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SPACE-TIME FRACTIONAL STOCHASTIC EQUATIONS
ON REGULAR BOUNDED OPEN DOMAINS

V.V. Anh!, N.N. Leonenko? and M.D. Ruiz-Medina?

Abstract

Fractional (in time and in space) evolution equations defined on Dirich-
let regular bounded open domains, driven by fractional integrated in time
Gaussian spatiotemporal white noise, are considered here. Sufficient con-
ditions for the definition of a weak-sense Gaussian solution, in the mean-
square sense, are derived. The temporal, spatial and spatiotemporal Holder
continuity, in the mean-square sense, of the derived solution is obtained,
under suitable conditions, from the asymptotic properties of the Mittag-
Leffler function, and the asymptotic order of the eigenvalues of a fractional
polynomial of the Dirichlet negative Laplacian operator on such bounded
open domains.

MSC 2010: Primary 60G60, 60G15, 60G22; Secondary 60G20, 60G17,
60G12.

Key Words and Phrases: Caputo-Djrbashian fractional-in-time deriv-
ative, Dirichlet regular bounded open domains, eigenfunction expansion,
fractional pseudodifferential elliptic operators, Gaussian spatiotemporal white
noise measure, Mittag-Leffler function, Riemannan-Liouville fractional in-
tegral and derivative, stochastic boundary value problems

1. Introduction

Space-time fractional diffusion equations are introduced when integer-
order derivatives in space and in time are replaced by their fractional coun-
terpart. In particular, they can model anomalous diffusion processes in
physics (Meerschaert et al. [31]). Fractional diffusion equations are very
popular in several fields of application (see Gorenflo and Mainardi [21];
Metzler and Klafter [34], among others).
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Since the pioneer papers by Bochner [11] and Feller [18] who proved the
connection between the stable distribution and fractional calculus, the the-
ory of a-stable distributions and processes has been extensively developed.
Specifically, Bochner [11] formulated the Cauchy problem, whose solution
is the symmetric a-stable distribution. Feller [18] extended these results to

a more general situation by replacing the fractional Laplacian — (—A)a/ 2
by a pseudodifferential operator with symbol

—|\“exp (isign(N\) 07/2), AeR, a€/(0,2),

where « is the index of stability, and 6 is the index of skewness (asymmetry).
The corresponding solutions generate all stable distributions. Despite a
large number of fractional operators (see Samko et al. [37]), there were few
known specific examples of generating more general distributions. Actually,
Anh, Leonenko and Sikorskii [4] analyze the Cauchy problem characterizing
the main properties of Riesz-Bessel distribution.

The traditional model for spreading particles at the macroscopic level
is the well-known heat equation

Oy = Au,

with A denoting the Laplacian operator, and J; the partial derivative with
respect to time. The relative particle concentration can be predicted in
terms of the Gaussian probability density providing a point source solution
of the heat equation. The paths of individual particles are described in
terms of the realizations of Browninan motion. Dirichlet boundary value
problems for the heat equation, as well as for more general equations, given
in terms of elliptic diffusion operators can be seen in Bass [8] and Davies
[15], among others. Particle sticking and trapping phenomena can be de-
scribed when partial derivative in time 0 is replaced by fractional derivative
8? for 0 < 8 < 1. While if negative Laplacian operator (—A) is replaced by
fractional power (—A)O‘/ 2 for 0 < o < 2, long particle jumps can be repre-
sented. The space-time fractional diffusion equation is defined in terms of
both fractional derivative operators in time and in space:

8fu = (=A%, (1.1)

whose solution displays self-similarity and heavy tails. The particle concen-
tration profile provided by the corresponding probability density solution
has sharper peak and heavy tails. A non-Markovian setting can then be
introduced through an inverse stable subordinator time change (see also
Barkai et al. [7]; Benson et al. [9]; Gorenflo and Mainardi [20]; [21]; Meer-
schaert et al. [31]; Schneider and Wyss [38], among others). The extension
to the case of Riesz-Bessel subordinators is addressed in Anh and McVin-
ish [5], considering, in the space-time fractional diffusion equation (1), the
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pseudodifferential operator (A)*/2(I — A)/2. A different stochastic frame-
work is analyzed in the papers by Anh and Leonenko [2], [3], where the
spectral representation of the mean-square solution of the following space-
time fractional diffusion equation with random initial conditions

fu=(—A)2 (I - AYu, w(x) =n(x), xeR",

is derived. Here, 7 is a measurable random field defined on a complete prob-
ability space (€2, A, P). Gaussian and non-Gaussian limiting distributions
of the renormalized solution are obtained as well. Also, in the context of
stochastic evolution equations on an unbounded domain, a functional ap-
proach was adopted by Kelbert, Leonenko and Ruiz-Medina [25], where the
spectral properties of the mean-square solution of fractional in time and in
space evolution equations driven by random white noise are derived. These
results are extended to the more general framework of stochastic partial
differential equations driven by fractional Brownian motion in Leonenko,
Ruiz-Medina, Taqqu [26], where, in particular, the correlation structure and
spectral properties of the mean-square solution to fractional in time and in
space evolution equations driven by fractional Brownian are analyzed.

In the context of fractional diffusion on bounded domains, we refer to
the papers by Defterli, D’Elia, Du, Gunzburger, Lehoucq and Meerschaert
[16]; Chen, Meerschaert and Nane [12], and Meerschaert, Nane and Vel-
laisamy [32], where strong solutions, and their probabilistic representation
are obtained. On the other hand, Mijena and Nane [35] consider fractional
heat equation on unbounded domains, with a non-linear random external
force, involving space-time white noise. Sufficient conditions for the exis-
tence and uniqueness of mild solutions, as well as for their continuity are
derived. We consider here a different framework. Specifically, we study
the weak-sense solution of the following fractional in space and in time
stochastic partial differential equation, with Dirichlet boundary conditions,
and null initial condition:

o°

53¢ (LX) + (—Ap)*2 (I —Ap)?e(t,x) =1 (t,x), xe D (1.2)

c(t,x)=0, xe€0D, Vt, ¢(0,x)=0, VxeDcCR" (1.3)
for g € (0,1), &+~ > n, where equality is understood in the mean-square
sense. Here, the driven process

1 t
Il_ﬁz-::/ t —u)Pe(u)du 14
e AR () (1)
is constructed from space-time Gaussian white noise €, defined on a basic
probability space (2,4, P), and satisfying

Ele(t,x)e(s,y)] = 6(t = s)d(x —y),
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for all t,s € Ry, and x,y € D, with § being the Dirac Delta distribu-
tion. Specifically, the driven process is the Riemannan—Liouville fractional
integral of order 8 — 1, in time, of the space-time Gaussian white noise &,
where integration is understood in the mean-square sense (see, for example,
Samko et al. [37]). It is well-known that the inverse of the Riemannan—
Liouville fractional integral of order 5—1 is the Riemann-Liouville fractional
derivative of order 1 — f3,

DI = 100 = Gpgg [ 61

that, in our case, coincides with the fractional-in-time derivative of order
1—p, in the Caputo-Djrbashian sense (see equation (1.5) below), since from
(1.3), we assume that £(0,x) = 0, for all x € D.

Although we refer here to the particular case where fractional deriva-
tives in space are defined from the operator (—AD)C’/2 (I — AD)7/2, with
(—=Ap) representing the Dirichlet negative Laplacian operator on regular
bounded open domain D, the results derived in this paper hold, in general,
for a fractional polynomial of the Dirichlet negative Laplacian operator on
D, with constant coefficients, as proved in Theorem 8.1 in Section 8. In this
paper, special attention has been paid to operator (—AD)O‘/2 (I — AD)A’/2 ,
since, for suitable domains, e.g., for bounded open domain satisfying the
exterior cone condition, the eigenvalues of such an operator provide two-
sided estimates of the eigenvalues of the corresponding restriction of the
inverse of the composition of Riesz and Bessel potentials, for certain range
of parameter « (see, for example, Chen and Song [13]).

