges 0.02 < z ≤ 0.2 and 0.2 < z ≤ 0.5 are reported. In both panels, the overplotted solid green circles and blue open circles
show the AGN-like objects selected using the Lacy et al. (2004) and Donley et al. (2012) criteria, respectively, while the solid red circles represent the rest of
the sample in each redshift bin.

in the SPIRE 250 μm band, S250 > 30 mJy. Moreover, since we
estimate the 1/Vmax in a number of redshift bins, the Vmax value
is actually also limited by zmin and zmax for each z-bin. Taking
into account all these considerations, the Vmax estimator used in
equation (2) is described by

Vmax = �

4π

∫ zmax

zmin

dz
dV

dz
, (4)

where zmin and zmax are the redshift boundaries resulting from
taking into account both the redshift bin range and the selection
factors

zk,min = zbink ,min (5)

zk,max = min[z0,max, . . . , zn,max, zbink ,max] (6)

for all 0, . . . , n selection factors and for each k redshift bin. For
instance, in the case of the SPIRE 250 μm LF estimate in z-bin
0.02 < z < 0.1, the conditions just shown become

z0.02<z<0.1,min = 0.02

z0.02<z<0.1,max = min[zrAB ,max, zf 24,max, zf 250,max, 0.1],

where zrAB ,max, zf24, max and zf250, max are the redshift at which
a source in the sample reaches the SDSS rAB magnitude limit
(= 22), the 24 μm flux limit (= 300 μJy) and the SPIRE 250 μm
limit (= 30 mJy), respectively; 0.02 and 0.1 are the minimum and
the maximum of the redshift bin.

This method implies binning of the luminosity data, a non-
parametric technique, and as such does not need to assume an
analytic form. It does however contain the underlying assumption
that galaxies have a uniform distribution in space. In principle,
this could be tested with the V/Vmax distribution, but that still re-
mains difficult when there are multiple selection factors limiting the
sample.

The simple Vmax estimator has evolved, being improved and re-
fined over the years to accommodate the many different types of
survey that have steadily grown in size and complexity. One of these
approaches is the one implemented in Page & Carrera (2000), the
so-called Vest method, which we also used here to check whether
with our 1/Vmax estimates we are ignoring any important incom-
pleteness factor in our sample. Page & Carrera (2000) improved

the method to take into account systematic errors in the Vmax test
introduced for objects close to the flux limit of a survey. This new
method defines the value of the LF φ(L) as φest, which assumes that
φ does not change significantly over the luminosity and redshift
intervals �L and �z, respectively, and is defined as

φest = N

Lmax∫
Lmin

zmax(L)∫
zmin

dV
dz

dzdL

, (7)

where N is the number of objects within some volume–luminosity
region.

Due to how the methods work in practice, for LFs in most of the
redshift intervals, the two will produce the same results, particularly
for the highest luminosity bins of any given redshift bin. However,
for the lowest luminosity objects in each redshift bin, which are close
to the survey limit and occupy a portion of volume–luminosity space
much smaller than the rectangular �L �z region, the two methods
can produce the most discrepant results. Nevertheless, in our case
we do not find any substantial differences between the 1/Vmax and
1/Vest solutions, as shown in the following sections.

3.2 Bayesian parametric maximum likelihood estimator

The maximum likelihood estimator (MLE) has first been applied
in studies of observational cosmology by Sandage, Tammann &
Yahil (1979), the so-called STY estimator. In ML analysis, one
is interested in finding the estimate that maximizes the likelihood
function of the data. For a given statistical model, parametrized by
θ , the likelihood function, p(x|θ ), is the probability of observing the
data, denoted by x, as a function of the parameters θ . In Bayesian
analysis, one attempts to estimate the probability distribution of the
model parameters, θ , given the observed data x. Bayes’ theorem
states that the probability distribution of θ given x is related to the
likelihood function as

p(θ |x) ∝ p(x|θ )p(θ ), (8)

where p(x|θ ) is the likelihood function of the data and the term
p(θ ) is the prior probability distribution of θ ; the result, p(θ , x), is
called the posterior distribution. The prior distribution, p(θ ), should
convey information known prior to the analysis. In general, the
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prior distribution should be constructed to ensure that the posterior
distribution integrates to 1, but does not have a significant effect on
the posterior. In particular, the posterior distribution should not be
very sensitive to the choice of prior distribution, unless the prior
distribution is constructed with the purpose of placing constraints
on the posterior distribution that are not conveyed by the data. The
contribution of the prior to p(θ |x) should become negligible as the
sample size becomes large.

From a practical standpoint, the primary difference between the
ML approach and the Bayesian approach is that the former is con-
cerned with calculating a point estimate of θ , while the latter is
concerned with mapping out the probability distribution of θ in the
parameter space. The ML approach uses an estimate of the sam-
pling distribution of θ to place constraints on the true value of θ . In
contrast, the Bayesian approach directly calculates the probability
distribution of θ , given the observed data, to place constraints on
the true value of θ .

In terms of LF evaluation, the LF estimate is related to the prob-
ability density of (L, z)

p(L, z) = 1

N
φ(L, z)

dV

dz
, (9)

where N is the total number of sources in the observable Universe
and is given by the integral of φ over L and V(z). The quantity
p(L, z)dLdz is the probability of finding a source in the range L,
L +dL and z, z +dz. Equation (9) separates the LF into its shape,
given by p(L, z), and its normalization, given by N. Once we have
an estimate of p(L, z), we can easily convert this to an estimate of
φ(L, z) using equation (9).

In general, it is easier to work with the probability distribution
of L and z instead of directly with the LF, because p(L, z) is more
directly related to the likelihood function. The function φ(L, z) can
be described, as we have seen, by a parametric form with parameter
θ , so that we can derive the likelihood function for the observed
data. The presence of flux limits and various other selection effects
can make this difficult, since the observed data likelihood function
is not simply given by equation (9). In this case, the set of lumi-
nosities and redshifts observed by a survey gives a biased estimate
of the true underlying distribution, since only those sources with L
above the flux limit at a given z are detected. In order to derive the
observed data likelihood function, it is necessary to take the sur-
vey’s selection method into account. This is done by first deriving
the joint likelihood function of both the observed and unobserved
data, and then integrating out the unobserved data. The probability
p(L, z) (as reported in Patel et al. 2013) then becomes

p(L, z|θ ) = φ(L, z|θ )p(selected|L, z)

λ

dV

dz
, (10)

where p(selected|L, z) stands for the probability connected with
the selection factors of the survey and λ is the expected number of
sources, determined by

λ =
“

φ(L, z|θ )p(selected|L, z)dlogL
dV

dz
dz, (11)

where the integrals are taken over all possible values of redshift and
luminosity.

This last equation gives the expected number of objects in a
sample composed of sources of the same morphological type and
collected in a single-field survey. For our purposes, we have to
change the equation to the following:

λ =
∑
SED

∑
fields

“
�(L, z|θ )p(selected|L, z)dlogL

dV

dz
dz, (12)

where we sum together the expected number of sources for each
SED type, used for the SED fitting procedure, and survey areas that
compose our HerMES Wide Fields sample.

