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Abstract | Atherosclerosis is a chronic, inflammatory disease affecting large and medium arteries and is 

considered to be a major underlying cause of cardiovascular disease (CVD). Although the development of 

pharmacotherapies to treat CVD has resulted in a decline in cardiac mortality in the past few decades, 

CVD is estimated to be the cause of one in three global deaths. Nutraceuticals are natural nutritional 

compounds that are beneficial for the prevention or treatment of disease and, therefore, represent a 

possible therapeutic avenue for the treatment of atherosclerosis. The purpose of this review is to highlight 

potential nutraceuticals for use as anti-atherogenic therapies, with evidence from in vitro, in vivo, clinical, 

and observational studies. 
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In 2015, the WHO reported that approximately one third of global deaths were attributable to a 

cardiovascular disease (CVD)-related event1. Atherosclerosis, an inflammatory disorder of the 

vasculature, is the primary cause of CVD-related events, including myocardial infarction (MI) and stroke. 

Given the increase in prevalence of obesity and diabetes in developing countries, the global incidence of 

CVD is predicted to increase and impose a greater economic burden on the health-care services around 

the world. 

Under normal healthy conditions, the metabolism and transport of cholesterol, including influx and efflux 

within cells, is highly regulated. The development of atherosclerosis can begin when these homeostatic 

mechanisms become unbalanced in favour of either increased cholesterol influx or decreased efflux. 

Within the blood, there are several lipoproteins that each has a different function in lipid transportation. 

LDL is one of the most important lipoproteins found in the bloodstream and its function is to transport 

cholesterol from the liver to the peripheral tissues2. LDL particles enter cells primarily by receptor-

mediated endocytosis using the LDL receptor (LDLr). In order to maintain a balance in cholesterol 

metabolism, HDL transports excess cholesterol from the peripheral tissues back to the liver for excretion 

via the bile system by a process known as reverse cholesterol transport2. However, only 5% of the biliary 

cholesterol is excreted in faeces as the rest is reabsorbed in the intestine2. Given that high LDL-

cholesterol and low HDL-cholesterol levels have been associated with reduced endothelial function, 

increased LDL-cholesterol and HDL-cholesterol levels are thought to be pro-atherogenic and anti-

atherogenic, respectively3. Therefore, strategies for treating atherosclerosis should be aimed at lowering 

plasma LDL levels and increasing serum HDL levels.  

Research on mouse models in the past twenty years have improved our understanding of the 

pathophysiology of atherosclerosis. Mice do not naturally develop atherosclerosis, but LDLr-deficient and 

apolipoprotein E (ApoE)-deficient mouse models are prone to atherosclerotic lesion formation on a high-

fat or high-cholesterol diet and are able to mimic several aspects of the disease seen in humans. 

Atherosclerosis is often characterised by the build-up of fatty deposits and the formation of plaques in the 

walls of large and medium arteries, followed by a strong immunological response to the fatty deposit 
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accumulation (Figure 1). This initial fatty deposit build-up in the intima of arteries, often referred to as a 

fatty streak, is composed of ApoB containing lipoproteins, in particular LDL and other lipoprotein 

remnants2. This trapped LDL can then become oxidised to form oxidised LDL (oxLDL)2. The presence of 

oxLDL within the intima of the artery triggers an inflammatory response in the neighbouring endothelium 

cells which start producing pro-inflammatory cytokines and chemokines2,4. The roles of different 

cytokines and chemokines in atherosclerosis have been extensively reviewed elsewhere and these can be 

generally classified as either pro-inflammatory or anti-inflammatory4,5.  

Once monocytes have migrated into the intima of the arteries, they become exposed to macrophage 

colony-stimulating factor and differentiate into macrophages, a process that is associated with increased 

expression of scavenger receptors (SRs) on their cell surface2. The uptake of LDL via the LDLr is 

controlled by a negative feedback loop, whereas oxLDL uptake via SRs, such as MSR1 and CD36, is 

unregulated6. Pro-inflammatory cytokines are capable of inducing foam cell formation by altering the 

expression of key genes implicated in the regulation of cholesterol metabolism and transport including 

APOE, ABCA1, ACAT1, and MSR12,4,5,7,8. Foam cells subsequently begin to accumulate and form an 

initial lesion that matures into an atherosclerotic plaque2,4,5,8. 

During maturation of the atherosclerosis lesion, the accumulated foam cells begin to undergo apoptosis 

and necrosis, causing them to release their fatty contents into the intima of the arteries. The apoptotic cells 

and the fatty contents accumulate to form a lipid-rich necrotic core. During the latter stages of plaque 

progression, macrophages, endothelial cells, and T cells stimulate the proliferation and migration of 

vascular smooth muscle cells from the media to the intima of arteries, resulting in the formation of a 

fibrous cap over the lipid core2,9. The fibrous cap is then strengthened by the extracellular matrix (ECM) 

produced by the vascular smooth muscle cells2,10. Given that the fibrous cap stabilises the lesion, the 

balance of ECM deposition and degradation is critical in dictating the clinical progression of 

atherosclerosis. ECM degrading enzymes are released particularly from macrophages that are undergoing 

apoptosis, shifting the balance towards ECM degradation and increasing the risk of a plaque rupture11. 

Clinical symptoms of plaque development are usually not observable until the plaque ruptures. Upon 
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rupture, platelet aggregation rapidly occurs, which can quickly impede or obstruct blood flow though the 

artery2, resulting in a coronary event.  

 Statins are the most commonly used cholesterol-lowering agents. Statins reduce circulating LDL-

cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase (HMG CoA reductase), the enzyme 

involved in the rate limiting step during cholesterol biosynthesis12. However, patients taking statins still 

harbour a discernible residual risk of a CVD-related event and a small proportion of patients are unable to 

achieve target plasma cholesterol levels, despite receiving the maximum recommended dosage of 

statin2,13. Furthermore, high-dose statin therapy is associated with side effects such as muscle pain and 

hepatic abnormalities14,15. Therefore, new therapeutics are needed that can either be taken alone or in 

combination with statins2,13. Despite emerging therapies such as ezetimibe16-18 and antibodies targeting 

proprotein convertase subtilisin/kexin type 9 (PCSK9)19-22 and certain pro-inflammatory cytokines23 

being explored, further research should be carried out on alternative approaches that limit inflammation 

and other pro-atherogenic changes in atherosclerosis. 

One potential therapeutic avenue being explored for the prevention of atherosclerosis is natural products, 

known as nutraceuticals that are thought to have anti-inflammatory properties. Nutraceuticals can be 

classified as either functional foods or dietary supplements with health benefits beyond their basic 

nutritional value. Diets that are rich in fruit, vegetables, fish, cereal grains or olive oil have all been 

associated with cardiovascular health benefits24-26. The aim of this review is to assess the key 

nutraceutical components in these diets and to discuss their possible uses for the prevention of 

atherosclerosis development with evidence from both pre-clinical and clinical studies found within the 

current literature. Figure 2 provides a summary of the stages of atherosclerosis development at which 

different nutraceuticals exert their potential beneficial effects. 

Omega-3 polyunsaturated fatty acids 

Polyunsaturated fatty acids (PUFAs) are capable of regulating blood pressure and clotting, and are 

involved in the formation of eicosanoids, mediators that can modulate the inflammatory response25. 
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PUFAs contain two or more carbon-carbon double bonds and can be classified as either omega-6 or 

omega-3 depending on the position of the carbon-carbon double bond closest to the methyl terminus of 

the molecule25. Dietary intake of PUFAs is vital as they cannot be synthesised in vivo; fish oils, flax seeds 

and nuts are a rich source of omega-3 PUFAs25, whereas vegetable oils and animal fat are the major 

source of omega-6 PUFAs25. 

The cardiovascular health benefits of omega-3 PUFAs have been shown through several epidemiological 

and clinical studies over the past 60 years27,28. The American Heart Association (AHA) recommend 

eating two portions of oily fish every week, where one portion is defined as at least 100g29. The AHA 

also advise individuals who are unable to boost their omega-3 intake through diet alone to discuss with 

their doctor about the possibility of taking omega-3 supplements29. An epidemiological study published in 

1980 found a reduced incidence of CVD-related events that could be attributed to lower serum cholesterol 

levels in the Inuit population of Greenland, despite their diet being rich in saturated fats (in the form of 

fish and whale meat) and low in fruit and vegetables30. The omega-3 PUFAs eicosapentaenoic acid (EPA) 

and docosahexaenoic acid (DHA) are both known to exert cardiovascular health benefits. 

The omega-3:omega-6 PUFAs ratio is generally considered as a major determinant of CVD-related 

events. Consumption of omega-6 PUFAs in Europe, particularly linoleic acid (LA), has increased by 

approximately 50% in the past 20 years, correlating with the increased rates of inflammatory-based 

diseases, particularly CVD31. While the ideal dietary intake of omega-3:omega-6 PUFAs is 1:4, the actual 

ratio consumed is considered to be closer to 1:15 in developed countries, owing to the increased 

consumption of omega-6-rich vegetable oils32. Furthermore, diets high in omega-6 PUFAs and deficient 

in omega-3 PUFAs have been linked to increased production of pro-inflammatory eicosanoids33. 

Although diets high in omega-6 PUFAs have generally been linked to increased susceptibility of oxLDL 

formation ex vivo34, there is growing evidence that some are also capable of exerting anti-inflammatory 

effects and reducing atherosclerosis development35 (addressed below in detail under omega-6 

polyunsaturated fatty acids).  
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Many in vitro and in vivo studies have shown that omega-3 PUFAs are capable of attenuating several key 

steps involved in atherosclerotic plaque development. Omega-3 PUFAs can reduce the expression of key 

pro-atherogenic markers in both murine and human macrophages stimulated with pro-inflammatory 

cytokines36,37. The attenuation of monocyte migration to the plaque has also been demonstrated in both in 

vitro and in vivo assays after omega-3 PUFA supplementation38. Furthermore, omega-3 PUFA treatment 

has been shown to both reduce the expression of genes implicated in the uptake of LDL and increase the 

expression of genes involved in cholesterol efflux39, which might explain in part the observation of 

reduced cholesterol uptake40 and accelerated cholesterol efflux41 in vitro.  