Our main goal is the study of the local regularity mean-square and
sample-path properties (modulus of continuity) of the derived weak-sense
Gaussian solution to equations (1.2)—(1.3). Sufficient conditions are formu-
lated to obtain the mean-quadratic local asymptotic order of the temporal,
spatial and spatiotemporal increment random fields, associated with the
weak-sense Gaussian solution to equations (1.2)—(1.3) (see Theorems 4.1,
5.1 and 6.1 below). Specifically, the results derived hold under the condi-
tion that the regular bounded open domain D is such that the eigenvectors
of the Dirichlet negative Laplacian operator on D are uniformly bounded.
Some examples of domains D, where this condition is satisfied, are provided
in Section 7. Furthermore, the mean-square Holder continuity in time of
the random field solution is obtained under some restrictions on the param-
eter space. While its mean-square Holder continuity in space requires the
Holder continuity of the eigenvectors of the Dirichlet negative Laplacian
operator on domain D. The mean-square Holder continuity in space and
time directly follows, under the above-referred conditions. Also, under such
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conditions, the sample-path local asymptotic orders are straightforwardly
derived from Theorem 3.3.3, in p.57 of Adler [1] (see Theorem 6.2 below).
Note that, although the formulated Gaussian solution c is not fractional dif-
ferentiable in time in the strong-sense (its time fractional differentiation is
understood in the weak-sense), under the conditions assumed in this paper,
it is Holder continuous in the mean-square sense.

Note that, we have not adopted the classical framework of diffusion
processes and stochastic differential equations, characterized by the Kol-
mogorov forward or Fokker—Planck equation. In our case, the regularized
fractional derivative in time, or fractional-in-time derivative in the Caputo-
Djrbashian sense, and the FokkerPlanck operator with constant coefficients
are applied, in the mean-square sense, to a spatiotemporal Gaussian ran-
dom field for its almost decorrelation in space and time. Hence, the local
self-similarity properties are observed in the correlation structure in space
and in time of the weak-sense mean-square Gaussian solution ¢, as we will
prove in this paper. The approach adopted is then clearly different from
the previous one considered in Chen, Meerschaert and Nane [12], since,
in the last case, the properties of the transition probability densities are
investigated, while, in this paper, new classes of spatiotemporal Gaussian
random fields, displaying local self-similarity, are introduced in the weak
sense. In particular, their local exponents of self-similarity are computed
in time, space and space-time, in the mean-square and sample-path sense.

Finally, we recall the interest of considering stochastic models, in par-
ticular, spatiotemporal Gaussian random fields defined on Dirichlet regular
bounded open domains (see Fuglede [19]), including, as particular cases,
bounded open C*®- domains, domains with C'-boundary, with Lipschitz
continuous boundary, or with fractal boundary, among others. Special at-
tention , in the current literature, has been paid to the unit ball and the
unit sphere, motivated by the analysis of Cosmic Microwave Background
(CMB) radiation (see, for example, Leonenko and Sakhno [27]; Malyarenko
[29]; Marinucci and Peccati [30]). In this setting, tensor-valued random
fields on the unit sphere are considered for the investigation of the com-
binations @ + U, with @ and U respectively representing the linear and
circular polarization Stokes parameters.

In the following, we consider the regularized fractional derivative in
time or fractional-in-time derivative in the Caputo-Djrbashian sense: For

B € (0,1],

Fu | GE(t,x), if =1
o | rasgra Jo =) Pulrx)dr - 1B e (0,1), t € (0,T]
(1.5)
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(see Meerschaert and Sikorskii [33]; Podlubny [36]).

The outline of the paper is the following. Preliminary elements and
results are presented in Section 2. The derivation of a weak-sense mean-
square Gaussian solution to equations (1.2)-(1.3) is established in Section
3. The mean-quadratic local variation exponents in time of the derived
solution are obtained in Section 4. The mean-quadratic local variation
exponents in space are given in Section 5. Section 6 then provides the
asymptotic local mean quadratic orders in space and time. The modulus
of continuity of the sample paths of the weak-sense mean-square solution
to equations (1.2)—(1.3) is also derived in this section . Some examples are
provided in Section 7 for illustration purposes. The extended formulation
of the results derived for fractional polynomials of the Dirichlet negative
Laplacian operator are presented in Section 8. Final comments and some
open research lines are discussed in Section 9.

2. Preliminaries

Some preliminary definitions and results needed in the development of
this paper are now introduced. Specifically, some basic results on spectral
calculus for self-adjoint operators on a Hilbert space are given in Section
2.1. The Mittag-Leffler function is conisdered in Section 2.2. Basic ele-
ments on fractional Sobolev spaces on a regular bounded open domain are
presented in Section 2.3.

2.1. Spectral theory of self-adjoint operators on a separable
Hilbert space

Let us first consider some results on spectral calculus for self-adjoint
operators on a Hilbert space.

THEOREM 2.1. (Dautray and Lions, 1990, pp. 119-120 [14]) Let H be
a separable Hilbert space, then an injection mapping & exists from the set
of spectral families in H into the set of self-adjoint operators on H. The
following assertions hold:

Let A be the self-adjoint operator associated with the spectral family
{E\},cp » where A denotes the spectrum of A. The domain of A is defined
by

D (Ak> - {3: cH: /A)\%d(E,\a:,x) < oo} k> 1. (2.1)

Forallz € D (Ak) ,and for all y € H,
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(Afz )\ = /)\kd(EAx,y), (2.2)
A

T - /A N (Exz, z). (2.3)

If Py ()) is a polynomial of degree k, then, for all z € D (Ak) , and for
all y € H, Py (A) is given by

<&mme=A&umwmw. (2.4)

Finally, for a continuous function f on A, the following identities hold for
every x € D (f (A)), and y € H,

<ﬂM%wH=AdeWMw% (2.5)

THEOREM 2.2. (Dautray and Lions, 1990, pp. 140 [14]) Let A be a
self-adjoint operator in a separable Hilbert space H. If we denote f the
complex conjugate function for f, then D (f (A)) = D (f (A)). Moreover
we have (f (A)x,y)y = (z*, f (A)y*), forall z, y € D (f (A)).

Forz € D(f(A)),and y € D (g (A)), then

(f (A, H—/f d(Exe,y). (2.6)

Furthermore, (f +g)(A)z = f(A)x +g(A)z, for all x € D(f(A)) N
D (g (A)).

Finally, ifz € D (f (A)), with (go f) (A) = g(\) f(N), then [g (A) f (A)]x =
(go f)(A).

Theorem 2.1 is now applied to derive the asymptotic order of the eigen-
values of operator (—A)QD/Q(I—AD)VQ, with, as before, (—A)p representing
the Dirichlet negative Laplacian operator on regular bounded open domain
D.

COROLLARY 2.1. The following asymptotic order holds for the eigen-
values of (I — Ap)"/2(=Ap)®/?:

o (G970 = 2507

k—ro0 katy/n = c(n,a+7) ’D‘7(7+a)/na (2.7)

where ¢(n, a + ) is a positive constant depending on n, « and ~.
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Futhermore, for {¢;},>1 being the eigenvector system of the Dirichlet
negative Laplacian operator (—Ap) on domain D, the following equality
holds:

(—Ap)*2 (1= Ap) 24 = M (=Ap)* (T = Ap)/2) gr, k> 1. (28)

Proof. It is well-known that the eigenvalues {v;(—Ap)}x>1 of the Dirich-
let negative Laplacian operator on domain D C R™, arranged in decreasing
order of their modulus magnitude satisfy (see, for example, Chen and Song
[13]):

n\\2/n
(CO+8)"

’Yk(_AD) ~4m |D’2/n ’

k — oo, (2.9)

where f(k) ~ g(k) means that limy_,~ f(k)/g(k) = C, for certain positive
constant C. In particular, C =1 in (2.9).

From equation (2.5) in Theorem 2.1, considering f(u) = u®/?(1+u)"/?,
we obtain

M ((Ap) (1 = Ap)"72) = (4(=Ap))™? (1 + 3(~Ap))"2. (2.10)

Equation (2.7) then follows from equations (2.9) and (2.10).

Equation (2.8) is straightforwardly obtained from equation (2.5) in
Theorem 2.1, since in our case, i.e., for f(u) = u®?(1 + u)¥/?, for all
r,y € H = L?(D), with L?(D) denoting the space of square integrable
functions on D,

((=Ap))* (1 +7(~Ap))"/?

