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ABSTRACT 

Atherosclerosis is a chronic inflammatory disorder characterised by lipid 

accumulation in the arterial wall. Nutraceuticals represent promising alternatives to 

pharmaceuticals in the prevention and management of this disease. Previous work 

has shown an omega-6 fatty acid, dihomo-gamma-linolenic acid (DGLA) to inhibit 

atherosclerosis in a mouse model of the disease. Understanding the molecular 

mechanism underlying the action of DGLA in atherosclerosis is crucial to evaluating 

the role of this PUFA as a new agent in the prevention/treatment of the disease. 

In vitro analysis utilised macrophage cell lines THP-1 and RAW264.7 together with 

primary cultures of human monocyte-derived macrophages to study the effects of 

DGLA on aspects of macrophage foam cell formation, an early event in 

atherosclerosis. Data presented in the thesis showed that DGLA had an effect on a 

number of key events that contribute to foam cell formation in macrophages; reducing 

monocyte migration, pro-inflammatory cytokine induced gene expression, modified 

LDL uptake, scavenger receptor expression, macropinocytosis and cholesteryl ester 

accumulation and stimulating cholesterol efflux.  

Uptake of DGLA into lipid fractions was studied in vitro and in vivo using thin layer 

chromatography and gas chromatography. DGLA was significantly incorporated in a 

dose-dependent manner into lipid fractions of THP-1 macrophages in vitro. In vivo, 

mice fed a 4.4% DGLA containing diet assimilated the PUFA into serum, liver, kidney 

and adipose tissue lipid fractions.  

Finally, the metabolism of DGLA was investigated in vitro. DGLA supplementation 

stimulated the production of PGE1 and 15-HETrE in macrophages. PGE1 inhibited 

monocyte migration and IFN-γ induced expression of monocyte chemotactic protein 

1 (MCP-1). RNA interference assays showed a key role for COX enzymes in the IFN-

γ-mediated induction of MCP-1 expression.  

Findings in the thesis demonstrate key mechanisms underlying the anti-atherogenic 

role of DGLA and highlight its potential as a therapeutic/preventative agent in this 

disease.   



 

xi 
 

ACKNOWLEDGMENTS 

 

Firstly I would like to thank my supervisors Dipak Ramji, John Harwood and Irina 

Guschina for their constant support and guidance throughout my PhD. I would also 

like to acknowledge financial support from the School of Biosciences and Ben Gurion 

University.  

Second, I would like to thank Dr Natalia Ninkina for her help with in vivo studies and 

Prof Valerie O’Donnell and Dr Victoria Tyrrell for their help with HPLC-MS. 

Third, thank you to members of the lab, past and present, who are too many to 

mention but have all made the last three years so much more enjoyable.  

Last, but not least, thank you to my wonderful family and friends. A special mention 

to my parents and Lauren for their constant invaluable support my whole life. Finally 

Joe, for picking me up when I needed it and keeping me motivated right to the end. I 

cannot express how grateful I am to you all.  

  



 

xii 
 

PUBLICATIONS 

 

Michael, D. R. and Ashlin, T. G. and Davies, C. S. and Gallagher, H. and Stoneman, 

T. W. and Buckley, M. L. and Ramji, D. P. 2013. Differential regulation of 

macropinocytosis in macrophages by cytokines: Implications for foam cell formation 

and atherosclerosis. Cytokine 64(1), pp. 357-361. 

 

Michael, D. R. and Davies, T. S. and Laubertova, L. and Gallagher, H. and Ramji, D. 

P. 2015. The phosphoinositide 3-kinase signalling pathway is involved in the control 

of modified low-density lipoprotein uptake by human macrophages. Lipids 50(3), pp. 

253-260. 

  



 

xiii 
 

ABBREVIATIONS 
 

8-HOA 8 hydroxyoctanoic acid  

AA Arachidonic acid 

ABC ATP binding cassette  

ABCA1 ABC transporter A1 

ABCG1 ABC transporter G1 

ACAT Acetyl-CoA cholesterol acetyltransferase  

acLDL Acetylated LDL 

ADRP Adipose differentiation related protein 

ALA α-linoleic acid 

ANSA 8 anilino 4 naphthosulphonic acid 

AP Alkaline phosphatase 

ApoB Apolipoprotein B 

ApoE Apolipoprotein E 

ASC (cell) Adipose stromal cell 

ASC (protein) apoptosis-associated speck-like protein containing CARD 

BSA Bovine serum albumin 

cAMP Cyclic adenosine monophosphate 

CCL2 Human chemokine (C-C motif) ligand 2 

CCR2 C-C chemokine receptor 2 

CD36 Cluster differentiation 36 

CEH Cholesteryl ester hydrolase 

CETP Cholesteryl ester transfer protein 

ChIP Chromatin immunoprecipitation 

CIDE Cell death inducing DFF45 like effector 

COX Cyclo-oxygenase 

CPT Carnitine palmitoyl transferase  

CRP C-reactive protein 

CVD Cardiovascular disease  

CXCL16 Chemokine (C-X-C motif) ligand 16 

DAG Diacylglycerol 

DAMPS Danger associated molecular patterns 

DCF 2’,7, dichlorofluorescein 

DCFDA Dichlorofluorescin diacetate 



 

xiv 
 

DGLA Dihomo-γ-linolenic acid 

DHA Docosahexaenoic acid 

DMPE Dimethylphosphinoethane 

/DPA Docosapentaenoic acid 

DPM Disintegrations per minute  

dsDNA Double stranded DNA 

ECM Extracellular matrix 

EFA Essential fatty acid 

ELISA Enzyme linked immunosorbent assay  

EPA Eicosapentaenoic acid 

ERK Extracellular signal-regulated kinase 

FAMES Fatty acid methyl esters  

FFA Free fatty acids 

GAPDH Glyceraldehyde 3 phosphate dehydrogenase  

GAS Gamma activating sequences 

GC Gas chromatography 

GLA γ-linolenic acid 

GPCR G protein-coupled receptor 

GSB Gel sample buffer 

HDL High density lipoprotein 

HETE Hydroxy-eicosatetraenoic acids  

HETrE Hydroxy-eicosatriaenoic acids  

HI-FCS Heat-inactivated foetal calf serum  

HL Hepatic lipase 

HMDM Human monocyte derived macrophages 

HMG-CoAR 3-hydroxy-3-methyl-glutaryl-CoA reductase  

HPLC-MS High performance liquid chromatography – mass spectrometry 

HTA Heptanoic acid  

ICAM-1 Intercellular adhesion molecule 1 

IDL Intermediate density lipoprotein 

IFN Interferon 

IFN-γR Interferon γ receptor 

IL Interleukin 

IL-1ra IL-1 receptor antagonist  

iNOS Inducible nitric oxide synthase 

INT Tetrazolium salt  



 

xv 
 

IP-10 IFN-inducible protein of 10kDa 

IRF Interferon regulatory factors  

ISRE IFN-γ stimulated response elements 

I-TAC IFN-inducible T cell α chemoattractant  

JAK Janus kinase  

JNK c-Jun N terminal kinases  

LA Linoleic acid 

LCAT Lecithin cholesterol acyl transferase  

LDH Lactate dehydrogenase 

LDL Low density lipoprotein  

LDLr Low density lipoprotein receptor 

LIPE Hormone sensitive lipase  

LOX Lipo-oxygenase  

LPL Lipoprotein lipase 

LPS Lipopolysaccaride 

LT Leukotriene 

LXR Liver X receptor 

LY Lucifer yellow 

MAPK Mitogen-activated protein kinases 

MCP-1  Monocyte chemotactic protein 1 

M-CSF Macrophage colony stimulating factor 

Mig Monokine induced by IFN-γ  

mmLDL Minimally modified LDL 

MMLV Molony leukemia virus 

MMPs Matrix metalloproteinase 

MUFA Mono-unsaturated fatty acids 

NEFA Non-esterified fatty acids 

nCEH Neutral cholesterol ester hydrolase 

NF-κB  Nuclear factor кB  

NLR NOD-like receptor 

NO Nitric oxide 

NOD Nucleotide oligomerization domain 

NPC Niemann-Pick type C  

oxLDL Oxidised LDL 

PAGE Polyacrylamide gel electrophoresis 

PAMPs Pathogen associated molecular patterns  



 

xvi 
 

PAT Peri lipinadipophilin TIP47  

PBMC Peripheral blood mononuclear cells 

PBS Phosphate buffered saline 

PFA Paraformaldehyde 

PG Prostaglandin 

PI3K Phosphoinositide-3-kinase  

PLA2 Phospholipase A2 

PMA Phorbol 12-myristate 13-acetate  

PPAR Peroxisome proliferator activated receptors  

PPRE PPAR response elements 

PRRs Pathogen recognition receptors 

PC Phosphatidylcholine 

PCR Polymerase chain reaction 

PE Phosphatidylethanolamine 

PI Phosphatidylinositol 

PS Phosphotidylserine 

PUFA Poly-unsaturated fatty acids 

RCT Reverse cholesterol transport 

ROS Reactive oxygen species 

RT-qPCR Real time quantitative PCR 

SCD1 Stearoyl CoA desaturase 

SDS Sodium dodecyl sulphate  

SFA Saturated fatty acids 

SMC Smooth muscle cells 

SOCS Suppressor of cytokine signalling 

SRA Scavenger receptor A 

SRB1 Scavenger receptor B1 

SREBP Sterol regulatory element binding protein 

SR-PSOX Scavenger receptor for phosphotidylserine and oxidised 

lipoprotein 

STAT Signal transducer and activator of transcription  

TAG Triacylglycerol 

TBE Tris/borate/EDTA  

TBHP Tert-butyl hydroperoxide  

TFA Total fatty acids 

TGF Transforming growth factor  



 

xvii 
 

TLC Thin layer chromatography 

TLR Toll-like receptor 

TNF Tumour necrosis factor 

TNFR Tumour necrosis factor receptor 

TPL Total polar lipid 

TX Thromboxane 

VCAM-1 Vascular cellular adhesion molecule 1 

VLDL Very low density lipoprotein 

WT Wild type 

  



 
 

1 
 

CHAPTER 1 

INTRODUCTION  

1.1 Cardiovascular disease and atherosclerosis 

Cardiovascular disease (CVD) causes more deaths annually than any other disease 

in Western society. It has been estimated that 17.5 million people died from CVD in 

2012 representing 31% of world deaths, with this figure set to rise to 23.3 million by 

2030 (Buckley and Ramji 2015). In addition to the predicted increase in mortality 

rates, an increase in incidence of CVD adds to the already considerable burden on 

costs to public healthcare systems (Oldridge 2008; Buckley and Ramji 2015). In 2009, 

CVD cost the UK economy £19 billion (British Heart Foundation, 2016). Given the 

predicted increase in mortality rates and the subsequent burden on healthcare 

systems, research into understanding the underlying causes of CVD and identifying 

novel targets and therapies is crucial. 

The primary cause of CVD is atherosclerosis, a chronic inflammatory disorder of the 

vasculature (Michael et al. 2012). Atherosclerosis is a progressive disease initiated 

by the accumulation of lipids in medium and large arteries, a precursor event 

providing the basis to the formation of advanced plaques (Lusis 2012). Over a number 

of years plaques can become increasingly large and complex eventually leading to 

their rupture. Plaque rupture releases large amounts of necrotic debris into the 

circulation increasing the risk of blood clots which in some circumstances can result 

in myocardial infarction and/or stroke (Lusis 2000).  

1.1.1 Mouse models 

Development of mouse models of atherosclerosis has been a critical advancement in 

understanding the factors affecting the disease and identifying new therapeutic 

targets. Apolipoprotein E deficient mice (ApoE-/-) are commonly used as a model 

system due to their ability to form spontaneous atherosclerotic lesions on standard 

chow diet (Meir and Leitersdorf 2004). ApoE is a glycoprotein synthesised mainly in 

the liver and is a component of lipoproteins (except low density lipoprotein (LDL)). 

The protein functions as a ligand for receptors which aid in the clearance of 

chylomicrons and very low density lipoproteins (VLDL) (Meir and Leitersdorf 2004). 

ApoE is also synthesised in monocytes and macrophages in the vessel wall and has 

a local effect on cholesterol homeostasis (Curtiss 2000; Greenow et al. 2005). ApoE 
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deficient mice fed a normal chow diet display five times higher plasma cholesterol 

levels, a reduced concentration and particle size of high density lipoprotein (HDL) and 

an increase in triacylglycerol (TAG), in comparison to wild type (WT) controls (Zhang 

et al. 1992). Fatty streaks and foam cell deposition in arteries are visible after three 

months and advanced lesions after eight months (Zhang et al. 1992). When fed a 

high fat diet, plasma cholesterol levels are a dramatic fourteen times higher in ApoE-

/- mice in comparison to WT mice (Plump et al. 1992). Atherosclerotic lesions are 

typically visible within just 10 weeks in the aorta and coronary and pulmonary arteries 

(Plump et al. 1992). A second commonly used mouse model is the LDL receptor 

knockout (LDLr-/-) mouse. LDLr deficiency is the cause of familial 

hypercholesterolemia in humans (Zadelaar et al. 2007). The LDLr-/- mice display a 

moderate increase in plasma cholesterol levels, with cholesterol mainly contained 

within LDL, on normal chow diet (Ishibashi et al. 1993; Zadelaar et al. 2007). High fat 

diet induces a 6-fold increase in plasma cholesterol levels, an increase in VLDL and 

LDL levels and a decrease in HDL (Ishibashi et al. 1994). In addition, after 7 months 

on a high fat diet, LDLr-/- mice develop atherosclerotic lesions in the aorta with the 

aortic valve wall thickened by a mass of cholesterol-loaded macrophages (Ishibashi 

et al. 1994).  

There are many advantages and disadvantages associated with both models of 

atherosclerosis. The plaque morphology in ApoE-/- and LDLr-/- mice are comparable 

and resemble those in the human counterparts (Zadelaar et al. 2007) so represent 

good models for the study of this disease. However, there are of course a number of 

species differences between mouse and humans which may impact on the reliability 

of these models. The levels of HDL and LDL differ significantly between the species. 

Mice have high concentrations of HDL and low levels of LDL whereas humans display 

the opposite (Zhang et al. 1992). Mice also lack the cholesterol ester transfer protein 

which transfers cholesteryl esters from HDL to VLDL and LDL (Zhang et al. 1992). 

This being said, ApoE-/- mice have remarkably similar phenotypes to that of human 

ApoE deficiency (Zhang et al. 1992) and plasma lipoprotein profile of LDLr-/- 

resembles that of humans with cholesterol mainly contained in LDL fraction (Zadelaar 

et al. 2007). Deficiency of ApoE also has an effect on other processes. ApoE can be 

synthesised locally by macrophages where it can play a role in inflammation, 

monocytosis, reverse cholesterol transport and oxidation of LDL (Curtiss 2000; 

Ruston and Drevon 2001; Baitsch et al. 2008; Murphy et al. 2011; Westerterp et al. 

2013). With these processes disrupted in ApoE-/- mouse models, limitations lie in 

studying pathways associated with these processes. Despite the drawbacks of these 
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mouse models, they have been widely used in the study of atherosclerosis and have 

benefited the field immeasurably.   

1.1.2 Risk factors 

Atherosclerosis is a complex disease with a number of risk factors both at a genetic 

and environmental level. Elevated blood pressure, history of family obesity and 

diabetes together with gender are examples of genetic factors linked to 

atherosclerosis (Lusis 2000). Environmental factors include high fat diet, smoking and 

low exercise levels (Lusis 2000). Table 1.1 details some of the risk factors in more 

detail. Given the importance of lipids and inflammation in atherosclerosis, these 

factors will be discussed further in more detail.  
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Table 1.1 – Details of genetic and environmental risk factors and their 

association with atherosclerosis 

Risk Factor Role in disease   

Genetic  

Mutations Familial hypercholesterolemia – mutation in the LDLr gene that 

increases levels of LDL (Lusis et al. 2004). Mutation in the ApoA1 

gene results in reduced levels of HDL (Lusis et al. 2004) 

Age Increased vascular stiffness, hypertension, pro-inflammatory 

signalling and cellular senescence linked to increase in 

atherosclerosis (Wang and Bennett 2012) 

Inflammation Elevated levels of C reactive protein (CRP) linked to an increase in 

CVD (Lusis 2000) 

Disease Obesity and type 1 diabetes increase risk of CVD (Lusis 2000) 

Gender Men under 60 are twice as likely to develop atherosclerosis than 

women (Lusis 2000) 

Environmental   

Smoking Increase inflammation, thrombosis and oxidative stress (Ambrose 

and Barua 2004) 

High 

cholesterol  

Elevated levels of LDL causes endothelial activation and initiation 

of foam cell formation (Lusis 2000) 

Exercise Lack of exercise has significant association with development of 

CVD. Increased exercise has an athero-protective role (Okabe et 

al. 2006) 
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1.2 Lipids in atherosclerosis 

Atherosclerosis is the result of dysfunctional lipid metabolism and is characterised by 

the accumulation of lipid-rich plaques in the walls of medium and large arteries (Lusis 

et al. 2004). The importance of lipids in atherosclerosis can be gauged by the 

reduction in CVD mortality that has been achieved with statins, which inhibit the 

biosynthesis of cholesterol. Currently, statins are the most successful therapy used 

in combatting atherosclerosis and other CVD’s. Statins work by inhibiting  3-

hydroxymethylglutaryl CoA reductase (HMG-CoAR), a key enzyme in the de novo 

synthesis of cholesterol, thereby decreasing the levels of cholesterol and LDL in 

circulation (Michael et al. 2012). It has also been observed that statins act to increase 

levels of HDL in circulation, regulate the expression of macrophage scavenger 

receptors and reduce levels of both oxidative stress and oxidised LDL (oxLDL) (Jain 

and Ridker 2005). Given the key role of lipids in the disease, it is important to 

understand their function in the body during physiological and pathophysiological 

conditions.  

1.2.1 Fatty acids 

Fatty acids are produced during the metabolism of dietary lipids or by de novo 

synthesis. They are composed of a polar carboxyl head group attached to a long 

hydrophobic hydrocarbon chain. Hydrocarbon chains can be saturated or 

unsaturated. Saturated hydrocarbon chains are straight with, usually, an even 

number of carbons (between 12 and 22) (Ruston and Drevon 2001). Fatty acids are 

named after the length of the hydrocarbon chain. The carbon atoms are either 

numbered from the carboxyl terminal, using the delta numbering system, or from the 

methyl end using the omega system (Pelley 2011). A list of the most common fatty 

acids is shown in Table 1.2.  

Unsaturated hydrocarbon chains can contain one or more double bond. Their 

systematic names are followed by the ‘enoic’ suffix and the position of the double 

bond (numbered from the methyl end) (Vasudevan 2013). Shorthand notations are 

also used with the number of carbons followed by the number of double bonds and 

the position of those double bonds from the methyl end. For example, unsaturated 

fatty acids with a double bond between the 3rd and 4th carbons from the methyl end 

are named omega-3 (or n-3) fatty acids.  The omega-3 fatty acid EPA has the 

shorthand 20:5n3 and the chemical name cis-5, 8, 11, 14, 17-eicosapentaenoic acid. 

EPA has 20 carbons and 5 double bonds at positions 5, 8, 11, 14 and 17 (using the 

delta system), with the position of the first double bond at carbon 3 (using the omega 
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system). The presence of a double bond ‘kinks’ the chain and restricts mobility 

(Ruston and Drevon 2001).  

Unsaturated fatty acids named monounsaturated fatty acids (MUFA) contain one 

double bond which can be in the cis or trans orientation. The most common MUFAs 

have a double bond in the cis orientation and a chain length between 16 to 22 (Ruston 

and Drevon 2001). Trans MUFA can be produced in industrial processing of 

unsaturated oils. Cis MUFA are less thermo stable and have a lower melting point 

than trans MUFA (Ruston and Drevon 2001).  

Polyunsaturated fatty acids (PUFA) contain one or more double bonds. They are 

synthesised in plants and phytoplankton and some are essential to higher organisms 

such as mammals and therefore must be obtained in the diet (Ruston and Drevon 

2001). For example, omega-3 and omega-6 PUFAs are not synthesised in the human 

body but are essential nutrients. Once obtained from the diet, PUFA can be 

metabolised by the addition of carbon and the removal of hydrogen (desaturation) 

(Ruston and Drevon 2001) by enzymes to produce a number of different products. 

Enzymes synthesised in the human body can only add new double bonds within 10 

carbons from the carboxylic end of fatty acid chains, therefore cannot enzymatically 

create the double bond at the omega-3 and -6 positions (Neitzel 2010).  

Fatty acids can be incorporated into various lipid structures that are used to make up 

cellular membranes and provide energy storage. In addition, fatty acids are important 

signalling molecules. Fatty acid signalling will be discussed in detail in Section 1.4.2.  
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Table 1.2 – Common naturally occurring fatty acids 

Chemical name Shorthand Common name Abbreviation 

Tetradecanoic 14:0 Myristic acid - 

Hexadecanoic 16:0 Palmitic acid - 

Cis-9-hexadecenoic  16:1n7 Palmitoleic acid - 

Cis-7-hexadecenoic 16:1n9 - - 

Octadecanoic  18:0 Stearic acid - 

Cis-11-octadecenoic 18:1n7 Cis-Vaccenic acid - 

Cis-9-octadecenoic 18:1n9 Oleic acid - 

Cis-9,12-octadecadienoic 18:2n6 Linoleic acid LA 

Cis-9,12,15-octadecatrienoic 18:3n3 α-Linolenic acid ALA 

Cis-6,9,12-octadecatrienoic 18:3n6 γ-Linolenic acid GLA 

Cis-8,11,14-eicosatrienoic 20:3n6 Dihomo-γ-linolenic 

acid 

DGLA 

Cis-5,8,11,14-eicosatetraenoic 20:4n6 Arachidonic acid AA/ARA 

Cis-5,8,11,14,17-

eicosapentaenoic 

20:5n3 Eicosapentaenoic 

acid 

EPA 

Cis-7,10,13,16,19-

docosapentaenoic 

22:5n3 Docosapentaenoic 

acid 

DPA 

Cis-4,7,10,13,16,19-

docosahexaenoic 

22:6n3 Docosahexaenoic 

acid 

DHA 
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1.2.1.1 Membrane lipids; Glycerophospholipids 

The glycerophospholipids are composed of fatty acids esterified to a glycerol 

backbone at the sn-1 and sn-2 position with a  phosphate and additional group at the 

3-position (Brown and Marnett 2011) (Figure 1.1). Glycerophospholipids, or 

phospholipids, are the main components of eukaryotic membranes along with various 

other protein and carbohydrate molecules. Different head groups allow for numerous 

phospholipids; phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

Phosphatidylserine (PS) and phosphatidylinositol (PI) being the most common in 

eukaryotic membranes.  Cleavage from phospholipids allow fatty acids and their 

metabolites to act as lipid messengers in signal transduction pathways (van Meer et 

al. 2008).  

 

 

 

 

 

 

 

Figure 1.1 - Basic structure of a glycerophospholipid.  

Numerous combinations of fatty acid groups attached to a glycerol backbone allow for a wide 

range of lipid diversity. Amino alcohol group can include choline, ethanolamine or serine, 

which form PC, PE and PS respectively.  

 

1.2.1.2 Lipid storage; triacylglycerol (TAG)  

Due to their reduced state, fatty acids can be used for energy storage. The primary 

lipid structure used for energy storage is triacylglycerol in lipid droplets (van Meer et 

al. 2008). This structure is composed of three fatty acids bound to a glycerol backbone 

(Figure 1.2). These structures are useful energy stores due to the supply of carbon in 

fully reduced form which will yield maximum energy when undergoing oxidation.  
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Figure 1.2 – Basic diagram of TAG 

Fatty acids provide a source of carbon in reduced form available for oxidation. 

 

1.2.1.3 Cholesterol 

Cholesterol is a sterol with important roles in membrane fluidity and lipid raft assembly 

and function (McLaren et al. 2011a). See Figure 1.3 for structure. High concentration 

of cholesterol in the body is a major risk factor in atherosclerosis. Cholesterol can be 

obtained from dietary lipids or synthesised in the liver (McLaren et al. 2011a). 

Cholesterol is synthesised from acetate in series of enzymatic reactions. An important 

regulatory step in synthesis is the enzyme HMG-CoAR which generates mevalonate 

(Ikonen 2006). 

 

 

 

 

 

 

 

Figure 1.3 – Structure of cholesterol 

Cholesterol is composed of a fused tetracyclic ring. It is an important component of cell 

membranes (especially plasma membranes) and lipid rafts. 
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1.2.2 Lipid metabolism and transport  

Lipid transport around the body is a complex process with numerous enzymes and 

lipoproteins playing a role. It is important to understand the process in order to target 

potential imbalances that may contribute to atherosclerosis. Cholesterol metabolism 

and transport around the body, as well as fatty acids and TAG, play a key role in the 

pathology of atherosclerosis.   

1.2.2.1 Role of lipoproteins 

Lipids are transported through the circulation with the aid of proteins. These 

complexes are termed lipoproteins (Lusis et al. 2004). Lipoproteins are composed of 

a monolayer of hydrophilic lipids (i.e. phospholipids and free cholesterol) surrounding 

a core of hydrophobic lipids (triacylglycerols and cholesteryl esters) (Figure 1.4).  

They also contain apolipoprotein molecules which function in the packaging and 

secretion of lipids from cells, as well as ligands for cellular receptors (Lusis et al. 

2004). Types of lipoproteins include chylomicrons, VLDL, intermediate density 

lipoprotein (IDL), LDL and HDL. The type of lipoprotein a lipid is packaged into is 

dependent on the source of the lipid.  For example, chylomicrons are primarily used 

in the transport of dietary TAG from the intestine for use in peripheral tissues (Ikonen 

2006; Buckley and Ramji 2015). On the other hand, cholesterol synthesised in the 

liver is packaged into VLDL. IDL and LDL are formed from VLDL in a series of 

reactions catalysed by lipoprotein lipase (LPL) and hepatic lipase (HL) that hydrolyse 

the TAG component (McLaren et al. 2011a). LDL functions to carry cholesterol to 

peripheral tissues where it can be used in membranes or for the synthesis of steroid 

hormones. Finally, HDL acts as a carrier to return any excess cholesterol back to the 

liver for catabolism and excretion (van der Velde 2010). Levels of circulating 

lipoproteins have been linked to atherosclerosis. Increased levels of LDL in the blood 

and lower circulating HDL have both been linked to an increased risk of 

atherosclerosis (McLaren et al. 2011a).   
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Figure 1.4 – Structure of lipoprotein particles 

Phospholipid monolayer encases a core of TAG and cholesteryl ester. Apoliproteins differ 

depending on the lipoprotein. They influence structural and functional properties of the 

particle. Taken from (Wasan et al. 2008). 

 

The process of cholesterol transport is summarised in Figure 1.5. Cholesterol,  TAG 

and fatty acids from dietary origin are absorbed through the intestine (Lusis et al. 

2004). Dietary TAG are hydrolysed into fatty acids and monoglycerides and together 

with bile acids, form micelles in the intestinal lumen (Ikonen 2006; Georgiadi and 

Kersten 2012). Fatty acids are then re-esterified to TAG and along with cholesterol, 

are packaged into chylomicrons containing Apo-B, -A, -C and -E (McLaren et al. 

2011a). Chylomicrons are subject to lipolysis by LPL, located on the capillary 

endothelium (Georgiadi and Kersten 2012), releasing free non esterified fatty acids 

and 2-monoacyl glycerol for uptake by various tissue types. The majority of fatty acids 

taken up by tissues are TAG-derived fatty acids or free fatty acids (Georgiadi and 

Kersten 2012).  

Circulating adipose-derived free fatty acids and remnant chylomicron particles are 

taken up largely by the liver. Newly synthesised TAG and cholesterol in the liver are 

packaged into VLDL containing ApoB100. VLDL gains Apo-A, -C and -E from 

circulating HDL. The TAGs in VLDL undergo lipolysis in circulation by LPL and HL to 
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form IDL followed by LDL (Buckley and Ramji 2015). LDL, an apolipoprotein B (ApoB) 

containing  lipoprotein, is the primary cholesterol carrier in the blood (Lusis et al. 

2004). The ApoB constituent of LDL allows recognition of the lipoprotein particle by 

the LDLr expressed on the cell surface and subsequent receptor-mediated 

endocytosis. LDL is internalised into lysosomes where cholesteryl ester and TAG are 

hydrolysed (Buckley and Ramji 2015). The expression of LDLr is under negative 

feedback inhibition in order to control the amount of LDL, and therefore cholesterol 

and TAG, uptake by cells (Ghosh et al. 2010). Elevated levels of circulating LDL 

increase the risk of accumulation of the lipid-rich particles in the artery walls, a key 

mechanism in atherosclerosis.  

Cholesteryl esters released from LDL are hydrolysed by lysosomal acid lipase to free 

cholesterol. When in excess, free cholesterol can be re-esterified by the enzyme 

acetyl-coenzyme A acetyltransferase (ACAT). Cholesteryl esters reduce the solubility 

of the molecule and promote storage into lipid droplets located in the cytoplasm 

(Buckley and Ramji 2015). The process depends on the availability of fatty acids and 

cholesteryl ester hydrolysis, which are dependent on the enzymes carnitine 

palmitoyltransferase-1 (CPT-1) and neutral cholesterol ester hydrolase (nCEH) 

respectively. In addition to this, storage of excess TAG and cholesterol into lipid 

droplets is promoted by the activity of adipocyte differentiation-regulated protein 

(ADRP), which induces their synthesis and prevents removal from the cell (McLaren 

et al. 2011a). An accumulation of cholesteryl esters and TAG play an important role 

in atherosclerosis. Under normal circumstances however, excess cholesterol is 

efficiently dealt with by cellular homeostatic mechanisms.  
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Figure 1.5 – Overview of cholesterol transport  

Lipids obtained from the diet are packaged into chylomicrons and after lipolysis by LPL, are 

taken up by peripheral tissues. Remnant dietary lipids and chylomicrons are transported to 

the liver for catabolism or repackaging (1). Along with lipids synthesised in the liver, these are 

packaged into VLDL (2) containing ApoB and ApoE (E3). VLDL is hydrolysed to IDL and then 

LDL by the action of lipases. ApoB allows for binding of LDL particles to LDLr, internalisation 

and subsequent degradation in the lysosome (Lusis et al. 2004). Scavenger receptors such 

as scavenger receptor A (SRA) and cluster differentiation 36 (CD36) present on macrophages 

bind and internalise modified forms of LDL in an unregulated manner (3). Lysosomal acid 

lipase hydrolyses the cholesteryl esters packaged in LDL to free cholesterol (4). Free 

cholesterol has two fates; transport out of cell or storage in lipid droplets. Free cholesterol can 

be removed from the cell by reverse cholesterol transport (RCT) using ATP binding cassette 

(ABC) transporters such as ABCA-1 and scavenger receptor B1 (SR-B1) (van der Velde 2010) 

(5). Free cholesterol is packaged into HDL with its ApoA component, and delivered to the liver 

(6). Alternatively, free cholesterol is re-esterified by ACAT-1 in the endoplasmic reticulum. This 

re-esterified cholesterol can by hydrolysed to free cholesterol by nCEH and removed by RCT 

or stored as lipid droplets in the cytoplasm (Ikonen 2006) (7). The latter is regulated by ADRP.  

The availability of fatty acids for cholesterol ester accumulation is under the control of CPT-1. 

Niemann-Pick type C (NPC) proteins, NPC-1 and NPC-2 act to regulate cholesterol trafficking 

around the cell (Buckley and Ramji 2015). Taken from Buckley and Ramji, 2015. 
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1.2.2.3 Reverse cholesterol transport (RCT) 

Excess cholesterol within cells is toxic and can be removed from the periphery to the 

liver and intestine for catabolism and excretion (van der Velde 2010). The primary 

pathway by which this is achieved is RCT. Free cholesterol can be removed from 

cells using a number of transporter proteins. These include the ABC transporter 

proteins; ABCA1 and ABCG1 (Chinetti-Gbaguidi and Staels 2009; Buckley and Ramji 

2015). Scavenger receptor SR-B1 can also act to promote cholesterol efflux. This 

receptor has a dual role, however, as it also acts to bind and internalise modified LDL 

and, therefore, its role in atherosclerosis is controversial (McLaren et al. 2011a). 

Cholesterol is captured by HDL particles where it is esterified (McLaren et al. 2011a). 

HDL complexes are formed in the circulation from remnants of chylomicron and 

VLDL, ApoA1 and precursor molecules (secreted by the liver and intestine) (Lusis et 

al. 2004).  Lecithin cholesterol acyl transferase (LCAT) is present on the surface of 

HDL and has the ability to catalyse the formation of cholesteryl esters by transferring 

fatty acids from phospholipids to free cholesterol (van der Velde 2010). This converts 

nascent HDL particles to smaller HDL3 particles. The mature HDL3 can deliver its 

contents directly to the liver or transfer its cholesteryl ester to ApoB-containing 

lipoproteins (Ng 2006). HDL3 particles remove some of its cholesteryl ester to LDL or 

VLDL, in exchange for TAG catalysed by the enzyme cholesteryl ester transfer protein 

(CETP), and are taken up by the liver by the LDLr receptor (Ng 2006). The remaining 

HDL particle, following acquisition of TAG and additional apoliprotein molecules, 

forms an even smaller HDL2 particle which are delivered to the liver (McLaren et al. 

2011a). Once at the liver, hepatocytes can take up HDL cholesteryl ester in a number 

of ways; uptake of whole HDL2 particles, selective uptake of cholesteryl esters by SR-

B1 or finally transfer of cholesteryl ester to LDL for uptake by LDLr. Cholesteryl ester 

can be hydrolysed and removed from the body as bile acids and neutral steroids in 

bile (McLaren et al. 2011a). 
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1.3 Inflammation in atherosclerosis 

The link between atherosclerosis and lipids has been regarded as the major 

underlying cause of the disease for many years due to the key association with 

cholesterol. This concept has now been extended to consider atherosclerosis as an 

inflammatory disease involving the immune system with inflammation initiated by 

dysfunctional lipid homeostasis (Libby 2012). 

As discussed previously in Section 1.2 statins are currently widely used in the 

treatment of atherosclerosis due to their lipid-lowering effects. In addition to this, it 

has been suggested that they may also have anti-inflammatory actions unrelated to 

their primary use.  In a study of high-risk patients with hyperlipidaemia, treatment with 

atorvastatin reduced the expression of a key inflammatory marker of atherosclerosis, 

CRP. This decrease in CRP was unrelated to the expected decrease in total 

cholesterol and LDL levels (Gomez-Gerique et al. 2002). Another study performed in 

ApoE-/-/LDLr-/- mice indicated that alongside the reduction in plasma LDL, treatment 

with atorvastatin also decreased the expression of MCP-1, intercellular adhesion 

molecule 1 (ICAM-1) and vascular cellular adhesion molecule 1 (VCAM-1) (Nachtigal 

et al. 2008). It therefore seems that statins have an unexpected dual role in the 

treatment of atherosclerosis targeting both inflammation and cholesterol levels. 

Despite the beneficial role of statins, there are various limitations associated with 

them. The maximum reduction in mortality from CVD that can be attributed to 

treatment with statins is 30%, with some individuals unresponsive to treatment and 

failing to attain target LDL levels even with the maximal dose (Mishra and Routray 

2003). In addition to this, side effects of statins can include liver toxicity and muscle 

pain (Mishra and Routray 2003). Given the drawbacks of statins and the ever 

increasing risk of CVD and atherosclerosis, it is crucial that new therapeutic targets 

are developed. The association between inflammatory mechanisms and 

atherosclerosis suggests that the use of anti-inflammatory agents would aid in the 

prevention and the treatment of the disease (Paoletti et al. 2004).  

Acute inflammation is a normal response mechanism in the body to provide protection 

against invading pathogens. Activation of an immune response involves numerous 

cell types and regulation of many signalling pathways (Calder 2012). Normally, the 

process is regulated by negative feedback mechanisms to ensure no excess damage 

occurs. However loss of regulatory processes results in chronic inflammation (Calder 

2002), a feature important in the pathology of atherosclerosis. In vivo microscopic 

studies of atherosclerotic mice indicate the adhesion and transmigration of immune 
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cells across the endothelial surface of arteries (Eriksson et al. 2001), a key 

inflammatory  process in the initiation stage of atherosclerosis.  Under the control of 

cytokines and chemokines, continued recruitment of immune cells and development 

of lipid-rich foam cells contributes to a growing necrotic core. As atherosclerosis 

progresses and plaques develop, inflammatory mediators can act to weaken the 

fibrous cap that encapsulates the atherosclerotic plaque, possibly leading to plaque 

rupture and thrombosis (Paoletti et al. 2004). Inflammation is therefore important at 

all stages of atherosclerosis.  Many cell types play a role in the initial inflammatory 

response in atherosclerosis as well as contributing to plaque formation. These include 

monocytes, endothelial cells, lymphocytes, dendritic cells and smooth muscle cells 

(Moore et al. 2013).  Substantial research has focused on macrophages due to their 

role in ‘foam cell’ formation, the central inflammatory process leading to formation of 

fatty streak in arteries, the foundation of advanced plaques (Moore et al. 2013). The 

association between inflammatory mechanisms and atherosclerosis suggests the 

promising potential of anti-inflammatory drugs to aid in the prevention and treatment 

of the disease (Paoletti et al. 2004).   

1.3.1 Macrophage foam cell formation  

1.3.1.1 Initiation/endothelial cell activation 

The primary event leading to the initiation of an immune response in atherosclerosis 

pathology is the accumulation and retention of ApoB containing lipoproteins, for 

example LDL, in the sub endothelial matrix in the intima of arteries (McLaren et al. 

2011a; Lusis 2012). The endothelium lining the walls of arteries functions as a 

selective barrier between blood and tissues and can generate signalling molecules 

that act to regulate thrombosis, inflammation, vascular tone and remodelling (Lusis 

2000).  LDL passively diffuses through endothelial cell junctions particularly in areas 

of arterial curvature where blood flow is disturbed and endothelial cells have irregular 

polygonal shapes (Lusis 2000). Retention of LDL in the arterial wall is maintained 

through an interaction between the ApoB constituent of lipoproteins and matrix 

proteoglycans (Lusis et al. 2004) (Figure 1.6).  

Once retained in the arterial matrix, LDL is susceptible to modification. Lipid 

peroxidation of LDL is one of the earliest events in atherosclerosis (Matsuura et al. 

2008). As discussed in Section 1.2.2.1, LDL contains free cholesterol, cholesteryl 

esters, phospholipids and triacylglycerols which are vulnerable to oxidation (Tsimikas 

and Miller 2011). In addition to this, ApoB can also be oxidised at numerous exposed 

tyrosine and lysine amino acid residues (Tsimikas and Miller 2011). LDL oxidation 
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can occur through a number of different mechanisms including free radical oxidation 

and enzymatic oxidation by reactive oxygen species (ROS), nitric oxide (NO) and 

lipooxygenase (LOX) (Tsimikas and Miller 2011). Modified LDL can induce an 

immune response due the peroxidation of lipids creating reactive oxidation species. 

This promotes endothelial dysfunction, activation of endothelial cells and recruitment 

of monocytes (Matsuura et al. 2008; Wraith et al. 2013). In the initial stages of 

atherosclerosis, LDL oxidation is low and modifications to LDL are termed minimally 

modified LDL (mmLDL) (Berliner et al. 1990). As atherosclerosis advances, highly 

oxLDL is present in plaques (Berliner et al. 1990). In contrast to oxLDL, mmLDL are 

not recognised by scavenger receptors (Miller et al. 2003). However, current theory 

suggests mmLDL initiates an immune response (Moore and Freeman 2006).   

1.3.1.2 Monocyte recruitment  

Accumulation of modified LDL in the artery wall stimulates endothelial cells to initiate 

an immune response resulting in the release of pro-inflammatory signalling 

molecules, chemokines, cytokines and expression of adhesion proteins (Lusis 2000). 

Cytokines play an important role in atherosclerosis and will be discussed in more 

detailed in Section 1.4.1. Leukocytes, including neutrophils, T lymphocytes, B cells, 

mast cells, natural killer cells, dendritic cells and monocytes, are activated as part of 

the immune response and recruited to the site of activation (Galkina and Ley 2009). 

Each play an important role in inflammatory mechanisms underlying atherosclerosis 

and have both resolving and contributing effects (Galkina and Ley 2009). The role of 

monocyte-derived macrophages has been well characterised in atherosclerosis given 

their role in the formation of foam cells. Atherosclerotic plaques contain a mass core 

of macrophage foam cells and are the main constituent of the plaque (Aqel et al. 

1985; Gown et al. 1986; Yano et al. 2000).  

Monocytes are recruited to the activated endothelium down a chemoattractant 

gradient (Denholm and Lewis 1987), the process is summarised in Figure 1.6. 

Numerous chemotactic factors are released which act to attract monocytes to the site 

of activation. MCP-1 is key to monocyte recruitment and a marker of inflammation. 

Rolling and tethering of monocytes along the endothelium is achieved through the 

expression of selectins, a family of adhesion proteins (Bobryshev 2006). P-selectin 

and E selectin are expressed on the endothelium while L-selectin is found on the 

surface of monocytes, all recognising carbohydrate ligands (Bobryshev 2006). Firm 

adhesion is obtained through an interaction between integrins β1 and β2 expressed 

on monocytes and ICAM-1 and VCAM-1 expressed by endothelial cells (Bobryshev 
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2006). Monocytes can then transmigrate through the endothelial cell junctions and 

into the arterial matrix where they undergo differentiation into macrophages.  

 

 

 

 

 

 

 

Figure 1.6 - Overview of foam cell formation 

Retention of ApoE-containing lipoproteins, including LDL, in the arterial wall initiates an 

inflammatory response (Libby 2012) involving the release of numerous cytokines and 

chemokines by endothelial cells. As a result, monocytes are recruited to the arterial wall and 

transmigrate into the arterial intima where they are induced to differentiate into macrophages 

(Bobryshev 2006). Macrophages internalise large, unregulated amounts of modified LDL 

leading to an accumulation of cholesteryl esters as lipid droplets and thereby transforming 

them into ‘foam cells’ (Bobryshev 2006). Over time foam cells aggregate and contribute to a 

necrotic core (Lusis 2012). Apoptosis of foam cells, accumulation of extracellular lipids and 

cellular debris continue to build up in the necrotic core (Bobryshev 2006). Smooth muscle cells 

migrate from the media to the intima to form a fibrous cap overlaying the necrotic core and 

leads to the formation of an atherosclerotic plaque (Lusis 2012).  

