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Summary

We develop in this work a procedure for obtaining the fatigue life of com-

plex structures directly from Computer-Aided Design (CAD) data, without

any mesh generation or regeneration as the cracks evolve. The method

relies on a standard isogeometric boundary element method (IGABEM)

where the same basis functions are used to both describe the geometry of

the component and approximate the displacement and traction fields. The

contributions of this work include:

(1) Dual boundary integral equations have been applied to model 2D/3D

fracture problems in the framework of IGA and that such simulations re-

quire no meshing or remeshing in the conventional sense;

(2) Graded knot insertion and partition of unity enrichment have been used

to capture the stress singularity around the crack tip. The contour-integral

based methods and the virtual crack closure integral method are adopted

to extract stress intensity factors in the framework of IGABEM;

(3) Modifications on the singularity subtraction technique for (hyper-)singular

integration are proposed to enhance the quadrature on distorted elements

which commonly arise in IGA;

(4) A NURBS-based geometry modification algorithm is developed to simu-

late fatigue crack growth in 2D/3D. smooth crack trajectory and crack front

are obtained;

(5) An implementation on trimmed NURBS is realized based on a localized

double mapping method to perform the quadrature on trimmed elements.

A phantom element method is subsequently proposed to model the surface

crack (breaking crack) problem and the displacement discontinuity can be

introduced without any reparametrization on the original patch.
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Chapter 1

Introduction

1.1 Computational fracture models

The numerical simulation of crack propagation and the prediction of fa-

tigue life for engineering structures plays an important role in modern in-

dustrial design and remains a difficult problems. Various computational

models have been proposed to fulfill the analysis of brittle fracture.

1.1.1 Continuum damage mechanics

One way to model fracture in the continuum-based methods is related to

damage mechanics, where the failure occurs with the degradation of solids

in the stress concentrated area due to the micro-defects of the material and

can be scaled by introducing a internal damage variable into the constitu-

tive relation of the material, thus no existing or predefined crack surfaces

are needed. A simple damage model of fracture, however, suffers from

spurious localization when it comes into numerical implementation. Some

regularity treatments are thus needed and several methods were developed

subsequently. For example, the non-local model [1][2], where the damage

variable is calculated through an integration of the strain over a certain area;

the gradient-based method [3], where the spatial derivative of the damage

variable or the gradient of deformation, are introduced. Moës et al pro-

posed a thick level set (TLS) approach to model damage growth [4]. In this

method, the damage zone is separated by a level set function and the dam-

age variable is an explicit set of the level set. This method bypassed several
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difficulties in the gradient-based methods and is promising to bridge the

nucleation of micro-cracks from damage mechanics to macro-propagation

of the crack.

1.1.2 Linear elastic fracture mechanics and cohesive fracture

The discrete approaches or enrichment methods [5] introduce the crack

(displacement discontinuity) directly into the fracture model. These meth-

ods rely on a crack surface tracking algorithm and will be further reviewed

in subsequent sections. Based on the assumption of linear elastic frac-

ture mechanics (LEFM), the discrete/enrichment approach has been ap-

plied into industrial structure design maturely. The LEFM-based analysis,

also known as the damage tolerance assessment [6], considers the inten-

sity of structure/mechanical part which allows cracks exist (crack size usu-

ally greater than 1 mm which can be given by the non-destructive detec-

tion) in the design procedure, where the crack is inserted manually into the

stress concentrated area spot by stress analysis. For a working part under

cyclic loading condition, if cracks are detected in the inspection routine, the

rest serving life can be estimated by the crack propagation analysis coupled

with fatigue rule such as the Paris law. For some material such as the con-

crete, the fracture process zone is non-eligible compared to the crack size,

thus the linear elasticity or small field yielding assumption in LEFM fails.

Then the cohesive crack model is adopted, where a displacement-traction

relation is used in the cohesive zone on the crack surface. The cohesive

crack model was well developed in 2D [7][8][9][10] and its extension to 3D

is available in the framework of extended finite element method [11].

1.1.3 Variational fracture approach

The conventional crack growth analysis relies on the Griffith theory, where

the crack will propagate once the crack driving force (stress intensity factors

or J integral) exceeds the fracture energy needed for the formation of the

new crack surface and this procedure is considered as a postprocess of the
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finite element analysis. The variation fracture approach [12] was proposed

by taking the fracture energy into the energy functional, thus the crack ad-

vance increment and angle become variables of this functional and can be

obtained by the global energy minimization. The variational approach pro-

vides a fully automated way to propagate the crack and has been realized

in 2D [13][14] and 3D [15][16]. The phase field method [17][18][19] pro-

vides a way to model fracture in continua by using a phase field variable

to describe the crack surface implicitly. Similar to the discrete variational

methods, cracks nucleate automatically when the stress reaches the critical

value and the parameters for the propagation of cracks can also be found

by solving the system of equations.

1.2 key challenges in linear elastic fracture mechanics

Although the LEFM appears simpler, it presents a number of unique chal-

lenges to the modelers. The first difficulty is the accurate computation of

the crack driving force, namely the stress intensity factors (SIFs). The sec-

ond difficulty is that the mesh used for stress analysis and hence for the

detection of ‘sensitive’ regions in the component, where initial flaws are

introduced, is typically at least one order of magnitude too coarse to pro-

vide quality SIFs. The third difficulty lies in the geometrical complexity of

the domain which, if the predicted fatigue life is deemed inadequate, must

be redesigned. For each new design, and for each crack configuration, a

new mesh typically needs to be generated, not only to conform to the new

chosen geometry, but also to properly resolve stresses in the vicinity of the

crack tip (front). The requirement of reproducing the large gradients (sin-

gularities in the case of LEFM, combined with that of capturing discontinu-

ities as they evolve implies that relatively fine meshes must be continuously

regenerated as cracks propagate. Fourth, reliable and general crack growth

laws remain elusive. For LEFM, the Paris law or its cousins are commonly

used. Such laws compute the increment in crack advance as a proportional

to some power m(m > 1) of the SIFs. A small error ε in the SIFs thus leads
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to an accumulated error scaling as mε at each of the tens of thousands of

crack growth steps required for each simulation. This raises more demand-

ing requirements on accuracy of the SIFs calculation.

1.3 Existing numerical methods for linear elastic frac-

ture modeling

The finite element method (FEM) can be applied to simulate the crack prop-

agation directly with certain adaptive re-meshing operation [20][21][22].

Some software packages have been developed based on this idea [23][24]

and a review paper can be found in [25]. Nevertheless, meshing and re-

meshing becomes one of the most human-intensive tasks for multi-cracks

or for very complicated components as the complexity is increased due to

the presence of cracks. Most, if not all, commercial codes do not offer com-

pletely automatic re-meshing approach for industrial fracture simulations.

The idea of partition of unity (PU) enrichment has been proposed to el-

liviate the mesh burden in fracture modeling [5]. Due to the additional en-

richment functions, the discontinuities are introduced into the model and

the representation of the crack only aims for initiating the enrichments,

which makes the crack mesh independent from the component’s mesh.

The extended finite element method (XFEM) [26], usually coupled with

the level set functions as an implicit representation of the crack, has been

implemented for 3D crack growth problem [27][28][29][30] as well as for

industrial applications [6][31][32]. The meshfree methods have also been

proposed with the aim of further reducing the mesh burden, for instance,

the element-free Galerkin (EFG) [33][34] and the extended EFG (XEFG)

[35][36][37]. For more details, the readers could refer the review paper by

Nguyen et al [38].

The fracture modeling by the boundary element method (BEM) exhibits

more advantages than by FEM in terms of meshing/re-meshing efforts as
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only the boundary discretization is required in BEM in order to approxi-

mate the quantity of interest. When cracks evolve, only the boundary sur-

faces are updated instead of re-generating the volume mesh. In order to

circumvent the singular system caused by the collapsed surfaces in frac-

ture, Hong and Chen [39] proposed the dual boundary integral represen-

tations by introducing the hyper-singular equation derived from the sec-

ondary field [40]. The use of dual boundary integral equations makes the

crack propagation simulation more effective through a single domain. And

the corresponding dual BEM was subsequently implemented for 2D and

3D fracture [41][42][43] and was extended to material-nonlinear fracture

[44][45] and dynamic crack propagation [46]. Commercial packages based

on BEM are BEASY [47] and FRANC3D [48]. Besides the dual BEM based

on the collocation method, the Galerkin BEM, in particular the symmet-

ric Galerkin BEM (SGBEM) has also drawn attention in the application for

fracture analysis [49][50][51]. The symmetric matrix system of SGBEM also

facilitates the coupling with FEM [52][53].

Besides the above classical FEM and BEM based approaches, versatile

methods have been proposed to model fracture. The peridynamics uses

integral equations to replace the partial differential equations of the clas-

sical continuum theory and can model fracture without the complications

of mathematical singularities, due to the fact that the integral equations re-

main valid in the presence of cracks [54][55]. Kaczmarczyk et al presents

a theory for propagating cracks based on configurational mechanics [56],

where determining the direction of the propagating crack front is based on

the principle of maximal energy dissipation using configurational forces.

An enriched BEM was adopted for fracture analysis in [57] with accurate

SIFs obtained. The scaled boundary FEM was also applied for fracture

modeling, for more details, the readers can refer to [58][59][60].

Apart from the meshing/re-meshing issues in fracture simulation, the

accurate evaluation of fracture parameters also attracts many researchers’

attention. For example, the stress intensity factors, usually characterized as

the driving force for the evolution of fatigue fracture, can be extracted from
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the numerical solution. If the fracture parameters are computed based on

the point-wise tips on the crack front independently, the approach can be

considered as ‘local’. The key factor to compute accurately the SIFs in a

local approach is to avoid discretization and path dependence.

Due to the 1/
√
r stress singularity in the vicinity of the crack tip in

LEFM, special care should be taken in the numerical methods in order to

absolutely obtain more accurate SIFs. One approach to capture the asymp-

totics of the displacement and stress fields in the vicinity of a crack is the use

of special crack tip elements; for example, quarter-point elements [61][62],

which can exactly represent the 1/
√
r singularity in the near-tip stress field

and allow a direct extraction of the SIFs [63]. The displacement correlation

method [64], with or without crack-tip singular elements, is simple and

fast. Nevertheless,this method is extraction path dependent. An extrapola-

tion technique is typically performed upon a group of calculations to avoid

such dependence. Another possibility is the hybrid crack element, devel-

oped in both the FEM and the BEM communities [65][66], which introduces

asymptotic behavior of the stress field around crack tip into the tip-element

so that the SIFs can be computed directly and accurately.

The virtual crack extension method (VCE), was applied to compute SIFs

in [67][68]. The original VCE relies on the construction of a structured mesh

along the crack front, which decreases mesh independence. However, it

should be noted that in the same context of VCE, the variational form of

the strain energy which involves the energy release rate and the crack ex-

tension has been developed for automatic crack growth [69][70]. The crack

extension is given physical interpretation. The variational form minimizes

the strain energy in a global sense and has recently been investigated in the

framework of XFEM [71].

The virtual crack closure integral (VCCI) method, based on the virtual

crack extension, is another alternative to extract SIFs in linear elastic frac-

ture. Due to its simplicity and accuracy, the VCCI has been widely used

in FEM and BEM [72]. While it should be noted that this method requires



1.4. Isogeometric analysis 7

the structured mesh near the crack front. The path-independent J inte-

gral proposed by Rice [73] is an attractive method due to its robustness

regarding the relative independence in discretization and integral on do-

main. The method was extended into many branches based on both FEM

and BEM [74][75][76][77][78]. The contour J integral is usually cast into

the equivalent domain integral form in volume-based methods as stresses

are discontinuous across element edges and statically admissible smooth-

ing/recovery techniques are cumbersome. While in BEM the contour defi-

nition can be adopted directly [79]. In order to extract mixed mode SIFs, dif-

ferent techniques are developed. The Jx integrals (x = 1, 2, 3), as the com-

ponents of the J integral, can be directly used to evaluate the SIFs. How-

ever, the evaluation of J2 and J3 (or GIII ) exhibits numerical difficulties

due to the singularity [80]. The J1 integral (or J integral) can also be used

to extract mixed mode SIFs, with some auxiliary operation. One approach

is to decompose the displacement and stress fields into symmetric and an-

tisymmetric portions with a structured mesh along the crack front, then the

three modes of the J integral can be extracted directly [81][82][83][84]. The

other method known as the M integral (or interaction energy integral), was

developed by introducing asymptotic fields as an auxiliary solution [75] has

been extended in (X)FEM [85][29] and BEM [86].

1.4 Isogeometric analysis

The isogeometric analysis (IGA) was first introduced by Hughes et al [87], as

an alternative methodology to the traditional Lagrange polynomial based

analyses. The IGA utilizes the same splines, that are used to exactly repre-

sent the geometry, as basis functions for the approximation of the unknown

fields, which builds up a more direct link between CAD and analysis. Non-

uniform rational B-splines (NURBS) based IGA has been widely investi-

gated in many areas [88][89][90][91][92]. More flexible geometrical repre-

sentation techniques, such as T-splines [93][94], PHT splines [95] and LR
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Splines [96] etc., have been introduced to overcome the major difficulty of

NURBS, i.e. the lack of local refinement due to its tensor product structure.

The isogeometric analysis has been applied to fracture in corporation

with XFEM [97][98][99][100]. Verhoosel et al presented a scheme to model

cohesive crack propagation by using T-splines to generate the local discon-

tinuities [101]. Nguyen et al applied the B-spline based IGA to simulate the

2D and 3D delamination in composites [102]. The shape sensitivity anal-

ysis of stress intensity factors for curved cracks was performed by Choi

and Cho [103]. Tambat et al proposed an enriched IGAFEM based on the

CAD-inspired hierarchical partition of unity field compositions, and the

method benefits from a robust and non-iterative numerical distance field

construction [104][105]. Jeong et al proposed a geometrical mapping by

which push-forwards of B-splines from the parameter space into the phys-

ical space such that the singularity of type r1/2 can be captured in linear

elastic cracks [106][107]. Natarajan et al enhanced the isogeometric analysis

by the scaled boundary finite element method which inherits both advan-

tages of FEM and IGABEM, while certain subdivision of the domain needs

to be done for complicated geometry in order to obtain the scaling center

[60].

However, we note that the application of IGA primarily focuses on 2D

problems as the generation of the analysis-suitable 3D volume parametriza-

tion for complicated geometries is still an open question [108][109][110].

The investigation on the joint of IGA and BEM (IGABEM) has increas-

ingly drawn attention recently since only the boundary representation of

the geometry is required in IGABEM, which facilitates the integration of

design and analysis. The IGABEM has already been applied in many fields

[111][112][113][114][115][116][117][118], and has been further developed with

more numerical aspects such as the PU enrichment [119][120], the trimmed

NURBS [121][122], the fast solution [123], the Galerkin form [124][125] etc.

The benefit of smoothness to boundary integrals (BIEs) brought by IGA is

investigated in [126].
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1.5 Introduction to the present work

In this work, the application of IGABEM in 2D/3D fracture analysis and

fatigue crack growth will be explored. The advantages of the application in

fracture based on the IGA framework can be concluded as:

(1) The higher-order continuity improves the accuracy of the stress field

near the crack tip which is crucial to fracture analysis and the degrees of

freedom is reduced compared to the C0 Lagrange basis;

(2) The local crack tip (front) system can be constructed directly based on

the spline-based curve or surface-represented cracks, which helps to accu-

rately evaluate the fracture parameters;

(3) Combining With BEM, no volume parametrization/reparametrization

is needed for crack initiation and propagation. The cracks are modeled

by spline surfaces directly as external boundaries of the geometry. The

concept of integration through design to analysis facilities the mechani-

cal/structural design based on the fatigue fracture analysis.

This work outlines an IGABEM to simulate crack growth in 2D/3D

linear-elastic setting. The method is based on the work of [87][112] in which

NURBS based functions are used to approximate both the geometry and

analysis fields. Besides using the conventional boundary integral equation

as for elasticity, the hyper-singular integral equation is introduced addition-

ally by exploiting the smoothness of NURBS geometries. An local singular-

ity removing technique proposed by Guiggiani [127][128] is applied on the

various orders of singular integrals (up to hyper-singular O(1/r3)). The or-

ganization of this thesis is as following:

(1) In chapter 2, the formulations of the dual BEM for fracture modeling

are briefly outlined, with more details including collocation and singular

integration for 2D problems. Approaches for extraction of the SIFs, based

on the M integral and the Jk integral, are studied in detail. A modified

NURBS algorithm is outlined to simulate crack growth using NURBS based

representation for cracks. Numerical examples are shown both for fracture

analysis and crack propagation, in comparison with other popular methods
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such as SGBEM, XFEM and XEFG;

(2) Chapter 3 mainly focuses on the issues of 3D implementation. A mod-

ified singular subtraction technique (SST) for (hyper-)singular integration

tailored to distorted elements (or with high aspect ratio) which commonly

arise in isogeometric based methods is formulated. The crack is explicitly

represented by NURBS surface and the NURBS algorithm describing the

crack propagation has been extended to 3D cases. The crack growth re-

lated work includes updating the crack surface geometrically, computing

the stress intensity factors by M integral and virtual crack closure integral

and the application of the fatigue fracture rule: the Paris law;

(3) In chapter 4, an implementation of IGABEM on trimmed NURBS sur-

faces is outlined. The method presented in our work is able to be applied

with the closed trimming curve, thus providing a generalization scheme on

non-trivial industrial geometries. Then a surface crack modeling technique

is realized thanks to the developed work in trimmed NURBS. The problem

of (nearly) singular integration on distorted elements is studied in detail as

well as some remedies are proposed to enhance the application of IGABEM.

Chapter 5 will conclude the work and give a discussion on the problems

and future work.
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Chapter 2

IGABEM for 2D linear elastic

fracture

Based on the paper ‘Linear elastic fracture simulation directly from CAD: 2D NURBS-based

implementation and role of tip enrichment’ submitted to Int. J. of Fracture

A method is proposed for simulating linear elastic crack growth through

an isogeometric boundary element method directly from a CAD model and

without any mesh generation. To capture the stress singularity around the

crack tip, two methods are compared: (1) a graded knot insertion near crack

tip; (2) partition of unity enrichment. A well-established CAD algorithm is

adopted to generate smooth crack surfaces as the crack grows. The M inte-

gral and Jk integral methods are used for the extraction of stress intensity

factors (SIFs). The convergence rates of SIFs by NURBS basis is 5 ∼ 8 times

higher than those by discontinuous Lagrange basis.

2.1 NURBS basis functions

NURBS basis functions are the generalization of B-spline functions that al-

lows a ‘projection’ from square and cubic domains to form complex geome-

tries. So the basic concept of B-spline is first outlined. B-spline basis func-

tions are defined over a knot vector, which is a non-decreasing sequence

of real numbers given in the parameter space. A knot vector is denoted

as Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξA ∈ R is the Ath parameter coordinate

(knot), p is the order of the polynomial in B-spline basis functions, n is the
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number of the basis functions. For a given order p, the B-spline basis func-

tions NA,p with 1 6 a 6 n are defined by the Cox-de Boor recursion:

NA,0(ξ) =


1 ξA 6 ξ < ξA+1

0 otherwise,
(2.1)

then, for p > 0,

NA,p(ξ) =
ξ − ξA

ξA+p − ξA
NA,p−1(ξ) +

ξA+p+1 − ξ
ξA+p+1 − ξA+1

NA+1,p−1(ξ). (2.2)

The continuity of B-spline basis functions at ξA can be decreased by re-

peating the knot several times. If ξA has multiplicity k (ξA = ξA+1 = ... =

ξA+k−1), then the basis functions are Cp−k continuous at ξA. Particularly,

when k = p, the basis is C0 and k = p + 1 leads to a weak discontinuity at

ξA. If the first and last knot have k = p+ 1, the knot vector is called an open

knot vector. More details can be referred in [129].

Having defined the B-spline basis functions N = {NA,p}nA=1, we can

describe a curve C(ξ) in Rds (ds is the spatial dimensionality, ds = 2 in this

chapter) by a group of control points P = {PA}nA=1 with them as:

C(ξ) =
n∑

A=1

PANA,p(ξ). (2.3)

A NURBS curve is defined in the same way but by replacing the B-spline

basis functions by NURBS basis functions. For example, a NURBS curve

C(ξ) can be described as:

C(ξ) =

n∑
A=1

PARA,p(ξ), (2.4)

where RA,p are the NURBS basis functions, which are defined as

RA,p(ξ) =
ωANA,p(ξ)∑n
B=1 ωBNB,p(ξ)

. (2.5)
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FIGURE 2.1: Crack model

ωB is the weight associated with the Bth control point. Note that RA,p is

only non-zero on the knot interval [ξa, ξb]) defined by p+ 1 control points.

2.2 Isogeometric BEM for fracture modeling

2.2.1 Problem formulation

Consider an arbitrary domain Ω which contains a crack as in Figure 2.1.

The boundary Γ is composed of Γu where Dirichlet boundary conditions

are prescribed (known displacement ū), Γt where Neumann boundary con-

ditions are prescribed (known traction t̄). The remaining part of the bound-

ary is assumed to be traction free. The crack Γc is composed of two coinci-

dent faces: Γc+ and Γc− is assumed also traction free. s = (s1, s2) denotes

the source point and x = (x1, x2) the field point. The displacement BIE at

source point s is given by finding u, t : Ω→ R2 such that

cij(s)uj(s) +−
∫

Γ
Tij(s,x)uj(x)dΓ(x) =

∫
Γ
Uij(s,x)tj(x)dΓ(x), (2.6)

where the Uij , Tij are called fundamental solutions and for linear elasticity

(see appendix A for the expressions). Components Tij exhibit a singularity

of O(1/r) and the sign −
∫

implies that the corresponding integrals are un-

derstood in the sense of the Cauchy Principal Value, |r| = |x− s|. and Uij is

weakly-singular (of order O(ln(1/r))).
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The traction BIE is obtained by differentiation of the displacement BIE

with respect to s and multiplication by the elastic tensor Eijkl:

cij(s)tj(s) + =

∫
Γ
Sij(s,x)uj(x)dΓ(x) = −

∫
Γ
Kij(s,x)tj(x)dΓ(x), (2.7)

Sij(s,x) = Eikpq
∂Tpj(s,x)

∂sq
nk(s), Kij(s,x) = Eikpq

∂Upj(s,x)

∂sq
nk(s), (2.8)

where Sij is the hypersingular kernel (O(1/r2)) and the sign =
∫

denotes the

Hadamard finite part integrals andKij is of orderO(1/r). The fundamental

solutions for the traction BIE are detailed in appendix A. cij(s) = 0.5δij

when the source point s is on a smooth boundary.

The idea of the boundary element method is to discretize the bound-

ary geometry and the physical fields using sets of basis functions. Sub-

sequently, the source point is placed at the collocation points and the dis-

placement BIE (2.6) is transformed into a corresponding system of linear

algebraic equations. However, when the domain contains a crack, the col-

location points on the overlapping surfaces (refer to Figure 2.1 (b)) Γc+ co-

incide with Γc− and the system matrix becomes singular. Two ways to deal

with this problem are given in the following sections.

2.2.2 Dual equations

The difficulty caused by the collapsed crack surfaces is circumvented through

the use of dual equations, by prescribing different BIEs on either face of the

crack. The displacement BIE (Equation (2.6)) is used on one face (Sc+) and

on the rest of the boundary S. The traction BIE (Equation (2.7)) is used on

the other crack face (Sc−). For the collocation point s+ on the crack surface
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Sc+ , Equation (2.6) can be rewritten as,

cij(s
+)uj(s

+) + cij(s
−
m)uj(s

+) =

∫
S
Uij(s

+,x)tj(x)dS(x)

−
∫
S
Tij(s

+,x)uj(x)dS(x)

−−
∫
Sc+

Tij(s
+,x+)uj(x

+)dS(x)−−
∫
Sc−

Tij(s
−
m,x

−)uj(x
−)dS(x)

+

∫
Sc+

Uij(s
+,x+)tj(x

+)dS(x) +

∫
Sc−

Uij(s
−
m,x

−)tj(x
−)dS(x).

(2.9)

Analogously, the traction BIE (Equation (2.7)) on the other crack surface

(Sc− in Figure 2.1(b)) becomes,

cij(s
−)tj(s

−) + cij(s
+
m)tj(s

−) =

∫
S
Kij(s

−,x)tj(x)dS(x)

−
∫
S
Sij(s

−,x)uj(x)dS(x)

−=

∫
Sc−

Sij(s
−,x−)uj(x

−)dS(x) + =

∫
Sc+

Sij(s
+
m,x

+)uj(x
+)dS(x)

+−
∫
Sc−

Kij(s
−,x−)tj(x

−)dS(x)−−
∫
Sc+

Kij(s
+
m,x

−)tj(x
+)dS(x).

(2.10)

s−m denotes the mirror point of s+ on Sc− , which means s−m and s− share the

same physical and parametric coordinates but their normal vectors are op-

posite. The last two terms of both equations and left hand side of Equation

(2.10) are omitted due to the traction-free crack.

Remark: due to the collapsed boundary, two jump terms arise in each BIE and

each operator not only exhibits singularity on the crack surface where the colloca-

tion points are located, but also on the one where the mirror points of the collocation

points are located.

