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Abstract.
Optimization—minimization or maximization—in the lattice of

subsets is a frequent operation in Artificial Intelligence tasks. Ex-
amples are subset-minimal model-based diagnosis, nonmonotonic
reasoning by means of circumscription, or preferred extensions in
abstract argumentation. Finding the optimum among many admissi-
ble solutions is often harder than finding admissible solutions with
respect to both computational complexity and methodology. This
paper addresses the former issue by means of an effective method
for finding subset-optimal solutions. It is based on the relationship
between cardinality-optimal and subset-optimal solutions, and the
fact that many logic-based declarative programming systems pro-
vide constructs for finding cardinality-optimal solutions, for exam-
ple maximum satisfiability (MaxSAT) or weak constraints in Answer
Set Programming (ASP). Clearly each cardinality-optimal solution is
also a subset-optimal one, and if the language also allows for the ad-
dition of particular restricting constructs (both MaxSAT and ASP do)
then all subset-optimal solutions can be found by an iterative com-
putation of cardinality-optimal solutions. As a showcase, the compu-
tation of preferred extensions of abstract argumentation frameworks
using the proposed method is studied.

1 INTRODUCTION
In Artificial Intelligence, the task of set optimization, in the sense
of finding a set that is minimal or maximal with respect to set in-
clusion, frequently occurs. There are famous examples such as Cir-
cumscription [20] or Model-based Diagnosis that involve set mini-
mization. Computing preferred extensions of abstract argumentation
frameworks [12] is an example that involves set maximization.

Often, set optimization is an element that creates difficulties in im-
plementation and representation. For example, McCarthy had to re-
sort to Second-order logic for defining Circumscription of First-order
theories [20]. Also for computing preferred extensions, relatively so-
phisticated techniques are required, for instance QBFs rather than
propositional formulas [2].

There is another notion of set optimization, finding a set that
has minimal or maximal cardinality, which has more readily avail-
able system support nowadays. The most prominent examples of
languages and systems that support cardinality optimization are
MaxSAT, Constraint Programming, and Answer Set Programming
(ASP).
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In this paper, we show how set optima can be computed by a
general algorithm that employs cardinality optimizing subroutines,
provided that the underlying languages allow for expressing simple
constraints. Algorithm MCSes in Figure 2 of [19], which computes
Minimal Correction Sets4 of a propositional formula, bears a few
similarities to our algorithms. However, it is also different in sev-
eral respects, most notably it is formulated for solving one particular
problem only, assumes propositional formulas as the representation
formalism, and does not employ a cardinality optimization oracle
explicitly. To the best of our knowledge a general method applica-
ble in a variety of representation formalisms and for unspecific set
optimization problems settings has not been proposed in the litera-
ture before. We develop two instantiations of the general method, for
MaxSAT and for ASP, and show that they are suitable.

There are two more recent software tools that also support comput-
ing set optimization problems when the underlying language is ASP:
asprin [9] and D-FLATˆ2 [8]. The scope of the tool asprin is actu-
ally reasoning with preferences, but as a special case one can express
preferences such that only set optimal solutions remain. The required
preferences come with the predefined library of asprin. The under-
lying algorithms of asprin are very different from those presented in
this paper. D-FLATˆ2 builds on dynamic programming and exploits
tree decomposition in order to solve set optimization problems and is
therefore also very different from the method that we will present in
this paper. In the realm of ASP, the tool metasp [17] can be seen as
a predecessor of asprin, which does not seem to be maintained any
longer. It relies on reification of rules and exploits a programming
pattern known as saturation for set optimization, which is also very
different from the method described in this paper.

We then turn our attention to a showcase application, computing
preferred extensions of abstract argumentation frameworks. Dung’s
theory of abstract argumentation [12] is a unifying framework able
to encompass a large variety of specific formalisms in the areas of
nonmonotonic reasoning, logic programming and computational ar-
gumentation. It is based on the notion of argumentation framework
(AF ), consisting of a set of arguments and a binary attack relation
between them. Arguments can thus be represented by nodes of a di-
rected graph, and attacks by arcs. The nature of arguments is left
unspecified: it can be anything from logical statements to informal
natural language text. For instance, [24] shows how argumentation
can be efficiently used for supporting critical thinking and intelli-
gence analysis in military-sensitive contexts.

Different argumentation semantics declare the criteria to deter-

4 It is worth noticing that algorithms exploiting minimal correction sets have
been proposed for computing argumentation semantics extensions, in par-
ticular for semi-stable, ideal, and eager semantics [25], but not for preferred
semantics which is our main test-case in this paper.



mine which arguments emerge as “justified” among conflicting ones,
by identifying a number of extensions, i.e. sets of arguments that can
“survive the conflict together”. In [12] four “traditional” semantics
were introduced, namely complete, grounded, stable, and preferred
semantics. For a complete overview of subsequently proposed alter-
native semantics, the interested reader is referred to [3].

The main computational problems in abstract argumentation in-
clude decision—e.g. determine if an argument is in all the extensions
prescribed by a semantics—and construction problems, and turn out
to be computationally intractable for most argumentation semantics
[13]. In this paper we focus on the extension enumeration problem,
i.e. constructing all extensions for a given AF : its solution provides
complete information about the justification status of arguments and
allows for solving the other problems as well.

