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Abstract

Feature extraction and matching provide the basis of many methods for object registration,

modeling, retrieval, and recognition. However, this approach typically introduces false matches,

due to lack of features, noise, occlusion, and cluttered backgrounds. In registration, these false

matches lead to inaccurate estimation of the underlying transformation that brings the overlapping

shapes into best possible alignment. In this paper, we propose a novel boosting-inspired method to

tackle this challenging task. It includes three key steps: (i) underlying transformation estimation in
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the weighted least squares sense, (ii) boosting parameter estimation and regularization via Tsallis

entropy, and (iii) weight re-estimation and regularization via Shannon entropy and update with

a maximum fusion rule. The process is iterated. The final optimal underlying transformation is

estimated as a weighted average of the transformations estimated from the latest iterations, with

weights given by the boosting parameters. A comparative study based on real shape data shows that

the proposed method outperforms four other state-of-the-art methods for evaluating the established

point matches, enabling more accurate and stable estimation of the underlying transformation.

Keywords: Feature extraction; Feature matching; Point match evaluation; Boosting-inspired; Rigid

underlying transformation

1 Introduction

Nowadays, 3D shapes can be easily captured using laser scanners; their output is represented as sets of

discrete points (see Figure 1). However, such devices have a limited field of view, and parts of the object

may occlude others, so a number of scans have to be captured from different viewpoints. Where two

scans cover common parts of the object, we say these two scans are overlapping, and the shapes in these

two scans are called overlapping partial shapes. Once all scans have been captured, an important task is

to analyze and fuse geometric (and possibly colour) information in these scans. Matching common points

in the scans allows them to be used to register the scans. This is done by estimating the underlying

transformation that best aligns the two scans. Here, we consider the underlying transformation to be

rigid, involving a rotation and translation, but our method is also applicable to non-rigid registration

involving more general classes of transformations, such as thin plate spline deformations [8].

Feature extraction and matching (FEM) are widely used for various tasks: object registration [41],

modeling [2], retrieval, and recognition [18], as they are applicable to shapes with varying complexities

of geometry, varying degrees of overlap, and varying magnitudes of transformation. The SHOT method,

based on a signature of histograms of orientations [41], is one of the best methods for the extraction

and matching of features from overlapping partial shapes [4, 17]. Even so, it usually unavoidably

introduces mismatches amongst the established putative point matches (PPMs). In this approach, the

random sample consensus (RANSAC) scheme [11] is used to reject mismatches and the unit quaternion

method [7] is used to estimate the underlying transformation. However, the RANSAC scheme has a

number of shortcomings, including a need to choose thresholds determining: whether a match is correct

or a mismatch, when a good model has been found, and when to terminate the iterative process.

In this paper, we propose an alternative, novel, boosting-inspired method for evaluating the correctness

of the established PPMs, with the aim of estimating as accurately as possible the underlying trans-

formation. This estimate may then be used to initialize, for example, the SoftICP [23] variant of the

iterative closest point (ICP) algorithm [7] for final refinement of the transformation. In particular, we

2



Figure 1: Real freeform shapes used in testing [32]. From left to right:

Row 1: tubby160, tubby140, tubby120, and tubby100.

Row 2: angel0, angel40, angel80, rick0, rick36, rick72, dinosaur144, and dinosaur180.

Row 3: bird60, bird100, frog0, frog20, frog40, frog80, lobster60, and lobster80.

Row 4: peach240, peach260, peach280, tubby0, tubby20, tubby40, pat108, and pat144.

Row 5: duck0, duck20, duck40, bunny0, bunny40, cow37, cow42, and cow45.

Row 6: adapter2, adapter3, block3, block5, column2, column5, cap1, and cap5.

Row 7: occl5, occl6, grnblk1, grnblk2, wye2, wye3, taperoll1, and taperoll2.

want to investigate two problems: (i) to what extent the FEM can be used to register overlapping

3D partial shapes and how accurate the estimated underlying transformations from the matched point

pairs can be, and (ii) Whether our approach provides an initial estimate which is closer to the globally

optimal solution than the one provided by the original method—if it does, it is more likely that the

SoftICP algorithm will converge correctly to the global optimum, rather than a local optimum.

Our novel method is inspired by the widely used adaptive boosting learning and classification method
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(AdaBoost) [15] from machine learning which combines several weak learners. The AdaBoost method

has various advantages over other learning methods such as decision trees. Firstly, as long as each weak

learner is better than random guessing, the boosted learner will be a stronger learner with improved

performance. It is easy to find such weak learners. Secondly, the learning process concentrates on the

incorrectly classified instances and increases their weights. This avoids overfitting, while ensuring that

the decision when to terminate the learning process is not critical. The boosting parameter plays a

crucial role in determining the extent to which the weights of the incorrectly classified instances will be

increased.

Clearly, data classification as performed by Adaboost, and point match evaluation, are two different

problems: the former requires training data, but such training data is not available to the latter. The

main idea of our boosting-inspired method is as follows. Evaluation of the established point matches

is a data fitting problem. In this case, all the established PPMs belong to the same class but are

treated as having different reliabilities, represented as a real number in the unit interval [0, 1]; the

larger the number, the more likely we believe it to be correct. The proposed method focuses on

estimating and updating these reliability values iteratively. After such reliabilities or weights have

been initialized or estimated, the underlying transformation is determined in a weighted least-squares

sense and the weighted average eµ and standard deviation eσ of the errors of all the PPMs can be

calculated accordingly in each iteration. Then we construct an objective function for the estimation of

the boosting parameters. This objective function minimizes the weighted average of eµ over different

iterations, with the weights set to the boosting parameters. To avoid the degenerate case where all the

boosting parameters are zero, they are regularized by the Tsallis entropy in the framework of entropy

maximization [16]. The boosting parameters have a closed form solution. To update the weights of the

PPMs, we minimize the weighted average ec of the modified squared registration errors of all the PPMs

with the weights regularized by the Shannon entropy Hs in the framework of entropy maximization

again and the two terms of ec and Hs are balanced by the boosting parameters. The weights also have

a closed form solution. These weights are finally updated in each iteration by taking the maximum of

the newly estimated values and the current values, so that the algorithm can learn from both accurate

and inaccurate underlying transformations determined in different iterations. The whole process repeats

until either the weighted average of the errors of all the PPMs is smaller than the average of the distances

between the closest points in the original overlapping shapes, or some predetermined maximum number

of iterations has been reached. The optimal underlying transformation is then estimated as a weighted

average of the candidate transformations estimated from the last several iterations using weights given

by the boosting parameters.

We use data captured by two scanners from objects with varying geometric complexities to assess

our proposed regularization based adaptive boosting-inspired (RBAB) method, and compare it to four
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state of the art methods. We show that, using two representative FEM methods, SHOT [41] and unique

shape context (USC) [42], our method provides more accurate and robust estimates of the underlying

transformation from the PPMs established.