2.2.3 Crack opening displacement equation

The boundary integral equation for crack problem can also be reformulated

by setting the boundary quantity as crack opening displacement (COD)

over a couple of crack surfaces. Let the source point approach one crack
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surface, for example Sc = Sc+ , and note that n = n+ = −n−, we have:

cij(s
+)uj(s

+) + cij(s
−)uj(s

−) =

∫
S
Uij(s

+,x)tj(x)dS(x)

−−
∫
S
Tij(s

+,x)uj(x)dS(x)

+

∫
Sc

Uij(s
+,x+)(tj(x

+) + tj(x
−))dS(x)

−−
∫
Sc

Tij(s
+,x+)(uj(x

+)− uj(x−))dS(x).

(2.11)

The corresponding traction BIE is:

cij(s
+)tj(s

+)− cij(s−)tj(s
−) = −

∫
S
Kij(s

+,x)tj(x)dS(x)

−=

∫
S
Sij(s

+,x)uj(x)dS(x)

+−
∫
Sc

Kij(s
+,x+)(tj(x

+) + tj(x
−))dS(x)

−=

∫
Sc

Sij(s
+,x+)(uj(x

+)− uj(x−))dS(x).

(2.12)

Equation (2.12) can be used alone if the COD alone will be used as the un-

known for the fatigue crack growth problem. However if the displacement

field needs to be known on the crack surfaces, Equation (2.11) should also

be solved. For a infinite domain (S →∞), assuming that traction-free crack

faces are assumed, we arrive at:

0 = t∞j (s)−=

∫
Sc

Sij(s,x)Juj(x)KdS(x). (2.13)

Juj(x)K = uj(x
+) − uj(x−) is the crack opening displacement. All the sub-

scripts ‘+’ are omitted since the integral is only over a single crack surface.

t∞ is interpreted as the solution in the ‘no crack’ space.

2.2.4 NURBS discretization of the boundary integral equations

In the NURBS based isogeometric concept, the physical field is approxi-

mated by the same NURBS basis functions as those used to describe the
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geometry Γ = C(ξ). The displacement and traction fields can be approxi-

mated as follows:

ui(ξ) =
n∑

A=1

RA,p(ξ)d
A
i , (2.14)

ti(ξ) =
n∑

A=1

RA,p(ξ)q
A
i , (2.15)

We define an element in the parameter space as an interval between two

consecutive non-repeated knots [ξa, ξb]. And particularly for a singular el-

ement, this knot interval is linearly mapped to interval [−1, 1], which is

called the parent space [87] and the number of elements is Ne. We define

ξ̂ as the parent coordinate of the field point x in [−1, 1], ξ̂s as the parent

coordinate of the source point s in [−1, 1], and J(ξ̂) is the Jacobian trans-

formation from physical to parent space. The transformation process for

one NURBS element (the knot interval [ξa, ξb]) to the parent space [−1, 1] is

shown in Figure 2.2. And we have

ξ = ξ(ξ̂) =
(ξb − ξa)ξ̂ + (ξb + ξa)

2
,

J(ξ̂) =
dΓ

dξ
dξ
dξ̂
.

(2.16)

Then the above form can also be written via the elemental approximation

as:

ui(ξ̂) =

p+1∑
A=1

NA(ξ̂)dAi , (2.17)

ti(ξ̂) =

p+1∑
A=1

NA(ξ̂)qAi , (2.18)

where

NA(ξ̂) = RI,p(ξ). (2.19)

And di, qi are displacement and traction control variables respectively. The

relation between the local index A and the global index I is given by the

element connectivity [112]. Substituting the discretized displacements and
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FIGURE 2.2: Coordinate system in IGABEM: (a) the ele-
ment containing collocation point s in the global space;

(b)the parametric space and parent space

tractions into the BIEs will give,

p+1∑
I=1

CIij(s)dIj +

Ne∑
e=1

p+1∑
I=1

T Iijd
I
j =

Ne∑
e=1

p+1∑
I=1

U Iijq
I
j , (2.20)

p+1∑
I=1

CIij(s)tIj +

Ne∑
e=1

p+1∑
I=1

SIijd
I
j =

Ne∑
e=1

p+1∑
I=1

KI
ijq

I
j , (2.21)

where the jump term and integrals of the fundamental solutions are respec-

tively written as:

CIij(s) = cijRI(ξ̂s), (2.22)

T Iij =

∫ 1

−1
Tij(s,x(ξ̂))RI(ξ̂)J(ξ̂)dξ̂, (2.23)

U Iij =

∫ 1

−1
Uij(s,x(ξ̂))RI(ξ̂)J(ξ̂)dξ̂, (2.24)

SIij =

∫ 1

−1
Sij(s,x(ξ̂))RI(ξ̂)J(ξ̂)dξ̂, (2.25)

KI
ij =

∫ 1

−1
Kij(s,x(ξ̂))RI(ξ̂)J(ξ̂)dξ̂. (2.26)

2.2.5 Treatment of singular integrals

Integrating the weakly-singular, strongly-singular and hyper-singular ker-

nels in Equations (2.23)-(2.26) is a major difficulty in BEM. In the present

work, weakly-singular integrals are evaluated using Telles’ transformation
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[130]. Strongly-singular integrals in Equation (2.6) are treated in two dif-

ferent ways. In the first approach, the singularity in Tij is removed by

the regularization method, based on use of simple solutions [131][132], i.e.

the rigid body motions, which satisfy Equation (2.6) with zero tractions.

Adding and subtracting term u(s) in Equation (2.6), the strongly-singular

equation can be transformed into the regularized form:

∫
Γ
Tij(s,x)(uj(x)− uj(s))dΓ(x) =

∫
Γ
Uij(s,x)tj(x)dΓ(x). (2.27)

After discretization, Equation (2.27) becomes

Ne∑
e=1

p+1∑
I=1

P Iijd
I
j =

Ne∑
e=1

p+1∑
I=1

U Iijq
I
j , (2.28)

where

P Iij =

∫ 1

−1
Tij(s,x(ξ̂))(RI(ξ̂)−RI(ξ̂s))J(ξ̂)dξ̂. (2.29)

The implementation of Equation (2.27) is simple and does not require

calculation of jump term cij(s). However, when Equation (2.27) is used at

coincident points on crack surfaces, the singularity corresponding to only

one of the points is removed. There have been many attempts to overcome

this difficulty. For example, creating artificial integration surfaces, exclud-

ing the second singular point [133][134] is a possibility. However, the cre-

ation and evaluation along the artificial surface is expensive computation-

ally [135] and is particularly cumbersome to deal with in the framework

of isogeometric analysis. Therefore, in the present work, Equation (2.27) is

used only on the non-cracked boundary, while on crack surfaces, the ap-

proach, known as the singularity subtraction technique (SST), is used [127].

SST is applied to both strongly-singular and hyper-singular integrals after

the parametrization in the parent space (Equations (2.23), (2.25) and (2.26)).

The essential idea of the method is to expand the production of the ker-

nel function, the shape function and the Jacobian J(ξ̂) into Taylor series in

the vicinity of the collocation point, and split the integrands into regular

and singular parts. Then the singular terms can be evaluated analytically,
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while for regular terms standard Gauss quadrature is sufficient. Take the

hyper-singular integral term Seijl as an example:

SIij =

∫ 1

−1
Sij(s,x(ξ̂))RI(ξ̂)J(ξ̂)dξ̂ =

∫ 1

−1
F (ξ̂s, ξ̂)dξ̂. (2.30)

The function F (ξ̂s, ξ̂) can be expanded as:

F (ξ̂s, ξ̂) =
F−2(ξ̂s)

δ2
+
F−1(ξ̂s)

δ
+O(1), (2.31)

where δ = ξ̂− ξ̂s. The details to obtain F−2 and F−1 with a NURBS basis are

given in appendix B.1 or in [127][57]. The final form of (2.30) is given by:

∫ 1

−1
F (ξ̂s, ξ̂)dξ̂ =

∫ 1

−1

(
F (ξ̂s, ξ̂)−

F−2(ξ̂s)

δ2
− F−1(ξ̂s)

δ

)
dξ̂

+ F−2(ξ̂s)

(
− 1

1− ξ̂s
+

1

−1− ξ̂s

)
+ F−1(ξ̂s)ln

∣∣∣∣∣ 1− ξ̂s
−1− ξ̂s

∣∣∣∣∣ .
(2.32)

The first integral in (2.32) is regular and it is evaluated using standard Gaus-

sian quadrature.

2.2.6 Partition of unity enrichment formulation

The partition of unity (PU) enrichment method [136] has been well stud-

ied in FEM to model problems with a priori knowledge about the solution.

See Sukumar et al [27], Moës et al[29], Gravouil et al [28] for application

of XFEM to 3D crack propagation and Bordas and Moran [6], Bordas et

al [137], Wyart et al [32] for industrial damage tolerance assessment using

XFEM. It was also shown in the literature that the accuracy of the stress in-

tensity factors for 3D linear elastic fracture mechanics was insufficient for

coarse meshes and always oscillatory. A posterori error estimate were de-

rived [138][31][139][140] and implemented within the commercial software

Morfeo to control the discretization error [31][139].

The approximation of the primary field by PU enrichment is decom-

posed by two parts: a regular part and an enriched part. The latter al-

lows the approximation to reproduce specific information on the solution
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through additional degrees of freedom. And the enrichment idea has been

introduced within BEM as well [141][119]. Simpson et al [57] first proposed

the idea of enrichment in BEM to capture the stress singularity around the

crack tip. The enriched displacement approximation with a NURBS basis

writes:

ui(x) =
∑
I∈RI

RI(x)dIi +
∑
J∈RJ

RJ(x)

4∑
l=1

φl(x)aJi , (2.33)

where dIi are the regular DOFs. aJi are the crack tip enriched DOFs. See

[137] for implementation details in an XFEM framework. Since in BEM

the crack is explicitly modeled by two overlapping surfaces, the Heaviside

enrichment is not required. RI and RJ are the collections of regular control

points and enriched control points, respectively. The crack tip enrichment

functions are defined as:

{φl(r, θ), l = 1, 4} =

{√
rsin

θ

2
,
√
rcos

θ

2
,
√
rsin

θ

2
sinθ,

√
rcos

θ

2
sinθ

}
, (2.34)

where (r, θ) are the polar coordinates associated with the crack tip. If the

enrichment is done in a small vicinity of the crack tip, where the crack can

be regarded as a straight line, i.e. in Equation (2.34) angle θ = ±π and

the set of four crack tip enrichment functions can be reduced to one, i.e.

φ(r) =
√
r. Then Equation (2.35) results in:

ui(x) =
∑
I∈RI

RI(x)dIi +
∑
J∈RJ

RJ(x)φ(x)aJi . (2.35)

Substituting the above equation into (2.6) and (2.7) and discretizing with

a NURBS basis, the enriched displacement and traction boundary integral

equations can be obtained, respectively:

p+1∑
I

CIij(s)(dIj + φ(s)aIj ) +

Ne∑
e=1

p+1∑
I

(T Iijd
I
j + T Iijφa

I
j ) =

Ne∑
e=1

p+1∑
I

U Iijq
I
j , (2.36)

p+1∑
I

CIij(s)tIj +

Ne∑
e=1

p+1∑
I

(SIijd
I
j + SIijφa

I
j ) =

Ne∑
e=1

p+1∑
I

KI
ijq

I
j , (2.37)
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FIGURE 2.3: Mesh discretization for a mode I crack: (a)
discontinuous Lagrange element (p = 2), (b) NURBS

(p = 2)

where

T Iijφ =

∫ 1

−1
Tij(s,x(ξ̂))RI(ξ̂)φ(x(ξ̂))J(ξ̂)dξ̂,

SIijφ =

∫ 1

−1
Sij(s,x(ξ̂))RI(ξ̂)φ(x(ξ̂))J(ξ̂)dξ̂.

(2.38)

Note that topological enrichment is used, i.e. only the elements contain-

ing the crack tip are enriched, the enrichment terms do not need to be

computed for unenriched elements. Differing from [57] where the discon-

tinuous quadratic Lagrange elements are enriched, the enrichment for the

NURBS basis will lead to blending elements due to the continuity of the

basis. The singular integration for enriched elements can be done with SST

as in section 2.2.5 as long as the local expansion for φ(r) =
√
r at the collo-

cation point with respect to intrinsic coordinate is written explicitly.

2.2.7 Continuity requirements and collocation strategy

Methods for evaluating strongly-singular and hyper-singular integrals (2.23),

(2.25), (2.26), described above, are implicitly or explicitly based on Taylor

expansions of the integrands in the vicinity of the collocation point. Since

the essential feature of the isogemetric approach is to represent displace-

ments, tractions and the geometry using the same NURBS basis functions,
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special attention should be paid to the continuity of NURBS basis functions

at the collocation points where the Taylor series are expanded.

In the classical boundary element method a common way to guarantee

the existence of integrals in (2.23), (2.25), (2.26) is by the so-called discontin-

uous quadratic Lagrange elements [41], i.e. placing collocation points in-

side an element, where the quadratic polynomials are C∞ continuous. The

same approach can be implemented with NURBS parametrization, since in-

side the elements NURBS basis functions are infinitely smooth, i.e. the SST

can be used directly to treat all singularities. In Figure 2.3 (a) and (b) exam-

ples of boundary discretization are shown for classical BEM and IGABEM

respectively, where the collocation points in IGA are generated by Greville

abscissae [142] and the collocation points are moved inside the elements

when higher order continuity is necessary.

For the enrichment formulation, since enriched DOFs are introduced,

additional source points need to be collocated to balance the number of

system unknowns. The location of the source points plays an important

role in the condition number of the BEM system matrix. It reveals that for

crack tip enrichment, when the additional collocation points are inside the

enriched element, the system condition remains small and gives accurate

solutions (see [57] for more details). Nevertheless, the specific location in-

side the crack tip element has little influence on the final results. Hence

in this work, the additional source points are inserted within the crack tip

element and spread uniformly between the original collocation points. Fig-

ure (2.4) illustrates the scheme applied in this chapter for collocation on the

crack surface.

However, the classical theory of boundary integral equations admits

much weaker continuity requirements, i.e. the Cauchy and Hadamard inte-

grals exist for C1,α(Γ)(0 < α < 1) density functions (known as Hölder con-

tinuous) [143]. Therefore, strongly singular and hyper-singular equations,

and all the more so the regularized equation (2.27), can be used at collo-

cation points located at the edges of the elements in IGABEM, provided

that the NURBS basis is sufficiently smooth. However, optimal collocation



24 Chapter 2. IGABEM for 2D linear elastic fracture

FIGURE 2.4: Mesh and collocation for crack surfaces

strategies remain the subject of further research, and require more detailed

theoretical and numerical studies.

2.3 Evaluation of stress intensity factors

2.3.1 Jk-integral

In this section, two different kinds of J integral based methods for the ex-

traction of SIFs are briefly reviewed. The first one is the Jk method pro-

posed in [80], which is the more general case of the J integral. The definition

of the Jk in 2D is given as:

Jk := lim
Γε→0

∫
Γε

(Wδjk − σijui,k)njdΓ = lim
Γε→0

∫
Γε

PkjnjdΓ, (2.39)

where Pkj is the Eshelby tensor, W = 1/2σijεij is the strain energy den-

sity, nj is the unit outward normal of Γε. J1 represents a special case, the

J integral. Throughout the chapter we will use these two notations inter-

changeably. All the variables are defined in the crack tip local coordinate

system (x0, y0) as in Figure 2.5 (a). However, from the numerical point of

view, it is difficult to calculate the limit in Equation (3.19), so that the defi-

nition of Jk is usually modified in the following way. Since the integral of

the Eshelby tensor is equal to zero for any closed contour, which does not

contain a defect, additional contours Γ, Γc+ , Γc− are introduced, such that
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FIGURE 2.5: Path definition for J integral

Equation (3.19) can be rewritten as [144]

Jk = lim
Γε→0

∫
Γε

PkjnjdΓ =

∫
Γ
PkjnjdΓ +

∫
Γc+

PkjnjdΓ +

∫
Γc−

PkjnjdΓ.

(2.40)

When k = 1, for a flat crack n1 = 0 along the crack surfaces and thus

along the contours Γc+ and Γc− the integral is zero, and Equation (2.40)

simplifies to:

J1 =

∫
Γ
P1jnjdΓ. (2.41)

This expression shows the path independence of the J integral for a flat

crack. But for the J2 integral, the term associated with the crack surface

cannot be omitted since n2 = 1 and this term leads to a singularity in nu-

merical evaluation.

The most general 2D scenario must account for curved cracks. The asso-

ciated contribution from the crack surfaces to both J1 and J2 cannot in gen-

eral be neglected. It should be noted that the energy density W = O(1/r)

when approaching the crack tip since both σij and εij tend to 1/
√
r. The

integrand along the crack surface will remain of O(1/r), and this kind of

singular integral cannot be treated in a regular way. In [144] and [80], the

crack surface was split into a far field part and a near-tip part (Figure 2.5(b))

in order to evaluate the singular integral:

Jk =

∫
Γ
PkjnjdΓ +

∫
R−r

JW Kn+
k dΓ +

∫
r
JW Kn+

k dΓ. (2.42)
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The far field part is integrated by regular Gauss quadrature. The near-tip

part integral on the crack surface can be simply omitted for J1(k = 1), since

n1 is mostly zero, while for J2(k = 2), the near-tip part exhibits the O(1/r)

singularity. The energy jump JW K on the near-tip surface can be evaluated

as in [144]:

JW K =
−4KIIσx0

E
√

2πr
+O(r1/2), (2.43)

where σx0 is called T-stress. Thus near-tip part of JW K can be represented

as a proportion to the r1/2

Jk =

∫
Γ
PkjnjdΓ +

∫
R−r

JW Kn+
k dΓ + Λnkr

1/2. (2.44)

Since two unknown variables J2 and Λ appear in the above equation, the

integral cannot be evaluated at once. The splitting procedure needs to be

performed several times by taking different r, and a group of values of J2

and Λ can be found in order to extrapolate J2 for the case of no splitting.

In Equation (2.44), as long as the O(1/r1/2) can be captured, the Jk integral

can be correctly evaluated and the SIFs can be deduced (see appendix C.1).

Nevertheless, the choice of the extraction radius ‘r’ becomes path depen-

dent and problem dependent in real applications.

2.3.2 M integral

The M integral is another possible method to extract the SIFs. By applying

the J integral under two states, the actual state (denoted with superscript

‘1’), and the auxiliary state (superscript ‘2’), and adding them together:

J (1+2) =

∫
Γε

[1

2
(σ

(1)
ij +σ

(2)
ij )(ε

(1)
ij + ε

(2)
ij )δ1j− (σ

(1)
ij +σ

(2)
ij )

∂(u
(1)
i + u

(2)
i )

∂x1

]
njdΓ.

(2.45)

Rearranging the two state terms gives

J (1+2) = J (1) + J (2) +M (1,2), (2.46)
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where

M (1,2) =

∫
Γε

[
W (1,2)δ1j − σ(1)

ij

∂u
(2)
i

∂x1
− σ(2)

ij

∂u
(1)
i

∂x1

]
njdΓ, (2.47a)

W (1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij . (2.47b)

Once the M integral has been evaluated, the SIFs can be extracted di-

rectly (see appendix C.2). But we note that in Yau et al’s work [75], a flat

crack surface is assumed. When applied to practical problems, the radius of

the contour circle should be chosen ‘small enough’ to guarantee that within

the domain bounded by Γ, the crack is ‘almost’ straight.

In this chapter, theM integral is adopted. A detailed comparison of both

methods applied to curved cracks is provided in the forthcoming sections.

Once the SIFs have been obtained, the maximum hoop stress criterion is

used to determine the direction of crack propagation. We assume that the

crack propagates in the direction θc such that the hoop stress is maximum,

which is given (see [145], for example) by the following expression. Note

that the quantity of interest determining the accuracy of each propagation

step is the ratio (KII/KI )

θc = 2arctan

[
−2(KII/KI)

1 +
√

1 + 8(KII/KI)2

]
. (2.48)

2.4 2D NURBS crack propagation

A NURBS crack propagation algorithm is outlined next. The conceptual

idea for the deformation of the NURBS curve representing the crack is re-

alised by moving the control points to make the curve satisfy the exter-

nal constraints under a user-defined function [146]. For crack growth, the

external constraint is the movement of the position of crack tip (or crack

front in 3D). Paluszny et al implemented the idea in FEM to represent crack

growth or intersection by updating the control points to satisfy the con-

straints given by fracture parameters [147]. The algorithm is briefly re-

viewed as follows:
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• Initiation: represent the crack by the NURBS curve;

• Calculate the new physical position of the crack tipM ′ (the space con-

straint). This is determined by specified fracture criterion given in

section 2.3.2;

• Specify the parametric coordinate ξ (the parametric constraint) of the

old crack tip M ;

• Define the influence functions f . Here for 2D fracture these functions

are selected as the NURBS basis functions at the parametric constraint

ξ (which is called natural deformation in [146]). f(A) = RA,p(ξ), A =

1, ..., n, n is the number of NURBS basis function of the corresponding

control point PA.

• Calculating the motion vector of each control point m(A): the move-

ment of the control points is given by

m(A) =
f(A)∑n

B=1RB,p(ξ)f(B)
e, e =

−−−→
MM ′. (2.49)

The process to stretch a NURBS curve to simulate crack growth in 2D is

illustrated in Figure 2.6. Certain knot insertion should be done at the crack

tip element in order to capture the local changes. We note that refining the

crack tip element also helps improve the solution near the crack tip, and a

graded mesh refinement is designed as in Figure 2.4, where the new knots

are inserted consecutively at the (1/2)i, i = 1, 2, 3, 4... of the distance to

the crack tip in parametric space (the obtained meshes are denoted as R1,

R2, R3, R4...).

2.5 Numerical examples

In this section, several numerical examples are presented to verify the pro-

posed method for fracture analysis. We first give examples to study the

behavior of the (X)IGABEM on static fracture analysis. Then the applica-

tion to crack propagation by comparing against XFEM is demonstrated. A
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FIGURE 2.6: NURBS modification for crack growth.
(a)Original crack and new crack tip M ′; (b)Knot insertion
to refine the crack tip element; (c)Move the control points

to obtain new crack curve by the presented algorithm

FIGURE 2.7: Edge crack

fixed number of Gauß points (ngp = 30) is adopted for the integration of

both singular and nearly-singular integrals, although we note that it would

be desirable to develop adaptive quadrature rules for the nearly-singular

integrals in BEM. The order of NURBS basis and discontinuous lagrange

basis is taken as 2 for all the examples.

2.5.1 Edge crack

Figure 2.7 illustrates the chosen edge crack problem. we use the first-term

asymptotic solution of a crack problem [148] (refer to the auxiliary dis-

placements in appendix C.3), which we prescribe as Dirichlet boundary

condition on the outer boundaries, while keeping crack faces traction free.

The parameters E = 1, ν = 0.3, a = 1, L = 2. For a mode I crack,
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KI = 1,KII = 0 and for a mode II crack, KI = 0,KII = 1. Thus the numer-

ical displacement field on the crack as well as the SIFs can be compared to

the analytical solution.

Ability of the method to capture the crack tip singularity

An accurate approximation of the solution near the crack tip is crucial to the

accurate evaluation of fracture parameters such as the SIFs. Three scenarios

are studied here, uniform meshes, graded refinement and enrichment of

the crack tip element with function given in Equation (2.35). Figure 2.8

shows the displacement uy along the upper crack surface for the mode I

problem. The crack is discretized by 3 uniform elements. It can be observed

that in all cases, the numerical displacements agree well with the analytical

solution, even for coarse meshes. The graded refinement and enrichment

method both give improved results near the crack tip. To further assess the

accuracy of these methods, the error in the displacement L2 norm of the

displacements along the crack surfaces, given by

eL2 =

√√√√∫Γc
(u− uext)T(u− uext)dΓ∫

Γc
uT
extuextdΓ

(2.50)

is plotted in Figure 2.9. We check the convergence results by inserting the

knots at (1/2)i consecutively until i = 4 described in Figure 2.4 (the re-

sults are denoted as R1, R2, R3 and R4 respectively). It can be seen that

enrichment achieves an accuracy which is intermediate between R3 and

R4 graded meshes while the convergence rate is improved by 55% com-

pared to the graded mesh refinement. In the following examples for static

crack and crack propagation, the graded mesh refinement by 4 successive

knot insertions is used for study further.

SIFs comparison with Lagrange basis

To evaluate the potential of IGABEM for fracture, the SIFs given by the

M integral are compared to those from Lagrange elements using uniform

meshes and no special treatment for the crack tip. The radius for the M
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FIGURE 2.8: uy along the upper crack surface
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integral is taken as the distance from the crack tip to the third collocation

point counting from the crack tip, thus with mesh refinement, the extraction

domain will shrink. A convergence check for the error in the normalized

SIFs KI ,KII is shown in Figure 2.10. It can be observed that the accuracy

provided by NURBS basis is much higher (one order of magnitude for ap-

proximately 500 DOFs) than that of discontinuous Lagrange basis. Because

discontinuous Lagrange basis typically leads to more nodes than NURBS

basis for a given number of elements (as presented in Figure 2.3), the con-

vergence results are re-plotted in terms of number of elements in Figure

2.11. For the two coarsest meshes of 4 elements per edge, the Lagrange ba-

sis is more accurate than NURBS, but with mesh refinement, the NURBS

becomes superior, due to a larger convergence rate. From both figures, it is

observed that the convergence rates of SIFs by NURBS basis is 5 ∼ 8 times

higher than those by discontinuous Lagrange basis.

