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Faithful Completion of Images of Scenic

Landmarks using Internet Images
Zhe Zhu, Hao-Zhi Huang, Zhi-Peng Tan, Kun Xu∗, and Shi-Min Hu, Member, IEEE

Abstract—Previous works on image completion typically aim to produce visually plausible results rather than factually correct ones. In

this paper, we propose an approach to faithfully complete the missing regions of an image. We assume that the input image is taken at a

well-known landmark, so similar images taken at the same location can be easily found on the Internet. We first download thousands of

images from the Internet using a text label provided by the user. Next, we apply two-step filtering to reduce them to a small set of candidate

images for use as source images for completion. For each candidate image, a co-matching algorithm is used to find correspondences of

both points and lines between the candidate image and the input image. These are used to find an optimal warp relating the two images.

A completion result is obtained by blending the warped candidate image into the missing region of the input image. The completion results

are ranked according to combination score, which considers both warping and blending energy, and the highest ranked ones are shown to

the user. Experiments and results demonstrate that our method can faithfully complete images.

Index Terms—Image Generation, Image Completion, Image Matching, Image Blending.

✦

1 INTRODUCTION

There is strong public demand to repair photographs, for

example to remove an unwanted object or person from a

wedding or travel photo, or to fill missing areas in an old,

damaged photo. Image completion provides an effective

tool for this purpose. It fills in missing or unwanted regions

with new plausible content.

Image completion has been widely investigated in the

computer graphics and image processing communities. One

category of existing methods [1], [2], [3] fills missing

regions using content from the same input image, based on

texture and patch similarity. Recent Internet-based image

completion work [4], [5] takes visual fidelity of image

completion to a new level. Instead of searching within

the input image, holes are filled by finding suitable image

regions in a huge image database. While existing work is

able to produce visually plausible results, they are usually

not a faithful reconstruction of the real objects or scene that

should have been there.

In this paper, we propose an image completion approach

which aims to faithfully reconstruct a correct image. We

assume that the input image was taken at a famous scenic

landmark, and that a text label describing or naming the

landmark is also given. We download thousands of im-

ages by searching the Internet using the text label, after

which two-step filtering is applied to obtain a small set of

candidate images from amongst the downloaded images.

Specifically, we only retain candidates which are similar

to the input image in gist feature space [6] and which are

well registered with the input image. Thus, the candidate
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images generally contain the same scene as the input image,

but taken with different camera parameters, from different

viewpoints, or under different illumination conditions.

For each candidate image, in order to utilize it for com-

pletion, we need to align it with and warp it to the input

image. To do so, we use a co-matching algorithm, which

finds both point and line correspondences between the

candidate image and the input image. Then, we adopt a

mesh based warping strategy, and use a carefully designed

energy function to preserve both point and line correspon-

dences, and shapes. This energy is minimised iteratively.

The completion result is obtained by blending the warped

candidate image into the missing region of the input image.

An optimal seam is found using graph-cut and blending is

done in the gradient domain. Multiple completion images

are generated, and the ones with the highest scores which

consider both warping and blending energy are then re-

turned to users. Experiments and results demonstrate that

our method can effectively generate faithful completion

images.

In summary, our work has three main contributions:

• A fully automatic approach to faithfully complete

images of scenic landmarks. Previous approaches to

this problem are not fully automatic [7] or cannot

handle such complex cases [8] as our approach.

• A co-matching technique which, when matching line

segments, utilizes geometric information from previ-

ously matched points. It is more efficient than the state-

of-the-art line matching technique.

• A warping technique that can well register two im-

ages of non-planar scenes. The images may be taken

from different viewpoints, under different illuminance

conditions and with different lens distortions.
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2 RELATED WORK

Image Completion. Image completion approaches can

be classified into diffusion based and example based ap-

proaches. Diffusion based methods [9], [10], [11] aim to

extend image structures into small holes, and so cannot

deal with large missing regions. Recent work has main-

ly focused on example based methods. Texture synthesis

methods [12], [1] are example-based and perform well on

images with holes in textured regions. The bottleneck lies

in finding patch correspondences, which is time consuming.