LDLr deficient mice fed on a high fat diet to mimic human atherosclerosis were supplemented with fish 

oil for 16 weeks in a study by Brown and colleagues38. The fish oil-treated mice had a significant 

decrease in plasma cholesterol levels and atherosclerotic plaque size compared with the control group38, 

attributable to a 50% reduction in monocyte migration into the atherosclerotic lesion. However, the same 

study reported no differences in lesion size or monocyte migration after fish oil supplementation in ApoE-

deficient mice38. In a separate study, investigators fed LDLr-deficient mice with a high fat diet for 8 

weeks before switching to a normal diet with or without 5% EPA for an additional 4 weeks42. EPA 

supplementation increased plasma HDL levels and caused the plaque to regress by 20.9%. Furthermore, 

the expression of several pro-inflammatory factors including IFN-γ, IL-12, tumour necrosis factor (TNF)-

α, and intercellular adhesion molecule (ICAM)-1, were all significantly reduced in the atherosclerotic 

plaques in the EPA-treated mice42. 

The importance of the ratio of omega-3 to omega-6 has been demonstrated in an ApoE -deficient mouse 

model that also expressed a fat-1 gene from Caenorhabditis elegans43. Fat-1 transgenic mice are able to 

metabolise omega-6 into omega-3 PUFAs using an omega-3 fatty acid desaturase and, therefore, should 

have an approximate 1:1 ratio of omega-3 fatty acids to omega-6 fatty acids43. After being fed a high-fat 

diet for 14 weeks, the apoE−/−/fat-1 mice had smaller atherosclerotic lesions and reduced expression of 

IFN-γ and monocyte chemoattractant protein-1 (MCP-1; also known as C-C motif chemokine 2) 

compared with the apoE−/− littlermates43. However, no differences in the plasma levels of LDL, HDL, or 
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cholesterol were observed between the two groups. Together, these preclinical data support the use of 

EPA and DHA dietary supplementation to repress pro-inflammatory eicosanoid production and reduce 

the incidence of CVD. 

Relevant clinical data in humans 

The cardiovascular benefit of omega-3 PUFAs has also been demonstrated in humans. A meta-analysis 

published in 2015 reported that increased EPA and DHA consumption, through either supplementation or 

consumption of enriched foods, was associated with decreased blood triacylglycerol levels in healthy 

patients or in patients with marginal hyperlipidaemia44. Omega-3 PUFAs have very few detrimental side 

effects, and have been shown to be beneficial for individuals suffering from hypertriglycaeridemia45. 

Furthermore, a cohort of 600 men with CVD receiving fish oil supplementation showed reduced markers 

of atherothrombotic risk46. A study involving 160 Japanese patients found that low serum levels of DHA 

correlated with reduced endothelial function, as measured by flow-mediated dilatation47. This observation 

confirms the results seen in an earlier study that reported an improvement in endothelial function and 

arterial stiffness, as measured by flow-mediated dilatation and pulse wave velocity respectively in 29 

participants after 12 weeks of daily omega-3 PUFA intake48. 

Over the past 30 years there have been three well known trials performed to assess the cardiovascular 

benefits of EPA and DHA supplementation: the DART trial49, GISSI-Prevenzione trial50, and the JELIS 

trial51. The DART trial, published in 1989, recruited 2,033 men who had recently suffered a MI and 

randomly allocated them to receive advice or no advice on each of three dietary factors: reduced fat intake 

to increase the ratio of polyunsaturated fat to saturated fat; increased omega-3 PUFAs intake either in the 

form of oily fish or fish capsules; and increased cereal fibre intake49. After a 2-year follow up, patients 

who were advised to increase omega-3 PUFAs in their diet showed a significant 29% reduction in 

mortality compared with those who did not49, which was largely attributable to a reduction in CVD-

related events. No differences were found in the mortality of patients allocated to receive the other dietary 

advice49.  
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Investigators of the subsequent GISSI-Prevenzione trial,50 published in 1999, recruited 11,324 patients 

with recent MI and randomly assigned them to receive omega-3 supplements (1g daily), vitamin E, both, 

or none for 3.5 years. The primary endpoint of the study was a composite of death, nonfatal MI, and 

stroke. After 6 months, the study found no clinically important changes in the serum levels of total 

cholesterol, LDL-cholesterol, and HDL-cholesterol50. However, one year after initial treatment, patients 

who had received omega-3 PUFA supplementation, but not vitamin E, showed a 15% reduction in the 

primary endpoint of the study. Furthermore, sudden cardiac death was 45% lower in the treatment group 

compared to the control group50. Together, these two large trials support the use of omega-3 PUFAs in 

the context of MI. 

The benefit of adding EPA to statin therapy has been evaluated in several trials. In a study published in 

2007, a total of 18,645 patients with hypercholesterolaemia recruited for the JELIS trial51 were randomly 

assigned to statin therapy combined with EPA supplementation, or statin-only therapy. After an average 

follow up of 4.6 years, a 19% relative reduction in major CVD-related events was observed in patients 

receiving EPA and statin, compared with the statin-only group. However, EPA supplementation did not 

increase serum HDL levels or reduce serum LDL levels51. In another study published in 2016, 95 patients 

who had been receiving statin treatment for a minimum of 6 months were randomised to receive EPA 

supplementation (1,800 mg/day) or no additional treatment for 6 months52. Compared with the statin-only 

therapy group, the atherosclerotic plaques of patients who had received EPA had fibrous caps with 

increased collagen content as well as a reduction in lipid volume, indicating increased plaque stability52. 

Furthermore, patients receiving EPA showed reduced levels of pro-inflammatory cytokines, including 

MCP-152. These clinical trials provide support that increasing omega-3 PUFA levels, especially EPA and 

DHA, alone or in combination with statin therapy can substantially reduce an individual’s risk of a major 

CVD-related event. 

Despite the promising results discussed thus far, the benefits of omega-3 PUFA supplementation on 

cardiovascular health remain inconclusive, given the conflicting results in the literature. In 2014, a meta-

analysis that included five trials enrolling 396 participants found no significant reduction in CVD-related 
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events in individuals with peripheral arterial disease53. A systematic review that included 48 randomised 

controlled trials (36,913 individuals) and 41 cohort studies also did not detect any significant reductions 

in CVD-related mortality in patients receiving omega-3 supplementation for 6 months54. A meta-analysis 

that specifically focused on patients with a history of CVD was also unable to identify any substantial 

protective effects of omega-3 PUFA supplementation in 14 randomised double blind trials that recruited 

20,485 participants55. A further meta-analysis also failed to demonstrate any association between omega-

3 supplementation and mortality risk after evaluation of 20 randomised clinical studies that included 

68,680 individuals in total56. However, care must be taken when interpreting the results of clinical trials 

owing to the heterogeneity within the designs of the studies53. One difference between the trials is 

whether omega-3 PUFAs were given alone or in combination with statins, which together might have 

exerted synergistic effects. In addition, dose and intervention time period differs between the trials. 

Furthermore, one key difference between the trials is the populations used. The consumption of omega-3 

PUFAs is approximately 15 times lower among Western populations compared with the Japanese 

population57,58, which might affect studies that use omega-3 PUFA dietary supplementation. All of these 

factors are likely to affect the outcomes of the trials, and result in the inconsistent results found within the 

clinical trials and meta-analysis. 

Two trials are currently ongoing that use omega-3 PUFA supplementation: the REDUCE-IT59 and 

STREGTH60. The REDUCE-IT trial, which is expected to be completed in 2017, has an estimated 

enrolment of 8,000 participants and is designed to investigate the effect of Vascepa® (icosapent ethyl), a 

purified ethy ester of EPA for the treatment of hyperglyceridaemia59. The primary aim of the REDUCE-

IT trial is to evaluate whether Vascepa® and statins are able to further reduce the incidence of CVD-

related events compared with statin-only treatment. The secondary aim of the study is to evaluate its 

effects on serum lipid and lipoprotein levels59. The STREGTH trial, which is scheduled to be completed 

in 2019, is designed to assess the effect of combined statin and Epanova® (ω-3 carboxylic acids) therapy 

in an estimated 13,000 individuals60. The main aim of the STREGTH trial is to assess whether Epanova® 

can reduce the number of CVD-related events compared with those who received the statin-only 
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treatment. These two new large clinical trials will hopefully be able to provide more insight into whether 

omega-3 PUFA supplementation can reduce the residual risk of CVD present in users of statin. 

Omega-6 polyunsaturated fatty acids 

Although a high intake of omega-6 PUFAs is traditionally thought to promote inflammation and 

contribute to the pathogenesis of many diseases, including CVD, not all omega-6 PUFAs are associated 

with detrimental effects. The AHA currently recommend that omega-6 PUFAs should generally make up 

5% to 10% of the energy intake of an individual’s diet, provided other AHA dietary and lifestyle 

guidelines are followed, as it is thought that lowering omega-6 intake any further is more likely to 

increase the risk of suffering a CVD-related event rather than decrease it61. One key omega-6 PUFA that 

is considered to have anti-atherogenic effects is dihomo-γ-linolenic acid (DGLA) that can be metabolised 

after consumption into prostaglandin E1 (PGE1), a potent anti-atherogenic compound35. Pre-treating 

murine macrophages with DGLA resulted in a dose-dependent increase in prostaglandin levels, primarily 

PGE1 and prostaglandin D1, following lipopolysaccharide stimulation62. PGE1 has been shown to 

improve atherosclerotic plaque stability by increasing the thickness of fibrous cap in a dose-dependent 

manner in rabbits with a vulnerable plaque induced by balloon injury and a high cholesterol diet63. The 

right balance of omega-3 and omega-6 PUFAs is essential for optimal cardiovascular health, as they are 

capable of interacting and influencing the metabolism of one another35. DGLA can increase the 

metabolism of EPA into prostaglandin I3, a potent vasodilator and platelet anti-aggregator64, whereas 

EPA inhibits DGLA conversion to arachidonic acid, resulting in higher tissue levels of DGLA35. This is 

subsequently metabolised into a variety of products, in particular PGE1. ApoE deficient mice receiving a 

0.5% DGLA diet for 6 months showed a significant increase in vasodilatation and a reduction in mRNA 

levels of ICAM-1 and vascular cell adhesion molecule (VCAM)-165. DGLA supplementation was also 

associated with a decrease in plaque size, exemplified through a reduction in lipid accumulation, 

monocyte and macrophage number, and migration of vascular smooth muscle cells65. Furthermore, diets 

that are enriched in γ-linolenic acid (GLA), a precursor of DGLA during omega-6 metabolism, have also 

been shown to reduce blood pressure in spontaneously hypertensive rats66. 
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Relevant clinical data in humans  

Several observational studies have shown a reduction in omega-6 PUFAs in patients with atherosclerosis. 

Luostarinena and colleagues compared the make-up of fatty acids in the phospholipid fraction of human 

coronary arteries between aged-matched patients who died of ischaemic heart disease and patients who 

died of other non-cardiovascular causes67, and found a reduced proportion of both omega-3 and omega-6 

PUFAs in those who had died from a CVD-related event. In a separate study, the lipid profile of 668 

aortic plaques from 30 men who died of ischaemic heart disease were analysed and compared with their 

undisrupted plaques68. The concentration of all fatty acids was significantly increased at the edge of 

disrupted plaques compared with the center; however, the proportion of omega-6 PUFAs as a percentage 

of total fatty acid concentration was significantly lower, suggesting possible oxidation of PUFAs.  