2.5.2 Inclined centre crack

In this example, The SIFs are calculated for a plate with an inclined crack

under remote biaxial tension such that σ = σ0 is applied in the y-direction

and σ = λσ0 is applied in the x-direction, where λ is the load ratio and

σ0 = 1. The inclined centre crack with angle β varies from 0 to π/2, see

Figure 2.12. The edge length of the plate L = 1, crack length 2a = 0.02.
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FIGURE 2.12: Physical model of an inclined center crack
problem
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L >> a so that the numerical results can be compared with the analytical

solution for an infinite plate, given in [149]. The elasticity parameters are

E = 1, ν = 0.3. The SIFs in this example obtained by the M integral can be

compared to the analytical ones as follows:

KI = σ
√
πa(cos2β + λsin2β), (2.51a)

KII = σ
√
πa(1− λ)cosβsinβ. (2.51b)

The mesh of the crack surface was refined uniformly for both the dis-

continuous Lagrange basis BEM (LBEM) and NURBS (IGABEM). The local

graded refinement for crack tip elements described in Figure 2.4 is also per-

formed (the corresponding result is denoted as IGABEM(r), in this case no

enrichment is applied). Assuming the number of elements for the crack is

m, a convergence check is done with the crack angle β = π/6 at load ratio

λ = 0.5 (biaxially loaded). The results are given in Table 2.1 and 2.2. Here

the SGBEM results from uniform mesh refinement with special crack tip el-

ement [150] are also given as a reference. One can observed that SGBEM

performs the best among these methods, while IGABEM with graded mesh

refinement (IGABEM(r)) achieves an accuracy in the same order of SGBEM.

It should be noted that SGBEM needs to deal with double integrals, which

not only increase the computational cost but also add the complexity in cod-

ing, although better accuracy is shown. Thus it can be concluded that the

proposed local crack tip refinement gives a very good accuracy for practical

applications.

The SIFs are then compared for different angles at λ = 0 (uniaxially

loaded). In this case, the crack is discretized by 4 uniform elements, and for

IGABEM, the crack tip element is further refined in the same fashion. The

SIFs are given in Tables 2.3 and 2.4.
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KI/K
exact
I

m SGBEM LBEM IGABEM IGABEM(r)
3 0.9913 1.00451 1.00982 1.00120

4 1.0002 1.00333 1.00769 1.00105

5 1.0001 1.00268 1.00633 1.00090

6 1.0002 1.00230 1.00539 1.00080

7 1.0003 1.00206 1.00474 1.00074

8 1.0003 1.00190 1.00426 1.00070

9 1.0003 1.00177 1.00389 1.00066

10 1.0003 1.00167 1.00359 1.00064

11 1.0003 1.00159 1.00336 1.00062

12 1.0003 1.00152 1.00316 1.00060

14 1.0003 1.00142 1.00285 1.00058

TABLE 2.1: Normalized KI in inclined centre crack

KII/K
exact
II

m SGBEM LBEM IGABEM IGABEM(r)
3 1.0075 1.00104 1.00647 1.00146

4 1.0009 1.00129 1.00656 1.00129

5 1.0010 1.00158 1.00607 1.00113

6 1.0009 1.00160 1.00550 1.00102

7 1.0014 1.00153 1.00500 1.00096

8 1.0005 1.00143 1.00458 1.00091

9 0.9997 1.00134 1.00424 1.00087

10 1.0009 1.00126 1.00396 1.00085

11 0.9992 1.00119 1.00373 1.00083

12 1.0013 1.00112 1.00353 1.00081

14 1.0004 1.00102 1.00322 1.00079

TABLE 2.2: Normalized KII in inclined centre crack

KI

β Exact IGABEM(r) SGBEM
0 1.0000 1.0006(6.0e− 4) 1.0002(2.0e− 4)

π/12 0.9330 0.9336(6.4e− 4) 0.9332(2.1e− 4)

π/6 0.7500 0.7505(6.7e− 4) 0.7502(2.7e− 4)

π/4 0.5000 0.5003(6.0e− 4) 0.5001(2.0e− 4)

π/3 0.2500 0.2501(4.0e− 4) 0.2500(< 1.e− 4)

5π/12 0.0670 0.0670(< 1.e− 4) 0.0670(< 1.e− 4)

π/2 0.0000 0.0000(< 1.e− 4) 0.0000(< 1.e− 4)

TABLE 2.3: SIFs and relative error (in brackets) for the
inclined centre crack
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KII

β Exact IGABEM(r) SGBEM
0 0.0000 0.0000(< 1.e− 4) 0.0000(< 1.e− 4)

π/12 0.2500 0.2503(1.2e− 3) 0.2502(8.0e− 4)

π/6 0.4330 0.4336(1.4e− 3) 0.4334(9.2e− 4)

π/4 0.5000 0.5006(1.2e− 3) 0.5004(6.0e− 4)

π/3 0.4330 0.4335(1.2e− 3) 0.4333(6.9e− 4)

5π/12 0.2500 0.2503(1.2e− 3) 0.2502(8.0e− 4)

π/2 0.0000 0.0000(< 1.e− 4) 0.0000(< 1.e− 4)

TABLE 2.4: SIFs and relative error (in brackets) for the
inclined centre crack

FIGURE 2.13: Physical model of the arc crack
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2.5.3 Arc crack

The circular arc crack under remote uniform biaxial tension is used to fur-

ther validate the effectiveness of the proposed method for curved cracks.

The problem is defined in Figure 2.13. Here L = 1, 2a = 0.01, L >> a,

E = 1, ν = 0.3. In the test σ = 1, β = π/4. The analytical SIFs are given by

[151] as:

KI = σ
√
πa

cos(β/2)

1 + sin2(β/2)
, (2.52a)

KII = σ
√
πa

sin(β/2)

1 + sin2(β/2)
. (2.52b)

m elements are used to discretize each crack surface with crack tip elements

refined as in Figure 2.4. A convergence check for the SIFs are listed in Table

2.5. Here the SIF extraction from both the Jk integral method and the M

integral method are compared. Both methods use the same radius R, and

the partition of the crack surface for the Jk integral is done by experience

at r = 0.03R, 0.04R, 0.05R, 0.06R, 0.07R. The results of the two methods

are comparable, differing only at the fourth digit. But we note that the Jk

integral method is more computationally expensive than the M integral as

(1) it needs integration on the crack surfaces; (2) the crack surface needs

to be partitioned into two parts; (3) the integration needs to be performed

several times as described in section 2.3.1.

KI/K
exact
I KII/K

exact
II

m M integral Jk integral M integral Jk integral
10 1.00045 0.99972 0.97506 1.00309

14 1.00014 0.99979 0.98621 1.00248

17 1.00011 0.99982 0.98642 1.00217

20 1.00009 0.99985 0.98657 1.00195

23 1.00002 0.99987 0.99407 1.00176

26 1.00002 0.99989 0.99413 1.00163

TABLE 2.5: SIFs for the arc crack

2.5.4 Crack growth in a plate with rivet holes

The purpose of this example is to evaluate the potential of IGABEM for

crack growth. The problem is chosen from the XFEM work by Moës et
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r = 5/64

2 1 2

2.5

2.5

FIGURE 2.14: Physical model of rivet holes plate with
initial cracks emanating from the holes. The initial crack

lengths are 0.1, (Moës et al, 1999).

al [5]. The geometry and loading conditions are illustrated in Figure 2.14

(θ = π/4, initial crack length a = 0.1). The material parameters E = 1000,

ν = 0.3. Below we compare three crack paths:

(1) the crack path, obtained by IGABEM (abbreviated as ‘IGABEM’);

(2) the crack path, obtained by XFEM in [5] (abbreviated as ‘XFEM(M)’);

(3) the crack path, obtained by the in-house double-interpolation XFEM

code (abbreviated as ‘XFEM∗’) by the author. More details regarding the

proposed double-interpolation XFEM can be referred in appendix D.

For IGABEM crack growth 12 elements are used for each circle and 3 ele-

ments for each edge and for the initial cracks. The crack tip elements are

further refined in the way described in section 2.4. We assume that each

crack advances ∆a = 0.05 at each step, which is identical to the increment

chosen in [5] for the finest mesh. We grow the crack for 16 steps.

Next, all three crack paths - (1), (2) and (3) - are compared in Figure

2.15. The tip positions and SIFs for the left crack in each step are further

compared in Table 2.6. It can be observed that the tip positions and the crack

paths in all three cases are quasi-identical during propagation. From Figure

2.16 (a) we note that SIFs display significant difference in steps 9 ∼ 12.
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FIGURE 2.15: Crack path comparison. XFEM(M) is from
Moës et al, 1999; XFEM* is from the in-house XFEM code

However, the crack growth direction is defined by the ratio KII/KI which

is shown in 2.16 (b) and after these values of KII/KI are employed into the

crack growth criteria, the final difference in the crack tip positions between

all three paths does not exceed the difference in the third digital sign.

IGABEM XFEM* XFEM(M)
Step xc yc xc yc xc yc

Initial 2.1488 2.5707 2.1488 2.5707 2.1488 2.5707

1 2.1986 2.5665 2.1986 2.5662 2.1986 2.5663

2 2.2481 2.5596 2.2481 2.5593 2.2481 2.5595

3 2.2981 2.5575 2.2981 2.5570 2.2981 2.5575

4 2.3481 2.5564 2.3480 2.5556 2.3481 2.5581

5 2.3981 2.5573 2.3980 2.5564 2.3981 2.5562

6 2.4480 2.5598 2.4480 2.5587 2.4480 2.5600

7 2.4980 2.5614 2.4979 2.5604 2.4980 2.5608

8 2.5463 2.5485 2.5463 2.5477 2.5465 2.5488

9 2.5885 2.5217 2.5885 2.5209 2.5886 2.5219

10 2.6324 2.4978 2.6324 2.4968 2.6321 2.4972

11 2.6824 2.4986 2.6823 2.4990 2.6820 2.4998

12 2.7324 2.5000 2.7323 2.4997 2.7320 2.5013

13 2.7823 2.5035 2.7821 2.5036 2.7819 2.5037

14 2.8311 2.5144 2.8307 2.5157 2.8306 2.5151

15 2.8805 2.5217 2.8802 2.5223 2.8802 2.5217

TABLE 2.6: Tip position for left crack tip with ∆a = 0.05.
XFEM(M) is from Moës et al, 1999, XFEM* is from the

in-house XFEM code

2.5.5 Three holes plate bending problem

A three point bending beam with three holes is simulated to further verify

the robustness and accuracy of IGABEM for crack propagation. The ge-

ometry and loading conditions are illustrated in Figure 2.17. The material
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FIGURE 2.16: SIF comparison of the left crack tip for the
whole process of crack propagation. XFEM(M) is from

Moës et al, 1999, XFEM* is from the in-house XFEM code
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FIGURE 2.17: Physical model of the three point bending
beam with 3 holes

parameters are E = 1000, ν = 0.37. Plane strain conditions are assumed.

With variation of the position of the initial crack, different crack trajectories

were obtained experimentally in [152]. Here the position of the initial crack

is set as d = 5, a = 1.5. This example has been solved using XFEM and

XEFG [35] as well. The crack advance ∆a is set to be 0.052 for both XFEM

and IGABEM. The model is discretized by 27, 869 nodes and 55, 604 trian-

gular elements for XFEM. And for IGABEM, 82 elements and 230 DOFs are

used. Crack tip mesh refinement is used without enrichment. In [35], the

XEFG model size is not given, but the crack increment ∆a = 0.1. Figure

2.18 compares the crack growth paths using all the mentioned methods.

All the crack paths agree well with the experiments. Of course, due to the

differences in discretization and crack increment, the numerical results do

differ. It can be observed that the IGABEM reproduces slightly better the

experimental crack trajectory than the XFEM for the case when the crack

passes through the first hole. Figure 2.19 compares the SIFs from XFEM

and IGABEM. We note that significant difference in SIF values and the ratio

ofKII/KI occur when the crack passes near the first hole. A possible expla-

nation for this could be that in XFEM, the domain used for SIF extraction is
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experiment

XFEM

XEFG

IGABEM

FIGURE 2.18: Crack paths (XEFG result ∆a = 0.1 is from
Ventura et al, 2002)

allowed to be intersected with the boundary of the domain.

2.5.6 Crack propagation in an open spanner

The last example consists in simulating the failure process of an open span-

ner due to crack propagation, in which the geometry is taken directly from

CAD. The physical configuration is shown in Figure 2.20. As in indus-

trial damage tolerance assessment [6], we assume that a small defect has

initiated from the surface at the area of high stress concentration obtained

from an elastostatic analysis [112]. The initial geometry including the crack

is given in Figure 2.21. The crack will grow with ∆a = 0.1. Figure 2.22

presents the deformed geometry with the crack. This example gives a straight-

forward illustration of the concept of seamless integration of CAD and fail-

ure analysis, since no mesh generator is required and the crack path is ob-

tained directly from CAD.
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FIGURE 2.19: Comparison of the SIFs for the whole pro-
cess of crack propagation

uniform refinement applied around the boundary for both p = 2
and p = 3. In addition, the problem was analysed using quadratic
isoparametric boundary elements using an equivalent mesh refine-
ment strategy. Exactly the same number of Gauss points were used
to evaluate each of the boundary integrals given by the second and
third terms in Eq. (31) for both the IGABEM and BEM analyses.

Fig. 25 illustrates an IGABEM mesh with three elements per line
and the deformed IGABEM profile. Excellent agreement with the
analytical solution is seen. Using the following definition to calcu-
late the relative L2 error norm in displacements around the
boundary:

eL2 ¼
ku� uexkL2

kuexkL2

; ð49Þ

where

kukL2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
C

Xdp

i¼1

ðuiÞ2 dC

vuut ; ð50Þ

a comparison can be made between IGABEM and BEM (Fig. 26). In
the case of IGABEM with p = 2 and quadratic BEM, both methods
converge at the same rate but importantly, IGABEM demonstrates
a consistently lower error for all meshes. For IGABEM with p = 3,

we see, as expected, that a higher convergence rate is obtained with
lower errors than the equivalent second order mesh.

5.2. L-shaped wedge

The next problem which was considered was the L-shaped
wedge which exhibits a singularity at the wedge apex. The analyt-
ical solution to this problem is given by Szabó and Babuška [19]
where a wedge angle of 2a = 3p/2 was used. Considering only
the mode 1 loading case, exact tractions were applied along all
faces with appropriate displacement constraints as shown in
Fig. 27. Material properties E = 1e5 and m = 0.3 were used under
plane strain conditions. The problem was solved using four differ-
ent methods: quadratic BEM with uniform h-refinement, IGABEM
with p = 2 and uniform h-refinement, IGABEM with p = 3 and
uniform h-refinement and finally IGABEM with p = 2 and graded
h-refinement towards the wedge apex. For the case of one element
per line and p = 2, the control points are shown in Fig. 28(a) with
collocation points and elements shown in Fig. 28(b). The knot vec-
tor for this example is given by

N ¼ 0;0;0;1=6;1=6;2=6;2=6;3=6;3=6;4=6;4=6;5=6;5=6;1;1;1f g;
ð51Þ

Fig. 32. Open spanner problem.

98 R.N. Simpson et al. / Comput. Methods Appl. Mech. Engrg. 209–212 (2012) 87–100

FIGURE 2.20: Boundary conditions, materials and geome-
try of the open spanner (Simpson et al, 2012)
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FIGURE 2.21: Control points and NURBS representation of
the open spanner

FIGURE 2.22: The deformed geometry after 10 steps of
crack propagation
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2.6 Conclusions

A detailed procedure to model linear elastic fracture problem using the

NURBS based IGABEM is proposed in this work. The dual BIEs is intro-

duced so that cracks can be modeled in a single domain. Different treat-

ments for crack tip singularity are investigated including crack tip graded

mesh refinement and partition of unity enrichment. The popular approaches

to extract SIFs are compared in the framework of IGABEM and it proves

that the M integral is more efficient for SIF extraction in IGABEM. The

cracks are modeled directly by NURBS, and an algorithm for modifying

the NURBS curve is implemented to describe the crack propagation. Nu-

merical examples shows that:

(1) The IGABEM can obtain a higher accuracy than Lagrange basis based

BEM for the same model size or DOFs. The convergence rate in SIFs has

been improved by 5 ∼ 8 times than BEM with discontinuous Lagrange ba-

sis without any treatment to the crack tip;

(2) Both crack tip graded mesh refinement and enrichment can improve the

displacement field near the crack tip, and the graded mesh refinement is

selected to apply in the crack growth;

(3) The proposed crack growth procedure can lead to C1 smooth crack tra-

jectory and agrees well with those results from XFEM.

(4) A procedure for damage tolerance assessment directly from CAD is pre-

sented, which does not require any mesh (re)generation.

The extension of IGABEM to 3D fracture growth simulation seems more

appealing due to benefit brought by the reduction of mesh burden. And

the solution provided by the BEM with the smooth geometry and crack

representation is expected to be helpful in SIFs evaluation. The next chapter

will look into the 3D development.
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Chapter 3

IGABEM for 3D linear elastic

fracture

Based on the paper ‘Isogeometric boundary element methods for three dimensional fatigue crack

growth’ submitted to CMAME

The isogeometric boundary element method (IGABEM) based on NURBS

is adopted to model fracture problem in 3D. The NURBS basis functions are

used in both crack representation and physical quantity approximation. A

stable quadrature scheme for singular integration is proposed to enhance

the robustness of the method in dealing with highly distorted element. The

convergence study in crack opening displacement is performed for penny-

shaped crack and elliptical crack. Two ways to extract stress intensity fac-

tors (SIFs), the contour M integral and virtual crack closure integral, are

implemented based on the framework of dual integral equations. An algo-

rithm is outlined and validated to be stable for fatigue crack growth, thanks

to the smoothness not only in crack geometry but also in stress/SIFs solu-

tion brought by IGABEM.

3.1 Boundary integral equations for crack modeling

For 3D case, the crack can be modeled by the method of dual boundary in-

tegral equations. For cracks in infinite domain, the crack opening displace-

ment equation gives a simpler implementation. Details of the formulation

can be referred in section 2.2.1 of the previous chapter.
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3.2 NURBS discretization and collocation

The formulation of 1D NURBS basis functions is briefed in section 2.1.

Given the knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ηm+q+1},

and the control points net Pi,j . The B-spline surface S(ξ, η) is given by the

tensor-product of B-spline basis functions defined in the 2D parametric do-

main [ξ1, ξn+p+1]× [η1, ηm+q+1],

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j , (3.1)

where Ni,p(ξ)Mj,q(η) are the 2D B-spline basis functions. The NURBS basis

functions can be constructed by rationalizing the tensor-product B-spline

basis functions as

Ri,j(ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

k=1

∑m
l=1Nk,p(ξ)Ml,q(η)wk,l

, (3.2)

where the scalar variable wi,j is the weight associated with the control

point Pi,j . For integration, the 2D NURBS basis functions are usually cal-

culated in the element defined by the non-zero knot intervals [ξi, ξi+1] ×

[ηj , ηj+1] where the Gaussian rule can be applied [87].

The Greville abscissae has been used to generate the collocation points.

For a closed domain composed by trimless and compatible NURBS patches,

the number of collocation points obtained by the Greville abscissae is iden-

tical to the number of control points (or basis functions), which means one

collocation point is associated with one control point.

Remark: for those collocation points lie in the sharp edges or corners, or when

discontinuous basis functions are needed, these collocation points will be offset from

the original place by

ξs,i = ξs,i + α(ξs,i+1 − ξs,i), or

ξs,i = ξs,i − α(ξs,i − ξs,i−1), 0 < α < 1.

(3.3)

Note that in this case, the associated control points should be doubled such that
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the discontinuous basis functions are obtained, or the BIEs on the offset colloca-

tion points should be merged into one BIE, such that the number of equations and

unknowns remains equal.

3.3 Numerical integration

Due to the singularities in BIEs, there will be singular integration and non-

singular integration after discretization. For the element containing the col-

location point, singular integration is performed and the element belongs to

singular elements. Elements which exclude the collocation point are called

non-singular elements. Singular integration needs to be carefully treated

in BEM. Various numerical methods have been proposed, and one can re-

fer to a review work in [40]. A robust technique developed in [132] can

be applied to regularized all the singular terms into weakly singular terms,

via the use of simple solution of BIE. The regularization technique based

on simple solutions has been further developed in the framework of IGA-

BEM [113][153][126]. However, this method fails when dealing with open

surfaces such as cracks because of the existence of two jump terms in col-

lapsed boundary [127]. In the present work, we use the singularity sub-

traction technique (SST) proposed by Guiggiani [127][128] to remove the

singularities arising in both BIEs. The SST is a method for the treatment

of singular integrals regardless of mesh dicretization and proved to be effi-

cient for fracture via dual BEM [42].

3.3.1 Singularity subtraction technique (SST) for singular inte-

grals

The SST transforms various orders of singular integration into a weakly

singular one based on the intrinsic coordinate system of the singular ele-

ment after discretization. Then the weakly singular integration becomes

regular if the quadrature is performed in polar coordinates. By expand-

ing the integrand into a series with respect to the intrinsic coordinates, the

singularity can be represented explicitly with respected to the parametric
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distance between the source point and field point ρ. Then the singular

terms are subtracted from the integrand, leaving the remaining to be reg-

ular for which regular Gaussian rule is applied. the subtracted terms are

added back semi-analytically. Assume that the coordinates of the point of

interest are x(xi = x, y, z) in physical space, ξ(ξi = ξ, η) in the parametric

space of the NURBS basis functions and ξ̄(ξ̄i = ξ̄, η̄) in the parent space

[−1, 1]× [−1, 1]. For the hyper-singular integral of the form

I = =

∫
S
S(s,x(ξ̄))R(ξ̄)J̄(ξ̄)dS, (3.4)

where S(s,x(ξ̄)) is the hyper-singular kernel,R(ξ̄) is the NURBS basis func-

tion and J̄(ξ̄) is the Jacobi transformation from parent space to physical

space (Figure 3.1). The polar coordinates ρ(ρ, θ) centred at the source point

are introduced in the parent space. The parent domain is subdivided into

triangles for quadrature. For each field point ξ̄ in the sub-triangles, we have

ξ̄ = ξ̄s + ρcosθ,

η̄ = η̄s + ρsinθ,
(3.5)

After the polar coordinate transformation, Equation (3.4) becomes

I = lim
ε→0

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)
S(ρ, θ)R(ρ, θ)J̄(ρ, θ)ρdρdθ, (3.6)

where ρ̂(θ) = h/cosθ̄. h is the shortest distance from the source point to the

element edge and θ̄ is the angle from perpendicular direction to the field

point as in Figure 3.1. If we define θ0 as the angle of the perpendicular line,

then the angle to the field point can be computed as

θ = θ̄ + θ0. (3.7)

The integrand F (ρ, θ) = S(ρ, θ)R(ρ, θ)J̄(ρ, θ)ρ is expanded as:

F (ρ, θ) =
F−2(θ)

ρ2
+
F−1(θ)

ρ
+ F0(θ) + F1(θ)ρ+ F2(θ)ρ2 + · · · =

∞∑
i=−2

Fi(θ)ρ
i.

(3.8)
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FIGURE 3.1: Transformation between coordinate system
for SST

The first two singular terms on the right hand side are subtracted and

added back semi-analytically, resulting in:

I = I1 + I2,

I1 =

∫ 2π

0

∫ ρ̂(θ)

0

[
F (ρ, θ)− F−2(θ)

ρ2
− F−1(θ)

ρ

]
dρdθ,

I2 =

∫ 2π

0
I−1(θ)ln

ρ̂(θ)

β(θ)
dθ −

∫ 2π

0
I−2(θ)

[ γ(θ)

β2(θ)
+

1

ρ̂(θ)

]
dθ,

(3.9)

where I1 is regular and I2 are regular line integrals, Both can be applied

with Gaussian quadrature rule. The evaluation of α(ε, θ), β(θ) and γ(θ) as

well as the limiting process are given in appendix B.2 and more details can

be referred in [128].

3.3.2 Conformal mapping for SST

It has been revealed by Rong et al [154] that the expansion coefficients Fi(θ)

in Equation (3.8) exhibits various orders of near-singularity in the angular θ

direction, although the singularity in the radial ρ direction disappears. This

near-singularity is sensitive to the shape of the element and becomes severe

when the element is highly distorted. The Fi(θ) can be represented as:

Fi(θ) =
F̃i(θ)

Ap(θ)
=

F̃i(θ)

[0.5(|ms
1|2 + |ms

2|2)(ωsin(2θ + ϕ) + 1)]p/2
, (3.10)

where F̃i(θ) are the regular trigonometric functions and integer ‘p’ is the

order associated with ‘i’. The curvi-linear basis vectors ms
i = mi|ξ̄=ξ̄s , (i =
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1, 2) and are calculated as:

m1 =
[∂x
∂ξ̄
,
∂y

∂ξ̄
,
∂z

∂ξ̄

]
,

m2 =
[∂x
∂η̄
,
∂y

∂η̄
,
∂z

∂η̄

]
.

(3.11)

We introduces two parameters

λ = |ms
1|/|ms

2|,

cosψ = ms
1 ·ms

2/|ms
1||ms

2|,
(3.12)

such that

ϕ = arctan
λ2 − 1

2λcosψ
,

$ =

√
1− 4sin2ψ

(λ+ λ−1)2
< 1.

(3.13)

It can be concluded that when the element aspect ratio is large or the angle

between two basis vectors tends to 0 or π (sinψ → 0), A(θ) will tend to 0,

resulting in the near-singularity of Fi(θ). Both scenarios indicate a distorted

shape of the singular element, which are common in isogeometric analysis.