PatchMatch [2] utilizes the observation that neighbours of

matched patches are also likely to be matched to signifi-

cantly accelerate the process. Generalized PatchMatch [13]

further improves PatchMatch by taking scaling and rotation

of patches into consideration. Darabi et al. [14] improved

the algorithm of Wexler et al. [1] in two ways: they

calculate transformations of patches rather than only shifts

of patches using the Generalized PatchMatch algorithm,

and they add patch gradients in their distance metric in

addition to colors. They also explored a similar multi-image

completion process which fills a hole in one image with

contents from other images. They adopted a voting strategy

for visually plausible completion while we use a warping

strategy for faithful completion. Furthermore, their candi-

date image is manually selected while ours is automatically

selected. Sun et al. [15] proposed a structure-preserving

image completion method which allows users to label

structural information with lines. As well as line structures,

other types of structures like symmetric structures [16]

and planar structures [17] are also used to guide image

completion. More recently, various automatic approaches

have been proposed to analyse structural information both

within images [18], [19] and between non-overlapping

image pieces [20]. He et al. [18] compute the statistics of

patch offsets automatically and formulate the completion

process as a photomontage problem [21]. Huang et al. [19]

detect planar surfaces and regularities within images and

use them to guide patch search.

Some methods have considered faithful image comple-

tion [8][7] or faithful image expansion [22], i.e. showing

visually correct content corresponding to the actual scene.

They rely on images taken from similar viewpoints, and

need to align these images to the viewpoint of the input

image. A homography relates two images of the same scene

taken from two different viewpoints if the scene is planar.

Amirshahi et al. [8] use a single homography calculated by

matching SIFT points to transform the candidate image to

the input image: their method is thus limited to near-planar

scenes. Whyte et al. [7] observed that non-planar scenes

can be approximated by several planes, so they group

homographies using matched SIFT points and transform

the segmented planar regions with different homographies.

Since segmenting an image into several planar regions

is challenging, their method requires user intervention to

obtain a correct segmentation, so is not automatic. Shan et

al. [22] calculate structure from motion and reconstruct per-

view depth-maps to warp each candidate image to the input

image. As in [7], they have to solve a labeling problem to

decide which warped image each pixel should come from.

Such methods, which compose holes from multiple source

images, all suffer from artifacts due to incompatibility of

the warped sources. Our approach is superior, in that it

gives a plausible warp relating two different view images

in 2D, based on robust point and line matching.

Internet Image Processing. In recent years, researchers

have developed many Internet-based techniques for e.g.

scene completion [4], city reconstruction [23], photo en-

hancement [24] and image montage synthesis [25]. Such

works construct a large database by downloading millions

of images from the Internet, and use this as a data source

for different image processing tasks. Our work also belongs

to this category. A detailed survey can be found in [26].

Point Correspondences. Approaches for finding point

correspondences in images can be classified as providing

sparse correspondences [27], [28], [29], [30] or dense cor-

respondences [31], [32]. Finding point correspondences is

also referred to as keypoint matching. One of the most pop-

ular keypoint descriptors is SIFT [27], and in many cases,

SIFT matches are used as initial correspondences. To filter

out wrong matches, Cho et al. [28] cluster the initial match-

es based on their geometric distances and discard small

clusters as outliers. In cases where a non-rigid mapping

exists, an alternative approach is to model the correspon-

dence problem as a graph matching problem [29]. Spectral

techniques [30] and geometric blur descriptors [33], [34]

have also been used for keypoint matching. Calculating

dense correspondences is more challenge than calculating

sparse correspondences. HaCohen et al. [31] proposed

a patch based approach. They first calculate the nearest

neighbour field by Generalized PatchMatch[13]; each patch

is related to its nearest neighbour by a transformation.

Two neighbourhood patches are regarded as consistent if

the transformations to their nearest neighbours are similar.

They link consistent patches to get dense correspondence.

Another way to calculate dense correspondences is to use

pixel based algorithms. Instead of using pixel intensities

to calculate optical flow [35], Liu et al. [32] extract SIFT

descriptors for each pixel thus extending frame-by-frame

optical flow to scene-level image correspondences.