Low serum levels of GLA has been correlated with peripheral arterial disease in a cohort of 474 

participants69. Treatment of 120 individuals suffering from lower limb atherosclerosis with a combination 

of GLA and EPA also significantly improved their blood pressure after 2 years compared to those 

receiving the placebo70. Additionally there was a small but non-significant reduction in the number of 

non-fatal CVD-related events70. Furthermore a smaller study has observed a decrease in serum 

triacylglycerol, total cholesterol and LDL levels as well as an increase in serum HDL levels following 

daily GLA consumption for 4 months in hyperlipidemic patients71. By contrast, an epidemiological study 

involving 2,206 Japanese men found that increased serum levels of omega-6 PUFAs was associated with 

increased arterial stiffness, in addition to higher serum C-reactive protein (CRP) levels72. An additional 

study involving 501 participants also linked increased serum levels of omega-6 PUFAs with increased 

arterial stiffness73, whereas a smaller randomised, double-blind trial reported that daily DGLA 

administration for 4 weeks did not exert any anti-thrombotic effects74. Given these mixed findings, 

whether DGLA or GLA can contribute to the prevention of atherosclerosis or reduce the risk of a CVD-

event in individuals who already have atherosclerosis remains controversial, emphasising the need for 

further studies.  
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Although DGLA and GLA are products of linoleic acid metabolism, linoleic acid supplementation has 

not always convincingly been associated with cardioprotective effects. Linoleic acid did not improve 

arterial stiffness, blood pressure, serum lipid concentrations, or serum CRP levels after 6 months of 

supplementation in overweight individuals75. However recent re-evaluation of the Minnesota Coronary 

Experiment (MCE), performed in 1968 involving 9570 participants, found that replacing saturated fat 

with linoleic acid reduced serum cholesterol levels76. Despite lowering serum cholesterol levels, linoleic 

acid supplementation was unable to reduce the risk of a CVD-related event76. In contrast, an 

epidemiological study involving 1,813 individuals found an association between higher tissue levels of 

linoleic acid and a decreased risk of MI77. However, given that linoleic acid is metabolised into GLA and 

DGLA, this higher linoleic acid tissue level might actually represent increased GLA and DGLA 

formation. DGLA and GLA might thus be more suitable for use as nutraceuticals than linoleic acid. 

Together, the data presented suggests that DGLA or its precursor GLA as a nutraceutical might be as 

effective as EPA and DHA supplementation for preventing atherosclerotic development, owing to their 

direct actions or the need to maintain an optimal ratio of omega-3 to omega-6 PUFA. However, the 

observation that omega-6 PUFAs might be associated with increased arterial stiffness is concerning, and 

requires further investigation. 

Hydroxytyrosol 

The Mediterranean diet has long been associated with reduced incidence of CVD-events78. Individuals 

living in countries within the Mediterranean basin consume a greater amount of olive oil compared with 

those elsewhere around the world. Several epidemiological studies have reported a correlation between 

increased levels of olive oil in the diet and a lower risk of developing atherosclerosis and other CVD26,79. 

Numerous polyphenol compounds in olive oil exert anti-inflammatory effects, including oleuropein, 

tyrosol and hydroxytyrosol. Oleuropein has been shown to reduce reactive oxygen species (ROS)-

mediated expression of matrix metalloproteinase (MMP)-9 and cyclooxygenase 2 (COX-2) in human 

umbilical vein endothelial cells (HUVEC)80. Furthermore, oleuropein and hydroxytyrosol have been 
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shown to inhibit lipopolysaccharide-induced expression of VCAM-1, ICAM-1, and E-selectin in a dose-

dependent manner in HUVEC81. However, oleuropein undergoes almost complete degradation during 

olive ripening and, therefore, is unlikely to contribute to the cardiovascular health benefits associated with 

the Mediterranean diet82. By contrast, hydroxytyrosol levels increase throughout the ripening process82 

and therefore it is often considered as one of the major anti-atherogenic polyphenol compounds in olive 

oil. 

Numerous in vitro and in vivo studies have assessed the use of hydroxytyrosol as a nutraceutical for 

atherosclerosis. Co-incubation of hydroxytyrosol with pro-inflammatory cytokines in HUVEC in vitro 

resulted in a significant reduction in the expression of cell surface adhesion molecules such as VCAM-1 

and ICAM-1 compared with incubation with cytokines alone83. Furthermore, hydroxytyrosol has been 

shown to reduce the production of several pro-inflammatory markers in cultures of primary human 

monocytes84. A murine study involving 32 Wistar rats that were fed olive oil-based diets for 6 weeks 

demonstrated that a phenol-enriched olive oil was able to significantly increase plasma HDL levels85. The 

same study also showed that the non-enriched virgin olive oil did not significantly alter HDL levels, 

indicating that cardioprotective effects of the olive oil was dependent on the phenol compounds85. 

However, neither the virgin olive oil nor the enriched olive oil was able to reduce plasma LDL levels. A 

subsequent study involving 60 Wistar rats did observe a decrease in total cholesterol and plasma LDL-

cholesterol levels in those fed both virgin olive oil and cholesterol, compared with rats fed with only 

cholesterol after 4 weeks86. Hydroxytyrosol was also able to reduce atherosclerotic plaque size and 

improve antioxidant status in hyperlipaemic rabbits fed an atherogenic diet87.  

Increasing dietary intake of hydroxytyrosol might be a strategy to increase serum HDL levels, as well as 

decreasing serum oxLDL levels. However, this approach might not be effective for those already on a 

low-cholesterol diet. ApoE-deficient mice that were given a standard chow diet and daily hydroxytyrosol 

supplementation for 10 weeks showed larger atherosclerotic lesions compared with the control group88, in 

addition to a decrease in ApoA1 levels, and an increase in total cholesterol levels, with no changes in 

plasma HDL levels. These results indicate that hydroxytyrosol might actually enhance atherosclerosis 
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development in those on a low-cholesterol diet. Given that the majority of patients at risk of CVD are 

likely to already be on a low-cholesterol diet, further in vivo studies are required to understand the effects 

of hydroxytyrosol supplementation when taken in combination with a low-cholesterol diet. 

Relevant clinical data in humans 

Many clinical trials have been performed to investigate the potential health benefits of hydroxytyrosol 

supplementation. The randomized, crossover, controlled EUROLIVE study involving 200 healthy male 

individuals that were assigned to receive olive oil with low, medium, or high phenolic content found a 

linear relationship between the phenolic content of olive oil and an increase in serum HDL levels, which 

resulted in a decrease in the ratio of total cholesterol to HDL cholesterol89. This increase in HDL was also 

accompanied by a decrease in triacylglycerol levels, as well as a reduction in the markers of oxidative 

stress89. Consistent with this finding, two additional studies have shown that hydroxytyrosol is also 

capable of decreasing serum oxLDL concentration in a dose-dependent manner in both healthy 

individuals and patients with coronary heart disease (CHD)90,91. Hydroxytyrosol has also been shown to 

exert anti-inflammatory effects in 28 patients with stable CHD who received a daily dose of virgin olive 

oil (50ml) for 21 days92. Daily intake of virgin olive oil intake reduced IL-6 and CRP levels, key markers 

of inflammation and predictors of CVD92. Furthermore, a randomised, controlled, double-blind, crossover 

study involving 13 prehypertensive or hypertensive individuals found that olive oil enriched with its own 

polyphenols significantly improved endothelial function and decreased oxLDL levels compared with non-

enriched olive oil alone93.  

The PREDIMED study, involving 7447 participants considered to be at high CVD risk, found that 

receiving a Mediterranean diet supplemented with either extra-virgin olive oil or nuts for 5 years 

significantly reduced an individual’s risk of suffering a CVD-related event compared to those on the low-

fat control diet94. However it should be noted that there was no difference in the total number of CVD-

related events between the olive oil and nut diet receiving groups94. Earlier analysis of the PREDIMED 

study in 187 asymptomatic high CVD risk patients, identified a significant reduction in the intima-media 
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thickness in those with an initial baseline of 0.9 mm or thicker after one year on a Mediterranean diet 

supplemented with either olive oil or nuts95. However no changes in the intima-media thickness were 

observed in patients whose baseline was less than 0.9 mm, indicating a possible role for the use of the 

Mediterranean diet in order to reduce subclinical atherosclerosis in those at a greater initial risk95. The 

PREDIMED study would have benefited from a Mediterranean diet without supplementation group to 

fully determine whether olive oil and nut supplementation exerted additional cardiovascular protectives 

compared to the base diet. 

Another trial randomly assigned 90 participants into three treatment groups, patient’s regular diet, 

Mediterranean diet and virgin olive oil (328 mg/kg polyphenols) or Mediterranean diet and washed virgin 

olive oil (55 mg/kg polyphenols) for 3 months96. A significant reduction in serum levels of LDL, HDL 

and total cholesterol were observed after 3 months when compared to baseline levels in those receiving 

the Mediterranean plus virgin olive oil diet with no changes in total cholesterol:HDL or LDL:HDL 

ratios96. The serum cholesterol levels of those receiving the Mediterranean and washed olive oil were also 

not significantly altered when compared to baseline, however both Mediterranean dietary interventions 

significantly reduced serum CRP levels when compared to their respective baselines96. Furthermore, the 

Mediterranean diet with virgin olive oil significantly reduced the expression of several pro-atherogenic 

genes, including IFN-γ, compared to the control group96. Additionally a trial involving 52 participants 

who received polyphenol enriched olive oil for 4 months showed signs of significant improvement in 

endothelium function as well as a decrease in several inflammatory markers, including serum ICAM-1 

levels and monocyte number97. However it should be noted that some individuals also received an olive 

oil enriched with epigallocatechin 3-gallate, however it did not provide any additional benefits when 

compared to the polyphenol enriched oil group97. These clinical studies together highlight the potential 

anti-atherogenic properties of hydroxytyrosol. 

Allicin 
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Allicin (diallyl thiosulfinate) is a natural organic sulphur-containing compound found in garlic (Allium 

sativum). When fresh garlic is crushed, alliin is converted into allicin by the enzyme alliinase. The newly 

formed allicin is highly unstable and rapidly breaks down into several smaller polysulphides which are 

able to form hydrogen sulphide (H2S) in a thiol-dependent manner in cells98. The anti-atherogenic and 

anti-inflammatory health benefits of garlic are attributable to this formation of H2S. 