This work is different from our previous work [22] in the following aspects: (i) while the former uses

the Tsallis entropy to regularize the potential solutions to the boosting parameters, the latter uses the

shifted entropy instead; (ii) while the former minimizes the weighted average of the modified squared

registration errors of the PPMs for the estimation of their weights, the latter minimizes the weighted

average of the registration errors themselves of the PPMs; and (iii) while the former integrates the

underlying transformations estimated at later iterations as their weighted average with the weights

defined by the estimated boosting parameters and large weights given to those providing smaller errors,

the latter re-estimates the underlying transformation in the weighted least squares sense from the

established PPMs with the weights estimated by the proposed point match evaluation process. The rest

of this paper is structured as follows: Section 2 reviews related work, Section 3 describes our boosting-

inspired method, and Section 4 presents experimental results using real data. Finally, Section 5 draws

conclusions and indicates future work.

2 Related work

Due to the challenging nature of registration of overlapping 3D partial shapes, many algorithms have

been proposed. In the very specialised situation in which the two scans have exactly the same number

of points and each point in one scan corresponds to a single point in the other, the underlying transfor-

mation can be estimated using the global scatter matrix analysis [21] or Fourier analysis [26]. However,

this requirement rarely holds, in which case such methods are not applicable. A straightforward and

intuitive method is to extract and match local feature points from each scan as a way to determine

correspondences, from which the underlying transformation can be estimated in a least-squares sense.

2.1 Point match evaluation

Real world registration is subject to shapes having relatively featureless simple geometry, imaging

noise, holes, occlusion, appearance and disappearance of points, and cluttered backgrounds, which

together lead to the extracted features typically being insufficiently informative to enable points to

be matched without ambiguity. The point matches established usually include many mismatches with

unpredictable errors [24]. These corrupt the data, and in turn lead to inaccurate estimation of the

underlying transformation. To overcome this problem, some means must be found to evaluate the

reliability of each match: either to classify them as correct or false, or to characterize the extent to which

they are believed to be correct. Li and Hu published the first paper [20] dedicated to the evaluation of
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the established point matches; other papers have since followed [1, 28, 29]. Existing methods for point

match evaluation are based on one or more of the following: (i) structural consistency, (ii) transformation

consistency, (iii) robust statistics, and (iv) heuristics.

Structural consistency based methods assume that the matched points have similar local features and

structures, which is also the foundation for feature extraction and matching. After the point matches

have been established, those that do not have similar features should be treated as false matches.

Established point matches are grouped and mismatches are rejected in [18], determined as those with

low similarity of spin images, and those inconsistent with the majority of matches. If the difference

between the Euclidean distances between the corresponding points from different partial shapes is larger

than a threshold, then these point matches would violate the distance preservation constraint and thus

are all rejected in [2]. The rigidity constraint is employed in [38] to find a set of consistent point

matches from which the initial transformation is estimated. Possible correspondences between planes

are refined in [34] using a set of consistency tests based on size, rotation, and translation. Initially,

in [1], the Euclidean distances between points are used to measure the consistency between different

matches, then the replicator equation is used to estimate their reliabilities on a global scale. In [9], the

consistencies of both the descriptors of and Euclidean distances between points are first considered to

determine a payoff matrix, the global weights of all the PPMs are then estimated using the infection and

immunization dynamics. While invariant features have already been used to represent and match points,

it remains a challenge to find other complementary and expressive invariant features for eliminating false

matches.

Transformation consistency based methods assume that after an accurate transformation has been

estimated and applied, all correct matches should have small and similar residuals, and point matches

with large residuals will be treated as false matches. The RANSAC method [11] is one of the most

widely used transformation consistency based methods [5, 6, 36, 41]. It first samples point matches,

and uses the samples to estimate a candidate underlying transformation. A threshold is then used to

classify point matches as correct or false. Finally, all the correct point matches are used to estimate the

underlying transformation. This is repeated with differing sets of samples. In [39], after a candidate

underlying transformation has been estimated from a matched point pair, if the maximum distance

between the two overlapping views after transformation is below a threshold and the number of point

correspondences is large enough, this underlying transformation is accepted. Otherwise, the process

repeats. A Hough transform is used in [25] to eliminate mismatches in Hough space. It is assumed

in [20] that the PPMs are associated via two correspondence functions: one associates points in the

first shape to those in the second and the other associates the points in the second shape to those in

the first, these functions are estimated using the subspace projection support vector machine regression

method. If two matched points fail to satisfy any of these two functions, they will be rejected as a
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mismatch. In [27, 28, 29], the established PPMs are assumed to undergo a non-rigid transformation,

which is represented as a vector field and estimated using an expectation-maximization framework. The

fitting residuals are then used to estimate the reliabilities of different PPMs, allowing the inlier set to

be determined by thresholding these reliabilities. If the PPMs are heavily corrupted by mismatches,

it is challenging for transformation consistency based methods to accurately estimate the underlying

transformation, and thus for the residuals to indicate their true reliabilities. In this case, the PPMs

with smaller errors are not necessarily correct, as they may happen to lie at the intersections of the

transformed but misaligned shapes.

The purpose in evaluating the point matches is to estimate the underlying transformation as accurately

as possible. To do so, the correct point matches should make significant contributions to the estimate

and the false matches should make little contribution. Various schemes can be employed for this purpose:

iteratively re-weighted least squares (IRLS) (M-estimator) [46], least median of squares (LMedS), and

RANSAC [11]. IRLS is a general approach which usually includes a data dependent threshold for

binary classification of the point matches. The LMedS method has a discontinuous objective function

whose optimization is usually time consuming. The RANSAC scheme has a number of shortcomings:

low computational efficiency, difficulty in selection of a threshold for point match classification, and

difficulty in definition of the quality of a model.

Heuristics can also be used to reject suspected false matches. Points may not have matches [19] if

they lie at the boundary of the sensed surface, or in the non-overlapping area; they may also have

multiple potential matches. A match to a point is deemed unreliable in [25, 5, 6] if the ratio between

the dissimilarity of this (best) match and that of the second best match is above a threshold. Two-way

matching (from the first shape to the second and from the second shape to the first) is used in [5, 6] to

reject mismatches. Such heuristics are usually data dependent and do not always work. In fact, all of

the methods above use heuristics in one way or another for the purpose of point match evaluation.

In contrast with most existing methods that classify the PPMs as either correct or false, we use a

real number in the unit interval to represent their reliabilities. A transformation can be estimated at

each iteration, in a weighted least squares sense based on such reliabilities. Instead of selecting one

transformation as the final estimate, we combine them together to improve both accuracy and stability.