 

1.3.1.3 Macrophage differentiation and heterogeneity 

Differentiation of monocytes into macrophages is largely regulated by the chemokine 

macrophage colony stimulating factor (M-CSF) (Bobryshev 2006), released by 

endothelial cells as part of the inflammatory response. Macrophages are 

heterogeneous in nature and have a wide variety of roles. Their phenotypes are 
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commonly classified into two broad subsets, classically activated M1 or alternatively 

activated M2 (Johnson and Newby 2009). Classification into these sub sets is often 

determined by analysis of complex gene and protein expression profiles (Moore and 

Tabas 2011). The M1 phenotype is in general associated with pro-inflammatory 

mechanisms, while M2 can play an anti-inflammatory role (Johnson and Newby 

2009). M1 macrophage polarisation is activated by pro-inflammatory stimuli, 

commonly interferon-γ (IFN-γ), lipopolysaccharide (LPS) and  tumour necrosis factor 

α (TNF-α) and results in expression of  interleukin-12 (IL-12), IL-1, IL-6 and inducible 

nitric oxide synthase (iNOS) (Martinez and Gordon 2014). They are key to innate 

immunity and act in killing of intracellular pathogens. M2 macrophages are classically 

activated by IL-4, IL-13 and produce the anti-inflammatory cytokine IL-10. They have 

a number of roles in allergic response, immunoregulation, matrix deposition and 

tissue remodelling (Martinez and Gordon 2014). The classification of macrophages 

into these two subsets is very general and it is likely that the groups can be further 

divided and additional phenotypes exist (Johnson and Newby 2009). Understanding 

the involvement of M1 and M2 macrophages in atherosclerosis is complex and not 

fully understood. Atherosclerotic lesions accumulate both subsets of macrophages 

(Stoger et al. 2012). M1 macrophages are dominant at rupture prone regions of 

plaque, while the vascular adventitia indicated macrophages comparable to a M2 

profile (Stoger et al. 2012). There was no difference between the groups at the fibrous 

cap and foam cell macrophages displayed an overlap of both M1 and M2 markers 

indicating that both subsets were present (Stoger et al. 2012). The heterogeneity of 

macrophages is complex and further evaluation is needed to determine the roles of 

M1 and M2 in disease.  

1.3.1.4 Macrophage foam cells  

Macrophages are bone marrow-derived phagocytes which act to scavenge foreign 

particles around the body. To do this macrophages express a number of pattern-

recognition receptors (PRRs) including scavenger receptors (SR) and toll-like 

receptors (TLR) to recognise and bind foreign particles (Libby 2012). Scavenger 

receptors are a family consisting of 8 structurally unrelated receptors which along with 

their role in immunity, possess the ability to bind modified LDL (Moore and Freeman 

2006). Uptake of LDL in most peripheral tissues is under the control of the LDLr. 

Feedback inhibition mechanisms prevents excessive uptake (Ghosh et al. 2010). 

Expression of scavenger receptors however is not under negative feedback control 

by cellular cholesterol content (Chinetti-Gbaguidi and Staels 2009) therefore these 

receptors can continually bind and internalise LDL. SRA and CD36 among others 
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have been directly linked to atherosclerosis (Moore and Freeman 2006; Kuchibhotla 

et al. 2008).  

Uptake of modified LDL however, is not completely a receptor-dependant process as 

lipid uptake by macrophages can occur in the absence of CD36 and SRA (Kruth et 

al. 2002; Moore et al. 2005). Macrophages can also uptake large unregulated 

amounts of modified LDL through a mechanism of macropinocytosis (Michael et al. 

2013). Macropinocytosis is a form of fluid phase endocytosis which allows for uptake 

of modified LDL and native LDL in large, unregulated amounts by formation of 

endocytic vesicles (Swanson and Watts 1995; Jones and Willingham 1999; Kruth et 

al. 2002). 

Once LDL has been taken up by macrophages, the lipoprotein is degraded and a 

mass of cholesteryl esters and TAG released (Ghosh et al. 2010). Normally, cells can 

remove any excess cholesterol to the liver to be degraded via reverse cholesterol 

transport mechanisms (discussed in detail in Section 1.2.2.3). The excessive uptake 

of cholesterol by macrophages causes an imbalance between influx and efflux of 

cholesterol, in favour of influx. This results in an accumulation of cholesteryl ester 

which is stored in lipid droplets in the cytoplasm (Ghosh et al. 2010). Lipid droplets 

under the microscope give macrophages a ‘foamy’ appearance leading to them being 

termed foam cells. 

1.3.2 Additional roles of macrophages 

In atherosclerosis, macrophages have a number of important roles. In addition to 

foam cell formation, macrophages present in atherosclerotic plaques can contribute 

further to the inflammatory response (McLaren et al. 2011a). Resident plaque 

macrophages produce chemokines and cytokines which act to recruit further 

monocytes and promote diapedesis into the lesion (Charo and Taubman 2004; 

Zernecke et al. 2008). For example, the chemokine MCP-1 is expressed from 

macrophages on stimulation with pro-inflammatory cytokines IFN-γ and TNF-α 

(Charo and Taubman 2004; Popa et al. 2007; McLaren and Ramji 2009). 

Macrophages can also express matrix metalloproteinases (MMPs) which act to 

breakdown structural components of the extracellular matrix (ECM) of a 

atherosclerotic plaque and increase the risk of rupture (Newby 2008). In addition, 

macrophages have been indicated to promote the migration of smooth muscle cells 

(SMCs) to growing lesions (Rudijanto 2007) and induce their apoptosis which once 

again increases the risk of plaque rupture (Boyle et al. 2001).  
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1.3.3 Smooth muscle migration and plaque progression 

Over time foam cells undergo apoptosis due to the lack of nutrients available for them 

to survive and toxicity by intracellular cholesterol (McLaren et al. 2011a) and release 

their lipid-rich mass into an increasingly large necrotic core (Lusis et al. 2004). As 

discussed above in Section 1.3.2, expression of various growth factors and cytokines 

from resident plaque macrophages promotes the activation of SMCs and their 

migration (Rudijanto 2007). SMCs themselves can also form foam cells through the 

uptake of modified forms of LDL by scavenger receptors expressed on their surface. 

Accumulation of foam cells in the arterial intima cause cells to aggregate forming ‘fatty 

streaks’ in the artery wall. Fatty streaks are not clinically significant but are the 

underlying foundations of advanced plaques (Lusis 2000). They are characterised by 

macrophage- and SMC-derived foam cells and other immune cells such as T cells 

(Buckley and Ramji 2015). 

The formation of an intermediate lesion is characterised by an increase in SMC 

migration and proliferation into the inflamed area. SMCs continue to migrate from the 

tunica media of the artery wall into the intima and proliferate forming a fibrous cap 

surrounding the growing plaque (Rudijanto 2007; McLaren et al. 2011a; Michael et 

al. 2012) Resident macrophages and SMCs can produce various proteins including 

collagen, elastin, glycoproteins and proteoglycans (Katsuda and Kaji 2003) to form 

the ECM of the plaque. Stable plaques are identified by the presence of a fibrous cap 

overlying the growing lesion, supported by an ECM (Buckley and Ramji 2015). 

1.3.4 Plaque rupture 

A key event in the formation of advanced atherosclerotic plaques is failure to resolve 

inflammation (Tabas 2010). This includes failure to supress infiltration of inflammatory 

cells, efferocytosis (clearance of apoptotic cells) and egress of inflammatory cells 

from the arterial wall (Tabas 2010). As atherosclerosis advances, foam cells continue 

to contribute to the lipid-rich necrotic core and plaques become increasingly complex 

with calcification and ulceration at the luminal surface (Lusis 2000). Large plaques 

can protrude into the arterial lumen reducing blood flow, moreover large plaques are 

increasingly unstable and are at risk of rupture (Lusis et al. 2004). Growth factors and 

cytokines expressed in the inflammatory response induces apoptosis of SMC (Boyle 

et al. 2001) causing thinning of the fibrous cap (McLaren et al. 2011a). ECM 

degrading enzymes, including MMPs, are released from apoptotic SMCs and resident 

macrophages which breakdown the ECM network of the plaque. Both these 

processes destabilise the plaque which often results in rupture and the release of the 

lipid-rich necrotic core into the circulation (Michael et al. 2012). Once released into 
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the circulation, the mass of lipid and dead cells is exposed to coagulating factors 

present in the blood resulting in thrombosis. This can cause restriction of blood and 

oxygen to vital organs and ultimately myocardial infarction and stroke (Michael et al. 

2012).  

1.4 Signalling in atherosclerosis 

In atherosclerosis, a number of changes in key signalling pathways occur, which 

results in altered gene expression and contributes to lesion formation. In response to 

extracellular stimuli (cytokines, chemokines, hormones and lipid mediators) utilising 

cellular receptors, signalling pathways can be up or down regulated. A number of key 

components in signalling pathways have been implicated in the pathology of 

atherosclerosis. Examples include; extracellular signal-regulated kinase (ERK), p38, 

c-Jun N terminal kinases (JNKs) (all form the mitogen-activated protein kinases 

(MAPKs) signalling cascade), nuclear factor кB (NF-кB) and phosphoinositide-3-

kinase (PI3K). The roles of these pathways in the disease are detailed in Table 1.3. 
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Table 1.3 – Pathways activated in atherosclerosis and their role in the disease 

Pathway Role in atherosclerosis 

ERK1/2 IFN-γ mediated uptake of modified LDL and expression of MCP-1 is 

attenuated by ERK1/2 inhibition in macrophages (Li et al. 2010). 

Immunofluorescence in rabbit atherosclerotic lesions revealed 

ERK1/2 localised to cap and base of plaques. Expression was 3 fold 

higher and activity 3-5 fold higher in comparison to normal vessel. 

LDL-induced SMC proliferation was abrogated when ERK was 

inhibited in vitro (Hu et al. 2000). Inhibition of ERK1/2 in macrophages 

significantly increased cholesterol efflux to ApoA1 and HDL via an 

increased expression of ABCA1 (Zhou et al. 2010). In ApoE-/- mice 

combined ERK1/2 inhibition and liver X receptor (LXR) activation 

reduced macrophage accumulation in the aorta and formation of foam 

cells and induced RCT thereby decreasing atherosclerotic lesions 

(Chen et al. 2015).  

p38 Patients with atherosclerosis receiving high doses of p38 inhibitor 

demonstrate reduced vascular inflammation in the most inflamed 

regions (Elkhawad et al. 2012). ApoE-/- mice receiving another p38 

inhibitor showed a significant reduction in progression of 

atherosclerosis (Seeger et al. 2010). In macrophages, p38 increased 

LDL uptake, cellular cholesterol levels and cholesteryl ester 

accumulation (Mei et al. 2012). Moreover in ApoE-/- mice with 

macrophage deficient p38-α, atherosclerotic plaques contained 

significantly less collagen and a thin fibrous plaque indicating a role 

for p38 in plaque stability. In addition p38 deficiency in macrophages 

increased endoplasmic reticulum-stress induced apoptosis (Seimon et 

al. 2009). 

JNK Inhibition of JNK in ApoE-/- mice showed a decrease in lesion formation 

at regions of low stress. In addition, JNK inhibition attenuated 

activation of NF-кB and VCAM-1 expression (Wang et al. 2011). 

Double ApoE-/- JNK2-/- knockout mice developed less atherosclerosis 

compared to ApoE-/- controls. This was not observed in ApoE-/- JNK1-

/- mice. JNK deficient macrophages decreased phosphorylation of 
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SRA which in turn reduced lipoprotein uptake and foam cell formation 

(Ricci et al. 2004). 

NF-кB Deficiency of NF-κB in endothelial cells in ApoE-/- mice resulted in 

strongly reduced atherosclerosis. NF-κB  deficient cells showed a 

reduction in adhesion molecule expression, macrophage recruitment 

and cytokine and chemokine expression (Gareus et al. 2008). 

However, a study in LDLr-/- mice has shown contrasting results. 

Inhibition of NF-κB activation in macrophages in these mice increased 

atherosclerosis. There was an increase in lesion necrosis along with 

cell number (Kanters et al. 2003).  

PI3K PI3K/ Akt pathway is activated by oxLDL and inflammatory 

chemokines in macrophages. This response is attenuated on deletion 

of the catalytic subunit of PI3K, p110γ (Chang et al. 2007). Activation 

of pathway induced atherosclerosis in ApoE-/- mice but this is 

significantly inhibited in ApoE-/- p110γ-/- mice (Chang et al. 2007). PI3K 

inhibitor attenuated the uptake of modified LDL and macropinocytosis 

in macrophages. Expression of scavenger receptors SRA and CD36 

was also attenuated (Michael et al. 2015). IFN-γ induced expression 

of chemokine MCP-1 is also inhibited by a PI3K inhibitor in 

macrophages (Harvey et al. 2007) indicating its role in foam cell 

formation. 
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1.4.1 Cytokines 

Cytokines is a general term used to describe a group of more than 50 secreted factors 

involved in cellular communication together with the immune and inflammatory 

responses. They are classified into groups as follows: interleukins, tumour necrosis 

factors, interferons, colony stimulating factors, transforming growth factors and 

chemokines (Tedgui and Mallat 2006). Cytokines can be broadly separated into two 

classes’ dependant on their actions in an immune response; pro- and anti-

inflammatory. For example, IL-4, IL-10, IL-33 and transforming growth factor (TGF) -

β promote anti-inflammatory conditions (Tedgui and Mallat 2006; Miller 2011) in 

contrast TNF-α, IL-1β, IL-12 and IFN-γ exert classically pro-inflammatory responses 

(Tedgui and Mallat 2006; McLaren and Ramji 2009). The role of cytokines in the 

inflammatory response in atherosclerosis is complex with involvement at all stages 

from initiation of immune response to plaque progression. Release of pro-

inflammatory cytokines during an inflammatory response has numerous roles in foam 

cell formation and other steps in atherosclerosis. Release of IL-1, IL-6, IL-10, IL-12 

and TNF-α activate circulating monocytes in the blood stream allowing them to adhere 

to the activated endothelium (Bobryshev 2006). During plaque formation, release of 

cytokines aids in the migration of smooth muscle cells to the arterial intima and 

formation of the extracellular matrix (Lusis 2000). Table 1.4 summarises the roles of 

a select number of cytokines in the pathology of atherosclerosis.   

Targeting signalling of pro-inflammatory cytokines in atherosclerosis, using inhibitors 

or gene targeting in vitro and in vivo, has been widely used to delineate their roles in 

the disease and identify potential therapeutic targets for atherosclerosis. Studies have 

proved controversial with contrasting results in some cases; however it is clear that 

reduced pro-inflammatory cytokine signalling has beneficial effects in the disease 

(Gupta et al. 1997; Whitman et al. 2002; Kirii et al. 2003; Chamberlain et al. 2009; 

Schuett et al. 2012). The signalling and roles of three pro-inflammatory cytokines will 

be discussed in more detailed: IFN-γ, IL-1β and TNF-α, as they are directly relevant 

to the studies carried out in this thesis.  
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Table 1.4 – Examples of cytokines expressed in an inflammatory response and 

their role in atherosclerosis 

Cytokine Role in atherosclerosis 

IL-1β Lack of IL-1β in ApoE-/- mice decreased atherosclerosis and reduced 

inflammatory markers MCP-1 and ICAM-1 (Kirii et al. 2003). Similar results 

were observed in ApoE-/- IL1 receptor knockout mice (Chamberlain et al. 2009) 

and mice targeted with an anti-IL-1β antibody (Bhaskar et al. 2011).  

IL-6 Injection into ApoE-/- mice increased levels of pro-inflammatory cytokines and 

lesion size (Huber et al. 1999). IL-6 inhibitor in LDLr-/- mice decreased 

atherosclerosis, along with a reduction in SMC infiltration, monocyte migration 

and endothelium activation (Schuett et al. 2012). However IL-6 deficiency in 

ApoE+/- heterozygous model augmented atherosclerosis, increasing pro-

inflammatory signalling and destabilising plaques (Madan et al. 2008). 

IL-10 Double knockout ApoE-/- IL-10-/- mice showed increased atherosclerotic lesion 

sizes together with pro-coagulant activity of the plaque indicating that the 

cytokine plays a role in stabilisation (Caligiuri et al. 2003). Treatment of LDLr-/- 

mice with IL-10 encoding virus delivery vector also resulted in decreased 

atherosclerotic lesions (Liu et al. 2006). IL-10 expressing macrophages 

inhibited atherosclerosis in LDLr-/- mice. A reduction in cholesteryl ester 

accumulation and an increase in cholesterol uptake and efflux was also 

observed (Han et al. 2010). 

IL-17 Atherosclerosis was reduced in LDLr-/- mice transplanted with IL-17r deficient 

bone marrow. There was a decrease in IL-6 production and an up regulation in 

IL-10 (van Es et al. 2009). A comparable effect was seen in ApoE-/- mice treated 

with an anti-IL-17A antibody. Atherosclerotic lesion size was reduced along 

with plaque vulnerability, cellular infiltration and cytokine and chemokine 

production (Erbel et al. 2009). However, loss of suppressor of cytokine 

signalling 3 (SOCS3) expression in T-cells increased IL-17 production and 

induced an anti-inflammatory macrophage phenotype and reduction in lesion 

development and vascular inflammation (Taleb et al. 2009).  

IL-33 Reduction in atherosclerosis in ApoE-/- mice injected with IL-33. Decreased 

levels of IFN-γ and induced oxLDL antibody (Miller 2011). In vitro, IL-33 

reduced foam cell formation. Modified LDL uptake was reduced and cholesterol 
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efflux increased (McLaren et al. 2010). ApoE-/- mice treated with soluble ST2, 

a decoy receptor which neutralises IL-33, showed a significant increase in 

lesion size (Miller et al. 2008). However ApoE-/- mice deficient in IL-33 had no 

major impact on development of atherosclerosis (Martin et al. 2015). 

IFN-α Treatment with IFN-α in LDLr-/- mice showed an increase in plasma cholesterol 

and TAG levels and an increase in atherosclerotic lesion size (Levy et al. 2003) 

. 

IFN-β Attenuated angiotensin II induced atherosclerosis in ApoE-/- mice (Zhang et al. 

2008). 

IFN-γ Deficiency in ApoE-/- mice attenuates atherosclerosis (Gupta et al. 1997). 

Decreases cholesterol efflux (Harvey and Ramji 2005) and cholesterol 

transport in macrophages thereby augmenting foam cell formation (Reiss et al. 

2004). Administration of IFN-γ in ApoE-/- deficient mice decreased serum 

cholesterol levels. However despite this, atherosclerotic lesions were 

significantly increased along with the number of T-cells (Whitman et al. 2000).  

TGF-β Inhibition of TGF-β signalling in ApoE-/- mice accelerates atherosclerosis, 

increasing inflammatory content and reducing stability of plaques (Mallat et al. 

2001). ApoE-/- mice with deficient signalling in T-cells showed an increase in the 

size of atherosclerotic lesions. In addition, there was an  increase in IFN-γ 

expression, T-cell and macrophage activation and vulnerability of the plaques 

(Robertson et al. 2003). ApoE-/- mice with TGF-β overexpression in 

macrophages developed significantly less lesions. There was a reduction in the 

number of macrophages together with an increase in SMCs and collagen 

content in plaques indicating a more stable plaque (Reifenberg et al. 2012). 

TNF-α In ApoE-/- TNF-α-/- mice, atherosclerosis was attenuated along with a decrease 

in the levels of pro-inflammatory cytokines, chemokines and adhesion 

molecules (Xiao et al. 2009). Another study using the same knockout model 

also observed a decrease in oxLDL uptake and SRA expression in 

macrophages (Ohta et al. 2005). 
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1.4.1.1 IFN-γ 

IFNs are classified into two groups depending on receptor specificity and sequence 

homology. Type I IFNs, which include IFN-α, -β and -ω subtypes, are structurally 

related and bind to a common receptor (Schroder et al. 2004). IFN-γ is the only type 

II IFN as it is structurally unrelated to type I IFNs and binds to a different receptor 

(Schroder et al. 2004). IFN-γ is produced by a number of immune cells such as T-

lymphocytes, B-lymphocytes, natural killer cells, dendritic cells and macrophages 

(McLaren and Ramji 2009).  

1.4.1.1.1 Signalling through JAK/STAT 

IFN-γ is classified as a pro-inflammatory cytokine and is involved at all stages of 

atherosclerosis (McLaren and Ramji 2009). Responses are driven by signalling 

through the Janus kinase (JAK)/ Signal transducer and activator of transcription 

(STAT) pathway. The JAK/STAT pathway is employed by over 50 cytokines and is 

one of the best understood mechanism by which signals are propagated (Schroder 

et al. 2004). An overview of this pathway is detailed in Figure 1.7.  

The IFN-γ receptor (IFN-γR) is made up of two subunits; IFN-γR1 and IFN-γR2. 

Ligand binding induces a conformational change in the intracellular domain of the 

receptor allowing for association with downstream signalling partners (Schroder et al. 

2004). IFN-γ binding to IFN-γR induces JAK2 autophosphorylation which can then 

transphosphorylate JAK1 (Schroder et al. 2004). Activated JAK1 phosphorylates the 

IFN-γ receptor at tyrosine residue 440 of the IFN-γR1 chain. This allows docking of 

the SH2 domain of STAT1 to the receptor tails and its phosphorylation at TYR701 by 

JAKs. Phosphorylation induces release of STAT1 from the receptor. STAT1 form 

homodimers which can be further phosphorylated at SER727 by additional kinases. 

Homodimers translocate into the nucleus where they bind to gamma activating 

sequences (GAS) in the regulatory regions of target genes and induce their 

transcription (Schroder et al. 2004; Platanias 2005; McLaren and Ramji 2009).  IFN-

γ is highly effective at low concentrations and can up or down regulate the expression 

of numerous genes very quickly (Kerr and Stark 1991). Many of the genes first 

induced by the cytokine are transcription factors. This includes interferon regulatory 

factors (IRFs). IRFs are a family of transcription factors of which some members 

participate in IFN-γ signalling; notably IRF-1, IRF-3 and IRF-9 (Schroder et al. 2004; 

Platanias 2005). IRFs can form complexes with STAT homodimers (for example 

STAT1:STAT2:IRF-9) which bind IFN-γ stimulated response elements (ISREs) and 

control the transcription of genes containing these sequences (Platanias 2005). 
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Figure 1.7 – IFN-γ signalling through the JAK/STAT pathway  

Diagram depicts an overview of IFN-γ signalling through the JAK/STAT pathway 1. IFN-γR is 

composed of two subunits:  R1 and R2. 2. Binding of IFN-γ causes dimerisation of subunits 

allowing phosphorylation of tyrosine kinases JAK1 and JAK2, which are attached to the IFN-

γR complex via their N-terminus. Activated JAK1/2 phosphorylate IFN-γR subunits at tyrosine 

residues, via their catalytic domain 3. Phosphorylated IFN-γR subunits bind STAT1 monomers 

from the cytoplasm via their SH2 domain and are phosphorylated at TYR701 4. Phosphorylated 

STAT1 monomers are released from the receptor 5. STAT1 monomers dimerise: 

STAT1:STAT1. 6. Phosphorylation of STAT1 dimers at position SER727 by PI3-K, p38 MAPK 

and ERK is required for maximal activity. 7. STAT1:STAT1 trans-locates into the nucleus 

where they can bind to GAS in the promoter regions of IFN-γ-inducible genes. Adapted from 

(McLaren and Ramji 2009). 
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1.4.1.1.2 Role of IFN-γ in atherosclerosis  

IFN-γ is involved in all aspects of atherosclerosis pathology. ApoE-/- IFN-γR-/- mice 

showed significant reduction in atherosclerotic lesion size together with reduced 

lesion lipid accumulation and lesion cellularity (Gupta et al. 1997). This suggests that 

IFN-γ promotes atherosclerosis and impacts on various aspects of the disease. IFN-

γ  can impact on levels of chemokines expressed in atherosclerosis as seen by the 

dramatic increase in MCP-1 expression on treatment with IFN-γ  in a human 

osteoblastic cell line (Valente et al. 1998). IFN-γ also induces the expression of 

adhesion molecules ICAM-1 and VCAM-1 (Li et al. 1993; Chung et al. 2002). Once 

monocytes have differentiated into macrophages, IFN-γ plays a role in the expression 

of scavenger receptors which bind modified forms of LDL. IFN-γ  up regulates the 

expression of scavenger receptor Chemokine (C-X-C motif) ligand 16/ Scavenger 

receptor for phosphatidylserine and oxidised lipoprotein (CXCL16/SR-PSOX) which 

mediate oxLDL uptake (Wuttge et al. 2004) thereby promoting foam cell formation. 

The cytokine also plays a role in cholesterol accumulation in macrophages. IFN-γ  

has been shown to decrease cholesterol efflux (Harvey and Ramji 2005) and impede 

reverse cholesterol transport in THP-1 macrophages (Reiss et al. 2004). As the 

disease progresses, IFN-γ continues to play a role. In the later stages of 

atherosclerosis, IFN-γ  can act to destabilise atherosclerotic plaques by inhibition of 

SMC proliferation and matrix synthesis, thereby affecting the fibrous cap, and up 

regulates the expression and activities of matrix metalloproteinases which break 

down the extracellular matrix of the plaque (Harvey and Ramji 2005). Both these roles 

act to destabilise the plaque increasing the risk of plaque rupture. 

There are, however, some conflicting anti-inflammatory roles for IFN-γ in 

atherosclerosis. Despite the increase in the CXCL16/SR-PSOX scavenger receptor 

expression, IFN-γ has been shown to inhibit the expression of two other important 

scavenger receptors SRA and CD36 (Nakagawa et al. 1998; Grewal et al. 2001). It 

has also been shown that IFN-γ  may act to inhibit pro-inflammatory LPL expression 

by macrophages and macrophage-mediated LDL oxidation (Harvey and Ramji 2005). 

Despite these controversial roles of IFN-γ, the balance between pro and anti-

atherosclerotic roles of IFN-γ favours the cytokine as pro-inflammatory which 

significantly increases atherosclerosis in vitro.  In addition, studies in vivo have 

demonstrated consistently a pro-atherosclerotic role for the cytokine (Table 1.4) 

(Harvey and Ramji 2005; McLaren and Ramji 2009).  
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1.4.1.2 IL-1β 

The IL-1 family consists of three members; IL-1α, IL-1β and IL-1 receptor antagonist 

(IL-1ra) (Fearon and Fearon 2008). IL-1 signalling is tightly controlled with binding of 

IL-1-α and -β to IL-1 type 1 receptor inducing downstream pro-inflammatory signalling 

events. On the other hand, the binding of IL-1  to IL-1 type II decoy receptor and IL-

1ra binding to type I receptor acts to inhibit signalling (Fearon and Fearon 2008).  IL-

1 is produced by a number of cells including endothelial cells, SMCs and 

macrophages. Increased levels of IL-1 stimulates release of cytokines and 

chemokines, increased expression of adhesion molecules, macrophage recruitment 

and SMC proliferation during atherosclerosis (Fearon and Fearon 2008). The role of 

IL-1β has been well characterised as an important pro-inflammatory factor in 

atherosclerosis and will be discussed in more detail.  

1.4.1.2.1 Activation of IL-1β 

IL-1β activation is under tight regulation. It is synthesised as an inactive precursor 

molecule (proIL-1β) which remains within the cell (Dinarello 1998). In order to elicit a 

response, proIL-1β must first be cleaved. Therefore two mechanisms are required for 

the maturation and release of active IL-1β; production of proIL-1β and activation of 

the cytokine through cleavage. Caspases are a family of cysteine proteases that 

cleave substrates at aspartate residues. They are involved in pro-inflammatory and 

pro-apoptotic pathways (Franchi et al. 2009). Caspases -1, -4 and -5 have been 

identified as pro-inflammatory in humans (Schroder and Tschopp 2010) and caspase 

1 plays a key role in the activation of IL-1β (Franchi et al. 2009). Caspase 1 cleaves 

proIL-1β at an aspartic residue located at position 116 to form the active cytokine 

which can be secreted by the cell (Dinarello 1998). Along with IL-1β activation, 

activation of caspase 1 is also tightly regulated. Caspase 1 must also undergo 

cleavage itself, which is achieved by multi-protein complexes called inflammasomes 

(Schroder and Tschopp 2010). 

Immune cells express PRRs on their surface to detect pathogen associated molecular 

patterns (PAMPs) and danger associated molecular patterns (DAMPs). These 

include nucleotide oligomerization domain (NOD) like receptors (NLRs) (Schroder 

and Tschopp 2010). The inflammasome is a large multi-protein complex which 

includes members of the NLR family along with adaptor protein apoptosis-associated 

speck-like protein containing CARD (ASC) (Franchi et al. 2009). A number of 

members of the NLR family have been implicated to play a role in the inflammasome 

including NLRP1 and NLRP3. The NLRP3 inflammasome has been well 

characterised. It can be activated by a number of extracellular stimuli including 
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PAMPs, extracellular glucose, amyloid β peptide, uric acid, cholesterol crystals and 

oxLDL (Rajamaki et al. 2010; Schroder and Tschopp 2010; Liu et al. 2014). There are 

a number of different theories surrounding the mechanism by which the NLRP3 

inflammasome is activated. These include direct activation by agonist, activation by 

lysosomal contents released on engulfment of agonist and, finally, activation by ROS 

produced by the agonist (Schroder and Tschopp 2010). Once activated, the NLRP3 

inflammasome assembles and recruits pro-caspase 1. Auto cleavage of pro-caspase 

1 forms the active protease. Caspase 1 can then cleave pro-IL-1 β to its active form.  

1.4.1.2.2 Role in atherosclerosis 

IL-1β is a well-established pro-inflammatory cytokine whose expression is up 

regulated in atherosclerosis. IL-1β expression was found to be increased in the vessel 

walls of atherosclerotic arteries and plaque macrophages (Galea et al. 1996). ApoE-

/- IL-1β-/- mice showed a 30% decrease in atherosclerotic lesions at the aortic sinus in 

comparison to controls. It was also observed that the mRNA levels of VCAM-1 and 

MCP-1 were significantly reduced in such lesions (Kirii et al. 2003). Similarly, 

administration of an anti-IL-1β antibody to ApoE-/- mice inhibited atherosclerotic lesion 

formation (Bhaskar et al. 2011). In addition, inhibition of IL-1β increased plasma HDL 

levels, decreased plaque lipid and macrophage content and reduced secretion of IL-

6, IL-8, MCP-1 and TNF-α (Bhaskar et al. 2011). Interestingly, the therapeutic 

potential of neutralising IL-1β antibodies are currently being evaluated in a multi-

centre phase III Canakinumab Anti-inflammatory Thrombosis Outcomes Study 

(CANTOS) (Ridker et al. 2011). 

1.4.1.3 TNF-α 

TNF-α is member of a growing family of cytokines (Popa et al. 2007). Initially 

discovered as a circulating factor, it has since been identified as a key component of 

the innate immune system and its expression is up-regulated in response to stress 

signals (Kleinbongard et al. 2010). It is a pro-inflammatory cytokine produced by a 

number of immune cells including macrophages, monocytes and T-cells (Popa et al. 

2007). TNF-α is first synthesised as a transmembrane protein and cleavage of the 

extracellular domain releases a soluble form of the cytokine. Both the transmembrane 

and soluble form of TNF-α are biologically active and can bind TNF-receptor (TNFR) 

I/II (Olmos and Llado 2014). Both the receptors belong to the TNF-receptor 

superfamily, which also includes FAS, CD40, CD27 and RANK (Idriss and Naismith 

2000). TNFR1 and TNFR2 elicit different responses and are structurally different. 

TNFR1 (55kDa) contains a death domain and is linked to cell death by apoptosis 

while TNFR2 (75kDa) lacks the death domain and plays a role in cell survival and 
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proliferation response. However, studies now report overlapping functions of the two 

receptors (Olmos and Llado 2014). Binding of TNF-α, as a trimer to its cognate 

receptors (Idriss and Naismith 2000), initiates a downstream cascade which results 

in the activation of a number of signalling pathways, including NF-κB, ERK, JNK, and 

p38 (Popa et al. 2007; Olmos and Llado 2014). Activation of these pathways has a 

number of pro and anti-inflammatory effects in atherosclerosis, the details of which 

can be found in Table 1.4.    

1.4.1.3.1 Role in atherosclerosis 

TNF–α is highly expressed by macrophages present in atherosclerotic plaques 

(Arbustini et al. 1991) and in one study it was detected in 88% of atherosclerotic 

plaques (Barath et al. 1990). Increased release of TNF-α in response to stress signals 

stimulates the expression of adhesion molecules on endothelial cells and promotes 

the recruitment and activation of immune cells (Popa et al. 2007). It is therefore an 

important factor in the initial stages of foam cell formation. In addition to this, TNF-α 

expression can increase apoptosis, thrombin formation and increase cholesterol 

uptake by macrophages (Kleinbongard et al. 2010). ApoE-/- TNF-α-/- mice show a 

decrease in lipid accumulation and fatty streaks in comparison to control mice, as well 

as a decrease in the expression of IL-1β, IFN-γ, ICAM-1, VCAM-1, MCP-1, GM-CSF 

along with activation of NF-κB (Xiao et al. 2009). Similarly, ApoE-/- TNF-α-/- mice show 

a reduction in the size of atherosclerotic plaques present in the aortic luminal surface 

and aortic sinus compared to ApoE-/- control mice (Ohta et al. 2005). A decrease in 

the expression of ICAM-1, VCAM-1 and MCP-1 was again observed, along with a 

decreased uptake of oxLDL and reduced expression of SRA in response to TNF-α 

deficiency (Ohta et al. 2005).  

1.4.2 Fatty acids as signalling molecules 

As well as energy storage and their importance in cellular membranes, lipids can also 

act as signalling molecules. Fatty acids are delivered to tissues as TAG-derived fatty 

acids or non-esterified fatty acids (NEFAs). They can be taken up by the cells using 

fatty acid transporters and bound to fatty acid binding proteins (Georgiadi and Kersten 

2012). From here they can be subject to a number of fates including oxidation for 

energy, esterification, incorporation into phospholipids of membranes or storage as 

lipid droplets. Most of the signalling actions of fatty acids are linked to their 

metabolites; however they themselves can directly activate signalling pathways 

Second messengers, such as diacylglycerols (DAG), are produced by enzyme-

catalysed hydrolysis of membrane phospholipids. The composition of fatty acids in 

DAG determines their effect on signalling (Calder 2012). Roles of fatty acids in 
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atherosclerosis are summarised in Table 1.5. Fatty acids cleaved from phospholipid 

membranes and NEFAs can directly, or indirectly through their metabolites, activate 

numerous signalling pathways by acting on receptors and transcription factors. These 

include peroxisome proliferator activated receptors (PPARs), TLRs, G protein-

coupled receptors (GPCRs) and transcription factor sterol regulatory element binding 

protein (SREBP) (Georgiadi and Kersten 2012).  

1.4.2.1 PPARs 

These are members of nuclear hormone receptor superfamily and three subtypes 

exist; α, δ and γ. PPARα and PPARδ are expressed in most tissues and cells. PPARγ 

expression however is more restricted to mainly adipocytes and macrophages. 

PPARs function by forming heterodimers with retinoid-x-receptors. The heterodimers 

bind DNA sequences named peroxisome proliferators response elements (PPREs) 

present in promoter sequences of target genes (Tyagi et al. 2011; Georgiadi and 

Kersten 2012). They act to regulate lipid metabolism, glucose homeostasis and 

inflammation and are activated by fatty acids and their derivatives (Duval et al. 2002). 

PPAR-α and -γ have been implicated to play a protective role in atherosclerosis and 

inflammation (Duval et al. 2002). Activation of PPARγ by oxidised linoleic acid has 

been found to inhibit the MCP-1 receptor C-C chemokine receptor 2 (CCR2) and 

block monocyte chemotaxis. (Han et al. 2000). PPARγ agonist prostaglandin J2 

(PGJ2), but not PPARα agonists EPA and DHA, inhibited the IFN-γ-mediated 

induction of pro inflammatory CXC chemokines. This included the IFN-inducible T-

cell α chemoattractant (I-TAC), IFN-inducible protein of 10kDa (IP-10) and monokine 

induced by IFN-γ (Mig) (Marx et al. 2000). The expression of MCP-1 was not affected 

in the study (Marx et al. 2000). PPARα agonists inhibited TNF-α-mediated expression 

of VCAM-1 by human endothelial cells that was not seen with the activation of PPARγ 

(Marx et al. 1999). Disruption of the PPARγ gene in mice reduced the expression of 

LPL, CD36, LXRα, ABCA1 and ApoE which, in turn, reduced cholesterol efflux to HDL 

from cholesterol loaded macrophages (Akiyama et al. 2002). LDLr-/- mice 

reconstituted with bone marrow from PPARα+/+ and PPARα-/- mice were fed a high fat 

diet. PPARα-/- LDLr-/-  mice developed significantly larger atherosclerotic lesions, 

increased oxLDL uptake and decreased cholesterol efflux  in comparison to controls 

(Babaev et al. 2007). PPARα+/+ LDLr-/- developed significantly smaller atherosclerotic 

lesions in comparison to PPARα-/-  LDLr-/- mice (Babaev et al. 2007). The role of 

PPARδ is controversial and needs more study. However activation of PPARδ with 

agonist promotes lipid accumulation in human macrophages, increases SRA and 
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CD36 expression and attenuates ApoE expression. This suggests a pro-atherogenic 

role for this receptor (Vosper et al. 2001). 

1.4.2.2 TLR4 

This is a type I transmembrane protein and belongs to the TLR family with at least 10 

members, each with different ligands (Li and Sun 2007). TLR4 was identified as the 

first human homologue that is activated by LPS and saturated fatty acids (SFA) 

(Suganami et al. 2007; Tsukumo et al. 2007) and, therefore, is a candidate receptor 

in fatty acid signalling.  TLR4 plays an important role in inflammation, immunity and 

insulin resistance (Tsukumo et al. 2007). The receptor is expressed by immune cells, 

neutrophils, macrophages, dendritic cells, B-cells and T-cells (Li and Sun 2007). 

Treatment of macrophages with SFA leads to an increase in pro-inflammatory 

cytokine expression (TNF-α and IL-1β). SFA also activates NF-κB targets in 

macrophages through activation of TLR4. Macrophages from TLR4-/- mice show an 

attenuation in TNF-α production (Suganami et al. 2007). In TLR4 deficient mice fed a 

high fat diet, monocyte infiltration and expression of MCP-1 was reduced in adipose 

tissue. This was accompanied by less NF-κB activation. However, there was no 

difference observed in TNF-α or IL-6 expression in comparison to WT mice (Davis et 

al. 2008). TLR4-/- mice were resistant to diet-induced obesity and showed improved 

insulin sensitivity. In addition, SFA-induced insulin resistance was inhibited in the 

muscle tissue of these mice (Tsukumo et al. 2007). LDLr-/- TLR4-/- mice showed 

improved plasma cholesterol and TAG levels but still developed obesity and glucose 

intolerance comparable to LDLr-/- mice. Despite this, the development of 

atherosclerosis in double knockout mice was significantly attenuated (Ding et al. 

2012). In addition, TLR4 expression and signalling in atherosclerosis is up-regulated 

by oxLDL and induces a pro-inflammatory response in endothelial cells and 

macrophages, SMC migration and secretion of proteolytic enzymes MMPs (Li and 

Sun 2007). However, an atheroprotective role for TLR4 was observed in response to 

infection (with common oral pathogen) in ApoE-/- TLR4-/- mice (Hayashi et al. 2012).  

1.4.2.3 GPCRs 

GPCRs are a large family of cell surface receptors that share common structural 

motifs and the ability to activate heterotrimeric G proteins (Oh et al. 2010). Ligand 

binding can stimulate a number of second messenger pathways; cyclic adenosine 

monophosphate (cAMP) production, opening of ion channels and activation of MAPK 

pathways. There are estimated to be over 850 human GPCRs, which differ in cell 

specificity and tissue expression (Talukdar et al. 2011). GPR-40, -41, -43, -84 and -

120 can be activated by NEFAs. Short chain fatty acids (4-8 carbons) activate GPR-
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41 and -43; medium chain fatty acids (10-14 carbons) activate GPR-84; and long 

chain fatty acids (16-18 carbons) activate GPR-40 and -120 (Oh et al. 2010). GPR-

120 is expressed in adipocytes and pro-inflammatory macrophages. Activation of this 

receptor induces numerous responses, commonly related to insulin sensing and 

inflammation. Studies have focused on omega-3 signalling through GPR-120 and the 

resulting anti-inflammatory effects. EPA and DHA can exert anti-inflammatory effects 

through GPR-120 in macrophages. DHA signalling through GPR-120 inhibited LPS 

induced phosphorylation of JNK and pro-inflammatory cytokine gene expression in 

macrophages. This was also observed in vivo (Oh et al. 2010). A high fat diet in GPR-

120 knockout mice and wild type mice resulted in induction of insulin resistance. 

However, supplementation with omega-3 fatty acids produced improved glucose 

tolerance in wild type mice only and not in GPR-120 deficient animals (Talukdar et al. 

2011). In another study, pre-treatment of neurone cells with DHA prevented a TNF-α 

induced inflammatory response (Wellhauser and Belsham 2014). This effect was 

independent of ERK and PI3K/Akt activation and abolished on reduction of 

endogenous GPR-120 levels (Wellhauser and Belsham 2014). This suggests omega-

3 fatty acids may exert anti-inflammatory effects through GPR-120 signalling.  

1.4.2.4 SREBPs 

SREBPs are a family of basic helix-loop-helix, leucine zipper transcription factors. 

They are synthesised in a membrane bound form on the endoplasmic reticulum 

complexed with SREBP cleavage activating protein (Karasawa et al. 2011). A 

reduction in cellular cholesterol levels induces SREBP cleavage activating protein to 

escort SREBP to the Golgi apparatus where it is cleaved by proteases. The cleaved 

transcription factor can next move into the nucleus and activate downstream 

pathways (Karasawa et al. 2011). Three isoforms exist; SREBP-1a, SREBP-1c and 

SREBP-2. The primary role of these factors involves transcriptional activation of 

genes involved in de novo lipogenesis and the uptake of cholesterol, fatty acids, TAG 

and phospholipids (Karasawa et al. 2011). LDLr-/- mice overexpressing hepatic 

SREBP-1c results in hypertriglyceridemia, an increase in VLDL levels and a decrease 

in HDL resulting in atherosclerosis (Karasawa et al. 2011). In contrast, deficiency of 

SREBP-1 attenuated atherosclerosis in these mice (Karasawa et al. 2011). PUFAs 

have been indicated to inhibit lipogenic gene expression by down regulating SREBPs. 

In one study PUFA increased the decay of SREBP-1a and SREBP-1c in rat 

hepatocytes. Treatment with AA and EPA decreased the half-life of total SREBP-1 

mRNA by 50% (Xu et al. 2001). In mice, supplementation with PUFAs decreased the 

cleaved form of mature SREBP-1 protein in the nucleus as well as enzymes involved 
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in lipid synthesis such as fatty acid synthase and acetyl-CoA carboxylase (Yahagi et 

al. 1999). Studies indicate that PUFA can attenuate lipid synthesis by regulating 

expression and post-transcriptional mRNA stability of SREBP and that this may be 

beneficial in the pathology of atherosclerosis.   