Since the data points are independent, the likelihood function for
all N sources in the Universe would be

p(L, z|θ ) =
N∏

i=1

p(Li, zi |θ ). (13)

Indeed, we do not know the luminosities and redshifts for all N
sources, nor do we know the value of N, since our survey only covers
a fraction of the sky and is subject to various selecting criteria. As
a result, our survey only contains n sources. For this reason, the
selection process must also be included in the probability model,
and the total number of sources, N, is an additional parameter that
needs to be estimated. Then the likelihood becomes

p(n|θ ) = p(N, {Li, zi}|θ ) = p(N |θ )p({Li, zi}|θ ), (14)

where p(N|θ ) is the probability of observing N objects and p({Li,
zi}|θ ) is the likelihood of observing a set of Li and zi, both given
the LF model. Is it possible to assume that the number of sources
detected follows a Poisson distribution (Patel et al. 2013), where the
mean number of detectable sources is given by λ? Then, the term
p(N, {Li, zi}|θ ) could be written as the product of individual source
likelihood function, since each data point is independent:

p(N |θ )p({Li, zi}|θ )

= λNe−λ

N !

N∏
i=1

�(L, z|{θ})p(selected|L, z)

λ

dV

dz
. (15)

Then we can use the likelihood function for the LF to perform
Bayesian inference by combining it with a prior probability dis-
tribution, p(θ ), to compute the posterior probability distribution,
p(θ |di), given by Bayes’ theorem:

p(θ |di) = p({di}|{θ})p({θ})∫
p({di}|{θ})p({θ})dθ

. (16)

The denominator of this equation represents the Bayesian evidence
which is determined by integrating the likelihood over the prior
parameter space. This last step is needed to normalize the posterior
distribution.

Calculating the Bayesian evidence is computationally expensive,
since it involves integration over m-dimensions for an m parameter
LF model. Therefore, Monte Carlo Markov chain (MCMC) meth-
ods, used to examine the posterior probability, perform a random
walk through the parameter space to obtain random samples from
the posterior distribution. MCMC gives as a result the maximum
of the likelihood, but an algorithm is needed to investigate in prac-
tice the region around the maximum. Kelly et al. (2008) suggested
to use the Metropolis–Hastings algorithm (Metropolis et al. 1953;
Hastings 1970) in which a proposed distribution is used to guide the
variation of the parameters. The algorithm uses a proposal distribu-
tion which depends on the current state to generate a new proposal
sample. The algorithm needs to be tuned according to the results and
the number of iterations, as well as the parameter step size change.
Once we obtain the posterior distribution, we have the best solution
for each of the parameters describing the LF model that we have
chosen at the beginning; we have the mean value and the standard
deviation (σ ) for each of the parameters that we can combine to-
gether to find the σ of the parametric function chosen as the shape
of our LF (see Section 4 for further details on our calculation).
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3.3 A semi-parametric estimator

Schafer (2007) introduced the semi-parametric method in order to
estimate LFs given redshift and luminosity measurements from an
inhomogeneously selected sample of objects (e.g. a flux-limited
sample). In such a limited sample, like ours, only objects with
flux within some range are observable. When this bound on fluxes
is transformed into a bound in luminosity, the truncation limits
take an irregular shape as a function of redshift; additionally, the
k-correction can further complicate this boundary.

We refer the reader to the original paper, Schafer (2007), for
a complete description of the method; here we report only the
main characteristics of it. This method shows various advantages in
comparison with the other techniques previously described: it does
not assume a strict parametric form for the LF (differently than
the parametric MLE); it does not assume independence between
redshifts and luminosities; it does not require the data to be split
into arbitrary bins (unlike for the non-parametric MLE), and it
naturally incorporates a varying selection function. This is obtained
by writing the LF φ(z, L) as

logφ(z, L) = f (z) + g(L) + h(z, L, θ ), (17)

where h(z, L, θ ) assumes a parametric form and is introduced to
model the dependence between the redshift z, the luminosity L and
the real valued parameter θ . The functions f and g are estimated in
a completely free-form way.

Nevertheless, it is important to notice that this method assumes a
complete data set in the untruncated region that requires some care
when applying it to samples that may suffer some incompleteness.
Discussion on how this issue may influence our results is reported
in the later sections.

3.4 Parametrizing the LF

Using the classical ML technique (STY), as well the one based on
Bayesian statistics, implies the assumption of a parametric form able
to describe the LF. This choice is not straightforward and over the
years the selected LF models varied. In this work, we decide to use
the log-Gaussian function introduced by Saunders et al. (1990) to fit
the IRAS IR LF and widely used for IR LF estimates (e.g. Gruppioni
et al. 2010, 2013; Patel et al. 2013). Usually, this function is called
the modified Schechter function since its formalism is very similar
to the one introduced by Schechter (1976). This parametric function
is defined as

�(L) = �∗
(

L

L∗

)1−α

exp

[
− 1

2σ 2
log2

(
1 + L

L∗

)]
, (18)

where �∗ is a normalization factor defining the overall density of
galaxies, usually quoted in units of h3 Mpc−3, and L∗ is the charac-
teristic luminosity. The parameter α defines the faint-end slope of
the LF and is typically negative, implying relatively large numbers
of galaxies with faint luminosities. We also checked whether an-
other functional form was more suitable to describe our LFs, but we
did not find any evidence of improvement or substantial differences
by using e.g. a double power-law function (used by Rush & Malkan
1993 or Franceschini et al. 2001). We therefore decide to report
and discuss the estimates obtained by using only the log-Gaussian
function in order to be able to compare our results with other more
recent results that use the same parametrization. This approach is
well suited to describe the total galaxy population, but may be in-
adequate if we divide the population into subgroups according, for
example, to their optical properties (see Section 5 for more details)

as done by other authors while studying the behaviour of the local
mass functions of galaxies (e.g. Baldry 2012).

4 R ESULTS

We estimate the LFs at SPIRE 250 μm as well as at SPIRE 350
and 500 μm by using the SPIRE 250 μm selected sample and ex-
trapolating the luminosities from the SED fitting results. The higher
sensitivity of the SPIRE 250 μm channel with respect to the 350 and
500 μm channels largely ensures that we do not miss sources de-
tected only at these longer wavelengths. Additionally, we estimate
the IR bolometric LFs using the integrated luminosity between 8
and 1000 μm and at 24, 70, 100 and 160 μm; these last monochro-
matic estimates are also used to check our procedure against other
published LFs.

In Table 3, we report the values of the best parameter solutions of
the parametric Bayesian ML procedure (explained in Section 3.2)
using the log-Gaussian functional form (equation 18). In Fig. 6, we
report the histograms representing the probability distribution of
the best-fitting parameters produced by the MCMC procedures. To
obtain these estimates, we run an MCMC procedure with 5 × 106

iterations. This procedure is a highly time-consuming process; thus,
we focused our attention in the most local bin 0.02 < z < 0.1 of our
analysis where we want to obtain a precise estimate of the shape of
the local LF observed by Herschel at 250 μm, which is our selection
band. Such an estimate represents a fundamental benchmark to
study the evolution of the LF (e.g. Vaccari et al., in preparation) as
discussed later in Section 5.