After using feature extraction and matching to estimate the transformation, it is typically refined using

the ICP algorithm [7] or one of its variants [23, 35, 37]. Clearly, the closer the unrefined transformation

is to the global minimum, the more likely it is that refinement will succeed when using such nonlinear

algorithms. On the contrary, if the initial transformation estimate is not good enough, refinement can

fail catastrophically.
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2.2 Boosting

Since adaptive boosting (AdaBoost) was originally proposed in around 1995 [12], it has received intense

attention from the machine learning community. It employs a set of weak learners to obtain good

solutions to a data classification and learning problem, assuming that any weak learner performs better

than random guessing. The main idea is that an instance is assigned a weight, informing the weak

learner whether this instance should be focused on during learning. In the process of learning, we

decrease the weights for correctly classified instances and increase the weights for mis-classified instances,

and thus focus on the instances with mis-classifications, in an attempt to better handle them. The

iterative learning process includes four main steps: fitting the classifier to the training data using the

current weights, calculating the average error of the classifier, estimating the boosting parameter, and

updating the weights of each instance. Each instance is finally classified using a function of the weighted

average of the classifications from the weak classifiers, with greater weight given to those providing lower

errors. Different definitions have been used for computing the error of each weak learner, the boosting

parameter, the weight update scheme, and the final decision rule, leading to a number of variants, such

as gradient boosting [13, 14], Real AdaBoost [15], LogitBoost [15], and Gentle AdaBoost [15].

The boosting method has been employed in a number of computer vision applications: classification

of handwritten data [3], real time face detection [44], object tracking [33], classification of trees and

vehicles in urban scenes [45], categorization of natural scenes [31], keypoint detection and landmarking

on human faces [10], and person re-identification [30].

It has not yet been used to evaluate point matches between overlapping 3D partial shapes, perhaps for

several reasons. Firstly, registration is a regression problem, rather than a classification problem. In

some sense, all the point matches belong to the same class but differ in how good a fit they are to the

underlying transformation. Secondly, labelled training data is not available–AdaBoost is a supervised

learning method. Thirdly, AdaBoost is not straightforward to adapt to new tasks.

3 Our boosting-inspired method

AdaBoost is a powerful algorithm for learning and classification. Careful analysis reveals that it possesses

two key properties: (i) the final solution is estimated as the weighted average of solutions provided by

all the weak learners (an additive model), with the weights defined by the boosting parameters, (ii) it

provides as a byproduct an estimate of the reliability of each instance, indicating how well it fits the

additive model. In this section, we adapt these properties for our registration problem, expressing it in

terms of data fitting: finding the underlying transformation is a non-linear problem, the data items are

usually heavily corrupted by outliers and training data are unavailable.

We now explain our novel algorithm. Given two overlapping 3D partial shapes, any FEM method
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of choice (e.g. the SHOT algorithm [41]) can be employed to establish a set of PPMs (pi,p
′
i), i =

1, · · · , N ≥ 3 where pi comes from the first shape and p′
i from the second. Such point matches are

typically heavily contaminated by mismatches. Weights wi in the interval [0, 1] represent the extent

to which we believe match (pi,p
′
i) to be correct, a value of 1 meaning certainty. All weights are

initialized to w
(1)
i = 1, to say we initially trust each match until we have evidence it may be wrong.

Our novel boosting-inspired method iteratively estimates and updates these weights, and the underlying

transformation is re-estimated in each successive iteration; interation number is denoted by k. Those

immediate transformations at later iterations are finally fused together to give an optimal estimate.

Our method is based on three ideas: underlying transformation estimation, boosting parameter estima-

tion, and weight re-estimation and update; these are described in the next section. We then summarise

our algorithm, and finally compare our novel method and the discrete AdaBoost method.

3.1 The main computational steps

In each iteration, given the PPMs (pi,p
′
i), we first normalize these weights w

(k)
i ← w

(k)
i /

∑N
j=1w

(k)
j in

order to facilitate later the calculation of the weighted average and standard deviation of the errors of

all the PPMs and update of these weights. We then estimate the underlying transformation (R(k), t(k))

in the weighted least squares sense by minimizing the following objective function:

J(R(k), t(k)) =
N∑

i=1

w
(k)
i ||p

′
i −R(k)pi − t(k)||2. (1)

We used the quaternion method [7] to do so. Then the weighted average e
(k)
µ and standard deviation

e
(k)
σ of the registration errors e

(k)
i of all the PPMs (pi,p

′
i) are found using:

e(k)µ =
N∑

i=1

w
(k)
i e

(k)
i , (e(k)σ )2 =

N∑

i=1

w
(k)
i (e

(k)
i − e(k)µ )2, (2)

where e
(k)
i = ||p′

i −R(k)pi − t(k)||α and the parameter α is a positive real number and is set as α = 1

in this paper.

The boosting parameter β determines the extent to which point matches with errors should be penalized

in the next iteration and how the transformations (R(k), t(k)) estimated in different iterations (weak

estimators, corresponding to weak classifiers in AdaBoost) will be finally combined. They must thus be

carefully and accurately estimated. To this end, we construct an objective function using the framework

of entropy maximization [16, 8]. This function minimizes the weighted average eb of errors e
(k)
µ arising

from weak estimators from different iterations, where here the weights are the boosting parameters β(k).

To avoid the degenerate case in which all the boosting parameters are zero, they are regularized by the
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Tsallis entropy Ht:

J(β) = eb −Ht =
K∑

k=1

β(k)e(k)µ − (
K∑

k=1

(β(k))q − 1)/(1− q), (3)

where K is the number of iterations after which the boosting process terminates and the entropic index

q is a real number (q 6= 1). For convenience we gather β = {β(1), · · · , β(K)}. The two terms of eb and

Ht make equal contributions to the objective function. To minimize this function, setting its derivative

with respect to β(k) to zero leads to:

β(k) = ((1− q)e(k)µ /q)q−1.

Since the boosting process should penalize weak estimators with a large error e
(k)
µ , as in AdaBoost,

q ∈ (0, 1). The proposed algorithm is not sensitive to its setting, and in this paper, we set q = 0.25.

Since q > 0, 1− q > 0 and e
(k)
µ > 0, β(k) will be positive: β(k) > 0.