1.5.2.5 Role of fatty acids in atherosclerosis 

As discussed previously, fatty acids can be classified as saturated and unsaturated. 

PUFA hydrocarbon chains contain more than one double bond and are important 

signalling molecules. Table 1.5 summarises some of the roles fatty acids play in the 

pathology of atherosclerosis. Generally speaking, SFA are commonly referred to as 

‘bad fat’ as consumption has been linked to increased cholesterol levels and 

inflammatory processes, therefore increasing the risk of CVD (Xu et al. 2006). Diets 

rich in PUFA however, indicate a significant athero-protective role (Dyerberg 1989) 

and have been shown to modify inflammation (Suresh and Das 2003a, b; Wang et al. 

2012; Dawczynski et al. 2013). Two important classes of PUFA will be discussed in 

more detail; omega-3 and omega-6 fatty acids. 
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Table 1.5 – Fatty acids and their role in atherosclerosis 

Class Name Possible role in atherosclerosis 

SFA Myristic acid Increases plasma LDL cholesterol (Xu et al. 2006). 

 Decreases HDL to LDL ratios in humans (Zock et al. 1994).  

Correlates with an increase in large dense LDL particles (Deron et al. 1999). 

SFA Palmitic acid Raises cholesterol levels and increases uptake of oxLDL by macrophages via expression of LOX-1 receptor 

therefore promoting atherosclerosis (Xu et al. 2006; Ishiyama et al. 2010).  

Activates TLR2 to induce inflammasome activation and pro IL-1β cleavage (Snodgrass et al. 2013) 

 Decreases HDL to LDL ratios in humans (Zock et al. 1994).  

 Correlates with an increase in large dense LDL particles (Deron et al. 1999). 

SFA Stearic acid Lowers LDL  cholesterol  levels in vivo in comparison to trans-saturated fatty acids (Hunter et al. 2010).  

No significant association with lipoprotein concentrations (Deron et al. 1999). 



 
 

39 
 

MUFA Palmitoleic acid Increases insulin sensitivity and reduces pro-inflammatory gene expression in mice with type 2 diabetes 

(Yang et al. 2011).  

Association found between the content of palmitoleic acid in red blood cell membrane and CVD (Djousse 

et al. 2012). 

MUFA Oleic acid Hamsters supplemented with an oleic acid-rich oil showed decreased atherosclerosis and foam cell 

formation in comparison to a diet rich in LA (Nicolosi et al. 2002). 

In mouse model, oleic acid displayed anti-oxidant activity against LDL oxidation. Strongly inhibited oxLDL 

uptake by THP-1 macrophages (Cho et al. 2010).  

ApoE-/- deficient mice fed an oleic acid-rich diet resulted in an increase in FFA and enhanced 

atherosclerosis compared to normal chow diet (Ma et al. 2011).  

MUFA Vaccenic acid In red blood cells, fatty acid levels were inversely associated with CVD (Kris-Etherton and Nutrition 1999; 

Djousse et al. 2012). 

Anti-atherogenic effects in LDLr-/- mice (Bassett et al. 2010). 

n-6 PUFA Linoleic acid Precursors of DGLA and AA. Results in both pro- and anti-inflammatory actions as a result of metabolism 

to these two fatty acids (Wang et al. 2012). 

Diet rich in LA inversely related to risk of atherosclerosis (Djousse et al. 2003; Djousse et al. 2005) 
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LDLr-/- mice fed an omega-6 LA rich diet showed significantly lower atherosclerosis by a lowering of total 

cholesterol levels (Machado et al. 2013). 

n-6 PUFA GLA Inhibited atherosclerosis in LDLr-/- and ApoE-/- mice (Fan et al. 2001; Machado et al. 2013) 

Inhibited atherosclerosis induced in rats fed a high fat diet. Reduced total cholesterol levels, oxLDL, NO 

and LDL (Shi et al. 2008) 

Decreased IL-1β secretion from human monocytes (Furse et al. 2001). 

n-6 PUFA DGLA Inhibited atherosclerosis in ApoE-/- mice and reduced expression of inflammatory markers (Takai et al. 

2009). 

Attenuated TNF-α production from leukocytes (Dooper et al. 2003). 

n-6 PUFA AA High AA/EPA ratio linked to a risk of CVD (Ninomiya et al. 2013). 

Metabolites of AA (for example PGE2 and LBT4) have pro-inflammatory and pro-thrombotic actions (Levin 

et al. 2002; Gomolka et al. 2011; Wang et al. 2012). 

n-3 PUFA α-linolenic acid Diabetic ApoE-/- mice fed a diet supplemented with ALA showed a decrease in markers of oxidative stress, 

and this prevented increase of plasma cholesterol and atherosclerosis (Yi and Maeda 2006). 

Increased consumption linked to a reduction in CVD (Kris-Etherton et al. 2003; Harris et al. 2007). 
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n-3 PUFA EPA Significantly reduced in patients experiencing CVD events (Harris et al. 2007). 

Low EPA/AA ratio associated with risk of cardiovascular disease (Ninomiya et al. 2013). 

Dietary supplementation of EPA in ApoE-/- mice  regressed atherosclerotic plaques and decreased immune 

cell content (Nakajima et al. 2011). 

Inhibits modified LDL uptake and macropinocytosis in vitro (McLaren et al. 2011b). 

n-3 PUFA DPA Significantly reduced in patients experiencing CVD events (Harris et al. 2007). 

Reduced total plasma cholesterol and non-HDL associated cholesterol. Down-regulated expression of 

HMG-CoA reductase. Less tension and more relaxed aorta due to inhibition of Cyclooxygenase (COX)-2 

(Chen et al. 2012). 

n-3 PUFA DHA Increased consumption linked to a reduction in CVD (Kris-Etherton et al. 2003; Harris et al. 2007). 

Reduced total plasma cholesterol and non-HDL associated cholesterol. Down regulated HMG-CoA 

reductase. Less tension and more relaxed aorta due to inhibition of COX-2 (Chen et al. 2012). 

Inhibits oxLDL uptake and macropinocytosis in vitro (McLaren et al. 2011b). 

Inhibited TLR1 and TLR2 dimerisation and inflammasome-mediated secretion of IL-1β (Snodgrass et al. 

2013). 
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1.5.2.6 Omega-3 and 6 fatty acids 

Omega-3 and -6 fatty acids include the essential fatty acids (EFA) linoleic acid and α-

linolenic acid. EFA are important constituents of cell membranes and can therefore 

alter their behaviour and those of bound enzymes and receptors (Das 2007). 

Changes in the dietary intake of EFA can modulate the production of eicosanoids. 

Omega-3 and -6 PUFA are cleaved from cellular membranes via the action of 

phospholipase A2 (PLA2) in response to cellular signals. This release induces the 

production of eicosanoids through the LOX, COX and P-450 enzymatic pathways 

(McDaniel et al. 2011). Eicosanoids are a family of bioactive lipid mediators, 20 

carbons in length, with a wide variety of actions. The eicosanoid family includes 

prostaglandins (PG), leukotrienes (LT), thromboxanes (TX) and numerous hydroxy 

fatty acids (McDaniel et al. 2011). These mediators act quickly and locally and remain 

active for only a short period of time before they are degraded (Arita 2012). 

Eicosanoids elicit a number of actions which are both pro- and anti-inflammatory 

(Figure 1.8).  

Several studies have indicated that in CVD, essential fatty acid metabolism is 

abnormal such that plasma and tissue level of omega-3 and -6 fatty acids are low 

(Das 2007). Omega-3 PUFA are well documented to impart anti-inflammatory actions 

in CVD including atherosclerosis and in other chronic inflammatory diseases 

(Bannenberg and Serhan 2010). Numerous studies have detailed the beneficial 

actions of omega-3 PUFA, primarily EPA and DHA, in a wide variety of inflammatory 

diseases including heart disease (Dawczynski et al. 2013; Masson et al. 2013) and 

stroke (Larsson et al. 2012). EPA and DHA are abundant in fish oils (Arita 2012) and 

sold as dietary supplements worldwide. A study performed in the human macrophage 

cell line THP-1 showed an inhibition of acetylated LDL (acLDL) and oxLDL uptake on 

incubation with EPA and DHA (McLaren et al. 2011b). In addition, dietary 

supplementation of EPA containing fish oils prevented the development of 

atherosclerosis in mice (Takai et al. 2009). EPA and DHA therefore exhibit athero-

protective effects.  

A number of studies have focussed on the role of omega-6 fatty acids in CVD with 

controversial results. Many recommend reductions in omega-6 dietary intake 

(Hamazaki and Okuyama 2003; Simopoulos 2008; Harris et al. 2009) and 

consumption of a diet with a high omega-6/omega-3 ratio has been associated with 

an increased risk of CVD, inflammatory diseases and cancer (Dawczynski et al. 

2013).  AA is well documented to play a pro-inflammatory role in disease. Diets rich 
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in the EFA omega-6 fatty acid LA have been advised against with the understanding 

that an increase in LA will lead to an increase in its metabolite AA. Reducing LA intake 

would reduce AA accumulation and its pro-inflammatory potential (Harris et al. 2009). 

However intake of LA does not always manifest in the levels of AA due to the rate-

limiting steps in the omega-6 pathway. Studies have indicated that the extent of 

conversion of dietary LA to AA is 0.2% (Hussein et al. 2005).  

Despite this, a large number of studies have suggested that increasing the levels of 

omega-6 in the diet has no association or reduces the risk of CVD. The alpha-

tocopherol beta-carotene cancer prevention study (Pietinen et al. 1997) concluded 

that there was no association between the LA content of the diet and CVD. On the 

other hand, The Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Study 

(Laaksonen et al. 2005) and the Western Electric Study (Shekelle et al. 1981) both 

reported inverse associations between dietary LA and CVD risk. In a meta-analysis 

of 25 case control studies, dietary content of LA was inversely related to CVD risk 

while AA was unrelated (Harris et al. 2007). Large intakes of LA have also been 

shown to have no link to the risk of acute myocardial infarction (Kark et al. 2003). It 

has therefore been suggested that decreasing the omega-6 fatty acid intake in the 

diet would more than likely increase the risk of CVD (Harris et al. 2009). Furthermore, 

dietary approaches with omega-6 fatty acids GLA and DGLA have indicated potent 

anti-inflammatory effects in inflammatory disease (Kawashima et al. 2008; Takai et 

al. 2009; Wang et al. 2012).   
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Figure 1.7 – Overview of omega-3 and -6 pathways 

Green boxes represent eicosanoids with anti-inflammatory roles; red boxes indicate pro-inflammatory roles. See table 1.2 for list of fatty acid abbreviations. 
COX – cyclooxygenase, LOX – lipooxygenase. HETE - hydroxyeicosatetraenoic acid, HETrE - hydroxyeicosatrienoic acid 

15-HETrE 
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1.5 DGLA  

1.5.1 Relation to disease 

Omega-6 PUFAs are commonly referred to as pro-inflammatory due to the actions of 

metabolites of AA. Controversially however, metabolic precursors of AA have been 

demonstrated to have key anti-inflammatory roles. Dietary supplementation with GLA 

has been implicated as beneficial in a number of inflammatory diseases. For example 

treatment with GLA significantly reduced the signs and symptoms in patients with 

rheumatoid arthritis (Zurier et al. 1996) and atopic eczema (Umeda-Sawada et al. 

2006). GLA also inhibited atherosclerosis and smooth muscle cell proliferation in 

ApoE-/- mice (Fan et al. 2001). In human monocytes, GLA inhibited the secretion of 

IL-1β in a dose dependant manner (Furse et al. 2001). GLA is elongated to DGLA 

which is incorporated into cellular membranes, cleaved or metabolised to produce 

anti-inflammatory mediators. Many studies use GLA to indirectly increase the fatty 

acid pool of DGLA. However this process does not allow for a sufficient increase of 

the fatty acid (Teraoka et al. 2009). DGLA is the bioactive form of GLA (Kapoor and 

Huang 2006) but, as there were previously no major source of DGLA available, direct 

supplementation with this fatty acid was not possible. Due to the development of new 

sources of DGLA, a small number of studies have investigated the anti-inflammatory 

roles of DGLA, some in relation to a number of diseases, including atherosclerosis.  

ApoE deficient mice fed a normal diet supplemented with DGLA showed a significant 

reduction in the development of atherosclerosis (Takai et al. 2009). In addition, DGLA 

supplementations attenuated expression of ICAM-1 and VCAM-1 markers of 

inflammation, along with a decrease in NADPH oxidase subunits p22phox and gp91phox 

indicating a potential increase in vascular relaxation (Takai et al. 2009). In human 

leukocytes it was observed that DGLA inhibited TNF-α production and specifically 

altered cytokine levels, changes that were not seen with GLA or EPA (Dooper et al. 

2003). Supplementation with DGLA oil in the diet of a mouse model of atopic 

dermatitis significantly reduced severity of skin scores as well as scratching behaviour 

(Kawashima et al. 2008). Mice that were orally administered with DGLA also showed 

significant reduction in inflammation of the ear following induction with inflammatory 

stimuli. DGLA inhibited swelling and cell infiltration after 7 days of treatment 

(Watanabe et al. 2014). 
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Studies have also indicated a role for DGLA in cancer. Free radicals produced as a 

result of oxygenation of DGLA, heptanoic acid (HTA) and 8 hydroxyoctanoic acid (8-

HOA), had an anti-proliferative effect on cancerous colon cells  (Xu et al. 2014b). The 

free radicals arrested the cell cycle in cancer cells and promoted apoptosis. In 

addition, in combination with the DGLA-derived free radicals, the efficiency and 

cytoxicity of the colon cancer drug 5-fluoruracil, was increased (Xu et al. 2014b). 

1.5.2 Synthesis and metabolism  

DGLA is a 20 carbon omega-6 PUFA metabolised from linoleic acid (Wang et al. 

2012). See Figure 1.8. Linoleic acid is an essential fatty acid required by humans at 

around 1-2% of total dietary energy to prevent deficiency (Wang et al. 2012). 

Synthesis of DGLA through the omega-6 pathways is detailed in Figure 1.8. The 

omega-6 pathway competes with the omega-3 pathway as they share a common set 

of desaturase enzymes (Calder 2012)  Briefly, linoleic acid is metabolised by Δ6 

desaturase to GLA. GLA is then elongated to DGLA which can be further metabolised 

by Δ5 desaturase to form AA.  

 

 

 

 

Figure 1.8 – Structure of DGLA 

Figure depicts the structure of DGLA. The PUFA contains 20 carbons and 3 double bonds, 

with the first double bond at carbon 6 (using the omega numbering system). 

 

The omega-6 pathway contains two desaturation steps, both of which are flux 

controlling enzyme steps (Kapoor and Huang 2006). Desaturation is a slow process; 

this means that conversion of LA to GLA is limited and can lead to deficiencies of 

GLA particularly in inflammatory conditions, which imposes further restrictions 

(Kapoor and Huang 2006). A reduced capacity of conversion of LA to GLA and DGLA 

has been linked to physiological and disease states such as aging, diabetes, atopic 

dermatitis, rheumatoid arthritis, cancer and CVD (Fan and Chapkin 1998; Kapoor and 

Huang 2006; Wang et al. 2012).The desaturation of DGLA to AA is also a slow 

process and only a small amount of DGLA is converted to AA (Fan and Chapkin 

HO 
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1998). This suggests that direct supplementation of DGLA would bypass the first 

desaturation step in the pathway, increasing availability of DGLA which can be 

incorporated into cell membranes and metabolised without a large increase in the 

accumulation of AA  (Fan and Chapkin 1998). This is observed in a study which 

investigated the supplementation of DGLA in rats. It was observed that on 

supplementation with DGLA there was an increase in DGLA concentrations in liver, 

serum and brain without accumulation of AA (Umeda-Sawada et al. 2006). This is an 

important feature of DGLA supplementation as this selectively increases the 

production of anti-inflammatory eicosanoids without an increase in pro-inflammatory 

eicosanoids from AA to counteract any actions. Both DGLA and AA are competing 

substrates for COX and LOX enzymes yielding a wide variety of eicosanoids. Specific 

metabolites of DGLA and AA are detailed in Figure 1.7. 

AA is cleaved from phospholipid membranes by PLA2 where it is immediately 

metabolised by COX or LOX pathways generating PGs and TXs, and LTs, LXs and 

hydroxy-eicosatetraenoic acids (HETEs) respectively (Arita 2012). Eicosanoids 

derived from AA are well documented to play a role in the initiation of inflammation 

and chronic inflammation. The 5-LOX metabolite LTB4 is a potent chemoattractant 

for leukocytes along with COX-2 metabolite PGE2 (Bannenberg and Serhan 2010). 

DGLA however, gives rise to two important metabolites with highly desirable actions; 

PGE1 and 15- hydroxy-eicosatrienoic acids (15-HETrE) (Horrobin 1991). PGE1 lowers 

blood pressure, inhibits platelet aggregation, promotes cholesterol efflux from cells 

and inhibits cholesterol biosynthesis, along with various other anti-inflammatory 

effects (Horrobin 1991). 15-HETrE also inhibits 5-LOX and 12-LOX which, in turn, 

inhibits the production of pro-inflammatory eicosanoids derived through the actions of 

these enzymes on AA (Horrobin 1991).  

1.5.3 Source of DGLA 

Principle sources of PUFA have previously relied on fish oils. Due to an increase in 

both fish consumption and marine pollution, fish stocks are ever decreasing 

(Watanabe et al. 2014). This highlights the need for alternative sources for PUFA 

production. New sources of DGLA have been obtained through manipulation of fatty 

acid pathways in yeast, fungi and algae.  

The yeast Saccharomyces cerevisiae has been genetically manipulated to produce 

DGLA. S.cerevisiae produces oleic acid as a result of its desaturase enzyme, Δ9 

desaturase. By genetically introducing Δ5 and Δ6 desaturase enzymes, this allowed 

the yeast to convert oleic acid to LA and then DGLA (Watanabe et al. 2014). 
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Mortierella alpina is arachidonic acid-producing fungus. A mutant strain was 

manipulated to be Δ5 desaturase-defective (1S-4). Under optimum conditions, 1S-4 

produced 43.9% of its fatty acids as DGLA (Kawashima et al. 2000). Alternatively, an 

algae has also been used as a source of DGLA and was the source employed for 

some studies in this thesis. A mutant of the phototrophic green microalgae 

Parietochloris incisa has recently been utilised in production of DGLA (Iskandarov et 

al. 2011). P. incisa produces large amounts of AA but chemical mutagenesis allowed 

for a nonsense mutation in the Δ5 desaturase gene (Iskandarov et al. 2011). This 

resulted in a significant increase in percentage of DGLA in total fatty acids (TFA). Wild 

type algae are comprised of approximately 1% DGLA and 58% AA (TFA) in 

comparison to mutant whereby percentage of AA was negligible and the proportion 

of DGLA increased to 32% (Iskandarov et al. 2011). DGLA can be isolated through 

lipid extraction, purified and subsequently used for experimentation.  

1.6 Aims of project 

Atherosclerosis is the primary cause of CVD, a disease responsible for more deaths 

annually than any other disease in Western society. The increasingly large burden on 

the health system to treat the disease is a major economic cost. Statins are commonly 

used in treatment of atherosclerosis but can only account for a 30% improvement in 

the disease, with some patients unresponsive to treatments (Mishra and Routray 

2003). With CVD events set to rise, new preventative and therapeutic options need 

to be made available. Atherosclerosis is a chronic inflammatory disorder 

characterised by lipid accumulation in vascular walls. Macrophages are key in the 

pathology of the disease given their important role in foam cell formation, an initial 

step in disease pathology. Targeting foam cell formation in macrophages is therefore 

a good candidate for therapeutic intervention. 

PUFA are important signalling molecules in disease. Signalling through a number of 

receptors and transcription factors, they play a role in immunity, inflammation and 

lipogenesis. Omega-3 and -6 fatty acids have been reported to have numerous anti-

inflammatory roles in diseases, including atherosclerosis. DGLA, an omega-6 fatty 

acid has been shown to have an anti-inflammatory and anti-atherosclerotic role in 

mouse models of the disease (Takai et al. 2009). However, the study had various 

limitations and failed to elucidate any underlying mechanisms. For example, the study 

provided no indications of the effects of DGLA on several key biological processes in 

atherosclerosis such as parameters related to foam cell formation. Further studies 

are therefore required on the molecular mechanisms underlying the anti-inflammatory 
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and anti-atherogenic actions of DGLA given its promise as a preventative/therapeutic 

agent. Genetic manipulation of green algae P. incisa, has allowed for a new source 

of DGLA to be made available (Iskandarov et al. 2011). Further studies could 

therefore be undertaken into understanding the molecular basis of the action of DGLA 

and evaluating the mutant algae as a viable and useful source.  

Given the promising initial studies using DGLA supplementation in reducing 

atherosclerosis, the aim of this study was to evaluate the underlying molecular 

mechanisms. The experimental aims of the project were designed to investigate if 

DGLA is a potentially new source of therapeutic value in the prevention of 

atherosclerosis. The project can be split into 3 main aims. 

 Evaluating the uptake and incorporation of pure DGLA into macrophage lipid 

classes in vitro together with its metabolism. In addition, investigate the role 

of DGLA supplementation on mouse plasma and tissue lipid fractions in vivo 

using DGLA from P. incisa algal powder  

 Using macrophages, determine the role of DGLA on aspects of foam cell 

formation, ROS production, monocytic migration, cytokine induced pro-

inflammatory gene expression, cytokine release, inflammasome activation, 

modified LDL uptake, cholesteryl ester accumulation and cholesterol efflux in 

vitro.  

 Delineate the molecular mechanism underlying the action of DGLA in foam 

cell formation and other key processes implicated in atherosclerosis together 

with the role of its metabolites in vitro.  
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Materials 

A list of the materials used throughout the project and their sources are listed in Table 

2.1.  

Table 2.1- Details of materials  

Supplier Area Material 

ABCAM UK ROS kit; Lactate dehydrogenase (LDH) kit 

ABD Serotech UK ABCG1 antibody (0650-1904) 

Amersham UK 14C-cholesterol 

Amresco USA Ribozol™ 

Biotrend Germany acLDL; Dil-oxidised LDL (oxLDL) 

Cayman Chemical USA PGE1; PGE1-d4; 15(S)-hydroxyeicosatrienoic 

acid (HETrE); 15(S)-hydroxyeicosatetraenoic 

acid (HETE)-d8 

Cell Signalling 

Technology 

USA Phospho-STAT1 TYR701 Rabbit mAB 

(#91675); Phospho-STAT1 SER727 Rabbit 

mAB (#91775) 

Greiner UK 6/12/24 well tissue culture plates; 10/25 ml 

stripettes; cell scrapers, 75/175 cm3 tissue 

culture flasks; 1 ml Cyro tubes 

LabTech UK Foetal calf serum, South America origin 

Lonza Switzerland RPMI media with stable glutamine 

NBS Biologicals UK RNA spin kit 

New England 

Biolabs 

UK Low molecular weight DNA ladder; Taq DNA 

polymerase 

Novus Biologicals USA ABCA1 antibody (NB400-105) 

NU-CHEK US GC standard (GLC-411); DGLA 

Nycomed 

Pharmaceuticals 

Switzerland Lymphoprep™ 

Perkin-Elmer USA Super polyethylene vials  (20 ml); OPTI-

FLUOR®; 14C-Acetate  
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Peprotech UK Human/mouse IFN-γ, IL-1β, IL-4, TNF-α, 

MCP-1 

Promega UK Deoxynucleotide (dNTPs); Molony murine 

leukemia virus (MMLV) reverse transcriptase; 

RNasin ribonuclease inhibitor; Random 

hexamer primers 

Qiagen UK COX-1 siRNA; COX-2 siRNA 

R&D systems USA IL-1β ELISA kit 

Roche Applied 

Scientific 

USA Lumi-film chemiluminescent detection film; 

PhophoSTOP phosphatase inhibitor; 

Protease inhibitor tablets 

Santa Cruz 

Biotechnologies 

USA Anti-rabbit secondary antibody IgG-AP; anti-

goat secondary antibody IgG-AP; COX-1 

antibody (Sc-1752); COX-2 antibody (Sc-

1745) STAT1 Rabbit mAb (Sc-592); β-actin 

(Sc-130656); SRA antibody (Sc-20660); 

CD36 antibody (Sc-9154); ABCG1 antibody 

(Sc-11150) 

Sigma-Aldrich UK Phorbol 12-myristate 13-acetate (PMA); 

Tween 20; SYBR® green; Dimethyl 

sulphoxide (DMSO); Accuspin tubes; RIPA 

buffer; phosphate buffer saline (PBS) tablets; 

tris-borate EDTA (TBE); DNA oligonucleotide 

primers; Acetic acid; Heptadecanoic acid 

(internal standard); Ammonium hydroxide; 

Boric acid; Ethanol; Chloroform; Diethyl ether; 

Isopropanol; Hexane; Methanol; Sulphuric 

acid, Formaldehyde 37% (v/v); RAW264.7 cell 

line; Copper II sulphate; THP-1 cell line; SYBR 

Green Taq readymix; Ponceau S; Tri sodium 

citrate, Sodium hydroxide; Sodium chloride; 

Potassium chloride;  Cholesterol; thin layer 

chromatography plates; Bovine serum 

albumin (BSA); ApoA1; Crystal violet; Lucifer 

yellow 

Source Bioscience UK Polyplus Interferin® transfection reagent  
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Star labs UK 96-well PCR plates; PCR plate covers; 0.5 ml 

Eppendorph tubes; 1.5 ml Eppendorph tubes; 

Latex diamond gloves; 15/50 ml Falcon tubes 

Thermo Fisher 

Scientific 

USA BCA protein assay kit; Magic marker XP 

western protein standard; NuPAGE® Novex 

Bis-Tris Gel 4-12% (w/v), 1.0mm (x10); 

NuPAGE® transfer buffer (20x); NuPAGE® 

MOPS SDS Running Buffer; NuPAGE® LDS 

sample buffer  (4x); Negative control siRNA; 

Agarose powder; penicillin/streptomycin 

(10,000U); Nuclease free water; GIBCO ® 

PBS; Gel sample buffer (GSB); I -Block; 

Potassium dihydrogen orthophosphate; 

Dipotassium phosphate; Potassium 

hydroxide; Hydrochloric acid 

VWR UK 8 µM cell inserts; 12 well compatible tissue 

culture plates for inserts 
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2.2 Methods 

2.2.1 Preparation of glassware and solutions 

Glassware and solutions were autoclaved (if necessary) for 20-30 minutes at 121˚C 

(975kPa). 

2.2.2 Cell lines 

2.2.2.1 THP-1 

THP-1 is an established cell line commonly utilised in the study of atherosclerosis due 

to its ability to accurately mimic the physiological and biochemical properties of native 

human monocyte-derived macrophages (Auwerx 1991; Qin 2012). Due to this, THP-

1 cells are an excellent model for studying the properties of macrophages such as 

gene/protein expression and various cell signalling mechanisms. THP-1 cells are 

non-adherent monocytes which require treatment with Phorbol 12-myristate 13-

acetate (PMA) to allow differentiation into macrophages.  

2.2.2.2 RAW264.7 

RAW264.7 cell line is a mouse macrophage cell line also utilised in in vitro studies of 

the molecular basis of atherosclerosis. The cell line was initially derived from a 

BALB/14 mouse and can be transfected with high efficiency with exogenous nucleic 

acids (Hartley et al. 2008).  RAW264.7 macrophages are adherent to tissue culture 

flasks and therefore do not require differentiation with phorbol esters.  

2.2.3 Maintenance of cell lines 

THP-1 and RAW264.7 cells were grown and maintained in RPMI-1640 containing 

stable glutamine. Media was supplemented with 10 % (v/v) heat-inactivated foetal calf 

serum (HI-FCS) (56ºC for 30 minutes) along with penicillin (100 U/ml) and 

streptomycin (100 µg/ml) (pen/strep). Cells were grown at 37˚C in a humidified 

incubator containing 5% (v/v) CO2.  

2.2.3.1 Sub culturing of cells 

2.2.3.1.1 THP-1 

THP-1 cells were cultured in 75cm3 tissue culture flasks and used in experiments 

when they reached approximately 60% confluence (6 x 105 cells/ml). Cell suspension 

was transferred into a polypropylene tube (Falcon tube) and subjected to 

centrifugation at 110 x g for 5 minutes at room temperature. After removing the media, 

the pellet was resuspended in a small volume of fresh media containing 10% (v/v) HI-

FCS and pen/strep. Cells were split at a ratio of approximately 1:30 to allow growth 
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of up to 60% confluence in 7 days. For experimental use, cells between passage 1 

and 10 were used.  

2.2.3.1.2 RAW264.7 

RAW264.7 cells were cultured in tissue culture dishes and used for experiments when 

they reached about 80% confluence. Adherent RAW264.7 cells were dislodged from 

the dish surface via scrapping. The cell suspension was transferred into a Falcon tube 

and subjected to centrifugation at 110 x g for 5 minutes at room temperature. After 

suspending the pellet in fresh medium containing 10% (v/v) HI-FCS and pen/strep, 

RAW264.7 cells were split at a ratio of 1:15 to allow cells to reach requisite confluence 

in approximately 3 days.  

2.2.3.2 Freezing down cell lines 

The cells were centrifuged at 110 x g for 5 minutes at room temperature and 

resuspended in HI-FCS with 10% (v/v) DMSO. Cells (density approximately 5 x 106) 

were then transferred into 1ml cryo tubes and placed in a Nalgene™Cryo 1oC freezing 

container overnight at -80oC. Cell stocks were transferred to liquid nitrogen for long-

term storage. Only cells of passage 3 or less were frozen for stock.  

2.2.3.3 Growing up frozen cell lines 

Cell stocks from liquid nitrogen were defrosted in a 37˚C water bath. Cells were then 

transferred into 10 ml of HI-FCS and centrifuged at 110 x g for 5 minutes at room 

temperature. Cell pellet was resuspended in pre-warmed RPMI-1640 with stable 

glutamine media containing 10% (v/v) HI-FCS and 10% Pen/strep and transferred 

into a culture flask or dishes as detailed above.  

2.2.3 Counting cells 

A haemocytometer was used to count cells. After centrifugation as above, the cell 

pellet was resuspended in a small volume of media containing 10% (v/v) HI-FCS and 

pen/strep. The haemocytometer was covered with a glass cover slip and 10 µl of the 

cell suspension applied. An average of the number of cells contained within the four 

outer grids of the haemocytometer was taken. Number of cells/ml was calculated by 

multiplying the average number of cells by 104.  

2.2.4 Treatment of the cells 

2.2.4.1 THP-1 

For RNA extraction, 5 x 105 cells were split into a 12-well plate containing 1ml of 

complete RPMI media, containing 10% HI-FCS and pen/strep, per well. To allow 
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differentiation of THP-1 monocytes into adherent macrophages, the medium was 

supplemented with 0.16 µM PMA. Cells were left to differentiate for 24 hours at 37ºC 

in a humidified 5% CO2 (v/v) incubator. The media was then removed and the cells 

were washed in PBS followed by addition of 1 ml of fresh RPMI media with 10% (v/v) 

HI-FCS and pen/strep. THP-1 macrophages were next pre-treated with DGLA or 

DMSO vehicle for 24 hours followed by cytokine or vehicle (water) (concentration 

used dependent on the cytokine). RNA was then extracted as described in Section 

2.2.7.2.  For protein analysis by western blotting, 1 x 106 cells were seeded in 6 well 

plates with 2 ml RPMI media containing 10% (v/v) HI-FCS and pen/strep whereas 4 

x 106 cells were seeded in 6 well plates with 3 ml RPMI media containing 10% (v/v) 

HI-FCS and pen/strep for lipid analysis. The conditions for differentiation and 

treatment with the various agents were exactly as detailed above.  

2.2.4.2 RAW264.7 

For RNA extraction, 2 x 105 cells were split into a 12-well plate containing 2 ml of 

complete RPMI media containing 10% (v/v) HI-FCS and pen/strep. Cells were 

allowed to grow for 24 hours at 37ºC in a humidified 5% (v/v) CO2 incubator. The cell 

media was removed and the cells were washed in PBS and incubated with 2ml of 

fresh RPMI media with 10% (v/v) HI-FCS and pen/strep. Cells were pre-treated with 

DGLA or vehicle for 24 hours before cytokine stimulation (incubation with cytokine 

dependant on individual experiment).  

2.2.5 Primary human monocyte-derived macrophages (HMDM) 

Human blood buffy coats were obtained from the National Blood Service Wales. 

White blood cells were isolated using LymphoprepTM. Briefly for 25 ml of blood and 

15 ml of LymphoprepTM at room temperature was placed in 50 ml AccuspinTM tubes 

and subjected to centrifugation for 1 minute at 1000 x g to place the LymphoprepTM in 

the bottom chamber. Then, 25 ml of blood was added to the top chamber and 

centrifuged at 800 x g for 10 minutes at room temperature, without brake. The 

mononuclear layer was collected and transferred into a Falcon tube. An equal amount 

of ice-cold PBS 0.4% (w/v) tri-sodium citrate was added and centrifuged at 1000 x g 

for 5 minutes at room temperature. To lyse red blood cells, the cell pellet was 

resuspended in 10 ml of 0.2% (v/v) saline for 30 seconds on ice immediately followed 

by the addition of 10 ml of 1.6% (v/w) saline. This mixture was immediately 

centrifuged at 1000 x g for 5 minutes at room temperature. The pellet was then 

resuspended in ice-cold PBS-0.4% (v/w) tri sodium citrate and centrifuged at 800 x g 

for 5 minutes at room temperature. This step was repeated 6-10 times to ensure 

removal of platelets. The cell pellet was then resuspended in RPMI-1640 media 
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containing 10% (v/v) HI-FCS and pen/strep and seeded into 12 well plates. Each well 

was made up to 2 ml with complete RPMI containing 10% (v/v) HI-FCS and pen/strep 

media. Cells were left to differentiate for 10 days before use. Cells were washed three 

times in RMPI-1640 containing 10% (v/v) HI-FCS and pen/strep to remove any 

unattached cells/debris before subsequent experiments were carried out.  

2.2.6 Cellular assays 

2.2.6.1 Crystal violet 

THP-1 monocytes were differentiated as previously described (Section 2.2.4.1) and 

seeded in 96 well plates at a density of 140,000 cells in complete RPMI media 

containing 10% (v/v) HI-FCS and pen/strep. After incubation as required for the 

experimental conditions, the cells were washed with PBS and 250 µl of crystal violet 

solution (0.2% (w/v) in 10% ethanol) was added per well. The cells were washed three 

times in PBS followed by the addition of 250 µl of solubilisation buffer (0.1M NaH2PO4 

in 50% (w/v) ethanol). The plate was left for 5 minutes on a rocking platform at room 

temperature before determining absorbance on a Bio-Rad micro plate reader at 590 

nm. Crystal violet binds to DNA of adherent cells, those that have died or detached 

from the well remain in suspension and will be washed away. The results were 

expressed as percentage cell death in comparison to the control conditions.  

2.2.6.2 Lactate dehydrogenase (LDH) assay 

LDH is a cellular cytosolic enzyme. Damage to the plasma membrane of a cell 

releases LDH into the culture media which can then be directly measured using the 

LDH assay kit by utilising an enzymatic reaction. Extracellular LDH catalyses a 

reaction that reduces NAD+ to NADH. Diaphorase utilises NADH to reduce 

tetrazolium salt (INT) to a red product that can be measured at 490 nm. The 

concentration of cellular LDH levels is directly proportional to the amount of red 

product formed. THP-1 macrophages were cultured and subjected to the 

experimental conditions (Section 2.2.4.1). Cell lysis buffer was added to ‘positive 

control’ cells to achieve 100% cellular lysis and left to incubate at 37ºC for 45 minutes. 

A negative control was also included containing media alone for a background 

reading. For other samples, 50 µl of supernatant was transferred into a separate well 

of a 96 well plate and mixed with an equal volume of LDH assay buffer (supplied with 

the kit), left for a further 30 minutes at 37ºC and absorbance read immediately at 490 

nm on a Dynex Technology MRX Model 680 Microplate reader from BioRad. Negative 

control values were subtracted from readings and expressed as fold-change in 

comparison to the control.  
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2.2.6.3 ROS production 

Measurement of ROS production was performed as per manufacturer instructions 

(AbCAM). The kit utilises fluorogenic dye dichlorofluorescin diacetate (DCFDA) to 

measure ROS activity within the cell.  Briefly, monocytes or macrophages were 

incubated with 35 μM DCFDA which diffuses into cells and is deacetylated by cellular 

esterases to a non-fluorescent compound, later oxidised by ROS to a fluorescent 

compound 2’,7, dichlorofluorescein (DCF). A positive control supplied by the kit, tert-

butyl hydrogen peroxide (TBHP), was used to induce ROS production by monocytes 

and macrophages. Monocytes and macrophages were co- or pre-incubated with 50 

μM DGLA followed by incubation with 100 μM TBHP for 3 hours. DCF was measured 

by fluorescence spectroscopy with excitation and emission spectra of 495 nm and 

529 nm respectively. 

2.2.7 RNA/DNA techniques 

2.2.7.1 siRNA 

siRNA transfections were carried out using validated siRNAs against target mRNAs. 

The transfection was performed in THP-1 monocytes prior to differentiation. The cells 

were seeded into 12-well plates for RT-qPCR (5 x 105 cells) and into 6 well plates for 

western blotting (1 x 106) in the presence of RPMI media with 10% (v/v) HI-FCS and 

no antibiotics at 37°C in a humidified, 5% (v/v) CO2 incubator for 4 hours prior to 

transfection.  

siRNA transfection were carried out using Interferin® transfection reagent. For RT-

qPCR, a transfection mix was prepared in 100 µl of minimal RPMI media (no HI-FCS 

or pen/strep) containing 7.5 nM siRNA (of each individual siRNA used) and 9 µl 

interferin. For western blotting, 7.5 nM siRNA and 12 µl interferin were made up to 

final volume of 200 µl in minimal RPMI media (no HI-FCS or pen/strep). The complete 

mixture was added drop wise to the wells and the plates placed at 37°C in a 

humidified, 5% (v/v) CO2 incubator for 4 hours. Following incubation, the cells were 

differentiated using 0.16 μM PMA for 24 hours. The cells were then subjected to pre-

incubation with DGLA or vehicle followed by cytokine stimulation (Section 2.2.4.1) 

before being harvested for RNA extraction (Section 2.2.7.2) or protein extraction 

(Section 2.2.9).  
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Figure 2.1 – siRNA transfections 

Diagram depicts the process of siRNA transfection 

 

2.2.7.2 RNA isolation 

For extraction of RNA, two methods were used. Initially RNA was isolated using Spin 

column RNA miniprep kit (NBS Biologicals) according to the manufacturer’s 

instructions. Briefly, after aspiration of the media, 350 µl of Lysis Buffer DR (provided 

in the kit) was added to the wells and the lysates were collected. The lysate could be 

stored at -80˚C for up to 6 months or used immediately in RNA extraction. The lysate 

was passed through a series of spin columns provided in the kit to first bind genomic 
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DNA, then RNA and finally to elute high quality RNA. A flow diagram detailing 

experimental procedure is detailed in Figure 2.2.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 – Spin column RNA isolation method 

Flow diagram detailing the steps involved in extraction of RNA using Spin column minikit (NBS 

biologicals)  
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Due to the high costs of spin column kits, RNA was then isolated using RiboZol™ 

according to the manufacturer’s instructions (Amersco, UK). In addition to the cost, 

extraction of RNA using RiboZol™ allows for simultaneous analysis of expression of 

miRNA as well as mRNA as miRNA are lost during RNA extraction using spin 

columns. RiboZol™ is a single-phase phenol which homogenises samples after 

passing lysate through a pipette a number of times and inhibits RNase activity. 

RiboZol™ (1 ml) was added per 10cm2 of culture dish area and cells were lysed by 

pipetting. Samples were left for 10-15 minutes at room temperature to allow complete 

dissociation of nucleoprotein complexes. Then, 200 µl of chloroform per 1ml of 

RiboZol™ was added and mixed vigorously. The samples were incubated for 2-3 

minutes at room temperature and subjected to centrifugation at 12,000 x g for 15 

minutes at 4ºC. Following centrifugation, the colourless upper aqueous phase 

containing RNA was transferred into a new tube. The RNA was precipitated by adding 

0.5 ml of isopropanol per 1 ml of RiboZol™. The samples were incubated for 10 

minutes at room temperature and then centrifuged at 12,000 x g for 10 minutes at 

4ºC to pellet the RNA. The pellet was washed three times with 75% (v/v) ethanol with 

the residual ethanol evaporated at room temperature after the final wash. The RNA 

was dissolved in nuclease free water and incubated for 10 minutes at 56ºC to 

completely re-dissolve the RNA.   

The RNA concentration was measured on NanoDrop™ ND2000. The A260/A280 and 

A230/A260 ratios were used to assess RNA purity. A ratio of 1.8 – 2.1 for both was 

indicative of high quality RNA. In addition, a small aliquot was analysed by agarose 

gel electrophoresis.  

2.2.7.3 Resolving RNA  

RNA extracts were size-fractionated on a 1.5% (w/v) agarose gel as an additional 

check on the quality of RNA. Agarose gels 1.5% (w/v) were made by dissolving 

agarose in 1 x tris/borate/EDTA (TBE) buffer with the addition of 0.5 µg/ml of ethidium 

bromide for visualisation. Quality of RNA was judged as good when two distinct bands 

were observable, the band corresponding to the 28S rRNA being twice as intense as 

that for 18S rRNA. 
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2.2.8 Gene expression analysis 

2.2.8.1 cDNA synthesis (SYBR green) 

RNA (typically 1 µg or 0.5 µg if the RNA yield was low) was mixed with 200 pmol of 

random hexamer primers and nuclease-free water to make a total volume of 14 µl. 

The mixture was then incubated at 70˚C for 5 minutes followed by a 5-minute period 

on ice. The following mixture was prepared and added to the reaction to make a final 

volume of 20 µl 

- 10 mM of each dNTPs (dATP, dGTP,dTTP,dCTP); 

- 200 U M-MMLV reverse transcriptase;  

- 40 U/ml recombinant RNase inhibitor; 

- 5X reverse transcription buffer  (50 mM Tris-HCl (pH 8.3 @ 25°C), 75 mM 

KCl, 3 mM MgCl2 and 10 mM DTT) 

A –RT sample (minus reverse transcriptase) was included in reaction as a negative 

control. The final reaction mix was incubated at 37˚C for 1 hour, followed by a 

termination period at 95˚C for 5 minutes. The cDNA was diluted with nuclease-free 

water to a final volume of 100 µl (or 50 µl if 0.5 µg of RNA was originally used). The 

samples were used immediately for real time quantitative polymerase chain reaction 

(RT-qPCR) or stored at -20˚C.  