The benefits of treatment with H2S donors (compounds capable of being broken down into H2S) have 

been observed in both in vitro and in vivo studies. The treatment of lipopolysaccharide-stimulated murine 

macrophages with sulphur-containing compounds originating from garlic has been shown to attenuate the 

expression of several pro-inflammatory cytokines, including IL-1β, IL-6, and TNFα99. The anti-

inflammatory abilities of H2S donors have also been observed in vivo using murine models, which 

demonstrate inhibition of leukocyte adherence to the endothelium, indicative of a reduction in the 

inflammatory response100. In addition to diminishing the initial inflammatory response, H2S has also been 

shown to attenuate p38 mitogen-activated protein kinase activation and caspase-3 cleavage, which results 

in accelerated resolution of inflammation by stimulating the short-term survival of neutrophils101. 

Potent antioxidant effects have been associated with H2S, with many studies showing that H2S donors are 

capable of reducing lipopolysaccharide-stimulated inducible nitric oxide synthase and cyclooxygenase 

(COX)-2 expression, which consequentially diminishes ROS production in vitro99,102. Furthermore, H2S 

donors have been shown to reduce foam cell formation by attenuating the expression of MSR1, sterol O-

acyltransferase 1 (also known as ACAT1), and CD36 in human monocyte-derived macrophages, possibly 

through the ATP-sensitive K+ channel (KATP), and mitogen-activated protein kinase 1 and 3 pathways103. 

ACS14 (2-acetyloxybenzoic acid 4-(3-thioxo-3H-1,2-dithiol-5-yl)phenyl ester) is a novel H2S-releasing 

aspirin that has been used to study the effects of H2S donors on atherosclerotic plaque development in 

ApoE-deficient mice104. Mice supplemented with ACS14 developed smaller atherosclerotic lesions 

compared with mice receiving the equivalent dose of regular aspirin, possibly attributable to reduced 

monocyte migration into the plaque104. Administration of pure allicin in ApoE-deficient and LDLr-
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deficient mice has also been shown to reduce plaque size by approximately 69% and 57%, respectively, 

after 8 weeks compared with placebo105.  

Relevant clinical data in humans 

The benefits of garlic supplementation have also been observed in clinical studies. In a study involving 

152 participants, high-dose dietary garlic supplementation (900 mg garlic powder/day) for 48 months 

significantly attenuated lesion volume by 6–18%106. A subsequent preliminary study showed that 

treatment with statin plus aged garlic extract was capable of slowing the rate of atherosclerotic 

development by reducing coronary calcification compared with statin-only therapy107. A meta-analysis of 

45 trials found that garlic supplementation was also able to reduce serum levels of LDL, triacylglycerol 

and cholesterol after 1-3 months but not after 6 months108. The study also found that garlic was unable to 

significantly improve blood pressure. The effect of garlic supplementation on clinical outcomes was not 

analysed due to the lack of robust, long-term trials, stressing the need for large clinical trials to fully 

evaluate the potential of garlic as a nutraceutical. Notably, a randomised clinical study involving 192 

participants found no differences in LDL or HDL levels between patients receiving garlic in three 

different forms (aged garlic extract, raw garlic or garlic powder) and the patients receiving placebo109. 

However, allicin might exert its cardioprotective effects via other mechanisms, such as reducing ROS 

production and attenuating pro-inflammatory gene expression, rather than directly altering the ratio of 

LDL to HDL in the bloodstream.  

Phytosterols 

Phytosterols are steroid compounds found in plant sources and are similar in structure to cholesterol. 

Diets rich in phytosterols have long been associated with reduced plasma-LDL levels110,111. Phytosterols 

are thought to exert their cardioprotective effects by competing with cholesterol in the lumen of the 

intestine during dietary and biliary cholesterol uptake111. Murine macrophages treated with phytosterols in 

vitro have shown changes in the expression of genes implicated in cellular cholesterol homeostasis, 

including an increase in ABCA1 and a decrease in LDLR112. Furthermore, phytosterols also increase 



 

18 

 

cholesterol efflux in response to ApoA1 and HDL in human THP-1 macrophages, consistent with the 

observed changes in gene expression112.  

Phytosterols have also been shown to mediate strong anti-inflammatory effects in vivo. This effect has 

been demonstrated in ApoE-deficient mice fed a high-fat diet supplemented with 2% phytosterols for 2 

weeks, and then injected with ovalbumin to trigger an inflammatory response to a foreign antigen113. The 

spleen cells from phytosterol-treated mice showed reduced production of pro-inflammatory cytokines IL-

6 and TNF-α, and increased production of the anti-inflammatory cytokine IL-10 compared with the 

spleen cells from mice on the control diet113. In addition, atherosclerotic lesion size was 60% smaller in 

mice on the phytosterol-enriched diet113. After 14 weeks on a diet supplemented with 2% phytosterols, 

ApoE-deficient mice showed alterations in the expression of 132 genes, including several hepatic genes 

associated with the regulation of sterol metabolism114. The changes in gene expression in this study may 

provide a greater insight into how phytosterols mechanistically exert their cardiovascular protective 

effects. However, further studies are required to link specific altered gene expression patterns to the anti-

atherogenic properties of phytosterols. In a separate study, the atherosclerotic lesions of ApoE-deficient 

mice fed a high-fat diet supplemented with a 2% phytosterols mixture for 20 weeks were reduced by 

approximately 50% compared with the high-fat diet-only control group115. Furthermore, phytosterol 

supplementation was also associated with reduced hepatic lipase activity and plasma fibrinogen 

concentrations, in addition to a small increase in HDL-cholesterol levels115. Consistent with these 

findings, later studies also reported smaller atherosclerotic lesions and lower plasma LDL-levels in ApoE-

deficient mice fed a 2% phytosterol-supplemented diet after 12 and 14 weeks116,117.  

Relevant clinical data in humans 

An epidemiological study involving 22,256 participants found a correlation between diets with high 

levels of phytosterols and low levels of serum LDL, supporting the role of phytosterols in LDL 

lowering111. Consistent with this finding, a study involving 233 participants demonstrated a significant 

reduction in serum LDL levels with 12 weeks of phytosterol supplementation, though no changes in flow-
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mediated dilatation or pulse-wave velocity was found118. Recent meta-analysis, involving 20 randomised 

control trials and 1308 participants, found an association between regular phytosterol intake and reduced 

serum LDL levels119. However, the study failed to find any significant correlation between phytosterol 

consumption and plasma CRP levels119, highlighting the need for further research to assess the effects of 

phytosterol dietary supplementation on inflammation. Nevertheless, because of the LDL lowering effects 

of phytosterols, the European Atherosclerosis Society (EAS) consensus panel has recommended the use 

of phytosterol supplementation in individuals who are either: at low/intermediate risk of CVD but fail to 

meet requirements for traditional pharmaceutical therapies; suffering from familial hypercholesterolemia; 

or unable to achieve target LDL levels while receiving statin therapy120,121. 

The type of phytosterol-delivery system has also been shown to impact their LDL lowering properties. 

For example, one study found that treatment of hypercholesterolemia with phytosterol capsules did not 

result in a reduction in plasma LDL levels122. However other studies have reported that phytosterol 

capsules and phytosterol-rich foods do not differ in their LDL lowering properties123. These studies 

emphasise the need for further trials to evaluate whether the LDL lowering properties of phytosterols are 

altered by the chosen delivery system. 

Despite the reported beneficial effects of phytosterols, other studies have also suggested that high levels 

of phytosterol in the diet might actually be detrimental and contribute towards atherosclerotic 

development124. In a study involving 109 postmenopausal women, an increased ratio of phytosterol to 

cholesterol was associated with a higher risk of developing CHD125. However, many studies claiming that 

phytosterols can increase the risk of CVD-events lack appropriate controls or fail to match serum LDL 

levels between cases and controls; therefore, their findings must be taken with caution124. For example, 

Assmann and colleagues reported that serum phytosterol levels were significantly higher in 159 

participants who had suffered from a MI or sudden cardiac death compared with 318 healthy 

individuals126. However, the study failed to match LDL-cholesterol, total cholesterol, and triacylglycerol 

levels, in addition to blood pressure levels between the two groups, all of which are risk factors for CVD-

events124. Given that the ratio of phytosterol to cholesterol between the two groups was not significantly 
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different, the study fails to provide conclusive evidence that the CVD-events were directly linked to 

increased phytosterol levels124.  

Flavanols 

Flavanols, a subclass of flavonoids, are secondary plant metabolites that are commonly found in fruit and 

vegetables127. Given that a diet rich in fruit and vegetables is linked with cardiovascular health benefits, 

flavanol supplementation represents a promising avenue as a nutraceutical for the prevention of 

atherosclerosis24. Catechin is a major flavanol present in green tea and cocoa that has been found to 

reduce endothelial exocytosis128, a process by which activated endothelial cells are able to release pro-

inflammatory cytokines and chemokines, which are usually stored in intracellular endothelial granules, 

into the extracellular space128. Catechins might therefore have a role in reducing vascular inflammation 

during the development of atherosclerosis. 

ApoE*3-Leiden mice fed a high-fat diet supplemented with 0.1% epicatechin (cis configuration isomer of 

catechin) for 20 weeks showed attenuation of atherosclerotic lesion area with no effect on plasma 

lipids129. Furthermore, a microarray analysis also revealed that epicatechin supplementation resulted in 

173 genes being differently expressed compared with no supplementation, including 77 that appeared to 

be inversely regulated129. A substantial number of these 173 genes were involved in cell migration129, 

highlighting a possible mechanism by which epicatechin is able to reduce lesion size. 

Relevant clinical data in humans 

An increase in nitric oxide production has also been observed in a small clinical study in which 27 

healthy individuals consumed a flavanol-rich diet consisting of cocoa (epicatechin and catechin) for 5 

days130. This increase in nitric oxide production was accompanied by an increase in vasodilatation, 

providing an insight into another mechanism by which flavanols exert their cardioprotective effects130. 

Other studies have since confirmed the vasodilatory properties of flavanols, in addition to observing a 

reduction in circulating oxLDL levels after 5 weeks of flavanol supplementation in the form of green tea 

extract131,132. Daily catechin consumption for 24 weeks has also been shown to significantly reduce 
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circulating LDL levels in obese or near-obese children compared with those who did not receive 

supplementation133. In addition, the consumption of cocoa flavanol-rich supplements for 30 days 

improved flow-mediated dilatation in 57 patients with end-stage renal disease134, highlighting its use in a 

population with endothelial dysfunction at high risk of developing CVD. Furthermore in a trial with 20 

patients with congestive heart failure, who were randomly assigned flavanol-rich chocolate or control 

chocolate for 4 weeks, found that flavanols significantly improved flow-mediated dilation135. 