Line Correspondences. Various work has also been pro-

posed for finding line correspondences [36], [37], [38],

[39]. A straightforward approach is to use local features to

describe line segments [37]. They calculate the histogram of

gradient along a line segment, and use this as the descriptor

for line segments. It is easy to extend this descriptor to

curved lines. Another strategy is to use matched points to

boost line matching [36]. In this work, Fan et al. observed

that for two keypoints on the same side of a line, the ratio

of their distances to the line is an affine invariant, which can

be utilized to check if two lines match. A more reasonable

way is to use epipolar geometry to register lines [39], but

this requires camera calibration beforehand.
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Image Warping. Warping is an efficient tool for image

manipulation. Many works [40], [41], [42] generate control

meshes in an image and define different forms of energy

functions to optimize the positions of mesh vertices. These

energy functions are application specific. To warp a panora-

ma from an irrelugar shape to a rectangle, He et al. [40]

consider shape preservation, straight line preservation and

boundary constraints to optimize the guiding mesh. Carroll

et al. [41] use shape preservation, straight line preservation

and smoothness terms to constrain warping, thus making

a wide-angle image look more friendly to human eyes. In

video stabilization, Liu et al. [42] smooth the trajectory of a

camera and project the original vertices into new positions.

In their energy term, saliency and temporal coherence

are also considered besides the commonly used similarity

transformation term.

3 OVERVIEW

We take as input a scenic landmark image associated with a

text label. Our approach consists of four steps; the pipeline

of our approach is illustrated in Figure 1.

• Candidate Image Downloading and Pre-Processing.

We download several thousand images by searching

flickr.com using the associated text label. Follow-

ing [4], we use gist scene descriptors [6] to perform

initial filtering. The closest one hundred images to the

input image according to gist scene descriptors are

retained.

• Candidate Images Filtering. Next, the candidate

images are reduced to a small set (typically 20) based

on registration scores (Section 4). These images should

contain the same scene as the input image, and can

potentially produce good completion results. For each

candidate image, we generate a completion image in

the next step.

• Co-Matching, Warping and Blending. We first de-

tect key points in both the candidate image and the

input image, and find matches between the key points

using agglomerative correspondence clustering [28]. A

homography is computed for each cluster of matches.

Line segments are also extracted in both images us-

ing [43]. To obtain better line matching results, we

extend MSLD [37] by taking homographies recovered

from point matching into consideration. Details are

explained in Section 5. Next, we need to warp the

candidate image to the input image. To do so, we

adopt a mesh based warping strategy, using an energy

function which preserves both point and line corre-

spondences found in the co-matching step, as well

as line structures and shapes. The energy function

is minimized iteratively, as shown in Section 6. An

example showing part of a candidate image before

and after warping can be seen in Figures 2(a) and

(b). To obtain a completion image, we need to blend

the warped candidate image into the missing region

of the input image. We first obtain an optimal seam

using graph cut [44] (see Figure 2(c)), and then use

the algorithm in [45] to blend the candidate image into

the input image.

• Ranking. The above process provides multiple com-

pletion images. For each result, we compute a combi-

nation score, which considers both warping and blend-

ing energy. The completion images with the highest

combination scores are returned to the user.

4 CANDIDATE IMAGE FILTERING

To achieve faithful image completion, we need to use

content from other images which contain the same scene

as the input image. To do so, we first download several

thousand images from Flickr using the text label associated

with the input image. As most of the downloaded images

are unrelated to the input image, we use gist scene descrip-

tors [6] with 8 orientations and 4 scales to discard dissimilar

images. The candidate images after initial filtering are

denoted by Sg (their number is denoted Ng). Next, we need

to find which candidate images contain the same content as

the input. For this purpose, we define a registration score

for each candidate image, which measures how well it can

be registered to the input image. The Np candidate images

with highest registration scores are then retained and passed

to further steps. The registration score P is defined as:

P(Is, It) = λm

Pm(Is, It)

max(Pm(Is, I j))
−λa

Pa(Is, It)

max(Pa(Is, I j))
, (1)

where I j is from Sg, It denotes the candidate image, and Is

denotes the input image. The registration score involves two

terms: the point matching term Pm and the affine registration

term Pa. These terms are weighted by λm and λa, and

are divided by their maximal values for normalization,

respectively. The point matching term Pm is defined as:

Pm(Is, It) = |Cs,t | (2)

where |Cs,t | denotes the number of point matches between

the input image Is and the candidate image It . Details

of point matching are presented in Section 5. The affine

registration term Pa is defined as:

Pa(Is, It) =

∑
(xs,xt )∈Cs,t

‖Atxt − xs‖

B
(3)

where B denotes the size of a bounding box that contains all

matching points, and At is the optimal affine transformation

matrix that matches all points from the input image to the

candidate image, which is obtained using the algorithm

in [46].