Our general method allowed for the definition and implementa-
tion of two novel algorithms for enumerating preferred extensions:
prefMaxSAT (based on a MaxSAT solver) and prefASP (based
on an ASP solver). Both are evaluated using benchmarks from the
International Competition on Computational Models of Argumen-
tation (ICCMA2015). We report on a variety of experiments: the
first focuses on prefASP and starts with comparing the use of dif-
ferent solver configurations for prefASP, followed by a compari-
son of prefASP to asprin and D-FLATˆ2, and eventually compar-
ing prefASP to the dedicated argumentation solver ASPARTIX-
V. Eventually we compare prefASP and prefMaxSAT to the IC-
CMA2015 competition winner Cegartix. The experiments show that
despite their conceptual simplicity, our software tools are competitive
with the best available ones.

2 ABSTRACT METHODOLOGY

The proposed methodology applies to a variety of knowledge repre-
sentation formalisms, we therefore consider an abstract setting. We
define a knowledge base K to be associated with a set σ(K) of solu-
tions, and we assume that each s ∈ σ(K) is a set. We also use a set
restriction operator ↓O such that s↓O = s ∩ O, the idea being that
s↓O identifies the solution elements that are relevant for optimiza-
tion. We also assume a composition operator K1 ◦ K2 to be present
that allows to compose two knowledge bases K1 and K2. We next
define a few optimization criteria for solutions of knowledge bases.

Definition 1 LetK be a knowledge base andR be a set (of elements
occuring in solutions of K). Define:

Smax
R (K) = {s | s ∈ σ(K), @s′ ∈ σ(K) : s′↓R ⊃ s↓R}

Smin
R (K) = {s | s ∈ σ(K), @s′ ∈ σ(K) : s′↓R ⊂ s↓R}

Cmax
R (K) = {s | s ∈ σ(K), @s′ ∈ σ(K) : |s′↓R| > |s↓R|}

Cmin
R (K) = {s | s ∈ σ(K), @s′ ∈ σ(K) : |s′↓R| < |s↓R|}

While Smin
R (K) and Smax

R (K) occur in diverse applications of
knowledge representation and reasoning, it often happens that the
computational complexity of these tasks increases (under standard
assumptions) compared to Smin

R (K) and Smax
R (K). For example,

deciding whether σ(K) = ∅ is co-NP-complete (in the size of K) if
K is represented using a propositional formula and σ(K) is the set
of satisfying assignments, where each assignment is represented as
the set of true variables. In this setting, computing Smax

R (K) is then
ΣP

2 -hard, as showing the optimality of a solution may require expo-
nentially many co-NP checks, while Cmax

R (K) is in ∆P
2 , requiring

at most a polynomial number of co-NP checks. Note that this does

not necessarily have practical consequences, because at the moment
all known algorithms to solve these problems require at least expo-
nential time.

There are also representational repercussions. Still assuming K
to be a propositional formula, one cannot find a propositional for-
mula of polynomial size that encodes any of Smin

R (K), Smax
R (K),

Cmax
R (K), and Cmin

R (K) (if NP 6= ΣP
2 , which is currently un-

known, but often conjectured). If K has been modelled using ASP, it
is easy to encodeCmax

R (K) andCmin
R (K) because of the availability

of weak constraints (or optimization constructs). In fact, one can use
ASP also for encoding Smin

R (K) and Smax
R (K), because ASP can

express all problems in ΣP
2 . We will discuss this further in Section 3.

In this paper, we relate Smax
R (K) to Cmax

R (K) (and Smin
R (K) to

Cmin
R (K)). We first observe that each cardinality optimal solution is

also subset optimal.

Observation 1 For any knowledge base K and set R, Cmax
R (K) ⊆

Smax
R (K) and Cmin

R (K) ⊆ Smin
R (K).

This observation holds because if any s ∈ Cmax
R (K) were not in

Smax
R (K), then there would be some s′ ∈ σ(K) such that s′↓R ⊃
s↓R and clearly |s′↓R| > |s↓R| then holds (and symmetrically for
minimization).

This implies that when the task is to compute one subset optimal
solution, one can instead safely compute one cardinality optimal so-
lution. When, however, the computational task involves an enumera-
tion of all subset optimal solutions, one is faced with incompleteness,
as not all subset optima are cardinality optimal.

Example 1 Let K1 be such that σ(K1) = {{a, b}, {b}, {c}}
and let R1 = {a, b, c}. Then Smax

R1
(K1) = {{a, b}, {c}} while

Cmax
R1

(K1) = {{a, b}}.

This can be overcome by an iterative approach, in which first car-
dinality optimal solutions are computed. In the next stage, the knowl-
edge base is extended in a way that it no longer admits the solutions
already found or any subsets (for maximization) or supersets (for
minimization) thereof.

Definition 2 Given a knowledge base K, a set R, and a set S ⊆
σ(K), letN⊆(K, R, S) denote a knowledge base such that

σ(K ◦ N⊆(K, R, S)) = σ(K) \ {s′ | s′↓R ⊆ s↓R ∧ s ∈ S}.

Symmetrically, letN⊇(K, R, S) denote a knowledge base such that

σ(K ◦ N⊇(K, R, S)) = σ(K) \ {s′ | s′↓R ⊇ s↓R ∧ s ∈ S}.