Many other studies have also demonstrated the beneficial effects of cocoa flavanols in healthy 

individuals. Daily cocoa flavanol supplementation for 30 days resulted in improved vascular function in 

100 healthy individuals without a prior history of CVD136. Additionally, the consumption of cocoa 

flavanols for 14 days improved flow-mediated vasodilation and reduced arterial stiffness in both young 

and elderly participants137. Furthermore, catechin has been shown to exert anti-inflammatory effects, as 

consumption of a green tea extract attenuated the levels of several pro-inflammatory mediators, including 

Fas ligand, IL-6 receptor, IL-8, soluble TNF-receptor 2, and neutrophil-activating peptide138. The ratio of 

total cholesterol to HDL cholesterol is also significantly reduced in 17 healthy men after daily catechin 

supplementation for 3 weeks underlining its possible use in the prevention of atherosclerosis139. However 

the same study found no reductions in other cardiovascular disease risk biomarkers such as blood 

pressure139. Although another study investigating the intake of daily cocoa flavanol for 4 weeks failed to 

show a decrease in blood pressure and flow-mediated dilatation in 30 overweight adults, a significant 

improvement in arterial stiffness was found in the female participants140. The lack of reduction in blood 

pressure in these studies contradicts the decreases found in the previously mentioned trials130-132. This 

discrepancy might be attributable to the small number of individuals used in the trials.  

Together, these data suggest that flavanols might exert their cardiovascular health benefits by lowering 

circulating LDL levels and possibly blood pressure, both of which are key risk factors of atherosclerosis 

development.  

Vitamin C and E 
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Given that the human body is unable to store vitamin C (also known as ascorbic acid), it is vital that foods 

rich in vitamin C, such as oranges, orange juice, broccoli and blackcurrants, form part of the daily diet. 

Increased intake of vitamin C has long been associated with a decrease in the prevalence of coronary 

artery disease141. Numerous in vivo studies have shown that vitamin C supplementation can improve 

endothelial function142,143. ApoE-deficient mice supplemented with 1% vitamin C for 26 to 28 weeks 

were found to have restored endothelial nitric oxide synthase activity and increased tetrahydrobiopterin 

levels in the aorta compared with the control mice142. A later study in ApoE-deficient mice fed a high-fat 

diet supported these results by demonstrating that chronic treatment with vitamin C inhibited endothelial 

dysfunction of the carotid artery induced by hypercholesterolaemia143. Despite such promise, the use of 

vitamin C as a nutraceutical for the prevention of atherosclerosis remains controversial because many 

studies have failed to show any benefit on plaque lesions or lipid profiles. Dietary supplementation with a 

cocktail of anti-oxidants (vitamin E, vitamin C, and β-carotene) in ApoE deficient mice did not reduce 

lesion size or alter plasma lipid profile144. However, this study involved older mice (20 weeks old), 

whereas the previously mentioned positive mouse studies were performed in much younger mice (4–5 

weeks142,143), suggesting that age might influence the cardiovascular health benefits of vitamin C 

supplementation in ApoE-deficient mice. Consistent with this observation, vitamin C and E 

supplementation in ApoE-deficient mice aged 50–60 weeks failed to significantly reduce angiotensin II 

induced plaque rupture145. By contrast, vitamin E supplementation in 26-week-old ApoE-deficient mice 

prevented angiotensin II mediated plaque rupture146.  

Relevant clinical data in humans 

Lower serum vitamin C levels have been linked with a greater risk of a CVD-event in humans147. Vitamin 

C can exert its cardiovascular health benefits by mitigating inflammatory and oxidative stresses mediated 

by a high-fat and high-carbohydrate diet, by preventing endotoxin increase and Toll-like receptor 

expression148. Others have reported that vitamin C is able to improve vasodilatation in patients with 

coronary artery disease149 and in smokers150, thereby resulting in reduced blood pressure, and 

consequently reduced risk of CVD-related events. In 2014, a meta-analysis based on 44 clinical trials 
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found a positive association between vitamin C supplementation and improved endothelial function in 

patients with atherosclerosis151. In addition, the ASAP trial, involving 520 participants, showed a 

significant attenuation in the progression of atherosclerosis in men following a treatment with a combined 

supplementation of vitamin C and E twice a day for 3 years152. However, individual supplementation with 

vitamin C or E failed to reduce intima-media thickness, and the combined supplementation did not reduce 

atherosclerosis progression in women152. Pooled analysis of 9 studies by Knekt et al.153 found an 

association between high vitamin C supplementation and a reduced risk of CVD-related event. However, 

the same analysis also found that high vitamin E intake was not associated with any cardiovascular 

protective effects153. By contrast, the CHAOS trial involving 2,002 patients with established 

atherosclerosis found that daily vitamin E supplementation reduced the risk of suffering a non-fatal MI 

compared to those receiving the placebo after 1 year154. However the study also found that vitamin E 

supplementation was unable to reduce CVD-related deaths154. Furthermore, the treatment of 30 

hypertensive men with a combined vitamin C and E supplement every day for 8 weeks significantly 

improved arterial stiffness and flow-mediated dilation, as well as reducing their oxidative stress levels155. 

Despite numerous positive findings, the inconsistencies in the results assessing vitamin C and vitamin E 

supplementation are also evident in many other clinical trials. A randomised study that used an initial 2g 

dose followed by a daily intake of 1g of vitamin C in 20 young adult smokers showed improved 

vasodilation after the first 2 hours, but there were no sustained beneficial effects after 8 weeks156. In 

addition, a large-scale study involving 20,536 adults in the UK with either coronary artery disease, 

peripheral occlusive arterial disease, or diabetes that were randomly assigned a daily dietary supplement 

containing either vitamin E, vitamin C, β-carotene, or placebo reported no observable benefits in terms of 

all-cause mortality or CVD-events at the 5-year follow up157. Furthermore, several studies have failed to 

demonstrate any cardiovascular protective effects following vitamin E consumption. The previously 

mentioned GISSI-Prevenzione trial found that daily consumption of vitamin E (300 mg) was not 

associated with a reduced risk of CVD-related events50. The HOPE study, which involved 9,541 

participants considered to be at high risk of a CVD-related event, was also unable to find any significant 
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reductions in cardiovascular deaths following daily vitamin E consumption for 4.5 years158. On the other 

hand, the VEAPS trial observed a decrease in plasma oxLDL levels and a reduction in the vulnerability of 

LDL to oxidation in 353 individuals following daily vitamin E supplementation for 3 years159. However, 

this trial also demonstrated that vitamin E supplementation was unable to reduce the intima-media 

thickness compared to the placebo159, indicating that it was unable to prevent atherosclerosis 

development. In conclusion, although both vitamin C and E were once considered ideal nutraceuticals for 

the prevention of atherosclerosis owing to their antioxidative and vasodilatory properties, they have not 

been proven to be consistently effective in long-term prevention of CVD. This position is consistent with 

the AHA whose advisory panel in 2004 recommended against using vitamin supplements to reduce the 

risk of CVD-related events160. 

Dietary fibre 

Dietary fibre can be fermented by the gut microbiota in the intestine to produce a variety of short chain 

fatty acids that are capable of exerting anti-atherogenic properties. Butyrate is a key short chain fatty acid 

produced during fibre fermentation that has been shown to prevent inflammation161,162. Butyrate treatment 

of murine macrophages stimulated with lipopolysacchardie have reduced pro-inflammatory cytokine 

production, including IL-1β, IL-6, and TNF-α, and attenuated nitric oxide production162. Furthermore, 

HUVEC treated with butyrate for 24 hours resulted in increased ICAM-1 expression, but no changes in 

VCAM-1 expression163,164. However, preincubation of HUVEC with butyrate attenuated TNF-α induced 

expression of VCAM-1, which correlated with a decrease in monocyte adhesion to endothelial cells164.  

In vivo studies have also demonstrated the benefits of butyrate in atherosclerosis. ApoE-deficient mice fed 

a chow diet supplemented with 1% butyrate for 10 weeks developed smaller and more stable lesions 

compared to the control mice165. Lesions were reduced by approximately 50% owing to attenuated 

monocyte and macrophage migration towards the site of the plaque, together with lower levels of VCAM-

1 and MCP-1 expression in the lesion165. Furthermore, the lesions in the butyrate-supplemented mice 
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were composed of more ECM compared with the control mice, which is an indicator of increased plaque 

stability.  

Relevant clinical data in humans 

The relationship between increased fibre intake and reduced cardiovascular disease has been well 

established. A 6-year follow-up study involving 39,876 female participants found higher fibre intake was 

associated with a lower risk of MI and CVD after adjusting for age and other treatments received166. 

However, this relationship was no longer found to be significant after controlling for other confounding 

variables. Another study involving 46,032 men found that increased dietary intake of fibre was 

significantly linked with reduced risk of peripheral arterial disease over a 12 year follow up, even after 

adjusting for all other factors167. Increased dietary fibre has also been correlated with a lower risk of 

haemorrhagic stroke168. Furthermore, a meta-analysis of 10 cohort studies involving 91,058 men and 

245,186 women reported an inverse relationship between increased dietary fibre intake and the risk of 

suffering a CVD- event169. For every 10g increase of dietary fibre per day, there was a 14% and 27% 

decrease in the risk of suffering a CVD-event and coronary death, respectively, over a 6–10 year follow-

up period169. However, addition of fibre to statin and/or ezetimibe treatment did not provide extra 

cardiovascular health benefits to patients with hypercholesterolaemia, but improved blood glucose levels 

and reduced BMI170. Notably, given that this study did not include a fibre-only treatment group, it is not 

possible to delineate the effects of fibre that is independent of the lipid-lowering therapy.  

Other less-studied nutraceuticals 

Carnosine 

Carnosine, a known anti-oxidant171, is a dipeptide formed from histidine and beta-alanine and is 

commonly found in meat given its abundance in animal proteins. Carnosine has been shown to reduce the 

glycation of LDL in human monocyte-derived macrophages, resulting in reduced intracellular cholesterol 

accumulation and attenuated foam cell formation172. This process is important in patients with diabetes as 

they are at increased risk of developing atherosclerosis. ApoE-deficient mice with diabetes receiving a 
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carnosine dietary supplementation showed an improvement in key indicators of atherosclerotic plaque 

stability after 20 weeks173. Although carnosine did not reduce plaque size, it stabilised the lesion by 

increasing the collagen content by 50% and reduce the area of the plaque filled by lipids by 60%173. 