In order to update the weights w
(k+1)
i of the PPMs (pi,p

′
i), we construct another objective function

again using the framework of the entropy maximization. This objective function minimizes the weighted

average ec of the modified squared registration (MSR) errors (defined below) of the point matches. This

time the weights are regularized by the traditional Shannon entropy Hs:

J(W(k+1)) = ec−
1

β(k)
Hs =

N∑

i=1

w
(k+1)
i (e

(k)
i )2 exp((e

(k)
i −e

(k)
µ )2/(2(e(k)σ )2))+

1

β(k)

N∑

i=1

w
(k+1)
i (logw

(k+1)
i −1)

(4)

where W(k+1) = {w
(k+1)
1 , · · · , w

(k+1)
N } and the two terms of ec and Hs are balanced by the boosting

parameter β(k). This MSR error (e
(k)
i )2 exp((e

(k)
i − e

(k)
µ )2/(2(e

(k)
σ )2)) considers not just the errors e

(k)
i

themselves, but also how far away they are from their weighted average e
(k)
µ . The rationale for doing so is

that the former biases those PPMs with small errors without comparing them to others, while the latter

takes into account the errors of all the PPMs and thus characterizes how the error of a particular point

match differs from the majority of the others. Combination of the two terms can better characterize

the reliabilities of the PPMs, focusing on penalizing those PPMs with errors much larger than e
(k)
µ . To

minimize this function, again setting its derivative with respect to w
(k+1)
i to zero leads to:

w
(k+1)
i = exp(−β(k)(e

(k)
i )2 exp((e

(k)
i − e(k)µ )2/(2(e(k)σ )2))).

Since β(k) > 0 and (e
(k)
i )2 exp((e

(k)
i −e

(k)
µ )2/(2(e

(k)
σ )2)) ≥ 0, then w

(k+1)
i will lie in the unit interval [0, 1].

In contrast with the main idea of the traditional AdaBoost algorithm, which boosts the weights of

the misclassified instances and decreases the weights of the correctly classified instances, our algorithm

penalizes all matches (pi,p
′
i) in a uniform manner according to their errors e

(k)
i , as well as how far away

they are from their weighted average e
(k)
µ . The larger and the farther away the error e

(k)
i , the more

heavily the point match will be penalized.
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In order to take into account both the accurate and inaccurate underlying transformations (weak esti-

mators) estimated in the different iterations so far, the weight of each point match (pi,p
′
i) is updated

in each iteration using a maximum fusion rule:

w
(k+1)
i = max(w

(k+1)
i , w

(k)
i ). (5)

This ensures that wi remains in the interval [0, 1], since both w
(k+1)
i and w

(k)
i lie in the unit interval

[0, 1] from their estimations above. Our experimental results below show that this maximum fusion

scheme reflects the true reliabilities of the point matches better than using the product fusion scheme

in the original discrete AdaBoost [15].

When e
(k)
µ is smaller than the average distance between the closest points in the original shapes, or a

predetermined maximum number kmax of iterations has been reached, the whole process terminates. The

underlying transformation is finally estimated as the weighted average of the transformations (R(k), t(k))

estimated in different iterations using the boosting parameters β(k) as weights:

A =
K∑

k=k1

β(k)R(k)/
K∑

k=k1

β(k), t =
K∑

k=k1

β(k)t(k)/
K∑

k=k1

β(k). (6)

where k1 ∈ [1,K] and determines what proportion of the transformations are combined to give the final

estimate. Since the weighted average A of the orthogonal matrices R(k) is not necessarily orthogonal,

we use singular value decomposition (SVD) to estimate the rotation matrix R as: R = UVT where the

matrices U and V are those from the SVD of matrix A: A = UDVT . Since the estimated underlying

transformations (R(k), t(k)) and the boosting parameters β(k) from the first few iterations are not very

accurate, due to inaccurate initialization and short time spent in learning, they are discarded during

estimation of the final underlying transformation. In this paper, we let kmax = 100 and k1 = 0.25K.

3.2 The boosting-inspired algorithm

Pulling all the previous ingredients together, our point match evaluation algorithm can be summarized

as follows:

1: Read in a set of point matches (pi,p
′
i) between two overlapping 3D partial shapes

2: Initialize all weights w
(1)
i = 1, the average s of the distances between the closest points in the

original partial shapes, constants k1 and kmax, and iteration index k = 0

3: do

4: k ← k + 1

5: Normalize the weights: w
(k)
i ← w

(k)
i /

∑N
j=1w

(k)
j

6: Estimate the solution (R(k), t(k)) from Equation 1

7: Compute the weighted average e
(k)
µ and variance (e

(k)
σ )2 of the errors of all the point matches

using Equation 2
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8: Estimate the boosting parameter β(k) from Equation 3

9: Re-estimate and update the weight w
(k)
i of each point match from Equations 4 and 5 respectively

10: while e
(k)
µ > s and k < kmax

11: Boost the underlying transformation (R, t) using Equation 6

As our proposed method applies various entropies to regularize the estimation of the parameters of

interest, and the underlying transformation is estimated as a weighted average of those from different

iterations (weak estimators), we call it regularization based adaptive boosting-inspired method (RBAB).

As each step has a computational complexity of O(N) in the number N of established point matches,

the algorithm has linear computational complexity: O(kmaxN).

3.3 Comparison of RBAB with AdaBoost

In this section, we consider the relationship between our proposed RBAB method and AdaBoost. They

share the following common properties: (i) they both estimate the boosting parameters of the weak

classifiers and function estimators in such a way to give large values to those producing small errors; (ii)

they both boost the weak classifiers and function estimators with small errors for the weight estimation

of the given data items, (iii) they both learn from the exiting data and classifiers/function estimators

through fusion of the weights estimated in each iteration; and (iv) they both integrate the outputs of

the algorithms from different iterations with the weights defined by the estimated boosting parameters.

In this case, we believe that the point patch evaluation problem can be cast into the framework of

the traditional AdaBoost algorithm for the development of novel techniques, as demonstrated by the

proposed RBAB algorithm in this paper, and the boosting-inspired framework helps deepen our under-

standing of and is useful for solving the challenging point match evaluation problem, as demonstrated

by the experimental results given below in Section 4. We also identify their difference, to further explain

how the former has been adapted for accurate estimation of the underlying transformation from point

matches corrupted by mismatches.

At iteration k, the classifier fk(xi) gives each data item xi a label which is either 1 or −1. The discrete

AdaBoost algorithm [15] estimates the boosting parameter β as β(k) = log((1− e
(k)
µ )/e

(k)
µ ) and updates

the weight wi of each data item xi using wi ← wi exp(β
(k)1yi 6=fk(xi)). It is assumed that e

(k)
µ < 0.5.

Otherwise, the iteration is aborted. In this case, β(k) > 0. If xi has been incorrectly labeled, then

exp(β(k)1yi 6=fk(xi)) will be larger than 1, leading wi to be increased. Otherwise, exp(β(k)1yi 6=fk(xi)) will

be exactly 1, leading wi to be unchanged. After normalization, the weights of incorrectly labeled items

will be relatively increased, but those of the correctly labeled ones will be relatively decreased.