Rong et al [154] constructed the conformal mapping from the parent

space (ξ̄, η̄) to a new parametric space (ξ̂, η̂) where the two curvi-linear ba-

sis vectors in the new parametric space are orthogonal and have identical

length, i.e.

m̂s
1 · m̂s

2 = 0,

|m̂s
1| = |m̂s

2|.
(3.14)

ThenA(θ) becomes a constant, which makes the integration nonsensitive to

the element shape, if the series is expanded in the new space. The quadra-

ture for the singular integral turns to be stable regardless of mesh distortion.

The mapping proposed by Rong et al is tailored for triangular element,

in this work we extend it to the quadrilateral elements (Figure (3.1)). In
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[154], the Jacobian transformation matrix T from ξ̄ = (ξ̄, η̄) to a new para-

metric space ξ̂ = (ξ̂, η̂) is

T =

 1 δ1

0 δ2

 , so that ξ̂ = Tξ̄, (3.15)

where δ1 = cosψ/λ, δ2 = sinψ/λ. Then the new basis vectors

[
m̂s

1 m̂s
2

]
=

[
ms

1 ms
2

]
T−1 =

[
ms

1 −(δ1/δ2)ms
1 + (1/δ2)ms

2

]
(3.16)

will satisfy the relation in Equations (3.14). The bilinear interpolation is

used from (ξ̄, η̄) to the new parametric space (ξ̂, η̂) for a quadrilateral ele-

ment:

ξ̂ =
4∑
I=1

NI(ξ̄)ξ̂
I
,

N1(ξ̄, η̄) = 0.25(1 + ξ̄)(1 + η̄),

N2(ξ̄, η̄) = 0.25(1− ξ̄)(1 + η̄),

N3(ξ̄, η̄) = 0.25(1− ξ̄)(1− η̄),

N4(ξ̄, η̄) = 0.25(1 + ξ̄)(1− η̄).

(3.17)

Combining Equations (3.15) and (3.17), the nodal coordinates ξ̂
I

can be ob-

tained as ξ̂
1
(1 + δ1, δ2), ξ̂

2
(−1 + δ1, δ2), ξ̂

3
(−1− δ1,−δ2) and ξ̂

4
(1− δ1,−δ2).

It should be noted that since 0 < ψ < π, δ2 > 0, the quadrilateral element

is guaranteed to have positive area (one possible plot is shown in Figure

(3.1)). This requires the source point to be located at the degenerated point

in the geometry where |ms
i | 6= 0.

It can be seen from Figure 3.1 that the shape of the element in confor-

mal space is controlled by the coefficients δ1 and δ2. This means that if λ

(reflecting the element aspect ratio) and cosψ (reflecting the element distor-

tion) deviate from 1, the conformal element will be skewed. This will result

in sub-triangles with θ̄ approaching ±π/2 if the field point is close to the

edges adjacent to the source point of the sub-triangles (Figure 3.1). Thus

ρ̂(θ) = h/cosθ̄ is not calculated accurately. To alleviate this near singularity
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in ρ̂(θ), the following Sigmoidal transformation is applied in the angular

direction such that the integration points will be adaptively clustered close

to the edges where the near-singularity is severe, according to the value of

θ̄ [154],

w(θ̄) =
1

π

(
θ̄ +

π

2

)
, −π

2
< θ̄ <

π

2
, 0 < z < 1,

z = z(s) = w(θ̄1) +
1

2
(s+ 1)(w(θ̄2)− w(θ̄1)), −1 < s < 1,

0 ≤ z(θ̄1) < z < z(θ̄2) ≤ 1,

f(z) =
zm

zm + (1− z)m
,

θ̄ = πf(z)− π

2
,

J−1(θ) =
∂θ

∂s
=
π[w(θ̄2)− w(θ̄1)]mf(z)m−1

2(f(z)m + (1− f(z))m)2
,

(3.18)

where s is the Gauß point in interval (−1, 1), the relation of θ and θ̄ can be

found in Equation (3.7).

3.3.3 Numerical quadrature

In our numerical implementation, the Gaussian rule is applied in both ra-

dial and angular direction. 6 Gauß points are used in the radial direction.

18 Gauß points are used in the angular direction of each sub-triangle for

conformal SST unless otherwise specified. For each non-singular element,

an adaptive subdivision scheme is used according to the relative distance

between the element and collocation point. All the rules are used empiri-

cally without any error control algorithm.

3.4 Crack growth

The approaches used to represent and track the crack propagation can be

classified into two manifolds, implicit and explicit methods. A typical ap-

plication of the former method would be the level set method [155] which

was coupled in the XFEM/GFEM to represent and grow the discontinuity
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[28][29]. The level set function is a signed distance function to the crack sur-

face defined on the underlying mesh, which could be either consistent with

the mesh discretization of the problem or an independent structured mesh.

Since the cracks are open surfaces, one more level set function, perpendic-

ular to the crack surface is required in order to describe the crack front. The

quality to represent the crack surface depends on the resolution of the un-

derlying mesh. Accurately describing the crack surface usually introduces

additional computational expense [156]. Advection-type equations should

be solved so as to update the crack front when the crack evolves [157] which

increases the computational effort. Chopp and Sukumar [158] proposed the

fast marching method to update the crack front, thus facilitating the process

of updating the crack surface [27]. Fries and Baydoun [159] proposed an

implicit-explicit method, in which the level set represented crack is explic-

itly dicretized by triangular facets. Analogous idea is the vector level set

method [35]. These methods take advantage of the level set representation

for the PU enrichment while avoiding to update the crack surface by solv-

ing the equations. Additionally, sharp turns and kinks can be retained by

use of explicit crack surfaces rather than pure level sets.

The explicit method uses sets of triangular or quadrilateral facets to dis-

cretize the crack surface directly. For finite element based methods, the

crack evolution process is usually accompanied with an automatic re-meshing

operation. For XFEM/GFEM applications, the subdivision of the 3D solid

elements needs to be performed for the integration purpose. Both relies

on well-developed meshing/re-meshing packages [160][161]. The explicit

representation of the crack surfaces by triangulation has been used in mesh-

free methods as well [33][36][37]. It should be noted that this representation

method usually results in a C0 crack surface and that the crack fronts are

composed of line segments. This leads to at least two shortcomings: (1) The

crack front is not smooth which leads to inaccuracies in the extraction of the

fracture parameters (for example the SIFs). Geometry approximation error

accumulates as the crack grows; (2) The local crack front coordinate system

is not well defined and the deflection angle is discontinuous, resulting in
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non-unique branch enrichment values for some points on the crack front.

One approach to alleviate this is to abandon the branch enrichment [36][37].

As a remedy, the crack fronts need to be smoothed through some numeri-

cal techniques [160][161]. Similar scenarios occur in Lagrange based BEM

for fracture modeling. Besides, Paluszny and Zimmerman [147] points out

that a large number of facets are needed in order to more accurately rep-

resent the crack surface so that the storage increases rapidly with respect

to the area of the crack surface when the cracks propagate. Hence they

propose the use of a parametric surface, i.e. the NURBS patch, to describe

the crack propagation. In their approach, crack growth is realized geomet-

rically by deforming the NURBS surface through the mid-range La-Greca

algorithm [146] to move the control points. Due to the parametrization of

the NURBS patch, the crack tip can be sampled anywhere along the crack

front, thus the storage for crack discretization increases mildly. Meanwhile

the local crack front coordinate system is established on the smooth ge-

ometry. However, this method is based on re-meshing the finite elements.

Recently Tambat et al proposed an explicitly represented lower-dimension

geometry features by NURBS [104][105] through the partition of unity ap-

proximation. Instead of using level sets, the lower-dimension features such

as cracks are accurately described through the calculation of the distance

field in an efficient non-iterative way, providing a promising alternative to

evolve discontinuities in the IGAFEM framework. However, more suitable

numerical quadrature scheme are still desired in order to fully exploit the

exact representation in geometry.

In the present work, we use NURBS patches to discretize the crack sur-

faces. The crack front is exactly described and the local crack tip system is

defined naturally and uniquely based on the NURBS patch. Meanwhile, the

physical quantities are also approximated by the NURBS basis in the spirit

of isogeomtric analysis. With BEM, the smoothness in geometry and stress

solution is fully exploited to calculate the fracture parameters and evolve

the cracks. In the following section, we first introduce the ways to extract

the stress intensity factors, based on the NURBS crack surfaces and recall
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FIGURE 3.2: Crack tip coordinate system

the Paris law to calculate the crack advance. With these governing fracture

parameters, a crack surface updating algorithm is outlined to perform the

crack growth.

3.4.1 Computation of stress intensity factors

The driving force for the evolution of fatigue fracture is characterized by

some fracture parameters such as the stress intensity factors (SIFs), which

can be extracted from the numerical solution. If the fracture parameters are

computed based on the point-wise tips on the crack front independently,

the approach can be considered as ‘local’. The key factor to compute ac-

curately the SIFs in a local approach is to avoid discretization and path

dependence. In this section both the virtual crac kclosure integral (VCCI)

and the contour M integral have been investigated for the calculation of

SIFs in fracture analysis via the 3D isogeometric BEM. A point-wise crack

tip coordinate system is established along the crack front as in Figure 3.2.

The physical quantities are all in the crack tip local coordinate system thus

the superscript ‘o’ is omitted in this section.

Contour M integral

The definition of the Jk integral stems from two dimensions as:

Jk := lim
Γε→0

∫
Γε

(Wδjk − σijui,k)njdΓ = lim
Γε→0

∫
Γε

PkjnjdΓ, k = 1, 2 (3.19)
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where Pkj is the Eshelby tensor, W = 1/2σijεij is the strain energy density.

Γε is a small contour with radiusR centred at the point ‘o’ on the crack front

in the ‘xo − yo’ plane and nj is the unit outward normal of Γε.

This 2D definition can be extended to a three dimensional point-wise

definition by taking a tubular surface around the crack front. When the

contour Γε is small enough, plane strain conditions are approximately sat-

isfied. The contour definition can thus be used directly on the premise that

a sufficiently small contour is assumed. For more details, see section 2.3.2

Virtual crack closure integral

In the VCCI, the strain energy release rate is equal to the work done by

closing the crack along its extension. The modes of the strain energy release

rate are given by

GI =
1

2R

∫ R

0
σyy(x)Juy(x′)Kdx,

GII =
1

2R

∫ R

0
σxy(x)Jux(x′)Kdx,

GIII =
1

2R

∫ R

0
σyz(x)Juz(x′)Kdx,

(3.20)

where PO = R is the virtual crack advance and x′ = −(R − x). The crack

opening displacement Juj(x′)K = u+
j (x′) − u−j (x′). For the evaluation of

Juj(x′)K on OP ′, the point inversion algorithm needs to be performed in or-

der to find the parametric coordinates in the crack modeled by the NURBS

surface [129]. The domains of these integrals OP ′ and PO are dicretized by

a single linear element [162]. R is identical for all the sample points on the

crack front. ThenKI ,KII andKIII can be computed according to Equation

(C.5).

3.4.2 Paris law

The Paris-based laws are typical empirical relation linking the increment in

crack advance da occurring during dN cycles to the SIF amplitude, though

empirically obtained coefficients C and m. The simplest expression of Paris
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FIGURE 3.3: Crack front updating. C(ξ) is the old crack
front curve, C′(ξ) is the new crack front curve after crack

advance

law reads:
da
dN

= C(∆K)m, (3.21)

For mixed mode fracture, K is taken as the equivalent SIF Keq which is

given as [24]:

Keq =
√
K2
I +K2

II + (1 + ν)K2
III

(3.22)

It should be noted that the crack propagation velocity could be varied for

the points along the front. In a single propagation step, the crack advance

for each point is regularized by the user-specified maximum increment of

crack advance ∆amax,

∆ai = C(∆Ki
eq)m

∆amax

C(∆Kmax
eq )

= ∆amax
( ∆Ki

eq

∆Kmax
eq

)m
, (3.23)

where ‘i’ denotes the i-th sample point on the crack front.

The maximum hoop stress criterion is used to determine the direction

of crack propagation. We assume, at each point on the crack front, that the

crack propagates in the direction θc such that the hoop stress is maximum.

This is given by the following expression [145]

θc = 2arctan

[
−2(KII/KI)

1 +
√

1 + 8(KII/KI)2

]
. (3.24)



60 Chapter 3. IGABEM for 3D linear elastic fracture

3.4.3 Crack surface updating algorithm

Crack propagation is realized geometrically by advancing the crack front so

that the new crack front curve C′(ξ) passes through the new positions of the

sample points on the old crack front curve C(ξ) which is parameterized by

the knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}, n is the number of basis functions.

We define the sample points on C(ξ) to beMj = C(ξj), j = 0, 1, ..., N−1, and

the set of corresponding new positions to be M ′j = C′(ξj) and we set N = n

here. Note that each M ′j is calculated via the fracture parameters K and

∆a introduced in the previous section. We adopt the algorithm described

in [146] to generate a new curve which passes through all the new sample

points by updating the control points of the old curve through a iterative

process. For t-th iteration step, we define the error vector et as:

ej,t =
−−−−→
Mj,tM

′
j , j = 0, 1, ..., N − 1. (3.25)

Note that when t = 0, ej,t =
−−−−−→
Mj,0M

′
j =

−−−−→
MjM

′
j = ∆aj which is the crack

advance of the point on the crack front. If ‖et‖ < tol, the iteration ceases

and the new crack front curve is obtained.

To update the control points, we define a motion vector mt for the con-

trol points such that at the t-th iteration step:

Pi,t = Pi,t−1 +mi,t, i = 0, 1, ..., n− 1, (3.26)

with Pi,0 = Pi which are the control points of the old crack front C. The

motion vector mt can be computed as:

mi,t =
1

N

N−1∑
j=0

fijej,t−1, t > 1, (3.27)

where fij = fi(ξj) are the influence functions corresponding to each con-

straint M ′j . We choose the influence functions to be the NURBS basis func-

tions which are used to describe the curve, i.e. fi(ξ) = Ri(ξ). The parameter

coordinate ξj of each Mj should satisfy ξj ∈ [ξi, ξi+p+1]. We use the Greville
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Abscisse to generate the sample points to make sure the influence functions

associated with each M ′j are linearly independent [146]. Finally, the error

vector is calculated in a recursive way:

ej,t = ej,t−1 −
1

N

N−1∑
k=0

n−1∑
i=0

Rijfikek,t−1, (3.28)

where Rij = Ri(ξj). The details for updating the crack front is given in Al-

gorithm (1). Once the new crack front curve is obtained, the new crack sur-

faces can be generated by lofting along the crack extension direction from

the old curve to the new curve. The generated crack surfaces can be merged

into the old crack surfaces with either a C0 joint or a C1 joint. In this work

a C0 merging is adopted.

Algorithm 1 Crack front updating algorithm
Data: old crack front curve C(ξ); sample points Mj ; new positions of sam-

ple points M ′j
Result: new crack front curve that passes through all M ′j
t = 0;
tol = 1.e− 4;
ej,0 =

−−−−−→
Mj,0M

′
j ; //the initial error vector

while ‖et‖ > tol do
t = t+ 1;
mi,t = 1

N

∑N−1
j=0 fijej,t−1; //the motion vector at t-th step

Pi,t = Pi,t−1+mi,t; //the new point on the crack front at t-th step
ej,t = ej,t−1 − 1

N

∑N−1
k=0

∑n−1
i=0 Rijfikek,t−1; //the error vector at t-th step

end

3.5 Numerical examples

In this section, numerical examples are treated to verify the methodology.

We first verify the 3D IGABEM for fracture by investigating the conver-

gence of the COD and SIFs with mesh refinement using both the VCCI and

M integral, for curved crack fronts. We then verify the propagation algo-

rithm against the literature. We study the integration algorithm in detail for

the case of the penny-shaped crack. The Young’s modulus E = 1000 and

Poisson’s ratio ν = 0.3 for all cases. The relative error in the L2 norm of
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FIGURE 3.4: Geometry for penny-shaped crack (a = b) and
elliptical crack (a 6= b)

COD is computed as

eL2 =

√∫
S(JuK− JuKext)(JuK− JuKext)TdS∫

SJuKextJuKT
extdS

, (3.29)

where the subscript ‘ext’ denotes the analytical solution of COD.

3.5.1 Penny-shaped crack

Suppose a penny-shaped crack is subjected to the remote tension σ0, i.e.

t∞ = (0, 0, σ0). The radius of circle is a. The inclination angle is ϕ and

circular angle θ is defined in the crack plane (Oxy) as in Figure 3.4. The

analytical solution for the SIFs read [163]:

KI(ϕ) =
2

π
σ0

√
aπcos2ϕ,

KII(ϕ, θ) =
4

π(2− ν)
σ0

√
aπcosϕsinϕcosθ,

KIII(ϕ, θ) =
4(1− ν)

π(2− ν)
σ0

√
aπcosϕsinϕsinθ.

(3.30)

In particular, when the crack plane is horizontal (ϕ = 0), the analytical

normal displacement is given as:

uz(r, θ, 0) =
2(1− ν)σ0

πµ

√
a2 − r2, r 6 a. (3.31)

Singular integration test

The problem is modeled by COD equation (2.13), so that a single NURBS

patch is necessary to represent the crack. The numerical COD is compared
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to the analytical solution. The collocation points are moved aside from the

pole in order not to locate at the degenerated point. The NURBS basis func-

tions associated with the pole, however, are enforced to beC0 through shar-

ing the same degrees of freedom. The BIEs from these moved collocation

points are merged into one equation.

We note that the COD solution only varies in the radial direction and is

constant in the angular direction, thus 4 elements are used in the angular

direction. This will lead to high aspect ratio of each element with the re-

finement in the radial direction. Figure 3.5 compares the L2 norm error in

COD for ϕ = 0. ‘ngp_s’ denotes the number of Gauß points in the angular

direction in each sub-triangle. By ‘original SST’, we mean a direct use of

the method and by ‘improved SST’, the SST with conformal and Sigmoidal

transformation. It can be observed that

• when ngp_s = 30, the errors of the original SST and improved SST

are comparable. However, the error from the original SST is non-

uniformly distributed whilst the improved SST provides a more uni-

form error distribution;

• when ngp_s = 18, the error from the original SST increases signif-

icantly (eL2 =1.467716e-1), while the improved SST maintains the

same accuracy as for ngp_s = 30;

• the error is larger near the crack front. This is due to the crack tip

singularity.

We conclude that the original SST requires more Gauß points for the same

accuracy level as the improved SST. If we move the knot (η = 0.875) next to

the crack front in the radial direction closer to the crack front (η = 0.94) and

repeat the comparison of Figure 3.6, we find that even for ngp_s = 30, the

original SST still gives error as large as for ngp_s = 18. while the improved

method gives an error of eL2 =1.755681e-2, which is lower than what was

shown in Figure 3.5. We can refer that, due to the crack tip singularity, a

refined mesh near the crack front should give a better accuracy in COD, but
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the original SST is sensitive to the element distortion and gives diverged

results. The improved SST presents a robust application for this kind of

mesh configuration.

(a) original SST, ngp_s=30, eL2 =3.344418e-
2

(b) improved SST, ngp_s=30,
eL2 =3.844282e-2

(c) original SST, ngp_s=18, eL2 =1.467716e-
1

(d) improved SST, ngp_s=18,
eL2=3.844282e-2

FIGURE 3.5: The relative error of COD for the penny crack
problem. ‘ngp_s’ denotes the number of Gauß points in
angular direction in each sub-triangle. Knot vectors: angu-
lar direction ξ=[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1], radial

direction η=[0,0,0,0.5,0.75,0.875,1,1,1]

Convergence test

We perform uniform mesh refinement in parametric space. We calculate

the element size as h =
√
Smax
e , where Smax

e denotes the maximum area

of the elements. The convergence curve is plotted in Figure 3.8 where we

compared both the quadratic and cubic NURBS basis functions. It can be

concluded that degree elevation improves accuracy. Yet, the order of con-

vergence rate (ocr) of the relative error in the L2 norm of COD keeps almost

the same value (ocr = 1). The deteriorated ocr is due to the physical singu-

larity along the crack front.
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(a) original SST, ngp_s=30, eL2=8.138911e-1 (b) improved SST, ngp_s=30,
eL2=1.755681e-2

(c) original SST, ngp_s=18, eL2=7.110011e-1 (d) improved SST, ngp_s=18,
eL2=1.755679e-002

FIGURE 3.6: The relative error of COD for the penny crack
problem. ‘ngp_s’ denotes the number of Gauß points in
angular direction in each sub-triangle. Knot vectors: angu-
lar direction ξ=[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1], radial

direction η=[0,0,0,0.5,0.75,0.94,1,1,1]
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FIGURE 3.7: NURBS(p = q = 2) represented crack surface
meshes with 2, 6, and 10 uniform refinement in the ra-
dial direction, followed by graded refinement (with black
edges) close to crack front. The blue dots are collocation

points
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FIGURE 3.8: The relative error in the L2 norm of COD for
penny-shaped crack

As is well known, uniform refinement is neither effective nor efficient

to improve the accuracy for the crack problem. Thus five mesh configura-

tions are designed, through keeping the number of elements in the angular

direction while the mesh is uniformly refined by 2, 4, 6, 8 and 10 elements

in the radial direction. The elements along the crack front is then further

gradely refined by consecutive knot insertion to reduce the error caused by

the crack tip singularity (Figure 3.7 shows meshes 1, 3 and 5). Figure 3.9

shows for convergence study. It can be seen that the accuracy is improved

almost by one order compared to uniform refinement and the final estimate

convergence rate is two times higher than for uniform refinement. This in-

dicates the effectivity of IGABEM for fracture simulation.
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FIGURE 3.9: The relative error in the L2 norm of COD for
penny-shaped crack

Stress intensity factor test

In this subsection, the computation of SIFs is verified. Instead of using the

COD equation to model the penny-shaped crack in an infinite domain, we

embed two overlapping crack surfaces in a cube with size L = 200a such

that we can compare the numerical SIFs with the analytical solution for

infinite domain. Dual equations are used for this case.

Figure 3.10 shows the path independence of the M integral and VCCI for

mode I penny-shaped crack. Here ‘R’ denotes the virtual crack advance in

VCCI and the radius of the contour in M integral. It can be seen that when

R/a is from 0.02 to 0.08, both methods show path dependent behavior. For

M integral, the error varies within 2%. When the radius of contour is small,

KI converges to analytical value; while increasing R, since the stress field

for the crack tip is influence by other tips in the crack front, plane strain con-

dition is not satisfied properly, the method becomes inaccurate. For VCCI,

the error varies within 6% and generally a small virtual crack advance is

needed. However, if R is too small, difficulty in numerical evaluation of

stress and COD close to crack front will arise which lead to the inaccuracy

of KI . From the figure we can also refer that M integral presents a smaller

reduction in error than VCCI.

Figure 3.11 compares the SIFs obtained from M integral with R = 0.02a
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FIGURE 3.10: Path independence verification for VCCI
and M integral. Here ‘R’ denotes the virtual crack advance

in VCCI and the radius of the contour in M integral
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FIGURE 3.11: Stress intensity factors for penny crack with
ϕ = π/6

and VCCI with R = 0.04a for the mixed mode penny-shaped crack with

inclination angle ϕ = π/6. It is seen that both methods agree well with the

analytical solution. KIII from M integral shows deviation near θ = π/2

and 3π/2. Table 3.1 presents the error at θ = 0, π/4 and π/2. It can be

observed that the error of KI and KII is within 1% by both methods, while

within 7% for KIII by M integral. we can conclude that the IGABEM can

provide accurate SIFs, and the numerical SIFs along crack front is quite

smooth, although with only 4 elements in angular direction and without

any smoothness operation. This gives the premise for a stable evolution for

the crack growth simulation.
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3.5.2 Elliptical crack

Suppose an elliptical crack is subjected to the remote tensile loading σ0 in

the normal direction, i.e. t∞ = (0, 0, σ0). The semi-major axis is a, semi-

minor axis b. The inclination angle is ϕ and the elliptical angle θ is defined

in the crack plane as in Figure 3.4. The analytical SIFs read [163]:

KI(ϕ, θ) =
σ0

2
(1 + cos2ϕ)

√
bπf(θ)

E(k)
,

KII(ϕ, θ) =
σ0

2
sin2ϕ

√
bπk2(b/a)cosθ
f(θ)B(k)

,

KIII(ϕ, θ) =
σ0

2
sin2ϕ

√
bπk2(1− ν)sinθ
f(θ)B(k)

,

k2 = 1− b2

a2
,

f(θ) = (sin2θ +
b2

a2
cos2θ)1/4,

B(k) = (k2 − ν)E(k) + ν
b2

a2
K(k),

(3.32)

whereK(k) andE(k) are elliptic integrals of the first kind and second kind,

respectively:

K(k) =

∫ π/2

0

1√
1− k2sin2θ

dθ,

E(k) =

∫ π/2

0

√
1− k2sin2θdθ.

(3.33)

In particular, when ϕ = 0, the displacement in the normal direction to the

crack reads:

uz(x, y, 0) =
2(1− ν)σ0

µ

b

E(k)

√
1− x2

a2
− y2

b2
. (3.34)

The difference of the elliptical crack and penny crack is that the mode I

SIF is not a constant, due to the variation of the curvature along the crack

KII KIII

VCCI M VCCI M

θ = 0 7.133e-3 2.008e-3 2.898e-8 5.221e-9
θ = π/4 7.167e-3 1.983e-3 1.591e-4 6.243e-2
θ = π/2 1.622e-8 1.228e-8 2.010e-4 1.894e-2

TABLE 3.1: Error of SIFs for penny-shaped crack with ϕ =
π/6.
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front. The problem is modeled by COD equation (2.13) and mesh configu-

ration and collocation strategy is analogous to the case of the penny-shaped

crack. For elliptical cracks, the elements have high aspect ratios as well as

non-orthogonal basis vectors. Figure 3.12 shows that original SST presents

erroneous result with 18 Gauß points in angular direction. While the im-

proved SST gives a reasonable COD and error distribution.