2.2.8.2 Real time quantitative (RT –qPCR) 

RT-qPCR is a method whereby the amounts of PCR products are measured with 

each passing amplification cycle. Values are recorded once a pre-set threshold, in 

the exponential phase of amplification, has been exceeded. This is opposed to end 

point quantification RT-PCR where measurement endpoints could lie out of the 

exponential phase of the PCR reaction. This means that in some cases the semi-

quantification of the starting template could be inaccurate (Ginzinger 2002). The RT-

qPCR reactions were performed with SYBR Green Taq Readymix. SYBR Green 

Jumpstart Taq ReadyMix allows for quantification of any DNA sequence by binding 

to double stranded DNA sequences (Giulietti et al. 2001). SYBR green is a dye that 

intercalates into double stranded DNA (dsDNA) and fluoresces when bound to DNA 

thereby allowing monitoring of product throughout cycling. Although any dsDNA 

molecule can be bound by SYBR green, use of specific primers and optimised 

amplification conditions can prevent any formation of primer dimers and yield maximal 

product production (Giulietti et al. 2001). This can be observed through analysis of 
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product melting curves (product formed over time) to verify amplification of a major 

single product. Gene specific primer sequences are listed in Table 2.2. To ensure no 

amplification of genomic DNA, intron spanning primers were designed.  A hot start 

mechanism via the inclusion of Jumpstart Taq in the readymix allows for PCR 

reactions to be performed at room temperature as the reaction starts at an optimum 

temperature and therefore prevention of non-specific product formation. The SYBR 

green ready mix also contains deoxyribonucleotides and reaction buffer which saves 

a significant amount of preparation time when performing large-scale experiments. 

RT-qPCR samples were prepared as 25 µl reactions in a 96-well plate. Reaction mix 

is detailed in Table 2.3.  
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Table 2.2 – Primer sequences used in RT-qPCR  

 Species Forward sequence (5’-3’) Reverse Sequence (5’-3’) 

GAPDH Human CTTTTGCGTCGCCAGCCGAG GCCCAATACGACCAAATCCGTTGACT 

MCP-1 Human CGCTCAGCCAGATGCAATCAATG ATGGTCTTGAAGATCACAGCTTCTTTGG 

MCP-1 Mouse GCTCAGCCAGATGCAGTTAACG GCTTGGTGACAAAAACTACAGCTTC 

ICAM-1 Human GACCAGAGGTTGAACCCCAC GCGCCGGAAAGCTGTAGAT 

ICAM-1 Mouse ACGTGCTGTATGGTCCTCGG GTCCAGTTATTTTGAGAGTGGTACAGTA 

β Actin Mouse ACACCCGCCACCAGTTCGCCAT CACACCCTGGTGCCTAGGGCGGCCCACGATC 

COX-1 Human CTGGTTCTTGCTGTTCCTGC ATAAGGTTGGAGCGCACTGT 

COX-2 Human TCAGACAGCAAAGCCTACCC TGTGTTTGGAGTGGGTTTCA 

SRA Human GTCCAATAGGTCCTCCGGGT CCCACCGACCAGTCGAAC 

CD36 Human AGCCATTTTAAAGATAGCTTTCC AAGCTCTGGTTCTTATTCACA 

ACAT1 Human ATACTCAGCCCTCTGCGACC TCTTATTTCCTGCACCAGCCT 

NCEH Human CCTGGTCACCTTCAGATGAAAT TTGTGGCCCGTACAACATCA 

LXR-α Human CCTTCAGAACCCACAGAGATCC ACGCTGCATAGCTCGTTCC 

LXR-β Human GCTAACAGCGGCTCAAGAACT GGAGCGTTTGTTGCACTGC 

ABCA1 Human AGTGGAAACAGTTAATGACCAG GCAGCTGACATGTTTGTCTTC 

ABCG1 Human GGTGGACGAAGAAAGGATACAAGACC ATGCCCGTCTCCCTGTATCCA 
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Table 2.3 – Reaction mix for RT-qPCR using SYBR® Green 

 

 

 

 

 

 

 

 

RT-qPCR was performed on a Roche light cycler. A typical amplification cycle 

consisted of 2 minutes pre-incubation at 94ºC followed by 40 cycles of three-step 

amplification detailed in Table 2.4, followed by melting peak analysis.  

 

Table 2.4 – RT-qPCR conditions using SYBR® Green 

 

 

 

 

 

 

 

The comparative Ct method was used to measure gene expression (Livak and 

Schmittgen 2001). The Ct value is measured when the fluorescence signal from PCR 

amplification surpasses a pre-set threshold within the amplification stage.  Relative 

expression of genes of interest were normalised to that of housekeeping genes (Livak 

and Schmittgen 2001). In order for the Ct method to yield accurate values, the 

expression of housekeeping genes must remain constant under all experimental 

Reagent Volume (µl) 

SYBR® Green 12.5 

Forward primer (100 µM) 0.5 

Reverse primer (100 µM) 0.5 

cDNA  1 

Nuclease free water 10.5 

Stage Temperature (ºC) Duration 

(seconds) 

Denaturation 95 30 

Annealing 60 60 

Primer extension 72 60 
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conditions and the efficiency of primer sets used must be comparable (Ginzinger 

2002). Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) and β-actin were used 

as the house keeping genes for human and mouse RNA respectively.  Both genes 

have frequently been utilised for this role in other studies (Wu et al. 1997; Li et al. 

2010; McLaren et al. 2011b). Once the PCR reaction was completed, Ct values were 

recorded and analysed in Microsoft Excel.  

2.2.9 Western blotting 

2.2.9.1 Protein extraction 

For extraction of proteins for western blotting, cells were washed in PBS and RIPA 

buffer (Sigma) was added to the wells. The cells were detached with a cell scraper 

into the buffer and collected in Eppendorf tubes. The cells were subjected to 

centrifugation at 9,000 x g at room temperature for 5 minutes to pellet the cells. The 

supernatant was collected in a new Eppendorf tube and a small volume was removed 

for determination of protein concentration. For separation of proteins by 

polyacrylamide gel electrophoresis (PAGE), the proteins need to be denatured and 

the disulphide bonds reduced. This was achieved by adding an equal volume of gel 

sample buffer (GSB) containing sodium dodecyl sulphate (SDS). Samples were 

heated for 5 minutes at 100⁰C and placed on ice before loading onto the gels. For 

compositions of reagents used in western blotting refer to Table 2.5.  

2.2.9.2 Determining protein concentration 

Total protein concentrations were determined using Micro BCATM Protein assay Kit in 

accordance to the manufacturer’s instructions (Thermo Fisher Scientific). Briefly, a 

standard curve was prepared by setting up a series of dilutions of bovine serum 

albumin (BSA) and plated in a 96 well plate along with protein samples diluted in 

nuclease free water. The BCA cocktail (containing reagents provided in the kit) was 

prepared following the manufacturer’s instructions and 150 µl was added to 150 µl of 

samples and standards. Plate was sealed and left at 37⁰C for 30 minutes to allow 

colour to develop.  Absorbance was read at 595 nm on a Dynex Technology MRX 

Model 680 Microplate reader from BioRad. A standard curve was compiled and 

unknown protein concentrations determined from this.  

2.2.9.3 Separation of proteins 

Separation of proteins was performed in XCell Surelock® Mini-Cell on NuPAGE® 4-

12% Bis-Tris gels. These pre-cast gels allow for optimum separation of small to 

medium sized proteins in a neutral pH environment. The electrophoresis tank was 
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filled with NuPAGE® MOPS SDS Running buffer (1X).  Magic Marker was used as a 

marker to determine size of proteins on membranes. Samples were subjected to 

electrophoresis for 1 hour at 150V and 400mA. The composition of all the reagents 

used for the western blotting techniques are shown in Table 2.5. 

 

Table 2.5 – Composition of buffers used in western blotting 

 

2.2.9.4 Blotting  

Following electrophoresis, the gel was removed from its casing and the proteins were 

transferred onto an Immobilon™ transfer membrane using XCell Surelock® Mini-Cell 

via XCell II™ Blot Module. Assembly of the transfer unit was performed in 

NuPAGE®Transfer buffer which was later used to “top up” the inner chamber. 

Assembly of transfer is detailed in Figure 2.3.  NuPAGE®gel was placed adjacent to 

membrane (after activation in 100% methanol for 1 minute at room temperature) 

between Whatman paper and sponge pads soaked in transfer buffer. Transfer was 

performed at 30V and 300mA for 2 hours.  

Reagent Composition 

RIPA buffer 150 mM NaCl, 1% (v/v) IGEPAL® CA-630, 0.5% 

(v/v) sodium deoxycholate, 0.1% (w/v) SDS, 50 mM 

Tris pH 8.0 

GSB 63 mM Tris HCl pH 6.8, 10% (v/v) glycerol, 5% (v/v) 

β mercaptoethanol, 2% (w/v) SDS, 0.0025% (w/v) 

bromophenol blue 

NuPAGE® MOPS SDS 

Running buffer 

50 mM MOPS, 50 mM Tris Base, 0.1% (w/v) SDS, 1 

mM EDTA, pH 7.7 

NuPAGE®Transfer buffer 500 mM Bicine, 500 mM Bis-Tris, 20.5 mM EDTA 

PBS Tween 1L ddH20, 10 PBS Tablets, 2 ml Tween20 

IBT blocking solution 0.5% (w/v) I BLOCK in PBS Tween 

Ponceau S 0.1% (w/v) Ponceau S, 5% (v/v) acetic acid, ddH20 
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Figure 2.3 – Configuration of transfer module 

Transfer membrane and gel were enclosed between Whatman papers. Sponge pads were 

used to package the remaining space in the module to ensure membrane and gel remained 

in constant contact throughout the transfer process.  

 

2.2.9.5 Immunodetection of proteins 

After the transfer process was complete, proteins could be visualised on the 

membrane by staining with Ponceau S to ensure they had successfully transferred 

onto the membrane. Following visualisation with Ponceau S, the membrane was 

washed in PBS-tween until all the stain had been removed. Membrane was then 

“blocked” in IBT solution for 1 hour at room temperature with constant shaking, to 

prevent any non-specific interactions with antibodies. Following this, the membrane 

was treated with a primary antibody for 1 hour at room temperature or overnight at 

40C (refer to Table 2.6 for antibody dilutions and incubation conditions). After 

incubation with a primary antibody, the membrane was washed three times in PBS-

Tween at room temperature with constant shaking. The membrane was next treated 

with a corresponding alkaline phosphate (AP)-conjugated secondary antibody diluted 

in IBT solution for 1 hour at room temperature, with constant shaking. The membrane 

was washed again as above and incubated for 30 minutes with Tropix®CDP Star®. 

Following this, the membrane was secured into a lightproof cassette (Kodak). 

Membranes were exposed to chemiluminescent X-ray films. A number of time points 

for exposure of membrane to X-ray film were taken to allow optimum exposure to be 

achieved. Exposure time varied between 5 minutes to overnight.  
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Table 2.6 – Antibodies and conditions used in western blot analysis 

Primary 

antibody 

Dilution 

in IBT 

Incubation 

time (hours) 

Secondary 

antibody 

Dilution 

in IBT 

Size 

(kDa) 

Total STAT1 1/1000 1 hour Rabbit 1:5000 91 

Phospho STAT1 

Ser727 

1/1000 Overnight Rabbit 1:5000 91 

Phospho STAT1 

Tyr701 

1/1000 Overnight Rabbit 1:5000 91 

β-actin 1/5000 1 hour Mouse 1:10,000 42 

COX-1 1:500 Overnight Goat 1:2000 72 

COX-2 1:250 Overnight Goat 1:2000 70-72 

SRA 1:1000 Overnight Rabbit 1:5000 75 

CD36 1:250 Overnight Rabbit 1:3000 88 

ABCA1 1:1000 Overnight Rabbit 1:5000 220 

ABCG1 1:2000 Overnight Goat 1:5000 110 

ApoE 1:2000 Overnight Goat 1:5000 38 

 

2.2.10 Inflammasome activation 

2.2.10.1 Cholesterol crystals 

Cholesterol was dissolved in 95% (v/v) ethanol (12.5 g/L) and heated to 60ºC. 

Solution was filtered through Whatman paper to remove any undissolved cholesterol 

and left at room temperature overnight to allow for crystallisation. Crystals were 

collected and autoclaved. Crystals were ground with a dounce homogenizer to unify 

crystal size and stored at -20ºC for use in experiments.  

2.2.10.2 Enzyme linked immunosorbent assay (ELISA) 

An ELISA was used to determine the concentration of IL-1β expressed on stimulation 

of macrophages with cholesterol crystals to activate the inflammasome. THP-1 
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macrophages were cultured in 24 well plates at a density of 1.5 x 105 cells per well in 

RMPI media containing 0.2% (w/v) fatty acid free BSA. Following differentiation, 

macrophages were pre-treated with 50 µM DGLA for 24 hours followed by 1.0 mg/ml 

cholesterol crystals. Media was removed into Eppendorf tubes and subjected to 

centrifugation at 9,000 x g for 5 minutes to remove any cholesterol crystals in 

suspension. Supernatant was then measured for concentration of IL-1β by ELISA 

following manufacturer’s instructions (R&D systems). Briefly, ELISA plates were 

coated with 4.0 µg/ml human IL-1β capture antibody by overnight incubation. Plates 

were washed 3 times with wash buffer (provided in kit) and incubated with reagent 

diluent (provided in kit) for 2 hours. Washing of plates was repeated. Samples were 

diluted in reagent diluent and standards were made up in concentrations ranging from 

0 to 250 pg/ml with IL-1β standards. Samples and standards were added to plates 

and left for 2 hours. Washing of plates was repeated. IL-1β biotinylated antibody (200 

ng/ml) was then added to plates for two hours followed by another wash as above. 

Streptavidin-HRP was incubated on plates for 20 minutes, washed and substrate 

solution (provided in kit) was added for a further 20 minutes. Finally Stop solution 

(provided in kit) was added and optical density of plates was measured on a 

microplate reader at 450 nm with correction at 540 nm.  A standard curve was 

compiled and unknown IL-1β concentrations determined from this.  

2.2.11 Migration assay 

Migration was performed using a cell insert with 8 µm pore size placed within a 12 

well companion plate (modified Boyden chamber). THP-1 monocytes (5x105 cells) 

were suspended in RMPI media supplemented with 10% (v/v) FCS, pen/strep and 

DGLA or vehicle control and placed on top of the cell culture insert. In the bottom 

chamber, 0.5 ml of RMPI media supplemented with 10% (v/v) FCS, pen/strep, DGLA 

or vehicle control and MCP-1 (20 ng/ml) or vehicle control (refer to Figure 2.4 for 

experimental set up). Incubation of the modified Boyden chamber was then carried 

out at 37ºC for 3 hours. The remaining cell suspension on the top of the membrane 

was removed and discarded, and the underside of the membrane was washed with 

PBS to ensure all migrated cells were washed into the media underneath. The 

remaining media was transferred into Falcon tubes and subjected to centrifugation at 

110 x g for 5 minutes at room temperature to pellet the cells. The cell pellet was 

resuspended in 1ml PBS and cells were counted using a haemocytometer. Results 

were expressed as percentage migration in relation to total input cells. 
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Figure 2.4 – Experimental set up for migration assays 

Cell insert with 8 µm pores were used to mimic endothelial layer of arteries. Monocytes were 

placed in the top chamber and MCP-1 was used as a chemoattractant to stimulate migration.  

 

2.2.12 FACS analysis 

2.2.12.1 Macropinocytosis 

THP-1 macrophages were pre-incubated with 50 μM DGLA for 24 hours followed by 

100 µg/ml Lucifer yellow (LY) in RPMI medium supplemented with 0.2% (v/v) fatty 

acid free BSA. Overlying media was discarded and cells removed by treatment with 

0.05% (v/v) trypsin. Cells were collected in Eppendorphs and subjected to 

centrifugation at 9,000 x g for 5 minutes to pellet the cells. The supernatant was 

removed and the pellet was resuspended in 2% paraformaldehyde (PFA). LY 

incorporation was analysed by flow cytometry on a BD FACS Canto flow cytometer. 

At least 10,000 events were counted for each sample.  

2.2.12.2 Dil-oxLDL uptake 

THP-1 macrophages were pre-incubated with 50 μM DGLA for 24 hours followed by 

5 μg/ml Dil-oxLDL in RPMI medium supplemented with 0.2% (v/v) fatty acid free BSA. 

Overlying media was discarded and cells removed by treatment with 0.05% (v/v) 

trypsin. Cells were collected in Eppendorphs and subjected to centrifugation at 9,000 

x g for 5 minutes to pellet the cells. The supernatant was removed and the pellet was 

resuspended in 2% PFA. Dil-oxLDL uptake was analysed by flow cytometry on a BD 

FACS Canto flow cytometer. At least 10,000 events were counted for each sample.  
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2.2.13 Extraction of lipids from algal powder 

Freeze-dried powder of a green algae P. incisa was obtained from Ben-Gurion 

University (Israel) and lipids containing up to 30% of DGLA were extracted according 

to Iskandarov (2011), with minor modifications. 50 mg of biomass was weighed and 

mixed with 0.2 ml 100% (v/v) DMSO by vortexing followed by incubation for 10 

minutes at 80ºC. Methanol (6 ml) was then added, flushed with nitrogen and the 

incubation continued for 1 hour at 4ºC with continuous vortexing. The samples were 

centrifuged at 500 x g for 5 minutes and methanol fraction containing polar lipids was 

collected. The solvent was evaporated and lipids stored in glass vials at -20ºC.  

Extraction of non-polar lipids from the remaining pellet was performed by adding 0.2 

ml DMSO followed by 12 ml 100% (v/v) hexane: diethyl ether (1:1, v/v). Phase 

separation was achieved via adding 6 ml of dH2O and lipid-containing layer was 

collected. HCl (0.2M) was added until pH 3 was achieved and re-extraction was 

carried out once again using hexane: diethyl ether (1:1, v/v). Solvents were 

evaporated under a steam of nitrogen; lipids were combined, resuspended into known 

volumes of chloroform and stored at -20ºC prior to further analysis.  

2.2.13.1. Hydrolysis of algal total lipids 

Aliquots of total lipid extracts were taken for hydrolyses of algal lipids in order to 

cleave fatty acids (including about 30% DGLA) from the complex lipids. This was 

necessary for comparison of the effects of pure DGLA and DGLA-enriched fatty acid 

mixture from algae on macrophages.  The lipid extract was refluxed with 1M solution 

of KOH in 95% ethanol (5 ml) for 1 hour. After cooling, water (7 ml) was added, the 

aqueous layer was acidified with 6M HCl and extracted with hexane: diethyl ether 

(1:1, v/v; 2 x 5 ml). The solvent was evaporated under a stream of nitrogen and 

NEFAs were re-dissolved in DMSO for the further use in the cell treatment 

experiments.  

2.2.14 Animal feeding 

In vivo studies were employed to investigate the use of lipids extracted from P. incisa 

as a viable source of DGLA supplement for rodents. Since our preliminary 

experiment, when freeze-dried form of algae was used, did not show any detectable 

DGLA in mouse plasma, lipids extracted from the powder as detailed in Section 2.2.13 

were employed. Twelve week old male C57BL/6 mice were starved for 24 hours prior 

to being given either chow control diet or a diet containing lipids extracted from the 

algal powder (this diet had 4.4% (w/v) DGLA as the final relative concentration), for 

48 hours. Mice were sacrificed using schedule 1 procedures and samples of plasma 
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together with liver, kidney and adipose tissue were taken for lipid analysis. Lipids were 

extracted and analysed as in Section 2.2.15.  

2.2.15 Lipid analysis 

2.2.15.1 Lipid extraction from macrophages and plasma  

THP-1 cells (4 x 106 per well) were cultured as previously described (Section 2.2.4.1) 

in 6 well plates. Following experimental treatment, media was aspirated and the cells 

were washed and scraped from the wells using PBS. The cell suspension was 

transferred into plastic Eppendorf tubes and subjected to centrifugation at 9000 x g 

for 5 minutes to pellet the cells. The supernatant was removed, the pellet 

resuspended in 1ml of distilled water and transferred into a glass tube. Next, 2 ml of 

chloroform: methanol (2:1, v/v) solution was added to glass tube, vortexed and 

incubated for 15 minutes at room temperature. Then, 1ml  of chloroform and 2 ml of 

Garbus solution (2M KCl in 0.5M potassium phosphate buffer pH 7.6) (Garbus et al. 

1963) was added, vortexed and centrifuged at 220 x g for 3 minutes at room 

temperature to allow separation of the chloroform and the aqueous layers. The 

chloroform layer was removed into clean glass conical tube with a glass pipette, 

evaporated under nitrogen and reconstituted in 50 µl of chloroform.  

2.2.15.2 Lipid extraction from plasma 

After sacrifice of the animals using schedule 1 procedures, blood was collected from 

mice and centrifuged at 9,000 x g for 5 minutes at room temperature. Plasma fraction 

was removed into a clean glass tube and 2 ml of chloroform: methanol (2:1, v/v) 

solution was added. Lipids were extracted in an identical way to that previously 

described in Section 2.2.15.1.  

2.2.15.3 Lipid extraction from mouse tissue 

Samples of liver, adipose tissue and kidney were taken from mice for lipid and fatty 

acid analysis. Tissues were ground with a pestle and mortar in chloroform: methanol 

(2:1, v/v). Homogenised tissue was passed through glass wool to filter into a glass 

tube and a further 2 ml of chloroform: methanol (2:1, v/v) was added. Again, lipids 

were extracted in an identical way to that previously described in Section 2.2.15.1.  

2.2.15.4 Thin layer chromatography (TLC) 

To separate individual lipid classes, TLC was performed on 10 x 10 cm silica gel G 

Merck plates using different types of separation. One-dimensional separation was 

performed using hexane: diethyl ether; acetic acid (80:20:1, v/v/v). This allowed 

separation of the following lipid classes: TPL, TAG, FFA, free cholesterol and 
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cholesteryl esters. Polar lipids with PC and PE as two major classes were separated 

using boric acid impregnated plates (0.2% boric acid in water: ethanol (1:2, v/v)).  

Chloroform: methanol: ammonium hydroxide (65:25:4, v/v/v) was used as a solvent 

mixture for the 1st dimension and n-butanol: acetic acid: water (90:20:20, v/v/v) for the 

2nd dimension. After drying, the plates were sprayed with a 0.05% solution of 8-

anilino-4-naphthosulphonic acid (ANSA) in methanol which allows for visualisation of 

lipids under UV light. The position of the separated lipid fractions were identified and 

marked on the plate. Identification was made routinely by reference to authentic 

standards and confirmed using specific colour reagents (Kates 1986). The silica gel 

covering the plates contained within identified area was scraped. The separated 

spots/bands were used for further fatty acid analysis as described in the following 

Section.  

2.2.15.5 Fatty acid analysis 

Aliquots of the total lipid extracts and hydrolysed lipids from algae as well as individual 

lipid classes separated by TLC were used for fatty acid methyl esters (FAMEs) 

preparation. FAMEs were prepared using a solution of 2.5% H2SO4 in dry methanol: 

toluene (2:1, v/v). A known amount of an internal standard, heptadecanoic acid 

(C17:0), was added to each sample for fatty acid and lipid quantification.  Samples 

were heated to 700C for 2 hours, with occasional vortexing. FAMEs were then 

extracted by addition of 2 ml of 5% NaCl followed by 2 additions of 3 ml of hexane 

(HPLC grade). The hexane fractions were transferred into clean glass tubes, 

evaporated under a stream of nitrogen and reconstituted in 50 µl of hexane.  

2.2.15.6 Gas chromatography (GC) 

FAMEs for each individual lipid fraction were analysed using a Clarus 500 GC with a 

flame ionisation detector (Perkin-Elmer, Norwalk, Connecticut) and equipped with 

30m by 0.25mm id capillary column (Elite 225, Perkin-Elmer, Waltham, MA, USA). 

Samples were heated to 170oC for 3 minutes, heated to 220oC (at a rate of 4oC per 

minute) and held for 30 minutes. FAMEs were identified by comparison with retention 

times of known standards.  

2.2.15.7 Preparation of samples for HPLC-MS 

Hexane: isopropanol: 1M acetic acid (30:20:2) (v/v/v) was added to media collected 

from 4 x 106 cells in a ratio of 2.5 ml of solvent mixture to 1 ml of media. An internal 

standard containing 10 ng dimethylphosphinoethane (DMPE) and 5 ng of PGE2d4, 

5ng of 15-HETEd8 and d4-PGE1 was also included. Samples were thoroughly mixed 

by vortexing and 2.5 ml hexane was added followed by further vortexing. Samples 
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were subjected to centrifugation (900 x g for 5 minutes at room temperature) and the 

upper hexane layer transferred into a new glass tube. The hexane extraction was 

repeated as above. Samples were then evaporated under a stream of nitrogen and 

reconstituted in 200 µl of 100% HPLC grade methanol. Lipid extracts were separated 

on a Spherisorb C18 ODS2, 5 μM, 150 mm x 4.6 mm column (Waters Ltd) using a 

gradient of 50 – 90% mobile phase B (A: water: acetonitrile: acetic acid, 75:25:0.1 

(v/v/v), B: methanol; acetonitrile; acetic acid, 60:40:0.1 (v/v/v/)) over 20 minutes with 

a flow rate of 1 ml/min.  Products were quantified by LC-MS/MS electrospray 

ionisation on a Q-Trap (Applied Biosystems 4000 Q-Trap) with specific multiple 

reaction monitoring (MRM) transitions [M-H-] monitored as parent fragmenting to 

daughter with collisions energies of -20 to -28V. 

2.2.16 Cholesterol uptake and efflux assays 

2.2.16.1 Cholesterol uptake assay 

RAW264.7 macrophages were cultured in 6 well plates at a density of 2 x 106 per well 

in RPMI supplemented with 0.2% (v/v) fatty acid free BSA. Macrophages were pre-

treated with 100 µM DGLA or vehicle for 24 hours and then incubated in the absence 

or the presence of 50 µg/ml AcLDL and 1µCi [14C] acetate for a further 24 hours. The 

cells were scraped from the wells and collected in Eppendorf tubes. The cells were 

pelleted by centrifugation at 9,000 x g and resuspended in 1ml dH20. A sample was 

removed for protein analysis as previous described in Section 2.2.9.2. Lipids were 

extracted and separated as previously described in 2.2.15.1 and 2.2.15.4.  

2.2.16.2 Cholesterol efflux assay 

THP-1 macrophages were cultured in 12 well plates at a density of 5 x 105 per well in 

RPMI supplemented with 0.2% (v/v) fatty acid free BSA. Following differentiation, 

macrophages were pre-incubated with 50 µM DGLA or vehicle for 24 hours. Next, 

media was replaced with RPMI supplemented with 0.2% (v/v) fatty acid free BSA, 25 

µg acLDL and 0.5 µCi/ml [4-14C] cholesterol. After 24 hours cells were washed and 

media replaced with medium containing 10 µg/ml ApoA1 for a further 24 hours. The 

media fraction was removed into glass test tubes for use in scintillation counting. The 

remaining cells were treated with 0.2% NaOH to solubilise cells and again removed 

into glass tubes for use in scintillation counting (Section 2.2.16.3).  
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2.2.16.3 Preparation of samples for scintillation counting 

Samples collected for analysis were placed into 20 ml polyethylene vials with 10 ml 

OPTI-FLUOR®. Samples were counted on a Liquid scintillation analyser (TriCarb 

2800TR, Perkin Elmer) and recorded using Quanta Smart. Disintegrations per minute 

(dpm) were measured and transferred into Microsoft Excel for analysis.  

2.2.17 Statistical analysis 

Data was tested for normality using the Shapiro-Wilko test and data represented as 

mean +/- standard deviation. A two-tailed Student’s t-test was carried out using a 

spreadsheet package for single comparisons. For multiple comparisons with equal 

variances between groups, ANOVA was carried out in SPSS followed by Tukey’s post 

hoc analysis. For multiple comparisons with unequal variances, Welch’s test for 

equality of means was used followed by Games Howell/Dunnett’s T3 Post Hoc 

analysis in SPSS. P-value of <0.05 was considered significant.  
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CHAPTER 3 

UPTAKE AND METABOLISM OF DGLA IN IN VITRO AND IN 

VIVO MODELS  

3.1 Introduction 

3.1.1 PUFA uptake  

Fatty acids (or their metabolites) are important signalling molecules and are 

components of glycerophospholipids of membranes and TAG stores. The fatty acid 

compositions of phospholipids play important roles and can influence a number or 

processes in  different ways (Raphael and Sordillo 2013). For example, fluidity of 

membranes and lipid raft formation are influenced by fatty acids and can modify 

membrane induced signalling (Raphael and Sordillo 2013). In addition, when cleaved, 

NEFAs can directly, or indirectly through their metabolites, trigger a signalling 

cascade. Fatty acid signalling has been shown to play an important role in an 

inflammatory response (Foitzik et al. 2002; Simopoulos 2008; Jung et al. 2012; Enos 

et al. 2013; Yan et al. 2013; Williams-Bey et al. 2014). They have numerous roles, 

some pro-inflammatory while others produce anti-inflammatory actions. Table 1.5 

summarises the roles of fatty acids in relation to CVD. Classically, SFA have been 

linked to an increased risk of CVD while PUFA are inversely associated with the 

disease. The composition of fatty acids in lipid pools is therefore very important as to 

the effect on inflammation. Dietary supplementation with omega-3 and omega-6 

PUFAs increases their incorporation into lipid fractions resulting in an increase in their 

signalling responses and metabolite production (Chilton et al. 1993; Johnson et al. 

1997).  

Dietary omega-3 PUFAs have been used in numerous studies to determine uptake in 

vivo and in vitro. Supplementation with EPA rapidly induces incorporation into the 

phospholipid and TAG fractions of human neutrophils after 2 and 6 days respectively 

(Chilton et al. 1993). The omega-3 fatty acids EPA and DHA significantly increase 

their incorporation into lipid fractions of human serum following supplementation 

(Grimsgaard et al. 1997). The beneficial effects of supplementation on inflammation 

and CVD with EPA and DHA have been widely reported (Foitzik et al. 2002; Kris-

Etherton et al. 2003; Suresh and Das 2003a; Lundstrom et al. 2013; Yan et al. 2013; 

Williams-Bey et al. 2014). However, as a result of the increase in omega-3 fatty acids 

following supplementation, there is a decrease in levels of omega-6 incorporation into 
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lipid fractions. EPA and DHA reduced the concentration of DGLA and AA in serum 

phospholipids following supplementation in humans (Grimsgaard et al. 1997; Haglund 

et al. 1998; Mori et al. 2000). In addition to this, omega-3 fatty acids have been shown 

to decrease eicosanoid produced by metabolism of DGLA (Rubin and Laposata 

1992). Omega-6 fatty acids play important roles in inflammation and have been 

shown to be beneficial in a number of diseases (Kapoor and Huang 2006; Kawashima 

et al. 2008; Takai et al. 2009; Machado et al. 2013). Patients with atopic eczema have 

a reduced concentration of plasma omega-6 fatty acids GLA, DGLA and AA 

suggesting a role for these PUFA in the disease (Morse et al. 1989). Reducing the 

concentration of omega-6 fatty acids in lipid pools on supplementation with omega-3 

fatty acids may therefore have an adverse effect in inflammatory disease states.  

Oils rich in the omega-6 fatty acid GLA, such as primrose and borage oil, have been 

used to treat a number of inflammatory diseases. Supplementation with GLA in 

combination with EPA and DHA, significantly reduced LDL cholesterol levels, TAG 

levels and ratio of LDL: HDL cholesterol. This was not observed by EPA and DHA 

supplementation alone (Laidlaw and Holub 2003). GLA in the form of evening 

primrose oil has also been shown to significantly reduce the symptoms of atopic 

eczema including itching, inflammation and dryness (Wright and Burton 1982; Morse 

et al. 1989). Levels of DGLA and AA in plasma phospholipids were associated with 

an increased improvement of symptoms (Morse et al. 1989). Borage seed oil 

containing GLA improved signs of rheumatoid arthritis in patients diagnosed with the 

disease (Leventhal et al. 1993). Supplementation significantly reduced the number of 

swollen and tender joints on comparison to placebo control (Leventhal et al. 1993). 

GLA has also been used to target atherosclerosis. High fat diet induced 

atherosclerosis in rats was attenuated on supplementation with GLA (Shi et al. 2008). 

Also, in ApoE-/- mice, GLA attenuated SMC proliferation and the development of diet-

induced atherosclerosis (Fan et al. 2001).  

Despite these positive results, a number of studies have reported that GLA 

supplementation in atopic eczema failed to significantly improve symptoms of the 

disease (Henz et al. 1999; Takwale et al. 2003). Borage oil containing 23% GLA, a 

higher dose than previous studies, did not significantly improve symptoms of atopic 

eczema despite several clinical improvements (Henz et al. 1999). Additionally, borage 

oil supplementation in adults and children failed to improve atopic eczema, with the 

placebo control showing a larger improvement on symptoms (Takwale et al. 2003).  
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The physiological effects of GLA are thought to be attributed to its metabolites DGLA 

and PGE1 (Umeda-Sawada et al. 2006). GLA is a precursor of DGLA. Numerous 

studies have previously used supplementation with GLA to increase plasma and 

tissue levels of DGLA, due to the lack of a commercial source of this PUFA.  A few 

studies were performed in the 90’s using DGLA in the form of ethyl esters to feed rats 

and rabbits (Smith et al. 1989; Taki et al. 1993).  More recently, as new sources were 

developed, studies investigated the supplementation of DGLA isolated from mutants 

of algae, yeast and fungus and demonstrated a more efficient accumulation 

compared to GLA supplementation (Dooper et al. 2003; Miles et al. 2004; Umeda-

Sawada et al. 2006). For example, rats supplemented with a DGLA diet incorporated 

more of this PUFA into plasma and tissue lipid fractions, in comparison to GLA 

(Umeda-Sawada et al. 2006). DGLA incorporation into the liver, serum and brain 

lipids of rats was significantly higher in the DGLA oil diet compared to the GLA oil diet 

(Umeda-Sawada et al. 2006). Treatment with DGLA resulted in a significant increase 

(>5%) in fatty acid uptake into phospholipids of peripheral blood mononuclear cell 

(PBMCs), whereas treatment with GLA induced an increase of less than 3%, due to 

the restrictions in elongation products (Dooper et al. 2003).  Finally, supplementation 

with GLA in humans failed to significantly accumulate DGLA in lipid fractions of serum 

(Miles et al. 2004). Direct supplementation with DGLA is therefore more efficient at 

increasing the levels of this fatty acid in lipid fractions. 

3.1.2 DGLA in disease 

Fatty acids have both beneficial and potentially harmful effects in CVD and 

atherosclerosis. The roles of fatty acids in relation to atherosclerosis are detailed in 

Table 1.5 in the Introduction. In general SFA, fatty acids with no double bonds, 

increase cholesterol levels and promote pro-inflammatory conditions (Xu et al. 2006).  

MUFA and PUFA tend to have advantageous actions in relation to CVD and 

atherosclerosis by lowering cholesterol levels and exerting anti-inflammatory actions 

(Kris-Etherton et al. 2003; Takai et al. 2009). There are however exceptions to this 

generalisation, as shown in Table 1.5. For example, stearic acid (a SFA) lowers LDL 

cholesterol levels in vivo (Hunter et al. 2010), while AA (omega-6 PUFA) has 

numerous pro-inflammatory roles (Levin et al. 2002; Gomolka et al. 2011). DGLA is 

an omega-6 fatty acid but with numerous beneficial properties in CVD and other 

inflammatory diseases. The role of DGLA in disease is detailed in Table 3.1. 
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Table 3.1 – Role of DGLA in disease 

Role  Reference 

DGLA inhibits LBT4 production from rat macrophages. (Nakamura et al. 1993) 

Inhibition of human platelet aggregation and mitogen release from HMDMs with DGLA. (Smith et al. 1989) 

Hypertension induced by a saturated fat high diet in rats, was reversed by supplementation 

with DGLA. 

(Hassall and Kirtland 1984) 

Intravenous injection of DGLA into mice suppressed delayed type hypersensitivity, measured 

by swelling. 

(Taki et al. 1993) 

DGLA supplementation in NC/Tnd mice showed a significant accumulation of DGLA in the skin, 

which inhibited severity of atopic dermatitis 

(Amagai et al. 2015). 

 

DGLA exhibited cytotoxic action in drug-sensitive and resistant cancer cells in a free radical-

dependent process. Increased drug sensitivity in resistant cells increasing the drugs cytotoxic 

action.  

(Das and Madhavi 2011) 

Supplementation in humans reduced platelet aggregation. (Kernoff et al. 1977) 

Inhibited atherosclerosis in ApoE-/- mouse model. Reduced inflammatory markers. (Takai et al. 2009) 
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3.1.3 Eicosanoid production and role in disease 

Alteration in the dietary intake of fatty acids leads to changes in eicosanoid 

production. Eicosanoid production is dependent on the availability of fatty acid 

substrates from a lipid pool or cleaved from phospholipids (Wang et al. 2012). As 

discussed in Section 1.5.2.6, eicosanoids are produced from 20C fatty acids EPA, 

DGLA and AA and play an important role in inflammation and atherosclerosis (see 

Table 3.2 for the roles of eicosanoids produced from omega-6 PUFAs, DGLA and 

AA). The action of COX and LOX enzymes on DGLA and AA produce a wide variety 

of prostaglandins, lipoxins, leukotrienes, thromboxanes and hydroxy-eicosanoids.  

In Western countries AA is usually the most abundant 20C fatty acid present in the 

phospholipid membranes of immune cells. Eicosanoids derived from AA metabolism 

are therefore primarily produced in abundance during inflammation (Chapkin et al. 

1988; Dooper et al. 2003). Eicosanoid production from AA has various pro-

inflammatory roles. A number of prostanoids are produced from COX action on AA. 

These include members of the PG family (such as PGE2) and thromboxanes 

(Kobayashi et al. 2004) both with pro-inflammatory roles. AA is converted to 

leukotrienes by 5-LOX with further transformation into unstable LTA4 (Samuelsson et 

al. 1987). This can be converted to LTB4 by hydration and LTC4 by addition of 

glutathione. LTC4 can be further metabolised to LTD4 and LTE4 (Samuelsson et al. 

1987). Leukotrienes are potent pro-inflammatory mediators and can regulate a 

number of immune processes such as leukocyte cytokine production, differentiation 

and migration (Neels 2013). 

A number of AA metabolites however also possess anti-inflammatory properties. 

Lipoxins act to resolve inflammation. Lipoxins are formed by the action of a number 

of enzymes (5- and 15-LOX) both involving the insertion of molecular oxygen into AA 

(Samuelsson et al. 1987; Fierro and Serhan 2001). Metabolite 15-HETE can serve 

as a substrate for formation of lipoxin A4 (LXA4) and LXB4 (Fierro and Serhan 2001). 

Conversely, 5-LOX action on AA forming LTA4 followed by 12-LOX, can also lead to 

synthesis of LXA4 and LXB4. Therefore LTA4 can be converted to both pro-

inflammatory LTs and anti-inflammatory lipoxins (Fierro and Serhan 2001). The 

balance between LT and lipoxin formation may play an important role in the 

inflammatory potential of AA (Fierro and Serhan 2001). Finally, the COX metabolite 

prostacyclin has been indicated to play an anti-inflammatory role in atherosclerosis 

(Kobayashi et al. 2004).  Despite this, it is generally accepted that accumulation of 

AA and its metabolites contribute to an inflammatory response.  
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EPA and DGLA are both 20C fatty acids and compete with AA for incorporation into 

phospholipids (Dooper et al. 2003). This change in fatty acid composition of 

phospholipids can alter eicosanoid production which plays an important role in 

modifying the inflammatory response. Eicosanoid production from DGLA yields a 

number of anti-inflammatory mediators. The action of COX on DGLA produces 1-

series PGs. These include PGE1 and PGD1, which have both been demonstrated to 

play an anti-inflammatory role in a number of diseases (Table 3.2). In addition, the 

action of 15-LOX on DGLA produces 15-HETrE, a potent inhibitor of AA-derived pro-

inflammatory LTB4 metabolism (Iversen et al. 1992).   

As AA can be synthesised from DGLA in the omega-6 pathway through the action of 

a delta-5 desaturase, it is important to measure eicosanoid production in THP-1 

macrophages on treatment with DGLA not only to determine if DGLA products are 

accumulated, but to determine if AA metabolites were affected simultaneously. 
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Table 3.2 – Roles of selective COX and LOX metabolites from DGLA or AA  

Name Abbreviation LOX/COX Role 

5-hydroxyeicosatetraenoic acid 5-HETE 5-LOX from 

AA 

Neutrophil activator, vasoconstrictor, gives rise to 5-oxy-ETE 

which acts as a chemoattractant (Poeckel and Funk 2010). 

11-hydroxyeicosatetraenoic acid 11-HETE 11-LOX 

from AA 

Expressed in atherosclerotic lesions (Waddington et al. 2001).  

12-hydroxyeicosatetraenoic acid 12-HETE 12-LOX 

from AA 

Associated with insulin resistance and obesity   

Increased ICAM-1 expression and atherogenesis (Funk 2006; 

Kuehn and O'Donnell 2006). 

15-hydroxyeicosatetraenoic acid 15HETE 15-LOX 

from AA 

15 LOX products involved in oxidation of LDL (Funk 2006)  

Precursor for lipoxins (Samuelsson et al. 1987; Fierro and 

Serhan 2001). 

Prostaglandin E2 PGE2 COX from 

AA 

Key role in pathogenesis of atherosclerosis. Lack of PGE2 in 

LDLR knockout mice show significant plaque reduction (Suzuki 

et al. 2011). Increased levels linked to atopic dermatitis in mice 

(Amagai et al. 2015). 

Leukotriene B4 LTB4 5-LOX from 

AA 

Potent chemoattractant for monocytes, increases expression of 

MCP-1(Subbarao et al. 2004; Neels 2013).  
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Promotes conversion of monocytes to foam cells by increasing 

expression of CD36 (Subbarao et al. 2004).  

Thromboxane A2 TXA2  Vasoconstrictor and platelet aggregating agent (Kobayashi et 

al. 2004).  

Knockdown of TXA2 receptor in ApoE-/- mice exhibit a 

significant delay in atherosclerosis (Kobayashi et al. 2004). 

Lipoxin A4 LXA4 5,15-LOX 

from AA 

Evidence suggests a role in resolving inflammation. Block 

growth factor-stimulated SMC migration (Ho et al. 2010). 