[
NE

/ FNd (Ex,y)
A

=1

X or(0)pr(v)z(u)y(v)dudv
DxD

((=Ap))* (1 + 1 (=Ap)) " 2y,

b

[
Nk

B
Il

1
(2.11)

with, as before, {¢x }x>1 being the eigenvector system of the Dirichlet nega-
tive Laplacian operator on D. Specifically, our spectral family is defined in
terms of the spectral kernel )7 | ¢r(u)¢r(v), and the spectral measure is

given by a point or counting measure with atoms located at the eigenvalues.
|
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2.2. Mittag-Leffler function

The weak-sense solution derived in the next section involves the Mittag-
Leffler function. The definition of the Mittag-Leffler function, and a two-
sided uniform inequality are now considered.

DEFINITION 2.1. The Mittag-Leffler function is given by

Eﬁ(z):jzor(j(;zl), zcC, 0<p<1 (2.12)

(see Erdély et al. [17]; Haubold, Mathai and Saxena [24], for a more detailed
description of this function and its properties).

LEMMA 2.1. For every 8 € (0,1), the uniform estimate
1 1
— < Fi(—2) <
1+T(1—B)r ~ s(-0) < 1+[T(1+8) 1tz

holds over R} with optimal constants (see Simon [39], Theorem 4).

2.3. Fractional Sobolev spaces on regular bounded open domains

The scale of fractional Sobolev spaces is introduced within the spaces
S (R™), the space of C*°-functions with rapid decay at infinity, and D (R"),
the space of C*°-functions with compact support contained in R"™. The dual
of these spaces are respectively the space of tempered distributions, S’ (R"),
and the space of distributions, D' (R").

For s € R, we denote by H® (R™) the space of tempered distributions u
such that (1 + H)\H2)8/2 u € Ly (R™), X € R™. For a regular bounded open
domain D in R", we denote

H (D)={ue H*(R") :suppuC D}, (2.13)

S
H* (D)= {f €D (D):3F € H*(R") such that f = Fp}, (2.14)
where F'p denotes the restriction of F' to D. With the quotient norm

||f||Hs(D) = inf:f} HFHHS(Rn) )

{F;Fp
H? (D) is a Hilbert space (see Dautray and Lions, [14], p. 118).

3. The mean-square Gaussian solution in the weak sense

The preliminaries given in the previous section are now applied in the
derivation of a zero-mean Gaussian solution to the stochastic boundary
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value problem (1.2)—(1.3), in the mean-square and weak senses. The fol-
lowing result first establishes the suitable range of parameter o and ~y for
the construction of a Green operator in the trace class, with kernel, the
fundamental solution to the deterministic problem corresponding to (1.2)-
(1.3). Namely, the following proposition states the ranges of parameters «
and « such that the sequence

{Eﬁ (—)\k ((—AD)a/z(I - AD)W) tﬁ) k> 1} (3.1)

is in the space I of absolute summable sequences, for every t > 0.
p

ProrosiTIiON 3.1. For n < o+,
> Es (—)\k ((—AD)Q/Q(I -~ AD)W) tﬁ) < o0, (3.2)
k=1

for every t > 0.

Proof. From equation (2.7),

i AL(CADI = 25

oo jlatn)/m =2&(n,a+7)|D|"F/m . (3.3)

Therefore, there exists kg such that for k > ko,
le(aﬂ)/n < A\ ((—AD)O‘/Q(I _ AD)“//Q) < L2k(a+v)/n7 (3.4)

for certain positive constants 0 < L < L, depending on kg, and a4y and
n. In particular, for k > ko,

1 1
L+ [D(1+ B)] "\ ((—Ap)*/2(I — Ap)r/2) tP 17 [C(1+ B)] L k@+)/ngB
(3.5)

Now, applying Lemma 2.1, for each fixed ¢t > 0,
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ZE5< tﬁAk( AD)a/2(1_AD)w/2))
_ZEﬁ< t@,{( AD)a/2(I_AD>7/2))

+ Z Eg (—tﬁAk ((—AD)CW([ _ AD)W’/2>>

k=ko+1
=M(B,a,y,n)+ D Es (—tﬁAk ((—AD)G/Q(I_AD)W))
k=ko+1
(57 a, 7y, n ) i E/g (_t/Ble,(oz—i—'y)/n)
k=ko+1

M(67a7’77n) +/ EB( tﬁle(a+'y)/n> dr

t—Bn/(a+7)
(67 a,7y,n ) / Eﬁ Ua+7 du

(a4~ /n
t—Bn/(a+y) uaﬂ ]
) 7 M < ,
M0 (a+7)/n/o LA ra+p) =
(3.6)
since
a, 7, n ZEﬁ ( t6>\k ( AD)OK/Q(I_ AD)’}’/2>) < o0, (37)
and [ Hiﬁ{?ﬁdu<oo for a4y > n.

A mean-square Gaussian solution, in the weak sense, to equations (1.2)—
(1.3) is formulated in Proposition 3.2, considering D to be a Dirichlet-
regular bounded open domain. Note that, in the classical theory of bound-
ary value problems, given an open set D with compact closure D in R,
the classical Dirichlet problem consists of the extension of a given contin-
uous function 9 : 9D — R to a continuous function ¢ : D — R such
that ¢ is harmonic, that is, satisfies the Laplace equation in D. The set D
is termed regular if the Dirichlet problem has a (necessarily unique) solu-
tion for any continuous boundary function . For example, every simply
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connected planar domain is regular, but may have a bad boundary, for in-
stance, a fractal boundary (see Arendt and Schleich [6], pp. 54-55; Fuglede
[19]). Dirichlet regularity implies that all the eigenfunctions of the Dirichlet
Laplacian operator on D are bounded continuous functions on this domain
that vanish continuously on the boundary. This fact will be exploited in
the examples given in Section 7, according to the conditions required on
the eigenfunctions, in the derivation of the main results of this paper.
In a more general setting, we consider the following definition of Dirichlet-

regular bounded open domain (see, for example, Brelot [10], p. 137 and
Theorem 32, and Fuglede [19], p. 253).

DEFINITION 3.1. For a connected bounded open domain D with
boundary 0D we say that x¢ € D is regular if and only if it has a Green
kernel GP such that, for each x € D,

lim GP(x,y) =0, VyeD. (3.8)

X—X0

The set D is regular if every point of 0D is regular.

See also Chen et al. [12] for alternative characterizations of Dirichlet-
regular bounded open domains in terms of the first exit time in the context
of subordinate processes.

The following result provides a mean-square zero-mean Gaussian solu-
tion, in the weak sense, to the stochastic pseudodifferential boundary value
problem (1.2)—(1.3) on a Dirichlet-regular bounded open domain D.

PROPOSITION 3.2. Let ¢ be defined as

c(t,x):/o /DG'D(t,X;s,y)s(s,y)dsdy, (3.9)

where e(s,y) is space-time zero-mean Gaussian white noise as given in
equation (1.2), and

GP(t,x;8,y) =

=3 B (<M (~Ap)™ AT = Ap)2) (= 5)) d(X) i (), t= s
k>1

GP(t,x;5,y) =0, s>t (3.10)

with, as before, for each k > 1 (see Corollary 2.1)

(—=Ap)*2(I = Ap)Pep = A ((—AD)W(J - AD)W) dr.  (3.11)
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Assume that {¢y{x>1 are uniformly bounded by a constant C'(D), depend-
ing of the geometrical characteristics of the domain D, i.e.,

C(D)= s x().
k>1, x€D

Then, for n < a+ 7, ¢ in (3.9) provides a mean-square zero-mean Gauss-
ian solution to problem (1.2)—(1.3) on D, in the weak-sense in the space

" (D). Equivalently,

&)
/D {gtﬁ (t,%) + (~Ap)** (I — Ap)/ e (t,%) | $(x)dx

m.s.