In our implementation, we empirically set the weights

λm = 2 and λa = 1. The number of retained images after

initial filtering is set to Ng = 100, and the number of

final retained candidate images is set to Np = 20. Our

experiments show that this setting gives a good balance

between speed and accuracy. Our Matlab implementation

takes about 400 seconds for this step (not including the

time to download images).
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Arc de Triomphe-Pairs
+

(1)

(2) (3) (4)

Candidate Image Downloading 

and Pre-Processing

Candidate Images Filtering Co-Matching, Warping and Blending Ranking

Fig. 1. Pipeline. (1) The input is a source image of a famous landmark, plus a keyword describing it. Image search

engines are used to download initial candidate images. Gist descriptors are used to filter the initial image set. (2) We

select potential candidates by further filtering. (3) For each candidate image, we match points and line segments, and

compute an optimized warp from the candidate image to the source image. We then cut the appropriate part from the

candidate image and blend it into the source image. (4) A ranking function is used to select the best completion results.

(a) (b) (c)

Fig. 2. (a) Part of the candidate image. (b) Warped result.(c) Optimal seam (blue).

5 CO-MATCHING

The previous section explained how to obtain a small set

of candidate images. These candidate images generally

contain the same scene as the input image, but taken

with different camera parameters, at different viewpoints

or under different illumination conditions. Now, we need

to find correspondences between each candidate image and

the input image, in order to align them later. Various work

has been proposed for finding point correspondences [27]

and line correspondences [36] between two images. In

order to obtain more robust matching results, we have

developed a co-matching algorithm, which finds both point

and line matches. The main idea is to use the recovered

homography based on point correspondences to further

improve the accuracy of line correspondences. The co-

matching algorithm works as follows:

Point Correspondences. We first detect MSER region-

s [47] and extract SIFT [27] features to match the key

points of the two images. Next, we cluster the matched

points based on the feature distance between each matched

point pair. We adopt agglomerative correspondence clus-

tering [28] to cluster the matched pairs and discard small

clusters (with less than 20 pairs) as outliers. Then, we

compute a homography by least-squares fitting for each

remaining cluster. A recovered homography is illustrated

in Figure 4.

Line Correspondences. First, we use the method of [43]

to detect line segments in both images (see Figure 3).

To match line segments between two images, we need a

distance metric for line segments. We use:

D(li, l j) = Dfeat(li, l j)+αDgeo(li, l j), (4)

where li, l j are line segments in the two images respectively.

Our distance metric takes two terms into account: the

feature distance Dfeat and the geometric distance Dgeo. α

is a weight to control the relative contributions of the two

terms, set to α = 2 empirically. The feature distance Dfeat

is computed as the difference of the MSLD descriptors [37]

of the two line segments. The geometric distance measures

how well the two line segments match each other under the

homography just recovered, and is defined as:

Dgeo(li, l j) =
1

2
(DHough(Hili, l j)+DHough(H j

−1l j, li)), (5)

where DHough represents the distance of two lines in Hough

space; Hi and H j are homographies at li and l j, respectively,

which have been recovered in the previous point matching

step. Both feature and geometric distances are normalized

to [0,1] by dividing by their maximal values, respectively.

We then use the line distance metric in Equation 4 to

compute all-pair distances between line segments in the
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Fig. 3. Line detection. Blue lines show detected line seg-

ments whose length is at least 40 pixels.

Fig. 4. Homography region partition. Matched points in

the same cluster are marked in the same color. For each

cluster, we fit a homography based on the matched points.

two images. Two line segments li and l j are considered as

matched if li is closest to l j among all line segments in

the input image, and l j is also closest to li among all line

segments in the candidate image.

Evaluation. To evaluate the effectiveness of our co-

matching algorithm, we compared it to two state-of-the-

art line matching algorithms: Fan’s algorithm [36] and

Wang’s algorithm [37]. To enable a fair comparison, all the

algorithms should have a similar number of matched lines.