(a) original SST, ngp_s=18, eL2=4.603473e-1 (b) improved SST, ngp_s=18,
eL2=3.798002e-2

FIGURE 3.12: Relative error in COD for ellip-
tical crack. Knot vectors: angular direction
ξ=[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1], radial direction

η=[0,0,0,0.5,0.75,0.875,1,1,1]

For the convergence study, we first give the result of uniform refinement

in parametric space in Figure 3.14. Then the same graded mesh configura-

tions for elliptical crack are generated as done for penny crack as in Figure

3.13. Figure 3.15 compares the result between uniform mesh and graded

mesh. The convergence feature is almost the same as that of penny crack.

And we can conclude that the IGABEM also suits well for modeling ellipti-

cal crack.

For the test of SIFs computation, we put two overlapping crack surfaces

in a cube with size L = 200a such that we could compare the numerical SIFs

with the analytical solution for infinite domain. Dual equations are used.

FIGURE 3.13: The NURBS (p = q = 2) represented crack
surface meshes with 1, 5, and 9 uniformed refinement
in radial direction, followed by graded refined elements
(with black edges) close to crack front. The blue dots are

collocation points
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FIGURE 3.16: Stress intensity factors for elliptical crack
with ϕ = π/6

Figure 3.16 compares the SIFs obtained fromM integral withR = 0.02b and

VCCI with R = 0.02b for the mixed mode elliptical crack with inclination

angle ϕ = π/6. Table 3.2 presents the error at θ = 0 and π/2 for the SIF in

three modes. It can be seen that the error for all the SIFs is within 7%. And

the SIFs along the crack front is smooth. We note that the SIFs accuracy for

the elliptical crack is worse than for the penny crack, which is due to the

variation of the crack curvature along the crack front. Since a fixed value

of R is used, the singularity at the sample points near the semi-major and

semi-minor axes would be different, which leads to inaccuracies in the SIFs

evaluation [164]. More suitable way to estimate the SIFs for elliptical crack

would be one of the future work.

KI KII KIII

VCCI M VCCI M VCCI M

θ = 0 4.564e-2 1.534e-2 4.138e-2 1.279e-2 1.226e-7 2.174e-7
θ = π/2 8.284e-3 2.214e-2 6.936e-8 5.152e-8 6.882e-3 5.959e-2

TABLE 3.2: Relative error of SIFs for elliptical crack with
ϕ = π/6

3.5.3 Fatigue crack growth

In this section, the crack surface updating algorithm is tested using the Paris

law as a crack growth law. We first check the crack growth of the hori-

zontal penny crack under uniform tension from section 3.5.1. The fatigue

parameters m = 2.1 and the specified ∆amax = 0.2a. Since the defined
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problem gives a uniform velocity along the crack front, exact crack fronts

can be obtained for each step of growth and can be used to benchmark

numerical ones. We propagate 10 steps and compare the exact crack front

with the IGABEM result(Figure 3.17(a)). A numerical result obtained by

the XFEM+level set method is also compared to the exact one in [165] (Fig-

ure 3.17(b)). It can be observed that the numerical crack fronts by IGABEM

agree well with exact ones. While the crack front by XFEM+level set devi-

ates gradually from the exact crack fronts, due to the fact that the level set

method is restricted in describing the crack front exactly and this inaccu-

racy accumulates at each step. We then compute the crack propagation for

m = 5, and the result is presented in Figure 3.17 (c). We find that the nu-

merical crack front still agrees well with the exact front, although the high

index amplifies the error in crack growth rate. In order to quantitatively

scale the error, we define the relative error of the numerical crack front to

the exact front as:

Ef (x) =
|Γnum(x)− Γext(x)|

∆a
,

error =

∫
ΓEf (x)dΓext(x)∫

Γ dΓext(x)
,

(3.35)

where Γnum denotes the geometry of numerical crack front and Γext is the

exact one.

Figure 3.18 gives the relative error of the numerical crack front by IGA-

BEM. It can be seen that the error accumulates in a slow speed and the

difference of m = 5 and m = 2.1 is small, although the error for m = 5

is larger than m = 2.1 as expected. This test shows the proposed crack

propagation scheme has the ability to grow cracks in a stable and accurate

manner, thanks to the smoothness in the stress field and SIFs solution and

to the exact representation of the geometry of the crack during the crack

growth.

Finally, we simulate crack growth for an elliptical crack with inclination

angle ϕ = π/6 modeled by the dual equations in a finite domain taken from

section 3.5.2. Figure 3.19 illustrates the 2nd, 5th and 10th of the propagation

step.
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(a) IGABEM, m = 2.1

By using the present technique, a fully automated and accurate fatigue crack growth simulation is carried
out without the need to remesh the crack during its evolution. This is in contrast to finite element methods
based on re-meshing [5], which engender significant complexity in maintaining and describing the crack
geometry during fatigue growth analysis. As opposed to three-dimensional elastostatic fracture computa-
tions using the element-free Galerkin (EFG) method [3,34], the X-FEM as a fracture tool appears to
provide results that are more robust and accurate for general planar crack geometries.

7. Conclusions

A novel numerical paradigm for three-dimensional crack propagation of planar cracks was proposed.
The new technique is based on the nexus of the X-FEM to the FMM. In the X-FEM, the finite element
space is enriched by adding special functions to the approximation using the notion of partition of unity.
The planar three-dimensional crack was represented by two level set functions: one for the crack front and
the other for the crack plane. For three-dimensional crack modeling, a discontinuous function was used to
model the interior of the crack surface, and functions from the two-dimensional asymptotic crack-tip
displacement fields were used for the crack front enrichment. These enrichment functions were added to the
finite element approximation within the context of a displacement-based Galerkin formulation. A second-
order upwind finite difference scheme was adopted in the FMM. A computational algorithm for crack
growth using the X-FEM and the FMM was also presented.
The performance of the new technique for three-dimensional static cracks was studied. Benchmark mode

I problems of penny and elliptical cracks in an infinite domain were solved. The numerical SIFs were found
to be in good agreement with the exact solution for these problems. Fatigue crack growth simulations were
also carried out. First we studied the growth of an elliptical crack that grew to a circular crack. In addition,
we also demonstrated that an initial penny-shaped crack remained circular in shape under fatigue growth.
This study has demonstrated that by combining the X-FEM to the FMM, a powerful and accurate

numerical tool emerges for modeling three-dimensional planar cracks. By using a discontinuous (gener-
alized Heaviside) function to model the crack interior [20], the simplicity of the method and the ease of
implementation within a finite element framework is readily seen. Enrichment of the displacement field by
the two-dimensional asymptotic crack fields [2] accurately models the crack front and also provides good

Fig. 11. Fatigue crack growth simulation of a penny-shaped crack.

46 N. Sukumar et al. / Engineering Fracture Mechanics 70 (2003) 29–48

(b) XFEM/FMM, m = 2.1, Sukumar
et al 2003
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(c) IGABEM, m = 5

FIGURE 3.17: Fatigue crack growth of the first 10 steps of a
penny crack
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FIGURE 3.18: Relative error of the crack front for in each
crack growth step by IGABEM



3.6. Conclusions 75

(a) Step 2 (b) Step 5 (c) Step 10

FIGURE 3.19: Fatigue crack growth simulation of an ellip-
tical crack

3.6 Conclusions

The formulation and implementation of isogeometric boundary element

methods (IGABEM) for simulating 3D fatigue fracture problem were out-

lined in this chapter. The same NURBS basis functions have been used

for the discretization of the geometry and crack and for the approxima-

tion of displacement/traction. The singularity subtraction technique (SST)

proposed in [128] has been used for the treatment of (hyper-)singular inte-

grals in BEM. The improved SST [154] has been extended to quadrilateral

elements such that it can be applied to tensor-product NURBS basis func-

tions. Both the COD form and dual equations of IGABEM have been used

to model the crack. Two methods to extract SIFs, the contour-based M in-

tegral and VCCI, were compared. An algorithm to propagate the NURBS-

represented crack surface was presented and validated. The highlights of

this work include:

(1) The proposed singular integration scheme can preserve the quadrature

accuracy for highly distorted elements which exist commonly in IGA. Thus

it enables a robust IGABEM implementation;

(2) Through graded mesh refinement in the direction where the crack tip

singularity varies, the convergence rate can be improved by a factor of 2

and the accuracy can be improved by one order, compared to uniform re-

finement. This shows the promise of IGABEM for fracture problem;

(3) The local crack tip system is setup naturally and uniquely thanks to the

NURBS representation of the crack surface. Combining with the continuity

in stress solution in BEM, the obtained SIFs along the crack front are smooth
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and accurate;

(4) The proposed algorithm for crack propagation is seen to be stable, even

for high exponent values in the Paris law, due to the smoothness in the

crack front geometry and numerical SIFs.

The use of CAD geometry directly for fracture simulation provides ben-

efits as listed above. Nevertheless it also raises difficulties to model surface

cracks, where the crack will intersects the boundary of the body indeed,

introducing and evolving the discontinuity into a NURBS patch at an arbi-

trary position is cumbersome due to the higher order continuity of the ba-

sis functions. The next chapter will provide a solution to model the surface

cracks problem, based on the development of a trimmed NURBS approach.
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Chapter 4

IGABEM for trimmed NURBS

and surface crack modeling

This chapter presents some numerical aspects of isogeometric boundary

element methods (IGABEM). The behavior of hyper-singular and nearly-

singular integration is first explored on the distorted NURBS surface and

several numerical treatments are proposed to enhance the quadrature in

the framework of isogeometric analysis. Then a numerical implementation

of IGABEM for trimmed NURBS is detailed. Based on this idea, the sur-

face crack problem is modeled with the phantom element method. And the

crack is allowed to intersect with the boundary of the body while preserv-

ing the original parametrization of the NURBS-based CAD geometry.

4.1 Trimmed NURBS surfaces

The geometry is generally created via trimming operations performed on

NURBS surfaces. The data of the NURBS surface and the relative trimming

information is stored in an IGES file. The trimming curve is given both

in physical space and parametric space. Figure 4.1 illustrates a trimmed

surface

S(ξ, η) =
n∑
i=1

m∑
j=1

Ri,j(ξ, η)Pi,j , (4.1)

with the physical trimming curve

C(s) =

l∑
k=1

Rk(s)Qk, (4.2)
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and the parametric trimming curve

Cp(u) =
lp∑
k=1

Rpk(u)Qpk, (4.3)

where Ri,j ,Rk, Rpk and Pi,j , Qk, Qpk are the NURBS basis functions and con-

trol points of the surface, physical trimming curve and parametric trim-

ming curve respectively. Supposing the parametric domain of S(ξ, η) is a

rectangle defined by D = {(ξ, η)|ξ1 ≤ ξ ≤ ξ2 and η1 ≤ η ≤ η2}, the para-

metric trimming curve Cp(u) will take its values inside the domain.

Note that the C(s) and Cp(u) are independent curves, i.e, the number of

basis functions and their degrees can be different. In the IGES manual [166],

the trimming curve can be given by the composition of mapping S(ξ, η) and

Cp(u), i.e., the composition curve

Cc(u) = S ◦ Cp(u) = S(Cp(u)) = S(ξ(u), η(u))

= (x(ξ(u), η(u)), y(ξ(u), η(u)), z(ξ(u), η(u))).

(4.4)

The resulting physical trimming curve Cc(u) and C(s) which is provided in

IGES file, will share the same image and orientation in physical space.

4.1.1 Representation of trimmed surface

In order to obtain analysis-suitable trimmed surfaces, the trimmed elements

need to be determined, which requires a search through the surface parametriza-

tion to compute the parametric coordinates of the intersection points of

the trimming curve with the trimmed surface. Here the trimmed elements

means the 2D tensor-product knot spans (quadrilateral elements) with some

edges intersected with the parametric trimming curve. The bisection search-

ing algorithm by Schmidt et al [167] is adopted in this work. After identi-

fication of the intersection points, the trimmed elements can be picked out

and categorized into three categories: triangle (‘3’), quadrangle (‘4’) and

pentagon (‘5’) as in Figure 4.1(b). Other types of cutting can be transformed

into the named types by knot insertion (mesh refinement). Note that the
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trimming orientation (Figure 4.1(b)) will determine which side of the sur-

face is remained. In the present work, the left hand side of the direction of

the trimming curve1 will be preserved.

Then the untrimmed elements will be either cropped (‘−1’) or kept (‘1’)

via the following procedure:

(1) Linearize the parametric trimming curve and find the shortest distance

vector d from the central point of the element of interest to the line-segment

represented trimming curve (Figure 4.1(b));

(2) Take the cross product of the distance vector d and trimming orientation

vector t:

n =
d× t

|d× t|
; (4.5)

if n = (0, 0, 1), the element of interest will be kept, otherwise deleted.

(a) (b)

FIGURE 4.1: An example of trimmed surface, (a) in physi-
cal space; (b) in parametric space. The arrow in (b) denotes
the direction of the trimming curve. The trimmed elements
can be classified into three types: ‘3’ denotes a triange,
‘4’ denotes a quadrangle and ‘5’ denotes a pentagon. ‘1’
represents untrimmed elements and ‘−1’ the cropped

elements

4.1.2 Integration of trimmed elements

Numerical integration for trimmed elements is one of the key ingredients

in IGA for trimmed CAD geometry. In the work by Kim et al [168][169], the

method which was applied in NURBS-Ehanced FEM [170] was adopted.

1The direction (orientation) of the trimming curve is determined by the knots. The
non-decreasing knot sequence is defined as the positive direction
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This method requires the triangulation of the parametric domain of the

trimmed element. Schmidt et al [167] reconstructed the trimmed element by

using a new patch via interpolation or least square approximation. Beer et

al [121] created a mapping from the area bordered by two trimming curves

and straight lines which connect the ends of the trimming curves to the

trimmed surfaces, by use of the composition of trimming curve given in

Equation 4.4. The implementation is simple but excludes the case of holes

cutout where closed trimming curves exist.

FIGURE 4.2: The mapping from parent space to parametric
space. η̄ = 0 refers to curve I and η̄ = 1 is curve II

A trimmed surface analysis is proposed which can address the closed

trimming curve in this work. Inspired by the work of Beer et al [121], this

mapping approach is applied locally for the trimmed elements. First, the

segmentation is done at every intersection point by knot insertion until C0

continuity is obtained. As presented in Figure 4.2, the i-th segment of the

parametric trimming curve Cpi (u) is then obtained between the intersection

points ui0 and ui1. Then the parameter range for sub-curve Cpi (u) = Cpi (ũ)

is simply linearly-scaled to the range 0 ≤ ũ ≤ 1.

Now we are at the stage to establish the mapping from parent space to

parametric space. For the case in Figure 4.2, the Cpi (ũ) would be η̄ = 1

(curve II), and the opposite edge η̄ = 0 (curve I) is a straight line. Taking
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ũ = ξ̄, using Equation (4.12), we have

ξI =

nI∑
j=1

RIj (ξ̄)ξ
I
j ,

ηI =

nI∑
j=1

RIj (ξ̄)η
I
j ,

ξII =

nII∑
j=1

RIIj (ξ̄)ξIIj ,

ηII =

nII∑
j=1

RIIj (ξ̄)ηIIj ,

(4.6)

where ξj and ηj are the components of the parametric control points Quj .

Which can be obtained directly from the IGES file. Then linear interpolation

is used between the two curves:

ξ = (1− η̄)ξI + η̄ξII ,

η = (1− η̄)ηI + η̄ηII .

(4.7)

And the Jacobian transformation matrix from parent space to parametric

space would be

J|ξ̄→ξ =

 ∂ξ
∂ξ̄

∂ξ
∂η̄

∂η
∂ξ̄

∂η
∂η̄

 =

 (1− η̄)∂ξ
I

∂ξ̄
+ η̄ ∂ξ

II

∂ξ̄
−ξI + ξII

(1− η̄)∂η
I

∂ξ̄
+ η̄ ∂η

II

∂ξ̄
−ηI + ηII

 , (4.8)

where ξI , ξII , ηI and ηII and their derivatives are obtained from Equation

(4.6).

Note that for the pentagon-type trimmed elements, the parametric do-

main will be subdivided into two sub-quadrilaterals. Then the mapping

scheme is setup for each sub-quadrilateral.

Compared to the work by Beer et al [121], the proposed scheme for the

trimmed NURBS can handle the closed trimming without further subdivi-

sion of the original patch. Integration for the trimmed NURBS is simplified

and no triangulation on the parametric domain is needed as was discussed

by Kim et al [168]. This would facilitate the implementation of singular

integration for the trimmed elements.
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We note that in some scenarios, where the shape or parametrization of

the trimmed CAD geometry in analysis can be changed (for example the

crack propagation problem, where the crack advance increment is usually

computed in physical space by fracture law), only the information of phys-

ical trimming curve is updated during the analysis while the parametric

trimming curve data, i.e. the parametric control points Quj will be lost. A

possible solution for this is to reconstruct the parametric trimming curve

(recovering the control points of the parametric trimming curve) accord-

ing to the physical trimming curve. In this work, the parametric trimming

curve is reconstructed from the same basis functions as those of the phys-

ical trimming curve. However, it is not mandatory as the basis functions

and the degree of each can be different. Then the interpolation technique is

adopted for recovering the parametric control points as following:

(1) Using Greville Abscissae to generate the sample points on the i-th phys-

ical trimming curve, i.e.

usk = (uk+1 + · · ·+ uk+p)/p, k = 1, ..., n, (4.9)

where p is the order of the trimming curve and n is the number of basis

functions representing the trimming curve;

(2) Find the physical coordinates of the sample points on the trimming

curve

xsk = x(usk) =
n∑
j=1

Rj(u
s
k)Qj , (4.10)

where Qj are the physical control points of this segment;

(3) Using the point inversion algorithm [129] to retrieve the parametric co-

ordinates P sk = ξsk(ξ
s
k, η

s
k) of each xsk;

(4) the parametric control points Quj (ξj , ηj) can be found by solving


R1(us1) · · · Rn(us1)

...
. . .

...

R1(usn) · · · Rn(usn)



Qu1

...

Qun

 =


P s1
...

P sn

 . (4.11)
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The relation between (ξ, η) and u is achieved by the reconstructed para-

metric trimming curve as follows ∀P (ξ, η) ∈ Cpi (u),

ξ =

n∑
j=1

Rj(u)ξj ,

η =
n∑
j=1

Rj(u)ηj ,

(4.12)

where ξj and ηj are the components of the parametric control points Quj .

Then the double mapping method can be applied as aforementioned. The

approximation property is illustrated in Figures 4.3 and 4.4. In Figure 4.3,

since the mapping from parametric space to physical space of the origi-

nal surface is linear, for curve order p = 2, only 3 sample points (1 ele-

ment of the curve) can exactly capture the trimmed geometry. In Figure 4.4,

since the mapping from parametric space to physical space of the original

patch is nonlinear, the trimmed surface is inaccurately approximated using

3 sample points (Figure 4.4(b)), however, using more sample points by re-

fining the trimming curve improves the approximation as shown in Figure

4.4(c). The convergence of the approximation error (Strim − Sext)/Sext (Strim

is the area of the trimmed surface by the proposed approximation, Sext is

the exact area of the trimmed surface) with respect to the number of sam-

ple points is given in Figure 4.5. It can be observed that fast convergence

speed is achieved (the approximation accuracy can reachO(10−8) with only

16 sample points) which indicates the efficiency of the proposed method to

approximate the trimmed geometry.

Another benefit by using the reconstructed trimming curve probably

lies in improving the numerical quadrature efficiency. When we perform

the quadrature for trimmed elements, the parametric domain needs to be

subdivided into sub-regions which would conform to the knot intervals of

the parametric trimming curve such that Gaussian quadrature rule can be

applied for each sub-region. However sometimes the parametric trimming

curve provided by IGES file could include many knot intervals, resulting in

more sub-regions for integration and the number of Gauß points increases.
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(a) (b)

FIGURE 4.3: Approximation of the trimming surface; (a)
The original surface; (b) The trimmed surface, where the
green line is the physical trimming curve, and the red
dots are sample points. The mapping from parametric
to physical space is linear, the trimmed surface is exactly

represented

(a) (b) (c)

FIGURE 4.4: Approximation of the trimming surface; (a)
The original surface; (b) The trimmed surface with 3 sam-
ple points on the trimming curve; (c) The trimmed surface

with 6 sample points on the trimming curve
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FIGURE 4.5: The convergence plot of approximation error
(Strim − Sext)/Sext

with respect to the number of sample points

By reconstructing the parametric trimming curve, the number of knot in-

tervals is reduced, then the effort for numerical quadrature is decreased at

the sacrifice of loosing geometry exactness.

4.1.3 Collocation

For a closed domain composed of trimless and compatible NURBS patches,

the Greville abscissae (GA) is proved to be elegant and suitable to locate the

collocation points [142]. In our IGABEM implementation, for those collo-

cation points which lie along sharp edges or at corners, or when discontin-

uous basis functions are needed, we offset the collocation points from the

original positions as follows (Figure 4.7(a))

ξs,i = ξs,i + α(ξs,i+1 − ξs,i), or

ξs,i = ξs,i − α(ξs,i − ξs,i−1), 0 < α < 1.

(4.13)

The GA collocation can be used for trimmed NURBS as well. One only

needs to be aware that some collocation points associated with the basis

functions on the cropped part of a patch should be inactivated due to the

trimming operation, providing a one to one correspondence is specified

between the basis functions and collocation points (see [122] for details).
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Considering that in that case, some collocation points still locate outside

the original patch, the parametric position of the collocation point is un-

certain (it may locate on other patches with a totally different parametriza-

tion). We thus attempted a mixed collocation scheme tailored for trimmed

NURBS patches based on the above modified Greville abscissae:

(1) Remove the collocation points located in the cropped elements and trimmed

elements as denoted by blue dots in Figure 4.6(a);

(2) For each trimmed element, (p + 1)(q + 1) (the number of basis func-

tions for this element) collocation points are uniformly placed inside the

elements (the yellow dots in Figure 4.6(b)).

We note that in this way the number of collocation points is more than the

number of basis functions (or the number of degree of freedoms, which is

identical to the number of entry of the boundary integral equations). This

leads to an over-determined system equations. Hence the boundary inte-

gral equations from (p+1)(q+1) collocation points in each trimmed element

will be merged into the entry of equations numbered by the global index

of these collocation points in each trimmed element. For the pentagon-

type trimmed elements, the (p + 1)(q + 1) collocation points are simply

placed in one of the sub-quadrilaterals (more details are outlined in Section

4.4.3). However, bespoke schemes can be constructed to place the collo-

cation points by comparing the area of the sub-quadrilaterals or by uni-

formly distributing them into both sub-quadrilaterals. More efficient collo-

cation scheme are certainly an important direction for future work. Figure

4.7 compares the the GA collocation and mixed collocation methods for a

square trimmed by a circle. Note that the points locating in the trimmed ele-

ments are moved to the centre of the parent space to ensure robust singular

and nearly-singular integration.

4.1.4 Boundary conditions

In this work, Dirichlet or Neumann boundary conditions for each single

trimless or trimmed NURBS patch are enforced by an L2 projection. Sup-

pose ū is the prescribed displacement field on a boundary patch S. The
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(a) (b)

FIGURE 4.6: Mixed collocation scheme for trimmed
NURBS surface of order p = q = 2; (a) the collocation
points generated by modified Greville abscissae, the blue
ones are located in the cropped and trimmed elements
and will be removed; (b) the final collocation points for
trimmed NURBS patch by adding (p+ 1)(q+ 1) collocation

points in each trimmed element

(a) (b)

FIGURE 4.7: Two collocation methods for trimmed NURBS
of p = q = 2. (a) The Greville Abscissae (GA) collocation
approach (the points located in the trimmed elements are
moved to the central of the parent space); (b) The mixed

collocation approach
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finite element approximation uh ∈ Uh can be found by minimizing the L2

norm of the error between the prescribed and approximated displacement

fields, i.e.

J(uh) := ‖ū− uh‖2L2(S)

=

∫
S

(ū− uh)(ū− uh)TdS.
(4.14)

We use (f, g)S to represent the inner product
∫
s f · gdS. The minimization

can be realized by letting the residual ū−uh be orthogonal to any arbitrary

vh ∈ Uh,

(ū− uh,vh)S = 0,

(uh,vh)S = (ū,vh)S .

(4.15)

Now we use the NURBS basis functions to get the approximation

uh =
N∑
j=1

Rjdj , N is the number of basis functions. (4.16)

Substituting Equation (4.16) into (4.15), the discretized linear system can be

obtained as

Kd = F, (4.17)

where the components of K is Kij = (Ri,Rj)S , and Fi = (Ri, ū)S . Then

the control coefficients d can be found by solving the linear system of equa-

tions.