As a summary, in Table A1 we report our 1/Vmax LF values
for each SPIRE band and the IR bolometric rest-frame luminosity
per redshift bin. We exclude from the calculation the sources with
z < 0.02, as explained in Section 2.2. The error associated with each
value of � is estimated following Poissonian statistics, as shown in
equation (3).

Since we use photometric redshifts in our sample, we quantify
the redshift uncertainties that may affect our results by performing
Monte Carlo simulations. We created 10 mock catalogues based on
our actual sample, allowing the photometric redshift of each source
to vary by assigning a randomly selected value according to the
Gaussian SDSS photometric error. For each source in the mock
catalogues, we performed the SED fitting and recomputed both the
monochromatic and total IR rest-frame luminosities and the Vmax-
based LFs, using the randomly varied redshifts. The comparison
between our real IR LF solution and the mean derived from the
Monte Carlo simulations shows that the uncertainties derived from
the use of the photometric redshifts do not significantly change the
error bar estimated using the Poissonian approach and mainly alter
the lower luminosity bins at the lower redshifts (z < 0.1). As an
extra test we also check what happens if we estimate the LFs in each

Table 3. Best-fitting parameter solution and uncertainties for the local
SPIRE 250 µm LF determined using the parametric Bayesian ML procedure.
The redshift range for this solution is 0.02 < z < 0.1.

Parameter 〈σ 〉
log(L∗) (L�) 9.03+0.14

−0.13 0.14
α 0.96+0.09

−0.07 0.08
σ 0.39+0.04

−0.04 0.04
log(�∗) (Mpc−3 dex−1) −1.99+0.04

−0.02 0.03
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Figure 6. Probability histogram of the best-fitting parameters (L∗, α, σ and �∗) for the SPIRE 250 µm LLF within 0.02 < z < 0.1, determined using the
MCMC parametric Bayesian procedure performing 5 × 106 iterations. The highlighted area is the ±1σ confidence area for each parameter, as reported in
Table 3.

Figure 7. SPIRE 250 µm rest-frame LLF estimates. The black open circles are our 1/Vmax estimates; the red dashed line is from the Fontanot, Cristiani &
Vanzella (2012) model; the beige triple dot–dashed line is from the Negrello et al. (2007) model and the black dot–dashed and dashed lines are LLF prediction
at 250 µm from Serjeant & Harrison (2005). The magenta shaded region is the ±1σ best MCMC solution using the log-Gaussian functional form reported in
the text. The magenta line in the right-hand panel is the mean from the MCMC solution plotted with the LF estimates in each field (colour-coded as reported
in the legend; the colour-coded number reported in the plot below each field’s name is the number of sources in each field in the considered redshift bin).

field using only spectroscopic redshifts and correct the solutions for
the incompleteness effect due to this selection. The resulting LFs are
effectively undistinguishable and thus confirm that the uncertainties
introduced by the use of photometric redshifts are of the order of
the Poissonian ones.

Even though the differences are really small, the errors that we
quote in Table A1 are the total errors, taking into account both
Poissonian and redshift uncertainties associated with �.

A summary of the results is reported in the following figures. In
Figs 7 and 8, we report the SPIRE 250 μm rest-frame LF estimated
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Figure 8. SPIRE 250 µm rest-frame LLF estimates from field to field. The colour-coded open circles are our 1/Vmax results for each field (the black is the
solution for all the five fields considered together); the red dashed line is the Fontanot et al. (2012) model; the beige triple dot–dashed line is the Negrello et al.
(2007) model; the black dot–dashed and dashed lines are LLF predictions at 250 µm from Serjeant & Harrison (2005). Negrello et al. (2007) and Serjeant &
Harrison (2005) estimates are reported at the same local (z = 0) redshift in all panels.
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by using the 1/Vmax and the parametric Bayesian ML, reporting
both the solutions for the five fields together (see Table 1) and for
each field separately. In Fig. 9, we compare our SPIRE 250 μm
1/Vmax LF solution to the H-ATLAS results of Dye et al. (2010).
The SPIRE LLFs in different fields do not show any field-to-field
variations beyond what is expected from cosmic variance, i.e. about
15 per cent as predicted by theoretical models (Moster et al. 2011).
To report the confidence area of our Bayesian ML solution, we
estimate the standard deviation of the best-fitting model using the
following equation:

σ 2
�(x1,x2,..xn) =

n∑
j=1

(
∂�

∂xj

σxj

)2

+2
n∑

j=1

n∑
k=j+1

rxj xk

(
∂�

∂xj

σxj

) (
∂�

∂xk

σxk

)
. (19)

This equation represents the general formula for the parametric
standard deviation in the case of non-independent variables. The
functional form of � is, as already stated, the log-Gaussian function
described in equation (18), in which the parameters L∗, α, σ and
�∗ are in fact not independent from each other. Thus, �(x1, x2, . . . ,
xn) reported in equation (19) can be translated, into our specific
case, as �(L∗, α, σ, �∗), while σxj

expresses the error associated
with the jth parameter in the sum (and the same with σxk

for the kth
parameter).

In Figs 10 and 11 we report the SPIRE 250 μm luminosity distri-
bution and the SPIRE 250 μm rest-frame LF estimated by using the
semi-parametric method described in Section 3.3 and the modified
1/Vmax estimates from Page & Carrera (2000) described in Sec-
tion 3.1. In Figs 12, 13 and 14, we report the SPIRE 350/500 μm and
IR bolometric rest-frame LFs, respectively. Finally, as a check on
the robustness of our SPIRE 250 μm selected sample, we estimate
the LFs also at other wavelengths, namely MIPS 24/70/160 μm and
PACS 70/100/160 μm, and compare our results to others already
published. In Fig. 15, we report the 24/70/90/160 μm rest-frame
LFs compared with local predictions at these wavelengths given by
different authors.

4.1 The IR LLD and the IR local SED

Once we obtain our LF solutions in each redshift bin and for each
band, we can integrate them to find the luminosity density per
redshift bin which is connected to the amount of energy emitted
by the galaxies at each wavelength and at each instant. To obtain
this information, we perform a χ2 fit to our 1/Vmax estimates, using
the modified Schechter function described in equation (18). Since
we are limited to a local sample, at z > 0.2 we do not populate
the low-luminosity bins of our LFs and for this reason we cannot
really constrain the integration at higher redshift. We thus report in
Figs 16, 17 and in Table 4 our luminosity density estimates for the
SPIRE 250/350/500 μm and the IR bolometric luminosity within
z < 0.2, reporting the results for three redshift bins whose mean
redshifts are 0.05, 0.1 and 0.15.

In Fig. 18, we report the conversion of our luminosity density
estimates at SPIRE 250/350/500 μm, as well at MIPS 24/70/160 μm
wavelengths to the energy output and we compare our result to those
reported by Driver et al. (2012). Our plotted estimates, together with
others extrapolated at 90 and 170 μm, are reported in Table 5.

We find that, even though our sample is selected at 250 μm, we
can reproduce the energy density at all the other considered FIR
bands in the very local Universe. This confirms the shape of the

energy density published by Driver at al. (2012) estimated using the
Galaxy And Mass Assembly survey I (GAMA I) data set combined
with GALEX, SDSS and UKIRT.