In sharp contrast, point match evaluation is essentially a data fitting problem: the correct matches fit

the underlying transformation. In this case, no training data is available and there are no data labels

of 1 or −1. We cannot make any judgment whether the weak classifier f at iteration k has mapped
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the data item xi exactly to the desired label yi. Instead, we penalize all the point matches in the same

manner. Two different aspects are taken into account to compute the penalty: the error e
(k)
i of the

match (pi,p
′
i), and how far away it is from the weighted average error e

(k)
µ . The former gives greater

weight to those PPMs with small errors of fit. However, even if the shapes are mis-registered, we can

still get small errors near the intersection of the two misregistered partial shapes–small errors do not

necessarily mean registration is good. Thus, the latter considers the overall picture of how the errors

of different point matches are distributed and whether the current error is similar to other errors. A

combination of these two terms provides a better characterization of the true reliabilities of the point

matches.

As the boosting process progresses, it becomes reasonable to assume that the weighted averages of the

points p̄′ =
∑N

i=1w
(k)
i p′

i and p̄′ =
∑N

i=1w
(k)
i p′

i are relatively stable from one iteration to another. If so,

the finally boosted transformation (R, t) is optimal, as follows. The boosting parameters β(k) minimize

the weighted average eb of the average errors e
(k)
µ in different iterations k,

eb =
K∑

k=1

β(k)e(k)µ =
K∑

k=1

β(k)
N∑

i=1

w
(k)
i ||p

′
i −R(k)pi − t(k)||.

From Jensen’s inequality,

eb ≥
K∑

k=1

β(k)||
N∑

i=1

w
(k)
i p′

i −R(k)
N∑

i=1

w
(k)
i pi −

N∑

i=1

w
(k)
i t(k)|| =

K∑

k=1

β(k)||p̄′ −R(k)p̄− t(k)||

≥
K∑

k=1

β(k) p̄′

||p̄′||
· (p̄′ −R(k)p̄− t(k)) =

p̄′

||p̄′||
· (

K∑

k

β(k)p̄′ −
K∑

k

β(k)R(k)p̄−
K∑

k

β(k)t(k))

=
p̄′

||p̄′||
· (p̄′ −Rp̄− t) ≥ 0.

While eb is minimized by the boosting parameters β(k), they also minimize p̄′

||p̄′|| · (p̄
′−Rp̄− t) ≥ 0 thus

causing R =
∑K

k=1 β
(k)R(k) and t =

∑K
k=1 β

(k)t(k) to be optimized as well.

The main differences between AdaBoost and our RBAB method are as follows: (i) while the former

boosts the misclassified instances for dealing with the more challenging data for their correct classi-

fication, the latter boosts to estimate the reliabilities/weights of all the point matches for their more

accurate fit of the underlying transformation in the weighted least squares sense; (ii) while the former is

a supervised method and requires training data, such data is not available to the latter; (iii) while the

former derives the boosting parameter by minimizing the expected exponential loss on each instance,

the latter derives it via entropy maximization; (iv) while the former directly applies the classification

error of an instance to estimation of its weight, the latter considers not just its error, but also how far

away the error is from the majority; (v) while the former multiplies the new and old weights to give

new weights, the latter uses their maximum, and finally (vi) while the former considers the solutions

from all weak classifiers, the latter discards the solutions from the initial, unreliable weak estimators.

13



4 Experimental results

Our experimental study firstly considers alternative approaches to various components of our algorithm:

definition of registration error, weight accumulation scheme, and fusion of rigid transformations esti-

mated from different iterations. Secondly, we perform a comparison between the final RBAB algorithm

and other methods for evaluating point matches.

We use real data to assess the effectiveness of the proposed RBAB algorithm for evaluating N point

matches (pi,p
′
i) established using, unless otherwise stated, the SHOT method [41] and the unique shape

context (USC) method [42]. Comparison is made to the following methods for evaluating matches:

game theoretic matching (GTM) [1], sparse vector field consensus (SparseVFC) [29], RANSAC [11] and

iteratively re-weighted least squares (IRLS) (M-estimator) [46]. These four methods are state-of-the-art

representative of the three main categories discussed in Section 2.1: GTM is a structural consistency

method, SparseVFC and RANSAC are transformation consistency methods, and IRLS is a robust

statistical method. This study determines which method can produce the most accurate and stable

estimate of the underlying transformation from point matches established by typical FEM methods.

In each pair of overlapping 3D partial shapes, we call the first the data shape, and the second the

reference shape. All data in Figure 1 were downloaded from [32]; they were captured using either a

Minolta Vivid 700 range camera with a fixed resolution of 200× 200 or a Technical Arts 100X scanner

with a varying resolution from 89× 112 to 240× 240. As the estimated underlying transformation from

the evaluated PPMs is later used to initialize the ICP variant, SoftICP [23], for refinement, and the

latter usually produces accurate results, the differences in the underlying transformation before and after

ICP refinement can be used to assess the performance of the different point match evaluation methods

under test [43]. Such an approach is especially useful when the ground truth is partially or completely

unknown, as is the case for the data used for the experiments in this paper. The metrics used to assess

the output are the relative errors eh, eθ, and et in percentage of the estimated rotation axis ĥ, rotation

angle θ̂, and translation vector t̂ of the underlying transformation, without ICP refinement, from the

evaluated point matches. To understand the extent to which the established point matches are corrupted

by mismatches, we also estimated the percentage of correct matches as Nc/N × 100% where Nc is the

number of point matches whose errors ||p′
i −Rpi − t|| are smaller than four times the average of the

distances between the closest points in the data shape according to the transformation estimated by the

proposed RBAB algorithm and refined by the SoftICP algorithm. We also consider computational times

used for point match evaluation, underlying transformation estimation and performance measurement,

for each approach.

The experimental results are presented in Figures 2–10, and Tables 1–5. In Figures 2, 4, 6, 8, and

10, yellow represents the data shapes after applying the underlying transformations estimated from

the evaluated point matches without ICP refinement, and green represents the reference shapes. All
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experiments were carried out on a PC with an Intel Xeon E5620 processor using Microsoft Visual Studio

2013 (without code optimization).

4.1 Definition of registration error

Registration error of a point match plays a crucial role in its reliability estimation and thus must be

carefully defined. In Section 3, we defined it as: ei = ||p
′ −Rpi − t||α where α = 1. In this section,

we experimentally investigate whether this definition is optimal and thus varies its exponent α from

0.5, 1 to 2. To this end, the overlapping partial shapes angel0–40ght, angel40–80, rick0–36, rick36–

72, tubby140–120, tubby120–100, peach240–260, and peach240–280 in Figure 1 were selected for the

experiments; the results are presented in Figures 2 and 3 and Table 1.