= [ vix, e D, e TD). (312
D
In addition, ¢ has covariance kernel

R(t,x;s,y) = Elc(t,x)c(s,y)] = /0 ) /DGD(t,x;u, 2)GP(s,y; u,z)dudz.
(3.13)

Proof. It is well-known that the solution to the eigenvalue equation
dB
atB

is given by the Mittag-Leffler function Eﬁ(—,utﬁ), for any p > 0, with Eg

being introduced in equation (2.12). For 8 € (0, 1), from definition of GP

in equations (3.10)—(3.11), and the definition of the regularized fractional
derivative in time (1.5),

T(t) = —uT(t), 0<t<T, (3.14)

5GP (60,3 vy =~ [ S ((-20)°/2(1 — Ap)?)
D=1

% By (=X ((—Ap)*2(T = Ap)2) 17) 6(x) () (y)dy

== > ((a0)72(1 = 2p)72) By (<A ((~20)"2(1 = Ap)/2) )

<oux) [ ony)uiy)ay

= —(=Ap)**(I - Ap)? iEﬁ <_/\k ((—AD)Q/Q(I - AD)7/2> tﬂ)
k=1

X pr(x)1hr, = —(—Ap)**(I — Ap)*GP (), (3.15)
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where G denotes the integral operator on L?(D) with kernel GP (¢,x;0,y),

for each t > 0. Note that, since ¢ € HQ+W(D), with o +v > n, in a similar
way to Proposition 3.1, it can be proved that

i §;Eﬁ (=2 ((~2p)72(1 = Ap)72) 7)) g (x)e
—ZAk( ~Ap)*A(I - Ap)2)
% By (<M ((—A0)*2(1 = 2p)?) ) g (x)uin
ZM ( (—Ap)¥2(I — A )7/2)
x By (=M ((—Ap)*/2(I = Ap)"/2) ¢7) vy < o, (3.16)

where, as before 1, = [, or(y)¢(y)dy.
Applying the regularized fractional derivative in time (1.5), from equa-

tion (3.15), we obtain

o° g
e hX dx_/dt/ (=" //GD(T’X;S’Y)

, ¥ (x)dydsdTdx

:/ dt/ u b /t u/ GP (t = u,x: 5,y) (s, y)(x)dydsdudx
:/ / [/ GP (t— %t — y)e(t—u,y)dy} du> W(x)dx

U / [dt u PGP (t —u,x;5,y) dU] E(S’Y)dyds} (%) dx

A

“J,

:/ [ f—ux>du] P (x)dx
/ [ 8155 (th;S,Y)dS,y)dyds] ¥(x)dx
-,

— a/2(1 — v/ ' X: §
a2 apy [ 6P sy
xe(s,y)dyds| ¥(x)dx, (3.17)

P et x)vax— [

D
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as we wanted to prove. Here, we have applied that
GP (u,x;u,y) = i¢k(x)¢k(}’) =0(x-y), Vu>0,
k=1
with §(x —y) denoting the Dirac Delta distribution on L?(D) such that

/ 6(x —y)e(t,y)dy = e(t,x),
D

in the mean-square sense, and in the L?(D)-weak sense.

Finally, equation (3.13) is obtained from straightforward computation
of the covariance function of ¢ in equation (3.9), since for n/2 < «a + 7,
GP defines a Hilbert-Schmidt operator. Consequently, its self-convolution
defines a covariance operator R in the trace class. Thus, its covariance
kernel R is continuous, and it can be defined pointwise from equation (3.13).
|

4. Mean-quadratic local variation in time

This section provides an upper bound for the mean-quadratic local vari-
ation of the temporal increments of the mean-square solution ¢ defined in
equation (3.9) of Proposition 3.2. Note that although we have showed in
Proposition 3.2 that c satisfies, in the mean-square sense, equation (1.2)
over the test functions in FQJW(D), for @« + v > n, as we prove, in the
following result, equation (3.9) defines a Holder continuous, in time, spa-
tiotemporal random field ¢, under a wider range of parameter a++. Namely,
Theorem 4.1 below holds for § < a4+, and 8 < 1/2.

As before, we will consider the sequence of eigenvalues

Ak <(—AD)O‘/2(I — AD)7/2> , k>1,

arranged in increasing order of their modulus magnitude, with the associ-
ated eigenvectors ¢y, k > 1, in the same order.

THEOREM 4.1. Let ¢ be defined as in (3.9)—(3.11) of Proposition 3.2,
under the assumption that C(D) = supgs>y xep ¢x(X) < oo. Then, for
B < 1/2, and § < o+, the following inequality holds:

Ele(t,x) — ¢(s,x)]* < [C(D)]Pg(t - s), (4.1)
where

gt —s)=0 <(t - s)(l‘ﬂ%)“l‘ﬁv L st 0<s<t, (4.2)
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with x A y denoting the minimum of x and y, and x V y denoting the
maximum of x and y, for two real numbers x and y.

Proof. Since Eg(—x) is a monotone decreasing functions with values in
the interval [0, 1], for € R, for 0 < s < t, we obtain

Ele(t,x) — /0 Zd)k [ ((—AD)O‘/Q(I — AD)7/2> (t —u)P)

k=1
—Ej3 <—)\k ((—AD)aﬂ(I - AD)V/Q) (s — u)ﬂ>}2du

+/st i@b%(X)Eﬁ (—2)\k ((—AD)CM(I - A1))7/2) (t— U)B) du

[/0 Z Eﬂ —Ap)¥(I - AD)vm)( _u)ﬁ)

k=1
2

o (( A (( Ap)/2(I — AD)W) (s—u)ﬁ)] du

/ZEB( zxk( AD)W(I—AD)W?) (t—u)’3> du]

[ /0 —Ap) (= Ap)”?) (¢ —u)ﬁ)f

k= 1
[ (- (<—AD>Q/2<I - ap)"2) (s - )|
285 (M (=A0)"2(1 = Ap)?) (t —w)’)
< By (= ((=Ap)*2(1 = Ap)""?) (s = w)?) du
d

/ > (-2 (-0 - 20777) - ) ]
/ZEﬁ )\k( (—Ap)™/2(I — ADW)

+ [E/s (2 ()21 = 8p)72) (s~ )]
2 [Eﬁ (—)\k ((—AD)W(I - AD)W) (t— u)ﬁ)] " du

)]
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/ZEB( 2 (( Ap)*2(I — A )7/2) (t—u)ﬁ) du

S k=1

/0 Z By (3 ((~2p)*(1 = 2p)72) (s~ w)?)] " du

k=1

/ZEﬂ( 2)\k< AD)O‘/Q(I—AD)V/Q) (t—u)ﬁ) du] (4.3)

S k=1

In a similar way to equation (3.6), from equation (4.3), we obtain
Ble(t. ) — 5.0 < (CD)F [ [3T(8,00 707, (5 = )"

_ Bn/(a+7 n
(5 —u) / [Es (x acaﬂ_ldx du
(a+7v)/n

t

+[C(D)}2/ [M(ﬁ,oz,%n, (t—u)?)

s

(t — u)~Fn/(at)
(a+7)/n

/ Ej (2:1:)xan+“f_1dx] du
0

<) [ [M(6.09m. 5= 0))

(s — u)~Pn/latn)  poo gl
(a+7)/n /0 (1 [F(1+5)]_1x)2dx] du

t

+[C(D)}2/ [M(ﬁ,oz,%n, (t—u)?)

s

L (E—w) /e /°° LA
x| du,
(a+v)/n  Jo 1+[(1+B8)] 2z

(4.4)

where

M(B,a,,n, s—u ZE5< s —u)’\p ((_AD)OC/2<]_AD)7/2>>

ko 9

M(B, a7, (s = w)) = 3 | By (—(s — )N (=2p)2(1 = 2p) 7)) |-

k=1
(4.5)
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Hence,

Ble(t, %) ~ c(s, )] < [O(D)]? [K1 (8,0, 7,m)5" ™ + (8, 0,7, m)s—7/04)

+K3(57 a, 7, 7’L) (t - 5)1_6 + K4(Ba a, 7, n)(t - S)l—ﬁn/(a+7)i| :
Thus, when s — t, s < t, we have

Ele(t,x) — ¢(s,x)]? = O ((t _ S)l—(ﬁn/(aﬂ))/\(l—ﬁ)) _

5. Mean-quadratic local variation in space

The fractional local exponent, in the mean-square sense, of the spatial
increments of the solution ¢, derived in Proposition 3.2, is obtained in the
following result.