It depends on the formalism used for the knowledge base, whether
N⊆(K, R, S) and N⊇(K, R, S) can be created, and in particu-
lar whether they can be represented in a concise way. It also de-
pends on the formalism whether there is a uniform way of encoding
N⊆(K, R, S) and N⊇(K, R, S), or whether one has to rely on a
representation that depends on the structure of K.

The iterative approach is formalized for subset maximality in Al-
gorithm 1 and for subset minimality in Algorithm 2. Note that prac-
tical algorithms will usually not collect all solutions in the output
because of space considerations, but rather output them immediately
as they are computed.

Theorem 1 For a knowledge base K and set R, Algorithm 1 com-
putes Smax

R (K), and Algorithm 2 computes Smin
R (K).



Algorithm 1 Enumerating Smax
R (K) by means of Cmax

R (K)

1: Input: K, R
2: Output: Smax

R (K)
3: Ki := K
4: S := ∅
5: Si := Cmax

R (Ki)
6: while Si ! = ∅ do
7: S := S ∪ Si

8: Ki := Ki ◦ N⊆(Ki, R, Si)
9: Si := Cmax

R (Ki)
10: end while
11: return S

Algorithm 2 Enumerating Smin
R (K) by means of Cmin

R (K)

1: Input: K, R
2: Output: Smin

R (K)
3: Ki := K
4: S := ∅
5: Si := Cmin

R (Ki)
6: while Si ! = ∅ do
7: S := S ∪ Si

8: Ki := Ki ◦ N⊇(Ki, R, Si)
9: Si := Cmin

R (Ki)
10: end while
11: return S

Proof 1 (Sketch) We show that Algorithm 1 computes Smax
R (K).

Symmetric arguments prove that Algorithm 2 computes Smin
R (K).

We first observe that each assignment of variable Si contains only
elements of Smax

R (K). When variable Si is first initialized in line 5
of Algorithm 1, Observation 1 guarantees the claim. For each later
assignment, by construction only s ∈ σ(K) are assigned, and any
such s is such that @s′ ∈ σ(K) : s′↓R ⊃ s↓R (otherwise |s′↓R| >
|s↓R| would hold). It is also clear that the algorithm terminates (if
σ(K) is finite).

Now observe that each s ∈ Smax
R (K) is assigned once to Si in

Algorithm 1. Indeed, the first assignment contains all elements in
Smax
R (K) that are of maximum cardinality, the next iteration con-

tains all elements in Smax
R (K) of the next-highest cardinality, and so

forth down to the elements of Smax
R (K) of least cardinality in the last

assignment. In this way, all elements of Smax
R (K) will be contained

in S when Algorithm 1 terminates.

It should be pointed out that Algorithms 1 and 2 also work when
instead of Cmax

R (Ki) (or Cmin
R (Ki)) any non-empty subset thereof

is assigned to Si in lines 5 and 9. In particular, for the instantiation of
the framework using MaxSAT that will be discussed in Section 3.1,
many MaxSAT solvers calculate only one solution, rather than all.

Let us note that the number of subcalls to Cmax
R (Ki) (resp.,

Cmin
R (Ki)) is at most |Smax

R (K)| (resp., |Smin
R (K)|). The cardinal-

ity of these sets can be exponential in K in the worst case. That also
means that in the worst case an exponential number of knowledge
basesN⊇(Ki, R, Si) (orN⊆(Ki, R, Si)) are composed toK, which
could lead to a use of exponential space. Note however, that this only
occurs if there is an exponential number of solutions to be generated
by the algorithm. This only occurs if s1↓R * s2↓R and s2↓R * s1↓R
holds for almost all solutions s1 and s2 of σ(K).

Note that there is also a contrast to more traditional algorithms that
invoke a co-NP oracle call for each s ∈ σ(K), especially if they run
a test on each subset of a found solution. In that setting, the number of

subcalls that take exponential time will usully be much greater than
|Smin

R (K)| (resp., |Smin
R (K)|). We view this feature of our algorithm

as one of the main advantages over more traditional methods.
Algorithm 1 bears some similarities to Algorithm MCSes in Fig-

ure 2 of [19]. Algorithm MCSes computes Minimal Correction Sets
of a propositional formula. Apart from the fact that is solves a much
more specific problem and assumes a specific knowledge representa-
tion formalism. In fact, it iteratively increases the cardinality of the
(relevant portion of the) solution to be computed and enforces the
cardinality by means of formulas thus imitating the behaviour of a
MaxSAT. The clauses that Algorithm MCSes adds follow the same
idea ofN⊆(Ki, R, Si), and correspond toN⊆sat(Ki, R, Si) that will
be defined in Section 3.1.

3 CONCRETIZATIONS USING MaxSAT AND
ASP

We now show how to instantiate the abstract method described in
Section 2 using MaxSAT and ASP.

3.1 SAT and MaxSAT
In Boolean satisfiability (SAT) [7], one asks for satisfying assign-
ments of a propositional formula ϕ. We will assume that the proposi-
tional variables are taken from the infinite set L and use the standard
connectives ¬,∧,∨,⊃. SAT solvers usually assume that ϕ is repre-
sented in conjunctive normal form, as a set of clauses.