4.2 The local SFR

The estimate of the LLF in the SPIRE bands is of fundamental
importance for studying the evolution of the SPIRE LFs at higher
redshift. In practice, LLF estimates guide the priors on the param-
eters that define the LF shape that is adopted when fitting the LF
also at higher redshifts (Vaccari et. al., in preparation). Addition-
ally, thanks to the large volume sampled by shallow and wide-area
surveys, these estimates allow us to calculate the star formation rate
density (SFRD) in the local Universe with small uncertainties. By
integrating the LF in different redshift bins, whenever the observed
bands are related to the emission of the young stellar populations,
like in this case, we can estimate the SFR at those redshifts. In this
context, we can easily use the IR bolometric luminosity as a tracer
of SFR and thus the IR bolometric luminosity density as a tracer of
the SFRD.

We thus fit our 1/Vmax LLF estimates with a modified Schechter
function described in equation (18), obtaining the estimate of the
LLD reported in Table 4. The lower and upper limits that we
used in the LF integration to estimate the LLDs are L = 108

and 1014 L�, respectively. These limits guarantee that we ac-
count for the bulk of the IR luminosity emitted by our sources.
We then convert the estimate of the luminosity density into
SFRD using the Kennicutt (1998) relation [assuming a Salpeter
initial mass function (IMF)]: ψ(t) = SFR = k(λ)L(λ), where
k(IR) = 4.5 × 10−44 [M� yr−1 W Hz].

We used our SED fitting analysis and the IRAC colour–colour
criteria by Lacy et al. (2004) and Donley et al. (2012) to quantify
the possible AGN contamination in our sample, as discussed in Sec-
tion 2.4. We find that in our sample the fraction of objects showing
AGN-like IRAC colours and AGN-like SEDs is very small and even
if we discard from our results the total luminosity contribution of
these sources, our LFs and thus SFR estimates do not significantly
deviate from the results obtained using our total sample. Even for
these AGN-like sources (mainly located above z ∼ 0.25), the vast
majority of the IR luminosity is still contributed by dust emis-
sion associated with ongoing star formation. This is also confirmed
by Hatziminaoglou, Fritz & Jarrett (2009), Hatziminaoglou et al.
(2010) and Bothwell et al. (2011) that show how AGN contribution
to the FIR emission of the general extragalactic population is rather
small. For these reasons, we conclude that the AGN contribution
does not significantly affect our LF and SFRD estimates.

The SFRD estimates we obtain from the IR bolometric lumi-
nosity density (estimated at 0.02 < z < 0.1, 0.05 < z < 0.15 and
0.1 < z < 0.2) are reported in Table 6, together with other SFRD es-
timates obtained by various authors using different SFR tracers (all
the results are converted to the same IMF and cosmology). These
same data are also shown in Fig. 11. The uncertainties reported in
Table 6 are percentage errors.

5 D I SCUSSI ON

Using some of the widest area surveys performed by Spitzer and
Herschel, in this paper we have studied in details the LLFs of SPIRE
sources. Our LLFs at 250/350/500 μm (SPIRE) strongly constrain
the LLD of the Universe throughout the FIR/submm wavelength
range.
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Figure 9. SPIRE 250 µm rest-frame LLFs compared to the H-ATLAS estimate from Dye et al. (2010). The black open circles are our 1/Vmax results; the blue
open diamonds are the SDP H-ATLAS SPIRE 250 µm rest-frame LLF from Dye et al. (2010); the red open triangles are the SDP HerMES SPIRE 250 µm
rest-frame LLF of Vaccari et al. (2010); the black open triangles are the SDP HerMES SPIRE 250 rest-frame LF of Eales et al. (2010); the red dashed line
is the SPIRE 250 µm LF predicted by Fontanot et al. (2012); the beige triple dot–dashed line is the Negrello et al. (2007) model; the black dot–dashed and
dashed lines are the LLF prediction at 250 µm from Serjeant & Harrison (2005). Negrello et al. (2007) and Serjeant & Harrison (2005) estimates are reported
at the same local (z = 0) redshift in all panels.
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Figure 10. SPIRE 250 µm luminosity distribution versus redshift plane, as
reconstructed using the Schafer (2007) estimator. The red points are the data;
the red dashed lines mark the flux limitations adopted in the application of the
semi-parametric LF estimator by Schafer (2007) and the solid black lines are
isodensity contours corresponding to the semi-parametric reconstructions
of the source volume density as a function of luminosity and redshift.

Our estimates mostly confirm and improve upon the HerMES
SDP results published in Vaccari et al. (2010), thanks to our
increased statistics; this is particularly visible in the 500 μm LF
solution, which shows strongly reduced uncertainties. Dye et al.
(2010) used Herschel SDP data to compute the H-ATLAS (Eales
et al. 2010) SPIRE LLF. This analysis was carried out very early
during the Herschel mission and relied on shallower SPIRE obser-
vations, much fewer ancillary data and smaller coverage area than
our own. We thus judge that the H-ATLAS analysis is likely to have
suffered from detection and cross-identification incompleteness and
that the discrepancy we find between our results and theirs is there-
fore likely to be due to the H-ATLAS analysis. Our results are in fact
broadly in agreement with their estimates in the highest luminosity
bins where the uncertainties on the H-ATLAS SPIRE flux estimates
were possibly smaller and their sample more complete, but at the
lowest luminosities and redshifts they found LF values lower by up
to 50 per cent, as shown in Fig. 9.

The semi-parametric method for the LF estimate of Schafer
(2007, see Fig. 11) is in perfect agreement with other classical
estimators at low redshifts, z < 0.2–0.3. At higher redshifts, the
agreement becomes poorer, being acceptable at high luminosities
but degrading at lower luminosity values, where the semi-parametric
estimate is always in excess of the 1/Vmax values. The precise ori-
gin of this problem is not fully understood, but it is clear that it
happens in regions of the data space that are poorly sampled by the
observations or where the data are scattered e.g. by the effects of
the K-correction.

From the IR bolometric LF, we can estimate the SFRD of the
local Universe in various redshift bins. In Fig. 17, we report our
SFRD solutions and we compare them to others already published
in the same redshift range. We see a large scatter in the local SFRD
estimates using different SFR diagnostics. In particular, the H α

measurements present the largest scatter between different pub-
lished results. Our new data are entirely consistent with Vaccari
et al. (2010) and show good agreement also with O II-based esti-

Figure 11. SPIRE 250 µm rest-frame LLF estimated using the semi-
parametric method of Schafer (2007) and the modified 1/Vmax approach
of Page & Carrera (2000). Our classic 1/Vmax estimate is shown in grey; in
red is the estimate using the Page & Carrera (2000) method and in black the
estimate using the Schafer (2007) approach.

mates (except perhaps at z = 0.2 by Hogg et al. 1998). Instead, our
SFRD based on the FIR/submm bolometric flux is systematically
lower than the radio 1.4 GHz estimates and those combining IR and
UV data by Martin et al. (2005) and Bothwell et al. (2011). In prin-
ciple, the radio flux should be unaffected by dust extinction and thus
a more faithful representation of the total SFR than either the IR or
IR+UV values. Nevertheless, the radio flux can be more affected
by the AGN activity than the IR/submm ones. If we include the
UV-uncorrected portion of the SFRD mapped by short-wavelength
UV spectral data to our FIR estimate, we find that our total SFRD
UV+IR is comparable, within the errors, to the radio estimates, thus
confirming that the UV+IR SFRD estimate is a good proxy for the
total SFRD in the local Universe and the contamination from AGN
in the radio derivation is negligible.