They show that α = 1 produces the most accurate and stable estimate of the underlying transformations

between different overlapping partial shapes with varied complexities of geometry. Setting α = 0.5

decreases the values of the errors, making them less expressive of the true reliabilities of the PPMs,

as demonstrated by the fact that the estimated underlying transformation displaces the transformed

tubby140 data shape against the reference tubby120 shape. In contrast, α = 2 is over aggressive in

taking into account the errors of the PPMs, leading some correct matches to be more heavily penalized

than expected. This observation is supported by the fact that the two leaves at the end of the peach

in the transformed peach240 and reference peach280 shapes are clearly displaced. The inaccurate

underlying transformation is usually manifested as a superimposition of one shape onto another with

much less interpenetration [40]. Overall, α = 1 achieves the best compromise between accuracy and

stability and thus justifies the definition of error given in the main body of the paper.

Table 1: The average µ and standard deviation σ of the relative errors eh(%), eθ(%), and et(%) of the

estimated rotation axis ĥ, rotation angle θ̂, and translation vector t̂ of the underlying transformation,

and evaluation time T in seconds, using our RBAB algorithm, applied to different overlapping partial

shapes, for different values of the parameter α.

Para. α eh (%) eθ (%) et (%) T (sec)

µ 0.5 2.96 -5.64 7.63 29.12

1 2.65 -4.06 5.33 28.50

2 4.48 -6.54 6.78 29.00

σ 0.5 2.59 5.52 4.23 19.57

1 1.57 2.51 2.46 19.01

2 6.00 4.70 4.99 18.91
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Figure 2: Final registration results for our RBAB method, with the parameter α taking different values.

From left to right: angel0–40, angel40–80, rick0–36, rick36–72, tubby140–120, tubby120–100, peach240–

260, and peach240–280. Top row: α = 0.5. Middle: α = 1. Bottom: α = 2.

Figure 3: Relative errors in the estimated rotation axis (Left), rotation angle (Middle), and translational

vector (Right) of the proposed RBAB algorithm with the parameter α taking different values. The

overlapping shape pair index from 1 to 8 refers to: angel0–40, angel40–80, rick0–36, rick36–72, tubby140–

120, tubby120–100, peach240–260, and peach240–280 respectively.

4.2 Weight update

It is important to learn from the weights estimated in different iterations, so that more accurate weights

can finally be obtained. In this section, we consider alternative approaches to fusing the newly estimated
16



weight w
(k+1)
i of each matched point pair (pi,p

′
i) with the current weight w

(k)
i . We compare two schemes:

our proposed maximum (MAX) rule w
(k+1)
i ← max(w

(k)
i , w

(k+1)
i ) and the product (PROD) rule of the

discrete AdaBoost method [15]: w
(k+1)
i ← w

(k)
i w

(k+1)
i . To do so, the overlapping partial angel0–40,

angel40–80, rick0–36, rick36–72, tubby140–120, tubby120–100, peach240–260, and peach240–280 shapes

used in the last section were selected again for the experiments; the results are presented in Figures 4

and 5 and Table 2.

They show that the PROD scheme is not as stable as the MAX scheme for the update of the weights

of point matches. The instability is manifested by the estimated underlying transformations failing to

bring the transformed angle0, angel40 and peach240 data shapes into proper alignment in 3D space

with the reference angel40, angel80 and peach280 shapes respectively as the heads and wings of the

angel, and the two leaves of the peach are clearly displaced. These results show that the reliabilities

of the PPMs can be more accurately characterized by the maximum scheme than the product. This is

because the former can benefit from the accurate estimation of the reliability from any iteration, but the

latter is affected by both the accurate and the inaccurate estimates from all iterations. This validates

our choice of the maximum scheme for weight updates.

Figure 4: Final registration results for our RBAB method, with different methods used for combin-

ing weights from different iterations. From left to right: angel0–40, angel40–80, rick0–36, rick36–72,

tubby140–120, tubby120–100, peach240–260, and peach240–280 respectively. Top row: MAX; Bottom:

PROD.
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Figure 5: Relative errors of the estimated rotation axis (Left), rotation angle (Middle), and translation

vector (Right) of our RBAB method, with different methods used for combining weights from different

iterations. The overlapping shape pair index from 1 to 8 refers to angel0–40, angel40–80, rick0–36,

rick36–72, tubby140–120, tubby120–100, peach240–260, and peach240–280 respectively.

Table 2: The average µ and standard deviation σ of relative errors eh(%), eθ(%), and et(%) of the

estimated rotation axis ĥ, rotation angle θ̂, and translation vector t̂ of the underlying transformation,

and evaluation time T in seconds, using our RBAB algorithm, applied to different overlapping partial

shapes, with different schemes used to fuse the weights from different iterations.

Para. Scheme eh (%) eθ (%) et (%) T (sec)

µ MAX 2.65 -4.06 5.33 28.50

PROD 51.70 1.75 69.29 45.12

σ MAX 1.57 2.51 2.46 19.02

PROD 68.95 24.13 107.69 33.65

4.3 Fusion of rigid transformations from different iterations

Finally, we consider how to combine the estimated underlying transformations from different iterations

to give the final transformation estimate. To this end, three possible values of k1 were investigated:

k1 = 1, k1 = 25%K and k1 = K. k1 = 1 means that all the estimated transformations are used

during combination, so we refer to this as complete combination; k1 = 25%K means that the initial

25% underlying transformations are discarded and the latest 75% only are used for combination, which

we refer to as partial combination; and k1 = K means that the underlying transformation estimated

from the last iteration is selected without any combination and is thus called the last solution in the

following. Such investigation will be useful to reveal how the transformations from different iterations

can be combined for more accurate estimate and whether the last estimate is the best. While the last

two subsections used the same data for the experiments, they have a shortcoming of repeating the

same results of the proposed technique for a close comparison with those produced by its variants in
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different sections. To avoid such repetition, we thus use different shapes in the following subsections for

the experiments instead since: (i) They can show that the proposed technique is able to evaluate the

PPMs established between different shapes with varied geometries and complexities; and (ii) They are

more likely to reveal different behaviors of the proposed technique. The partially overlapping duck0–

40, frog40–80, dinosaur144–180, tubby120–160, bird100–60, cow42–45, peach280–240, and lobster60–80

shapes in Figure 1 were selected for the experiments; the results are presented in Figures 6 and 7 and

Table 3.

The results show that the complete combination usually produces the worst estimates of the underlying

transformation: see in particular that the transformed tubby120 data shape and the reference tubby160

shape are clearly displaced. Even though the partial combination and the last solution produce visually

similar results in Figure 6, both Figure 7 and Table 3 show that the partial combination is more

accurate than using the last solution, decreasing the relative error of the estimated rotation axis and

translation vector by as much as 23.09% and 21.89% respectively. This is because the underlying

transformations and the boosting parameters estimated in the initial iterations are not accurate due to

inaccurate initialization of the weights and the short time spent in learning. While the proposed RBAB

algorithm minimizes the weighted average eb of the errors e
(k)
µ of the PPMs in different iterations for

the estimation of the boosting parameters, it does not necessarily minimize the weighted average e
(k)
µ of

the PPMs in each iteration and produce the most accurate underlying transformation estimate in the

last iteration. These results validate our decision to discard the initial transformations when computing

the final transformation.