THEOREM 5.1. Let ¢ be as given in equations (3.9)—(3.11), for n <
« + . Assume that for every k > 1,

|6k(x +h) = ¢(x)| = O(Ih|¥), [h][ =0, T>o0.
In particular, for each k > 1, and for || h|| small,
|6k(x + ) — gr(x)| < Ci||b||",
for certain positive constant Cy. If sup,, Cy, = C' < oo, then, for each t > 0,
Ele(t,x) — c(t,y)]* = O(|x = y[I*"), [x—yll=0, T>0. (51)
Thus, for |x — y|| sufficiently small,
Ele(t,x) — c(t,y)]* < Cg(t)[x - y|I*", (5.2)

where

= 8 (1+5) t>0.
ka( “/QU Ay ]

(4.6)
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Proof.
Applying Holder continuity of the eigenvectors, from Lemma 2.1, we
have, for every t > 0,

)~ elt,y)?
/0 S [Ea-n ((C20 - D) (¢ - )

k=1

BN (A2 = A () (y)] du
2

/Z(ﬁk — or(y))? {EB(_/\k ((—A)“D/z(I—A)'])/Z> (t—u)ﬁ)] du

2

< Cllx —y|** /Ot fj (B2 (80520 = 8)F?) (¢ - w?)] " du

oy [ TR ’
_ Oy Y L+ 5) — Cy(t)x - y)?7(5.3)

= ((Ca)Pa - a)y?)

as we wanted to prove. Note that, from Corollary 2.1, for each fixed t > 0,

£) = 18 I'(1+0) .
z:l e ( a/Z(I A)7/2> < 0

6. Mean quadratic local variation in time and space

In this section we apply the results derived in Theorems 4.1 and 5.1 to
obtain the mean-quadratic local variation properties of the spatiotemporal
increments of the weak-sense solution ¢ to equations (1.2)—(1.3).

THEOREM 6.1. Under conditions of Theorems 4.1 and 5.1, let ¢
be defined in equations (3.9)—(3.11). Then, as s — t, s,t € (0,T], and
[x =yl =0,

Ele(t,x) — (s, y)]”
< CD.T A D) — (s, )] (755 02T,
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where

1 > 1/2[(1—%)“1—@)&1{]

C(D.T. B2, T) = S(CD) v Col) (5

)

with, as before, x V y representing the maximum of x and y, and Ay
representing the minimum. Here, C(D) is introduced in Theorem 4.1, and
C and ¢g(T) are given in Theorem 5.1.

Proof. The proof follows from Theorems 4.1 and 5.1. Specifically, from
equations (4.1)—(4.2), and (5.1)—(5.2), as s — t, and ||x — y|| — 0,

Elc(t,x) — c(s,y)]> = Elc(t,x) — c(s,%x) 4 ¢(s,%x) — c(s,y)]?
= Ele(t,x) — ¢(s,%)]” + Elc(s,%) — ¢(s,y)]?
+2E [(c(t, x) — c(s,%x))(c(s,x) — c(s,¥))]
< Ele(t,x) — (s, %))* + E[e(s,x) — c(s,y)]”
+2[E [(c(t,x) = c(s,%x))(c(s,%x) — c(s,¥))]]
< Ble(t,x) — ¢(s,x)]* + [ ( )—0(8 Y)]2
[(c( )VE [(c —c(s,¥))?]

+2\/E
< eyl - ¢ a+v> “ 2 +cg<s>||x—y||”

_ _Bn_ _
10Dl = o (TEEA D ) x — y 2T

< (eD)P)t — 5| TN 4 og(e)x - y |27

+2\/ ([C(D>Plt _ g (s)ra- m) T (Cgls)x - y|PT)?

< 2([C(D)* v Cg(T)) [n _(1m)n0-8)

+||x—y||“+¢(|t—s|< )0’ <xy2T>2]

A(1=B)A2Y

< 4([C(D))* v Cg(T)) [; <|t - s|< a+~/>

_Bn_ -
-y (ma)ne W”)
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"’\/i <|t—s|( — 22 ) na- )/\QT) <||x—y||( — YA ﬁ)A2T>

(6.1)

Under the conditions assumed, 0 < ( — %) A1 —=pB)AN2T < 1,

hence, we can apply Jensen’s inequality for concave function z¢, 0 < € < 1,
obtaining from the last inequality in (6.1),

Ele(t,x) — c(s,y)]* < 4([C(D)]* v Cy(T))

[y

5 (]t—s]Q

+||X—y||2)1/2[< — LY A-p)n2T]

_ Bn_ _
(Jt — 5|2+ |x — y||2)(1 L) A(1-B)n2Y

1\ (1-25)ra=-g)n2r
)

1/2 (1—;%”7 A(1—B)A2T
<a(coP v eam) (3) (e

X [(|t — 2+ x — y“2)1/2[<1—%)A(1—5)A2T]

+ \/(!t — 52+ []x — yH2)<1‘a%)A(1—ﬂ)A2T

= 20(D, T, B, 0,7, D(1,%) — (5,y)) U 7H)N O, (6.2
as we wanted to prove, with C(D, T, 8,a,7,Y) = 2C(D, T, 8,a, 7, Y), and

1 > 1/2[( —%)/\(1—6)/\2T]

C(D.T, B.0.7.T) = A([C(D)? v Cy(T)) (2

6.1. Sample-path properties

The following result provides the sample path local regularity properties
of the mean-square weak-sense Gaussian solution ¢ to equations (1.2)—(1.3).
Note that the derived Gaussian solution c¢ is not fractional differentiable
in time in the strong-sense (see Proposition 3.2). However, it is Holder



22 V.V. Anh, N.N. Leonenko, M.D. Ruiz-Medina

continuous, in the mean square sense, under the conditions assumed in the
previous sections.

THEOREM 6.2. Let ¢ be defined in equations (3.9)—(3.11). Under the
conditions of Theorems 4.1 and 5.1, with probability one, the following
inequalities hold, as s — t, and ||[x — y|| — 0,

sup ‘C(t7 X) - C(S, X)|2

[t—s|<d
. . 1/2
< Z5<17“BTV)A(17’B) + Hlé(kfiﬂ)“l*ﬁ) [log ((lsﬂ
sup |e(t, x) — c(t, y)|?
x—yll<d
1\71/2
< V&% 4+ Hys%T [log <5>]
sup |C(t,X) - C(Svy)‘Q

ll(¢,3)—(s,¥)[1<d

< X5< —f—%)/\(l—,@)/\QT

B B 1/2
+H35(1_a+v>/\(1 AT [log <(15>] ,

(6.3)

where Z,Y and X are positive random variables, and H;, 1 = 1,2,3, are
positive constants that could depend on the geometrical characteristics of
the domain D considered, like the boundary.

The proof directly follows from Theorems 4.1-6.1, and Theorem 3.3.3,
p.57, by Adler [1].

7. Examples

In the following subsections we consider some special cases of domain
D, where the derived results can be applied. Specifically, in the examples
introduced below, the eigenfunctions of the Dirichlet negative Laplacian
operator can be explicitly computed, and Theorem 2.1 allows us to define
the weak-sense mean-square solution to (1.2)—(1.3), in terms of such eigen-
functions as given in equations (3.9)—(3.10) in Proposition 3.2 (see, for
example, Grebenkov and Nguyen [22]). The conditions required in Theo-
rems 4.1, 5.1, 6.1 and 6.2, for the continuity of ¢ in the mean-square sense
and in the sample path sense, are also verified.
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7.1. Intervals, rectangles, parallelepipeds

Let us consider the case where D = (0,L4),...,(0,L,) C R™, where
L; > 0, for i = 1,...,n, the method of separation of variables yields the
following eigenvectors for the Dirichlet negative Laplacian operator:

n

. TI'(ki =+ 1)1‘,‘ n
BPhoy oo on (X1, Tp) = Z1:[15111 <Lz> , (k1. kn) e NELO(7.1)

2(L. 2
with Mgy ok, = Ak + o0+ A, and Ay, = Tr(kiijl)
this case, the fundamental solution to the fractional space-time pseudodif-
ferential equation

Zf/(;(t’X) = —(=Ap)**(I — Ap)"e(t, %) (7.2)