However, the number of macrophages within the plaque was also increased by approximately 70%,173 an 

indicator of plaque instability. Furthermore, carnosine supplementation in Sprague-Dawley rats for 6 

weeks significantly improved serum HDL levels as well as reducing serum LDL levels, however the 

levels of total cholesterol and triacylgycerols were unaffected174. The same study also found that 

carnosine supplementation increased serum levels of superoxide dismutase while simultaneously 

decreasing plasma malondialdehyde (a marker of lipid peroxidation) levels174. This study highlights 

carnosine’s strong anti-oxidant properties and may explain how it exerts some of its cardiovascular 

protective effects. A small double-blind randomised trial also found that carnosine supplementation every 

day for 12 weeks significantly improved patient’s insulin resistance, however there was no improvement 

in blood pressure, serum cholesterol or CRP levels175. Carnosine might therefore represent a promising 

nutraceutical for patients with diabetes at risk of atherosclerosis, but further studies are required to 

elucidate its effect on plaque stability. Given the lack of in vivo and clinical data directly linking 

carnosine supplementation with anti-atherogenic effects, its use as a nutraceutical for patients with 

atherosclerosis should remain limited, until sufficient clinical data has been gathered.  

Coenzyme CoQ10 

Coenzyme Q10 (CoQ10), an antioxidant that is present in many food sources, has an important role in the 

electron transport chain within the mitochondria. Given that CoQ10 and cholesterol synthesis share the 

same intermediate steps in their respective biosynthetic pathways, patients receiving statin treatment also 

experience a reduction in CoQ10
176. In an in vivo study involving ApoE-deficient mice receiving CoQ10 

dietary supplementation for 4 weeks, CoQ10 treatment attenuated LDL oxidation and reduced foam cell 

formation177. These effects were achieved by enhancing the reverse cholesterol transport process via the 

microRNA miR-378, resulting in increased cholesterol efflux from the cell and decreasing the formation 

of foam cells177. Furthermore, the sizes of the plaques from the mice receiving CoQ10 were significantly 
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smaller compared with the control group. By contrast, in another in vivo study involving ApoE-deficient 

mice, CoQ10 supplementation for 15 weeks was unable to reduce lesion size in cigarette smoke-enhanced 

atherosclerotic development178. The ability of CoQ10 to increase cholesterol efflux has also been observed 

in human monocyte-derived macrophages ex vivo179. In a small study with 20 healthy participants, who 

were either given placebo or CoQ10 supplements twice a day for 1 week, CoQ10 consumption significantly 

increased cholesterol efflux from macrophages, which correlated with an increase in the expression of the 

ABCG1 gene implicated in the promotion of cholesterol efflux179. 

In patients with multiple sclerosis, CoQ10 supplementation was linked with a reduction in the plasma 

levels of the pro-inflammatory markers such as TNF-α, IL-6, and MMP-9, but did not alter anti-

inflammatory markers such as IL-4 and transforming growth factor-β180. A meta-analysis of five trials 

involving a total of 194 participants concluded that CoQ10 supplementation significantly improved 

endothelial function181. In addition, daily dose of CoQ10 for 8 weeks in participants with left ventricular 

systolic dysfunction improved flow-mediated dilatation182. However, CoQ10 did not lower blood pressure 

or serum CRP levels182. CoQ10 supplementation for 12 weeks also failed to improve arterial stiffness or 

serum levels of oxLDL and CRP in obese percipients183. A random, double-blind FAITH trial involved 

65 fire-fighters considered to have a high CVD risk (occupational stress) taking a daily combined CoQ10 

and garlic supplement for a year184,185. The study found that the combined supplement was able to 

significantly reduce serum CRP levels as well as improve both pulse wave velocity and endothelium 

function compared to the placebo184,185. However, as the study did not include a garlic or CoQ10 only 

group, it is not possible to conclude whether the cardiovascular protective effects were due to one of the 

nutraceuticals or the combined supplement. Overall, given that statin therapy reduces its de novo 

synthesis, CoQ10 might be a promising nutraceutical to take in combination with statins to further reduce 

atherosclerotic development. However, the lack of consistent studies demonstrating the benefit of CoQ10 

supplementation for prevention of atherosclerosis has limited its use as a nutraceutical at present.  

Curcumin 
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Curcumin is the active component of turmeric and is the dietary pigment which gives curry its orange 

colour. Curcumin has been shown to reduce phorbol-12-myristate-13-acetate (PMA) and 

lipopolysaccharide-induced expression of key proatherogenic cytokines such as MCP-1, IL-1β, and TNF-

α in primary human monocytes186. Further in vitro studies have also demonstrated that curcumin is also 

capable of mediating the polarisation of the anti-inflammatory M2 phenotype in murine macrophages187. 

An in vivo study involving rabbits fed a diet containing lard and cholesterol found that LDL was less 

susceptible to oxidation in those receiving turmeric extract for 7 weeks188. In addition, 30-day turmeric 

supplementation in high-fat fed rabbits resulted in a smaller fatty streak compared with the untreated 

control189. Furthermore, a reduction in atherosclerotic lesion size has also been observed in ApoE and 

LDLr double knockout mice after a daily dose of 0.3 mg of curcumin for 4 months190. Lesion area was 

reduced by approximately 50% compared with the control group190. 

The benefit of curcumin in patients at risk of atherosclerosis has also been described. A randomised 

double-blind trial involving 240 individuals with type 2 diabetes reported a decrease in CVD risk with 6 

months of curcumin dietary supplementation, exemplified through a lower pulse wave velocity and 

improved metabolic profile191. Furthermore, the use of curcumin for 8 weeks improved flow-mediated 

dilatation in 32 postmenopausal women192. Interestingly the same study also found that the improvement 

in flow-mediated dilatation was similar to those who did not receive supplement, but who exercised for 8 

weeks instead192. A major limitation to using curcumin as a nutraceutical is its poor bioavailability, owing 

to inadequate absorption in the gut and as it is rapidly broken down and quickly excreted from the 

body193. Several strategies are being pursued in an attempt to increase the bioavailability of curcumin, 

including the use of liposomal curcumin, nanoparticles, and a curcumin phospholipid complex193. 

Lycopene 

Lycopene is the carotenoid that gives tomatoes their bright red colour. Several epidemiological studies 

have found an association between diets rich in lycopene and a reduced incidence of CVD194,195, leading 

to several studies to further investigate its potential cardioprotective effects. Lycopene might exert its 
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anti-atherogenic effects by inhibiting de novo cholesterol synthesis, as demonstrated in vitro using murine 

macrophages196. By contrast, another in vitro study reported that LDL isolated from human donors which 

was then enriched with lycopene before being co-incubated with human endothelial cells actually 

increased its susceptibility to oxidation197. 

In a randomised clinical study involving 144 participants with subclinical atherosclerosis, a combined 

dietary supplementation of 20mg lutein (another carotenoid with potential cardioprotective effects) and 

20mg lycopene for 12 months significantly reduced the thickness of the intima and media in the carotid 

artery198. Given that the combination of lutein and lycopene supplementation was more effective than 

lutein alone, synergistic effects of lutein and lycopene might exist. Reduced serum levels of lycopene 

have also been linked with increased arterial stiffness199. Flow-mediated dilatation was also improved in 

patients receiving combination lycopene and statin therapy compared with statin alone200. However, no 

changes in dilatation were observed in healthy participants given the lycopene supplementation, possibly 

indicating an additive or synergistic effect of lycopene when taken in combination with statins, and 

highlighting a potential role as a secondary prevention nutraceutical200. In the same study, arterial 

stiffness, CRP serum levels, and blood pressure levels were also unchanged by lycopene in either the 

healthy participants or patients with CVD200. Another clinical trial involving 225 healthy participants also 

found that lycopene supplementation did not reduce blood pressure or improve arterial stiffness201. The 

possible dual effect of lycopene and statin therapy requires further investigation in studies with a larger 

cohort.  

Resveratrol 

Although increased alcohol consumption is associated with hypertension and elevated plasma cholesterol 

levels, the phenomena known as the ‘French paradox’ has been used to explain why the incidence of 

CVD is lower in France, despite a similar westernised diet high in fat and carbohydrates202. Resveratrol is 

a natural phenol commonly found in the skin of grapes and is considered to be one of the key active 

compounds responsible for these cardiovascular protective effects. Resveratrol has also been shown to 
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reduce foam cell formation by inhibiting oxLDL uptake as well as increasing cholesterol efflux in human 

THP-1 macrophages203. This increase in efflux corresponded to an elevation in the expression of key 

proteins involved in the regulation of cholesterol efflux203. ApoE*3-Leiden.CETP mice fed a high-

cholesterol diet with a 0.01% dietary supplementation of resveratrol were also found to have smaller 

atherosclerotic lesions by approximately 50% compared with control mice, in addition to improved lesion 

stability due to increased ratio of collagen to macrophages204. However, the cardioprotective benefits 

were similar between the reservatrol-only and statin-only groups, and the combination of treatments was 

unable to provide any benefit204. 

After adjusting for other risk factors, one epidemiological study concluded that the higher average alcohol 

consumption in France (particularly wine) was attributable to a lower incidence of CVD202. The GISSI-

Prevenzione trial also found an association between daily consumption of wine and a reduced risk of a 

CVD-event and all-cause mortality205. Although resveratrol might be useful in the prevention of 

atherosclerosis, it might not enhance the anti-atherogenic effects of statins. Large clinical trials involving 

statin-only treatment versus statin-plus-resveratrol treatment are required to determine its potential as a 

nutraceutical. 

Berberine 

Berberine is a cholesterol-lowering plant alkaloid known for its anti-inflammatory and anti-diabetic 

effects206. In vitro studies have reported that berberine can attenuate the expression of lipopolysaccharide-

induced pro-inflammatory genes such as MCP-1, iNOS, IL-1β, and IL-6 in mouse macrophages207. 

Furthermore, berberine is capable of reducing macrophage migration208, indicating a potential role for 

retarding the progression of atherosclerotic development. oxLDL accumulation within human 

macrophages is also reduced, owing to an upregulation of expression of ABCA1, a key gene implicated in 

the promotion of cholesterol efflux, after berberine treatment209. Although the expression of SRs were 

unaffected, the capability of berberine to increase cholesterol efflux from human macrophages might 

make it a possible nutraceutical for reducing foam cell formation. ApoE-deficient mice fed a western diet 
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and berberine for 8 weeks developed less atherosclerotic lesions compared with those on the control diet, 

in addition to a reduction in the levels of ICAM-1 and VCAM-1, and decreased oxidative stress210. In 

addition, high-fat fed obese mice treated with berberine for 36 days were found to have lower levels of 

serum total cholesterol211, which correlates with an earlier study in human hepatic cells that described a 

reduction in PCSK9 expression after berberine treatment212. As PCSK9 is an inhibitor of LDLr 

expression, berberine treatment was also found to increase the mRNA levels of LDLr212. These data 

highlight a possible mechanism by which berberine can exert its cardioprotective effects. 