The analysis reported in this paper represents a fundamental local
benchmark to study the evolution of the LF and, consequently, of
the derived SFR with cosmic time. Studying the evolution of the
LF requires very deep data that are then limited to very small areas
of the sky and thus it is difficult to constrain the local shape of the
LF where a large statistical sample of local galaxies (like ours) is
required. This can be seen in Fig. 14 where we compare our local
analysis with the one done using the deep COSMOS data (area
1.7 deg2 and flux limited S250 > 10 mJy) that will be reported in
Vaccari et al. (in preparation). Only the large area surveyed by our
sample enables us to really study the local shape of the LF, while
the deep sample allows us to populate only a few luminosity bins.
On the other hand, deep data become more and more important with
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Figure 12. SPIRE 350 µm rest-frame LLF estimates. The black open circles are our 1/Vmax; the red open triangles are the SDP HerMES SPIRE 350 µm
rest-frame LLF from Vaccari et al. (2010); the green open triangles are the Planck 857 GHz or 350 µm LLF estimate from Negrello et al. (2013); the black
dot–dashed and dashed lines are LLF prediction at 350 µm from Serjeant & Harrison (2005).

Figure 13. SPIRE 500 µm rest-frame LLF estimates. The black open circles are our 1/Vmax; the red open triangles are the SDP HerMES SPIRE 500 µm
rest-frame LLF from Vaccari et al. (2010); the green open triangles are the Planck 545 GHz or 550 µm LLF estimate from Negrello et al. (2013) converted to
our wavelength by using a spectral index of α = 2.7; the black dot–dashed and dashed lines are LLF prediction at 500 µm from Serjeant & Harrison (2005).

increasing redshift where our sample soon starts being limited to
the higher luminosity bins.

Our LF estimates show significant and rapid luminosity evolution
already at low redshifts. In Fig. 19, we report our results about the
redshift evolution of the parameters expressing the spatial density
dependence of the LFs (�∗) and the luminosity dependence (L∗)
estimated for the IR bolometric at the 250 μm LFs. We found posi-
tive evolution in luminosity and negative evolution in density with
L∗

IR ∝ (1 + z)6.0±0.4, �∗
IR ∝ (1 + z)−2.1±0.4 for the IR bolometric LF

and L∗
250 ∝ (1 + z)5.3±0.2, �∗

250 ∝ (1 + z)−0.6±0.4 for the 250 μm LF.
The high values of the evolution rates that we find (both positive
and negative) for the luminosity and density parameters are how-
ever consistent with previous results based on previous and more
limited data sets from Spitzer (Patel et al. 2013) and from IRAS
(Hacking, Condon & Houck 1987; Lonsdale et al. 1990). Similar,

although slightly lower, trends for positive luminosity and negative
density evolution are found by Gruppioni et al. (2013). Gruppioni
et al. (2013) used a sample deeper and over a much smaller area
than ours. Their sample includes sources as faint as ours but they
are very few in the local Universe since they suffer from a small
sample variance due to the little areas targeted. For this reason, we
are able to get a more accurate estimate of the LFs down to similar
luminosities in the local Universe.

Interesting for our analysis is the comparison with Negrello et al.
(2013) reported in Figs 12 and 13 which show a steep LF in the
lowest luminosity bins while our estimate remains flat down to
L350 ∼ 108 and L500 ∼ 107 L�, respectively. In general, our low-z
LFs are computed at z > 0.02, while the Planck sources used by
Negrello et al. (2013) are located at a mean redshift value of z∼ 0.01.
This means that our analysis is based on a deeper sample somehow
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Figure 14. The IR bolometric rest-frame LLFs. The black open circles are our 1/Vmax results; the green open circles are the 1/Vmax results using COSMOS
data (area 1.7 deg2 and flux limited S250 > 10 mJy; Vaccari et al., in preparation); the blue open squares are the SWIRE IR bolometric rest-frame LF of
Patel et al. (2013) using an MIPS 70 and 160 µm selected sample in LH and XMM-LSS; the red open triangles are the IR bolometric rest-frame LF estimate
of Vaccari et al. (2010); the red dashed line is the IR bolometric LF predicted of Fontanot et al. (2012); the pink open diamonds are the IRAS IR bolometric
rest-frame LF of Sanders et al. (2003); the beige triple dot–dashed line is Negrello et al. (2007) model; the black dotted line is the Valiante et al. (2009) model.
Sanders et al. (2003), Negrello et al. (2007) and Valiante et al. (2009) estimates are reported at the same local (z = 0) redshift in all panels.
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Figure 15. MIPS 24/70/60 µm and IRAS 60 µm LFs as derived by our SPIRE 250 µm sample. The black open circles are our 1/Vmax in all the panels. Top
left: the MIPS 24 µm LF estimate. The open red squares are the IRAS 25 µm LF from Shupe (1998); the open green triangles are the MIPS 24 µm LF from
Marleau et al. (2007); the open pink hexagons are the MIPS 24 µm LF of Babbedge (2006); the blue asterisks are the 25 µm from IIFSCz by Wang et al. (2009)
converted to MIPS 24 µm; the open light blue pentagons are the MIPS 24 µm LF from Rodighiero et al. (2010). Top right: the IRAS 60 µm LF estimate. The
open green squares are the IRAS 60 µm LF from Saunders et al. (1990). Bottom left: the MIPS 70 µm LF estimate. The open blue squares are the MIPS 70 µm
LF of Patel et al. (2013); the dot–dashed and dashed line are the LF estimates from Serjeant & Harrison (2005). Bottom right: the MIPS 160 µm LF estimate.
The open blue squares are the MIPS 160 µm LF of Patel et al. (2013); the open black triangles are the ISO 170 µm LF from Takeuchi (2006) converted to
MIPS 160 µm; the dot–dashed and dashed line are the LF estimates from Serjeant & Harrison (2005).

complementary to the Planck’s one. Our sample therefore does not
suffer from contamination from either the Local Supercluster or the
Virgo cluster [like Planck and thus potentially the Negrello et al.
(2013) estimates] while representing the LF of typical galaxies in the
not-so-nearby Universe (unlike Planck). Moreover, it can be argued
that our measurement averages over any local inhomogeneity by
sampling a larger cosmic volume than Planck (∼10 times larger at
z ∼ 0.2 over 39 deg2 than Planck at z ∼ 0.01 over 30 000 deg2).