In some cases we should increase the number of matched

lines for a certain algorithm while decrease the number

of matched lines for another algorithm. To increase the

number of matched lines, we loosened the matching criteria

for the algorithm: two line segments from two images are

matched if they belong to each other’s top n matches where

n is a parameter. To decrease the number of matched lines,

we set a distance threshold t to discard some matched line

pairs whose distances are larger than t. We adjusted n and

t to let these algorithms have a similar number of matched

lines. The lines were generated using the method in [43],

and used as input for all 3 algorithms. As shown in Table 1,

our line matching algorithm has a higher correct matching

rate than these previous methods.

6 WARPING CONSTRAINED BY POINTS AND

LINES

After finding point and line matches between the input

image and the candidate image, the next tasks are to align

the matched points and lines, and to warp the candidate

image to the input image. To do so, we adopt a mesh-based

warping algorithm with a carefully chosen energy function.

We parameterize the candidate image using a uniform

mesh with 20×20 vertices. The energy function considers

constraints on both point and line correspondences, as well

as preserving shape and line structures. In the following,

we explain the details of the energy function, and how we

use the mesh grid for warping.

6.1 Energy Function

Our energy function considers constraints on matched

points and lines, as well as preserving structures like shapes

and other straight lines. We denote the initial mesh by

V̂ , and the output optimized mesh as V . The vertices of

the grid V are denoted by its x− and y− coordinates:

V = {(xi,yi), 1 ≤ i ≤ N}, where N is the number of

vertices. V̂ is defined in a similar way.

Point Constraints. The point constraint term constrains the

matched points to remain close after warping. Specifically,

the point constraint term EP is defined as:

EP(V ) =
K

∑
i=1

(xi,s − xi,r)
2 +

K

∑
i=1

(yi,s − yi,r)
2
, (6)

where K is the number of matched point pairs; (xi,s,yi,s) and

(xi,r,yi,r) are the positions of the points of the i−th matched

pair (subscripts s and r represent the input and warped

candidate images, respectively). Note that the position of

each point in the warped candidate image is found by

bilinear interpolation of its four adjacent vertexes, so that

EP can be written as a quadratic function of vertex positions

V .

Line Constraints. Since human vision is very sensitive to

artifacts along straight lines, we also wish to preserve line

correspondences during warping. We constrain the lines in

the warped candidate image to have similar orientations

and positions to the corresponding lines in the input image,

and to remain straight. We use two terms ELC1 and ELC2

to impose line constraints, which preserve orientation and

position of lines, respectively. Denote the lines in the input

and the warped candidate image as li,s and li,r, respectively.

Inspired by [48], we cut a line segment into smaller

segments if it crosses mesh edges.

For each line segment in a mesh quad, its orientation vector

is computed as the direction from one endpoint to the other.

For each matched pair of line segments, we denote the

orientation vector of the line segment in the input and

warped candidate images as ê and e, respectively. The

first term ELC1 is defined as the mean distortion over all

segments:

ELC1(V ) =
1

NLC

NLC

∑
i=1

‖siRiêi − ei‖
2
, (7)

where NLC is the number of segments, Ri =
(

cosθi −sinθi

sinθi cosθi

)

is a rotation matrix, and s is a

scaling factor. Unlike in [48], here the rotation angle θi is

given by the matched line pair with index i. Minimizing

this energy term with respect to s gives: s = (êT ê)−1êT RT e.

Since e can be represented by a linear function of V , ELC1

can also be written as a quadratic function of V .
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TABLE 1

Line matching: our results compared to Fan’s algorithm and Wang’s algorithm.

total matched lines correct match correct rate time(s) source image candidate image