,fori=1,...,n. In

teRy, xe€D=(0,L1),...,(0,Ly)
is given, for a + v > n, by

n /2
2 k;+1 2
Gt*S(‘Tla"'7xn;y17"‘7yn): § Eﬁ _<E (I,Q)

(k1,...kn)END

n v/2
x (1 + <Z WZ(kZ;r 1)2>> (t—s)”

i=1 i
X [H sin (W(k‘z_ 1)3:1) [H sin <7T(k:12— 1)%) , t>s
i=1 L i=1 g

and G(t,x;s,y)=0, s>t

From Hélder’s inequality (see, for example, equation (6.4) in Grebenkov
and Nguyen [22]),

< - I L= Li
[Oksbin (15 )| < H1 i Qn/24ngn2
=

Therefore, in the previous computations in Theorems 4.1, for § < 1/2, we
consider

C(D) — [Hz:l 1] )
on/2+ngn/2
Theorem 5.1 also holds, since [[;"; sin (%) , (k1,..., k) € N7, are
continuously differentiable, and hence, Holder continuous. Theorems 6.1
and 6.2 then follow for 5 < 1/2, and, as before, for a + v > n.
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7.2. Balls
Let us consider equations (1.2)—(1.3) on the ball. That is,

Be
0 2t,x%) = ~(~Ap)P(1 — Ap)Pe(t,x), (7.9

teRy, xeD={xeR" |x||<R}=Bgr(0), R>0.

For a4+ v > n, the Green function is defined as

Gt—s(ﬂ, 0; P/, ‘9/) = Z Z Eﬁ (_(:ul,r)a/z(l + :U’l,'r)'Y/2(t - ‘9)6))

Xm0 0)Prrm(p,0), t>s
and G(t,x;s,y) =0, s>t

where we have considered the spherical coordinates x = (p,0), y = (o, 0'),
and, as before, Fg is the Mittag-Leffler function. Moreover,

(7A)D¢l,r,m(p7 0) = Ml,r¢l,r,m(pa 9)7

for | € N, with m = 1,2,...,h(n,1), r € N, and h(n,1) = W

the number of spherical harmonics. Here, the eigenvalues are given by 1 , =
&, .

<sz2> , and the eigenvectors ¢y ;. (p, 0) = Clmmler"T—Q (€l+nT—27T%> Si.m(0)
are defined in terms of the Bessel function of the first kind of order v,
Jv, and the orthonormal spherical harmonics on the sphere of radius one,
Si.m(8). Note that ¢, ,, is the normalizing constant, and &,, is the rth
positive root of 7.

From Holder inequality, since {¢;,.,} are normalized in the space of
square integrable functions over the ball of radius R, i.e.., || ,.m|l2 = 1, we
obtain

l an/2 Rn
‘lerm(pa )’ < H¢lrm||1 < ||¢lrm”2 \/7

(see, for example, equation (6.4) in Grebenkov and Nguyen [22]). Thus,
in the previous computations in Theorem 4.1, we can con81der C( ) =
|Br(0)|'/2. Theorem 5.1 also holds, since Bessel functions of the first kind
and order v, on a closed interval, and the orthonormal spherical harmonics
on the sphere of radius one, are Hélder continuous. Theorems 6.1 and 6.2
then follow for 8 < 1/2, and, as before, for a + v > n.
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Circular annulus. Let us now consider, for « +v > n, and g < 1/2,
o8
G5 (1:%) = —(=Ap)*/2(1 = Ap)/2e(t,x), (7.4)
teRy, xeD={(x,29) €R*} Ry < |z|<R}.
In polar coordinates, 1 = rcosy, xo = rsinp, the Laplace operator A
admits the expression
o2 L1o 1 9?
C0r2  ror  r20p?’
The fundamental solution (in polar coordinates) of

b
575 (1:%) = =(=Ap)**(I = Ap)Pe(t, %),

b= or2  ror  r20¢?)’

A

with

is then given by

o oo 2
Gros(rip,r @) = DD By (= (o24/B)™ (14 (a2,4/B)) " (- 5)7)

XUn kot (1, @) Un k1 (17, '),
where
cos(ny), =1
sin(ng), 1=2 (n £0),

with J, and Y,, being the Bessel functions of the first and second kind,
and the coefficients «,, ; and ¢, j being set by the boundary conditions at
r = Ry, and r = R.

Ut (72 9) = J(Fm o/ R) + i Yo (rem o/ R) x {

an
0 = Rk [T (o g) + cnpYor(ani)] + B [Jn(ank) + cnrYolom )]
Qn,

0 = Rk |:J1/1 (O‘n,kljzo> + kaY,,; (an,klz)>:|

+ h |:Jn (an,k};o> + CnkYn <Ozn’kRRf)>] .

Using Holder’s inequality,

™

Vs
< 2 _ 2
‘Un7k7l(7“, (P)’ > \/F (2)R T (2)R0”un7k7l”27
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where

(2 — 6, 0)R?

kil = (2(127) [(ap  + W°R* = n?) v} 1 (R)
n,k
R2

(@ ) ] @)

with
Un k(1) = Jp(ankr/R) + cp i Yn(an k7/R). (7.6)

From equations (7.5) and (7.6), the uniform upper bound for the eigenvec-
tors of Dirichlet negative Laplacian operator on circular annulus is then
given by

(D) = \/r7(r2)R2 - F7(T2)ngR2(1 + My)Ms,
where
h?R?
o, <
vpp(R) < My,

My

since Bessel functions of the first and second kind are uniformly bounded
for 0 < Ry < r < R. Furthermore, Bessel functions of the first and second
kind on a closed bounded interval, as well as sine and cosine are also Holder
continuous. Thus, Theorem 5.1 holds. Summarizing, Theorems 4.1, 5.1,
6.1 and 6.2 hold for « +v > n, and § < 1/2.

Elliptical annulus. In elliptic coordinates, 1 = a coshr cosf, x9 = asinhrsin 6,
the Laplace operator adopts the form:

1 0* 02
A= —+ =,
a2(sinh?r + sin? 0) (87’2 892)
where r» > 0, and 0 < 6 < 27, are the radial and angular coordinates,
and a > 0, is the prescribed distance between the origin and the foci.
An ellipse is a curve of constant r = R so that its points (x1,z2) satisfy
23 /A% + 22/B? = 1, where A = acosh R, and B = asinh R are the major
and minor semi-axes, and R denotes the radius of the ellipse. The eccen-
tricity e = a/A = 1/ cosh R is strictly positive. The interior of an ellipse
is characterized by 0 < 6 < 27 and 0 < r < R. An elliptical annulus, the
interior between two ellipses with the same foci, can be characterized in
elliptic coordinates (r,0) with Rg < r < R and 0 < 6 < 27.
In elliptic coordinates, the variable separation method, u(r, 0) = g(0) f(r),

leads to the following equations, after considering that the two differential



SPACE-TIME FRACTIONAL STOCHASTIC EQUATIONS 27

equations in # and r are equal to a constant k,

g"(0) + (k — 2qcos20)g(0) =0 (7.7)
f"(r) — (k — 2q cosh 2r0) f(r) = 0. (7.8)

These equations are respectively known as the Mathieu equation and the
modified Mathieu equation, where ¢ = Aa?/4, and the parameter  is called
the characteristic value of Mathieu functions, whose values lead to a real
integer value of the characteristic exponent v of the solution defined ac-
cording to Floquet’s theorem. The two linearly independent periodic so-
lutions of equation (7.7) are known as the angular Mathieu functions, and
they are respectively denoted as ke, (0, q) and sep41(0,q9), n = 0,1,2,....
That is, we consider x such that the characteristic exponent v satisfies
v(k,q) € Z, leading to the referred angular periodic Mathieu functions.
There are two linearly independent oscillatory radial Mathieu functions of

the first kind, solution to equation (7.8), respectively denoted as M KS) (r,q)

and M /17(12) (r,q), corresponding to the same k as ke,(0,q). In addition,

there is two linearly independent oscillatory radial Mathieu functions of

the second kind M s;{gl(r, q) and M S;Qll(r, q) corresponding to the same
s as sent1(0,q) (see, for example, Gutiérrez-Vega et. al. [23]). Thus we
have four families [ = 1,2, 3,4, of eigenfunctions of Laplacian operator in

an elliptical domain:

Ung1 (r,0) = ﬁen(ﬁ,anl)M/{g)(r,anl)

Unk1 (1,0) = Ken (0, qura) MESD (v, gui2)

U1 (1,0) = sent1(8, Guia) M5\ (7, duka)

Uni (r,0) = seni1(0, Gura) M\ (7, ua)- (7.9)

For the elliptical annulus with Dirichlet boundary conditions having
radius 0 < Ry < R, there are eight individual equations defining the pa-
rameter g for each n =0,1,2,...,

M (R, o) = 0; M (R, Guia); MSSJ)rl(Ra qnk3) = 0; Msﬁl(R, Inka) = 0.