In this setting, the terminology of Section 2 is instantiated as fol-
lows: K is a propositional formula ϕ over L, or a set of clauses over
L. The solutions σ(K) are the satisfying assignments of K, repre-
sented as sets of propositional variables that are true in the respective
assignment. The operation K1 ◦ K2 is either K1 ∧ K2 if K1,K2 are
formulae, or K1 ∪K2 if K1,K2 are sets of clauses. In the sequel, we
will assume the clause notation.

In order to encode Cmax
R (K) and Cmin

R (K), one can make use
of weighted MaxSAT [18]. In weighted MaxSAT, one can assign a
numerical weight to some of the clauses (known as soft clauses), and
these clauses do not necessarily have to be satisfied. The solutions
of a MaxSAT problem are determined among all assignments that
satisfy the non-weighted clauses (hard clauses), and are those that
maximize the sum of weights of the soft clauses.

Definition 3 Given a set of clauses K and R ⊂ L, we define the
following MaxSAT problem

Cmax
R,sat(K) ≡ K ∪ {1 : {r} | r ∈ R}

consisting of hard clauses K and soft clauses {r} (unit clauses) for
each r ∈ R, all with the same positive weight 1 (any other weight
could be used, as long it is the same for all soft clauses).

In a similar way,

Cmin
R,sat(K) ≡ K ∪ {1 : {¬r} | r ∈ R}

consists of hard clauses K and soft clauses {¬r} (unit clauses) for
each r ∈ R, again all with the same weight.

It is clear that Cmax
R (K) corresponds to the solutions of

Cmax
R,sat(K) andCmin

R (K) corresponds to the solutions ofCmin
R,sat(K).

For obtaining Smax
R (K) and Smin

R (K), one would have to resort
to Quantified Boolean Formulae (QBFs), which we do not discuss in
detail in this paper.



Example 2 An instantiation of Example 1 would be the
Ksat

1 = {{¬a,¬c}, {¬b,¬c}, {b, c}}, with σ(Ksat
1 ) =

{{a, b}, {b}, {c}}. Then, with R1 = {a, b, c}, Cmax
R1,sat(K

sat
1 ) =

{{¬a,¬c}, {¬b,¬c}, {b, c}, 1 : {a}, 1 : {b}, 1 : {c}}, and the
only optimal solution of Cmax

R1,sat(K
sat
1 ) is {a, b}, which is equal to

Cmax
R1

(Ksat
1 ).

Finally, we consider how to encode N⊆(K, R, S) and
N⊇(K, R, S) in SAT. For N⊆(K, R, S), the idea is to require
for each solution in S that at least an element of R not in that
solution should be true. This inhibits the solution and any subset
(restricted to R) of it. For N⊇(K, R, S), we require for each
solution in S that at least one variable in R should be false. In this
way the solution itself and any superset is inhibited.

Definition 4 Given a set of clauses K, R ⊂ L, and S ⊆ σ(K), let

N⊆sat(K, R, S) ≡
∧
s∈S

∨
v∈R\s

v

and in a similar way

N⊇sat(K, R, S) ≡
∧
s∈S

∨
v∈R∩s

¬v .

Note that these formulas are in clause form. It is clear that
N⊆sat(K, R, S) and N⊇sat(K, R, S) restrict the solutions in the way
required byN⊆(K, R, S) andN⊇(K, R, S).

Example 3 Continuing Example 3, if S1 = {{a, b}}, then
N⊆sat(Ksat

1 , R1, S1) = {{c}}, therefore the only optimal solution
of Cmax

R1,sat(K
sat
1 ) ∪N⊆sat(Ksat

1 , R1, S1) is {c}.

3.2 Answer Set Programming
In Answer Set Programming (ASP) one asks for the answer sets (of-
ten also called stable models) of a logic program. The full language
specification can be found at https://www.mat.unical.it/
aspcomp2013/ASPStandardization, below we provide a
brief overview of the concepts relevant to this work.

The basic constructs in ASP logic programs are of the form

h1 | . . . | hk : − b1, . . . , bm, not bm+1, . . . , not bn.

where 0 ≤ k, 0 ≤ m ≤ n and the hi and bj are function-free first-
order atoms. When k > 0, it is called a rule, otherwise a constraint.
If k = 1 and m = n = 0, the rule is called a fact. The part left of the
construct : − is called head, the part right of it is called body. Sets of
rules and constraints are called programs.

Programs with variables are thought of as shorthand for their
ground (variable-free) versions with respect to the Herbrand universe
of the program. Answer sets are defined on ground programs: they
are Herbrand models of the program, which satisfy an additional sta-
bility condition.

The language of ASP consists of quite a lot more constructs. One
relevant for this paper is the weak constraint, which takes the form

:∼ b1, . . . , bm, not bm+1, . . . , not bn.

An interpretation that satisfies all literals to the right of :∼ will incur
a (uniform) penalty. Answer sets of programs with weak constraints
are then those answer sets of the weak-constraint-free portion that
minimize the penalties incurred by weak constraints.

For ASP, the terminology of Section 2 is instantiated as follows:
K in this setting is a weak-constraint-free program, and σ(K) is the
set of its answer sets. The operation K1 ◦ K2 simply is the set union
of the two programs K1 and K2.