Kensington Castle
Fan’s method 108 102 94% 16

Wang’s method 106 82 77% 5
Our method 103 101 98% 16 1000*667 1504*1000

Notre Dame
Fan’s method 135 108 80% 29

Wang’s method 125 107 85% 4
Our method 140 139 99% 15 1000*928 922*1229

Duomo
Fan’s method 198 182 92% 22

Wang’s method 194 168 87% 4
Our method 202 188 93% 8 1000*664 1000*709

Palazzo Santa Sofia
Fan’s method 266 256 96% 32

Wang’s method 278 255 91% 6
Our method 243 235 97% 15 1024*632 1024*768

Rialto Bridge
Fan’s method 164 159 97% 5

Wang’s method 133 114 86% 3
Our method 152 148 97% 5 820*403 820*403

Leaning Tower of Pisa
Fan’s method 40 35 88% 6

Wang’s method 32 27 84% 2
Our method 35 32 91% 6 684*1024 683*1024

Arc de Triomphe -Paris
Fan’s method 138 137 99% 7

Wang’s method 162 139 86% 4
Our method 146 146 100% 6 533*800 968*667

Big Ben
Fan’s method 44 30 68% 4

Wang’s method 43 32 74% 3
Our method 45 41 91% 4 1024*683 685*1024

The second term ELC2 is designed to constrain the position

of lines. Inspired by [48], we transform a line y = ax+
b in image space into a point (r,θ) in Hough space. For

an arbitrary point (x0,y0) on this line, x0 cosθ +y0 cosθ =
r. We constrain the range of θ to be [0,2π), so that r

will always be positive. For each segment in a quad, we

denote its final position after warping as (ri,θi) in Hough

space. Meanwhile, we also know its ideal position (r̂i, θ̂i)
according to the corresponding line in the source image. To

simplify the problem, we suppose that θi is always equal to

θ̂i, so that ri is the only unknown and can be represented

by a linear combination of the four quad vertexes. This

assumption is reasonable provided we give a large weight

to ELC1. Now the second line constraint term ELC2 can be

defined as:

ELC2(V ) =
1

NLC

NLC

∑
i=1

‖r̂i − ri‖
2
. (8)

ELC2 can also be rewritten as a quadratic function of V .

Line Preservation. Besides lines in correspondence, we

also want to constrain all unmatched lines to be straight

after warping. We define the line preservation term ELP as:

ELP(V,{θm}) =
1

NLP

NLP

∑
i=1

‖siRiêi − ei‖
2
. (9)

Unlike the line constraint term, here the rotation angle

for each segment is also an unknown. Following [48], we

quantize the orientation range into 50 bins. Each segment

can be assigned to a bin according to its original orientation.

We encourage segments in the same bin m to share the

same rotation angle θm. Actually, some of the θm can be

pre-computed. For a line with correspondence, we already

know its rotation angle θ . Then we can compute which bin

it belongs to and fix the θm for that bin as θ . Meanwhile,

the rotation angles of lines without correspondences will

be guided by those with correspondences.

Shape Preservation. In order to preserve the shape of the

image content, we define a shape preservation energy term

as:

ES(V ) =
1

Nq

Nq

∑
q=1

‖(Aq(A
T
q Aq)

−1AT
q − I)Vq‖

2
, (10)

where Nq is the number of quads in the mesh, Aq is defined

as:

Aq =















x̂0 −ŷ0 1 0

ŷ0 x̂0 0 1
...

...
...

...

x̂3 −ŷ3 1 0

ŷ3 x̂3 0 1















, (11)

and Vq is defined as:

Vq = [x0,y0,x1,y1, ...,x3,y3]
T
. (12)

Here we denote the four corners of the quad as

(x0,y0), . . . ,(x3,y3). ES encourages each quad to undergo a

similarity transformation; a detailed derivation can be found

in [49].

Total Energy Function. Finally, the total energy function

E is defined as:

E(V,{θm}) = EP +λLC1ELC1 +λLC2ELC2 +λLPELP +λSES,

(13)

where each λ controls the weight of the corresponding

term. Same as previous works [40], [41] we give high

weight for line orientation term. In our implementation, we

empirically set λLC1 to 100000, λLC2 to 1, λLP to 100, λS

to 1000.
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6.2 Iterative Two-step Optimization

Minimizing the energy to find V and {θm} in Equation 13

at the same time is difficult. Instead, we solve this problem

using an iterative two-step approach. In the first step, we

fix {θm} and solve for V , making E a quadratic function

which can be solved by a linear least-squares solver. Since

we have only 400 vertexes in V (i.e. 800 unknowns), the

linear system can be solved rapidly. In the second step, we

fix V and solve for {θm}. To simplify the problem, we use

an intuitive averaging strategy instead of a non-linear solver.