Inhibited TNF-α simulated neutrophil adherence to endothelial 

monolayers and release of IL-8 and MCP-1 (Goh et al. 2001). 

Vasodilator (Fierro and Serhan 2001). 

Prostacyclin PGI2  Platelet inhibitor and vasodilator (Kobayashi et al. 2004). 

Knockdown of prostacyclin receptor in ApoE-/- mice show 

significant acceleration of atherosclerosis. Mice displayed 

increased expression of ICAM-1 and an increased number of 

leukocytes rolling along vessel wall (Kobayashi et al. 2004).  

Prostaglandin E1 PGE1 COX from 

DGLA 

Lowers blood pressure, inhibits platelet aggregation, promotes 

cholesterol efflux from cells and inhibits cholesterol 

biosynthesis (Horrobin 1991).  

Inhibits arthritis in rats (Zurier and Ballas 1973).  
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Anti-proliferation activities in cancer cell lines (Tabolacci et al. 

2010). 

PGE1 is protective against anaemia, clinical nephritis and death 

in mouse models of autoimmune disease lupus (Zurier et al. 

1977). 

PGE1 injected into rats completely supressed arthritis and 

cartilage destruction (Zurier and Ballas 1973). 

Prostaglandin D1 PGD1 COX from 

DGLA 

Prevents the development of atopic dermatitis in AC/Tnd mice 

(Amagai et al. 2015). 

15-hydroxyeicosatrienoic acid 15-HETrE 15-LOX 

from DGLA 

Inhibits 5-LOX and 12-LOX (Horrobin 1991).  

Potent inhibitor of LBT4 (Iversen et al. 1992). 
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3.2 Aims 

The aims of the studies in this chapter were to determine the uptake and metabolism 

of DGLA in vitro and in vivo. An overview of the experimental plan employed is 

provided in Figure 3.1. Initially pure DGLA was used to determine the uptake and 

metabolism of this lipid in vitro. This allowed for the effects of DGLA alone to be 

determined without potential indirect actions of other fatty acids in combination 

products. THP-1 macrophages were primarily employed throughout the study and 

were used for in vitro analysis. DGLA uptake was measured into TPL and TAG 

fractions by GC following TLC separation. TPL were further separated by TLC into 

individual phospholipids and incorporation of DGLA into the major membrane 

phospholipids was once again measured by GC. Eicosanoid production from THP-1 

macrophages was measured by high performance liquid chromatography - mass 

spectrometry (HPLC-MS).  

Collaboration with Ben Gurion University (Israel) provided a new source of DGLA in 

the form of a mutant algae P. incisa (Iskandarov et al. 2011). An additional aim of the 

project was to evaluate the role of this alternative source as part of a collaborative 

project. The mutant algae accumulate a large proportion of DGLA in TAG stores 

(Iskandarov et al. 2011). Total lipids extracted from this source, containing DGLA, 

were used for in vivo studies in mice. Following feeding of DGLA-containing diet for 

48 hours, blood plasma was collected along with samples of liver, kidney and adipose 

tissue. Lipids were extracted and the incorporation of DGLA into different fractions 

was measured using GC.   
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3.3 Experimental plan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – Overview of experimental strategy for chapter 3  

Uptake of DGLA was analysed in THP-1 macrophages and C57BL/6 mice using TLC and GC. 

Measurement of eicosanoid production from THP-1 macrophages was achieved using HPLC-

MS. 

Incubation/feeding 

with DGLA 

Analysis of TPL, 

TAG and individual 

PL fatty acid profiles 

Analysis of 

eicosanoid 

production using 

HPLC-MS 

 

THP-1 macrophages C57BL/6 mice 
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3.4 Results 

3.4.1 Dose-response uptake of DGLA into THP-1 macrophages 

To determine a concentration of DGLA to be used in future lipid uptake experiments, 

a dose-response experiment was carried out. The following experiments were 

performed with pure DGLA purchased from Nu-Chek (purity was validated at 99% by 

GC). Pure DGLA was initially used to allow for the specific uptake and metabolism of 

this PUFA to be established. Many supplementation studies use a combination of a 

number of omega-6 and omega-3 fatty acids along with others (such as Oleic acid 

and LA), so it is difficult to establish the specific roles of each individual component. 

Initial work in the laboratory used concentrations ranging from 10 µM to 100 µM in 

which higher doses of 50 µM and 100 µM showed a significant increase in DGLA in 

both TAG and TPL fractions (data not shown). To demonstrate this, the two most 

effective doses of DGLA were repeated in a single experiment as shown in Figure 

3.2. DGLA was incubated with THP-1 macrophages for 24 hours (a time point 

previously optimised) prior to lipid extraction, separation and fatty acid analysis using 

GC. Lipids were separated into two fractions; TPL and TAG.  

The levels of DGLA (C20:3n6) in TPL increased in a dose-dependent manner 

following incubation of the cells with this fatty acid. Base levels of DGLA (C20:3n6) 

were 1.5% of total fatty acids in this fraction (Figure 3.2). This increased to 5.5% and 

8.6% with doses of 50 µM and 100 µM DGLA, respectively. In addition to this, there 

was a dose-dependent decrease in palmitic acid (C16:0) and oleic acid (C18:1n9). 

Levels of AA (C20:4n6) increased by <1% at the highest concentration of DGLA used. 

There was no change in the relative level of DHA (C22:6n3) and DPA (C22:5n3).  

In the TAG fraction there was a smaller increase in DGLA incorporation. Basal levels 

were 0.67% on average which increased to 0.94% and 2.89% respectively after 

incubation with the two doses of DGLA. This was accompanied by a decrease in the 

relative levels of ALA (C18:3n3), oleic acid (C18:1n9) and vaccenic acid (C18:1n7) 

and an increase in LA (C18:2n6) and myristic acid (C14:0) at both doses. There was 

no change in the relative levels of AA (C20:4n6) in TAG.  

Given the dose-dependent increase of DGLA, the higher of the two concentrations 

was selected to use in further experiments due to more pronounced changes in the 

fatty acid profiles of lipids.  
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Figure 3.2 – DGLA is taken up in a dose-dependent manner into THP-1 

macrophages TPL and TAG fractions  

THP-1 macrophages were incubated with 50 µM or 100 µM DGLA or vehicle control for 24 

hours. Lipids were extracted and separated using 1-dimensional TLC. Fatty acid profiles were 

determined using GC. Graphs display fatty acid composition of fraction as a percentage (+/- 

SD) of one experiment carried out in duplicate. C14:0, myristic acid; C14:1, myristoleic acid; 

C16:0, palmitic acid; C16:1n7, palmitoleic acid; C18:0, stearic acid; C18:1n9, oleic acid; 

C18:1n7, cis-vaccenic acid; C18:2n6, LA; C18:3n3, ALA; C20:3n6, DGLA; C20:4n6, AA; 

C22:5n3, DPA; C22:6n3, DHA; C24:0, lignoceric acid.      
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3.4.2 DGLA uptake into THP-1 macrophages 

Following on from the dose response of DGLA, further repeats were performed for 

statistical analysis using 100 µM DGLA. THP-1 macrophages were incubated with 

DGLA or vehicle as in previous experiment.  

Over 50% of the TPL and TAG fatty acids of THP-1 macrophages were composed of 

palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1n9). Following 

incubation with DGLA, there was a significant increase from 2.6% to 8.7% in DGLA 

(C20:3n6) levels in TPL. This was accompanied by a significant 0.5% decrease in 

vaccenic acid (C18:1n7) (Figure 3.3). There were also non-significant decreases in 

EPA (C20:5n3), DPA (C22:5n3), DHA (C22:6n3), oleic acid (C18:1n9) and AA 

(C20:4n6) and an increase in LA (C18:2n6).  

In the TAG fraction, there was a significant increase in DGLA (C20:3n6) incorporation 

from 1.3% to 8.9% on average and a significant decrease in vaccenic acid (C18:1n7) 

and ALA (C18:3n3) (Figure 3.3). In addition to this there were non-significant 

decreases in palmitic acid (c16:0), stearic acid (C18:0), DPA (C22:5n3) and DHA 

(C22:6n3). A small increase in AA (C20:4n6) was also observed but this was not 

significant.  
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Figure 3.3 – Incubation with DGLA significantly increases its incorporation into 

TPL and TAG fractions 

THP-1 macrophages were incubated with 100 µM DGLA or vehicle control for 24 hours. Lipids 

were extracted and separated using 1-dimensional TLC. Fatty acid profiles were determined 

using GC. Graphs display fatty acid composition of the two fractions as a percentage (+/- SD) 

from four experiments. Statistics were performed using a Student’s two-tailed t test. * P ≤0.05, 

** P ≤0.01 in relation to control. C14:0, myristic acid; C14:1, myristoleic acid; C16:0, palmitic 

acid; C16:1n7, palmitoleic acid; C16:1n9, cis-7 hexadecenoic acid; C18:0, stearic acid; 

C18:1n9, oleic acid; C18:1n7, cis-vaccenic acid; C18:2n6, LA; C18:3n3, ALA; C20:3n6, DGLA; 

C20:4n6, AA; C20:5n3, EPA; C22:5n3, DPA; C22:6n3, DHA; C24:0, lignoceric acid.  
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3.4.3 DGLA uptake into individual phospholipid classes 

TPL, which consist mainly of phospholipids, can be further separated into individual 

phospholipid classes. To determine the incorporation of DGLA into individual 

phospholipids, THP-1 macrophages were incubated with 100 µM DGLA for 24 hours 

prior to lipid extraction and 2-dimensional separation by TLC. Individual phospholipids 

were identified by reference to the standards and their fatty acid profiles were 

analysed by GC. The main phospholipids found in eukaryotic cells are PC, PE, PS, 

and PI. They are located mainly in the cell membranes and usually esterified  with 

fatty acids  of variable lengths (carbon numbers) and saturation levels (double bonds) 

(van Meer et al. 2008). These four phospholipids were found in abundance in THP-1 

macrophages together with cardiolipin and sphingomyelin to a lesser extent (Figure 

3.4). These two lipids were not included in fatty acid analysis due to their small 

concentrations and high variability between experiments.  

 

Figure 3.4 – Composition and relative content of phospholipids in THP-1 

macrophages   

Lipids were extracted from THP-1 macrophages and individual TPL were separated by two-

dimensional TLC. Quantification was made on the basis of their fatty acid content. The results 

are expressed as percentages of total phospholipids. Percentages represent an average of 3 

experiments 
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Palmitic acid (C16:0) and oleic acid (C18:1n9) were the major fatty acids in PC, 

accounting for over 50% of the fatty acid content. Following treatment with DGLA 

(C20:3n6), the relative level of this fatty acid increased from 2.5% to 6.7% on average. 

There was a small increase in AA (C20:4n6) from 5.3% to 6.7%. There was no change 

in EPA (C20:5n3), DHA (C22:6n3) and DPA (C22:5n3) contents. In addition, there 

was a 3.4% reduction in the relative amount of palmitic acid (C16:0), although this 

was highly variable.  

For PS, the main fatty acid present was stearic acid (C18:0) accounting for 

approximately 40% of total fatty acids. Again, oleic acid (C18:1n9) was also present 

in abundance constituting approximately 20% of total fatty acids. Following treatment 

with DGLA (C20:3n6), the percentage of this fatty acid increased from 3.9% to 9% on 

average. There was a very small increase in AA (C20:4n6) from 3.2% to 3.4% on 

average and a small decrease in EPA (C20:5n3) (0.9% to 0.7%), DPA (C22:5n3) 

(1.4% to 1.1%) and DHA (C22:6n3) (2.9% to 2.2%). Finally, there was a decrease in 

the level of palmitic acid (C16:0) (6.6% to 3.7%), an increase in stearic acid (C18:0) 

(43.1% to 46.7%) and a decrease in oleic acid (C18:1n9) (21.7% to 19.2%). 

Similar to PS, PI contained high levels of stearic acid (C18:0) (approximately 35-

40%). AA (C20:4n6) was the second most abundant fatty acid accounting for 

approximately 20% of total fatty acids. Following treatment with DGLA (C20:3n6), this 

fatty acid increased from 6.3% to 13.4% of total fatty acids on average. There was no 

change in AA (C20:4n6) observed, a small decrease in EPA (C20:5n3) (2.2% to 1.8%) 

and no change in DPA (C22:5n3) or DHA (C22:6n3). In addition, following treatment 

with DGLA the relative amount of palmitic acid (C16:0) was reduced from 8.7% to 

2.4% and stearic acid (C18:0) was increased from 38.8% to 43.1%.  

The major fatty acid present in PE was AA (C20:4n6), attributing to approximately 20-

25% of total fatty acids and to a lesser extent stearic acid (C18:0) (17%) and oleic 

acid (C18:1n9) (11%). Following treatment with DGLA (C20:3n6), the percentage of 

this fatty acid into PE, increased from 3.8% to 8.6%. There was a small increase in 

AA (C20:4n6) from 23.1% to 23.7%. A decrease in EPA (C20:5n3) was observed 

from 8.4% to 4.4%. However this was highly variable. There was no change in DPA 

(C22:5n3) and a small decrease in DHA (C22:6n3) (6.7% to 5.9%). Finally, a small 

increase was observed in stearic acid (C18:0) (17.1% to 18.6%) and a small decrease 

in oleic acid (C18:1n9) (11.1% to 10.1%).  
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Figure 3.5 – Uptake of DGLA into individual phospholipids 

THP-1 macrophages were incubated with 100 µM DGLA or vehicle control for 24 hours. Lipids were extracted and separated using 2-dimensional TLC. Fatty acid profiles of 

each individual phospholipid were analysed by GC. Graphs display average fatty acid composition of phospholipids as a percentage (+/- SD) of two independent experiments. 

C16:0, palmitic acid; C16:1n7, palmitoleic acid; C18:0, stearic acid; C18:1n9, oleic acid; C18:1n7, cis-vaccenic acid; C18:2n6, LA; C18:3n3, ALA; C18:3n6, GLA; C20:3n6, DGLA; 

C20:4n6, AA; C20:5n3, EPA; C22:5n3, DPA; C22:6n3, DHA. 
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 3.4.4 Eicosanoid production 

Following supplementation of THP-1 macrophages with DGLA, it was clear that this 

fatty acid was incorporated into TPL and TAG fractions with no significant change in 

the level of AA (Figure 3.3). DGLA and AA, through the action of LOX and COX 

enzymes produce a wide variety of eicosanoids. Given the incorporation of DGLA into 

THP-1 macrophage lipid fractions, as well as its possible conversion into AA, it was 

important to measure eicosanoid production to establish if these changes translated 

to a change in eicosanoid production. The production of important COX and LOX 

metabolites were measured using HPLC-MS.  

THP-1 macrophages were incubated with 100 µM DGLA for 24 hours. In the 

experiment an inflammatory mediator was included, IFN-γ, to determine eicosanoid 

production in an inflammatory environment and the relationship with DGLA. IFN-γ is 

a pro-inflammatory cytokine and has been described as a master regulator of 

atherosclerosis due to its wide variety of roles in the disease (McLaren and Ramji 

2009). More detail on IFN-γ can be found in Section 1.4.1.1. Following incubation with 

DGLA, macrophages were stimulated with 250 U/ml IFN-γ for 3 hours. Media was 

collected and lipid extracted for measurement by HPLC-MS.  

Metabolism of AA by LOX enzymes can produce a number of 

hydroxyeicosatetraenoic acids (HETE), while hydroxyeicosatrienoic acids (HETrE) 

are produced from DGLA. A number of these eicosanoids were detected in the 

macrophage conditioned medium (Figure 3.6). AA metabolites 5-, 11-, 12- and 15-

HETE were detected. The only DGLA LOX metabolite detected was 15-HETrE. There 

was no change in the average expression of 5- and 12-HETE between any of the four 

conditions. IFN-γ had no effect on any of the HETE and HETrE eicosanoids identified. 

On treatment with DGLA and IFN-γ the levels of 11- and 15-HETE increased on 

average, however this was not significant on comparison to any other condition and 

was highly variable between experiments. The only significant change was observed 

in 15-HETrE production. DGLA significantly induced production of the eicosanoid: 

approximately 3-fold. IFN-γ had no effect on its formation, moreover, when in 

combination with DGLA, 15-HETrE production increased to a level not significantly 

different to that for DGLA alone.  
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Figure 3.6 – Eicosanoid production from LOX enzymes in THP-1 macrophages 

THP-1 macrophages were pre-treated with 100 µM DGLA or DMSO control for 24 hours prior 

to 24 hour stimulation with vehicle or 250 U/ml IFN-γ. Media was collected and lipids extracted 

for analysis by HPLC-MS. Concentrations were measured in pg per ml of media from 4 x 106 

cells and expressed as fold-change with values from control samples arbitrarily assigned as 

1. Data represents average of 3 independent experiments (+/- SD). Assumptions of ANOVA 

were not fulfilled therefore Robust equality of means test was used followed by Dunnett’s post 

hoc analysis. * P ≤0.05 in relation to control. 
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A major prostaglandin produced via metabolism of AA by COX enzymes, is PGE2. It 

was hypothesised that there would be no to little change in PGE2 production on 

treatment of the cells with DGLA, as fatty acid analysis did not show any conversion 

of DGLA into AA in TPL or TAG fractions of THP-1 macrophages (Figure 3.3). On 

treatment with DGLA alone, there was no increase in the production of PGE2 

compared to control (Figure 3.7). Concentration of PGE2 was expressed as pg/ml 

from 4 x 106 cells, as reported previously (Clark et al. 2011; Aldrovandi et al. 2013). 

Basal level of expression of PGE2 was measured at 500 pg/ml. IFN-γ also had no 

effect on PGE2 accumulation. However, when macrophages were pre-incubated with 

DGLA followed by stimulation with IFN-γ, there was a significant increase of 500 pg/ml 

on average in PGE2, on comparison to all other treatments.  

 

 

 

 

 

 

 

 

 

Figure 3.7 – PGE2 production from THP-1 macrophages 

THP-1 macrophages were pre-treated with 100 µM DGLA or DMSO control for 24 hours prior 

to 24 hour stimulation with vehicle or 250 U/ml IFN-γ. Media was collected and lipids extracted 

for measurement using HPLC-MS. Concentrations were measured in pg per ml of media from 

4 x 106 cells. Data represents average of 3 independent experiments (+/- SD). Assumptions 

of ANOVA were not fulfilled therefore Robust equality of means test was used followed by 

Dunnett’s post hoc analysis. * P ≤0.05 in relation to control.   
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COX metabolism of DGLA produces prostaglandins of the 1-series including PGE1. 

PGE1 is an anti-inflammatory mediator with numerous beneficial actions; therefore its 

production from THP-1 macrophages was measured. Concentration of PGE1 was 

expressed as pg/ml from 4 x 106 cells as reported previously (Clark et al. 2011; 

Aldrovandi et al. 2013). Treatment with IFN-γ did not significantly induce PGE1 

production with an increase of less than 1 pg/ml (Figure 3.8). Treatment of the cells 

with DGLA significantly induced PGE1 production from negligible to 180 pg/ml on 

average, and in combination with IFN-γ, up to 356 pg/ml on average. The differences 

between the DGLA groups however were not significantly different. The concentration 

of PGE1 did not exceed that of PGE2 in any individual experiment.  

 

 

 

 

 

 

 

 

 

Figure 3.8 – PGE1 production from THP-1 macrophages 

THP-1 macrophages were pre-treated with 100 µM DGLA or DMSO control for 24 hours prior 

to 24 hour stimulation with vehicle or 250 U/ml IFN-γ. Media was collected and lipids extracted 

for measurement using HPLC-MS. Graphs display concentration of PGE1 (pg/ml from 4 x 106 

cells) as an average of 3 independent experiments (+/- SD). Assumptions of ANOVA were not 

fulfilled therefore robust equality of means test was used followed by Dunnett’s post hoc 

analysis. For statistical tests to be performed a small number (0.0001) was added to all 

measurements as control group measured zero. ** P ≤0.01 in relation to control.    
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3.4.5 COX expression 

Given the important role of COX enzymes in the production of prostaglandins and the 

changes observed in Figures 3.7 and 3.8, it was of interest to determine the 

expression of the two COX enzymes. THP-1 macrophages were pre-treated with 100 

µM DGLA or vehicle control for 24 hours prior to stimulation with IFN-γ. RNA was 

extracted and subjected to reverse transcription to make cDNA. RT-qPCR was 

performed using specific primers for COX-1 and COX-2.  

Treatment with IFN-γ had no significant effect on the expression of COX-1 or COX-2 

in THP-1 macrophages, in comparison to control (Figure 3.9). DGLA had no effect on 

COX-2 expression; however it did significantly attenuate expression of COX-1 by 

32%. A combination of pre-treatment with DGLA followed by stimulation with IFN-γ, 

the expression of COX-1 was again significantly reduced by 50%, in comparison to 

control. Under the same conditions, the expression of COX-2 was significantly 

increased by 2.5-fold.  
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Figure 3.9 – COX-2 gene expression was induced on treatment of THP-1 

macrophages with DGLA and IFN-γ 

THP-1 macrophages were incubated with vehicle or 100 µM DGLA for 24 hours prior to 

treatment with vehicle or 250 U/ml IFN-γ for 24 hours. Total RNA was subjected to reverse 

transcription and RT-qPCR with primers specific for human COX-1, COX-2 or GAPDH. 

Graphs display average gene expression (mean +/- SD) (control arbitrarily assigned as 1) 

from 3 independent experiments. Statistical analysis was performed using a one-way ANOVA 

followed by Tukey’s post-hoc test. *P≤0.05 ***P≤0.001 in relation to control.  

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

Control IFN-y DGLA DGLA + IFN-y

R
e

la
ti

ve
 m

R
N

A
 e

xp
re

ss
io

n

COX-2
*** 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Control IFN-y DGLA DGLA+IFN-y

R
e

la
ti

ve
 m

R
N

A
 e

xp
re

ss
io

n

COX-1

*** 

* 



 
 

100 
 

3.4.6 Uptake of DGLA from algal powder in vivo  

The previous uptake and metabolic experiments described above were performed 

with pure DGLA. This allowed for the uptake and metabolism, following incubation 

with DGLA only, to be determined. Following on from DGLA uptake in vitro it was 

important to determine the uptake on this fatty acid in vivo. To evaluate this, mice 

were supplemented with DGLA in their diet to investigate uptake of the PUFA. As 

previously discussed in Section 1.5.3, there are a number of new potential 

commercial sources of DGLA which have been developed through genetic or 

metabolic manipulation of yeast, fungus and algae (Kawashima et al. 2000; 

Iskandarov et al. 2011; Watanabe et al. 2014). The current project was in 

collaboration with Ben Gurion University (Israel) who supplied a mutant form of the 

microgreen algae P. incisa which accumulates large amounts of DGLA. This was the 

source of DGLA used for in vivo experiment and allowed for the evaluation of the 

algae as a useful commercial source of DGLA.  

To determine the uptake of DGLA from the algae P. incisa, six C57BL/6 mice were 

starved 24 hours prior to the experiment. Mice were separated into two groups; 

control (fed on a normal chow diet, see the fatty acid composition in the Table 3.3) 

and DGLA-enriched diet. For the first experiment, animals from DGLA-enriched diet 

group were supplemented with 2% (w/w) freeze-dried algal powder, containing about 

30% DGLA, which was added to the normal chow diet. After 48 hours of feeding, 

samples of plasma, liver, kidney and faeces were collected. Analysis of the fatty acids 

of tissues and plasma showed no accumulation of DGLA (Appendix 1). Fatty acid 

analysis of faeces showed that practically all supplemented DGLA was discharged 

indicating that algal powder could not be assimilated by mice (Figure 3.10).  
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Figure 3.10 –DGLA was not absorbed in vivo following feeding of mice with 

freeze-dried algal powder 

Male C57BL/6 mice were split into 2 groups; Control (3) and DGLA (3). For DGLA group, 

normal chow diet was supplemented with 2% (w/w) freeze-dried algal powder containing this 

PUFA. Mice were starved for 24 hours prior to feeding. Mice were fed control or DGLA 

containing diet for 48 hours. Following this, a sample of faeces was collected from each group, 

lipids extracted and fatty acids analysed using GC. Graphs indicate the average percentage 

fatty acid composition of faeces (+/- SD) performed in triplicate. C16:0, palmitic acid; C18:0, 

stearic acid; C18:1n9, oleic acid; C18:2n6, LA; C18:3n3, ALA; C20:3n6, DGLA; C20:4n6, AA.     

 

As mice were unable to digest the freeze-dried algal powder and assimilate DGLA 

from this source, total lipids were next extracted from the algal powder prior to 

feeding. Lipid extraction from algal powder is detailed in Section 2.2.13 of the 

methods chapter. Total lipids were isolated from the algal powder and added to the 

chow diet. The fatty acid profile of the chow diet (control) and DGLA-containing diet 

are presented in Table 3.3. The main fatty acid present in the control diet was LA 

(C18:2n6), followed by oleic acid (C18:1n9), palmitic acid (C16:0), ALA (C18:3n3) 

and stearic acid (C18:0). No DGLA was present in the control diet. Diet containing 

total lipid extracts from freeze-dried algal powder contained 4.4% of DGLA in TFA. 

There were relatively minor changes in the relative content of LA (C18:2n6), oleic acid 

(C18:1n9), palmitic acid (C16:0) and ALA (C18:3n3) between the two diets.   
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Table 3.3 – Fatty acid composition of control and DGLA diets used in in vivo 

experiments following extraction from algal powder 

 

 

 

 

 

 

 

 

For feeding experiments with lipids extracted from algal powder, seven mice were 

split into 2 groups: Control (3) and DGLA (4). Mice were starved for 24 hours prior to 

feeding. Lipid composition of diets of control and DGLA group are detailed in Table 

3.3. Following 48 hours of feeding, plasma and faeces (Appendix 3) were collected 

followed by samples of liver, kidney and adipose tissue. Depending on the amount of 

lipids extracted from plasma and tissues, total fatty acids and fatty acids of TPL, TAG 

and individual phospholipids were analysed by GC.  

 

 

 

 

 

 

 

Fatty acid Control diet DGLA diet 

Palmitic acid (C16:0) 14.4% 15.7% 

Stearic acid (C18:0) 2.9% 3.1% 

Oleic acid (C18:1n9) 21.6% 25.5% 

LA (C18:2n6) 
 

51.4% 43.6% 

ALA (C18:3n3) 
 

5.7% 4.5% 

DGLA (C20:3n6) - 4.4% 

Other 4.0% 3.2% 
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3.4.6.1 Plasma 

Plasma was collected from mice and total lipids extracted as detailed in Section 

2.2.15.2. An aliquot of total lipids was taken to analyse total fatty acids; the rest of the 

lipid extracts were separated by 1-dimensional TLC into TPL, TAG and steryl ester 

fractions. The fatty acid composition of each of the fractions was analysed by GC.  

In total fatty acids, the percentage of DGLA (C20:3n6) incorporation significantly 

increased from 1.2% to 3.1% in the DGLA group (Figure 3.11). There was no 

significant increase in AA (C20:4n6) levels but a significant decrease from 0.3% to 

0.1% in EPA (C20:5n3). When total lipids were further separated by TLC, it was 

observed that DGLA was significantly incorporated into TPL with an increase from 

1.5% to 4.5% in the DGLA group. This was also accompanied by an increase in AA 

(C20:4n6) from 6.6% to 10.5%. However this was not significant between the groups. 

There was also a significant decrease in the relative amount of stearic acid (C18:0) 

in DGLA group. In TAG fraction, DGLA was significantly increased from 0.2% to 1.4%, 

with no significant change in AA (C20:4n6) or any other fatty acids identified. Finally, 

in steryl esters, DGLA (C20:3n6) was again significantly increased from 0% to 2.6% 

in DGLA group. AA (C20:4n6) increased from 20% to 25.6%, however this was not 

statistically significant. The relative amount of EPA (C20:5n3) was also significantly 

decreased by from 2.3% to 1.6%.  
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Figure 3.11 – Uptake of DGLA into plasma lipid fractions in vivo 

Mice were supplemented with 4% DGLA diet for 48 hours. Animals were sacrificed and the plasma fraction of blood collected. Lipids were extracted and separated using 1-

dimensional TLC. Fatty acid profiles of each lipid fraction were analysed by GC. Graphs display average fatty acid composition as a percentage (+/- SD) from 3 mice (Control) 

and 4 mice (DGLA diet). Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc analysis. * P <0.05. *** P <0.001. C14:0, myristic acid; C16:0, 

palmitic acid; C16:1n7, palmitoleic acid; C16:1n9, cis-7 hexadecenoic acid ; C18:0, stearic acid; C18:1n9, oleic acid; C18:1n7, cis-vaccenic acid; C18:2n6, LA; C18:3n3, ALA; 

C18:3n6, GLA; C20:3n6, DGLA; C20:4n6, AA; C20:5n3, EPA; C22:6n3, DHA.     
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3.4.6.2 Liver 

Incorporation of DGLA into the lipid classes of liver was also investigated. The liver is a 

very important organ which is involved in the regulation of many processes such as TAG 

and fatty acid metabolism and together with cholesterol synthesis, transport and 

catabolism. Given its role in lipid metabolism, the fatty acid composition of liver is 

commonly investigated in uptake studies. Liver was isolated from mice and lipids 

separated as detailed in Section 2.2.15.3. Total fatty acid composition of liver was 

analysed by GC; TPL, TAG and steryl esters were separated by TLC and the fatty acid 

profile of these fractions was also analysed by GC. In addition, individual phospholipids 

were also separated by 2-dimensional TLC into individual phospholipids PC, PS, PI and 

PE. 

In total liver fatty acids, DGLA (C20:3n6) was increased significantly from 1.5% to 2.5% 

and stearic acid (C18:0) decreased from 13.1% to 11.7% in the DGLA group (Figure 

3.12). There was no significant change in AA (C20:4n6) levels in total fatty acids. 

Following this, total fatty acids were separated by 1-dimensional chromatography. In TPL, 

DGLA (C20:3n6) was significantly increased from 1.8% to 2.7% while stearic acid (C18:0) 

and DHA (C22:6n3) were both significantly decreased in the DGLA group from 17.7% to 

15.1% and 11.9% to 10.3% respectively. In the TAG fraction of the liver, DGLA was 

significantly increased from 1.1% to 1.6% in the DGLA group. This was accompanied by 

a significant increase in AA (C20:4n6) from 1.8% to 2.7%. DGLA also significantly 

increased from 0% to 1.4% in steryl ester fraction in DGLA group. There were no other 

significant changes in this lipid fraction.  

To utilise the large concentration of lipid isolated from the liver, TPL were further 

separated into individual phospholipids for analysis (Figure 3.13). The four main 

phospholipids were identified and their fatty acid compositions measured in control and 

DGLA groups. There was a significant increase in DGLA into PS, PE and PC from 1.6% 

to 2.4%, 0.9% to 1.3% and 2.4% to 3.7% respectively in DGLA treatment groups. There 

was an increase from 3% to 3.8% of DGLA (C20:3n6) into PI; however, this was not 

significant. There was no significant change in AA (C20:4n6) levels into any phospholipid 

fraction measured despite an increase of 9.7% to 11.9% in AA with PC. There were also 

changes in other fatty acids observed in phospholipid fractions. In PS there was a 

significant increase in vaccenic acid (C18:1n7) from 0.7% to 1.4% in DGLA group. In PE, 

a significant decrease in both EPA (C20:5n3) and DHA (C22:6n3) was measured, from 

1% to 0.6% and 19.9% to 17.5% respectively. Finally, in PC, there was a significant 

decrease from 11.9% to 9.4% in stearic acid (C18:0) and 11.9% to 9.7% in DHA 

(C22:6n3).  
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Figure 3.12 – Uptake of DGLA into liver lipid fractions in vivo 

Mice were supplemented with 4% DGLA diet for 48 hours. Animals were sacrificed and liver tissue collected. Lipids were extracted and separated using 1-dimensional TLC. 

Fatty acid profiles of each lipid fraction were analysed by GC. Graphs display average fatty acid composition as a percentage (+ SD) of 3 mice (Control) and 4 mice (DGLA diet). 

Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc analysis. * P<0.05. ** P <0.005, *** P<0.001. C16:0, palmitic acid; C16:1n7, palmitoleic 

acid; C16:1n9, cis-7 hexadecenoic acid; C18:0, stearic acid; C18:1n9, oleic acid; C18:1n7, cis-vaccenic acid; C18:2n6, LA; C18:3n3, ALA; C20:3n6, DGLA; C20:4n6, AA; 

C20:5n3, EPA; C22:6n3, DHA.     
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Figure 3.13 – Uptake of DGLA into liver individual phospholipids in vivo 

Mice were supplemented with 4% DGLA diet for 48 hours. Animals were sacrificed and liver tissue collected. Lipids were extracted and separated using 2-dimensional TLC for 

individual phospholipids. Fatty acid profiles of each phospholipid fraction were analysed by GC. Graphs display average fatty acid composition as a percentage (+ SD) of 3 mice 

(Control) and 4 mice (DGLA diet). Statistical analysis was performed using a one-way ANOVA followed by Tukey’s post hoc analysis. * P <0.05. ** P<0.005, *** P <0.001. C16:0, 

palmitic acid; C18:0, stearic acid; C18:1n9, oleic acid; C18:1n7, cis-vaccenic acid; C18:2n6, LA; C18:3n3, ALA; C20:3n6, DGLA; C20:4n6, AA; C20:5n3, EPA; C22:6n3, DHA.     
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3.4.6.3 Kidney and adipose tissue 

In addition to plasma and liver, samples of kidney and adipose tissue were also taken 

for analysis. In the total fatty acids of kidney, DGLA (C20:3n6) was significantly 

increased from 1.1% to 1.8% in the DGLA group (Figure 3.14). Total fatty acids were 

further separated into TPL and TAG fractions. In TPL, there was a non-significant 

increase in DGLA (C20:3n6) from 1.2% to 1.8% in the DGLA group. There was 

however, a significant increase in AA (C20:4n6) incorporation from 17.6% to 18.9%. 

In the TAG fraction of kidney, there was a significant increase in DGLA (C20:3n6) 

from 0.7% to 1.2% and LA (C18:2n6) from 22.2% to 27.7% in the DGLA group. This 

was accompanied by significant decreases in AA (C20:4n6), palmitic acid (C16:0) 

and oleic acid (C18:1n9) from 2.8% to 2%, 26.7% to 23% and 22.2% to 27.7%, 

respectively.   

In adipose tissue, only total fatty acids were measured due to the small amount of 

tissue collected on dissection. The incorporation of DGLA (C20:3n6) in the DGLA-

fed-group increased significantly from 0.3% to 0.8%. There were no other significant 

changes in the fatty acid composition of adipose tissue.  

Table 3.4 summarises percentage changes in DGLA and AA across all plasma, liver, 

kidney and adipose lipid fractions measured.  
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Figure 3.14 – Uptake of DGLA into kidney and adipose tissue lipid fractions in vivo 

Mice were supplemented with 4% DGLA diet for 48 hours. Animals were sacrificed and tissues collected. Lipids were extracted and separated using 1-dimensional TLC for TPL 

and TAG. Fatty acid profiles of each fraction were analysed by GC. Graphs display average fatty acid composition as a percentage (+ SD) of 3 mice (Control) and 4 mice (DGLA 

diet). Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc analysis. * P<0.05. ** P <0.005. C14:0, myristic acid; C16:0, palmitic acid; C16:1n7, 

palmitoleic acid; C18:0, stearic acid; C18:1n9, oleic acid; C18:1n7, cis-vaccenic acid; C18:2n6, LA; C18:3n3, ALA; C20:1n9, eicosenoic acid; C20:3n6, DGLA; C20:4n6, AA; 

C22:6n3, DHA; C24:0, lignoceric acid.  
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Table 3.4 – Summary of changes in DGLA and AA in different lipid fractions in 

vivo 

Percentage changes in DGLA and AA are displayed as the difference between control 

and DGLA group. Statistically significant changes (p≤0.05) are underlined.  

 

 

 

 

 

 

 

 

 

 

 

 

 Plasma Liver Kidney Adipose 

 DGLA AA DGLA AA DGLA AA DGLA AA 

TFA 158% 14% 60% 20% 63% 5% 200% 0% 

TPL 200% 58% 50% 5% 50% 7% - - 

TAG 600% 85% 55% 50% 86% -29% - - 

SE 260% 28% 140% 45% - - - - 

PC - - 33% 22% - - - - 

PE - - 44% 6% - - - - 

PS - - 81% 12% - - - - 

PI - - 26% -1.4% - - - - 
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3.5 Discussion 

3.5.1 DGLA is incorporated into TPL and TAG fractions of THP-1 macrophages 

Initial experiments were performed to determine an optimum dose for DGLA to use 

for lipid analysis studies in THP-1 macrophages. First, a time point of 24 hour 

incubation with DGLA was optimised to achieve maximum uptake into TPL and TAG 

fractions. Two concentrations were selected based on common doses used in 

previous experiments (Iversen et al. 1991; Iversen et al. 1992; Dooper et al. 2003). 

Incorporation of DGLA into TPL and TAG fractions showed a dose-dependent 

increase (Figure 3.2). After 24 hours, DGLA had increased by 4% and 7% in TPL on 

incubation with 50 μM and 100 μM of this fatty acid. Results were comparable to data 

reported in previous studies. Neutrophils isolated from human subjects taking 

supplements containing GLA showed a dose-dependent increase in DGLA (Johnson 

et al. 1997). A dose-dependent increase in DGLA in total neutrophil lipids was 

observed on supplementation with 3.0 g/day and 6.0 g/day (Johnson et al. 1997). 

Human PBMC treated with 100 µM DGLA for 24 hours resulted in a dramatic rise in 

relative amount of DGLA (10% into TPL) (Dooper et al. 2003). After 48 hours there 

was only a further 2-3% increase in DGLA incorporation, with saturation reached at 

72 hours  (Dooper et al. 2003). Due to the larger increase in incorporation of DGLA 

with a concentration of 100 μM and the supporting data in the literature using this 

concentration, 100 µM was used in further experiments.  

Following on from the dose response data, the incorporation of DGLA into TPL and 

TAG was analysed further using only the selected concentration (Figure 3.3). 

Treatment with DGLA significantly increased its incorporation into TPL and TAG 

fractions of THP-1 macrophages. Previous lipid uptake studies with the omega-6 fatty 

acids DGLA and GLA have shown comparable results. Treatment of PBMC with 100 

µM DGLA increased incorporation of DGLA and LA into phospholipids (Dooper et al. 

2003). Supplementation of mouse peritoneal macrophages with DGLA in vitro, 

showed rapid incorporation of DGLA after 3 hours and neutrophils isolated from 

human subjects taking supplements containing GLA also showed increased 

concentration of DGLA (Chapkin and Coble 1991).  

In addition to this, on treatment of THP-1 macrophages with 100 μM DGLA there was 

a small (<1%) but non-significant reduction in the incorporation of EPA, DPA, DHA 

and an increase in LA into TPL (Figure 3.3). This was also observed in TAG fractions 

where there was a small non-significant decrease in DPA and DHA. This again was 
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comparable to previous studies. Treatment of PBMC with 100 µM DGLA led to no 

significant change in EPA, DPA and DHA incorporation (Dooper et al. 2003). 

Given that DGLA can be metabolised to AA by the action of delta-5 desaturase, it was 

important to determine the incorporation of this fatty acid into lipid profiles of THP-1 

macrophages due to its links to a pro-inflammatory status. On treatment with DGLA, 

AA levels in TPL were reduced by less than 1% (Figure 3.3), moreover this was not 

significant. In TAG lipid fractions there was a small increase of less than 0.3%. 

Previous work has shown small changes in the incorporation of AA on treatment with 

GLA or DGLA in macrophage and neutrophil cell lines. Supplementation of mouse 

peritoneal macrophages with GLA in vitro resulted in rapid increase in DGLA after 3 

hours. This was accompanied by a small increase in AA at a later time of 20 hours 

(Chapkin and Coble 1991). Neutrophils isolated from human subjects taking 

supplements containing GLA showed increased concentrations of DGLA in lipid 

fractions. This was accompanied by an increase in AA. However, this was not 

significant at concentration used (Johnson et al. 1997). The AA:DGLA ratio decreased 

from 5.4:1 to 2.3:1 in three weeks following supplementation with 6.0 g/day GLA 

(Johnson et al. 1997). Conversely, treatment of PBMC with 100 µM DGLA was 

associated with a decrease in the levels of AA in TPL (Dooper et al. 2003). 

Macrophages and neutrophils rapidly elongated GLA to DGLA, with some limitations 

seen in the further desaturation to AA (Chapkin and Coble 1991; Johnson et al. 1997). 

This indicates macrophages possess an extremely active elongase and modest delta-

5 desaturase activity (Chapkin and Coble 1991).  

Previously it had been shown that the AA present in macrophages was not 

synthesised by the macrophage itself but acquired from a secondary source (Chapkin 

et al. 1988). AA can be synthesised in liver from LA or obtained directly through the 

diet. It is packaged into serum lipoproteins as NEFA, TAG, cholesteryl ester or 

phospholipids and delivered to cells, including inflammatory cells. AA can then be 

incorporated into phospholipid and non-polar lipid pools (Chilton et al. 1996). Mouse 

peritoneal macrophages were shown to have limited desaturase activity which leads 

to an inability of DGLA to be readily metabolised to AA. This limitation was also 

observed in neutrophils and platelets (Chapkin et al. 1988). This indicates that once 

DGLA is taken up into macrophage and other inflammatory cells, it’s conversion to 

AA will be very limited or non-existent.  
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3.5.2 DGLA is incorporated into individual phospholipids of THP-1 

macrophages 

TPL can be separated into individual lipid classes by 2-dimensional TLC. Following 

on from DGLA accumulation into TPL, analysis was expanded to determine the extent 

of incorporation into individual phospholipids classes. TPL were separated into 6 

classes of phospholipids, PC, PS, PI, PE, sphingomyelin and cardiolipin (Figure 3.4). 

The majority of THP-1 macrophage membranes were composed of PC and PE with 

smaller amounts of PS and PI. Sphingomyelin and cardiolipin were minor classes and 

were not included in fatty acid analysis.  

PE contained the highest proportion of DGLA and AA in the fatty acid profile of THP-

1 macrophages (Figure 3.5). This was also observed in human neutrophils whereby 

more than 60% of AA from TFAs was located in PE. Similarly, over 40% of DGLA was 

also associated with PE (Johnson et al. 1997). This indicates AA and DGLA reside in 

similar lipid pools. On treatment of THP-1 macrophages with DGLA, there was an 

increase of this PUFA into PC, PS, PI and PE (Figure 3.5). No statistics could be 

performed due to lack of sufficient independent experiments. In all classes there was 

either no change or an increase of less than 1% in AA levels. The same was observed 

for omega-3 fatty acids EPA, DPA and DHA. Comparable results have been observed 

previously. Following supplementation of GLA in humans, there was an  increase in 

the incorporation of DGLA into PE, PI, PS and PC in isolated neutrophils (Johnson et 

al. 1997). There was no significant increase in AA observed. In addition, three weeks 

supplementation with GLA actually reduced the ratio of AA:DGLA from 8.3:1 to 4:1 in 

PE. This may suggest that prolonged supplementation with DGLA in macrophages 

would continue to elevate DGLA levels with no subsequent increase in AA.   