Berberine has also been shown to reduce serum cholesterol levels in several clinical studies. In a study 

involving 91 Chinese patients with hypercholesterolaemia, berberine supplementation twice a day for 3 

months reduced serum levels of total cholesterol and LDL cholesterol, but did not alter serum HDL 

levels213. In a separate study, berberine treatment twice a day for 3 months lowered serum total 

cholesterol and LDL levels and increased serum HDL levels in 144 patients who were considered to have 

a low cardiovascular risk214. The effect of berberine treatment in combination with statins has also been 

assessed215. Participants with hypercholesterolaemia received either berberine, statins, or a combination 

of the two for 2 months. Both statins and berberine were individually able to lower serum total cholesterol 

and LDL-cholesterol levels. Furthermore, the combination of the two therapies provided an additive 

effect, reducing total cholesterol and LDL further compared with the individual therapies215. A daily 

combination of berberine, red yeast rice, and policosanol for 6 weeks in 50 individuals was also effective 

in reducing serum levels of both total cholesterol and LDL, as well as improving flow-mediated 

dilatation216. Together, these studies show that berberine has the potential of being used as cholesterol-

lowering nutraceutical either to prevent the development of atherosclerosis or to be taken in combination 

with statins to enhance LDL-lowering capability. 

Limitations and future directions  

The potential cardioprotective effects of all the nutraceuticals mentioned in this review from either 

preclinical studies or human studies are summarised in Table 1 and 2, respectively. One of the major 
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challenges involved in nutraceutical research is identifying whether the cardioprotective effects of an 

individual’s diet is attributable to a specific compound or as a result of a combination of elements. 

Therefore, when a potential nutraceutical is identified, its effectiveness needs to be assessed using robust 

randomised, controlled trials before it can be recommended as a dietary supplement. The majority of 

current clinical trials only compare the nutraceutical to a placebo or a nutraceutical in combination with 

other pharmaceutical therapies to a placebo. We therefore suggest that future clinical trials focusing on 

patients with subclinical atherosclerosis should investigate the effect of a nutraceutical alone or in 

combination with other pharmaceuticals and compare the outcomes to both a placebo group as well as 

those only receiving pharmaceutical intervention. This would allow the effectiveness of nutraceuticals to 

be directly compared to pharmaceutical only strategies in addition to identifying any 

additional/synergistic benefits that may occur from taking a combination.  

Another possible strategy to improve the identification of novel nutraceuticals is to include preclinical 

studies that focus on plaque regression rather than the prevention of atherosclerosis. The outcomes of 

such studies would be much more translatable to humans, as those requiring medicinal intervention are 

likely to already have established atherosclerosis. Another limitation of preclinical studies is that the 

doses of nutraceuticals used are sometimes much higher than those used in clinical trials, meaning the 

nutraceuticals often show no beneficial effect when they reach the clinical trial phase. Preclinical studies 

should employ a dose that is physiologically relevant to humans (i.e. a dose that is found within the 

bloodstream following consumption), rendering the outcomes of mechanistic studies more relevant with 

clinical studies. Furthermore, such trials need to be designed to also investigate clinically relevant end 

points as well as surrogate markers, and might consider including using younger participants and 

investigating markers of atherosclerosis regression. The development of new imaging techniques that 

allow the measurement of atherosclerotic plaques sizes within arteries or the identification of new 

biomarkers that predict atherosclerotic development will help in the design of these trials. 

A major advantage of nutraceuticals is that they can be taken safely over the life time of an individual, 

whereas pharmaceutical strategies are only administered once an atherosclerotic risk has been identified 



 

33 

 

and can result in adverse effects with prolonged use. The effects of using multiple nutraceuticals in 

combination must be examined further to determine whether any synergistic effects takes place and can 

lead to a greater reduction in atherosclerosis development compared to the individual components. 

Finally, nutraceuticals should not be seen as alternatives to current atherosclerosis therapies but rather as 

an additional complementary strategy to ensure both prevention and treatment of atherosclerosis in order 

to further reduce its global prevalence. 

Conclusions  

There is growing evidence that nutraceuticals are able to exert cardiovascular protective effects and 

reduce an individual’s risk of suffering a CVD-related event such as a MI or stroke. Further studies are 

required to fully evaluate the effectiveness of some of the nutraceuticals mentioned in this review. Such 

advances in our understanding of nutraceutical actions will lead to the identification of novel treatment 

and prevention strategies in order to reduce the global prevalence of CVD. 
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Key points 

 Atherosclerosis is a chronic inflammatory disease of the arterial walls and is the primary cause of 

cardiovascular disease. 

 Statins therapy are not effective in reducing cholesterol levels in a small proportion of users and 

prolonged use of statins can increase the risk of adverse effects. 

 Nutraceuticals are natural compounds derived from food sources that are known be beneficial 

against disease. 

 Several nutraceuticals have been shown to potentially exert anti-inflammatory effects making 

them promising compounds to explore for novel anti-atherogenic therapies. 

 Although nutraceuticals are showing some promise, large, robust clinical trials are required to 

determine their full effectiveness in attenuating/regressing atherosclerosis disease progression. 
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Figure 1. Formation of an atherosclerotic plaque. The expression of pro-inflammatory genes, 

including ICAM-1 and MCP-1, is triggered by the build-up of modified LDL in the neighbouring 

endothelial cells during the development of the initial lesion. Circulating monocytes are then recruited to 

the modified LDL accumulation and migrate into the intima and differentiate into macrophages. Once in 

the walls of the artery, the macrophages are able to take up the modified LDL and become lipid-laden 

foam cells, which can accumulate and form a fatty streak. During complex lesion formation, foam cell 

lysis by apoptosis and necrosis leads to the formation of a necrotic core, and together with defective 

efferocytosis, leads to the amplification of the inflammatory response. SMCs begin to migrate from the 

media to the intima and the ECM produced by them forms fibrous cap and stabilises the plaque. SMCs 

also transform to foam cells. During later stages of the complex lesion the plaque can become unstable 

owing to the inflammatory response, resulting in an inhibition of ECM formation, particularly collagen 

production by SMCs. The remaining ECM can then start to be degraded by proteases released by 

macrophages, resulting in an unstable lesion that can rupture and lead to thrombosis. These events can 

cause a myocardial infarction or stroke, depending on the location of plaque formation. ECM, 

Extracelular matrix; ICAM-1, Intercellular adhesion molecule-1; LDL, Low density lipoprotein; MCP-1, 

Macrophage chemoattractant protein-1; SMCs, Smooth muscle cells. 
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Figure 2. The stages of atherosclerosis development at which different nutraceuticals exert their 

potential beneficial effects. There are several major steps involved in the development of atherosclerosis 

including LDL oxidation, pro-inflammatory gene expression, monocyte migration, foam cell formation, 

and plaque stability. This figure highlights the stages at which the major nutraceuticals discussed in this 

review could aid in reducing atherosclerosis disease progression. LDL, Low density lipoprotein; PUFAs, 

Polyunsaturated fatty acids. 
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Table 1 | Summary of potential cardiovascular benefits of nutraceuticals in preclinical studies  

Nutraceutical Cardiovascular health benefits References 

Allicin  Reduced the expression of pro-inflammatory cytokines (IL-1β, IL-6 and 

TNF-α) in murine macrophages stimulated with lipopolysaccharide 

99 

  Decreased the inflammatory response by reducing leukocyte adherence 100 

  Attenuated the expression of MSR1, ACAT1 and CD36 in human 

monocyte-derived macrophages, resulting in reduced foam cell 

formation. 

103 

  Together with supplementation of H2S donors resulted in slowing of 

atherosclerosis development via reduction of lesion size in ApoE-

deficient mice  

104 

Berberine  Attenuated lipopolysaccharide-induced pro-inflammatory gene 

expression, including MCP-1, iNOS, IL-1β and IL-6, in mouse 

macrophages 

207 

  Reduced macrophage migration 208 

  Induced the expression of cholesterol efflux gene ABCA1, resulting in 

reduced intracellular accumulation of oxidised LDL in human 

macrophages 

209 

  Reduced serum total cholesterol levels and the number of 

atherosclerotic lesions in ApoE-deficient mice 

210,211 

Butyrate  Attenuated nitric oxide and pro-inflammatory cytokine production in 

lipopolysaccaride-stimulated murine macrophages 

162 

  Reduced plaque size by attenuating monocyte and macrophage 

migration in ApoE-deficient mice 

165 

Carnosine  Protected against foam cell formation in vitro 172 

  Improved key factors associated with plaque stability in murine 

diabetes-associated atherosclerosis models 

173 

  Increased serum HDL and reduced those of LDL in rats as well as 

increasing serum superoxide dismutase levels 

174 

Coenzyme Q10  Promoted macrophage reverse cholesterol transport and slowed the 

development of atherosclerosis, possibly via miR-378 

177 

  Increased cholesterol efflux in human monocyte-derived macrophages, 

which correlated with increased expression of the cholesterol efflux 

gene ABCG1 

179 

Curcumin  Decreased the production of pro-inflammatory cytokines in primary 

human monocytes 

186 

  Stimulated an anti-inflammatory M2 macrophage phenotype in vitro 187 

  Reduced oxidative stress and LDL oxidation, in addition to reducing 

aortic fatty streak development 

188,189 

  Dietary supplementation in ApoE and LDL receptor double knockout 

mice resulted in smaller atherosclerotic lesions after 4 months 

190 

Flavanols  Reduced the size of atherosclerotic plaques in ApoE*3-Leiden mice 

after 20 weeks  

129 

  Attenuated endothelial exocytosis (the process of releasing pro- 128 
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inflammatory cytokines and chemokines into the extracellular space) in 

HUVEC 

Hydroxytyrosol  Reduced the expression of the pro-inflammatory adhesion proteins 

VCAM-1 and ICAM-1 in HUVEC 

83 

  Wistar rats fed a diet containing hydroxytyrosol had higher plasma HDL 

levels and lower plasma LDL levels compared to control rats 

85,86 

  Attenuated atherosclerosis disease development in hyperlipaemic 

rabbits, shown by smaller atherosclerotic lesions 

87 

Lycopene  Inhibited LDL oxidation and cholesterol synthesis in vitro 196 

ω-3 PUFAs  Attenuated the expression of several key atherosclerotic markers in both 

murine and human macrophages 

36,37 

  Increased the expression of cholesterol efflux genes and decreased the 

expression of LDL-uptake genes 

39 

  Reduced atherosclerotic lesion size and increased plasma HDL levels in 

LDLr deficient mice 

38,42 

ω-6 PUFAs  PGE1, a metabolite of DGLA, improved plaque stability in rabbits by 

increasing the thickness of the fibrous cap 

63 

  GLA-enriched diets after 7 weeks reduced blood pressure in 

hypertensive rats 

66 

  DGLA dietary supplementation decreased the size of atherosclerotic 

plaque in murine models after 6 months 

65 

Phytosterols  Increased cholesterol efflux in human THP-1 macrophages 112 

  Decreased the size of the lesions as well as plasma LDL levels in mouse 

model systems 

113,115-117 

Resveratrol  Reduced foam cell formation by increasing cholesterol efflux in human 