Mk (Ro, guit) = 0; MEP (Ro, guiz); MSSJ)A(RO? qnk3) = 0; Msfi)rl(Ro, qnka) = 0.

The fundamental solution (in elliptic coordinates) of
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. 2 . .
for a+~ > n, with —Ap = —m (aaﬂ + 892> , is then given by

4

Gt S(T 9 ’I” 9/ ZZZEﬂ( 4anl/a2])a/2

n=0k=1 =1
x (14 (Hgun/a?)) " (t = 5)7)
Xty g1 (1, )t g g (', 60'),

where {u, 1} are given in equation (7.9).
From Holder inequality

|t k1 (1, 0)] < M [m(acosh R)(asinh R) — 7(a cosh Ry)(asinh Ry)],

where M = sup,, j,; max(, ) Unk (1, 0), since angular Mathieu functions, for
0 < 0 < 27, and radial Mathieu functions of first and second kind, for
0 < Ry < r < R, are uniformly bounded (see, for example, Gutiérrez-
Vega et. al. [23]). The uniform upper bound, in Theorems 4.1, for the
eigenvectors of Dirichlet negative Laplacian operator on D is then given by

C(D) = M [r(acosh R)(asinh R) — m(a cosh Ry)(asinh Rp)] .

Finally, since angular Mathieu functions, and radial Mathieu functions of
the first and second kind on a closed bounded interval are Holder continuous
functions, Theorem 5.1 also holds. As before, Theorems 4.1, 5.1, 6.1 and
6.2 follow for a« ++v > n, and g < 1/2.

8. Fractional polynomials of the Dirichlet negative Laplacian
operator on D

The results formulated in this paper hold under a more general scenario.
Specifically, in equations (1.2)-(1.3), we can replace (—Ap)*/?(I — Ap)?/?
by a fractional elliptic polynomial of the form

(( Ap)*(I — Ap) “//2) ijq[ —Ap)H(I - AD)W] (8.1)
=0

of degree p, and with constant coefficients ¢ > 0,1 = 0,...,p — 1, and
¢p > 0. Thus, the following reformulation of equation (1.2) is considered
o8

S50 (t.%) + P ((—AD)O‘/Q(I - AD)W) c(t,x) =P (t,x), xeD,

(8.2)
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with the boundary and initial conditions given in (1.3), and with
P ((=Ap)*/%(I — Ap)?/?) being defined in (8.1). Here, as before, ¢ repre-
sents Gaussian space-time white noise. The next result provides the exten-
sion of the previously established statements, for equations (1.2)—(1.3), to
equation (8.2).

THEOREM 8.1. The following assertions hold:
Forn < p(a+7),

iEﬁ (—/\k (P ((—AD)O‘/Q(I - AD)“’/Q)) tﬁ) <o, (83)
k=1

for every t > 0, where, for each k > 1

P ((—AD)Q/Q(I - AD)WQ) Pk = Ak (P ((—AD)Q/Q(I - AD)7/2)> Dk
(8.4)
For n < p(a + 7), the weak-sense solution on FP(OH_W)(D) to (8.2), in the
mean-square sense, with boundary and initial conditions (1.3) is then given
by

c(t,x):/o /DG'D(t,X;s,y)s(s?y)dsdy, (8.5)

where the integral is understood in the mean-square sense, €(s,y) is space-
time zero-mean Gaussian white noise as given in equation (8.2), and, for
t>s,

GP(t,x;s,y) =

— Z Ep (—)\k (P ((—AD)O‘/Q(I - AD)W2>> (t— 5)ﬁ> r(x)Pr(y),
k>1

GD(t,x; s,y) =0, s>t (8.6)

with {¢r}ez1 and { M\ (P ((=Ap)*/2(I — Ap)7/?))},., satisfying (8.4).
For 3 < 1/2, and % < p(a + ), the following inequality holds:

Ble(t,x) — c(s,x)]* < [C(D)Pg(t - 5), (8.7)

where C(D) is defined as in Theorem 4.1, and

__Bn__ _
gt—s)=0 <(t - s)(l ey )AL 5’) . st 0<s<t  (88)
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(iii) Forn < p(a+7), assume that the uniform Hélder continuity of the Dirichlet
negative Laplacian operator eigenvectors holds, as given in Theorem 5.1,
considering ||x — y/|| sufficiently small,

Ele(t,x) — e(t,y)]* < Cy(t)[x - y|I*", (8.9)
where C' is given in Theorem 5.1, and

L(1+p)

— -8 3
g(t) =t kzl A (P ((_AD>a/2([_ AD)’Y/Q))’ t>0.

(iv) For f < 1/2, and n < p(a + 7y), assume that the uniform Hélder con-
tinuity of the Dirichlet negative Laplacian operator eigenvectors holds, as
s —t,s,t€ (0,7, and ||[x —y| — 0,

Ele(t,x) — c(s,y))?
~ __fBn _
< G(D,T. B, 7,p 1) (t,x) — (s, )] (TFei) "=,
where

N ) 1 1/2[(1—7@&’;)1))“1—3)&?].
C(D.T. 6070 1) = S(COIP v o)) 3) -
(v) For < 1/2, and n < p(a + 7y), under the uniform Hoélder continuity
of the Dirichlet negative Laplacian operator eigenvectors, as s — t, s,t €
(0,7], and |x —y| — 0,

sup [e(t, x) — ¢(s,x)[?

[t—s|<d
. B . 1/2
< 25(174&-’%);})“1_5) 4 Hl(;(l_(a‘iw)p)“l_ﬂ) [10g (2)}
sup ’C(tv X) - C(t7 y) |2

[x—yll<d

B B 1\71/2
< Yol 4 H2(52T [log <5>]

sup |C(t, X) - C(Sv Y)‘Q

[l(tx)—(s,y)ll<d

< 25(1—((1_’17’;)1))“1—5)/\23(

_ n 1/2
+H3(5<17(a67)p>A(176)A2T |:10g <§>:| ,

(8.10)
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where 2,17 and X are positive random variables, and I;Q, 1 =1,2,3, are
positive constants that could depend on the geometrical characteristics of
the domain D considered, like the boundary.

Proof. (i) As, in Corollary 2.1, we apply equation (2.5) in Theorem
2.1, considering f(u) = P(u®/?(1 + u)"/?), with P(u) = 3_}_, qu! given in
equation (8.1), to obtaining

l

M (P ((—80)72(1 = 8p)72)) = 3 [(wl(=80)™ (1 + (~2)"?]