Lipid analysis indicates that in THP-1 macrophages, there was a significant 

accumulation of DGLA in TPL and TAG fractions with no significant change in omega-

3 fatty acids or increase in AA accumulation. The latter may be attributed to the low 

activity of delta-5 desaturase in macrophages as reported previously (Chapkin et al. 

1988; Chapkin and Coble 1991; Johnson et al. 1997). This selective accumulation of 

DGLA without a subsequent increase in incorporation of AA may result in an alteration 

in the inflammatory potential of macrophages. Changes in the fatty acid composition 

of lipids alter the pattern of release of fatty acids and, hence, eicosanoid production. 

In one study, following supplementation with GLA, there was a dramatic increase of 

up to 200% in DGLA released from the phospholipids of neutrophils following 

stimulation of the cells with this fatty acid. There was no change in the release of AA 

(Johnson et al. 1997). As discussed previously in Section 3.1.3, AA classically gives 
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rise to pro-inflammatory eicosanoids while metabolism of DGLA gives rise to anti-

inflammatory mediators. Therefore, increasing the incorporation of DGLA into lipid of 

THP-1 macrophages may increase the accumulation of anti-inflammatory mediators. 

To test this hypothesis, eicosanoid production was measured from THP-1 

macrophages and is discussed in the following section.   

3.5.3 Eicosanoid production from THP-1 macrophages  

To determine if changes in fatty acid incorporation of DGLA into lipid fractions of THP-

1 macrophages affected the production of eicosanoids, their synthesis was measured 

by HPLC-MS.  

3.5.3.1 COX metabolites 

DGLA and AA are substrates for COX enzymes and are converted to series 1 and 2 

prostaglandins, respectively. The major species of PGs detected from THP-1 

macrophages were PGE1 and PGE2. The various roles of these two eicosanoids are 

detailed in Table 3.2. It was hypothesised that due to the increase in DGLA 

incorporation into THP-1 macrophage lipid fractions, DGLA metabolites would 

increase. Conversely, there was no observed change in AA uptake into TPL and TAG 

fractions of THP-1 macrophages following DGLA treatment and, therefore, it was 

hypothesised that PGE2 synthesis from these cells would remain constant.  

On treatment with 100 μM DGLA, there was a significant increase in the concentration 

of PGE1 from negligible to 180 pg/ml. Following supplementation, there was no 

difference in the concentration of PGE2 from vehicle treated to DGLA treated 

macrophages (Figure 3.7-3.8). Similar observations have been reported both in in 

vitro and in vivo studies. On treatment of mouse peritoneal macrophages with GLA 

there was a significant increase in PGE1 following stimulation with this fatty acid 

(Chapkin and Coble 1991). No series 2 prostaglandins were detected in the study 

(Chapkin and Coble 1991). In human mononuclear leukocytes, incubation with DGLA 

resulted in no change in the levels of PGE2 but a dose-dependent increase in PGE1 

(Iversen et al. 1992). NC/Tnd mice, a model of atopic dermatitis, fed a diet containing 

DGLA induced the production of lipid mediators in the skin. DGLA induced synthesis 

of series 1 prostaglandins; PGE1, PGD1, PGF1α. However in contrast to in vitro 

studies, DGLA feeding in vivo also significantly induced the synthesis of series 2 

prostaglandins, PGD2 and PGE2 (Amagai et al. 2015). Despite this, the study reported 

a significant role for DGLA in inhibition of atopic eczema, attributed to the production 

of PGD1. Similarly, in rats supplemented with DGLA, the levels of both PGE1 and 

PGE2 were induced (Umeda-Sawada et al. 2006). However, the induction of PGE1 in 
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comparison to PGE2 was substantially larger. DGLA increased the levels of PGE1 in 

rat plasma to four times of that seen in control diet (Umeda-Sawada et al. 2006). 

There was an increase of less than 2-fold in the concentration of PGE2 (Umeda-

Sawada et al. 2006). In addition to this, the ratios of PGE1:PGE2 and PGD1:PGE2 

were significantly increased on DGLA supplementation (Umeda-Sawada et al. 2006). 

This indicates that in vivo the balance between the production of DGLA and AA-

derived eicosanoids plays an important role. As shown in Figure 3.7 and 3.8, the 

concentration of PGE1 did not exceed that of PGE2 in any experiment. However the 

ratio of PGE2:PGE1 on supplementation with DGLA reduced dramatically from 500:1 

to 2.6:1. Supplementation with DGLA may therefore offset the balance of pro- and 

anti-inflammatory prostaglandin production, resulting in an overall anti-inflammatory 

effect (Umeda-Sawada et al. 2006).  

Pro-inflammatory cytokine IFN-γ was also included in experiments to evaluate the 

effect of an inflammatory background on eicosanoid synthesis and the role of DGLA 

in an inflammatory state. IFN-γ alone had no effect on the production of PGE1 and 

PGE2 in comparison to control. However, there was a significant change when THP-

1 macrophages were pre-treated with DGLA followed by stimulation with IFN-γ. On 

treatment with a combination of DGLA and IFN-γ in THP-1 macrophages, the 

concentration of PGE1 was approximately twice that of DGLA-only treated 

macrophages; however the groups were not significantly different. Similarly, under 

the same conditions, there was a significant induction in the production of PGE2 in 

comparison to all other treatments. Fatty acid analysis of THP-1 macrophages treated 

with DGLA followed by IFN-γ stimulation showed no increase in incorporation of AA 

into TPL or TAG in comparison to control (Appendix 2). This indicated that the 

increase in PGE2 production was not as a result of an increase in AA incorporation 

into lipid pools and, therefore, suggesting that DGLA and IFN-γ were having a 

synergistic effect on prostaglandin synthesis. To begin to understand this effect, the 

mRNA expression of COX enzymes was measured using RT-qPCR. 

COX enzymes have two isoforms; COX-1 and COX-2. The expression patterns differ 

between cell types. COX-1 is constitutively expressed, while COX-2 is inducible 

(Matsuura et al. 1999; Levin et al. 2002). Both forms of the enzyme have been 

implicated in the production of prostaglandins to varying degrees (Matsuura et al. 

1999; Noguchi et al. 1999; Caughey et al. 2001; Levin et al. 2002). For COX-1, IFN-

γ had no effect on mRNA expression, however both DGLA and DGLA in combination 

with IFN-γ stimulation, reduced the mRNA expression of the gene. For COX-2, IFN-γ 

and DGLA treatments in isolation had no effect on the mRNA levels in comparison to 
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control. However in combination, treatment with DGLA followed by IFN-γ significantly 

induced the expression of COX-2 mRNA.  Future work should confirm changes in 

COX-1 and COX-2 expression at the protein level and determine enzyme activity. 

The relationship between IFN-γ and COX expression as reported in the literature is 

controversial. In human epidermal keratinocytes, treatment with the pro-inflammatory 

cytokines induced the mRNA and protein expression of COX-2 (Matsuura et al. 1999). 

COX-1 expression was reduced with IFN-γ treatment (Matsuura et al. 1999). In 

mouse peritoneal macrophages, IFN-γ induced the expression of COX-2 at the mRNA 

and protein levels, with a modest decrease in COX-1 expression (Blanco et al. 2000). 

Other studies reported opposing results. In human fibroblasts, IFN-γ had no effect on 

COX-1 or COX-2 expression (Noguchi et al. 1999) and in human macrophages the 

cytokine dose-dependently reduced COX-2 levels induced by IL-1β  (Barrios-Rodiles 

and Chadee 1998). The data presented in Figure 3.9 indicated that both DGLA and 

IFN-γ were required for the increase in COX-2 expression. This may be explained by 

IFN-γ priming. Thus, previous studies, many of which reported no effect of IFN-γ on 

COX-2 expression, have found induction of expression following priming of the cells. 

IFN-γ significantly increased the expression of COX-2 in human macrophages 

following priming with LPS or TNF-α (Ariasnegrete et al. 1995; Barrios-Rodiles and 

Chadee 1998). COX-1 expression was unchanged (Ariasnegrete et al. 1995). This 

may suggest that pre-treatment with DGLA acts to prime THP-1 macrophages so that 

IFN-γ can induce COX-2 expression, as seen in Figure 3.9.  

The significant increase in the expression of COX-2 following treatment with DGLA 

and IFN-γ coincides with the increase in the production of PGE1 and PGE2 under 

identical conditions. In addition, the decrease in COX-1 expression in DGLA treatment 

and in DGLA followed by IFN-γ treatment is accompanied by an increase in the 

production of PGE1 under these conditions. This suggests that in THP-1 

macrophages, COX-2 may be responsible for PGE2 production and in part, PGE1. As 

mentioned previously, COX-1 and COX-2 differ in their expression between cell types. 

The specific role of each isoform in formation of prostaglandins has not been fully 

established. A study investigating the role of COX-1 and COX-2 in DGLA and AA 

metabolism indicated that COX-2 predominates over COX-1 in production of 

prostaglandins (Levin et al. 2002). Production of PGE1 from DGLA via COX-1 peaked 

at 40 ng/ml, while metabolism via COX-2 peaked at 120 ng/ml (Levin et al. 2002). It 

was also observed that COX-2 had a higher affinity for DGLA and AA than COX-1 

and increasing the concentrations of the two PUFAs, decreased COX-1 activity (Levin 

et al. 2002). In addition, a study reporting eicosanoid synthesis from HUVEC cells, 
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unstimulated cells (which constitutively express COX-1) produced predominantly 

TXA2 (Caughey et al. 2001). Following induction of COX-2 expression with pro-

inflammatory cytokine IL-1β, there was a large increase in the production of PGE1 

and PGE2, 54-fold and 84-fold respectively on comparison to untreated cells 

(Caughey et al. 2001). Finally, selective COX-2 inhibitors in human fibroblasts 

specifically reduced the production of PGE2 following stimulation (Noguchi et al. 

1999).  

Taken together the data presented in Figures 3.7-3.9 and previous studies, allow a 

number of conclusions can be drawn. DGLA may act to prime THP-1 macrophages 

to induce COX-2 expression, which mirrors an increase in the production of PGE2 

under the same conditions. Treatment with DGLA attenuates the expression of COX-

1 in macrophages, which under the same conditions significantly induced the 

production of PGE1. This suggests that COX-2 predominates over COX-1 in the 

production of PGE1 and PGE2 by THP-1 macrophages.  

3.5.3.2 LOX metabolites 

LOX metabolism of DGLA and AA produces a wide variety of hydroxyeicosanoids. 

They have a range of actions, as detailed in Table 3.2. Hydroxyeicosanoids produced 

from AA play a number of pro-inflammatory roles. They can also act as substrates to 

yield a number of other eicosanoids, with both pro- and anti-inflammatory roles. For 

example, the action of 5-LOX on AA produces 5-HPETE which is a precursor for pro-

inflammatory LT production (Samuelsson et al. 1987; Neels 2013). In contrast, 

metabolism of 15-HETE from AA, acts as a precursor for lipoxin production, that has 

been attributed to resolving inflammation (Goh et al. 2001; Ho et al. 2010).  

The effect of DGLA supplementation on the synthesis of hydroxyeicosanoids was 

measured by HPLC-MS (Figure 3.6). There was no effect on the production of AA 

metabolites (5-, 11-, 12- and 15-HETE) on treatment with DGLA when compared to 

control. This result indicates that there was no increase in metabolism of AA through 

LOX pathways on treatment with DGLA. Again, given the significant increase in the 

accumulation of DGLA and no change in AA, this result was as expected.  

There was, however, a significant increase in the production of the DGLA metabolite 

15-HETrE. This has also been observed previously in vivo. DGLA significantly up-

regulated 8-HETrE and 15-HETrE in NC/TnD mice (Amagai et al. 2015). 15-HETrE 

has been well documented to inhibit the production of pro-inflammatory LTB4. 

Supplementation of 3.0 g/day of GLA reduced the levels of LBT4 from human 

neutrophils (Johnson et al. 1997) while DGLA significantly reduced the production of 
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LBT4 from rat macrophages (Nakamura et al. 1993). Dose-dependent decreases in 

LTB4 formation from human mononuclear leukocytes was associated with a dose-

dependent increase in 15-HETrE formation (Iversen et al. 1992). Incubation with 15-

HETrE did not change PGE2 production but was a potent inhibitor of LBT4 production, 

more so than incubation with DGLA (Iversen et al. 1992). The anti-inflammatory roles 

of 15-HETrE may be an effect of reducing the production of LBT4 and, therefore, its 

pro-inflammatory roles. LTB4 production was not measured in the present study and 

could potentially be included in future work. Overall, the data indicate a potential anti-

inflammatory role for DGLA through the production of eicosanoids.  

3.5.4 Uptake of algal sourced DGLA in vivo 

In vivo studies were performed to determine the uptake of dietary DGLA. In addition 

to this, the study provided insight into the use of a potential new source of DGLA in 

the form of mutant algae P. incisa. Initially, the standard chow diet of mice was 

supplemented with 2% (w/w) freeze-dry algal powder containing approximately 30% 

DGLA, to determine if this could be digested in vivo and utilised as a dietary source 

of fatty acids. Mice were sacrificed using schedule 1 procedures and a sample of 

plasma was analysed following 48 hours feeding to determine fatty acid profile. It was 

that observed there were no significant differences between the profiles of control and 

DGLA-fed groups (Appendix 1). Faeces were next analysed. As shown in Figure 3.10, 

the DGLA group excreted an increased amount of DGLA in comparison to the control 

group. This indicated that mice could not digest the whole algae and were unable to 

utilise fatty acids contained within.  

Following this, lipids were extracted from algal powder prior to feeding as detailed in 

Section 2.2.13. The fatty acid composition of the diet of control and the DGLA-fed 

groups is detailed in Table 3.3. DGLA content in the control group was negligible. On 

addition of the lipid extracts from P. incisa, the overall percentage of DGLA accounted 

for 4.4% of total fatty acids. Male C57BL/6 mice were starved for 24 hours prior to 

being given either control chow diet or the diet containing 4.4% (w/v) DGLA for 48 

hours. Mice were sacrificed using schedule 1 procedures and samples of plasma 

together with liver, kidney and adipose tissue were taken for lipid analysis. Table 3.4 

summarises the changes observed in the incorporation of DGLA and AA from in vivo 

feeding studies. Values that are underlined indicate statistically significant changes. 

The relative amount of DGLA significantly increased in all of the lipid fractions 

measured except kidney TPL and TAG, where the increases were not significant. For 

AA, despite a general trend of increased incorporation in DGLA group, only 
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incorporation into liver TAG fraction and kidney total phospholipids was significant. 

The results are discussed in more detail in the following sections.  

3.5.4.1 Plasma 

On feeding with diet containing 4.4% DGLA extracted from P. incisa, the levels of this 

PUFA were significantly increased in the plasma of mice. DGLA was significantly 

increased by 2% in TFA isolated from the plasma (Figure 3.11). When separated by 

1-dimensional TLC there was an increase of 3%, 1.2% and 2.6% in TPL, TAG and 

steryl ester fractions respectively. This indicated that incorporation of DGLA was 

primarily associated with the polar lipid fraction of plasma, followed by steryl esters 

and TAG. There was no significant increase in the levels of AA into any of these 

fractions despite a general trend to increase. In the DGLA group there was also a 

significant decrease in the levels of EPA in TFA and steryl ester fractions of the 

plasma. Similar results have been observed in previous studies. Single doses of 0.1-

2.0 g of DGLA in humans increased the plasma concentrations of the PUFA in plasma 

lipid fractions (Kernoff et al. 1977). Studies in rats showed significant increase in the 

concentration of DGLA in the plasma when infused with an emulsion containing 10% 

tridihomo-gamma-linolenoyl-glycerol (Nakamura et al. 1993). DGLA supplementation 

significantly increased the levels of this PUFA in the serum of rats, along with an 

increase in AA (Umeda-Sawada et al. 2006). There was also a significant decrease 

in oleic acid, LA, EPA and DHA (Umeda-Sawada et al. 2006). Following 

supplementation with GLA, levels of GLA, DGLA and AA all significantly increased in 

human serum lipids. The increases were significant after 2 weeks supplementation 

(Johnson et al. 1997). In addition to this, the increase in DGLA and AA was found 

specifically to phospholipids and no other lipid classes (Johnson et al. 1997).  

3.5.4.2 Tissues 

Samples of liver, kidney and adipose tissue were taken to determine the effect of a 

DGLA-containing diet on the lipids of these tissues. In the liver, the DGLA-fed group 

showed a 1% increase in the incorporation of DGLA into TFA (Figure 3.12). On further 

analysis it was found that DGLA was increased by 0.9%, 0.5% and 2.2% into TPL, 

TAG and steryl esters respectively. There was a significant increase in AA in TAG 

fraction of liver of 0.9% and an increase of 0.9% and 2.2% in TPL and steryl esters 

respectively. However these were not significant. This suggested that DGLA and AA 

were primarily associated with steryl esters in the liver, followed by TPL and TAG. In 

addition, there was also a decrease in the level of DHA into TPL.  
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Due to the large amount of lipid extracted from the liver, further analysis was 

performed to establish the effect of the DGLA diet on fatty acid profiles of individual 

phospholipid classes. It was found that there was a significant increase in DGLA into 

PS, PE and PC (Figure 3.13). There was also an increase in incorporation into PI. 

However, this was not significant. DGLA primarily accumulated in PC, with the largest 

increase of 1.2%. This was also the case for AA, with an increase of 2.2%. However 

this was not significant. In addition, there was also a significant decrease in the level 

of DHA and EPA into PE, along with a decrease in DHA incorporation into PC.  

In the kidney, DGLA increased by 0.7% into TFA in the DGLA group; however, there 

were no significant increases in the TPL or TAG fractions (Figure 3.14). Levels of AA 

into TPL increased significantly by 1.3%. However, in the TAG fraction, there was a 

significant decrease in the relative amount of AA by 0.8%. Finally in adipose tissue, 

DGLA levels significantly increased by 0.5% into TFA. Given the small amount of 

tissue isolated during dissection, no further analysis was performed on adipose 

tissue. There were no other significant changes in fatty acid profiles observed.  

Previous work detailing the incorporation of DGLA into tissues has been limited with 

relatively few studies having reported results. Fatty acid composition in the liver of 

rats supplemented with DGLA (in the form of TAG) showed a significant increase in 

the accumulation of the PUFA. The accumulation of AA also increased significantly 

(Umeda-Sawada et al. 2006). In a dose-response experiment, AA levels were not 

significantly different from control at lower levels of DGLA supplementation in the liver 

and plasma. However AA levels increased in a dose-dependent manner. There was 

also a dose-dependent decrease in the concentration of DHA (Umeda-Sawada et al. 

2006). In ApoE deficient mice supplemented with DGLA for 6 months, the percentage 

of DGLA in liver phospholipids increased significantly (Takai et al. 2009). There was 

no increase in the levels of AA after 6 months (Takai et al. 2009).  

In human cells, isolated steryl esters will be almost entirely in the form of cholesteryl 

esters. Accumulation of PUFA in cholesteryl esters has previously been shown to 

alter its accumulation and metabolism. In one study, on incubation of macrophages 

with omega-3 fatty acids, EPA and DHA were significantly accumulated in the 

cholesteryl ester fraction (Lada et al. 2003). This was accompanied by a physical 

change in the fluidity of cholesteryl ester droplets resulting in increased hydrolysis 

and efflux of cholesterol from the cell (Lada et al. 2003). Omega-6 fatty acids were 

also used in the study, with LA the major component. There was a significant 

accumulation of LA in cholesteryl ester fractions, with no elevation of other omega-6 
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fatty acids measured. Omega-6 supplementation had a significant effect on 

cholesterol efflux, however this was not as pronounced as seen in omega-3 group 

(Lada et al. 2003). Given the accumulation of DGLA into cholesteryl esters in vivo 

observed in Figures 3.11 and 3.12, it would be interesting to determine the effect of 

this accumulation on cholesteryl ester physical state and any resulting changes in 

metabolism and efflux.  

In vivo feeding studies with DGLA have previously been limited, particularly in 

measuring the effect of supplementation on fatty acid profiles of tissues. Overall, 

results of in vivo studies presented in this chapter indicated that a 4.4% DGLA-

containing diet, extracted from mutant algae P. incisa, allowed for significant 

incorporation of DGLA into plasma and tissues of liver, kidney and adipose lipid 

fractions after just 48 hours feeding. In most cases this was accompanied by no 

significant increase in AA incorporation. However, the general trend suggested that a 

DGLA diet increased AA incorporation in the majority of lipid fractions measured. This 

is shown in Table 3.4. An increase in AA incorporation following DGLA 

supplementation has also been observed in previous studies. In plasma, 

supplementation with DGLA increases the concentration of the PUFA in lipid fractions 

including an increase of AA (Johnson et al. 1997; Umeda-Sawada et al. 2006). In 

addition, rats supplemented with dietary DGLA significantly accumulated both DGLA 

and AA in liver (Umeda-Sawada et al. 2006).  

It is known that different cell types have different desaturase and elongase activities 

(Johnson et al. 1997), which may act to explain the differences in the accumulation 

of DGLA and AA seen in in vitro and in vivo experiments presented in this chapter. 

As previously discussed in Section 3.5.1, macrophages, among other cell types, have 

been reported to have limited desaturase activity (Chapkin et al. 1988; Johnson et al. 

1997). Several tissues however, contain both high activities of elongase and 

desaturase enzymes including the liver, kidney, brain and intestines (Johnson et al. 

1997). This may suggest that in cell types and tissues such as those with active 

desaturase activity, DGLA would be metabolised to AA and both PUFAs would be 

accumulated. Despite this, another study performed in an atherosclerotic mouse 

model supplemented with DGLA, indicated an accumulation of DGLA in liver 

phospholipids with no subsequent AA accumulation after 6 month feeding (Takai et 

al. 2009).  Given the relatively short feeding time adopted in our experiments it is 

difficult to assess the long term effect of DGLA and AA accumulation into lipid 

fractions of mouse tissue following feeding. A larger period of feeding in the 

experiment may have also significantly increased levels of AA as well as DGLA, given 
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the trend of increase observed. Future experiments could act to establish the 

incorporation of DGLA and AA in a time-dependent manner.  

3.5.4.3 Omega-3 incorporation 

It was observed in vivo that on feeding with a DGLA diet, there were percentage 

changes in the levels of omega-3 fatty acids EPA and DHA into lipid fractions. For 

example in liver phospholipids, percentage level of DHA was decreased in TPL 

(Figure 3.13) and EPA in the total fatty acids of plasma (Figure 3.11). A general trend 

of reduced levels of omega-3 fatty acids was observed in the DGLA group. This has 

also been shown previously in vitro. Analysis in a mouse fibrosarcoma cell line 

indicated that omega-6 fatty acids reduced the levels of EPA into cellular 

phospholipids and promoted their re-distribution to TAG fractions (Rubin and 

Laposata 1992). This adverse effect on PUFA incorporation has also been observed 

in omega-3 studies. EPA and DHA supplementation in humans, lowered the 

production of 15-HETrE in blistering wounds suggesting these PUFA compete directly 

for fatty acid incorporation and metabolism with DGLA (McDaniel et al. 2011). 

However, in addition to reducing the incorporation and metabolism of DGLA, omega-

3 supplementation changes AA levels. It has previously been shown that omega-3 

fatty acids compete with omega-6 fatty acids for delta 5 desaturase, the enzyme 

responsible for the conversion of DGLA to AA (Rubin and Laposata 1992; Barham et 

al. 2000). Supplementation of EPA in humans significantly increased plasma levels 

of EPA, while reducing AA levels and the AA:EPA ratio. This was accompanied by an 

increase in EPA metabolites through LOX and COX pathways (McDaniel et al. 2011).  

Co-supplementation studies with both omega-3 and -6 fatty acids have combined the 

benefits of accumulation of DGLA, EPA and DHA while reducing the accumulation of 

AA in lipid fractions. Co-supplementation of GLA and EPA significantly increased the 

accumulation of these two PUFA in human serum and neutrophil phospholipids, with 

no increase in AA (Barham et al. 2000). Although isolated neutrophils from patients 

supplemented with GLA and EPA had similar amounts of AA, there was a significant 

reduction in leukotrienes released in comparison to control (Barham et al. 2000). 

GLA-containing oils increased AA incorporation into cholesteryl esters and 

phospholipid fractions of human serum. However, this was not observed on co-

supplementation with EPA (Miles et al. 2004). Similarly, GLA co-supplemented with 

EPA and DHA dose-dependently increased DGLA and decreased AA levels in the 

TPL fraction of human serum (Laidlaw and Holub 2003). Supplementation with a 

combination of GLA and DHA containing oils in healthy women, significantly 

increased the levels of GLA, DGLA and DHA in plasma total lipids, TPL and TAG 
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fractions (Geppert et al. 2008). There was no increase in AA observed in total lipids 

and TPL but a small accumulation in TAG fraction, which returned to control levels 

after further supplementation (Geppert et al. 2008).   

Taken together the results presented in this chapter and previous studies show that 

supplementation with both omega-3 (EPA and DHA) and -6 (GLA/DGLA) fatty acids 

can increase accumulation of both these desirable anti-inflammatory PUFAs with no 

rise in the accumulation of AA. This may prove beneficial in disease. Co-

supplementation with omega-3 and -6 fatty acids produced more favourable results 

on risk factors of atherosclerosis compared to omega-3 supplementation alone.  In 

humans the atherosclerotic index decreased by 12% on supplementation with a 

combination diet, compared to a 6% decrease with omega-3 fatty acids alone 

(Haglund et al. 1998). Future work may act to establish the role of co-supplementation 

with certain omega-3 and -6 PUFAs and evaluate their combined role on 

inflammation.  

3.5.4.4 P.incisa as a source of DGLA 

Extraction of total lipids from P. incisa (containing DGLA) provided a source of the 

PUFA in the form of TAG. Studies in vitro (Appendix 4) and in vivo (presented in this 

chapter) indicated that DGLA isolated from P. incisa increased the levels of DGLA in 

polar, TAG and steryl ester lipid fractions of macrophages and mouse plasma and 

tissues. In addition to this, a preliminary experiment indicated that DGLA (hydrolysed 

from the total lipid extracts of mutated algae: method detailed in 2.2.13.1) inhibited 

pro-inflammatory gene expression in THP-1 macrophages (Appendix 5) comparable 

to that observed with pure DGLA (data presented in Chapter 4).  

Previously there has been some controversy regarding the use of polar lipid or TAG 

as dietary sources of fatty acids. A number of studies have investigated the effects of 

omega-3 PUFAs, EPA and DHA, when administered as polar lipid or TAG. In mice 

fed a high fat diet, omega-3 fatty acids administered in polar lipids were observed to 

reduce obesity and glucose intolerance more so than TAG derived fatty acids 

(Rossmeisl et al. 2012). Omega-3 fatty acids in polar lipids showed better 

accumulation and bioavailability in comparison to the TAG. However, it was also 

observed that omega-3 fatty acids from TAG lowered cholesterol levels more than 

using the polar lipid (Rossmeisl et al. 2012). In addition, it was observed that in mice 

fed polar lipid and TAG forms of omega-3 fatty acids, both had similar effects on 

inflammatory profiles (Awada et al. 2013) but concentrations of EPA and DHA in the 

plasma were higher in the TAG group to that of polar lipid group. There was however 
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a significant effect on adipose tissue cell size in the polar lipid diet, which was not 

significant in the TAG diet despite an observed decrease (Awada et al. 2013). This 

suggested that polar lipid carrier was more effective at reducing body fat deposition 

than the TAG carrier (Awada et al. 2013).  

Fish oils are a rich source of omega-3 fatty acids in the TAG form, whereas krill oil 

contains omega-3 fatty acids primarily in the polar lipid form. On feeding mice with 

these two forms of omega-3 fatty acids, it was observed that they were comparable 

dietary sources (Vigerust et al. 2013). There was no difference between carriers on 

the effects of lowering inflammation and cholesterol levels. However there was a 

small preference for krill oil over fish oil in promoting lipid catabolism (Vigerust et al. 

2013). Finally, another study investigating the role of krill oil and fish oil reported, 

again, that both sources were comparable (Ulven et al. 2011). They observed a 

significant increase in EPA, DHA and DPA incorporation into plasma lipid fractions of 

humans following supplementation, which was not significantly different between krill 

oil and fish oil groups (Ulven et al. 2011). However, lower doses of krill oil were 

needed in comparison to fish oil (Ulven et al. 2011).  

Taken together, previous studies suggest that dietary sources of fatty acids from polar 

lipid and TAG are comparable and there is no significant difference between their 

effect on the regulation of inflammation and cholesterol homeostasis (Ulven et al. 

2011; Rossmeisl et al. 2012; Awada et al. 2013). However, studies suggest a slight 

advantage of PUFA in polar lipid form on obesity and regulation of adiposity 

(Rossmeisl et al. 2012; Awada et al. 2013). Despite this, TAG remains a good dietary 

source of PUFA in vivo and studies utilising DGLA contained in TAG form from P. 

incisa provide promising insight into its commercial use as source of the PUFA. 
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CHAPTER 4  

THE ROLE OF DGLA ON THE PROPERTIES OF 

MACROPHAGES AND THEIR FUNCTION IN 

ATHEROSCLEROSIS  

 

4.1 Introduction 

4.1.1 Role of macrophages in atherosclerosis 

Macrophages are key players in diseases associated with chronic inflammatory 

disorders such as atherosclerosis (Moore and Tabas 2011). Understanding the role 

of macrophages in atherosclerosis is important in advancing our knowledge of the 

molecular basis of this disease and for the development of preventative/therapeutic 

approaches (Dickhout et al. 2008). Macrophage foam cell formation is a hallmark of 

the early stages of atherosclerosis and lays the foundation for advanced plaque 

development. This process is discussed in further detail in Section 4.1.2. 

Macrophages also continue to play an important role once an atherosclerotic plaque 

with foam cells has formed. An on-going release of pro-inflammatory cytokines and 

pro-apoptotic factors from macrophages continues to increase lesion size and trigger 

apoptosis of SMCs (Moore and Tabas 2011). In addition, secretion of MMPs 

destabilises the plaque via degradation of the extracellular matrix increasing the risk 

of plaque rupture (Dickhout et al. 2008). Finally, defective clearance of 

macrophages/apoptotic cells (i.e. efferocytosis) from advanced plaques results in 

plaque necrosis and rupture (Moore and Tabas 2011). Targeting macrophages can 

therefore be of therapeutic interest given their important role in atherosclerosis 

pathology.     

4.1.2 Foam cell formation 

Atherosclerosis is a complex multi-stage disease with numerous factors contributing 

to its pathogenesis. The initial stage of atherosclerosis involves formation of lipid 

loaded macrophages, commonly referred to as foam cells. Foam cells accumulate in 

the walls of large arteries and build up to form fatty streaks (Lusis 2000). Although 

not clinically significant, fatty streaks provide the underlying basis for the maturation 

of atherosclerotic lesions (Lusis 2012). Targeting foam cell formation as a primary 

event in atherosclerosis to attenuate or prevent progression of this disease is 
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therefore of therapeutic interest. In this chapter, the effect of DGLA on numerous 

stages of foam cell formation and macrophage behaviour was investigated.  

4.1.2.1 Initiation and lipoprotein modification 

ROS are increased in a number of cardiovascular diseases, including atherosclerosis, 

which suggests that they play an important role in the pathogenesis of the disease 

(Heistad et al. 2009). Several factors have been linked to increased ROS production 

including hypercholesterolemia, hypertension, diabetes, obesity, smoking and age, 

which are also common risk factors in atherosclerosis (Lusis et al. 2004). According 

to the oxidative modification hypothesis, atherosclerosis is the result of oxidative 

modification of LDL in the arterial wall by ROS (Singh and Jialal 2006; Vogiatzi et al. 

2009). Accumulation and retention of oxLDL in the arterial wall and oxidative stress 

can induce the overlying endothelium to release factors promoting an inflammatory 

response and initiate the process of foam cell formation (Libby 2012). Attenuating 

ROS production may reduce the formation of oxLDL and prevent the initiation of foam 

cell formation.  

4.1.2.2 Monocyte recruitment and migration 

Damage to the endothelial wall of arteries, as a result of high oxidative stress, 

activates endothelial cells, which express a number of chemokines and adhesion 

molecules, to recruit and adhere circulating monocytes to the site of activation 

(Bobryshev 2006). MCP-1 plays a key role in monocyte recruitment. Release of MCP-

1 recruits monocytes from the circulation. Once recruited, monocytes roll across the 

endothelium and firmly adhere to the surface tethered by various adhesion proteins 

including selectins, integrins, ICAM-1 and VCAM-1 (Lusis 2000; Bobryshev 2006). 

Monocytes transmigrate through the intracellular junctions of endothelial cells into the 

arterial intima where they are stimulated to differentiate into macrophages, largely 

under the control of the chemokine M-CSF (Bobryshev 2006). Subsequent 

description will focus on two key factors implicated in the recruitment of monocytes, 

MCP-1 and ICAM-1.  

4.1.2.2.1 MCP-1 

Chemokines (chemotactic cytokines) are small heparin binding proteins whose main 

function is to regulate cell trafficking (Deshmane et al. 2009). MCP-1 is an 

inflammatory chemokine, 76 amino acids in length, 13k Da in size and a member of 

the C-C chemokine family (Deshmane et al. 2009). It is expressed by the various cells 

involved in atherosclerosis following the initiation of a chronic inflammatory response 

by the activated endothelium in the disease and is a potent chemoattractant for 
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circulating monocytes. In vivo studies have shown that MCP-1 deficiency significantly 

reduces the extent of atherosclerosis in ApoE knockout mice  (Gosling et al. 1999). 

These mice showed smaller, less extensive lesions, with a significantly lower content 

of macrophages (Gosling et al. 1999). In addition, increasing expression of MCP-1 by 

leukocytes significantly increases the size of atherosclerotic lesions in ApoE knockout 

mice (Aiello et al. 1999). These findings indicate MCP-1 as a potentially promising 

therapeutic target in atherosclerosis. 

4.1.2.2.2 ICAM-1 

ICAM-1 is an inducible cell surface glycoprotein belonging to the immunoglobulin 

supergene family and is expressed on endothelial cells to facilitate the attachment of 

monocytes recruited to the activated endothelium during the inflammatory response 

in atherosclerosis (Roy et al. 2001). Binding of monocytes to the endothelium allows 

for their transmigration into the arterial intima where they can differentiate into 

macrophages and progress to foam cells (Lusis 2000). ICAM-1 is strongly expressed 

at the sites of atherosclerotic lesions indicating the important role of this adhesion 

molecule in the pathology of this disease. In addition to this, studies have shown that 

ApoE-/- ICAM-1-/- mice have significantly smaller lesions in comparison to ApoE-/- 

ICAM-1+/+ mice (Kitagawa et al. 2002). As with MCP-1, the important role of ICAM-1 

in the early inflammatory response indicates that therapeutic targeting of this 

adhesion protein could play an important role in the prevention of atherosclerosis.  

4.1.2.3 Cytokine induced pro-inflammatory gene expression 

Cytokines play an important role in foam cell formation by orchestrating an 

inflammatory response. They include more than 50 secreted factors and have 

numerous roles in cellular communication (Tedgui and Mallat 2006; Ramji and Davies 

2015). Cytokines can be classified into two groups based on their role in inflammation; 

pro-inflammatory and anti-inflammatory (Tedgui and Mallat 2006). See Section 1.4.1 

for more detail on cytokine signalling in atherosclerosis. The expression of many pro-

inflammatory cytokines are up regulated in atherosclerosis and contribute significantly 

to foam cell formation and plaque development (Gupta et al. 1997; Kirii et al. 2003; 

Popa et al. 2007). Inhibition of pro-inflammatory cytokine signalling is therefore 

another potential therapeutic target in the prevention and treatment of 

atherosclerosis. Subsequent description will focus on three important pro-

inflammatory cytokines employed in the studies in this chapter and have key roles in 

atherosclerosis; IFN-γ, IL-1β and TNF-α. See Table 4.1 for the role of the cytokines 

in pro-inflammatory gene expression.  
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Table 4.1 – Role of IFN-γ IL-1β and TNF-α in pro-inflammatory gene expression 

 

 

4.1.2.4 Inflammasome IL-1β production  

Before it can elicit its pro-inflammatory signalling actions, the various cell types must 

first secrete IL-1β. This involves a multi protein complex known as the inflammasome. 

The release of mature IL-1β is a multi-step process involving up regulation of the 

expression of pro-IL-1β followed by inflammasome activation, which allows for 

caspase-1 dependent cleavage of pro-IL-1β into its active form (Moore et al. 2013). 

The NLRP3 inflammasome has been described as the key regulator of IL-1β 

production from macrophages and plays an important role in many inflammatory 

diseases including atherosclerosis (Moore et al. 2013). Activation of the 

inflammasome and their role in IL-1β activation is discussed in more detail in Section 

1.4.1.2.1. Studies in THP-1 macrophages have determined the role of the NLRP3 

inflammasome in production of IL-1β (Rajamaki et al. 2010). Omega-3 fatty acids EPA 

and DHA have been shown to inhibit inflammasome dependent IL-1β production, 

indicating PUFAs can play an important role in the process (Yan et al. 2013; Williams-

Bey et al. 2014).  

Cholesterol crystals are components of atherosclerotic plaques and were first thought 

to be deposited in plaques as pathology progressed to later stages and therefore 

weren’t a primary initiating factor of atherosclerosis. Using laser reflection and 

fluorescence confocal microscopy, cholesterol crystals were observed within 2 weeks 

Cytokine Role in pro-inflammatory gene expression 

IFN-γ Induce expression of adhesion molecules ICAM-1 and VCAM-1 (Li et 

al. 1993; Chung et al. 2002). Increase scavenger receptor CXCL 

16/SR-PSOX (Wuttge et al. 2004) but down regulate SRA and CD36 

(Nakagawa et al. 1998; Grewal et al. 2001) 

IL-1β mRNA levels of VCAM-1 and MCP-1 reduced in ApoE-/- IL-1β-/- 

deficient mice (Kirii et al. 2003).  

TNF-α ApoE-/- TNF-α-/- decreased expression of VCAM-1, MCP-1, GM-CSF 

(Xiao et al. 2009). Using the same knockout system, ICAM-1 and SRA 

expression were also reduced (Ohta et al. 2005).  
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of fat feeding ApoE-/- mice with a high fat diet (Duewell et al. 2010). They were 

localised to immune cells in the sub endothelial arterial layer. Immune cell recruitment 

and cholesterol crystal deposition progressively increased through feeding (Duewell 

et al. 2010). In human atherosclerotic lesions cholesterol crystals were rich in areas 

abundant in immune cells. Cholesterol crystals have been observed to induce 

inflammasome activation in in vivo mouse models and in vitro THP-1 macrophages 

(Duewell et al. 2010). Given the role of PUFAs and cholesterol crystals in 

inflammasome activation, the role of DGLA in cholesterol crystal-induced 

inflammasome activation and IL-1β regulation was investigated.  

4.1.2.5 LDL uptake and cholesterol cycle 

Once monocytes have migrated across the endothelium layer and into the arterial 

intima, they are stimulated to differentiate into macrophages. Normally, LDL is taken 

up by the LDLr expressed on macrophages, which is subject to feedback inhibition at 

the transcriptional level so limits the uptake of this lipoprotein. Macrophages however 

also express scavenger receptors that can recognise, bind and internalise modified 

forms of LDL in an unregulated manner. Once internalised, the cholesteryl ester 

contained within the LDL is digested to unesterified/free cholesterol by an acid 

cholesterol ester hydrolase in lysosomes (Daugherty et al. 2008). This free 

cholesterol is re-esterified to cholesteryl esters by the enzyme ACAT (Ghosh et al. 

2010). Further detail on macrophage cholesterol homeostasis is described in Section 

1.2.2.1. This esterified cholesterol has two fates: first it is once again hydrolysed to 

free cholesterol by one of a group of enzymes collectively referred to as neutral 

cholesterol ester hydrolase (nCEH) (Sekiya et al. 2009) and removed from the 

macrophage by several extracellular transporters. Second; it is stored as cholesteryl 

esters in the cytoplasm as lipid droplets (Daugherty et al. 2008). The rate-limiting step 

in the cholesteryl ester cycle in macrophages is the nCEH enzyme reaction allowing 

for clearance of free cholesterol from the macrophage. Excessive uptake of modified 

LDL therefore increases the storage of cholesteryl esters in lipid droplets. An 

increased amount of lipid in the cytoplasm of macrophages promotes the conversion 

of macrophages to lipid loaded foam cells (Ghosh et al. 2010).  Inhibition of 

cholesteryl ester accumulation would therefore attenuate foam cell formation.  
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4.2 Aims 

Atherosclerosis is an inflammatory disorder regulated by cytokines such as IFN-γ, IL-

1β and TNF-α. Nutraceuticals represent a promising therapeutic avenue in preventing 

and limiting atherosclerosis. It is therefore important that a thorough understanding of 

their actions in atherosclerosis together with the underlying molecular mechanisms is 

attained. Previous studies have revealed an anti-atherogenic role of DGLA. However, 

its actions on several key macrophage processes associated with atherosclerosis is 

poorly understood and formed the basis of studies in this chapter. The major focus 

was to delineate its effect in pro-inflammatory gene expression and several 

macrophage properties in this disease in vitro. Macrophages play a key role in the 

initiating stage of atherosclerosis, foam cell formation, right through to plaque 

progression and rupture (Moore and Tabas 2011; Michael et al. 2012). Given their 

important role in the disease, the action of DGLA on macrophages was the main focus 

of the project (see Figure 4.1 for the experimental plan employed for studies in this 

chapter).  
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4.3 Experimental plan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 – Overview of experimental strategy to determine the effect of DGLA 

on key steps involving macrophages during atherosclerosis 

Top (blue); experiments performed in THP-1 cell line. Experiments include in monocytes -

migration and ROS production; and in macrophages – ROS production, gene expression and 

inflammasome activation. Bottom (red); experiments performed in RAW264.7 cell line, 

including gene expression and acLDL induced cholesteryl ester accumulation.   
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4.4 Results 

4.4.1 Optimisation of PCR conditions 

4.4.1.1 Designing PCR primers 

Initial optimisation of gene expression was performed using RNA from THP-1 

macrophages. RT-qPCR was performed using gene-specific primers. Primers were 

sourced from literature searches or designed through an online primer design tool. 