In ASP, it is possible to encodeCmax
R (K) andCmin

R (K) by means
of weak constraints, similar to the MaxSAT approach described ear-
lier.

Definition 5 Given a set of clauses K and R ⊂ L, we define

Cmax
R,asp(K) = K ∪ {:∼ not r. | r ∈ R}

and in a similar way

Cmin
R,asp(K) = K ∪ {:∼ r. | r ∈ R} .

It is easy to verify that Cmax
R (K) corresponds to the answer

sets of Cmax
R,sat(K) and Cmin

R (K) corresponds to the answer sets of
Cmin

R,sat(K).
ASP also allows for encoding Smax

R (K) and Smin
R (K), but this

requires rather involved, and often ad-hoc programs. A general ap-
proach has been presented in [17], but it relies on reification tech-
niques, which is often detrimental for performance.

Let us now consider how to obtain N⊆(K, R, S) and
N⊇(K, R, S) in ASP. For N⊆(K, R, S), one requires for each so-
lution in S that not all elements of R outside that solution should be
false. This inhibits the solution itself and any subset (restricted to R)
of it. ForN⊇(K, R, S), we require for each solution in S that not all
of its elements inR should be true. In this way the solution itself and
any superset is inhibited.

Definition 6 Given a set of clauses K, R ⊂ L, and S ⊆ σ(K), let

N⊆asp(K, R, S) =
{: − not a1, . . . , not an. | s ∈ S,R \ s = {a1, . . . , an}}

and in a similar way

N⊇asp(K, R, S) =
{: − a1, . . . , an. | s ∈ S,R ∩ s = {a1, . . . , an}} .

Again, it is easy to verify thatN⊆asp(K, R, S) andN⊇asp(K, R, S)
restrict the answer sets in the way required by N⊆(K, R, S) and
N⊇(K, R, S).

4 METHODOLOGY SHOWCASE: ABSTRACT
ARGUMENTATION

In this section we show how to use the proposed methodology
for enumerating all preferred extensions of abstract argumentation
frameworks. After a short background on abstract argumentation, we
introduce a MaxSAT-based solver (prefMaxSAT) and an ASP-based
solver (prefASP) that employ the methods described in Section 3.

4.1 Background on Abstract Argumentation

An argumentation framework [12] consists of a set of arguments5

and a binary attack relation between them.

5 In this paper we consider only finite sets of arguments: see [4] for a discus-
sion on infinite sets of arguments.
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Figure 1. The AF ΓM for the hypertension problem

Definition 7 An argumentation framework (AF ) is a pair Γ =
〈A,R〉 where A is a set of arguments and R ⊆ A × A. We say
that b attacks a iff 〈b, a〉 ∈ R, also denoted as b→ a. The set of at-
tackers of an argument a will be denoted as a− , {b : b → a}, the
set of arguments attacked by a will be denoted as a+ , {b : a→ b}.

Each AF has an associated directed graph where the vertices are
the arguments, and the edges are the attacks.

As an intuitive example from [6], let a be the argument “Patient
has hypertension so prescribe diuretics;” b: “Patient has hypertension
so prescribe betablockers;” and c: “Patient has emphysema which is
a contraindication for betablockers.” Intuitively, assuming that only
one treatment is possible at the very same time, a attacks b and vice
versa, while c suggests that b should not be the case (c attacks b).
Therefore, let ΓM = 〈AM ,RM 〉 such that, AM = {a, b, c} and
RM = {〈c, b〉, 〈b, a〉, 〈a, b〉}. ΓM is depicted in Fig. 1.

The basic properties of conflict–freeness, acceptability, and admis-
sibility of a set of arguments are fundamental for the definition of
argumentation semantics.

Definition 8 Given an AF Γ = 〈A,R〉:

• a set S ⊆ A is a conflict–free set of Γ if @ a, b ∈ S s.t. a→ b;
• an argument a ∈ A is acceptable with respect to a set S ⊆ A of

Γ if ∀b ∈ A s.t. b→ a, ∃ c ∈ S s.t. c→ b;
• the function FΓ : 2A → 2A such that FΓ(S) = {a |

a is acceptable w.r.t. S} is called the characteristic function of Γ;
• a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of

Γ and every element of S is acceptable with respect to S of Γ.

In the AF ΓM of Fig. 1, {a} is an admissible set because it is
conflict–free (there is no such attack 〈a, a〉) and each element of the
set (i.e. a) is defended against the attack it receives (i.e. a is attacked
by b, but, in turn, b is attacked by a).

An argumentation semantics S prescribes for any AF Γ a set of
extensions, denoted as ES(Γ), namely a set of sets of arguments satis-
fying the conditions dictated by S. Here we recall the definition of the
grounded semantics, denoted as GR, and of the preferred semantics,
denoted as PR.

Definition 9 Given an AF Γ = 〈A,R〉:

• a set S ⊆ A is the grounded extension of Γ, if S is the least (w.r.t.
set inclusion) fixed point of the characteristic function FΓ;

• a set S ⊆ A is a preferred extension of Γ, i.e. S ∈ EPR(Γ), if S is
a maximal (w.r.t. ⊆) admissible set of Γ.

While {a} is an admissible set for ΓM , it is not a preferred ex-
tension. In fact, {c, a} is also an admissible set which contains {a}.
Since there are no admissible supersets of {c, a}, it is therefore max-
imal and thus a preferred extension, the only one for ΓM .