(8.11)
where, as before, {y;(—Ap)}x>1 denotes the eigenvalues of the Dirichlet
negative Laplacian operator arranged in decreasing order of their magni-
tude. Since

p
=0

n\\2/n
(C(1+3))
D

(see, for example, Chen and Song [13]), we obtain

i (P (C80)2(1 = 25y 12)
1m
k—o0 k(c+y)p/n

Yi(—=Ap) ~ 4x k2m ke — o0, (8.12)

= &n, a+ 7,p)| DI T,

(8.13)
where ¢(n, a4+ ) is a positive constant depending on n, «, v and p.
Futhermore, equation (2.5) in Theorem 2.1 also implies the following
equality: For k > 1,

P ((=2p)*2(I = Ap)"?) é = M (P ((=Ap)*/(1 = Ap)72) ) gy,
(8.14)
for the eigenvector system {¢y}r>1 of the Dirichlet negative Laplacian op-
erator (—Ap) on domain D.
From equation (8.13), there exists ko such that for k > ko,

Elkp(a—i-’Y)/n < M\ <P ((7AD)CM/2(I _ AD)7/2>) < EQkp(a+'y)/n’ (8.15)

for certain positive constants 0 < Ly < Lo, depending on ko, and p(a + 7)
and n. In particular, for k > ko,

1
1+ (1 + B8)] 7'M (P ((—Ap)*/2(I — Ap)r/2)) tP
1
= 1+ [D(1 + B)] 1Ly kplaty)/ngB

From Lemma 2.1, in a similar way to Proposition 3.1, for each fixed
t >0,

(8.16)
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iEB <—t6)\k (P ((—AD)O‘/Q(I - AD)W2>)>
k=1

¢=Bn/platy) ooy sy L
(04+7)/“/0 1+ [+ 8)] tu

SM(BJL’YJ%”)"’ dU<OO,

(8.17)

since

M(B,a,’y,p,n) = iEﬁ <_tﬁ)‘k (P ((_AD)Q/Q(I - AD),Y/2>)> < 00,
k=1
(8.18)

ety !
and fOOO mdu < o, for p(a + 7) > n.

For ¢ € et (D), with p(a + ) > n, in a similar way to (8.17), it
can be proved that

> S;Eﬁ (=2 (P ((=2p)*2(1 = 2p)772) ) #7) ér(x)t
k=1

=S (P (-an - appP))
- < Bs (<A (P ((~20)"2(1 = 2p)"?) ) #¥) du v
< CD) Y M (P ((=A0)2(1 = Ap)P2))
X;ﬂl(_)‘k (P ((~ap) (1= 2p)") ) #*) i < o0,

(8.19)
where, as before, ¥y, = [, ¢r(y)¥(y)dy.

Applying the regularized fractional derivative in time (1.5), we then
obtain, in a similar way to Proposition 3.2,

o8

p OB
—/D [P ((—AD)O‘/Q(I—ADWﬂ) /ot/DGD (t,x;8,y)e(s,y)dyds| ¥(x)dx,
(8.20)

c(t,x)P(x)dx = /Dltl_ﬁa(t,x)w(x)dx
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4P(a+7) (D)

for every v € H , as we wanted to prove.

(ii) In a similar way to Theorem 4.1,

s

Ble(t,%) = (s, %) < [C(D) | (M (B, 0,7, p,m, (5 = w)°)

(s — u)~Bn/platy) oo pplar b
" pla+7)/n /o (1 [F(1+5)]_135)2dx .

HOWIP [ (Mo pn (- )

(t — w)—Bn/platy) oo I cEy
+ / — 5 dx | du,
pla+y)/n Jo 14+[(1+8)]2

(8.21)
where

M(B,a,7,p,n, (s = u)’ ZEB ( (s =w)X (P ( <(_AD)Q/2(I_ AD)W)))

k‘o

M(B.a.pn (s —u)) = 3 [Bs (~(s — w2 (P ((~20)72( — ap)?)))]
k=1
(8.22)

Hence,

Ele(t,x) — ¢(s,x)]* < [C(D)]? {Kl(ﬂ,a,%pm)b‘l*w
+E(B, o, 7, p,m)s P PO 4 Ko (B, 0, pon)(t — )P
+K4(/87 o, Y, P, n) (t - S)liﬁn/((a+7)p)i| . (823)

Thus, when s — ¢, s < t, we have

Elc(t,x) — c(s,x)]* = O ((t _ 5)1—(5n/p(a+v))/\(1—ﬁ)) ‘
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(iii) Applying Holder continuity of the eigenvectors, from Lemma 2.1, in a
similar way to Theorem 5.1, for every ¢ > 0,
Ele(t,x) — e(t,y)]* < Cllx - y[I**
t (1
« / Z (/2+ B3) - dv
0 k= (P (AP —a)?) ) v
r
— Ol -yl A0y T
=S I (SNFEIEINTS)
= Cy(t)|x - yII*", (8.24)

as we wanted to prove. Here, for each fixed ¢ > 0,

B I'(1+p)
- 1 Ak A)Q/Q(I A}
=t Z < o0, (8.25)

for p(a + ) > n.

(iv) In a similar way to Theorem 6.1, since under the conditions assumed,

0< (1 — %) A(1—B)A2T < 1, applying Jensen’s inequality we obtain,

1/2| (1= 5ty ) A(1=)A2Y
E[C(t,X) — C(S7y)]2 < 4([C(D)]2 Vi C'g(T)) <;> {( ( )) ]

8 [(!t—sm I — y|[2) 2L st Jr =]

__Bn_ V(1
+ \/ (1t = sf2 + x — y[[2) (520020

__Bn__ _
= 90(D,T, B, 00, p, D) (,x) — (s, )| (77 NE=0RT g o
where é(D,T,ﬂ,a,%p, T) = 2C(D,T, B,a,7,p,Y), and
N\ 2] (1- 52 ) na-)n2T
C(D.T. 607, X) = 4(CDIP v (D)) 3) -

(v) The sample-path regularity properties follow straightforward from (ii)—
(iv), by applying Theorem 3.3.3, in p.57 of Adler [1].
|
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9. Final comments

Under the conditions assumed in Proposition 3.1, a mean-square solu-
tion to equations (1.2)-(1.3) is derived in Proposition 3.2, in the weak-sense
on the space HQJW(D) (respectively on the space H' () (D), in the general
case considered in Theorem 8.1). In particular, from the results derived,
we can define a H—(®t7)(D)—valued stochastic process {C;, t € R*}, on
the basic probability space (€2, A, P), satisfying equation (1.2) a.s., i.e.,

8
(et g + AU =800 P00)
_ <It1_’85(.,w),qp(.)>L2(D) . as, Ve HT(D), teR,.(9.1)

(Note that similar assertions hold for the derived solution to equation (8.2)
in Theorem 8.1). In this derivation, the orthogonality in £2(£2, A, P) of the
random components of € is applied, i.e., we have applied that E[e(t,x)] = 0,
and Ele(t,x)e(s,y)] = 0(t — s)d0(x —y), for t,s € Ry, and x,y € D C R™.
It is well-known that this property holds for any white noise measure on
L*(R4 x D), beyond the Gaussian case. Furthermore, the fractional in-
tegration in the definition of the driven process Itl e in equation (1.2) is
understood in the mean-square sense on a suitable space of test functions,
as given in Proposition 3.2. Thus, we have only considered the properties of
the second-order moments of the distribution of the driven process in equa-
tion (1.2). Hence, Proposition 3.2 also holds when the Gaussian space-time
white noise on L?(R, x D) is replaced by an arbitrary white noise random
measure ¢ on L?(R; x D). In particular, Lévy noise can be considered. In
that case, Theorems 4.1, 5.1 and 6.1 respectively provide the Holder con-
tinuity, in the mean-square sense (i.e., the continuity of the second-order
moments), in time, space, and space and time of the weak-sense solution,
defined by integration with respect to Lévy noise dn, as

c(t,x):/o /DGD(t,X;s,y)dn(s,y)dsdy, (9.2)

with, as before, G being defined in (3.10), for the case of Proposition 3.2,
and in (8.6), for the case of Theorem 8.1. In both cases, we can interpret
the integral (9.2) as a multiparameter It0 integral with respect to n + 1-
parameter Lévy process 7, since, for a + v > n, and for each t € Ry, GP
defines a trace operator G; on L?(D), as proved in Proposition 3.1 (see, for
example, Lokka, @ksendal and Proske [28], for an alternative interpretation
and derivation of solutions in that Lévy noise case, in terms of functions
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with values in the Kondratiev space of stochastic distributions). Summa-
rizing, the derived results provide the characterization of the second-order
regularity properties of the weak-sense solution to equations (1.2)—(1.3) (re-
spectively, to equation (8.2) in Theorem 8.1). For the non-Gaussian case,
further research should be developed in order to obtain the distributional
characteristics of (9.2), beyond the second-order moments. This subject will
be considered in a subsequent paper. Note also that Theorem 6.2, on the
characterization of the sample-path regularity properties of the weak-sense
solution to equations (1.2)-(1.3), in the mean-square sense (respectively, (v)
of Theorem 8.1) only holds for the Gaussian case.
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