Table 3: The average µ and standard deviation σ of relative errors eh(%), eθ(%), and et(%) of the

estimated rotation axis ĥ, rotation angle θ̂, and translation vector t̂ of the underlying transformation,

and evaluation time T in seconds, using our RBAB algorithm, applied to different overlapping partial

shapes, with different schemes for the fusion of the results from different weak estimators.

Para. Scheme eh (%) eθ (%) eti (%) T (sec)

Complete 18.40 -7.44 27.93 28.87

µ Partial 3.93 -2.57 4.78 26.12

Last Solution 5.11 -0.93 6.12 27.12

Complete 36.74 8.47 56.07 18.41

σ Partial 2.10 4.58 2.92 20.19

Last solution 2.47 4.80 3.42 20.95
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Figure 6: Final registration results for our RBAB method using different schemes for the fusion of

the underlying transformations estimated by different weak estimators. From left to right: duck0–40,

frog40–80, dinosaur144–180, tubby120–160, bird100–60, cow42–45, peach280–240, and lobster60–80.

Top row: Complete; Middle: Partial; Bottom: Last solution.

Figure 7: Relative errors of the estimated rotation axis (Left), rotation angle (Middle), and transla-

tional vector (Right) of our RBAB method using different schemes for the fusion of the underlying

transformations estimated by different weak estimators. The overlapping shape pair index from 1 to 8

refers to duck0–40, frog40–80, dinosaur144–180, tubby120–160, bird100–60, cow42–45, peach280–240,

and lobster60–80 respectively.

4.4 Algorithm comparison, Minolta Vivid 710 data

In this section, we present results of a comparative study of different techniques for evaluating point

matches: GTM [1], SparseVFC [29], RANSAC, iteratively re-weighted least squares (IRLS) (M-estimator),

and our RBAB method. To do so, the overlapping partial shapes tubby0–20, tubby20–40, frog0–40,

frog40–80, duck0–20, pat108–144, bunny0–40 and cow37–45 in Figure 1 were selected. The experimen-

tal results are presented in Figures 8 and 9 and Table 4. The percentages of correct matches among
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the established matches between these shapes are 63%, 61%, 11%, 14%, 27%, 31%, 17%, and 5%

respectively.

They show that the IRLS method failed to estimate an accurate underlying transformation from the

point matches established between the partial overlapping tubby20–40 shapes, the GTM and SparseVFC

methods failed to reliably register the frog0–40 and frog40–80 shapes, the GTM method failed to register

the pat108-144 shapes properly, and the SparseVFC and RANSAC methods also failed to accurately

evaluate the point matches between the cow37–45 shapes. The failure of point match evaluation is

demonstrated by the fact that the transformed data tubby20, frog0, frog40, pat108, and cow37 shapes

intersect the reference tubby40, frog40, frog80, pat144, and cow45 shapes respectively in 3D space. The

RANSAC method also inaccurately estimated the underlying transformations between the frog0–40

shapes, the SparseVFC method inaccurately down-weighted point matches between the duck0–20 and

pat108–144 shapes, and the GTM, SparseVFC, and RANSAC methods also all estimated the underlying

transformation inaccurately between the bunny0-40 shapes. The inaccurate estimation of the underlying

transformation is manifested as the fact that the transformed frog0, duck0, pat108, and buny0 data

shapes are superimposed onto the reference frog40, duck20, pat144, and bunny40 shapes respectively

with low inter-penetration. In sharp contrast, the proposed RBAB method estimated the underlying

transformations accurately and robustly for all eight pairs of overlapping partial shapes, with relative

errors as small as 5% in the estimated rotation axis, rotation angle, and translation vector, relative to

those refined by SoftICP. It is difficult for the GTM method to define a payoff matrix which represents

the consistency of different PPMs. The SparseVFC method uses 3N degrees of freedom (DOF) to

represent the underlying transformation, which is much larger than the 6 DOFs required to represent

a rigid transformation. It imposes few constraints for the estimation of the underlying transformation

and thus is likely to overfit. The RANSAC method has difficulties in choice of thresholds for the

classification of the PPMs into correct matches and mismatches, and for determining how good an

underlying transformation is. The IRLS algorithm has difficulty in setting up a threshold for the

classification of the PPMs into two categories with different weights. In contrast, the Tsallis and

Shannon entropies are powerful regularization tools in the estimation of the boosting parameter and in

weighting the PPMs from different iterations, leading to more representative and stable estimation of

the underlying transformations.

All five methods are similar in terms of computational time, especially when their initialization of the

underlying transformation is good enough for the SoftICP algorithm to refine. Poor initialisation causes

the SoftICP algorithm to take longer to converge.
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Figure 8: Registration results of different overlapping partial shapes for different evaluation algorithms.

From left to right: tubby0–20, tubby20–40, frog0–40, frog40–80, duck0–20, pat108–144, bunny0–40 and

cow37–45. Top row: GTM; Second: SparseVFC; Third: RANSAC; Fourth: IRLS; Bottom: RBAB.

4.5 Algorithm comparison, Technical Arts 100X data

We now give another comparative study of these techniques using data captured by another scanner

Technical Arts 100X, with the PPMs established by another FEM method, USC [42], to verify whether

our RBAB method is robust with respect to changes in data source, and features used for determining

point matches. To this end, the overlapping partial adapter2–3, block3–5, column2–5, cap1–5, occl5–

6, grnblk1-2, wye2–3 and tapetoll1–2 shapes in Figure 1 were selected. The experimental results are

presented in Figures 10 and 11 and Table 5. The percentages of correct marches among the matches

established between these shapes are 52%, 3%, 17%, 2%, 19%, 16%, 3%, and 32% respectively.
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Figure 9: Relative errors of the estimated rotation axis (Left), rotation angle (Middle), and translational

vector (Right) of different algorithms applied to different overlapping partial shapes. The overlapping

shape pair index from 1 to 8 refers to tubby0–20, tubby20–40, frog0–40, frog40–80, duck0–20, pat108–

144, bunny0–40 and cow37–45 respectively.

Table 4: The average µ and standard deviation σ of the relative errors eh(%), eθ(%), and et(%) of the

estimated rotation axis ĥ, rotation angle θ̂, and translation vector t̂ for the underlying transformation,

and evaluation time T in seconds, for different algorithms applied to different overlapping partial shapes.