Optimisation of human MCP-1 gene will be used as an example of primer 

optimisation, which is representative of the steps taken with every sourced or self-

designed primer. Primers were first validated using an online primer-blast program to 

ensure primer sequences were specific to the intended gene. Figure 4.2 depicts an 

example of the result of a primer-blast search for MCP-1 primers.  

 

Figure 4.2 – MCP-1 primer blast results 

Primer sequences for MCP-1 were analysed by primer-blast online tool. Results indicate that 

the primers show 100% homology to human chemokine (C-C motif) ligand 2 (CCL2) more 

commonly referred to as MCP-1. 

 

4.4.1.2 Optimising primer annealing temperatures 

Concentrations of cDNA and primers used in RT-qPCR remained the same between 

every experiment; however primer-annealing temperatures could differ. Primers 

designed using an online tool were designed to anneal at 60ºC. However, in order to 

ensure this was indeed the optimum temperature, a PCR was performed with a range 

of annealing temperatures and the amplification products size fractioned by agarose 
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gel electrophoresis. Figure 4.3 displays the results of size fractionation of products 

from a PCR reaction using MCP-1 primers and different annealing temperatures. 

Bands were quantified and annealing temperature of 60ºC gave the greatest amount 

of MCP-1 product. This annealing temperature was therefore used in subsequent 

experiments.  

 

 

 

 

 

 

 

Figure 4.3 – Size fractionation of PCR products 

cDNA was subjected to PCR using MCP-1 primers at a range of annealing temperatures (59-

62ºC). PCR products were subjected to gel electrophoresis on a 1.5% (w/v) agarose gel for 1 

hour at 150V. An optimal annealing temperature of 60ºC was chosen for subsequent studies. 

The expected product size for MCP-1 is 141bp; the sizes of key markers that migrated near 

the amplification product are shown on the left of image. –RT; minus reverse transcriptase.   

 

4.4.1.3 Quality of RNA 

Before carrying out PCR reactions, RNA preparations were analysed for quality by 

resolving a small aliquot on a 1.5% (w/v) agarose gel. Good quality undegraded RNA 

generally produces two distinct bands corresponding to the 28S and 18S rRNA in a 

2:1 ratio. An example of such quality of RNA, which was obtained for studies 

presented throughout this thesis, is shown in Figure 4.4. The data for all the RNA 

preparation are therefore not shown for subsequent studies.  

  

59º     60º     61º     62º    -RT  

141bp   

150bp 
100bp 
50bp 
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Figure 4.4 – Agarose gel for the assessment of RNA quality  

Small aliquots of RNA were resolved on a 1.5% (w/v) agarose gel to assess RNA quality. 

Samples used were representative of RNA quality throughout experiments carried out in this 

thesis. Positions of the 28S and 18S rRNA bands are indicated on the right of the image. 

 

4.4.1.4 Melting peak analysis 

RT-qPCR was subsequently performed on RNA extracts using SYBR green, which 

interacts with double stranded DNA and fluoresces. The point at which the level of 

fluorescence surpasses a set threshold level is termed the Ct value and is used to 

calculate gene expression. See Section 2.2.8.2 for more detail on RT-qPCR. 

Amplification curves for GAPDH and MCP-1 are shown in Figure 4.5 (A and C). 

Following completion of RT-qPCR, melting curve analysis was carried out to ensure 

a single major peak corresponding to the amplification product. PCR products were 

subjected to a gradual increase in temperature whereby at a particular temperature 

the two strands in the DNA molecule dissociates and a drop in florescence is 

measured. Plotting the change in fluorescence against the change in temperature 

allows for a graph to be produced with a peak corresponding to the melting 

temperature of the product. One peak resulting from melting peak analysis indicates 

one product has been formed.  Figure 4.5 (B and D) indicates the melting peaks for 

RT-qPCRs performed using GAPDH and MCP-1. In each case, single peaks were 

observed indicating that a single product is being produced and the primers were 

specific and of high quality. Graphs shown in Figure 4.5 are representative of 

amplification curves and melting peaks obtained with other primers.   

28S rRNA 

18S rRNA 

band 
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Figure 4.5 – Melting curve analysis 

RT-qPCR was performed using GAPDH (A and B) and MCP-1 (C and D) primers. Graphs A 

and C display sigmoidal curves representative of amplification during the PCR reaction. 

Melting peaks (B and D) for both GAPDH and MCP-1 respectively indicate that one major 

product is formed due to the single peak.   

 

4.4.2 IFN-γ dose response experiments in THP-1 macrophages 

IFN-γ has been widely utilised previously in the laboratory and is a well-characterised 

pro-inflammatory cytokine in atherosclerosis. Due to its numerous roles in the 

initiation and the progression of the disease, the cytokine is often described as a 

master regulator of atherosclerosis (McLaren and Ramji 2009).  IFN-γ was therefore 

the main focus for the action of DGLA on pro-inflammatory signalling. Previous 

studies had used a relatively high concentration of IFN-γ (1000 U/ml). A dose 

response experiment using the IFN-γ inducible MCP-1 as a model gene was carried 

out to determine if a lower concentration could be used. THP-1 macrophages were 

treated with 100 U/ml, 250 U/ml, 500 U/ml and 1000 U/ml IFN-γ. MCP-1 mRNA levels 

were determined by RT-qPCR after 3 hours stimulation with the cytokine, a time point 

based on previous optimisation experiments in the laboratory monitoring induction of 

MCP-1 expression. As expected, all concentrations of IFN-γ induced the expression 

of MCP-1 (Figure 4.6). On treatment with 100 U/ml IFN-γ, the expression of MCP-1 

A B 
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was induced about 24-fold though this was not significant. Increasing the 

concentration of IFN-γ to 250 U/ml increased the induction level to 165-fold. 

Treatment with 500 U/ml and 1000 U/ml of the cytokine induced MCP-1 expression 

by 200-fold and 260-fold respectively. There was no significant difference between 

the three highest doses of IFN-γ (i.e. 250 U/ml, 500 U/ml and 1000 U/ml). Due to this, 

and the dramatic increase in the induction of MCP-1 expression when the 

concentration of IFN-γ was increased from 100 U/ml to 250 U/ml, the latter was 

selected as the optimum IFN-γ concentration and was used in all further experiments.  

 

 

 

 

 

 

 

 

 

 

Figure 4.6 – The expression of MCP-1 is induced by several concentrations of 

IFN-γ 

THP-1 macrophages were incubated for 3 hours with 100 U/ml, 250 U/ml, 500 U/ml and 1000 

U/ml of IFN-γ or the vehicle control as shown. RNA was extracted and subjected to reverse 

transcription and RT-qPCR using primers specific for MCP-1 or housekeeping gene GAPDH. 

Graph displays average fold-change in normalised MCP-1 expression (mean +/- SD) in 

comparison to control (arbitrarily assigned as 1) from three independent experiments. 

Statistical analysis was performed using a one-way ANOVA with Tukey’s post hoc analysis. 

*** P ≤ 0.001  

  

*** 

*** 

*** 
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4.4.3 Dose response experiments with DGLA 

After determining a suitable dose of IFN-γ for use in subsequent experiments, a range 

of concentrations of DGLA from 10 µM to 100 µM were evaluated with 250 U/ml of 

IFN-γ to establish a concentration for optimum inhibition of gene expression. 

Following PMA differentiation, THP-1 macrophages were pre-incubated with 10 μM, 

25 μM, 50 μM and 100 µM of DGLA or the DMSO vehicle control for 24 hours (a time 

point previously optimised by investigation of DGLA incorporation into polar lipids), 

followed by treatment with vehicle or 250 U/ml IFN-γ for a further 3 hours. The 

expression of MCP-1 and ICAM-1, another pro-inflammatory gene known to be up-

regulated by IFN-γ (Li et al. 2010), was measured by reverse transcription and RT-

qPCR. As expected, MCP-1 and ICAM-1 expression was significantly induced by IFN-

γ. DGLA at concentrations of 25 μM, 50 μM and 100 µM produced significant inhibition 

of the IFN-γ-induced expression of MCP-1 by an average of 32%, 46% and 76% 

respectively (Figure 4.7). A similar trend in the suppression of IFN-γ-induced ICAM-1 

expression was also observed with all the concentrations of DGLA used (Figure 4.7). 

However, the only concentration of DGLA to significantly inhibit the IFN-γ-induced 

ICAM-1 expression was 50 µM, where an average decrease of 31% was observed. 

Given the significant inhibition of IFN-γ-induced expression of two key pro-

inflammatory genes by 50 μM DGLA, this concentration was used for further gene 

expression analysis.  
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Figure 4.7 – Concentration-dependent inhibition of IFN-γ-induced MCP-1 and 

ICAM-1 expression by DGLA 

THP-1 macrophages were pre-incubated with 10 μM, 25 μM, 50 μM and 100 µM DGLA or 

DMSO vehicle for 24 hours followed by incubation in the presence of vehicle (Control) or 250 

U/ml IFN-γ for 3 hours. Total RNA was subjected to reverse transcription and RT-qPCR with 

primers specific for MCP-1, ICAM-1 or GAPDH control. Graphs display average normalised 

gene expression (mean +/- SD) (control arbitrarily assigned as 1) from three independent 

experiments. Statistical analysis was performed using a one-way ANOVA (equal variances) 

with Tukey’s post hoc for MCP-1. For statistical analysis for ICAM-1, due to unequal variances, 

Welch’s test followed by Dunnett’s T3 post hoc analysis was performed. * P ≤ 0.05, *** P ≤ 

0.001 
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4.4.4 Viability assays 

After determining the optimum concentrations of DGLA and IFN-γ, the viability of 

THP-1 macrophages under these conditions was assessed. For this, two tests of 

cellular viability were employed. LDH is a cytosolic enzyme present in numerous cell 

types and extracellular release of LDH is an indication of damage to the cellular 

membrane. Measuring LDH release from THP-1 macrophages into the overlying 

media, in comparison to a positive and negative control, was used as an indication of 

cellular damage. The optimised concentration of DGLA and IFN-γ were used in these 

experiments (i.e. 50 μM and 250 U/ml respectively). As shown in Figure 4.5, no effect 

on LDH release was observed by incubation of the cells with IFN-γ and DGLA when 

compared to the negative control (i.e. vehicle-treated cells) (Figure 4.8). In addition 

to the LDH release assay, crystal violet staining was utilised. Crystal violet is used to 

stain adherent cells. It binds to DNA in the nucleus of the cell and therefore correlates 

to cell numbers. Cells that detach from plastic surface of tissue culture flasks are 

assumed non-viable, remain in the supernatant and are washed away before 

quantification. There was no difference observed in cell viability/proliferation as 

determined by this method between control and IFN-γ and/or DGLA treated THP-1 

macrophages under all experimental conditions (Figure 4.8). Taken together, the 

results from the LDH and crystal violet assay suggest that there is no adverse effect 

of 50 μM DGLA and/or 250 U/ml IFN-γ on cell viability. These conditions were 

therefore employed throughout study.   
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Figure 4.8 – DGLA and/or IFN-γ has no effect on cell viability of THP-1 

macrophages 

THP-1 macrophages were incubated with 50 µM DGLA or the DMSO vehicle control for 24 

hours and then in the presence of 250 U IFN-γ or vehicle for a further 3 hour. Media was 

removed and used to determine LDH release. The remaining THP-1 macrophages were then 

used in the crystal violet assay. Both graphs display average fold-change of absorbance 

values (mean +/- SD) in comparison to control (arbitrarily assigned as 1) from three 

independent experiments. Statistics were performed using one-way ANOVA, comparing each 

individual treatment to control. N.S – not significant 
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4.4.5 The effect of DGLA on ROS production 

ROS production plays an important role in the pathology of atherosclerosis by 

modifying LDL, which can then be recognised by macrophage scavenger receptors. 

The effect of DGLA on ROS production from THP-1 monocytes and macrophages 

was measured to determine if the lipid possessed any anti-oxidant capacity. 

Monocytes and macrophages produce and release ROS in response to stimulation 

with pro-inflammatory agents and oxidants such as hydrogen peroxide (Forman and 

Torres 2001). The assay was performed as per manufacturer instructions (AbCam), 

including concentrations and incubation times. Briefly, monocytes or macrophages 

were incubated with DCFDA, which diffuses into cells and is oxidised by ROS to a 

fluorescent compound that can be measured by fluorescence spectroscopy. A 

positive control supplied by the kit, TBHP, was used to induce ROS production by 

monocytes and macrophages and therefore increased production of fluorescent 

compound. DGLA was co-incubated with monocytes and TBHP whereas 

macrophages were pre-incubated with DGLA for 24 hours (as in gene expression 

studies) prior to the addition of TBHP, to determine the effect on ROS production. As 

shown in Figure 4.9, TBHP significantly induced ROS production in both monocytes 

(A) and macrophages (B). However, co-incubation with DGLA in monocytes or pre-

incubation in macrophages had no effect on the increase in ROS production.  
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Figure 4.9 – DGLA has no effect on the TBHP-induced ROS production in THP-

1 monocytes or macrophages 

THP-1 monocytes (A) were incubated with 35 µM DCFDA for 30 minutes followed by 100 µM 

TBHP in the presence of 50 µM DGLA or the vehicle control for 3 hours.  THP-1 macrophages 

(B) were pre incubated with 50 µM DGLA or vehicle control for 24 hours prior to incubation 

with 35 µM DCFDA for 30 minutes and 100 µM TBHP for 3 hours. Cells incubated with vehicle 

in the absence of TBHP were included as control. Fluorescence was measured at 495 nm and 

529 nm for excitation and emission spectra respectively. Graph displays average mean +/- 

SD from three independent experiments. The value in the TBHP positive control has been 

arbitrarily assigned as 100%. Statistical analysis was performed using a one-way ANOVA 

followed by Tukey’s post hoc. ** P ≤ 0.01, *** P ≤ 0.001, N.S – not   significant. 
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4.4.6 The effect of DGLA on the expression of MCP-1 and ICAM-1 induced by 

different pro-inflammatory cytokines in human macrophages 

4.4.6.1 IFN-γ 

4.4.6.1.1 THP-1 

IFN-γ has been well documented in the laboratory to induce the expression of MCP-

1 and ICAM-1 in THP-1 macrophages (Li et al. 2010). THP-1 macrophages were pre-

incubated with vehicle or DGLA for 24 hours followed by incubation for 3 hours in the 

presence of vehicle or IFN-γ. MCP-1 and ICAM-1 mRNA expression was significantly 

induced by IFN-γ in THP-1 macrophages by about 46-fold and 4-fold respectively 

(Figure 4.10). Pre-treatment of the cells with DGLA produced a significant reduction 

of approximately 24% and 32% respectively of the IFN-γ-induced MCP-1 and ICAM-

1 expression. Interestingly, there was also a significant difference between the basal 

expression levels of MCP-1 between cells treated with vehicle or DGLA. Thus, there 

was an average of 46% reduction in MCP-1 expression produced by treatment of the 

cells with DGLA when compared to the vehicle control (Figure 4.10). Such an action 

of DGLA was specific to MCP-1 and not seen with ICAM-1 expression, where there 

was no significant difference between control and DGLA treatment (Figure 4.10).  
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Figure 4.10 – DGLA significantly inhibits the IFN-γ-induced expression of MCP-

1 and ICAM-1 in THP-1 macrophages 

THP-1 macrophages were incubated with vehicle or 50 µM DGLA for 24 hours prior to 

treatment with vehicle or 250 U/ml IFN-γ for 3 hours. Total RNA was subjected to reverse 

transcription and RT-qPCR with primers specific for human MCP-1, ICAM-1 or GAPDH. 

Graphs display average normalised gene expression (mean +/- SD) (control arbitrarily 

assigned as 1) from three independent experiments. Homogeneity of variances were not met 

for ANOVA therefore Welch’s test followed by Dunnett’s T3 post hoc tests were used ** P≤0.01 

*** P≤0.001. 

  

0

10

20

30

40

50

60

Control IFN-y DGLA DGLA + IFN-y

R
e

la
ti

ve
 m

R
N

A
 e

xp
re

ss
io

n

MCP-1

*** 

** 

IFN-γ              -                        +                       -                        + 

0

1

2

3

4

5

6

Control IFN-y DGLA DGLA + IFN-y

R
e

la
ti

ve
 m

R
N

A
 e

xp
re

ss
io

n

ICAM-1

*** 
** 

IFN-γ               -                        +                       -                        + 

** 



 
 

145 
 

4.4.6.1.2 RAW264.7 

Mouse models are commonly used in atherosclerosis research. However species-

specific regulation of gene expression between human and mouse have been found 

in some cases (Lin et al. 2014). In addition, differentiation of THP-1 monocytes into 

macrophages required PMA and it was possible that this could influence the results 

obtained. In order to rule out these possibilities, the experiments were repeated in the 

mouse RAW264.7 cell line that does not require PMA-mediated differentiation. 

Conservation of responses in RAW264.7 macrophages would allow use of this cell 

line to investigate the actions of DGLA if required. RAW264.7 macrophages were pre-

incubated with vehicle or DGLA for 24 hours followed by incubation in the presence 

of vehicle or IFN-γ for 3 hours. The concentrations of DGLA and IFN-γ used were 

identical to that optimised for THP-1 cells and so should allow direct comparison 

between the responses in the two cell types. Treatment of the cells with IFN-γ 

produced a significant induction of MCP-1 and ICAM-1 expression (Figure 4.11). Pre-

treatment of the cells with 50 μM DGLA followed by incubation with IFN-γ produced 

a significant attenuation of the expression of MCP-1 and ICAM-1 by an average of 

61% and 52% respectively. In addition, there was a 44% reduction in basal MCP-1 

expression on treatment of the cells with DGLA, as observed in THP-1 macrophages, 

however this was not significant. There was no observable difference in ICAM-1 

expression between vehicle and DGLA treated cells.  
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Figure 4.11 – DGLA significantly inhibits the IFN-γ-induced expression of MCP-

1 and ICAM-1 in RAW264.7 macrophages 

RAW264.7 macrophages were incubated with vehicle or 50 µM DGLA for 24 hours prior to 

treatment with vehicle or 250 U/ml IFN-γ for 3 hours. Total RNA was subjected to reverse 

transcription and RT-qPCR with primers specific mouse MCP-1, ICAM-1 or β actin. Graphs 

display average normalised gene expression (mean +/- SD) (control arbitrarily assigned as 1) 

from 3 independent experiments. Statistical analysis was performed using a one-way ANOVA 

and Tukey’s post hoc analysis. ** P≤0.01  
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4.4.6.1.3 HMDM 

Given the significant inhibition in expression by DGLA of two key IFN-γ induced 

inflammatory genes in both THP-1 and RAW264.7 macrophages, the experiments 

were repeated in primary cultures of HMDM. These experiments were carried out to 

rule out the possibility that the observed results are peculiar to the cell line. HMDM 

were pre-treated with 50 µM DGLA or vehicle for 24 hours followed by vehicle or 250 

U/ml IFN-γ for further 3 hours (identical conditions to that used for THP-1 and 

RAW264.7 macrophages). As shown in Figure 4.12, IFN-γ significantly induced the 

expression of both MCP-1 and ICAM-1 genes. Due to variability between IFN-γ 

induction of MCP-1 and ICAM-1 between experiments, the values obtained from cells 

treated with this cytokine was arbitrarily assigned as 1. Treatment with 50 µM DGLA 

produced a significant reduction of the IFN-γ-induced expression of MCP-1 by an 

average of 55% (Figure 4.12). There was no significant difference in basal MCP-1 

expression between the vehicle control and DGLA, as seen for THP-1 and RAW264.7 

macrophages. The IFN-γ-induced ICAM-1 expression was also reduced by DGLA by 

approximately 43%. However due to a high variability between experiments, this 

reduction was not significant though a trend in the inhibitory action of DGLA was 

observed in all experiments.  
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Figure 4.12 – DGLA inhibits the IFN-γ induced expression of MCP-1 and ICAM-

1 in HMDMs 

HMDMs were incubated with 50 µM DGLA or vehicle for 24 hours prior to treatment with 

vehicle or 250 U/ml IFN-γ for 3 hours. Total RNA was subjected to reverse transcription and 

RT-qPCR with primers specific for MCP-1, ICAM-1 or GAPDH. Graphs display average 

normalised gene expression (mean +/SD) (value from IFN-γ treated cells arbitrarily assigned 

as 1) from three independent experiments.  Statistical analysis was performed using a one-

way ANOVA and Tukey’s post hoc analysis. * P≤0.05, *** P≤0.001, N.S – not significant.  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Control IFN-y DGLA DGLA + IFN-y

R
e

la
ti

ve
 m

R
N

A
 e

xp
re

ss
io

n

MCP-1

*** 

*** 

IFN-γ              -                          +                           -                           + 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Control IFN-y DGLA DGLA + IFN-y

R
e

la
ti

ve
 m

R
N

A
 e

xp
re

ss
io

n

ICAM-1

* 

N.S 

IFN-γ              -                            +                             -                             + 



 
 

149 
 

4.4.6.2 IL-1β and TNF-α 

Following on from the successful attenuation of IFN-γ induced expression of 

inflammatory genes MCP-1 and ICAM-1 by DGLA, it was of interest to determine if 

this inhibition was specific to IFN-γ induction of these genes or it extended to other 

pro-inflammatory cytokines. Two cytokines were selected, IL-1β and TNF-α, due to 

their important roles in the control of inflammation during atherosclerosis. Both 

cytokines have also been shown to induce the expression of MCP-1 and ICAM-1 in 

vitro and in vivo (Myers et al. 1992; Pal et al. 1996; Ohta et al. 2005; Lim et al. 2009; 

Yang et al. 2010).  

THP-1 macrophages were treated with 1000 U/ml of IL-1β or TNF-α for 24 hours, a 

dose and time point previously used in the laboratory. As shown in Figure 4.13, IL-1β 

and TNF-α significantly induced both MCP-1 and ICAM-1 expression in THP-1 

macrophages. IL-1β induced MCP-1 expression by 3.5-fold and ICAM-1 by 1.3-fold. 

Similarly, TNF-α induced MCP-1 and ICAM-1 expression by 1.6-fold and 1.7-fold, 

respectively. Pre-treatment of the cells with 50 μM DGLA significantly inhibited the IL-

1β and TNF-α induced MCP-1 and ICAM-1 expression. The levels of MCP-1 and 

ICAM-1 were reduced to that observed in vehicle treated cells in the case of IL-1β. 

Similarly TNF-α induction of MCP-1 expression was reduced to control basal levels 

following pre-treatment of the cells with DGLA. On the other hand, the TNF-α induced 

ICAM-1 expression was reduced by 25% following pre-treatment of the cells with 

DGLA and remained at slightly elevated levels in comparison to control levels of 

ICAM-1 observed in vehicle-treated cells. There was no effect on the constitutive 

expression of MCP-1 or ICAM-1 observed in these experiments. 
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Figure 4.13 – DGLA significantly inhibits the IL-1β and TNF-α induced expression of MCP-1 and ICAM-1 in THP-1 macrophages 

THP-1 macrophages were incubated with 50 uM DGLA or vehicle control for 24 hours prior to treatment with 1000 U/ml of IL-1β or TNF-α for 24 hours. Total 

RNA was subjected to reverse transcription and RT-qPCR with primers specific for MCP-1, ICAM-1 or GAPDH. Graphs display average normalised gene 

expression (mean +/- SD) (control arbitrarily assigned as 1) from three independent experiments. Statistical analysis was performed using a one-way ANOVA 

and Tukey’s post hoc analysis. * P≤0.05, *** P≤0.001 
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4.4.7 Inflammasome induced IL-1β release in THP-1 macrophages  

Given the important role of DGLA in inhibiting the IL-1β induced pro-inflammatory 

signalling, it was of interest to determine the role of DGLA in the release of IL-1β by 

macrophages. IL-1β is released in its active form following the activation of caspase-

1-dependent NLRP3 inflammasome (Franchi et al. 2009). Cholesterol crystals 

present in atherosclerotic plaque have been shown to activate the NLRP3 

inflammasome in mouse models and in THP-1 macrophages which up regulates the 

release of IL-1β (Duewell et al. 2010; Rajamaki et al. 2010). The effect of DGLA on 

cholesterol crystal induced inflammasome mediated IL-1β release was measured by 

ELISA in THP-1 macrophages (Figure 4.14).  

On treatment with 1 mg/ml cholesterol crystals, the concentration of IL-1β was 

increased from approximately 100 pg/ml to 480 pg/ml. Pre-treatment of the cells with 

DGLA did not inhibit the cholesterol crystal induced IL-1β secretion.  

 

 

 

 

 

 

 

 

 

Figure 4.14 – Cholesterol crystals increase IL-1β secretion in THP-1 

macrophages, was not inhibited by DGLA  

THP-1 macrophages were incubated with 50 μM DGLA or vehicle control for 24 hours prior to 

treatment with 1 mg/ml of cholesterol crystals for 8 hours (time point previously optimised in 

the laboratory). Media was collected and subjected to ELISA following the manufacturer 

instructions (R&D systems). Graphs display average IL-1β levels (mean +/- SD) from 2 

independent experiments performed in triplicate.    
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4.4.8 Monocyte migration 

Given the ability of DGLA to inhibit the expression of MCP-1 independently and in an 

inflammatory setting (Figures 4.10, 4.11, 4.12), it was hypothesised that the fatty acid 

would also attenuate monocyte migration, given the key role of MCP-1 in this process. 

Cell inserts with 8 μm pores were used to mimic an arterial endothelial layer and the 

analysis was carried out as detailed in Section 2.2.11. As shown in Figure 4.15, 

migration of THP-1 monocytes across the cell insert was increased significantly in the 

presence of MCP-1. Inclusion of DGLA produced a significant reduction of this MCP-

1 driven monocytic migration by an average of about 60%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 – DGLA significantly inhibits the MCP-1-induced migration of THP-

1 monocytes 

THP-1 monocytes were co incubated with +/ - MCP-1 (20 ng/ml) and 50 μM DGLA or vehicle 

control, for 3 hours. Monocyte migration was calculated by counting the number of cells that 

had migrated across a cell insert and expressed as a percentage of total input cells. Graph 

displays mean percentage migration, with values from the MCP-1 positive control arbitrarily 

assigned as 100%. Error bars indicate mean +/- SD for three independent experiments.  

Statistical analysis was performed using a one-way ANOVA followed by Tukey’s post hoc 

analysis. *** P≤0.001 
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4.4.9 acLDL uptake 

To determine the action of DGLA on the accumulation of cholesteryl esters in 

macrophages, the cells were incubated with vehicle as a control and compared to 25 

µg/ml acLDL and 25 µg/ml acLDL plus 100 µM DGLA. The incorporation of [14C]-

acetate into lipid fractions separated and identified by TLC were measured by 

scintillation counting (Figure 4.16). THP-1 macrophages were initially utilised for the 

study however it was found that they did not accumulate large amounts of cholesteryl 

ester (Appendix 6). Alternatively, loading of RAW264.7 macrophages with acLDL 

showed a large increase in the accumulation of cholesterol esters (Appendix 6). Time 

points of 24 and 48 hours were used for both cell lines (Appendix 6). There was no 

substantial difference in cholesteryl ester accumulation between 24 and 48 hour 

incubation with acLDL. Given this, mouse RAW264.7 macrophages were 

subsequently used for such studies with 24 hour loading of acLDL. Given the 

conserved responses seen between THP-1 macrophages and RAW264.7 

macrophages, particularly in gene expression, the two cell lines could be used 

interchangeably. In addition, a concentration of 50 μM DGLA as gene expression 

studies was initially used in preliminary experiments. However, it was observed that 

50 μM DGLA showed only a small decrease in cholesteryl ester accumulation and 

100 μM DGLA inhibited this to a greater extent (Appendix 7). The latter concentration 

was therefore used for cholesteryl ester accumulation studies.   

As shown in Figure 4.16A, there was no observable difference between percentage 

lipid composition of polar lipids, free fatty acids or TAGs following incubation of the 

cells with acLDL when compared to the control. However, there was a significant 

decrease in the percentage lipid composition of free cholesterol by 14.6% and a 

significant increase in the accumulation of cholesteryl esters by 16.9%. Pre-treatment 

of the cells with DGLA prior to acLDL addition produced no difference between the 

percentage composition of polar lipids, free fatty acids and TAGs. However, 

differences in the levels of free fatty acids and cholesteryl esters were observed. 

Thus, the percentage lipid composition of free cholesterol was increased by 1.2%, 

however, this was not significant. On the other hand cholesteryl ester accumulation 

significantly decreased by 11.6%, in comparison to the presence of acLDL only. 

Figure 4.16B presents the data as a ratio of cholesteryl ester: total cholesterol (CE: 

TC). Total cholesterol is the sum of free cholesterol and cholesteryl esters. The CE: 

TC ratio was 0.8 in the presence of acLDL alone and this was reduced to 0.4 in the 

presence of DGLA, however due to high variability between replicates this was not 

significant.  
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Figure 4.16 – DGLA inhibits acLDL induced cholesteryl ester formation in 

RAW264.7 macrophages 

The cells were incubated with 100 μM DGLA for 24 hours prior to the addition of 50 µM acLDL 

and 1µCi [14C] acetate for a further 24 hours. Lipids were extracted, separated via TLC and 

radioactive incorporation into lipid fractions, identified by comparison with known standards, 

was measured by scintillation counting. Panel A – percentage incorporation of [14C] per mg of 

protein, into total polar lipids (PL), free cholesterol (FC), free fatty acids (FFA), triacylglycerols 

(TAG) and cholesteryl esters (CE). Panel B – ratio of CE/TC under different experimental 

conditions. Error bars indicate +/- SD from 4 experiments. Statistical analysis was performed 

using a one-way ANOVA followed by Tukey’s post hoc analysis for FC and Welch’s test 

followed by Dunnett’s T3 post hoc tests for CE and CE:TC ratios (conditions for ANOVA not 

met) * P≤0.05. ** P≤0.01. *** P≤0.001. N.S – not significant. 
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4.5 Discussion 

Data obtained in the studies presented in this chapter indicate that DGLA inhibits a 

number of steps leading to the formation of lipid loaded foam cells including; cytokine 

induced expression of MCP-1 and ICAM-1, monocyte migration and acLDL induced 

cholesteryl ester accumulation, but has no effect on ROS production or 

inflammasome activation. This suggests that DGLA may attenuate foam cell 

formation through one of these numerous mechanisms.  

4.5.1. ROS production 

Increased production of ROS has been observed in atherosclerosis and has been 

linked to various signalling pathways involved in vascular inflammation in the disease 

(Singh and Jialal 2006). One such pathway involves oxidative modifications of LDL. 

Native LDL is internalised by macrophages though an LDL receptor, which is subject 

to negative feedback inhibition. Oxidative modifications to LDL allow recognition by 

scavenger receptors, also expressed on macrophages, which take up excess 

amounts of modified LDL in an unregulated manner. This causes transformation of 

macrophages into lipid loaded foam cells (Singh and Jialal 2006). Given scavenger 

receptors only recognise modified forms of LDL, including oxidised LDL, reducing 

LDL oxidation by decreasing ROS levels would have a beneficial effect on inhibiting 

foam cell formation. ROS production was stimulated with TBHP (hydrogen peroxide) 

in THP-1 monocytes and macrophages and the effect of DGLA was determined. As 

shown in Figure 4.9, DGLA did not inhibit ROS production from either monocytes or 

macrophages. This initial study suggests that acting as an anti-oxidant is not the likely 

mechanism for the anti-atherogenic action of DGLA. However, numerous other 

experiments will be required to conclusively delineate the relationship between DGLA 

and oxidative stress. This may include the effect of DGLA on modification of LDL and 

other sources capable of oxidative stress such as nitric oxide production. To date 

there has been little data published on the effect of DGLA on ROS production. One 

such study indicated that treatment of omega-6 fatty acids in rats had no effect on 

ROS production but did enhance the activity of antioxidant enzymes (Suresh and Das 

2003b). In addition, supplementation of GLA in rats with high fat diet induced 

atherosclerosis saw a reduction in the serum levels of oxLDL, NO and iNOS (Shi et 

al. 2008). A potential future avenue of research could establish the effect of DGLA on 

anti-oxidant levels and levels of other oxidising species such as NO in macrophages. 

Anti-oxidants have been suggested as a potential therapeutic avenue in 

atherosclerosis; however results from clinical trials largely contradict one another 

(Stephens et al. 1996; Yusuf et al. 2000). For example, while dietary supplementation 
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with antioxidants has in some studies shown to reduce atherosclerotic related 

incidences (Stephens et al. 1996; Boaz et al. 2000), others have shown that they 

have no beneficial effect on the disease (Yusuf et al. 2000; Investigators 2007). Given 

the controversial role of antioxidants in atherosclerosis and the negative result 

obtained in the preliminary ROS experiment with DGLA; this avenue was not pursued 

further. 

4.5.2 Cytokine induced pro-inflammatory gene expression 

4.5.2.1 IFN-γ 

Given the important role of pro inflammatory cytokine signalling in atherosclerosis, it 

was of interest to investigate the role of DGLA on this. Due to the involvement of a 

large number of cytokines in atherosclerosis, three major pro-inflammatory cytokines 

were selected for study. The main focus was on IFN-γ, which has been described 

potentially as a master regulator of atherosclerosis due to its pro-inflammatory role in 

all the stages of disease progression, from foam cell formation through to lesion 

rupture (McLaren and Ramji 2009). IFN-γ up regulates the expression of many pro-

inflammatory genes including MCP-1 and ICAM-1 (Rimbach et al. 2000; Li et al. 

2010), which play an important role in monocyte recruitment and adhesion 

(Grandaliano et al. 1994; Lusis 2000; Chang et al. 2002). This has been shown in 

vitro where an IFN-γ dependant increase in ICAM-1 augmented the binding of 

monocyte to endothelial cells (Chang et al. 2002). DGLA significantly attenuated the 

IFN-γ induced expression of MCP-1 and ICAM-1 in THP-1 macrophages, RAW264.7 

cell line and primary cultures of HMDM (Figure 4.10 - 4.12). This inhibition of IFN-γ 

induced pro-inflammatory signalling by DGLA is of importance as deficiency of IFN-γ 

signalling in in vivo mouse models showed a significant reduction in atherosclerotic 

lesions (Gupta et al. 1997) and targeting IFN-γ actions has been investigated in depth 

as a potential therapeutic avenue in atherosclerosis (Gotsman and Lichtman 2007). 

Targeting IFN-γ signalling may therefore play a role in the anti-inflammatory and anti-

atherogenic action of DGLA.  

4.5.2.2 IL-1β 

In addition to IFN-γ signalling, the effect of DGLA on the action of other pro-

inflammatory cytokines was also investigated. Previous studies have shown DGLA 

inhibited IL-1β stimulated adipose stromal cell (ASC) proliferation, a hallmark of 

rheumatoid arthritis (Baker et al. 1989). It is well documented that IL-1β plays a pro 

inflammatory role in atherosclerosis and potentiates the disease (Kirii et al. 2003; 

Fearon and Fearon 2008). In addition, IL-1β has also been shown to increase the 
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expression of MCP-1 and ICAM-1 (Myers et al. 1992; Lim et al. 2009; Yang et al. 

2010). For these reasons, IL-1β was selected for this study. IL-1β significantly 

induced the expression of MCP-1 and ICAM-1 in THP-1 macrophages in comparison 

to control (Figure 4.13). Pre-incubation of the cells with DGLA significantly inhibited 

the induction of MCP-1 and ICAM-1 by IL-1β. Pre-treatment of the cells with DGLA 

returned the MCP-1 and ICAM-1 levels to that of basal control levels. This indicates 

that DGLA inhibits IL-1β signalling. Previous studies have shown knockout of IL-1β in 

mouse models of atherosclerosis show a reduction in lesion size when compared to 

control mice (Kirii et al. 2003). This was accompanied by a decrease in mRNA 

expression of MCP-1 and VCAM-1 (Kirii et al. 2003). Similarly an antibody targeting 

IL-1β in ApoE knockout mice reduced lesion size, macrophage plaque infiltration and 

secretion of MCP-1 in isolated primary macrophages (Bhaskar et al. 2011). This not 

only indicates the important role of IL-1β in atherosclerosis, but also in the recruitment 

and adhesion of monocytes through regulation of MCP-1 and ICAM-1 expression. 

The inhibition of expression of these two genes through an IL-1β induced pathway 

therefore supports an anti-inflammatory role of DGLA. 

4.5.2.3 TNF-α 

The third cytokine selected for this study was TNF-α. This pro-inflammatory cytokine 

has been well documented in promoting foam cell formation and augmenting 

atherosclerosis (Popa et al. 2007; Kleinbongard et al. 2010). As with IFN-γ and IL-1β, 

it has also been shown to increase the expression of MCP-1 and ICAM-1 in vitro and 

in vivo (Myers et al. 1992; Murao et al. 2000; Xiao et al. 2009). The effect of DGLA 

on this induced expression of these two genes was determined in THP-1 

macrophages. As shown in Figure 4.13, TNF-α significantly increased the expression 

of MCP-1 and ICAM-1. Pre-treatment of the cells with DGLA produced a significant 

attenuation of this TNF-α-induced expression of these two genes. In the case of MCP-

1, pre-treatment of the cells with DGLA returned MCP-1 levels to that seen in control. 

ICAM-1 expression remained slightly raised in comparison to control; however these 

were not significantly different. In addition to the benefits of reducing the induction of 

MCP-1 and ICAM-1 expression, inhibition of TNF-α signalling also has other anti-

atherosclerotic effects. ApoE-/- TNF-α-/- mice show a reduction in fatty streaks in the 

intima of aorta when compared to control mice (Xiao et al. 2009). In addition there 

was a decrease in the levels of IL-1β, IFN-γ, ICAM-1, VCAM-1 and MCP-1 observed 

(Xiao et al. 2009).  Comparable results were also observed in another study using 

ApoE-/- TNF-α-/- mice. Such ApoE-/- TNF-α-/- mice displayed reduced atherosclerotic 

plaque area at the aortic luminal surface and aortic sinus when compared to the 
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controls (Ohta et al. 2005). Again, a decrease in the expression of inflammatory 

markers ICAM-1, VCAM-1 and MCP-1 was also observed along with decreases in 

both the uptake of oxLDL and the expression of scavenger receptor A (Ohta et al. 

2005). There has been no work published in the literature on the effect of DGLA on 

TNF-α pro-inflammatory signalling. There has however been a study on TNF-α 

production in PBMC treated with a number of different fatty acids (Dooper et al. 2003). 

It was observed that DGLA inhibited LPS induction of TNF-α production by an 

average of 60% in PBMC. In addition, DGLA was the only fatty acid to have 

pronounced effects on cytokine production (Dooper et al. 2003). This suggests a key 

role of DGLA in the inhibition of TNF-α release and pro-inflammatory signalling 

induced by this cytokine during atherosclerosis.  

4.5.2.4 MCP-1 and ICAM-1 

As previously discussed, MCP-1 and ICAM-1 are key pro-inflammatory genes in 

atherosclerosis involved in monocyte recruitment and subsequent adhesion to the 

activated endothelium. It is clear from the results obtained in this study (Figures 4.10-

4.13) that DGLA has a role in inhibiting the induction of both these markers in 

macrophages produced by IFN-γ, IL-1β and TNF-α signalling.  DGLA has previously 

been shown to attenuate atherosclerosis in in vivo models of the disease (Takai et al. 

2009). There was also an observed reduction in ICAM-1 expression and macrophage 

accumulation in plaques (Takai et al. 2009). In addition, mice with orally administered 

DGLA showed a reduction in circulating levels of MCP-1 (Watanabe et al. 2014). The 

in vitro results presented in this chapter and the in vivo observations reported 

previously clearly indicate a role for DGLA in the attenuation of MCP-1 and ICAM-1 

expression in relation to atherosclerosis. This is an important role for DGLA as 

previous studies have shown that reducing MCP-1 and ICAM-1 expression in vivo 

significantly inhibits the progression of atherosclerosis (Gosling et al. 1999; Kitagawa 

et al. 2002).  

Taking together the results presented in this chapter and previously published work 

suggest a pivotal role of DGLA in decreasing pro-inflammatory cytokine release and 

the subsequent induction of pro-inflammatory markers in atherosclerosis. This may in 

part account for the anti-atherosclerotic effects of DGLA seen in in vivo studies (Takai 

et al. 2009).  
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4.5.3 Inflammasome-mediated IL-1β expression 

Leading on from the inhibition of cytokine induced pro-inflammatory gene expression 

by pro-inflammatory cytokine IFN-γ, IL-1β and TNF-α, it was of interest to determine 

the role of DGLA in cytokine production in macrophages. IL-1β was of particular 

interest due the role of multi-protein complexes, inflammasomes. A number of studies 

have detailed the role of inflammasomes, particularly the NLRP3 inflammasome, in 

IL-1β production in macrophages (Duewell et al. 2010; Rajamaki et al. 2010; Schroder 

and Tschopp 2010; Liu et al. 2014). Inflammasomes have been linked to an increase 

in atherosclerosis. Inhibition of the NLRP3 inflammasome, which plays a role in IL-1β 

processing, in ApoE-/- mice fed a high fat diet significantly prevented plaque 

progression and induction of inflammatory cytokines (Zheng et al. 2014). Macrophage 

plaque content was reduced, an increase in ABC transporter genes ABCA1 and 

ABCG1 and an increase in plaque stability was also observed (Zheng et al. 2014). 

THP-1 macrophages treated with oxLDL induced NLRP3 inflammasome related 

protein levels and caspase-1 activation. This resulted in an increase in IL-1β 

production, which promoted foam cell formation (Liu et al. 2014).  

Omega-3 fatty acids have been shown to play a role in inhibiting inflammasome 

activation and IL-1β production in macrophages. In THP-1 macrophages, DHA 

reduced IL-1β production by attenuating inflammasome activation (Williams-Bey et 

al. 2014). Reduction of ligands that stimulated activation of the NLRP3, NLRC4 and 

AIM2 inflammasomes was observed. This inhibition required GPCR120 and 

attenuation of NF-κB signalling (Williams-Bey et al. 2014). In addition, in BMDMs 

primed with LPS, DHA inhibited nigericin induced caspase-1 activation, IL-1β 

secretion and TNF-α production (Yan et al. 2013). This was also observed in THP-1 

macrophages. Treatment with EPA and ALA also attenuated nigericin induced IL-1β 

production. DHA inhibited all agonists of NLRP3 inflammasomes tested along with 

NLRP1b agonists (Yan et al. 2013). 