4.2 Admissible Extensions in SAT and ASP
As discussed in [5, 11] the search for admissible sets can be encoded
using propositional logic formulae.

Definition 10 Given an AF Γ = 〈A,R〉, L a set of propositional
variables, and v : A → L, let admsatΓ be

∧
a∈A

v(a) ⊃
∧

b∈a−

¬v(b)

 ∧
v(a) ⊃

∧
b∈a−

∨
c∈b−

v(c)


The models of admsatΓ correspond to the admissible sets of Γ.

For the example AF ΓM , admsatΓM is

(v(a) ⊃ ¬v(b)) ∧ (v(a) ⊃ (v(a) ∨ v(c)))∧
(v(b) ⊃ (¬v(a) ∧ ¬v(c))) ∧ (v(b) ⊃ (v(b) ∧ ⊥))∧
(v(c) ⊃ >) ∧ (v(c) ⊃ >)

For ASP, an encoding for admissible extensions is rather straight-
forward, see [14, 11].

Definition 11 Given an AF Γ = 〈A,R〉, for each a ∈ A a fact

arg(a).

is created and for each (a, b) ∈ R a fact

att(a, b).

is created (this corresponds to the apx file format in the ICCMA com-
petition). Together with the program

in(X) : −not out(X), arg(X).

out(X) : −not in(X), arg(X).

: −in(X), in(Y), att(X, Y).

defeated(X) : −in(Y), att(Y, X).

not defended(X) : −att(Y, X), not defeated(Y).

: −in(X), not defended(X).

we form admaspΓ and there is a one-to-one correspondence between
answer sets of admaspΓ and admissible extensions.

Different from the SAT encoding, the ASP encoding only changes
facts for different AFs, the main program remains equal.

4.3 Preferred Extensions via Algorithm 1
We can now use our methodology in order to step from admissi-
ble to preferred extensions. Indeed, if K encodes admissible exten-
sions of an AF and R is the language part encoding the extensions,
then Smax

R (K) encodes preferred extensions. We can then use Algo-
rithm 1 to compute them. The two concretizations then give rise to
two solvers, prefMaxSAT and prefASP, described in the following.

For prefMaxSAT, given an AF Γ = 〈A,R〉 and v : A → L, we
use Algorithm 1 with input K being admsatΓ and input R being the
image of v, in the following referred to as img(v). In lines 5 and 9
of Algorithm 1, we use a MaxSAT solver for obtaining one solution
of Cmax

img(v),sat(Ki). In line 8,N⊆sat(Ki, img(v), Si) is used.
For prefASP, given anAF Γ = 〈A,R〉, we use Algorithm 1 with

input K being admaspΓ and input R being {in(a) | a ∈ A}, in the
following referred to as I(A). In lines 5 and 9 of Algorithm 1, we
use an ASP solver for obtaining all answer sets of Cmax

I(A),asp(Ki). In
line 8,N⊆asp(Ki, I(A), Si) is used.

Apart from the encodings and underlying solvers, there is also a
difference in the fact that prefASP computes all cardinality-optimal
solutions in one go, while prefMaxSAT computes one at a time.



5 EXPERIMENTAL ANALYSIS

In order to evaluate the efficiency of the introduced algorithms, we
have carried out an experimental analysis where performance is ana-
lyzed from different perspectives. After describing the general setup,
we first report on an experiment for choosing a parameter setting
in the backend solver of prefASP. Next we report on a comparison
of prefASP with asprin and D-FLATˆ2. As discussed in the Intro-
duction, these systems also support set optimization in an ASP set-
ting, but use very different underlying algorithms. This is followed
by a comparison to dedicated argumentation systems, in which we
compare prefASP with ASPARTIX-V, since ASPARTIX-V is also
based on ASP. Finally, we compare both prefASP and prefMaxSAT
with Cegartix, which is the state-of-the-art solver, in the sense that
it won the ICCMA2015 competition. These comparisons are deliber-
ately split up into small pairings, in order to have a crisper picture of
the relative performance measure. Indeed, the IPC score depends on
the solvers considered in the comparison, while PAR10 and coverage
are specific to a single solver. Experiments do not need to be re-run
for presenting results together: however, comparisons would be less
informative given the changes in the IPC score.

5.1 Experimental Settings

prefMaxSAT has been implemented in C++, and exploits the AS-
Pino MaxSAT solver [1]. It should be noted that prefMaxSAT can
be used with any MaxSAT system supporting the DIMACS format.
The ASP-based algorithm prefASP has been implemented as a bash
script using basic tools like sed and grep and exploits clingo 4.5.2
[16] as ASP solver.

The experiments were conducted on a cluster with computing
nodes equipped with 2.5 GHz IntelTM Core 2 Quad Processors, 4
GB of RAM and Linux operating system. A cutoff of 900 seconds—
wallclock time—was imposed to compute the preferred extensions
for each AF . For each involved solver we recorded the overall re-
sult: success (if it finds each preferred extension), crashed, timed-out
or ran out of memory. In fact, in our experimental evaluation all the
unsuccessful runs are due to time-out. Experiments have been con-
ducted on the ICCMA2015 benchmarks [23], which is a set of ran-
domly generated 192 AF s. They have been generated considering
three different graph models, in order to provide different levels of
complexity. More details can be found on the ICCMA website.6

The performance measures reported in this paper are the Penalised
Average Runtime and the International Planning Competition (IPC)
score.