Para. Algo. eh (%) eθ (%) et (%) T (sec)

µ GTM 37.05 -14.64 27.77 50.00

SparseVFC 20.23 -14.08 25.03 43.50

RANSAC 6.72 -4.59 14.57 31.25

IRLS 4.96 -8.27 10.07 37.75

RBAB 3.80 -3.98 5.04 30.75

σ GTM 50.08 27.53 32.33 80.59

SparseVFC 18.07 23.53 19.93 65.13

RANSAC 11.00 9.88 17.91 36.02

IRLS 5.51 10.54 13.62 35.81

RBAB 1.69 2.59 2.43 34.36

The results show that the different algorithms exhibit similar behavior to those observed in the last

section. The SparseVFC and RANSAC algorithms failed to accurately classify matches as correct and

mismatches for the block3-5 shapes, the GTM, SparseVFC, and RANSAC algorithms failed to accurately

estimate the underlying transformation from the evaluated PPMs for the cap1–5 shapes, the SparseVFC

and IRLS methods failed to reliably classify the PPMs as correct or mismatches for the grnblk1-2 shapes,

and the GTM, SparseVFC, and IRLS algorithms also failed to accurately down-weight the point matches

between the wye2–3 shapes, leading to inaccurate estimation of the underlying transformation. Failure
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of point match evaluation is manifested by the fact that the transformed block3, cap1, grnblk1, and wye2

data shapes intersect the reference block5, cap5, grnblk2, and wye3 shapes respectively in 3D space.

The underlying transformation estimated by the IRLS algorithm from the evaluated PPMs between the

block3-5 shapes is inaccurate, the GTM and SparseVFC algorithms inaccurately estimate the underlying

transformation for the column2–5 shapes, and the RANSAC algorithm gives estimates for the underlying

transformations for the occl5–6 and wye2–3 shapes that are significantly different from those refined

by the SoftICP algorithm. Inaccurate estimation of the underlying transformation can be clearly seen

from the superimposition, rather than inter-penetration, of the transformed block3, column2, occl5, and

wye2 data shapes with respect to the reference block5, column5, occl6, and wye3 shapes respectively.

In sharp contrast, the underlying transformations estimated by our RBAB algorithm brings all eight

pairs of overlapping partial shapes into accurate alignment. Again, the various algorithms took similar

time, unless they failed to produce an accurate enough initial underlying transformation for the SoftICP

algorithm to refine. These superior results show that our proposed RBAB algorithm can handle data

captured by different scanners, and matches provided using different features.

Figure 10: Registration results of different overlapping partial shapes for different evaluation algorithms.

From left to right: adapter2–3, block3–5, column2–5, cap1–5, occl5–6, grnblk1-2, wye2–3 and tapetoll1–

2. Top row: GTM; Second: SparseVFC; Third: RANSAC. Fourth: IRLS; Bottom: RBAB.
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Figure 11: Relative errors of the estimated rotation axis (Left), rotation angle (Middle), and trans-

lational vector (Right) of different algorithms applied to different overlapping partial shapes. The

overlapping shape pair index from 1 to 8 refers to adapter2–3, block3–5, column2–5, cap1–5, occl5–6,

grnblk1-2, wye2–3 and taperoll1–2 respectively.

Table 5: The average µ and standard deviation σ of the relative errors eh(%), eθ(%), and et(%) of the

estimated rotation axis ĥ, rotation angle θ̂, and translation vector t̂ for the underlying transformation,

and evaluation time T in seconds, for different algorithms applied to different overlapping partial shapes.

Para. Algo. eh (%) eθ (%) et (%) T (sec)

µ GTM 59.72 10.92 68.25 58.25

SparseVFC 45.37 9.84 65.12 69.25

RANSAC 20.61 -3.02 32.84 36.62

IRLS 44.34 -2.28 60.91 102.37

RBAB 9.83 -0.28 9.92 37.00

σ GTM 65.93 63.06 122.73 38.90

SparseVFC 29.45 47.01 36.49 58.66

RANSAC 23.94 10.56 45.46 32.28

IRLS 65.75 25.12 72.16 110.15

RBAB 10.92 4.83 11.75 33.01

5 Conclusions

Feature extraction and matching are widely used for registering overlapping 3D partial shapes. Un-

fortunately, up to 98% of the putative point matches established can be mismatches with usually

unpredictable errors, and are thus challenging to evaluate. While RANSAC is popular and applicable,

it requires choices of the maximum number of iterations for termination, quantifying the quality of

the underlying transformation for its optimal selection, and for a threshold for determining whether a

match is correct or a mismatch. This paper proposes a novel boosting-inspired method for this task.
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It is applicable to matches with as many as 98% being mismatches, representing various complexities

of geometry. The smaller this proportion, the easier that point match evaluation becomes. Our new

method estimates a boosting parameter and updates the weights of the PPMs by regularizing them

using an entropy maximization framework [16]. The PPMs are penalized by considering both how large

their errors are, and how far away they are from the weighted average error. This has the advantage of

overcoming the bias introduced by using individual errors alone, without considering how other errors

are distributed. The underlying transformations from different iterations are combined by weighted

averaging, after discarding the initial few transformations, to provide an optimal estimate; the weights

are defined by the boosting parameters.

Our contributions can be summarized as follows. Firstly, we have provided a novel boosting-inspired

method for evaluating point matches between two overlapping 3D partial shapes which have already

been established by any chosen FEM method. Point matches are treated as having different reliabilities,

and are accordingly penalized both when re-estimating these reliabilities, and when using the point

matches to estimate the underlying transformation. Our method learns to characterize the reliabilities

of both good and poor matches over different iterations, and to estimate underlying transformations

that minimize the weighted average of the errors of these PPMs. This appears to be the first time that

a method inspired by boosting has been suggested for this task.

Secondly, our comparative study based on a variety of real data shows that the proposed method

outperforms other state-of-the-art approaches. It improves upon the coarse pose estimate typically

provided by FEM methods, which is often used to initialise fine registration using the ICP algorithm

or some variant. The result is that the latter is more likely to find a correct global minimum, leading

to more accurate and robust registration.

Thirdly, provided that the weighted averages of the points are relatively stable from one iteration to

another, it can be shown that the finally estimated underlying transformation is optimal. This property

helps explain why the proposed RBAB algorithm produces more accurate and stable results than other

methods.

Finally, our results also show that even when up to 98% of the established point matches are mismatches,

the underlying transformation can still be recovered with an error as small as 5%. As long as a few good

matches are present, our method can successfully determine them from amongst many mismatches.

While much attention has been paid to alternative feature descriptors, our work shows the importance

of evaluating matches after putative matches have been found, and indeed, that a successful evaluation

strategy can overcome weaknesses in feature descriptor and matching methods. The latter problems

have attracted far more attention, but match evaluation is a relatively unexplored avenue for more

accurate registration of overlapping partial shapes.

More work is needed to decide whether the proposed RBAB algorithm has limited errors after conver-
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gence, like AdaBoost. Incorporating a rigidity constraint is also likely to further improve the results

provided by our method. Applying the proposed technique for the evaluation of the point matches

between projective images will also be one of our future research topics.
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