Indeed, over a much smaller area, but with a much deeper sample,
the flatness of the slope is also confirmed by Gruppioni et al. (2013)
when measuring the 0 < z < 0.3 IR LF. In any case, at values of
L350 brighter than ∼108 L� and L500 brighter than ∼107 L�, where
we are ∼100 per cent complete and where the Planck sample is less
affected by the presence of local structures and inhomogeneities,
we find that our results are in overall agreement with Negrello
et al. (2013) at both 350 and 500 μm. Similar considerations can
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Figure 16. SPIRE 250/350/500 µm rest-frame LFs evolution within 0.02 < z < 0.5 along with the luminosity density estimates. Left: the SPIRE
250/350/500 µm LF evolution within 0.02 < z < 0.5. The colour-coded filled points are our 1/Vmax solution in each redshift bin while the solid curves
represent the best-fitting solution to the first three redshift bins reported in the legend by using a modified Schechter function whose best-fitting parameters are
reported in the panel. Right: SPIRE 250/350/500 µm luminosity density resulting from the fit of the LFs in the first three redshift bins reported on the left.

be made when we compare our IR bolometric LF with the previous
estimate obtained by Sanders et al. (2003), which appears to be
slightly steeper than ours in the lowest luminosity bins (see Fig. 14).
The mean and median redshifts of the entire IRAS sample used by
Sanders et al. (2003) are in fact z = 0.0126 and 0.0082, respectively,
and their LF estimate can therefore be affected by the Virgo cluster
in the same way as Planck’s estimates discussed above.

Our ability to map the local LF with good precision has revealed
a wiggle in the shapes of the functions, with a local maximum
at logL250 ∼ 9.5 and logLIR ∼ 10.5, respectively. This feature,
which appears relatively stable with wavelength, is reminiscent of
similar behaviour found in the local mass functions of galaxies
(Baldry 2012; Ilbert et al. 2013; Moustakas 2013), and interpreted
as due to the summed contributions of red and blue galaxies, having
Schechter functions with different slopes and cutoff masses. Given
the known relationship between stellar mass and IR luminosity, it
may not come as a surprise that a similar feature appears in our
IR LFs. To test this possibility, we have divided our sample into
red and blue subpopulations, following the recipe of Baldry (2012),

Table 4. LLD estimates in the SPIRE 250/350/500 µm bands and for
the IR bolometric luminosity using the local SPIRE sample within
0.02 < z < 0.1. The values are reported as log(LLD) and log(errors), ex-
pressed in L� Mpc−3.

Local luminosity density
〈z〉 log(ρL,σ )250 log(ρL,σ )350 log(ρL,σ )500 log(ρL,σ )IR

0.05 7.11, 0.02 6.64, 0.02 6.09, 0.02 7.92, 0.02
0.10 7.23, 0.02 6.75, 0.01 6.20, 0.01 8.02, 0.02
0.15 7.31, 0.02 6.82, 0.02 6.27, 0.02 8.07, 0.02

and separately calculated the LFs for the two classes. The results,
reported in Fig. 20, confirm that red galaxies have an IR LF peaking
at log(L250) ∼ 9.5 and log(LIR) ∼ 10.5 and decreasing at higher
and lower L, while blue galaxies have steep Schechter slopes and
lower characteristic luminosities. These are purely observational
results and further analysis would be required to better constrain
this feature, but this goes beyond the scope of this paper. At any
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Figure 17. The IR bolometric rest-frame LF evolution within 0.02 < z < 0.5 along with an illustration of the SFRD in the local Universe showing published
results and from this work. Left: the IR bolometric LF within 0.02 < z < 0.5, integrated in the first three redshift bins reported in the legend by using a
modified Schechter function. Right: the derived SFRD in the local Universe. Black open circles are our data as a result of the integrations of the LFs on the left
converted to SFRD by using the Kennicutt (1998) relation (assuming a Salpeter IMF) and black asterisks are our results plus the contribution of the UV SFRD
as estimated by Wyder et al. (2005) at 〈z〉 = 0.05 and Budavári et al. (2005) at 〈z〉 = 0.1, 0.15. This sum should represent the total SFRD in the local Universe.
The red open diamonds are O II estimates by Gallego et al. (2002), Sullivan et al. (2000) and Hogg et al. (1998); the blue open triangles are H α estimates by
Gallego et al. (1995), Tresse & Maddox (1998), Sullivan et al. (2000), Pérez-González (2003), Ly et al. (2007), Hanish et al. (2006), Brinchmann et al. (2004),
Dale et al. (2010) and Westra et al. (2010); the green open square is radio 1.4 GHz estimates by Serjeant et al. (2002) and Condon 1989; the magenta crosses
are FUV+IR estimates by Martin et al. (2005) and Bothwell et al. (2011); the cyan crosses are FUV estimates by Sullivan et al. (2000); the pink open squares
are IR estimate from Vaccari et al. (2010); the black dashed line is from Hopkins & Beacom (2006).

Table 5. Local energy output of the
Universe at different wavelengths.

Local energy output
λ ρL(λ) λ

(µm) (1033 h W Mpc−3)

24 3.91 ± 0.69
60 16.87 ± 3.47
70 22.18 ± 4.77
90 25.93 ± 5.59
100 27.10 ± 5.79
160 19.95 ± 4.27
170 18.54 ± 4.00
250 6.98 ± 1.45
350 2.32 ± 0.46
500 0.58 ± 0.14

rate, our findings seem to indicate that massive early-type spirals
dominate the high-IR-luminosity end of the LF, while bluer lower
mass late-type spirals and irregulars dominate its low-luminosity
end.

We also performed a preliminary comparison with semi-
analytical models of galaxy formation available in the literature,
focusing our attention on the redshift range between z = 0.02
and 0.2. From these preliminary comparisons, we notice that the
Fontanot et al. (2012) predictions (using the MORGANA code by
Monaco, Fontanot & Taffoni 2007) seem to broadly reproduce the
shape of the LF within the uncertainties, but they underestimate
the LF at lower luminosities when compared to our IR bolometric
LF estimates. Other predictions done by e.g. Negrello et al. (2007),
Serjeant & Harrison (2005) and Valiante et al. (2009) at different
wavelengths also show good agreement with our results at higher
luminosities, but most of them seem to underestimate the LF when
compared to what we obtain at lower luminosities. A more careful
and systematic analysis of existing and improved models is required
to properly address this issue (e.g. Gruppioni et al. 2015; Frances-
chini et al., in preparation).

Table 6. Star formation rate density in the local Universe: literature results
and from this work. This table is an updated version of the one reported
in Bothwell et al. (2011). The FUV unobscured SFRD added to our IR
results and quoted in this table are from Wyder et al. (2005) at z = 0.05 and
Budavári et al. (2005) at z = 0.1 and 0.15.