The Penalised Average Runtime (PAR score) is a real number
which counts (i) runs that fail to find all the preferred extensions
as ten times the cutoff time (PAR10) and (ii) runs that succeed as the
actual runtime. PAR scores are commonly used in automated algo-
rithm configuration, algorithm selection, and portfolio construction,
because using them allows runtime to be considered while still plac-
ing a strong emphasis on high instance set coverage.

The IPC score, borrowed from the Planning community, is defined
as follows:

• For each test case (in our case, each testAF ) let T ∗ be the best ex-
ecution time among the compared systems (if no system produces
the solution within the time limit, the test case is not considered
valid and ignored).

6 http://argumentationcompetition.org

• For each valid case, each system gets a score of 1/(1 +
log10(T/T ∗)), where T is its execution time, or a score of 0 if
it fails in that case. Runtimes below 1 second get by default the
maximal score of 1.

The IPC score for a system is the sum of its scores over all the
valid test cases.

It should be noted that the IPC score depends on the ensemble
of tested systems, that is, it is a relative measure, which depends on
the experimental context. Indeed, in the following, the IPC scores of
prefASP vary depending on the different experimental settings. In
contrast to this, the PAR10 score of prefASP remains equal, as this
is an absolute score.

5.2 Comparison of prefASP Using Different Solver
Configurations

Clingo offers several different solver configurations (inherited from
the clasp solver used in clingo) which correspond to different heuris-
tic and search setups, see [15] for detailed explanations. As a first
analysis, we investigated how robust prefASP is with respect to
these configurations, and, as a by-product, we determined the best-
performing configuration to be used for comparison with to other
systems.

Table 1. Comparison of different Clingo solver configurations, that can be
exploited by prefASP, on the ICCMA2015 benchmarks. Results are shown

in terms of IPC score (maximum achievable is 192.0), percentages of
success (% Success) and PAR10.

IPC score % Success PAR10

Crafty 183.7 100.0 23.1
Frumpy 178.6 99.5 75.0
Jumpy 172.0 99.5 82.3
Many 177.4 99.5 84.8

Table 1 shows a comparison of the different solver configurations,
in terms of IPC score, percentage of successfully analysed AFS and
PAR10, on the ICCMA2015 benchmarks. It can be observed that all
configurations perform relatively similar to each other, implying that
the particular chosen configuration is not critical for the performance
of prefASP.

However, there is one winning configuration: the Crafty configu-
ration allows prefASP to enumerate preferred extensions of all the
considered AF s, and to provide solutions faster. This configuration
is geared towards “crafted” problems, which also makes sense in the
context of the considered benchmarks. Therefore, in the rest of the
experimental analysis the Crafty configuration will be considered
for prefASP.

5.3 Comparison with Existing General Algorithms

We now turn to general tools that allow for easy representation and
effective solution of subset optimization problems. To the best of our
knowledge, the only tools of this kind are asprin [9] (with its prede-
cessor metasp) and D-FLATˆ2 [8], which we have discussed in the
Introduction.

Actually, D-FLATˆ2 uses the computation of preferred extensions
as an example. When we followed the instruction provided by the



authors7, we were able to compute the preferred extensions of small
AF s, but the system was already struggling with resource consump-
tion on medium sized instances. On the ICCMA2015 benchmarks,
the system ran out of memory very quickly, and we did not obtain
any solutions for any of the ICCMA2015 benchmarks. This is prob-
ably due to the fact that ICCMA instances have large tree-width and
D-FLATˆ2 relies heavily on tree decomposition. For this reason, in
the remainder of this section we focus our comparison on asprin.

As asprin is based on ASP, the most natural comparison is against
the ASP implementation of the proposed approach, namely prefASP.
For asprin, we used clingo 4.5.2, the same version that is used as a
backend for prefASP.

As input to asprin we use the program admaspΓ in Definition 11
together with the following preference definition:

#preference(p1, superset){
in(X) : arg(X)

}.
#optimize(p1).

which makes asprin compute those answer sets, which are subset
maximal for atoms with the predicate in.

Table 2. Comparison of prefASP and asprin, on the ICCMA2015
benchmarks. Results are shown in terms of IPC score (maximum achievable

is 192.0), percentages of success (% Success) and PAR10.

IPC score % Success PAR10

prefASP 191.2 100.0 23.1
asprin 157.8 100.0 44.9

The results of comparison between asprin and prefASP per-
formed on the ICCMA2015 benchmarks for enumerating preferred
extensions are shown in Table 2. Results indicate that the proposed
prefASP system is significantly faster: prefASP achieves an IPC
score of 191.2 versus 157.8 of asprin. According to the results,
prefASP is the fastest system on 187 of the considered AF s. This
is also confirmed by the PAR10 scores; on average asprin is about
20 seconds slower than prefASP, while in terms of coverage, both
the considered systems are able to successfully analyse all the 192
AF s of the benchmark set. With regard to the observed performance
difference, our conjecture is that asprin proves properties for more
subsets of each answer set/extension than prefASP has to.