Specifically, each θm can be estimated using the average of

the relative angle between e and ê for all segments in the

bin indexed m. However, not all elements in {θm} should

be updated. As mentioned in Section 6.1, the rotation angle

θ for a line with correspondence is already known and the

related bin in {θm} should be fixed to θ . We iteratively

apply the above two steps, and usually 5 iterations suffice

to obtain a satisfactory result.

7 RESULT RANKING

After obtaining one completion result for each candidate

image, we now need to select the best results from those

obtained. We define the score of a completion result as:

R = λrP(Is, It)+λwPw(Is, It)+λgPg(Is, It) (14)

where Is,It denote the input and the corresponding candidate

images, respectively; P(Is, It) is the registration score de-

fined in Section 4; Pw is the warping score and it is defined

as:

Pw(Is, It) = 1−
Ew(Is, It)

max(Ew(Is, I j)), j ∈ Sg

(15)

where Ew(·, ·) is the total warping energy of the two images

defined in Eqn. 13. Pg is the normalized energy of the

graph-cut boundary segmentation:

Pg(Is, It) = 1−
Eg(Is, It)

max(Eg(Is, I j)), j ∈ Sg

(16)

where Eg(·, ·) is the graph-cut energy used in [21]. We

add this term because a poorly segmented boundary always

leads to obvious artifacts.

In our implementation, we empirically set the weights in

the ranking function to λr = 0.2, λw = 0.4 and λg = 0.4,

respectively. By default, our system returns the result with

the highest score. Users can also select from further results

if dissatisfied with the top ranked result. Various ranked

results are illustrated in Figure 5.

8 RESULTS AND DISCUSSION

8.1 Implementation Details.

We have implemented our method using Matlab on a PC

with an Intel Core i7 3.4GHz CPU and 8GB memory. Our

system takes about 2 minutes to obtain the final completion

results for a typical input image with 1200×800 resolution

(the time for downloading images is not included).

8.2 Demonstration

Figure 6 demonstrates the effectiveness of our system,

showing completion results for various scenes. In the first

row, the input image (i.e. the left column) is taken at the

Rialto Bridge in Venice. Notice that there is an unwanted

flag in the middle of the bridge, occluding part of it.

Our method successfully removed the flag and replaced

it with content from other images. Our result is given

in the right column; candidate images are shown in the

middle column. Other rows show results at Kensington

Palace (with an unwanted statue in front of the palace),

at a bridge in a traditional Chinese town (with unwanted

people), at a Buddhist temple in Japan (the bottom-left

corner is occluded by a tree), and at the Leaning Tower of

Pisa (one of the floors is covered by a fence). Our method

can handle all these cases well.

8.3 Need for Both Point and Line Constraints

The reason we do co-matching is that both point constraints

and line constraints play important roles in our warping.

We illustrate this in Figure 7. In Figure 7(a), we want to

remove the man in front of the Duomo of Milan. Without

point constraints, the entire wall cannot be well registered:

see Figure 7(b). When we add point constraints but not

line constraints, although on the whole the result is better

registered than in Figure 7(b), there is still severe misalign-

ment in the line structures: see Figure 7(c). Figure 7(d) is

the result using both point and line constraints. It is well

registered and the completion result does not suffer from

artefacts.

8.4 Comparison with PatchNet and Scene Completion

We next compare our approach with state-of-the-art In-

ternet based image completion methods including a scene

completion method [4] and PatchNet [5]. To enable a fair

comparison, we built an image library containing hundreds

of thousands of images, and used same image library for all

three methods. As shown in Figure 8, for all four examples,

our method is able to generate faithful completion results,

while the scene completion method [4] and PatchNet [5]

both generate unfaithful (although visually plausible) re-

sults. This is unsurprising, since these two methods only

find similar images (or similar content in images) and aim

to generate plausible results. In comparison, our method

uses images taken at the same scene for completion, and

hence is more effective in generating faithful completion

results.

8.5 Comparison with Moving Least-Squares Deforma-

tion

We now compare our warping method in Section 6 to mov-

ing least-squares deformation (MLSD) [50]. The candidate
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Fig. 5. Ranked results, showing 4 representatives. Rank 1 is the best result; Rank 4 suffers from a non-smooth graph-cut

boundary; Rank 9 has many fewer matching points; Rank 15 has too large a viewpoint difference.

image used was the same in both cases. MLSD uses point

constraints as well as line constraints. With MLSD, too

many point constraints lead to extreme distortion, so we

picked 20 matched pairs with the highest confidence in our

results. For similar reasons, we picked the 5 best matched

lines. After deformation, we blended the deformed parts

into the source image. In the first row of Figure 9, the clock

of Big Ben was replaced. Neither point constraints nor line

constraints can preserve local shapes. Compared with the

results in the first row, the distortion in the deformation

using MLSD is more obvious in the second row of Figure 9,

where we tried to remove the boat in front of the Palazzo

Santa Sofia.