Reference SFR tracer 〈z〉 SFRD
(10−3 M� yr−1 Mpc−1)

Gallego et al. (2002) [O II] 0.025 9.3 ± 3
Sullivan et al. (2000) [O II] 0.15 23 ± 3
Hogg et al. (1998) [O II] 0.20 11 ± 4
Gallego et al. (1995) H α 0.022 12 ± 5
Tresse & Maddox (1998) H α 0.2 25 ± 4
Sullivan et al. (2000) H α 0.15 14 ± 3
Pérez-González (2003) H α 0.025 25 ± 4
Ly et al. (2007) H α 0.08 13 ± 4
Hanish et al. (2006) H α 0.01 16+2

−4
Brinchmann et al. (2004) H α 0.15 29 ± 5
Dale et al. (2010) H α 0.16 10+6

−4
Westra et al. (2010) H α 0.05 6 ± 2
Westra et al. (2010) H α 0.15 12 ± 3
Serjeant et al. (2002) 1.4 GHz 0.005 21 ± 5
Condon (1989) 1.4 GHz 0.005 21 ± 0.5
Sullivan et al. (2000) FUV 0.150 39 ± 5
Martin et al. (2005) FUV+IR 0.02 21 ± 2
Bothwell et al. (2011) FUV+IR 0.05 25 ± 1.6
Vaccari et al. (2010) IR 0.1 22.3 ± 8.2
This work IR 0.05 14.11 ± 2.4
This work IR 0.10 18.00 ± 2.9
This work IR 0.15 20.10 ± 2.2
This work FUV+IR 0.05 19.07 ± 2.4
This work FUV+IR 0.10 22.53 ± 2.9
This work FUV+IR 0.15 25.42 ± 2.2

6 C O N C L U S I O N S

The determination of the galaxy LF is often hampered by the diffi-
culties of covering a wide area down to faint fluxes on the one hand,
and determining counterparts and redshifts for detected sources in
a complete and reliable manner on the other hand. In this work,
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Figure 18. The multiwavelength energy output in the local Universe. The LLD at different wavelengths was computed by integrating the relevant monochromatic
LLFs over the 0.02 < z < 0.1 bin. Plotted values of this work, solid black circles, are reported in Table 5.

Figure 19. Evolution of L∗ and �∗ as a function of z [L∗ ∝ (1 + z)αL and �∗ ∝ (1 + z)αD ] estimated for the LF at 250 µm (left-hand panels) and for the IR
bolometric rest-frame LLF (right-hand panels) within 0.02 < z < 0.15.

Figure 20. 250 µm and IR bolometric LFs for the blue and red populations (reported with blue and red open circles, respectively) compared with the total of
the two populations (black open circles) in the redshift range 0.02 < z < 0.2.
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we have thus assembled and exploited the widest area Spitzer
and Herschel extragalactic surveys to select IR galaxy samples
in a complete and reliable manner, and the best UV/optical/NIR
ancillary data to identify them. Thanks to Spitzer and Herschel
observations, we are now able to reliably sample the IR bolo-
metric luminosity of local sources and thus provide important in-
sights into dust obscured star formation activity across cosmic time.
Even with the best data sets, however, accurately constructing the
LF remains a tricky pursuit, since the presence of observational
selection effects due to e.g. detection thresholds in apparent mag-
nitude, colour, surface brightness or some combination thereof can
make any given galaxy survey incomplete and thus introduce bi-
ases in the LF estimates. Only a comparison of results coming
from different LF estimators applied to the same samples can
ensure that we can assess the impact of these biases in a robust
manner.

Armed with the Spitzer Data Fusion, we were able to describe
the 0.02 < z < 0.5 LLF of sources selected in wide fields by
Herschel SPIRE imaging. We fully exploited the multiwavelength
information collected within the Spitzer Data Fusion to perform
an SED fitting analysis of SPIRE sources and thus estimate the
monochromatic rest-frame luminosities at 250, 350 and 500 μm
as well as the IR luminosity between 8 and 1000 μm. We then
implemented a number of different statistical estimators to evaluate
the LLFs of flux-limited samples in these bands: the classical 1/Vmax

estimator of Schmidt (1968) and the modified 1/Vest version of Page
& Carrera (2000); a parametric ML technique based on a Bayesian
approach as described in Kelly et al. (2008); and finally a semi-
parametric approach introduced by Schafer (2007).

Our high-quality determinations of the IR LFs have revealed for
the first time some previously unidentified features in their shape,
which we interpret as due to the contributions of red (possibly early-
type) and blue (possibly late-type) galaxy populations, with their
different Schechter forms. By means of this analysis, we find that
the LFs show significant and rapid luminosity evolution already at
low redshifts, 0.02 < z < 0.2. Converting our IR LD estimate into
an SFRD, we can determine the SFRD of the local Universe up to
redshift 0.2, where the integration of the LF solution is more reliable
given that our data set fails to populate the low-luminosity bins of
the LF at higher z. Summing over our IR SFRD estimate of the un-
obscured contribution based on the UV dust-uncorrected emission
from local galaxies, we estimate that SFRD � SFRD0 + 0.08z,
where SFRD0 � (1.9 ± 0.03) × 10−2 [M� Mpc−3] is our total
SFRD estimate at z � 0.02. This analysis represents a local bench-
mark for studying the evolution of the IR LF and SFR function with
cosmic time.
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Pérez-González P. G., 2003, PASP, 115, 1353
Pilbratt G. L. et al., 2010, A&A, 518, L1
Planck Collaboration VII, 2011, A&A, 536, A7
Poglitsch A. et al., 2010, A&A, 518, L2
Polletta M. et al., 2007, ApJ, 663, 81
Pozzi F. et al., 2004, ApJ, 609, 122

Rodighiero G. et al., 2010, A&A, 515, A8
Roseboom I. G. et al., 2010, MNRAS, 409, 48
Roseboom I. G. et al., 2012, MNRAS, 419, 2758
Rowan-Robinson M., Gonzalez-Solares E., Vaccari M., Marchetti L., 2013,

MNRAS, 428, 1958
Rush B., Malkan M. A., 1993, BAAS, 25, 1362
Sandage A., Tammann G. A., Yahil A., 1979, ApJ, 232, 352
Sanders D. B., Mazzarella J. M., Kim D.-C., Surace J. A., Soifer B. T., 2003,

AJ, 126, 1607
Saunders W., Rowan-Robinson M., Lawrence A., Efstathiou G., Kaiser N.,

Ellis R. S., Frenk C. S., 1990, MNRAS, 242, 318
Schafer C. M., 2007, ApJ, 661, 703
Schechter P., 1976, ApJ, 203, 297
Schmidt M., 1968, ApJ, 151, 393
Serjeant S., Harrison D., 2005, MNRAS, 356, 192
Serjeant S., Gruppioni C., Oliver S., 2002, MNRAS, 330, 621
Shupe D. L., Fang F., Hacking P. B., Huchra J. P., 1998, ApJ, 501, 597
Smith A. J. et al., 2012, MNRAS, 419, 377
Sullivan M., Treyer M. A., Ellis R. S., Bridges T. J., Milliard B., Donas J.,

2000, MNRAS, 312, 442
Symeonidis M. et al., 2013, MNRAS, 431, 2317
Takeuchi T. T., Ishii T. T., Dole H., Dennefeld M., Lagache G., Puget J.-L.,

2006, A&A, 448, 525
Taylor M. B., 2005, in Shopbell P., Britton M., Ebert R., eds, ASP Conf.