4.2 Surface crack modeling

4.2.1 Description of the surface crack problem

In the boundary element method, cracks can be modeled by pairs of coin-

ciding surfaces as external boundaries of the body. Then dual boundary

integral equations are applied to form the linear system [42]. Figure 4.10

illustrates a surface crack (or breaking crack) model. From (a) to (b), the

two coinciding surfaces (crack) are inserted into a corner of a cube, thus

breaking the boundary surfaces of the cube. If we take the front surface

separately as in (c), the intersection curve of the crack surfaces and the
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FIGURE 4.8: Surface crack model by the boundary element
method. (a) The crack is modeled by two coinciding sur-
faces as external boundaries of the body; (b) the crack is
inserted at a corner of the cube, breaking the boundary
surfaces of the cube; (c) If only the front surface is con-
cerned, the intersection curve OA of the crack and front

surface will create a discontinuity on the surface

front surface OA leads to a displacement discontinuity on the front surface.

Hence the surface crack problem has two manifolds in numerical imple-

mentation: one is the coinciding crack surfaces inside the body domain, the

other is the surface discontinuity along the geometry boundary. The latter

can be considered as a problem of cracks in 2D plane or 3D shell condi-

tions in finite element method (FEM). In Lagrange-based elements (triangle

or quadrilateral), one way to initiate and propagate the surface cracks is

remeshing [43]. The extend FEM (XFEM) proposed by Belytschko and his

team [5] allows the discontinuities modeled without changing the mesh dis-

cretization by introducing the enrichment functions such as the Heaviside

function into the original basis functions. When the problem comes into

the Isogeometric analysis, analogous treatments can be done. The work

contributing on the enriched IGA to model discontinuities can be referred

in, for example [97][98][99]. The original parametrization of the geometry

is preserved by introducing the enrichment functions to describe the crack.

Verhoosel et al [101] proposed a reparametrization scheme via T-Splines to

explicitly represent the crack. It should be noted that in their method, the

original parametrization is lost due to the reparametrization. In order to

form an analysis-suitable parametrization, the elements are distorted when

the crack needs to take a turn. This will deteriorate the system condition

number when the crack has a sharp turn.
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FIGURE 4.9: The phantom element method to model a
surface discontinuity. The red curve denotes the crack,
which is regarded as a trimming curve to split the surface.
The yellow rectangle represents the degrees of freedom
(DOFs) associated with the element of interest. (a) For a
completely cut element, the DOFs will be doubled directly.
One group is associated with the upper part of the ele-
ment; an additional group with the lower part. The way
of quadrature for trimmed NURBS can be applied for each
part. (b) For the element containing the crack tip (an end-
point of the crack front), a knot (green line) is inserted to
reduce the continuity such that the crack tip halted inside
an element can be represented. In this way, the old ele-
ment will be split into two new elements, and the obtained
element I can then be treated with the phantom element

method

4.2.2 Phantom element method

In this work, a simple approach named phantom element method (PEM, or

in literature also called phantom node method [171]) is outlined to model

the surface crack by IGABEM. In PEM, a crack will cut the element of in-

terest into two parts. The degrees of freedom (DOFs) associated with this

element will be duplicated, then each part has its independent DOFs to de-

scribe the primary physical fields (Figure 4.9). The PEM has been investi-

gated in finite element-based methods to represent strong and weak discon-

tinuities. The PEM is also a way to model discontinuities without changing

the mesh, by integrating the split parts independently while no additional

enrichment function is introduced. More details and applications can be

seen in, for example [172][173][171][174].

Figure 4.9(a) illustrates the PEM in IGABEM to model surface cracks.

The intersection curve (red curve in the figure) of the crack surfaces and the

boundary surfaces can be considered as a trimming curve. By doubling the
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DOFs of the cut element, a phantom element (specified as S−e ) overlapping

with the original element (S+
e ) is produced. Then the the displacement field

in the cracked element is approximated as

u+(x) =
Ne∑
j

Rj(x)dj , x ∈ S+
e ,

u−(x) =
Ne∑
k

Rk(x)dk, x ∈ S−e ,

(4.18)

where Ne is the number of basis functions for the cracked element. For the

element containing the crack tip (an endpoint of the crack front), a local

knot insertion (green line in the figure) is done to cut the element into two

new elements (Figure 4.9(b)). the element I is completely cut by the crack

and then PEM is applied. However we note that NURBS do not allow lo-

cal knot insertion due to the tensor-product nature of its basis functions. In

order to do so, we first perform knot insertion on each knot of the NURBS

patch until its multiplicity is equal to p + 1 (p is the degree of each direc-

tion). Thus the continuity between the element reduces to C−1 such that

discontinuous NURBS basis functions (or discontinuous rational Bézier ba-

sis functions) are obtained.

Although the continuity between the untrimmed elements is lost in or-

der to stop the crack inside an element, the original parametrization is

preserved and extensions to cracks with sharp kinks or multi-cracks are

straightforward. The future work will focus on performing local knot in-

sertion to reduce the continuity only for the crack tip element by using T-

Splines in which the continuity in the non-cracked area can be preserved.

4.3 Singular and nearly singular integration

The singularity subtraction technique is used for both untrimmed and trimmed

elements. We briefly recall the the formula and more details can be found
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in section 3.3.1. For the hyper-singular integral of the form

I = =

∫
S
S(s,x(ξ̄))R(ξ̄)J̄(ξ̄)dS, (4.19)

where S(s,x(ξ̄)) is the hyper-singular kernel,R(ξ̄) is the NURBS basis func-

tion and J̄(ξ̄) is the Jacobian of the transformation from parent space to

physical space. By subtracting the Lorentz term and adding it back semi-

analytically, the integral becomes

I =

∫ 2π

0

∫ ρ̂(θ)

0

[
F (ρ, θ)− F−2(θ)

ρ2
− F−1(θ)

ρ

]
dρdθ +

∫ 2π

0
I−1(θ)ln

ρ̂(θ)

β(θ)
dθ

−
∫ 2π

0
I−2(θ)

[ γ(θ)

β2(θ)
+

1

ρ̂(θ)

]
dθ

=

∫ 2π

0

∫ ρ̂(θ)

0
F (ρ, θ)dρdθ −

∫ 2π

0

∫ ρ̂(θ)

0

F−2(θ)

ρ2
dρdθ −

∫ 2π

0

∫ ρ̂(θ)

0

F−1(θ)

ρ
dρdθ

+

∫ 2π

0

{
I−1(θ)ln

ρ̂(θ)

β(θ)
− I−2(θ)

[ γ(θ)

β2(θ)
+

1

ρ̂(θ)

]}
dθ

=I0 − I2 − I1 + Iline

(4.20)

The curvilinear basis vectors at the source points ms
i = mi|ξ̄=ξ̄s , (i = 1, 2)

and are calculated as:
m1 =

[∂x
∂ξ̄
,
∂y

∂ξ̄
,
∂z

∂ξ̄

]
,

m2 =
[∂x
∂η̄
,
∂y

∂η̄
,
∂z

∂η̄

]
.

(4.21)

We introduce two parameters

λ = |ms
1|/|ms

2|,

cosψ = ms
1 ·ms

2/|ms
1||ms

2|,
(4.22)

such that the conformal transformation can be established. It can be con-

cluded that λ reflects the local aspect ratio of the element at the source point

and cosψ indicates the distortion of the element. The influence on singular

integration of these two factors will be investigated in detail in example

section.

For nearly singular integration, two methods are devised. The first one

is the recursive subdivision in the parametric domain and the other is a
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FIGURE 4.10: L−1/5 transformation for nearly singular in-
tegration

variable transformation technique. Note that many variable transforma-

tion techniques exist for nearly singular integration in Lagrange-based ele-

ments in literature (readers can refer to [175] for more details). However, as

far as we know, these techniques were never verified for NURBS elements.

We adopt an L− 1/5 transformation, which was proposed by Hayami and

Matsumoto [176]. The general procedure in Hayami’s work is as follows:

(1) Find the closest point s′(ξ̄, η̄) to the source point s in the element of in-

terest and the distance between them is d = ‖s− s′‖;

(2) Create a projection plane composed by sub-triangles 4̃i = xis
′xi+1.

These triangles can be obtained by projecting the each vertex xi into the

tangent plane containing s′ [176] or simply connecting the vertex and the

closest point s̃′ which can be found by s′(ξ̄, η̄) [177];

(3) Map the parent space (ξ̄, η̄) to the sub-triangles 4̃i, which is in Cartesian

coordinates. The Jacobian of the transformation would be J̃ ;

(4) Introduce the polar coordinate transformation in 4̃i. The nearly singu-

lar integral of the type:

I =

∫
S

f

rα
dS, α ∈ N+, (4.23)

can then be written as

I =

N4̃i∑
i

∫ ∆θi

0
dθ
∫ ρi(θ)

0

f

rα
J̃ρdρ; (4.24)
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(5) Let R(ρ) = (ρ+ d)−
1
5 , the integral can be further transformed as

I =

N4̃i∑
i

∫ ∆θi

0
dθ
∫ ρi(θ)

0

fJ̃ρ

rα
dρ
dR

dR. (4.25)

By introducing the exponential Jacobian term, the radial integrand is regu-

larized to be ‘smoother’, thus effort on numerical quadrature is decreased.

In this work, we simply perform the polar coordinate transformation in

parent space and avoid the construction of 4̃i. This would cause two prob-

lems as stated in [177]:

(1) In R(ρ) = (ρ + d)−
1
5 , d is in Cartesian space. Then the meaning of R is

vague. This is bypassed by regularizing d with the characteristic element

size h, i.e. d0 = d/h;

(2) The parent space is insensitive to the element distortion. This is im-

proved by using the conformal and Sigmoidal transformation which are

used for singular integration in this work as outlined in section 3.3.1.

4.4 Numerical examples

4.4.1 Singular integration

The hyper-singular integral

I = =

∫
S

1

r3
dS (4.26)

is verified for various geometries in this section. The related reference solu-

tions are obtained by Mathematica c©. For singular integration, three cases

are involved: conformal transformation (‘con’), conformal transformation

and Sigmoidal transformation (‘con+sig’), and the original SST (‘ori’). For

nearly-singular integration, two cases, the adaptive subdivision and the

L − 1/5 transformation are compared. A Gauß-Legendre rule is used for

quadrature. For the integration performed in sub-triangles (the singular in-

tegration and the nearly-singular integration byL−1/5 transformation),‘ngp_s’
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FIGURE 4.11: A quarter of a disc by Coons parametriza-
tion. (a) the parameter line; (b) the single element for
singular integration with source points P1 : ξs(0.7, 0.7),
P2 : ξs(0.9, 0.9) and P3 : ξs(0.99, 0.99); (c) the parametric

space

denotes the number of Gauß points in the angular direction in each sub-

triangle and ‘ngp_t’ represents the number of Gauß points in the radial di-

rection.

The influence of distortion angle ψ

We first verify the hyper-singular integration over a quarter of a disc given

by Coons parametrization as in Figure 4.11. For the source point ξs mov-

ing from (0.5, 0.5) to (1, 1), ψ varies from 90◦ to 180◦ while λ remains 1.

Thus the integral undergoes an increasing near-singularity. We take ξs as

(0.7, 0.7), (0.9, 0.9) and (0.99, 0.99), and ψ is equal to 123.2◦, 157.3◦ and

177.6◦ respectively. Since one element is used, only the singular integra-

tion is involved here. It can be seen from Figure 4.12 that in all the three

cases, the integral converges to a stable precision with increasing ngp_s.

For ξs(0.7, 0.7), ‘con’ and ‘con+sig’ show a very close convergence rate and

reachesO(10−11) at ngp_s = 14, while the original SST uses 20 Gauß points.

For ξs(0.9, 0.9), the decrease in convergence rate among the three cases be-

comes significant. And the ‘con+sig’ performs the best with ngp_s = 12

to reach O(10−8), which costs 28 Gauß points in the angular direction for

original SST. The use of conformal transformation only provides an inter-

mediate convergence rate. However, the convergence error increases when

the source point ξs approaches (1, 1) for a fixed ngp_t = 10, especially for

ξs(0.99, 0.99) although the improved methods show much faster conver-

gence rates than the original method, the error is only of O(10−2). Figure
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(a) ξs(0.7, 0.7)
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(b) ξs(0.9, 0.9)
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(c) ξs(0.99, 0.99)

FIGURE 4.12: Convergence check with respect to ngp_s
for hyper-singular integral over a quarter of disc by Coons

parametrization
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FIGURE 4.13: Convergence study with respect to ngp_t for
hyper-singular integral over a quarter of disc by Coons

parametrization

4.13 illustrates the study with an increasing number of Gauß points in radial

direction ngp_t, while fixing the number of Gauß point in the angular direc-

tion ngp_s. We fixed ngp_s = 18 for the improved method and ngp_s = 36

for the original method since we note that the original method needs more

Gauß points in the angular direction to converge. It can be observed that

the improved method shows the same convergence trend as the original

method with respect to the number of Gauß Points in the radial direction.

And both methods achieve O(10−10) for ξs at (0.7, 0.7) and (0.9, 0.9) when

ngp_t is 14. However, further increasing the number of Gauß points in the

radial direction leads to an accumulation of the integration error. For ξs at

(0.99, 0.99), the original method converges to O(10−2) with increasing the

ngp_t while the improved method reaches O(10−7). This is due to the fact

that even 36 Gauß points in the angular direction is insufficient to circum-

vent the near-singularity in the integrand for the original method.

The influence of local aspect ratio λ

We still perform the hyper-singular integral over a quarter disc, but with the

parametrization degenerated at the pole as in Figure 4.14 such that the dis-

tortion angle ψ is always 90◦ regardless of ξs. For ξs moving from (0.5, 0.5)

to (0.5, 0), the local aspect ratio λ changes from 1 to +∞ (assume λ ≥ 1).
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FIGURE 4.14: A quarter of a disc by parametrization
degenerated at the pole. (a) the parameter line; (b) the
single element for singular integration with source points
P1 : ξs(0.5, 0.1), P2 : ξs(0.5, 0.01), P3 : ξs(0.5, 0.0.001) and

P4 : ξs(0.001, 0.001); (c) the parametric space

We take ξs at (0.5, 0.1), (0.5, 0.01), (0.5, 0.001) and (0.001, 0.001), and λ is

6.0, 60.3, 603.6 and 706.7, respectively. The convergence results with re-

spect to the number of Gauß points in the angular direction ngp_s while

keeping ngp_t = 10 and the errors of the integral are compared in Figure

4.15. We can see that for all cases, the ‘con+sig’ scheme outperforms with

the fastest convergence rate and the smallest error (for the former three po-

sitions of ξs, the precision at O(10−12) with about 20 Gauß points in the

angular direction). The conformal transformation only shows a better con-

vergence than the original method, but both methods fail to get converged

at a stable precision with increasing λ. For ξs(0.001, 0.001), the integral by

the original method results in arbitrary values thus its error curve is not

plotted in Figure 4.15(d). The ‘con+sig’ scheme converges at O(10−6) with

14 Gauß points in the angular direction and the conformal transformation

only presents a slow convergence and higher error than ‘con+sig’ finally

although the error is much lower than ‘con+sig’ when ngp_s < 12.

We also studied the error convergence trend with respect to the number

of Gauß points in the radial direction ngp_t with a fixed ngp_s = 18 for the

improved method and ngp_t = 36 for the original method. We can conclude

from Figure 4.16 that the integral shows a stable behavior for these cases,

while with too many Gauß points in the radial direction, the error starts

to accumulate slowly. The accuracy is poor by the original method for ξs

at (0.5, 0.01) and (0.5, 0.001), due to the fact that ngp_s = 36 is far from

sufficient to overcome the near-singularity.
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(a) ξs(0.5, 0.1)
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(b) ξs(0.5, 0.01)
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(c) ξs(0.5, 0.001)

0 10 20 30 40 50 60 70
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Numbervofvngp_sv(ngp_t=10)

R
el

at
iv

ev
er

ro
r

con+sig
con

(d) ξs(0.001, 0.001)

FIGURE 4.15: Convergence study with respect to ngp_s
for hyper-singular integral over a quarter of disc by

parametrization degenerated at the pole
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FIGURE 4.16: Convergence study with respect to ngp_t
for the hyper-singular integral over a quarter of a disc by

parametrization degenerated at the pole
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FIGURE 4.17: A quarter of an ellipse by parametrization
degenerated at the pole. (a) the parameter line; (b) the
single element for singular integration with source points

P : ξs(0.5, 0.5); (c) the parametric space

FIGURE 4.18: A quarter of an ellipse by parametrization
degenerated at the pole with source point P : ξs(0.5, 0.5).
(a) a/b = 2, λ = 1.2 and ψ = 53.1◦ for P ; (b) a/b = 10,
λ = 1.2 and ψ = 11.4◦ for P ; (c) a/b = 20, λ = 1.2 and

ψ = 5.7◦ for P

Performance for complex distortion

First of all, we define what we mean by ‘complex distortion’: (1) the dis-

tortion angle ψ gets close to π and the local aspect ratio λ deviates from

1; (2) The parameter line shows an obvious change in direction within an

element. For example, a quarter of an ellipse with parametrization degener-

ated at the pole has a close-to-unit λ at its parametric center point regardless

the variation of the ratio of semi-major and semi-minor axes (a/b) as illus-

trated in Figure 4.18. We use a single element to discretize the quarter of

an ellipse and place ξs at (0.5, 0.5) (Figure 4.17), then perform the hyper-

singular integral over the domain with a/b = 2, 10 and 20. The results are

plotted in Figure 4.19. It can be observed that both the improved method

and the original method present close convergence trends with respect to

ngp_s. And they can achieve low error at O(10−12) for small a/b, but the in-

tegral becomes divergent when a/b is larger. Table 4.1 and 4.2 list the value

of the components of the integral. It can been observed that for a/b = 2,

all terms achieve an error below O(10−7) within 22 Gauß points. While for

a/b = 20, the terms I−1, I−2 and Iline easily reach the O(10−7) with 22 Gauß

points, nevertheless I0 has a poor precision. It can be seen that for complex
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FIGURE 4.19: Convergence check with respect to ngp_s
for hyper-singular integral over a quarter of ellipse with

varied a/b

distortion of the geometry, it is the bad quadrature in I0 that leads to the

poor accuracy in the final integration.

A remedy for this deterioration would be to perform certain mesh re-

finement as in Figure 4.21(c) with ω = 0.01 (see Figure 4.21(c) for the defi-

nition), i.e. knot insertions in NURBS. Then multiple elements are used to

discretize the domain and near-singular integration is introduced. We use

the adaptive subdivision scheme for nearly-singular integration. The con-

vergence is checked for the case of a/b = 20 with respect to the ngp_s in the

singular element which is shown in Figure 4.20. It is seen that with certain

mesh refinement, the improved method achieves a fast convergence as pre-

vious case studies and reaches O(10−8) with about 20 Gauß point in the an-

gular direction, while the original method remains poor accuracy and slow

convergence rate. This example indicates a quadrature scheme for geome-

tries with complex distortion, which we name ‘transformation+subdivision’

scheme. We note that the final result of singular integration by this method

is determined by both singular and nearly-singular integration, and it will

studied further in the next section.
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FIGURE 4.20: Convergence check with respect to ngp_s
for hyper-singular integral over a quarter of ellipse with

a/b = 20

ngp_s I0 I1 I2

4 8.2892124e+03 8.2941725e+03 2.4757973e-14
6 8.2898314e+03 8.2942830e+03 6.9305672e-14
8 8.2898699e+03 8.2942821e+03 6.3671290e-14
10 8.2898749e+03 8.2942821e+03 8.2156503e-15
12 8.2898757e+03 8.2942821e+03 5.4206639e-14
14 8.2898758e+03 8.2942821e+03 -2.7339241e-15
16 8.2898758e+03 8.2942821e+03 1.7486012e-14
18 8.2898758e+03 8.2942821e+03 1.7402745e-14
20 8.2898758e+03 8.2942821e+03 -2.3064883e-14
22 8.2898758e+03 8.2942821e+03 1.9602375e-16

ngp_s Iline I

4 -3.7700784e+01 -4.2660963e+01
6 -3.7701286e+01 -4.2152800e+01
8 -3.7701282e+01 -4.2113450e+01
10 -3.7701282e+01 -4.2108479e+01
12 -3.7701282e+01 -4.2107735e+01
14 -3.7701282e+01 -4.2107622e+01
16 -3.7701282e+01 -4.2107606e+01
18 -3.7701282e+01 -4.2107604e+01
20 -3.7701282e+01 -4.2107604e+01
22 -3.7701282e+01 -4.2107604e+01

TABLE 4.1: Convergence study of integrals with respect to
ngp_s when fixing ngp_t = 10 for a quarter of ellipse with

a/b = 2
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ngp_s I0 I1 I2

4 6.0095571e+03 6.0985633e+03 -5.3383686e-13
6 6.0632550e+03 6.0790875e+03 1.3248356e-12
8 6.0638743e+03 6.0777228e+03 -4.8755812e-13

10 6.0712094e+03 6.0776900e+03 3.5870503e-13
12 6.0693107e+03 6.0776896e+03 4.8955425e-13
14 6.0738115e+03 6.0776896e+03 6.9030751e-13
16 6.0631426e+03 6.0776896e+03 -1.9533745e-13
18 6.0645280e+03 6.0776896e+03 -2.0992392e-13
20 6.0687301e+03 6.0776896e+03 6.7663279e-13
22 6.0718837e+03 6.0776896e+03 7.9022942e-14

ngp_s Iline I

4 -2.7720742e+01 -1.1672697e+02
6 -2.7632216e+01 -4.3464761e+01
8 -2.7626013e+01 -4.1474569e+01

10 -2.7625863e+01 -3.4106492e+01
12 -2.7625861e+01 -3.6004716e+01
14 -2.7625861e+01 -3.1503924e+01
16 -2.7625861e+01 -4.2172826e+01
18 -2.7625861e+01 -4.0787458e+01
20 -2.7625861e+01 -3.6585377e+01
22 -2.7625861e+01 -3.3431702e+01

TABLE 4.2: Convergence study of integrals with respect to
ngp_s when fixing ngp_t = 10 for a quarter of ellipse with

a/b = 20
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FIGURE 4.21: The hyper-singular integral over a quar-
ter of an ellipse with different mesh design. (a) mesh A
with knot vectors ξ : [0, 0, 0, 0.5 − ω, 0.5 + ω 1, 1, 1],
η : [0, 0, 0, 1, 1, 1]; (b) mesh B with knot vectors
ξ : [0, 0, 0, 1, 1, 1], η : [0, 0, 0, 0.5 − ω, 0.5 + ω 1, 1, 1]; (c)
mesh C with knot vectors ξ : [0, 0, 0, 0.5− ω, 0.5 + ω, 1, 1, 1],

η : [0, 0, 0, 0.5− ω, 0.5 + ω, 1, 1, 1];



4.4. Numerical examples 105

4.4.2 Nearly-singular integration

In this section the nearly-singular integration by the proposedL−1/5 trans-

formation is studied in detail. We take a quarter of an ellipse with a/b = 2 as

an example. Three mesh refinement configurations are set up as in Figure

4.21 such that the near-singularity arises in the neighborhood of the sin-

gular element by introducing a relative distance factor ω (see explanation in

Figure 4.21). Note that the effect of different spatial positions of the source

point and nearly-singular element can be checked as the same time. For

the singular element, ngp_s = 18 and ngp_t = 10 will be fixed. And for

the nearly-singular element, we increase the ngp_s and ngp_t from 4 to 80

respectively. The integration error for all the cases is plotted in Figure 4.22.

For all the mesh configurations, the L − 1/5 transformation can achieve

O(10−6) with about 20 Gauß points in both the radial and the angular di-

rections for each sub-triangle. And the convergence trend is similar in both

directions. The accuracy can be maintained with ω = 0.001. By further re-

ducing the value of ω, the error will increase. How to improve the precision

for nearly-singular integration will be further explored in future work.

Table 4.3 presents the reduction in the total number of Gauß points if

compared with the recursive subdivision scheme. It can be seen that the

total number of Gauß points is reduced by two orders of magnitude when

ω ≤ 0.01 for all the mesh configurations.

mesh A mesh B
ω 0.1 0.01 0.001 0.1 0.01 0.001

L− 1/5 transform 512 800 768 480 640 768
subdivision 4644 22572 47844 3672 20736 44244

mesh C
ω 0.1 0.01 0.001

L− 1/5 transform 2304 3840 4608
subdivision 5148 21960 46188

TABLE 4.3: Number of Gauß points needed to reach
O(10−6)
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(a) mesh A with ω = 0.1
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(b) mesh B with ω = 0.1
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(c) mesh C with ω = 0.1
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(d) mesh A with ω = 0.01
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(e) mesh B with ω = 0.01
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(f) mesh C with ω = 0.01
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(g) mesh A with ω = 0.001
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(h) mesh B with ω = 0.001
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(i) mesh C with ω = 0.001

FIGURE 4.22: Convergence study (‘z’ direction is the
relative error and ‘x’, ‘y’ are number of Gauß Points in
the angular and the radial direction of each sub-triangle
respectively) for nearly-singular integration by L − 1/5

transformation
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FIGURE 4.23: The central of a cube trimmed by a cylindri-
cal surface (red). The unspecified degrees of freedom are

zero tractions

4.4.3 Examples of Trimmed NURBS

Two case studies are performed to evaluate the proposed methods for trimmed

NURBS. The relative error in displacement or traction L2 norm over the

boundary of the domain is used to measure the accuracy of the results. They

are given as:

‖eu‖L2 =

√∫
S(u− uext)(u− uext)TdS∫

S uextuT
extdS

,

‖et‖L2 =

√∫
S(t− text)(t− text)TdS∫

S texttT
extdS

,

(4.27)

where the subscript ‘ext’ denotes the analytical solution. The default order

of the basis functions is 2. In the degree elevation process, the highest order

will be 3.