8.6 Comparison with Single and Multiple Homography

Approaches

Our approach is superior to the single homography ap-

proach in [8] and the multiple homography approach in [7].

A single homography cannot register the source image

and the candidate image for non-planar scenes. Multiple

homography suffer from incompatibility between the im-

ages due to different white balance, different resolution and

different lighting conditions. In Figure 10, we compare our

approach with single and multiple homography approaches.

For the single homography approach, we use the same

candidate image as in our approach. For the multiple

homography approach, we use the top 10 images after

initial filtering. In the first row, we remove the statue in

front of St. Basil’s Cathedral. Using the single homography

approach, the left of the image is excessively stretched. The

result of multiple homography approach seems good at first

glance, but the blue and white top is doubled. In the second

row, we remove the part of the central television building

that is being built. The single homography approach fails

to register the building well while this problem is less

severe for the multiple homography approach. However,

different parts coming from from different candidate images

leads to color inconsistency, which is the main artefact

in this case. In the third row, we recover the occluded

part of the Royal Albert Hall. The single homography

approach again suffers from misalignment while for the

multiple homography approach the bottom right statue is

missing. In all the above cases, our approach generates

faithful completion results. We give more comparisons in

the supplemental material.

8.7 Depth of Field Extension

Our approach can also be used to change the depth of field

of a photograph, producing interesting effects. In Figure 11,

we replace the blurred objects with sharp ones to increase

the depth of field.

8.8 Limitations

Our method may fail in some cases. For example, if the

viewpoint differs greatly between the input and candidate

images, it may be hard to find a reasonable warp from the

candidate image to the input image, leading to results with

inconsistent alignment (see Figure 12, first row). Further-

more, if there are large tone and illumination differences

between the input image and the candidate image, visible

color inconsistency artifacts may result (see Figure 12,

second row).

Another limitation of our approach is that it cannot handle

cases when the target region is too large. This is because our

approach relies on correspondences between two images

outside the target region, and if the target region is too large,

there will be few matches. The point and line terms of the

energy function will have less impact so the optimization

cannot give a reasonable warp (see Figure 12, third row).
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Fig. 6. Further completion results. Left: image to be completed; yellow rectangles mark the regions to be completed.

Middle: candidate images. Right: completion result.
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(a) (b) (c) (d)

Source image Result without point constrains Result without line constrains Result with both constrains

Fig. 7. The necessity of using both point constrains and line constrains in the warping.

Source image Scene completion result PatchNet result Our completion result

Fig. 8. Comparison to scene completion [4] and PatchNet [5].

9 CONCLUSIONS AND FUTURE WORK

We have proposed an approach for faithful completion of

scenic landmark images using Internet images. The input

comprises an image, a user given text label naming the

landmark, and a region mask indicating where the image is

to be completed. The completion process is fully automatic.

Our method first downloads thousands of images from the

Internet using the provided text label, and reduces them to a

small set of candidate images through two-step filtering. For

each candidate image, we apply co-matching to find point

and line matches between the input image and the candi-

date, and compute a warp relating it to the input image.

A completion result is obtained through gradient domain

blending. The completion results with highest combination

scores, which consider both warping and blending energy,

are then displayed to users. We have validated our approach

on many famous landmarks; experiments show that our

approach can generate faithful results in most cases.

In future, to improve result quality, we plan to add an

additional color transfer step to deal with cases when there

are large tone and illumination differences between the

input and candidate images. We also plan to extend our

warping method to more general cases, such as adding

support for panoramas.
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Source image With point correspondence With line correspondence Our completion result

Fig. 9. Comparison with moving least squares deformation (MLSD) [50].

Source image Single homography Multiple homography Our completion result

Fig. 10. Comparison with single homography [8] and multiple homography [7] approaches.
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