Ser. Vol. 347, Astronomical Data Analysis Software and Systems XIV.
Astron. Soc. Pac., San Francisco, p. 29

Tresse L., Maddox S. J., 1998, ApJ, 495, 691
Vaccari M. et al., 2010, A&A, 518, L20
Valiante E., Lutz D., Sturm E., Genzel R., Chapin E. L., 2009, ApJ, 701,

1814
Wang L., Rowan-Robinson M., 2009, MNRAS, 398, 109
Wang L. et al., 2014, MNRAS, 444, 2870
Werner M. W. et al., 2004, ApJ, 154, 1
Westra E., Geller M. J., Kurtz M. J., Fabricant D. G., Dell’Antonio I., 2010,

ApJ, 708, 534
Wyder T. K. et al., 2005, ApJ, 619, L15

APPENDI X A

Table A1. SPIRE 250, 350, 500 µm and IR bolometric rest-frame 1/Vmax LF estimates in the redshift ranges
between 0.02 and 0.5, using the HerMES Wide Fields sample. L indicates ν Lν for the monochromatic LFs and
LIR indicates the integrated luminosity between 8 and 1000 µm for the IR bolometric rest-frame LF. These L are
expressed in units of L� and LLF estimates and their errors are in [Mpc−3 dex−1]. The quantity σ is the total
error (Poissonian error + redshift uncertainties, estimated as explained in the text) associated with � in each band
and luminosity/redshift bin.

log L log (�, σ )250 log (�, σ )350 log (�, σ )500 log (�, σ )IR

0.02 < z < 0.1 LFs
7.16 – – −2.19, −2.07 –
7.33 – – −1.90, −2.54 –
7.49 – – −2.06, −2.72 –
7.66 – – −2.06, −2.90 –
7.83 – – −2.17, −3.11 –
8.00 – – −2.12, −3.21 –
8.16 −2.10, −2.06 −2.09, −2.89 −2.15, −3.34 –
8.33 −1.96, −2.57 −2.15, −3.05 −2.30, −3.47 –
8.49 −2.08, −2.72 −2.11, −3.17 −2.52, −3.58 –
8.66 −2.06, −2.89 −2.14, −3.31 −2.75, −3.69 –
8.83 −2.17, −3.08 −2.23, −3.43 −3.34, −3.99 –
9.00 −2.15, −3.20 −2.48, −3.56 −3.44, −4.04 −2.10, −2.60
9.16 −2.11, −3.31 −2.66, −3.65 −4.34, −4.49 −2.11, −2.69
9.33 −2.26, −3.45 −3.05, −3.84 – −1.96, −2.69
9.49 −2.49, −3.57 −3.49, −4.07 – −2.17, −3.00
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Table A1 – continued.

log L log (�, σ )250 log (�, σ )350 log (�, σ )500 log (�, σ )IR

9.66 −2.69, −3.67 −3.86, −4.25 – −2.12, −2.99
9.83 −3.12, −3.88 – – −2.13, −3.24
10.00 -3.53, −4.08 – – −2.25, −3.35
10.16 −4.04, −4.34 – – −2.35, −3.47
10.33 – – – −2.50, −3.56
10.49 – – – −2.91, −3.77
10.66 – – – −3.06, −3.85
10.83 – – – −3.28, −3.96
11.00 – – – −3.94, −4.29
11.16 – – – −4.16, −4.40

0.1 < z < 0.2 LFs
8.33 – – −2.31, −3.23 –
8.49 – – −2.31, −3.52 –
8.66 – – −2.44, −3.76 –
8.83 – – −2.70, −4.05 –
9.00 – – −3.08, −4.27 –
9.16 – – −3.57, −4.51 –
9.33 −2.28, −3.14 −2.63, −4.01 −4.21, −4.82 –
9.49 −2.28, −3.49 −2.91, −4.18 −4.76, −5.10 –
9.66 −2.41, −3.76 −3.39, −4.42 – –
9.83 −2.64, −3.95 −4.02, −4.73 – –
10.00 −2.98, −4.22 −4.55, −5.00 – –
10.16 −3.45, −4.45 −5.45, −5.44 – −2.36, −3.37
10.33 −4.05, −4.74 – – −2.41, −3.66
10.49 −4.61, −5.03 – – −2.48, −3.64
10.66 – – – −2.69, −3.92
10.83 – – – −3.01, −4.18
11.00 – – – −3.40, −4.41
11.16 – – – −3.64, −4.16
11.33 – – – −4.15, −4.80
11.49 – – – −4.76, −5.10

0.2 < z < 0.3 LFs
8.83 – – −2.72, −3.57 –
9.00 – – −2.88, −4.14 –
9.16 – – −3.21, −4.13 –
9.33 – – −3.69, −4.75 –
9.49 – −2.78, −4.02 −4.19, −4.93 –
9.66 – −3.09, −4.11 −5.25, −5.54 –
9.83 – −3.52, −4.66 −5.85, −5.82 –
10.00 −2.81, −4.05 −4.02, −4.88 – –
10.16 −3.13, −4.21 −4.85, −5.33 – –
10.33 −3.56, −4.65 −5.55, −5.69 – –
10.49 −4.13, −4.92 – – –
10.66 −4.89, −5.37 – – −2.81, −3.62
10.83 −5.55, −5.69 – – −2.97, −4.06
11.00 – – – −3.208, −4.19
11.16 – – – −3.48, −4.52
11.33 – – – −3.77, −4.77
11.49 – – – −4.27, −4.85
11.66 – – – −4.85, −5.25

0.3 < z < 0.4 LFs
9.33 – – −3.10, −3.92 –
9.49 – – −3.58, −4.44 –
9.66 – – −4.31, −4.75 –
9.83 – −3.03, −3.92 −4.88, −5.33 –
10.00 – −3.43, −4.40 −6.09, −6.05 –
10.16 – −4.04, −4.74 −5.79, −5.94 –
10.33 −3.02, −3.87 −4.72, −5.29 – –
10.49 −3.47, −4.40 −5.62, −5.84 – –
10.66 −4.13, −4.74 −5.79, −5.94 – –
10.83 −4.80, −5.31 – – –
11.00 −5.79, −5.92 – – −3.06, −3.96

MNRAS 456, 1999–2023 (2016)



The HerMES low-z luminosity functions 2023

Table A1 – continued.

log L log (�, σ )250 log (�, σ )350 log (�, σ )500 log (�, σ )IR

11.16 – – – −3.25, −4.05
11.33 – – – −3.42, −4.49
11.49 – – – −3.73, −4.81
11.66 – – – −4.16, −4.10
11.83 – – – −4.63, −5.36

0.4 < z < 0.5 LFs
9.66 – – −3.75, −4.43 –
9.83 – −3.03, −3.92 −4.63, −4.71 –
10.00 – −3.43, −4.40 −4.99, −5.38 –
10.16 – −4.04, −4.74 −5.68, −5.89 –
10.33 – −4.35, −4.70 – –
10.49 −3.23, −4.11 −4.92, −5.37 – –
10.66 −3.69, −4.41 -5.35, −5.76 – –
10.83 −4.41, −4.70 – – –
11.00 −4.97, −5.38 – – –
11.16 −5.58, −5.85 – – –
11.33 – – – −3.45, −4.42
11.49 – – – −3.61, −4.42
11.66 – – – −3.87, −4.65
11.83 – – – −4.23, −5.10
12.00 – – – −4.99, −5.60
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