THP-1 macrophages 

203 

  Reduced atherosclerotic lesions by approximately 50% in ApoE*3-

Lieiden.CEPT mice  

204 

Vitamin C  Improved eNOS activity and enhanced endothelial function 142,143 

 

ACAT-1, Acyl-CoA acyltransferase; ApoE, Apolipoprotein E; CHD, Coronary heart disease; CVD, 

Cardiovascular disease; DGLA, Dihomo-γ-linolenic acid; DHA, Docosahexaenoic acid; eNOS, 

Endothelial nitrogen oxide synthase; EPA, Eicosapentaenoic acid; GLA, γ-linolenic acid; H2S, Hydrogen 

sulphide; HDL, High density lipoprotein; HUVEC, human umbilical vein endothelial cells; ICAM-1, 

Intercellular adhesion molecule-1; IL, Interleukin; LDL, Low density lipoprotein; LDLr, LDL receptor; 

LPS, Lipopolysaccharide; MSR1, Macrophage scavenger receptor 1; MCP-1, Monocyte chemotactic 

protein-1; miR, Micro RNA; MMP, Matrix metalloproteinases; NO, Nitric oxide; oxLDL, Oxidised LDL; 

PGE1, Prostaglandin E1; PUFAs, Polyunsaturated fatty acids; TNFα, Tumour necrosis factor α; VCAM-

1, Vascular cellular adhesion molecule-1. 
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Table 2 Summary of potential cardiovascular benefits of nutraceuticals in human studies  

Nutraceutical Study type Size Observations References 

Allicin Clinical 152 Reduced lesion volume 106 

 Preliminary 19 Reduced coronary calcification, resulting in a 

diminished rate of atherosclerosis 

development 

107 

 Clinical 192 No change in LDL and HDL levels 109 

 Meta-analysis 2,987 Short term reduction in levels of serum LDL, 

total cholesterol and triacylglycerols but no 

long term benefits 

108 

Berberine Clinical 91 Reduced serum total cholesterol and LDL-

cholesterol levels. No change in serum HDL-

cholesterol levels 

213 

 Clinical 144 Reduced serum total cholesterol, LDL-

cholesterol, and HDL-cholesterol levels 

214 

 Clinical 63 Reduced serum total cholesterol levels and 

LDL-cholesterol levels. An additive effect 

was observed when berberine was taken in 

combination with statins 

215 

Butyrate Epidemiological 39,876 Trend for reduced risk of CVD-events, which 

were no longer significant after controlling 

for other confounding variables 

166 

 Epidemiological 46,032 Reduced risk of peripheral arterial disease 167 

 Epidemiological 78,779 Reduced risk of haemorrhagic stroke 168 

 Meta-analysis 336,244 Reduced risk of a CVD-event 169 

 Clinical 116 No cardiovascular benefits 170 

Carnosine Clinical 30 Improved insulin resistance with no change 

in blood pressure, serum cholesterol or CRP 

levels 

175 

Coenzyme Q10 Clinical 45 Reduced plasma levels of pro-inflammatory 

markers, and no changes in plasma levels of 

anti-inflammatory markers 

180 

 Meta-analysis 194 Improved endothelial function 181 

 Clinical 56 Enhanced endothelial function, but no 182 
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changes in blood pressure and serum CRP 

levels 

 Clinical 51 No changes in arterial stiffness, serum 

oxLDL levels, and serum CRP levels 

183 

 Clinical 65 CoQ10 and garlic supplementation reduced 

serum CRP levels, improved arterial stiffness 

and endothelial function 

184,185 

Curcumin Clinical 240 Reduced arterial stiffness 191 

 Clinical 32 Improved endothelial function 192 

Flavanols Clinical 27 Increased vasodilatation 130 

 Clinical 14 Increased vasodilatation, reduced oxLDL 

levels 

132 

 Clinical 40 Reduced circulating LDL levels 133 

 Clinical 60 Reduced expression of pro-inflammatory 

cytokines 

138 

 Clinical 17 Reduced ratio of total cholesterol to HDL 

cholesterol, but no change in any other CVD 

risk biomarkers 

139 

 Clinical 57 Enhanced endothelial function 134 

 Clinical 100 Enhanced endothelial function 136 

 Clinical 42 Enhanced endothelial function, reduced 

arterial stiffness 

137 

 Clinical 30 Reduced arterial stiffness, but no changes in 

blood pressure or endothelial function 

140 

 Clinical 20 Enhanced flow-mediated dilation in patients 

with congestive heart failure 

135 

Hydroxytyrosol Epidemiological 12,763 Reduced risk of CVD-event 79 

 Clinical 200 Correlation between phenolic content of 

olive oils and increased serum HDL levels 

89 

 Clinical 40 Reduced serum oxLDL levels 90 

 Clinical 30 Reduced serum oxLDL levels 91 

 Clinical 28 Reduced expression of inflammatory 

biomarkers 

92 
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 Clinical 26 Improved endothelial function, reduced 

serum oxLDL levels 

93 

 Clinical 7447 Reduced risk of CVD-event 94 

 Clinical 187 Reduced subclinical atherosclerosis in high 

risk patients 

95 

 Clinical 90 Reduced serum LDL, HDL and total 

cholesterol levels, decreased pro-atherogenic 

gene expression, but no changes in CRP 

levels 

96 

 Clinical 52 Improved endothelial function, reduced 

inflammatory markers 

97 

Lycopene Clinical 144 Reduced thickness of the intima and media in 

the carotid artery 

198 

 Epidemiological 264 Low serum levels of lycopene were 

associated with increased arterial stiffness 

199 

 Clinical 72 Improved endothelial function in those also 

receiving statins, but no change in arterial 

stiffness, serum CRP levels, or blood 

pressure 

200 

 Clinical 225 No change in blood pressure or arterial 

stiffness 

201 

ω-3 PUFAs Clinical 600 Reduced atherothrombotic risk 46 

 Clinical 2,033 Reduced number of CVD-events  49 

 Clinical 11,323 Reduced number of sudden cardiac deaths, 

but no change in serum total cholesterol, 

LDL, or HDL levels 

50 

 Clinical 18,645 Reduced number of major CVD-events, but 

no change in serum HDL or LDL levels 

51 

 Clinical 95 Increased plaque stability and reduced levels 

of pro-inflammatory cytokines 

52 

 Meta-analysis 396 No change in number of CVD-events 53 

 Meta-analysis 36,913 No change in cardiac mortality 54 

 Meta-analysis 20,485 No cardiovascular protective effects 

associated with omega-3 PUFA 

supplementation 

55 
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 Meta-analysis 68,680 No change in mortality risk 56 

 Epidemiological 160 Low serum DHA levels correlated to reduced 

endothelial function 

47 

 Clinical 29 Increased endothelial function and reduced 

arterial stiffness 

48 

ω-6 PUFAs Epidemiological 59 Reduced omega-3 and omega-6 PUFA levels 

associated with spontaneous CVD death 

67 

 Epidemiological 30 Reduced levels of omega-6 PUFAs found in 

the shoulder regions of plaques and in 

ruptured plaques compared to non-ruptured 

plaques 

68 

 Epidemiological 474 Reduced serum GLA levels correlated with 

increased risk of peripheral arterial disease 

69 

 Clinical 120 Reduced systolic blood pressure 70 

 Clinical 33 No anti-thrombotic effects observed 74 

 Epidemiological 2206 Increased arterial stiffness and serum CRP 

levels 

72 

 Epidemiological 501 Increased arterial stiffness 73 

 Clinical 12 Reduced serum LDL, total cholesterol and 

triacylglycerol levels 

71 

 Clinical 9570 Reduced serum cholesterol levels, but no 

reduction in the risk of a CVD-related event 

76 

Phytosterols Epidemiological 22,256 Reduced levels of serum LDL 111 

 Epidemiological 48 Raised ratio of serum phytosterol to 

cholesterol associated with higher risk of 

developing CHD 

125 

 Epidemiological 477 Increased number of sudden CVD deaths, 

however, the study failed to match other 

CVD risk factors between the different 

groups 

124,126 

 Clinical 233 No change in endothelium function and 

arterial stiffness. Reduced serum LDL levels 

118 

 Meta-analysis 1,308 Reduced levels of serum LDL, but no change 

in serum CRP levels 

119 
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Resveratrol Epidemiological 11,282 Reduced risk of CVD-event 205 

Vitamin C & E Epidemiological 19,496 Vitamin C reduced risk of CVD-event 147 

 Epidemiological 85,118 Vitamin C reduced prevalence of CAD 141 

 Clinical 46 Vitamin C increased vasodilatation. 149 

 Clinical 20 Vitamin C increased vasodilatation 150 

 Meta-analysis 1,129 Vitamin C increased endothelial function 151 

 Clinical 20 Vitamin C had no long-term cardiovascular 

protective effects 

156 

 Clinical 20,536 No change in number of CVD-events 157 

 Clinical 520 Reduced atherosclerosis progression in men 152 

 Meta-analysis 293,172 Vitamin C but not vitamin E was associated 

with reduced risk of CVD-event 

153 

 Clinical 2,002 Vitamin E supplementation reduced risk of 

non-fatal CVD-events, but no change in 

CVD-related deaths 

154 

 Clinical 30 Combined vitamin C and E supplementation 

improved arterial stiffness, flow-mediated 

dilation and oxidative stress levels 

155 

 Clinical 11,323 Vitamin E did not reduce risk of CVD-event 50 

 Clinical 9,541 Vitamin E did not reduce CVD deaths 158 

 Clinical 353 Vitamin E reduced serum oxLDL levels, but 

no change in intima-media thickness 

159 

 

CAD, coronary artery disease; CHD, Coronary heart disease; CRP, C-reactive protein; CVD, 

Cardiovascular disease; DHA, Docosahexaenoic acid; GLA, γ-linolenic acid; HDL, High density 

lipoprotein; LDL, Low density lipoprotein; oxLDL, Oxidised LDL; PUFAs, Polyunsaturated fatty acids. 

 