Patch test

A cube with edge L = 1 cut by a cylindrical surface with radius r at its

centre is studied in this section as in Figure 4.23. The faces x = 0, y = 0 and

z = 0 are subjected to normal displacement constraints and the top face

z = 1 is subjected to a uniform traction in the z direction. The remaining

degrees of freedom are traction-free. The material constants E = 1000 and

ν = 0.3 such that the analytical displacement field over the domain would

be:
ux(x, y, z) = −νx

E
,

uy(x, y, z) = −νy
E
,

uz(x, y, z) =
z

E
.

(4.28)
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Since the stress field is constant in this example and the geometry is exactly

represented, the source of numerical error comes only from the integration

scheme.

The aforementioned collocation schemes are first investigated on a quar-

ter of the trimmed cube with r = 0.15 for the cylindrical surface to check

the singular integration for the pentagon-type elements in the trimmed

NURBS geometry. Figure 4.24 illustrates collocation scheme A (the colloca-

tion points are in the sub-quadrilateral with all straight edges) and scheme

B (the collocation points in the sub-quadrilateral with the curved edge) for

a coarse mesh (4 elements) and a fine mesh (9 elements). When the collo-

cation points are placed in one sub-quadrilateral, the integration over the

other sub-quadrilateral will be performed as a regular one (the nearly sin-

gular quadrature is used). It can been seen that for the collocation points in

scheme A, good parametrization is obtained for singular integration. While

in scheme B, the collocation points are located in the sub-quadrilateral with

a highly distorted parametrization, which will increase the difficulty for

singular integration. Two singular integration methods are compared. One

is performing the singular integration with the conformal and Sigmoidal

transformations directly (denoted by ‘trans’); The other will subdivide the

parametric space as was done in Figure 4.21 and then the relative trans-

formations will be adopted for singular integration and the remaining sub-

domains will be treated with nearly singular integration (i.e the ‘transfor-

mations+subdivision’ or ‘trans+subdi’ for short). The coefficient ω = 0.01

is taken for the subdivision. Table 4.4 presents the results of relative error

in the displacement L2 norm for the test. It can be observed that scheme A

achieves orders of magnitude higher precision than scheme B in singular in-

tegration scheme ‘trans’, due to the complex distortion of the parametriza-

tion. Analogous to the example in Section 4.4.1, the ‘trans+subdi’ method

improves the results when the collocation points are in the distorted sub-

quadrilateral. It is seen that for mesh (b), the ‘trans+subdi’ method achieves

the same order (O(10−7)) for both collocation schemes A and B, while for

mesh (c), the ‘trans+subdi’ only reaches O(10−4) although two orders of
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magnitude higher than ‘trans’. Reducing ω is supposed to further improve

the precision. However due to the restriction in nearly singular integration,

the final result would not further improve. This requires a further local re-

finement closed to the trimming curve in the untrimmed mesh to reduce

the distortion of trimmed elements.

(a) Coarse mesh with scheme A (b) Coarse mesh with scheme B

(c) Fine mesh with scheme A (d) Fine mesh with scheme B

FIGURE 4.24: Collocation scheme for pentagon-type
trimmed element in top face of the cube. The green line is
the untrimmed element boundary; the blue line denotes

the parameter line and red dots are collocation points

Then the whole model is used and 4 mesh configurations are obtained

by uniform knot insertion for the untrimmed cube (Figure 4.25). The col-

location scheme A for the pentagon-type trimmed elements in the mixed

collocation method and ‘trans+subdi’ singular quadrature method for the

trimmed elements are used for all 4 meshes. Table 4.5 presents the relative

error in the displacement L2 norm for both mixed and GA collocation. It

can be observed that the smallest error reached O(10−8) for both colloca-

tion methods. The GA collocation maintains the error below O(10−5). The
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(a) (b) (c) (d)

FIGURE 4.25: Meshes of the trimmed cube

mixed collocation method obtains better accuracy however for mesh 3 in

Figure 4.25, the error is of O(10−4). This is because the collocation points in

the small triangle-type trimmed elements will lead to nearly-singular inte-

gration. We note that both cases give smaller error than the result in [122]

where the error stays of O(10−3) although it was given as a discretized L2

norm for some selected points.

Convergence test

In this section, the convergence behavior of the IGABEM for the trimmed

NURBS is studied by applying the Kelvin fundamental solution to the trimmed

geometry. The cube cut by the cylindrical surface in the patch test is used.

And a unit point force in the z direction is applied at sP (0, 0, 1.5), then

the corresponding displacement and traction fields in the closed domain

mesh (b) mesh (c)
scheme A scheme B scheme A scheme B

trans 2.615e-06 1.922e-03 2.485e-08 9.785e-02
trans+subdi 6.135e-07 4.989e-07 1.638e-07 4.273e-04

TABLE 4.4: Comparison of relative error in the displace-
ment L2 norm by two singular integration methods
(‘trans’ denotes only the transformations are used and
‘trans+subdi’ means transformations and subdivision of
the singular element are both used) and two collocation
scheme (‘scheme A’ puts the collocation points in the
quadrilateral with all straight edges and ‘scheme B’ places
the collocation points in the quadrilateral with the curved

edge)
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mesh mixed collocation GB collocation
1 7.340474e-07 3.183425e-05
2 3.909840e-08 2.436823e-08
3 3.951035e-04 2.741819e-05
4 2.224108e-08 5.064460e-06

TABLE 4.5: Relative error in the displacement L2 norm for
two collocation schemes

Ω̄ caused by the point force are

ui(x) =
1

16πµ(1− ν)r
[(3− 4ν)δi3 + r,ir,3],

ti(x) =− 1

8π(1− ν)r2

{ ∂r
∂n

[(1− 2ν)δi3 + 3r,ir,3]−

(1− 2ν)(r,in3 − r,3ni)
}
, ∀x ∈ Ω̄,

(4.29)

where r = |sP − x| and n is the unit out normal. The material constant

µ = E
2(1+ν) . We take µ = 1 and ν = 0.3 for the case study.

Figure 4.26 compares the two collocation methods for the pure Dirichlet

boundary condition (BC). Since the displacement fields for all the faces are

prescribed by the L2 projection at the beginning of analysis, the error can

be considered as the approximation error and it is the same for the two

collocation methods. It can be observed that both methods can obtain a

converging behavior in traction fields. The result of the GA collocation is

more accurate than that of the mixed collocation. Based on this, we select

the GA collocation for further studies.

Figure 4.27 shows the convergence curves for a degree elevation of the

basis functions from p = 2 to 3 for the pure Dirichlet BC. The optimal order

of convergence rates (ocr) of the prescribed displacement fields for both

p = 2 (ocr = 3.04) and p = 3 (ocr = 4.26) are obtained. For the traction

fields, the order elevation will reduce the error. However we note that for

both cases, the convergence results are sub-optimal. And the ocr for p = 3

(1.95) is worse than for p = 2 (2.46). One possible reason could be that the

integration error is not small enough compared to the approximation error

to give an optimal convergence. For this example, the integration error is

known to be O(10−5) from the patch test. And the approximation error
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FIGURE 4.26: Comparison of the two collocation methods
for a pure Dirichlet problem in the convergence study
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FIGURE 4.27: Relative error in displacement and traction
fields for pure dirichlet boundary condition

of the problem can be known from the prescribed displacement fields. It

can be seen that after degree elevation, the approximation error approaches

closely toO(10−5), which is almost in the same level as the integration error.

This may explain the deterioration in ocr for p = 3 compared to p = 2.

The case of mixed BCs is then tackled where the top z = 1 and bot-

tom z = 0 faces are Dirichlet BC and the remaining faces are subjected to

Neumann BCs. Figure 4.28 compares the convergence results for the dis-

placement and traction fields for pure Dirichlet BCs and mixed BCs. It can

be observed that convergence can be obtained for mixed BCs as well.
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FIGURE 4.28: Relative error in displacement and traction
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4.4.4 Edge crack

In this section a surface edge crack modeled by the phantom element method

is tackled. Figure 4.29(a) illustrates the numerical model of the edge crack,

where the top and bottom faces are subjucted the uniform traction in the

normal direction. The unspecified faces are traction-free. The material con-

stants are E = 1000 and ν = 0.3. Figure 4.29(b) gives the deformation plot

of the edge crack. Figure 4.30 compares the normalized KI from the cen-

ter point of the crack front along the direction Oz′ with the results from

Lagrange-based BEM by Mi and Aliabadi [42] and FEM solution by Raju

and Newman [178], as well as the reference solution from plane strain con-

dition. It can be observed thatKI agrees well with the Lagrange-based BEM

solution and the plane strain solution closed to the center point. When the

sample point approaches the free lateral face,KI is reduced due to a weaker

crack tip singularity than
√
ρ on the free face.

This example exhibits the possibility to model the surface crack problem

using IGABEM while the original parametrization can be preserved. Fur-

ther verification in the surface crack propagation for non-trivial industrial

parts will be done in the future work.



114 Chapter 4. IGABEM for trimmed NURBS and surface crack modeling

(a) Model of edge crack

(b) Deformation of the edge crack

FIGURE 4.29: Edge crack
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4.5 Conclusions

In this chapter several numerical aspects, such as singular integration, trimmed

NURBS and surface crack modeling, of the IGABEM were investigated

in detail. The singular and nearly singular integration were studied for

NURBS elements with high aspect ratios or elemental distortion, which

were then to be important factors influencing the accuracy of trimmed NURBS

implementation. The conclusions are

(1) Singular integration is sensitive to the element shape (or parametriza-

tion quality) and distorted elements usually with bad quality parametriza-

tions leads to a deterioration of the accuracy of the singular integral. The

proposed ‘transformation+subdivision’ scheme is shown to be a remedy for

this issue in IGABEM;

(2) The new proposed IGABEM for trimmed NURBS is able to handle closed

trimming curve and multi-curves in a single patch;

(3) The proposed surface crack modeling allows the crack to split the bound-

ary of the body while preserving the original parametrization provided by

the CAD model.
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Chapter 5

Conclusions and future work

This thesis outlines an isogeometric boundary element method (IGABEM)

to simulate crack growth directly from CAD, without meshing or remesh-

ing at any stage of the simulation. NURBS functions are used to approxi-

mate both the geometry and field variables. This approximation is found

to offer significant savings in human intervention through the circumven-

tion of mesh generation and to provide superior accuracy properties over

conventional discretization procedures in linear elastostatics.

• In chapter 2, the dual boundary integral equations are introduced

such that cracks can be modeled within a single domain. The crack

tip graded mesh refinement and partition of unity (PU) enrichment

are compared to capture the crack tip singularity. It is found that

both methods can significantly improve the solution accuracy near

the crack tip. PU enrichment achieves an accuracy which is interme-

diate between that of consecutive knot insertions at (1/2)3 and (1/2)4

of the distance to the crack tip in parametric space while the conver-

gence rate is improved by 55% compared to graded mesh refinement.

Popular approaches to extract SIFs are compared in the framework

of IGABEM which indicates that the M integral is more efficient for

SIF extraction in IGABEM. The IGABEM also provides a higher ac-

curacy than Lagrange basis based BEM for the same model size or

number of DOFs. The convergence rate in SIFs is improved by 5 to

8 times compared to BEM with a discontinuous Lagrange basis with-

out any treatment of the crack tip; The cracks are modeled directly by
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NURBS, and an algorithm for modifying the NURBS crack is devel-

oped to describe the crack during propagation. The proposed crack

growth procedure can lead to C1 smooth crack trajectories and agrees

well with those results from XFEM. Finally we present an example

of crack growth in a spanner to illustrate the procedure for damage

tolerance assessment directly from CAD, which does not require any

mesh (re)generation.

• Chapter 3 focuses on IGABEM for simulating 3D fatigue fracture prob-

lems. We extend the improved singularity subtraction technique [154]

to quadrilateral elements such that it can be applied to tensor-product

NURBS basis functions. The proposed singular integration scheme

preserves the quadrature accuracy for elements with large aspect ra-

tios. Both the crack opening displacement form and the dual equa-

tions of IGABEM are compared. By graded mesh refinement in the

direction where the crack tip singularity varies, the convergence rate

can be improved by a factor of two and accuracy by one order, com-

pared to uniform refinement. This indicates the efficiency of IGABEM

in the application of fracture problems.

Two ways to extract SIFs, the contour-based M integral and virtual

crack closure integral, are compared. The local crack tip system is

setup naturally and uniquely thanks to the NURBS representation of

the crack surface. Combining with the continuity of the stress solu-

tion in BEM, the obtained SIFs along the crack front are smooth and

accurate. An algorithm to propagate the NURBS-represented crack

surface is presented and the stability is verified, even for high Paris

law indices, due to the smoothness in crack front geometry and nu-

merical SIFs.

• In chapter 4, several numerical aspects, such as singular integration,
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trimmed NURBS and surface crack modeling, of the IGABEM are in-

vestigated in detail. Singular and nearly singular integration are stud-

ied for NURBS elements with high aspect ratios or elemental distor-

tion. Singular integration exhibits certain sensitivity to the element

shape (or parametrization quality) and to element distortion, usually

because of blow quality parametrization. This leads to a deteriora-

tion of the accuracy of the singular integral. The proposed ‘transfor-

mation+subdivision’ scheme is shown to be a remedy for this issue

of IGABEM. The implementation of IGABEM for trimmed NURBS

is able to handle closed trimming curves within a single patch. Con-

vergence result is observed for the manufactured solution, which con-

firms that the levels of integration error and approximation error have

a strong influence on the convergence rate. The proposed phantom el-

ement method for surface crack modeling allows the crack to split the

boundary of the body while preserving the original parametrization.

Future work may be pursued on:

• More effective algorithms are needed to achieve higher accuracy in

(nearly) singular integration for highly distorted elements. Efforts

should be expended on improving the integration routine or improv-

ing the parametrization quality. Since spline based basis functions are

used for the analysis, almost no discretization error is introduced in

the model, thus the integration error is the major source of numer-

ical model error. While the singular integration or nearly singular

integration is rarely studied for highly distorted elements in litera-

ture. This is due to the fact that element shapes tend to be regular

in traditional Lagrange-based mesh discretization with mesh refine-

ment. Nevertheless, the elements in IGA can still be distorted after

mesh refinement. We should be aware that even in FEM based work,

the parametrization quality has significant influence on numerical re-

sults. Thus analysis-suitable parametrization should be developed,

for example [109].
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• Acceleration algorithm are necessary if we put IGABEM into practi-

cal use. Although the use of spline-based functions helps reduce the

model size, the model is still large when it comes to non-trivial ge-

ometries. For example for crack propagation, the mesh density usu-

ally should be much higher than for non-cracked part in order to ob-

tain reliable fracture parameters. Algorithms such as the fast multi-

pole method or adaptive cross approximation based on hierarchical

matrices and parallelization approaches could be fruitful directions.

• T-spline based local refinement strategies could benefit IGABEM. (a)

In chapter 4, we reduce the continuity between elements to C−1 such

that the crack tip can be located inside an element when using the

phantom element method. However this can be further improved

by locally reducing the continuity at the crack tip element whilst the

basis functions of thew non-cracked part can still preserve smooth-

ness; (b) In the representation of trimmed NURBS, local refinement

can help convert the ‘unknown’ trimmed elements into the ‘known’

types.

• More robust collocation schemes are pursued for trimmed NURBS

and surface crack modeling. Alternatives could be Galerkin BEM or

IGA Nyström method [179].
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Appendix A

Fundamental solutions for

elasticity

The fundamental solutions for displacement boundary integral equation

(BIE) are given by

Uij(s,x) =
1

8πµ(1− ν)

[
(3− 4ν)δij ln

(
1

r

)
+ r,ir,j

]
,

Tij(s,x) =− 1

4π(1− ν)r

{ ∂r
∂n

[(1− 2ν)δij + 2r,ir,j ]−

(1− 2ν)(r,inj − r,jni)
}
,

(A.1)

for 2D under plane strain conditions, where µ = E/[2(1 + ν)], E is Young’s

Modulus and ν Poisson’s ratio. For traction BIE,

Kij =
1

4π(1− ν)r
[(1− 2ν)(δijr,k + δjkr,i − δikr,j) + 2r,ir,jr,k]nk(s) (A.2)

Sij =
µ

2π(1− ν)r2

{
2
∂r

∂n
[(1− 2ν)δikr,j + ν(δijr,k + δjkr,i)− 4r,ir,jr,k]

+ 2ν(nir,jr,k + nkr,ir,j)− (1− 4ν)δiknj

+ (1− 2ν)(2njr,ir,k + δijnk + δjkni)
}
nk(s)

(A.3)

For 3D displacement BIE:

Uij(s,x) =
1

16πµ(1− ν)r
[(3− 4ν)δij + r,ir,j ] , (A.4)
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Tij(s,x) = − 1

8π(1− ν)r2

{
∂r

∂n
[(1− 2ν)δij + 3r,ir,j ]− (1− 2ν)(r,inj − r,jni)

}
,

(A.5)

and for 3D traction BIE:

Kij =
1

8π(1− ν)r2
[(1− 2ν)(δijr,k + δjkr,i − δikr,j) + 3r,ir,jr,k]nk(s) (A.6)

Sij =
µ

4π(1− ν)r3

{
3
∂r

∂n
[(1− 2ν)δikr,j + ν(δijr,k + δjkr,i)− 5r,ir,jr,k]

+ 3ν(nir,jr,k + nkr,ir,j)− (1− 4ν)δiknj

+ (1− 2ν)(3njr,ir,k + δijnk + δjkni)
}
nk(s)

(A.7)
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Appendix B

Coefficients of the integrand

expansions for SST

B.1 Expressions for 2D

Now we present the SST formula for the hyper-singular integral as follows.

Expanding the components of distance between field and source points as

Taylor series in parent space gives:

xi − si =
dxi
dξ̂

∣∣∣
ξ̂=ξ̂s

(ξ̂ − ξ̂s) +
d2xi

dξ̂2

∣∣∣
ξ̂=ξ̂s

(ξ̂ − ξ̂s)2

2
+ · · ·

:= Ai(ξ̂ − ξ̂s) +Bi(ξ̂ − ξ̂s)2 + · · ·

= Aiδ +Biδ
2 +O(δ3)

(B.1)

and

A :=

(
2∑

k=1

A2
k

) 1
2

C :=
2∑

k=1

AkBk

(B.2)

The first and second derivatives are:

dxi
dξ

=
dNa

dξ
xai

d2xi
dξ2

=
d2Na

dξ2
xai

dxi
dξ̂

=
dxi
dξ

dξ
dξ̂

d2xi

dξ̂2
=

d2xi
dξ2

(dξ
dξ̂

)2

(B.3)
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The derivative r,i can be expressed as

r,i =
xi − si
r

=
Ai
A

+

(
BiA−Ai

AkBk
A3

)
δ +O(δ2)

:= di0 + di1δ +O(δ2)

(B.4)

The term 1/r2 can be expressed as

1

r2
=

1

A2δ2
− 2C

A4δ
+O(1)

:=
S−2

δ2
+
S−1

δ
+O(1)

(B.5)

The component of Jacobian from parametric space to physical space can be

expressed as:

J1(ξ) = J10(ξs) + J11(ξs)(ξ − ξs) +O((ξ − ξs)2)

= J10(ξs) +
dξ
dξ̂

∣∣∣
ξ=ξs

J11(ξs)δ +O(δ2)

J2(ξ) = J20(ξs) + J21(ξs)(ξ − ξs) +O((ξ − ξs)2)

= J10(ξs) +
dξ
dξ̂

∣∣∣
ξ=ξs

J21(ξs)δ +O(δ2)

i.e.,

Jk(ξ) := Jk0(ξs) +
dξ
dξ̂

∣∣∣
ξ=ξs

Jk1(ξs)δ +O(δ2)

(B.6)

and we note that

J(ξ) =
√
J2

1 (ξ) + J2
2 (ξ) =

√(
dy
dξ

)2

+

(
−dx

dξ

)2

n(ξ) =
[dy

dξ
,−dx

dξ

]
i.e.,

nk(ξ) = Jk(ξ)/J(ξ)

(B.7)
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And the NURBS basis function is also expanded as:

Ra(ξ̂) = Ra(ξ̂s) +
dRa
dξ

∣∣∣
ξ=ξs

(ξ − ξs) + · · ·

= Ra(ξ̂s) +
dRa
dξ

∣∣∣
ξ=ξs

dξ
dξ̂

∣∣∣
ξ̂=ξ̂s

δ + · · ·

:= Ra0(ξ̂s) +Ra1(ξ̂s)
dξ
dξ̂

∣∣∣
ξ̂=ξ̂s

δ +O(δ2)

(B.8)

The detail form of hyper-singular kernel Sij is (plane strain)

Sij(s,x) =
µ

2π(1− ν)r2

{
2
∂r

∂n
[(1− ν)δikr,j + ν(δijr,k + δjkr,i − 4r,ir,jr,k)]

+ 2ν(nir,jr,k + nkr,ir,j)− (1− 4ν)δiknj

+ (1− 2ν)(2njr,ir,k + δijnk + δjkni)
}
nk(ξ̂s)

:=
1

r2
h(ξ̂)

(B.9)

Noting that nk(ξ) = Jk(ξ)/J(ξ), Use the above expansions to rewrite h(ξ)

as:

h(ξ̂) =
h0(ξ̂s)

J(ξ)
+
h1(ξ̂s)

J(ξ)
δ +O(δ2) (B.10)

h0(ξ̂s) =
(

2ν(Ji0dj0dk0 + Jk0di0dj0) + (1− 2ν)(2Jj0di0dk0 + δijJk0 + δjkJi0)

+ (1− 4ν)δikJj0

) µ

2π(1− ν)
nk(ξ̂s)

(B.11)

h1(ξ̂s) =
[
2(dl1Jl0 + dl0Jl1)

(
(1− 2ν)δikdj0 + ν(δijdk0 + δjkdi0)− 4di0dj0dk0

)
+ 2ν

(
Ji0(dj1dk0 + dj0dk1) + Ji1dj0dk0 + Jk0(di1dj0 + di0dj1) + Jk1di0dj0

)
+ (1− 2ν)

(
2(Jj1di0dk0 + Jj0(di1dk0 + di0dk1)) + δijJk1 + δjkJi1

)
− (1− 4ν)δikJj1

] µ

2π(1− ν)
nk(ξ̂s)

(B.12)
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Thus,

h(ξ̂)Ra(ξ̂)J(ξ̂) =
(
h0(ξ̂s) + h1(ξ̂s)δ +O(δ2)

)(
Ra0(ξ̂s) +

dξ
dξ̂

∣∣∣
ξ̂=ξ̂s

Ra1(ξ̂s)δ

+O(δ2)
)

=h0Ra0 + (h1Ra0 + h0Ra1
dξ
dξ̂

∣∣∣
ξ̂=ξ̂s

)δ +O(δ2)

(B.13)

F (ξ̂s, ξ̂) =
1

r2(ξ̂s, ξ̂)
h(ξ̂)Ra(ξ̂)J(ξ̂)

=
(S−2

δ2
+
S−1

δ
+O(1)

)(
h0Ra0 + (h1Ra0 + h0Ra1

dξ
dξ̂

∣∣∣
ξ̂=ξ̂s

)δ

+O(δ2)
)

=
S−2h0Ra0

δ2
+
S−1h0Ra0 + S−2(h1Ra0 + h0Ra1

dξ
dξ̂

∣∣∣
ξ̂=ξ̂s

)

δ
+O(1)

:=
F−2

δ2
+
F−1

δ
+O(1)

(B.14)

B.2 Expressions for 3D

Supposing the parametric coordinate ξ(ξ, η) is in the knot interval [ξ1, ξ2]×

[η1, η2], the mapping between parametric coordinate and parent coordinate

is:
ξ =

1

2
(ξ2 − ξ1)ξ̄ +

1

2
(ξ2 + ξ1),

η =
1

2
(η2 − η1)η̄ +

1

2
(η2 + η1).

(B.15)

And the Jacobian transformation for this would be:

J̄ξ =
∂ξ

∂ξ̄
=

1

2
(ξ2 − ξ1),

J̄η =
∂η

∂η̄
=

1

2
(η2 − η1),

J̄(ξ) = J̄ξJ̄η.

(B.16)
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The Taylor expansion of xi−si with respect to the source point in the parent

space would be:

xi − si =
[∂xi
∂ξ̄

∣∣∣
ξ̄=ξ̄s

(ξ̄ − ξ̄s) +
∂xi
∂η̄

∣∣∣
ξ̄=ξ̄s

(η̄ − η̄s)
]

+
[∂2xi
∂ξ̄2

∣∣∣
ξ̄=ξ̄s

(ξ̄ − ξ̄s)2

2

+
∂2xi
∂ξ̄∂η̄

∣∣∣
ξ̄=ξ̄s

(ξ̄ − ξ̄s)(η̄ − η̄s) +
∂2xi
∂η̄2

∣∣∣
ξ̄=ξ̄s

(η̄ − η̄s)2

2

]
+ · · ·.