5.4 Comparison with Abstract Argumentation
Algorithms Based on the Same Approaches

According to the results of ICCMA2015 [23], ASPARTIX-V [22]
is the ASP-based abstract argumentation solver that showed the best
performance in the preferred enumeration track.8 Table 3 presents
the results of a comparison between prefASP and ASPARTIX-V
performed on the ICCMA2015 benchmarks. Presented results indi-
cate that prefASP is faster, both in terms of IPC and PAR10 scores.
Remarkably, prefASP is able to successfully analyse a larger number
of AF s (100.0% against 94.0%).

7 D-FLATˆ2 software and instructions have been retrieved from https:
//github.com/hmarkus/dflat-2 in March 2016.

8 We are not aware of any existing solver able to enumerate preferred exten-
sions in a way directly comparable to prefMaxSAT.

Table 3. Comparison of prefASP and ASPARTIX-V, the ASP-based
abstract argumentation solver that showed the best performance in the

preferred enumeration track, on the ICCMA2015 benchmarks. Results are
shown in terms of IPC score (maximum achievable is 192.0), percentages of

success (% Success) and PAR10.

IPC score % Success PAR10

prefASP 171.3 100.0 23.1
ASPARTIX-V 148.5 94.0 630.9

At a closer look, it is noticeable that—among ICCMA2015
frameworks—the AF s with a very large grounded extension and
many nodes in general9 are very challenging for ASPARTIX-V,
while the proposed prefASP solver is able to quickly and effectively
analyse also such large frameworks.

5.5 Comparison with the State of the Art Solver
In this analysis we compare prefASP and prefMaxSAT with the
winner of the the ICCMA2015 track on enumerating preferred ex-
tensions, Cegartix [10]. Table 4 shows the performance of consid-
ered solvers in terms of IPC score, percentage of successfully anal-
ysed AF s and PAR10. prefASP performs significantly better than
prefMaxSAT. This is possibly due to the fact that each preferred ex-
tension results from an execution of the MaxSAT solver; and a final
run is needed in order to demonstrate that no other extensions ex-
ist. Therefore, the number of MaxSAT calls is exactly the number
of preferred extensions plus one. The generated MaxSAT formulae
tend to be large on the considered benchmarks; therefore, the added
overhead can be remarkable.

Table 4. Comparison of prefMaxSAT and prefASP with the winner of the
track of ICCMA2015 on enumerating preferred extensions, Cegartix.

Results are shown in terms of IPC score (maximum 192.0), percentages of
success and PAR10.

IPC score % Success PAR10

prefASP 161.7 100.0 23.1
prefMaxSAT 115.3 85.0 1423.8
Cegartix 188.9 100.0 15.2

Interestingly, the performance of prefASP is comparable to the
performance of Cegartix; according to PAR10, prefASP needs on
average 8 seconds more to enumerate the preferred extensions. More-
over, by re-running the top solvers that took part in this track of
ICCMA2015, we observed that prefASP would have been ranked
second. This is an impressive achievement, considering that the de-
scribed algorithm: (i) is very general, in the sense that it does not
exploit any argumentation-specific knowledge; (ii) is very easy to
implement, particularly in the ASP configuration; and (iii) has been
implemented as a prototype, without attention on software engineer-
ing techniques for improving performance.

6 CONCLUSIONS AND FUTURE WORK
We have proposed a general methodology for solving subset optimal-
ity problems by means of iteratively solving cardinality optimality
problems. This approach is motivated by the availability of efficient

9 http://argumentationcompetition.org/2015/results.html



systems that support finding cardinality optimal solutions, namely
MaxSAT solvers and ASP solvers supporting weak constraints.

As a methodology showcase we have produced two prototype sys-
tems, prefMaxSAT and prefASP, for enumerating preferred exten-
sions of abstract argumentation frameworks. While the algorithms
are general and easy to implement, an experimental analysis showed
that they are competitive with the state-of-the-art system, which is
specialized for this particular problem. On this showcase, our meth-
ods also prove higher performance than the existing general meth-
ods for computing subset optimal solutions of answer set programs,
viz. asprin and D-FLATˆ2.

There are quite many opportunities for future work. As discussed
in [19], retain information between calls could help the performance,
and we might investigate it in future work. However, this impact on
the modularity of the concrete approach—i.e., a solver must be inte-
grated in the framework—and can potentially reduce the generality
of the overall framework.

Apart from tuning the prototype implementations of prefMaxSAT
and prefASP to improve their performance, we intend to apply the
methodology also to other application domains. Diagnosis or mini-
mal model computation are immediate candidates. Another possibil-
ity is integrating our algorithm into a system like asprin, or one that
supports the same input language.

The methodology would also allow for computing ΣP
3 -hard prob-

lems when using ASP, which would be interesting to explore, as it
would give rise to alternatives to implementations relying on QBFs.
It would also be worthwhile to explore whether the general method-
ology can be used also with formalisms different from MaxSAT and
ASP, which would open entirely new avenues.

Given that there are a few similarities to Algorithm MCSes in
[19], a comparison with the CAMUS system described in that pa-
per could be attempted. Looking at the other direction, evaluating
whether some implementation techniques in this area, e.g. in [21],
can be generalized to our less specialized setting could be pursued as
well.
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