(B.17)

Note that:
∂xi
∂ξ̄

=
∂xi
∂ξ

∂ξ

∂ξ̄
=
∂xi
∂ξ

J̄ξ,

∂xi
∂η̄

=
∂xi
∂η

∂η

∂η̄
=
∂xi
∂η

J̄η,

∂2xi
∂ξ̄2

=
∂2xi
∂ξ2

(∂ξ
∂ξ̄

)2
=
∂2xi
∂ξ2

J̄2
ξ ,

∂2xi
∂η̄2

=
∂2xi
∂η2

(∂η
∂η̄

)2
=
∂2xi
∂η2

J̄2
η ,

∂2xi
∂ξ̄∂η̄

=
∂2xi
∂ξ∂η

∂ξ

∂ξ̄

∂η

∂η̄
=

∂2xi
∂ξ∂η

J̄ξJ̄η

(B.18)

Now the polar coordinates ρ(ρ, θ) centred at the source point are intro-

duced in the parent space as in Figure 3.1, The parent domain is subdivided

into four triangles for quadrature naturally. Each triangle is regarded as a

degenerated square [−1, 1] × [−1, 1] with two points joint together. Sup-

posing a point ρ(ρ, θ) ∈ [0, ρ̂(θ)] × [θ1, θ2] in the triangle, a linear mapping

between the polar coordinates and the square coordinates system ξ̃(ξ̃, η̃) is

performed as:

ρ =
1

2
(η̃ + 1)ρ̂(θ),

θ =
1

2
(θ2 − θ1)ξ̃ +

1

2
(θ2 + θ1).

(B.19)

And the Jacobian transformation for this would be:

J̃ρ =
∂ρ

∂η̃
=

1

2
ρ̂(θ),

J̃θ =
∂θ

∂ξ̃
=

1

2
(θ2 − θ1),

J̃(ρ) = J̃ρJ̃θ.

(B.20)
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Equation (B.17) becomes:

xi − si =ρ
[∂xi
∂ξ̄

∣∣∣
ξ̄=ξ̄s

cosθ +
∂xi
∂η̄

∣∣∣
ξ̄=ξ̄s

sinθ
]

+ ρ2
[∂2xi
∂ξ̄2

∣∣∣
ξ̄=ξ̄s

cos2θ

2
+
∂2xi
∂ξ̄∂η̄

∣∣∣
ξ̄=ξ̄s

cosθsinθ +
∂2xi
∂η̄2

∣∣∣
ξ̄=ξ̄s

sin2θ

2

]
+O(ρ3)

:=ρAi(θ) + ρ2Bi(θ) +O(ρ3).

(B.21)

And we define:

A :=

(
3∑

k=1

[Ak(θ)]
2

) 1
2

,

C :=
3∑

k=1

Ak(θ)Bk(θ).

(B.22)

The derivatives of r = |x− s| are:

r,i =
xi − si
r

=
Ai
A

+

(
Bi
A
−Ai

C

A3

)
ρ+O(ρ2)

:= di0 + di1ρ+O(ρ2).

(B.23)

The term 1/r3 is:
1

r3
=

1

A3ρ3
− 3C

A5ρ2
+O(

1

ρ
)

:=
S−2

ρ3
+
S−1

ρ2
+O(

1

ρ
).

(B.24)

The NURBS basis function is also expanded as:

Ra(ξ) = Ra(ξs) + ρ
[∂Ra
∂ξ

∣∣∣
ξ̄=ξ̄s

J̄ξcosθ +
∂Ra
∂η

∣∣∣
ξ̄=ξ̄s

J̄ηsinθ
]

+O(ρ2)

:= Ra0 +Ra1(θ)ρ+O(ρ2).

(B.25)

For the surface point ξ(ξ, η) in the knot interval [ξ1, ξ2] × [η1, η2], we define

two tangential vectors along the ξ and η directions respectively as:

m1 =
[∂x
∂ξ
,
∂y

∂ξ
,
∂z

∂ξ

]
,

m2 =
[∂x
∂η
,
∂y

∂η
,
∂z

∂η

]
.

(B.26)
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And we can get the normal vectors through:

n̄ = m1 ×m2 =
[∂y
∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η
,
∂z

∂ξ

∂x

∂η
− ∂x

∂ξ

∂z

∂η
,
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

]
. (B.27)

The Jacobian for transformation from parametric space to physical space is

the length of the normal vector n̄:

J(ξ) =
[(∂y
∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η

)2
+
(∂z
∂ξ

∂x

∂η
− ∂x

∂ξ

∂z

∂η

)2
+
(∂x
∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

)2]1/2

: =
[ 3∑
k=1

J2
k (ξ)

]1/2

(B.28)

The unit normal vector n could be expressed as:

n(ξ) =
n̄

J(ξ)
. (B.29)

The component Ji(ξ) can be expanded at the source point. For instance:

J1(ξ) = J1(ξs) + ρ
[∂J1

∂ξ

∣∣∣
ξ̄=ξ̄s

J̄ξcosθ +
∂J1

∂η

∣∣∣
ξ̄=ξ̄s

J̄ηsinθ
]

+O(ρ2)

: = J10 + J11(θ)ρ+O(ρ2),

∂J1

∂ξ
=

∂

∂ξ

(∂y
∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η

)
.

(B.30)

So we can obtain Ji(ξ) as:

Ji(ξ) = Ji0 + Ji1(θ)ρ+O(ρ2). (B.31)

Combining with Equation (B.29), we arrive at:

ni(ξ) =
1

J(ξ)
[Ji0 + Ji1(θ)ρ+O(ρ2)]. (B.32)

Row, all the terms are prepared for the expansion of the integrand. Let’s

take a simple example:

I = =

∫
S

r,ini(ξ)Ra(ξ)

r3
dS. (B.33)
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After discretization,

I =

∫ 2π

0

∫ ρ̂(θ)

0

r,iniRa
r3

J(ξ)J̄(ξ)ρdρdθ, (B.34)

where J̄(ξ) is from parent to parametric space defined in Equation (B.16),

J(ξ) from parametric to physical space defined in Equation (B.28). ρ̂(θ) is

the upper bound of ρ and can be seen in Figure 3.1.

And substitute Equations (B.23)(B.24)(B.32)(B.25) into the discretization:

I =

∫ 2π

0

∫ ρ̂(θ)

0

[
di0 + di1ρ+O(ρ2)

] 1

J(ξ)

[
Ji0 + Ji1ρ+O(ρ2)

][
Ra0 +Ra1ρ

+O(ρ2)
][S−2

ρ3
+
S−1

ρ2
+O(

1

ρ
)
]
J(ξ)J̄(ξ)ρdρdθ

=

∫ 2π

0

∫ ρ̂(θ)

0

[
di0Ji0Ra0 + (di1Ji0Ra0 + di0Ji1Ra0 + di0Ji0Ra1)ρ

+O(ρ2)
][S−2

ρ2
+
S−1

ρ
+O(1)

] 1

ρJ(ξ)
J(ξ)J̄(ξ)ρdρdθ

=

∫ 2π

0

∫ ρ̂(θ)

0

(I−2

ρ2
+
I−1

ρ
+O(1)

)
J̄(ξ)dρdθ,

(B.35)

where I−2, I−1 are only functions of θ:

I−2 = S−2di0Ji0Ra0,

I−1 = S−1di0Ji0Ra0 + S−2(di1Ji0Ra0 + di0Ji1Ra0 + di0Ji0Ra1).

(B.36)

Subtracting the explicit singular part in the original integrand in Equation

(B.34), the regular integral will be obtained:

Ireg =

∫ 2π

0

∫ ρ̂(θ)

0

[r,iniRa
r3

J(ξ)ρ− I−2

ρ2
− I−1

ρ

]
J̄(ξ)dρdθ, (B.37)

This double integral can be evaluated using normal Gaussian rule. And

the explicit part then will be added back and treated in a semi-analytical

way. For the source point located in the singular element, a small circle is

created to exclude the source point radius ε in physical space. When map-

ping the circle into the intrinsic polar coordinate, the circle will be distorted
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generally. The polar coordinate ρ is represented with respect to ε as:

ρ := α(ε, θ) = εβ(θ) + ε2γ(θ) +O(ε3). (B.38)

To evaluate the coefficients β and γ, the radius of the circle is given as the

Taylor expansion in intrinsic polar coordinates as:

ε = ρA(θ) + ρ2C(θ)

A(θ)
+O(ρ3). (B.39)

The reversion of this series is:

ρ = α(ε, θ) = ε
1

A
− ε2 C

A4
+O(ε3). (B.40)

Thus we get:

β =
1

A
,

γ = − C

A4
,

(B.41)

which are only functions of θ. Then let’s first look at the explicit strong

singular part given in the limit form as:

lim
ε→0

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)

I−1(θ)

ρ
J̄(ξ)dρdθ

= lim
ε→0

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)

I−1(θ)

ρ
J̄(ξ)J̃(ρ)dη̃dξ̃

= lim
ε→0

∫ 2π

0
I−1(θ)J̄(ξ)J̃θ

[ ∫ ρ̂(θ)

α(ε,θ)

1

ρ
J̃ρdη̃

]
dξ̄

= lim
ε→0

∫ 2π

0
I−1(θ)J̄(ξ)J̃θ

[ ∫ ρ̂(θ)

α(ε,θ)

1

ρ
dρ
]
dξ̃

= lim
ε→0

∫ 2π

0
I−1(θ)J̄(ξ)J̃θ[lnρ̂(θ)− lnα(ε, θ)]dξ̃

=

∫ 2π

0
I−1(θ)J̄(ξ)lnρ̂(θ)J̃θdξ̃ − lim

ε→0

∫ 2π

0
I−1(θ)J̄(ξ)lnα(ε, θ)J̃θdξ̃

=

∫ 2π

0
I−1(θ)J̄(ξ)lnρ̂(θ)J̃θdξ̃ − lim

ε→0

∫ 2π

0
I−1(θ)J̄(ξ)lnεβ(θ)J̃θdξ̃

=

∫ 2π

0
I−1(θ)J̄(ξ)ln

ρ̂(θ)

β(θ)
J̃θdξ̃ − J̄(ξ)lnε lim

ε→0

∫ 2π

0
I−1(θ)dθ

=

∫ 2π

0
I−1(θ)J̄(ξ)ln

ρ̂(θ)

β(θ)
J̃θdξ̃,

(B.42)
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where J̃(ρ) is from polar to square coordinates defined in Equation (B.20).

Note that the last term is canceled since:

∫ 2π

0
I−1(θ)dθ = 0. (B.43)

After integrating the singular term with respect to ρ analytically and with

the use of Equations (B.38)(B.43), the explicit strong singular integrand is

transferred as a regular one-dimensional integral and normal Gaussian rule

then can be applied. Similar treatment applies to the explicit hyper-singular

term. The full evaluation for Equation (B.34) is obtained:

I = Ireg +

∫ 2π

0
I−1(θ)J̄(ξ)ln

ρ̂(θ)

β(θ)
J̃θdξ̃ −

∫ 2π

0
I−2(θ)J̄(ξ)

[ γ(θ)

β2(θ)
+

1

ρ̂(θ)

]
J̃θdξ̃

(B.44)
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Appendix C

Details for the SIF extraction

C.1 The relations of Jx and K

Once the J1 and J2 are evaluated properly, KI and KII can be found easily.

Since

J1 =
K2
I +K2

II

E′
(C.1a)

J2 = −2KIKII

E′
(C.1b)

where E′ = E/(1 − ν2) for plane strain condition. And KI and KII can be

solved as [144]:

KI = ±
{E′J1

2

[
1±

(
1−

(J2

J1

)2)1/2]}1/2
(C.2a)

KII = ±
{E′J1

2

[
1∓

(
1−

(J2

J1

)2)1/2]}1/2
(C.2b)

The signs of KI and KII correspond to the signs of crack opening displace-

ment Ju1K and Ju2K, respectively. If Ju1K > 0, KI > 0. The term in brace can

be determined as :

if|Ju1K| ≥ |Ju2K|, take+ (C.3a)

if|Ju1K| < |Ju2K|, take− (C.3b)
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C.2 SIF extraction from M integral

Combined with Equation C.1a, the following relationship can be obtained

for the M integral,

M (1,2) =
2

E′
(K

(1)
I K

(2)
I +K

(1)
II K

(2)
II ) (C.4)

For 3D case, the relation of J and K is:

J = GI +GII +GIII =
1− ν2

E
K2
I +

1− ν2

E
K2
II +

1

2µ
K2
III , (C.5)

where Gi (i = I, II, III) are the energy release rates for the three modes of

fracture. Then

M (1,2) =
2(1− ν2)

E
(K

(1)
I K

(2)
I +K

(1)
II K

(2)
II ) +

1

µ
K

(1)
IIIK

(2)
III . (C.6)

Let state 2 be the pure mode I asymptotic fields with K
(2)
I = 1, K(2)

II = 0

(and for 3D KIII = 0) and KI in real state 1 can be found as

K
(1)
I =

2

E′
M (1, mode I) (C.7)

The KII (and KIII in 3D case) can be given in a similar fashion.
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C.3 The auxiliary fields for M integral

The auxiliary stress field σ(2)
ij and displacement field u(2)

j are given as:

σxx(r, θ) =
K

(2)
I√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
−

K
(2)
II√
2πr

sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)
σyy(r, θ) =

K
(2)
I√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

K
(2)
II√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2

τxy(r, θ) =
K

(2)
I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
+

K
(2)
II√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
ux(r, θ) =

KI

2µ

√
r

2π
cos

θ

2

(
κ− 1 + 2sin2 θ

2

)
+

(1 + ν)KII

E

√
r

2π
sin

θ

2

(
κ+ 1 + 2cos2 θ

2

)
uy(r, θ) =

KI

2µ

√
r

2π
sin

θ

2

(
κ+ 1− 2cos2 θ

2

)
+

(1 + ν)KII

E

√
r

2π
cos

θ

2

(
1− κ+ 2sin2 θ

2

)
(C.8)

where (r, θ) are the crack tip polar coordinates and

µ =
E

2(1 + ν)
(C.9)

κ =

 3− 4ν, Plane strain

(1− ν)/(3 + ν), Plane stress
(C.10)
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And for 3D, the auxiliary stress field σ(2)
ij and displacement field u(2)

j are

given as:

σxx =
K

(2)
I√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
−

K
(2)
II√
2πr

sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)
σyy =

K
(2)
I√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

K
(2)
II√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
,

τxy =
K

(2)
I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
+

K
(2)
II√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
,

τyz =
K

(2)
III√
2πr

cos
θ

2
,

τzx = −
K

(2)
III√
2πr

sin
θ

2
,

τzz = ν(σxx + σyy),

ux =
KI

2µ

√
r

2π
cos

θ

2

(
κ− 1 + 2sin2 θ

2

)
+

(1 + ν)KII

E

√
r

2π
sin

θ

2

(
κ+ 1 + 2cos2 θ

2

)
,

uy =
KI

2µ

√
r

2π
sin

θ

2

(
κ+ 1− 2cos2 θ

2

)
+

(1 + ν)KII

E

√
r

2π
cos

θ

2

(
1− κ+ 2sin2 θ

2

)
,

uz =
2KIII

µ

√
r

2π
sin

θ

2
.

(C.11)

The auxiliary strain field can be obtained by differentiating uj with re-

spect to the physical coordinate.
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Appendix D

Theory of double-interpolation

XFEM

D.1 2D approximation by double interpolation

As illustrated in Figure D.1, x = (x, y) denotes the point of interest in tri-

angle IJK. Analogous to the derivation for the 1D formulation, the 2D

double-interpolation approximation in a mesh of triangular element can be

cosntructed as follows:

uh(x) =
∑
L∈N̂

N̂L(x)uL, (D.1)

N̂L(x) =φI(x)NL(xI) + ψI(x)N̄L,x(xI) + ϕI(x)N̄L,y(xI)+

φJ(x)NL(xJ) + ψJ(x)N̄L,x(xJ) + ϕJ(x)N̄L,y(xJ)+

φK(x)NL(xK) + ψK(x)N̄L,x(xK) + ϕK(x)N̄L,y(xK),

(D.2)

where uL is the nodal displacement vector. In the following discussion the

evaluation of the average derivative of the shape function at node xI is

considered. The average derivative of the shape function at node xI can be

written as:

N̄L,x(xI) =
∑

ei,I∈ΛI

ωei,IN
ei
L,x(xI), (D.3a)
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FIGURE D.1: Illustration for the support domain of DFEM

N̄L,y(xI) =
∑

ei,I∈ΛI

ωei,IN
ei
L,y(xI), (D.3b)

where ωei,I is the weight of element ei in ΛI and is computed by:

ωei,I = meas(ei)/
∑
ei∈ΛI

meas(ei). (D.4)

Here meas(·) denotes the area of a triangular element. An example of how

to evaluate the weight of an element is presented in Figure D.1. φI , ψI and

ϕI form the polynomial basis associated with xI , which satisfies the follow-

ing interpolating conditions:

φI(xL) = δIL, φI,x(xL) = 0 , φI,y(xL) = 0,

ψI(xL) = 0 , ψI,x(xL) = δIL, ψI,y(xL) = 0,

ϕI(xL) = 0 , ϕI,x(xL) = 0 , ϕI,y(xL) = δIL.

(D.5)

And these polynomial basis functions are given by:

φI(x) =LI(x) + (LI(x))2 LJ(x) + (LI(x))2 LK(x)

− LI(x) (LJ(x))2 − LI(x) (LK(x))2 ,

(D.6a)
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ψI(x) =− cJ
(
LK(x) (LI(x))2 +

1

2
LI(x)LJ(x)LK(x)

)
+

cK

(
(LI(x))2 LJ(x) +

1

2
LI(x)LJ(x)LK(x)

)
,

(D.6b)

ϕI(x) =bJ

(
LK(x) (LI(x))2 +

1

2
LI(x)LJ(x)LK(x)

)
−

bK

(
(LI(x))2 LJ(x) +

1

2
LI(x)LJ(x)LK(x)

)
.

(D.6c)

Note that the polynomial basis functions φJ , ψJ , ϕJ , φK , ψK and ϕK can

be obtained by the above definitions via cyclic permutation of indices I, J

and K. In the above equations, LI , LJ and LK are the area coordinates of

the point of interest x in triangle IJK. For the point of interest x in Figure

D.1, the LI , aI , bI and cI are presented as follows:

LI(x) =
1

2
a(aI + bIx+ cIy), (D.7a)

aI = xJyK − xKyJ , (D.7b)

bI = yJ − yK , (D.7c)

cI = xK − xJ , (D.7d)

where
a

is the area of triangle IJK. Further, LJ , LK , aJ ,bJ , bK , aI , cJ and

cK can be obtained using the above definitions via cyclic permutations of

indices I, J and K.

When the point of interest lies on one of the edges, for example on edge

IJ , the basis functions will boil down to 1D basis functions and will be

consistent with the 1D form presented in the preceding section.

The DFEM shape functions posess the properties such as linear com-

pleteness, partition of unity and Kronecker delta property. In addition, the

2D DFEM possesses C1 continuity at the nodes and C0 continuity on edges.

Compared to 3-noded triangular elements, the DFEM basis functions can

achieve a higher-order convergence rate without the introduction of addi-

tional nodes, which will be seen the numerical examples in the next sec-

tion. However, this attractive feature comes with the price of an increased

bandwidth as the neighboring nodes are used to obtain the nodal gradients
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necessary for the second interpolation. The details of such computational

costs will be discussed in the section devoted to numerical examples.

(a) (b)

(c)

Y

X

Z

1.000E+00
8.750E-01
7.500E-01
6.250E-01
5.000E-01
4.719E-01
3.750E-01
2.500E-01
1.250E-01
0.000E+00

(d)

FIGURE D.2: The shape functions of DFEM in 2D

D.2 Modification of the nodal gradients

When C0 continuity of the primal field at a node is needed, for instance on

the nodes along a material interface, it is useful to modify the calculation of

the average nodal gradient as discussed below. The calculation of the nodal

gradient can be performed as follows:

N̄L,x(xI) = N e
L,x(xI). (D.8)
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FIGURE D.3: Nodal enrichment in XDFEM; the nodes
encircled by red box are degenerated to C0, see section 2.3

The right hand side is the derivative ofNL computed in element e, in which

the point of interest x is located. This is easily done in the implementation

by replacing the average derivative with the derivative in the element of

interest. It can be observed that nodes at the endpoint of a 1D bar au-

tomatically satisfy the above equation. All the Heaviside and topological

enriched nodes in XFEM (the nodes circled by red boxes in Figure D.3 and

Figure D.4) have been relaxed to C0 as well due to the fact that during the

calculation of average gradients in Equation (D.3), the contribution from

split elements cannot be computed directly as from continuous elements in

an area weighted manner (Equation (D.4)) due to the discontinuity. This is

similar to difficulties encountered in smoothing enriched approximations

[139][31].

D.3 The enriched 2D double-interpolation approxima-

tion

The crack can be described in XFEM by enriching the standard displace-

ment approximation as follows:

uh(x) =
∑
I∈NI

N̂I(x)uI +
∑
J∈NJ

N̂J(x)H(x)aJ +
∑

K∈NK

N̂K(x)
4∑

α=1

fα(x)bKα,

(D.9)



142 Appendix D. Theory of double-interpolation XFEM

FIGURE D.4: The support domain of enriched DFEM; the
nodes encircled by red box are degenerated to C0, see

section 2.3

where uI are the regular DOFs, aJ are the additional Heaviside enriched

DOFs, and bKα are the additional crack tip enriched DOFs. NI ,NJ and NK

are the collections of regular non-enriched nodes, Heaviside enriched nodes

and crack tip enriched nodes, respectively. H(·) is the Heaviside function.

The crack tip enrichment functions are defined as:

{fα(r, θ), α = 1, 4} =

{√
rsin

θ

2
,
√
rcos

θ

2
,
√
rsin

θ

2
sinθ,

√
rcos

θ

2
sinθ

}
,

(D.10)

where (r, θ) are the polar coordinates of the crack tip (Figure D.3). Figure

D.5 compares the Heaviside enriched shape functions obtained with XFEM

and XDFEM which are defined in Figure D.4.

D.4 Weak form and discretized formulations

For an elastic body as in Figure D.6 defined by Hooke’s tensor C and under-

going small strains and small displacements, the equilibrium equations and

boundary conditions for the Cauchy stress σ and the displacement field u

write:

∇ · σ = 0 in Ω,

σ · n = t̄ on Γt,

u = ū on Γu.

(D.11)
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(d) XFEM

FIGURE D.5: Contour plot of Heaviside enriched shape
functions

FIGURE D.6: Elastic body with a crack, ∂Ω = Γu ∪ Γt,Γu ∩
Γt = ∅
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Here t̄ is the traction imposed on boundary Γt. Further, assuming traction

free crack faces:

σ · n = 0 on Γc+ and Γc− , (D.12)

where Γc+ ,Γc− are the upper and lower crack surfaces respectively. The

strain-displacement relation and the constitutive law are respectively as:

ε =
1

2

(
∇+∇T

)
⊗ u, (D.13a)

σ = C : ε. (D.13b)

Using a Bubnov-Galerkin weighted residual formulation based on Lagrange

test and trial spaces, substituting the trial and test functions into the weak

form of Equation (D.11), and using the arbitrariness of nodal variations, the

discretized equations can be written:

Ku = f , (D.14)

where u is the nodal vector of the unknown displacements and K is the

stiffness matrix. The elemental form of K for element e is given by:

Ke
IJ =


Kuu
IJ Kua

IJ Kub
IJ

Kau
IJ Kaa

IJ Kab
IJ

Kbu
IJ Kba

IJ Kbb
IJ

 . (D.15)

The external force vector f is defined as

fI = {fuI faI f b
1

I f b
2

I f b
3

I f b
4

I }. (D.16)

The submatrices and vectors in Equations (D.15) and (D.16) are:

Krs
IJ =

∫
Ωe

(Br
I)
TCBs

JdΩ (r, s = u, a, b), (D.17a)

fuI =

∫
∂Ωht ∩∂Ωe

N̂I t̄dΓ, (D.17b)
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faI =

∫
∂Ωht ∩∂Ωe

N̂IH t̄dΓ, (D.17c)

f b
α

I =

∫
∂Ωht ∩∂Ωe

N̂Ifαt̄dΓ (α = 1, 2, 3, 4). (D.17d)

In Equation (D.17a), Bu
I ,B

a
I and Bbα

I are given by

Bu
I =


N̂I,x 0

0 N̂I,y

N̂I,y N̂I,x

 , (D.18a)

Ba
I =


(N̂I(H −HI)),x 0

0 (N̂I(H −HI)),y

(N̂I(H −HI)),y (N̂I(H −HI),x

 , (D.18b)

Bb
I =

[
Bb1

I Bb2

I Bb3

I Bb4

I

]
, (D.18c)

Bbα

I =


(N̂I(fα − fαI)),x 0

0 (N̂I(fα − fαI)),y
(N̂I(fα − fαI)),y (N̂I(fα − fαI)),x

 (α = 1− 4). (D.18d)

In order to obtain the nodal displacements in a more straightforward

manner, the shifted-basis is adopted in the above equations. More details

regarding XFEM implementation can be found in [137].

The strategies of numerical integration for XDFEM is similar to stan-

dard XFEM. A simple subdivision for Heaviside enriched elements and tip

enriched elements is performed for quadrature as in Figure D.7. Due to the

introduction of higher-order polynomials in the basis functions of XDFEM,

4 Gauss points are adopted for each regular element whilst only 1 Gauss

point in standard XFEM. And the Gauss quadrature is outlined briefly as

• regular elements: 1 Gauss point in XFEM and 4 Gauss points in XD-

FEM;

• Heaviside enriched elements: 1 Gauss point for each sub-cell in XFEM

and 4 Gauss points for each sub-cell in XDFEM;
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FIGURE D.7: Elements subdivision for quadrature in
XFEM and XDFEM

• Tip blending elements: 7 Gauss points for each element in both XFEM

and XDFEM;

• Tip enriched elements: 16 Gauss points for each sub-cell in both XFEM

and XDFEM;
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