Given the role omega-3 fatty acids play in inhibiting inflammasome induced IL-1β 

secretion in macrophages, it was of interest to determine the role of DGLA in the 

process. Cholesterol crystals were used to stimulate inflammasome activation in 

THP-1 macrophages. It has previously been observed that cholesterol crystals 

injected into LDLr-/- mice induced acute inflammation which was attenuated when 

mice were also deficient in NLRP3 inflammasome (Duewell et al. 2010). Bone marrow 

transplant into LDLr-/- mice with NLRP3-/- and ASC-/- deficiency had significantly 

reduced atherosclerotic lesions and inflammation (Duewell et al. 2010) In vitro studies 

also reported similar results. THP-1 macrophages phagocytose cholesterol crystals 
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and store them as cholesteryl esters. This induced secretion of IL-1β. This process 

was caspase-1 dependent and silencing of NLRP3 receptor abolished cytokine 

induction (Rajamaki et al. 2010). This suggests that cholesterol crystal treatment in 

THP-1 macrophages induces IL-1β secretion by activation of NLRP3 inflammasome. 

In addition, inflammasome activation in macrophages requires priming before 

stimulation. Previous studies have used LPS primed macrophages followed by 

stimulation with ATP or nigericin (Yan et al. 2013; Williams-Bey et al. 2014). However, 

in PMA stimulated macrophages it was shown that THP-1 macrophage 

inflammasome activation was independent to LPS priming and that PMA induced 

expression of IL-1β (Rajamaki et al. 2010). Using PMA stimulated THP-1 

macrophages therefore eliminates the need for additional priming.  

As shown in Figure 4.14, treatment of THP-1 macrophages with cholesterol crystals 

induced IL-1β secretion 5-fold. Pre incubation of the cells with DGLA prior to 

cholesterol crystal stimulation failed to inhibit IL-1β secretion, with the trend 

suggesting an increase in production. The data indicates that DGLA may enhance 

inflammasome activation and IL-1β production in THP-1 macrophages. Previous 

studies have indicated contrasting roles for DGLA in the regulation of IL-1β secretion. 

DGLA failed to inhibit NLRP3 inflammasome dependent IL-1β secretion from BMDMs 

primed with LPS and stimulated with nigericin (Yan et al. 2013). The PUFA also had 

no effect on NLRP1b inflammasome activation (Yan et al. 2013). In both cases, no 

increase in IL-1β production or inflammasome activation was observed. However, 

addition of GLA to peripheral blood monocytes supressed the release of LPS-

stimulated IL-1β (Furse et al. 2001). It was shown that 40% of LPS stimulated IL-1β 

release was attributed to auto induction. GLA inhibited auto induction of IL-1β while it 

had little effect on LPS stimulated release (Furse et al. 2001). GLA induced a protein 

which reduced pro-IL-1β mRNA stability (Furse et al. 2001).GLA acts through its 

metabolite DGLA; however the direct effect of DGLA was not evaluated in the study. 

Taken together the data indicates that DGLA is unable to inhibit inflammasome 

dependent IL-1β secretion from macrophages and may potentially have an opposing 

affect. Further investigation will need to be undertaken to determine the role, including 

response to alternative agonists of inflammasomes in THP-1 macrophages and the 

effect of cholesterol crystals in HMDMs, in response to DGLA.  

4.5.4 Monocyte migration 

Expression of MCP-1 in atherosclerosis recruits circulating monocytes to the 

endothelium where they transmigrate through the endothelium into the arterial intima 

(Bobryshev 2006). Given the inhibition of pro-inflammatory cytokine induced 
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expression of MCP-1, along with an attenuation of basal expression of this chemokine 

by DGLA (Figure 4.10), it was of interest to determine whether this fatty acid could 

inhibit the role of MCP-1 in inducing the migration of monocytes across a barrier that 

mimics arterial endothelial cells. As shown in Figure 4.15, monocyte migration was 

significantly induced by treatment of THP-1 monocytes with MCP-1. On co-incubation 

with DGLA, the monocyte migration was attenuated, on average, by 60% in 

comparison to the MCP-1 positive control. In vivo inhibition of monocyte migration in 

ApoE-/- mouse models of atherosclerosis has been shown to be atheroprotective. For 

example, gremlin-1 inhibited monocyte migration in vivo resulting in decreased 

content of monocytes and macrophages in plaques and reduced atheroprogression 

(Mueller et al. 2013). In addition, a compound VB-201 selectively inhibited monocyte 

chemotaxis by 90% in vitro. Administration of this compound to ApoE-/- mice  in vivo 

inhibited atheroma development (Feige et al. 2013). The role of DGLA in the inhibition 

of monocyte migration presented here may be responsible for the reduced 

macrophage accumulation seen in previous in vivo studies.  

4.5.5 AcLDL induced cholesteryl ester accumulation 

The uptake of modified forms of LDL in an unregulated manner by macrophages, 

which transforms them into lipid loaded foam cells, is a critical early step in 

atherosclerosis (Ghosh et al. 2010). Cholesterol contained within the LDL molecule 

is in the form of cholesteryl ester. Once internalised, cholesteryl esters are hydrolysed 

to cholesterol in the lysosomal compartment and undergo a continual intracellular 

cycle of re-esterification and hydrolysis (Brown et al. 1980). The cholesterol can be 

stored as cholesteryl esters in the cytoplasm or removed from the cell in the form of 

free cholesterol (Brown et al. 1980). Excessive uptake of modified forms of LDL by 

macrophage scavenger receptors promotes the accumulation of cholesteryl esters, 

which are stored as lipid droplets in the cytoplasm of the macrophage giving them a 

foamy, vacuolated appearance (Brown et al. 1980). Given the important role of 

modified LDL in inducing cholesteryl ester accumulation in foam cell formation, it was 

of interest to determine the role of DGLA in this process. AcLDL, a form of modified 

LDL commonly used in LDL uptake experiments (Henson et al. 1989; Jones et al. 

2000; Dai et al. 2012), was used to induce cholesteryl ester accumulation in 

RAW264.7 macrophages. Initially THP-1 macrophages were employed in uptake 

studies (Appendix 6), however despite accumulation of cholesteryl esters; levels were 

still low in comparison to RAW264.7 cells. This was unusual as previous studies have 

used THP-1 macrophages for various cholesterol studies (Draude and Lorenz 2000; 

Lada et al. 2003) and have been shown to express a number of genes related to 
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cholesterol metabolism (Kritharides et al. 1998; McLaren et al. 2010; McLaren et al. 

2011b). Given the larger increase in cholesteryl esters in RAW264.7 macrophages, 

this system was employed for uptake experiments. As shown in Figure 4.16A, the 

percentage lipid composition of cholesteryl ester in RAW264.7 macrophages 

significantly increased by an average of 16.9% on treatment of the cells with acLDL. 

This increase was significantly attenuated by 11.6% following pre-incubation of the 

cells with 100 µM DGLA. In Figure 4.16B, cholesteryl ester is expressed as a ratio of 

total cholesterol. When loaded with acLDL, the ratio of cholesteryl ester: total 

cholesterol was 0.8. On pre-incubation with DGLA followed by loading, the ratio was 

reduced to 0.4. Due to high variability between replicates this decrease was not 

significant despite an obvious trend of reduction. This indicates a role of DGLA in the 

inhibition of cholesteryl ester accumulation and thereby a potential mechanism by 

which DGLA inhibits macrophage foam cell formation. The exact mechanism by which 

DGLA exerts such an inhibitory effect is unclear. There are a number of points at 

which DGLA could act; uptake of LDL by receptor-mediated and -independent 

pathways, cholesteryl ester synthesis and/or free cholesterol synthesis and efflux. 

Figure 4.16A also shows that lipid composition of free cholesterol was significantly 

reduced by 14.6% on incubation of the cells with acLDL, and this decrease was 

slightly attenuated by pre-treatment of the cells with DGLA where free cholesterol 

levels were increased by 1.2% in comparison to acLDL treatment only (not 

significant). The trend may, however, suggest that DGLA plays a role in promoting 

free cholesterol accumulation that can then be effluxed out from the cell and thereby 

prevent the intracellular accumulation of cholesteryl esters. The role of DGLA on each 

of these mechanisms will be investigated in the next chapter.  

  



 
 

163 
 

4.5.6 Future perspective  

The results presented in this chapter suggest a key role for DGLA in inhibiting a 

number of key steps leading to foam cell formation during atherosclerosis. DGLA 

inhibited the induction of MCP-1 and ICAM-1 expression by the pro-inflammatory 

cytokines IFN-γ, IL-1β and TNF-α. In addition, DGLA reduced monocytic migration 

and acLDL induced accumulation of cholesteryl esters. This raises a number of 

questions; 

1. How does DGLA inhibit cytokine induced MCP-1 and ICAM-1 expression? 

2. Is the inhibition of acLDL-induced cholesteryl ester accumulation by DGLA 

due to decreased uptake of the modified lipoprotein or increased efflux of free 

cholesterol? 

3. Does DGLA achieve these actions directly or indirectly though the metabolites 

produced following the uptake of the fatty acid into the cells? 

In the next chapter, these questions will be addressed and the underlying molecular 

mechanisms behind DGLAs actions shown here will be investigated.  
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CHAPTER 5  

MOLECULAR MECHANISM UNDERLYING THE ANTI-

INFLAMMATORY ACTIONS OF DGLA IN MACROPHAGES 

5.1 Introduction 

As presented in Chapter 4, DGLA played an important role in attenuation of pro-

inflammatory cytokine induced gene expression and cholesteryl ester accumulation 

in macrophages in vitro. The purpose of the studies in this chapter was to further 

investigate the role of DGLA in these two processes, both of which play key roles in 

foam cell formation, in order to pin point any underlying molecular mechanisms. The 

attenuation of IFN-γ induced gene expression by DGLA was chosen for further 

investigation due to the important and well characterised role the cytokine plays 

throughout the pathology of atherosclerosis (Gupta et al. 1997; McLaren and Ramji 

2009). The effect of DGLA on the activation of gene transcription through the 

JAK/STAT pathway was determined and discussed in more detail in Section 5.1.1. 

To attempt to understand the role of DGLA in the attenuation of cholesteryl ester 

accumulation, a number of mechanisms of cholesterol regulation in macrophages 

were studied. These included the effect of DGLA on the expression of scavenger 

receptors, uptake of lipoproteins through macropinocytosis, the expression of key 

genes involved in cholesterol metabolism and cholesterol efflux (Section 5.1.2).  

In addition, data presented in Chapter 3 showed that macrophages significantly 

induced the production of PGE1 following treatment with DGLA. Eicosanoid 

production plays an important role in fatty acid signalling (Johnson et al. 1997; Norris 

and Dennis 2012) and PGE1 has previously been indicated to play an anti-

inflammatory role in atherosclerosis (Sinzinger et al. 1991; Palumbo et al. 2000; Bai 

et al. 2012). It was therefore hypothesised that metabolism of PGE1 from DGLA in 

macrophages may be in part responsible for some of the effects the PUFA has on 

aspects of foam cell formation. The role of PGE1 in DGLA signalling was further 

investigated in macrophages.  
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5.1.1 IFN-γ signalling 

Data presented in the previous chapter demonstrated that DGLA attenuated the IFN-

γ induced pro-inflammatory gene expression in THP-1 macrophages, RAW264.7 

macrophages and HMDMs. This indicated that DGLA may have an inhibitory effect 

on the IFN-γ signalling pathway. IFN-γ signals through the JAK-STAT pathway 

(McLaren and Ramji 2009). Signalling through the JAK/STAT pathway is addressed 

in more detail in Section 1.4.1.1.1. Briefly, IFN-γ binding to the IFN-γR induces 

dimerisation of the receptor subunits leading to the phosphorylation of JAK1 and 

JAK2, which in turn phosphorylates the IFN-γR subunits (McLaren and Ramji 2009). 

The phosphorylated subunits can now bind STAT1. STAT1 is phosphorylated at 

TYR701 and triggers its release into the cytoplasm where it can dimerise and migrate 

into the nucleus (McLaren and Ramji 2009). STAT1 initiates transcription of IFN-γ 

inducible genes. Further phosphorylation of STAT1 at position SER727 can occur by 

the action of a number of other kinases, mainly members of the MAPK family. STAT1 

phosphorylation at this position is required for maximal activity of STAT1 (McLaren 

and Ramji 2009). STAT1 plays an important role in IFN-γ  signalling as well as 

signalling induced by other pro-atherogenic pathways such as IL-6 and TLR4 

(Sikorski et al. 2011b). Given the role of STAT1 in these pro-atherogenic pathways, 

inhibition of STAT1 has been implicated as a potential therapeutic target in 

atherosclerosis. 

5.1.1.1 Role of STAT1 

STAT1 belongs to the STAT family of seven well conserved transcription factors 

(Sikorski et al. 2011b). The structure of STAT1 is detailed in Figure 5.1. The N 

terminal region of STAT1 allows formation of a dimer complex; this is followed by a 

coiled region which interacts with other transcription factors and then a highly 

conserved DNA binding domain and a linker domain, which bridges to SH2 domains 

for STAT1 interactions with receptors. Finally, there is a C terminal transcriptional 

activation domain (Sikorski et al. 2011b). Two phosphorylation sites are also present 

at TYR701 and SER727. Phosphorylation at TYR701 by JAKs allows for dimerisation of 

STAT1, translocation into the nucleus and activation of target gene transcription (Li 

et al. 2010). Phosphorylation at SER727 is not essential for the role of STAT1 as a 

transcription factor; however it is required for maximal activity (Varinou et al. 2003). 

Inhibition of STAT1 activation and signalling has previously proved beneficial in 

atherosclerosis. Attenuation of STAT1 signalling in THP-1 macrophages significantly 

inhibited the expression of scavenger receptor CD36 and prevented foam cell 

formation (Agrawal et al. 2007). In addition, STAT1 deficiency in ApoE-/- mice 
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significantly reduced atherosclerotic lesion size (Agrawal et al. 2007). Given the role 

of STAT1 in IFN-γ signalling, the effect of DGLA on phosphorylation of the 

transcription factor was investigated in the studies presented in this chapter.  

 

 

 

Figure 5.1 – Structure of STAT1 transcription factor 

Figure adapted from (Sikorski et al. 2011b). N - N terminal domain; CC – coiled coil; DNA – 

DNA binding domain; LK – linker; SH2 – Src homology 2; Y – TYR701 phosphorylation site; S 

– SER727 phosphorylation site; TA - transcriptional activation site.  

 

5.1.2 Modified LDL uptake and cholesteryl ester accumulation 

Data presented in the previous chapter demonstrated that DGLA attenuated acLDL 

induced cholesteryl ester formation in macrophages. To determine the mechanisms 

underlying this observation, experiments were designed to test the effect of DGLA at 

a number of steps involved in the uptake of modified LDL and accumulation of 

cholesteryl esters. This included the effect of DGLA on the uptake and efflux of 

cholesterol, receptor independent uptake (macropinocytosis) and the expression of 

key genes involved in scavenger receptor-mediated uptake, cholesteryl ester 

synthesis and cholesterol efflux. Figure 5.2 depicts an overview of modified LDL 

uptake, cholesterol esterification cycle and efflux that were targeted in studies 

presented in this chapter.   
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Figure 5.2 – Overview of cholesteryl ester accumulation and cholesterol efflux 

in macrophages 

The figure provides an overview of the underlying mechanisms that are potentially involved in 

the attenuation of cholesteryl ester accumulation by DGLA and investigated in the studies 

presented in this chapter. First, the uptake of modified LDL was investigated, followed by 

determination of the effect of DGLA on scavenger receptor expression (SRA and CD36) and 

macropinocytosis. Second, the expression of key genes involved in cholesteryl ester 

accumulation (ACAT) and production of free cholesterol (NCEH) were analysed. Finally, the 

effects of DGLA on cholesterol efflux from macrophages were determined, along with the 

expression of key ABC transporter proteins (ABCA1 and ABCG1).  
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5.1.2.1 Cholesterol uptake 

5.1.2.1.1 Scavenger receptors 

Macrophages express scavenger receptors on their cell surface. Scavenger 

receptors are cell surface glycoproteins which can bind and internalise modified LDL 

such as oxLDL and acLDL (Goldstein et al. 1979; Peiser and Gordon 2001; Park 

2014). They are a broad family of receptors and are classified into six groups (Class 

A-F) depending on their tertiary structure (Peiser and Gordon 2001). Scavenger 

receptors have been intensively studied in relation to atherosclerosis due to their role 

in foam cell formation. Recognition and internalisation of modified LDL is unregulated 

and leads to excessive accumulation in macrophages (Kzhyshkowska et al. 2012). 

This results in accumulation of cholesteryl esters, a hallmark of foam cells. Specific 

focus was on two important scavenger receptors extensively characterised in 

atherosclerosis foam cell formation; CD36 and SRA.  

CD36 is a Class B scavenger receptor expressed on the surface of monocytes, 

macrophages, endothelial cells, adipocytes and platelets (Park 2014). The receptor 

is organised into two transmembrane domains, two cytoplasmic domains and a large 

glycosylated extracellular domain (Park 2014). CD36 binds and internalises oxLDL 

and has been implicated to contribute to foam cell formation and atherosclerosis 

(Endemann et al. 1993; Febbraio et al. 2000; Park 2014). Mouse models of the 

disease deficient in CD36 show a significant decrease in plaque formation and 

progression (Nozaki et al. 1995; Febbraio et al. 2000; Febbraio et al. 2004; Guy et al. 

2007; Kuchibhotla et al. 2008). 

SRA is a class A scavenger receptor found mainly expressed on the surface of 

macrophages (de Winther et al. 2000). The receptor was first classified in 1979 in 

mouse peritoneal macrophages and was shown to bind and internalise acLDL, 

leading to a  significant increase in cellular cholesteryl ester and cholesterol content 

(Goldstein et al. 1979). Increased expression has been identified in atherosclerotic 

lesions (Matsumoto et al. 1990; Ylaherttuala et al. 1991) and mouse models deficient 

in SRA show significant protection against atherosclerotic lesion development 

(Sakaguchi et al. 1998; Kuchibhotla et al. 2008).  

Given the importance of SRA and CD36 in the uptake of modified forms of LDL, these 

two genes were selected for further study. 
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5.1.2.2 Macropinocytosis 

Receptor-mediated endocytosis of modified LDL has been extensively studied in 

macrophages and is often regarded as the main pathway leading to cholesterol 

accumulation. Another endocytic pathway however, has been implicated to play a 

role in LDL uptake by macrophages. Macropinocytosis is a form of endocytosis 

providing non-selective uptake of solute macromolecules, by a process dependent on 

the formation of macropinosomes formed from membrane ruffling (Swanson and 

Watts 1995). This process has largely been shown to take up excessive amounts of 

native forms of LDL leading to foam cell formation (Kruth et al. 2002; Kruth et al. 2005; 

Zhao et al. 2006). Other studies have also reported a contribution of macropinocytosis 

to the uptake of oxLDL and acLDL (Jones and Willingham 1999; Yao et al. 2009). 

Previous work has indicated that inhibiting macropinocytosis in macrophages 

decreases foam cell formation (Yao et al. 2009) and therefore may be a potential 

target in atherosclerosis.  

5.1.2.3 Cholesteryl ester synthesis 

Following internalisation of the LDL particle by an endocytic pathway described in 

Sections 5.1.2.1 and 5.1.2.2, the cholesteryl ester contained within the LDL particle 

is digested to unesterified/free cholesterol by an acid cholesterol ester hydrolase in 

the lysosome (Daugherty et al. 2008). This free cholesterol is re-esterified to 

cholesteryl esters by a microsomal ACAT protein (Brown et al. 1980; Ghosh et al. 

2010). This esterified cholesterol has one of two fates: first it is once again hydrolysed 

to free cholesterol by  one of a group of enzymes collectively referred to as neutral 

cholesterol ester hydrolase (nCEH) (Sekiya et al. 2009) and removed from the 

macrophage by several extracellular transporters. Second, it is stored in the 

cytoplasm as lipid droplets (Daugherty et al. 2008). The rate-limiting step in the 

cholesteryl ester cycle is the nCEH enzyme reaction that allows for the clearance of 

free cholesterol from the macrophage. Excessive uptake of modified LDL therefore 

increases the storage of cholesteryl esters as lipid droplets. An increased amount of 

lipids in the cytoplasm of macrophages promotes the conversion of macrophages to 

lipid loaded foam cells (Ghosh et al. 2010). Inhibition of cholesteryl ester accumulation 

would therefore attenuate foam cell formation. The effect of DGLA in the expression 

of two key genes involved in the re-esterification and hydrolysis steps of the 

cholesterol cycle in macrophages was investigated.  

5.1.2.3.1 ACAT1 

ACATs are a family of membrane bound proteins which utilise long chain fatty acid-

CoA and cholesterol to form cholesteryl esters (Chang et al. 2009). ACAT is 
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responsible for the storage of cholesteryl esters within lipid droplets found in the 

cytoplasm of macrophage foam cells (Dove et al. 2006). There are two isoforms of 

the ACAT protein; ACAT1 and ACAT2 (Chang et al. 2009). Although similar in 

function, the two proteins have different membrane topology and localisation of 

expression (Chang et al. 2009). Expression of ACAT1 in particular has been shown 

in macrophages and linked to atherosclerosis. The protein has been identified in 

atherosclerotic lesions, localised specifically to macrophages (Miyazaki et al. 1998).  

A number of studies have investigated the role of ACAT1 in cholesterol metabolism 

in macrophages (Kusunoki et al. 2001; Yang et al. 2004; Dove et al. 2005). In ACAT1-

/- peritoneal macrophages loaded with acLDL, efflux of cholesterol derived from this 

modified lipoprotein was increased while overall cellular efflux was reduced (Dove et 

al. 2005). In addition, in peritoneal macrophages from ACAT1-/-  mice, cholesterol 

esterification was reduced by 93% (Yang et al. 2004; Dove et al. 2006), while in THP-

1 macrophages an ACAT1 inhibitor decreased cholesteryl ester accumulation (Yang 

et al. 2004). Given the already established link between ACAT1, macrophages and 

atherosclerosis, this isoform of the ACAT family was selected for further study.  

5.1.2.3.2 NCEH 

The hydrolysis of cholesteryl esters is critical for cholesterol removal from the 

macrophage. This is achieved by the action of nCEH enzymes (Igarashi et al. 2010). 

In macrophages three enzymes have been identified as nCEHs;  hormone-sensitive 

lipase (LIPE), cholesterol ester hydrolase (CEH) and NCEH1 (Igarashi et al. 2010). 

All three enzymes have been characterised to some extent in human and mouse 

macrophages to play a role in cholesteryl ester hydrolysis and increase cholesterol 

efflux (Igarashi et al. 2010). In ApoE-/- NCEH1-/- mice, atherosclerosis was aggravated 

in comparison to controls. In addition, NCEH1-/- mouse peritoneal macrophages 

incubated with acLDL showed an increase in cholesteryl ester accumulation and 

decrease in cholesterol efflux (Sekiya et al. 2009). In the same study ApoE-/-, NCEH1-

/- mice were crossed with LIPE knockout mice. In these mice nCEH activity was 

dramatically reduced, to 10% of that of wild type mice suggesting that both these 

enzymes play an important role in the nCEH activity of macrophages (Sekiya et al. 

2009). In human macrophages however, LIPE and CEH activity was barely detectable 

and inhibition of both had no effect on nCEH activity (Igarashi et al. 2010). The pattern 

of NCEH1 expression however was similar to that of nCEH activity in human 

macrophages and knockdown specifically inhibited this activity (Igarashi et al. 2010). 

NCEH1 was also identified to be expressed in macrophage foam cells from 
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atherosclerotic lesions (Igarashi et al. 2010). Given the role of NCEH1 in nCEH 

activity of mouse and human macrophages, this nCEH was selected for further study.  

5.1.2.4 Cholesterol efflux 

Cholesterol efflux is essential to prevent the accumulation of cholesteryl esters. 

Cholesterol is removed from macrophages as free cholesterol to lipoprotein carriers 

such as HDL, where it is transported to the liver for catabolism (Phillips 2014). There 

are a number of mechanisms by which cholesterol can be removed from 

macrophages. These include passive diffusion, facilitated diffusion by SR-B1 and 

active diffusion using the ABC transporter proteins; ABCA1 and ABCG1 (Phillips 

2014). Passive diffusion accounts for a large amount of cholesterol efflux from non-

cholesterol loaded macrophages; however in macrophage foam cells active transport 

is crucial. ABCA1 and ABCG1 transporter proteins play a pivotal role in cholesterol 

efflux from macrophages (Yvan-Charvet et al. 2010). 

5.1.2.4.1 ABC transporters 

The ABC transporter proteins utilise ATP to transport molecules across the plasma 

membrane (Soumian et al. 2005). ABCA1 and ABCG1 are expressed in 

macrophages and aid in reverse cholesterol transport (Soumian et al. 2005). There 

are a number of proposed mechanisms by which ABCA1 and ABCG1 have been 

suggested to remove cholesterol from macrophages and where they are localised, 

however the process is still not fully understood (Yvan-Charvet et al. 2010). The ABC 

transporters have been well characterised in their role in cholesterol efflux and have 

been suggested to play a protective role in atherosclerosis (Singaraja et al. 2002; 

Yvan-Charvet et al. 2007; Tarling et al. 2010). In vivo mouse models demonstrated 

that knockout of these transporter proteins in macrophages resulted in significant 

reduction of cholesterol efflux (Wang et al. 2007). In LDLr-/- mouse models, ABCA1 

and ABCG1 deficiency increased atherosclerosis and infiltration of foam cells. 

Isolated macrophages from these mice showed impaired cholesterol efflux (Yvan-

Charvet et al. 2007). Similarly, over expression of ABCA1 in ApoE-/- mice results in 

development of smaller lesions and increased cholesterol efflux from isolated 

macrophages (Singaraja et al. 2002). ABCA1 and ABCG1 expression and their 

influence on cholesterol homeostasis also play a role in modulating the inflammatory 

response in atherosclerosis, such as an increase in pro-inflammatory gene 

expression (Yvan-Charvet et al. 2008; Zhu et al. 2008). Given the important role of 

the ABC transporters in cholesterol efflux, the effect of DGLA on their expression in 

macrophages was of interest.  



 
 

172 
 

5.1.2.4.2 ApoE 

A number of other factors also play a role in cholesterol efflux from the macrophage 

in addition to ABC transporters. ApoE is a multi-functional protein which plays a role 

in the maintenance of plasma cholesterol levels (Curtiss 2000). It is a component of 

plasma lipoproteins (HDL, VLDL) that carry cholesterol to the liver for clearance. The 

ApoE-/- knockout mouse model is commonly used in atherosclerosis as the resulting 

hypercholesterolemic state allows for the development of spontaneous 

atherosclerosis (Curtiss 2000). The majority of ApoE is synthesised in the liver, 

however the protein can also be produced locally by macrophages (Zhu et al. 1998). 

Macrophage ApoE has little effect of plasma cholesterol levels, but still proved to have 

an anti-atherogenic effect in a number of studies (Zhu et al. 1998; Boisvert et al. 1999; 

Hasty et al. 1999). No correction of hyperlipidaemia was observed in ApoE-/- knockout 

mice expressing ApoE specifically in macrophages in comparison to control mice, 

however there was a significant reduction in lesion size (Zhu et al. 1998). Similarly, in 

ApoE-/- mice (5-13 weeks) expressing ApoE from arterial macrophages, there was a 

significant reduction in lesion size with no change in plasma cholesterol levels from 

control ApoE-/- mice (Hasty et al. 1999). This suggests that there are other 

mechanisms, independent to plasma cholesterol levels, in which ApoE acts to 

attenuate atherosclerosis. In macrophages, production of ApoE has been shown to 

increase cholesterol efflux. A 10% increase in cholesterol efflux was observed from 

macrophage of ApoE-/- mice expressing an ApoE gene in macrophages (Zhu et al. 

1998). This was also observed in mice expressing ApoE from the arterial wall. It was 

observed there was a reduced amount of cholesterol in the arterial wall of transgenic 

mice suggesting ApoE induces reverse cholesterol transport from the arterial wall 

(Shimano et al. 1995). Given the role of ApoE in inducing cholesterol efflux from 

macrophages, it was hypothesised that DGLA may have an effect on its expression.  

5.1.3 DGLA metabolites 

The final aim of the chapter was to determine the role of eicosanoids produced from 

DGLA to identify the molecular mechanism underlying the action of the PUFA. Fatty 

acids can induce signalling mechanisms directly or indirectly through the production 

of eicosanoids (Johnson et al. 1997; Levin et al. 2002; Norris and Dennis 2012; 

Raphael and Sordillo 2013). As shown previously in Chapter 3, DGLA was 

metabolised to PGE1 and 15-HETrE in THP-1 macrophages (Section 3.4.4). In 

macrophages treated with vehicle, there was no basal production of PGE1. Only on 

treatment with DGLA did the production of the eicosanoid increase dramatically, 

offsetting the ratio of PGE2:PGE1 production in the macrophage. PGE1 is a product of 
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COX metabolism on DGLA (Calder 2001; Levin et al. 2002; Wang et al. 2012) and it 

has been documented as having anti-inflammatory actions in a number of diseases. 

In rabbit models of atherosclerosis, PGE1 decreased the accumulation of LDL in the 

arterial wall and increased the stability of atherosclerotic plaques (Sinzinger et al. 

1991; Bai et al. 2012). In addition, the eicosanoid has been implicated to have 

beneficial actions in models of myocardial infarction, heart failure and cancer 

(Tabolacci et al. 2010; Li et al. 2011; Hou et al. 2013). This indicates that metabolites 

of DGLA may play a role in the anti-inflammatory/atherogenic actions observed in 

macrophages. Given the important role of PGE1 reported previously in numerous 

diseases, this prostaglandin was a key focus in understanding the molecular 

mechanisms underlying the action of DGLA. The role of PGE1 in THP-1 macrophages 

was investigated through inhibition of COX enzymes.   
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5.2 Aims 

Following on from results obtained with DGLA presented in Chapters 3 and 4, the aim 

of studies in this chapter was to determine the mechanisms underlying some key 

findings. As shown in the studies presented in the previous chapters, DGLA inhibited 

the IFN-γ induced expression of key pro-inflammatory genes in a number of 

macrophage cultures. AcLDL uptake and cholesteryl ester accumulation was also 

attenuated in macrophages by DGLA. Lastly, DGLA metabolised to PGE1, a 

prostaglandin with anti-inflammatory actions. These three key points were chosen for 

further investigations. Detailed aims were as follows; 

1. DGLA inhibition of IFN-γ  induced gene expression 

- Effects of DGLA on STAT1 phosphorylation at positions TYR701 and 

SER727 

2. Attenuation of modified LDL induced cholesteryl ester accumulation by DGLA 

- Effect of DGLA on uptake of oxLDL 

- Effect of DGLA on receptor-mediated uptake (scavenger receptors) and 

fluid phase uptake (macropinocytosis) 

- Effect of DGLA on expression of key genes involved in cholesteryl ester 

accumulation and free cholesterol formation (ACAT1 and NCEH1) 

- Effect of DGLA on cholesterol efflux and key genes involved in the process 

(ABCA1, ABCG1 and ApoE) 

3. Determine the role of PGE1 in the anti-inflammatory effect of DGLA 

- Effect of PGE1 on the IFN-γ induced MCP-1 expression 

- Effect of PGE1 on monocyte migration 

- Effect of knockdown of PGE1 formation from DGLA on the IFN-γ induced 

MCP-1 expression 
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5.3 Experimental plan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 - Overview of experimental strategy 

THP-1 monocytes and macrophages were used to investigate three key results; inhibition of 

IFN-γ signalling, acLDL uptake and cholesteryl ester accumulation together with the actions 

of DGLA metabolites.  
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5.4 Results 

 

5.4.1 The effect of DGLA on IFN-γ signalling through the JAK/STAT pathway  

5.4.1.1 Effect of DGLA on IFN-γ dependant STAT1 phosphorylation 

As described in Chapter 4, DGLA inhibited the IFN-γ induced expression of two key 

pro-inflammatory genes; MCP-1 and ICAM-1 in THP-1 macrophages, RAW264.7 cell 

line and primary cultures of HMDM (Section 4.4.6). It was therefore of interest to 

determine the precise effect of DGLA on the IFN-γ signalling pathway. The cytokine 

signals through the JAK/STAT pathway and the initial focus was on STAT1 and its 

activation by phosphorylation. The effect of DGLA on STAT1 phosphorylation at two 

sites, SER727 and TYR701, was determined by western blotting. THP-1 macrophages 

were pre-treated with DGLA or DMSO control for 24 hours prior to addition of 250 

U/ml IFN-γ  or vehicle control for 30 minutes, a time point previously optimised in the 

laboratory for maximal STAT1 phosphorylation (Li et al. 2010). STAT1 

phosphorylation at SER727 and TYR701 was significantly induced on treatment of the 

cells with IFN-γ by 2.3-fold and 7.9-fold respectively (Figure 5.4). On pre-treatment 

with DGLA followed by IFN-γ stimulation, STAT1 phosphorylation at SER727 was 

significantly inhibited by an average of 31%. This attenuation was not seen in 

phosphorylation of TYR701.  



 
 

177 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 - DGLA attenuates the IFN-γ induced STAT-1 phosphorylation at 

SER727 but not TYR701 

THP-1 macrophages were pre-treated with 50 µM DGLA (DGLA, DGLA + IFN-γ) or DMSO 

vehicle control (Control, IFN-γ) for 24 hours. Following this, macrophages were stimulated 

with 250 U/ml IFN-γ or vehicle for 30 minutes. Proteins were extracted and separated by gel 

electrophoresis and transferred onto a membrane. Membranes were probed with antibodies 

specific for STAT1 SER727, STAT1 TYR701 and total STAT1. Membranes were exposed to X-

ray film and bands were analysed by densitometry for quantification. Graphs indicate the 

average of three independent repeats (mean +/- SD), control arbitrarily assigned as 1. 

Statistical analysis was performed using a one way ANOVA followed by Tukey’s post hoc 

analysis ** P <0.01, *** P ≤ 0.001, N.S – Not significant  
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5.4.2 Molecular mechanism underlying the attenuation of modified LDL uptake 

and cholesteryl ester accumulation in macrophages 

5.4.2.1 Uptake of Dil-oxLDL 

To determine the mechanisms underlying the effect of DGLA on cholesteryl ester 

accumulation in macrophages, uptake of cholesterol was determined. To do so, 

uptake of oxLDL labelled with a fluorescent marker (Dil-oxLDL) was measured by 

FACS. The initial study investigating the accumulation of cholesteryl esters in 

macrophages utilised acLDL as a form of modified cholesterol. Both acLDL and 

oxLDL are commonly used in cholesterol uptake and efflux studies, acLDL is more 

avidly taken up in comparison to oxLDL, however, both show comparable actions and 

induce macrophage foam cell formation in vitro (McLaren et al. 2010; McLaren et al. 

2011b). Despite this, oxLDL is the major form of modified LDL found in 

atherosclerosis in vivo (Lusis 2000; Nishi et al. 2002; Shashkin et al. 2005) and 

therefore more clinically relevant.   

THP-1 macrophages were pre-treated with 50 μM DGLA or vehicle control for 24 

hours prior to loading with 5 μg/ml Dil-oxLDL for a further 24 hours. Cells were 

collected, resuspended in 2% PFA and uptake was measured by determining 

fluorescence by FACS. As shown in Figure 5.5, on treatment with Dil-oxLDL, uptake 

was significantly increased in comparison to unloaded macrophages. Following pre-

treatment with 50 μM DGLA followed by loading with Dil-oxLDL, this increase was 

significantly attenuated by an average of 21%.     
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Figure 5.5 – DGLA significantly attenuated Dil-oxLDL uptake in THP-1 

macrophages 

THP-1 macrophages were incubated with 50 μM DGLA or DMSO for 24 hours prior to 

treatment with 5 μg/ml Dil-oxLDL for a further 24 hours (control cells were pre-treated with 

DMSO without further incubation with Dil-oxLDL). Cells were collected, resuspended in 2% 

PFA and uptake was measured using FACS analysis counting 10,000 events. DMSO in the 

presence of Dil-oxLDL was used as a positive control and arbitrarily assigned as 100%. Graph 

indicated the average uptake (+/- SD) from 4 independent experiments. Statistics were 

performed using a one-way ANOVA followed by Tukey’s post hoc analysis. ** P <0.01, *** P 

<0.001. 
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5.4.2.2 Scavenger receptor expression  

Scavenger receptors are expressed on the surface of macrophages and recognise 

and internalise large, unregulated amounts of modified LDL leading to the formation 

of foam cells (de Winther et al. 2000; Shashkin et al. 2005; Park 2014). CD36 and 

SRA are key scavenger receptors expressed by macrophages in atherosclerotic 

lesions and mice lacking these genes show significant protection to atherosclerosis 

(Endemann et al. 1993; Sakaguchi et al. 1998; Kunjathoor et al. 2002; Febbraio et al. 

2004). Given the role of DGLA in oxLDL uptake and acLDL induced cholesteryl ester 

accumulation in macrophages, it was hypothesised that the levels of these scavenger 

receptors on the surface of the cells may play an important role. The mRNA and 

protein expression of CD36 and SRA were measured by RT-qPCR and western 

blotting respectively.  

THP-1 macrophages were incubated with vehicle or 50 µM DGLA for 24 hours prior 

to RNA or protein extraction. On incubation with DGLA, the mRNA expression of SRA 

and CD36 was attenuated by an average of 22% and 20% respectively (Figure 5.5). 

Unfortunately due to time constraints and difficulties in optimisation of antibodies, only 

SRA was measured at the protein level. On pre-treatment with 50 μM DGLA, there 

was a significant reduction of approximately 40% in the protein expression of SRA.   
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Figure 5.6 - DGLA significantly inhibited the expression of CD36 and SRA in 

THP-1 macrophages 

THP-1 macrophages were pre-incubated with 50 μM DGLA or DMSO vehicle (Control) for 24 

hours.  A - Total RNA was subjected to reverse transcription and RT-qPCR with primers 

specific for CD36, SRA or GAPDH control. Graphs display average gene expression (mean 

+/- SD) (control arbitrarily assigned as 1) from four independent experiments. B – Total protein 

was extracted, subjected to gel electrophoresis and immunodetection with antibodies specific 

for SRA and β-actin. Graph indicates the average protein expression from 4 independent 

repeats (+/- SD) with control arbitrarily assigned as 1. Statistical analysis was performed using 

a Students two tailed t test. * P ≤ 0.05. 
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5.4.2.3 – Macropinocytosis 

In addition to receptor-mediated uptake by scavenger receptors, macrophages have 

been shown to take up large amounts of native LDL and modified LDL by bulk fluid 

phase macropinocytosis (Kruth et al. 2005; Michael et al. 2013). The endocytic 

pathway has also been implicated to play a role in foam cell formation (Kruth et al. 

2002; Yao et al. 2009). To measure the effect of DGLA on macropinocytosis, the 

uptake of Lucifer yellow (LY) was measured by FACS. LY is a florescent dye 

commonly used in the literature as a marker to measure uptake by macropinocytosis 

(Swanson 1989; Jones and Willingham 1999; Michael et al. 2013). THP-1 

macrophages were pre-incubated with the DMSO vehicle or 50 µM DGLA followed 

by 100 µg/ml LY for 24 hours. Macrophages were fixed and samples prepared for 

FACS analysis. LY uptake from vehicle treated cells was arbitrarily assigned as 100% 

LY uptake. On pre-treatment with DGLA, LY uptake was significantly attenuated by 

an average of 17% (Figure 5.7).  

 

 

 

 

 

 

 

 

Figure 5.7 - DGLA inhibits LY uptake by macropinocytosis in THP-1 

macrophages 

THP-1 macrophages were incubated with 50 µM DGLA or DMSO for 24 hours followed by 

100 µg/ml LY. LY uptake was analysed using flow cytometry (FACS Canto). LY uptake is 

represented as a percentage with vehicle control as 100%, error bars indicate +/- SD from 

three independent experiments. Statistics was performed using a Students two tailed t-test, 

*** P ≤ 0.001. 
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5.4.2.4 – Cholesterol ester synthesis 

Once LDL has undergone endocytosis, the lipoprotein is broken down and cholesteryl 

ester contained within it undergoes a cycle of hydrolysis and re-esterification in the 

macrophage (Brown et al. 1980). To investigate the role of DGLA on cholesteryl ester 

accumulation, RT-qPCR was used to measure the effect of the fatty acid on the 

expression of two enzymes responsible for esterification and hydrolysis in the 

macrophage. THP-1 macrophages were treated with vehicle or 50 µM DGLA for 24 

hours before RT-qPCR using specific primers for ACAT1 and NCEH1. DGLA had no 

effect on the gene expression of ACAT1 and NCEH1 when compared to the DMSO 

control.  

 

 

 

 

 

 

 

Figure 5.8 - DGLA has no effect on mRNA expression of ACAT1 and NCEH1 

THP-1 macrophages were incubated with DMSO vehicle or 50 µM DGLA for 24 hours. Total 

RNA was subjected to reverse transcription and RT-qPCR with primers specific for human 

ACAT1, NCEH1 or GAPDH. Graphs display average gene expression (mean +/- SD) (control 

arbitrarily assigned as 1) of 4 independent experiments. Statistical analysis was performed 

using a two tailed Students t-test. N.S – Not significant  
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5.4.2.5 – Cholesterol efflux 

Macrophages can efflux cholesterol with the aid of cholesterol carriers. Free 

cholesterol can be removed from the cell to HDL, the main component of which is 

ApoA1 (Phillips 2014). It has been shown previously that ApoA1 mediates cholesterol 

efflux in macrophages (Yvan-Charvet et al. 2010). To determine if DGLA plays a role 

in cholesterol efflux from macrophages, THP-1 macrophages were loaded with acLDL 

and 14C-Cholesterol. Following this, macrophages were treated with ApoA1 to induce 

cholesterol efflux or vehicle control to determine basline cholesterol efflux. Efflux was 

measured using scintillation counting. Radioactivity was measured in both the cell 

fraction and overlaying media and efflux was calculated as a percentage of counts in 

the media fraction to total counts.  Cholesterol efflux measured in acLDL loaded 

macrophages unstimulated with ApoA1 allowed for a basal level of efflux to be 

measured and was substracted from all other samples (data not shown). Graph 

displays ApoA1 stimulated cholesterol efflux as percentage efflux. Macrophages pre-

treated with DGLA before loading with acLDL and stimulation with ApoA1, showed a 

significant increase of approximately 10% in cholesterol efflux in comparison to 

macrophages with vehicle control (Figure 5.9).  
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Figure 5.9 - DGLA increased ApoA1 stimulated cholesterol efflux from THP-1 

macrophages 

THP-1 macrophages were incubated with 50 µM DGLA or DMSO vehicle for 24 hours prior to 

treatment with 25 µg/ml acLDL and 0.5 µCi 14C-cholesterol in RPMI media with 0.2% (w/v) 

BSA for a further 24 hours. Following this incubation, cells were washed with PBS; media was 

replaced in the presence of 10 µg/ml ApoA1 for 24 hours. Media was collected in Eppendorf 

tubes and cells treated with 0.2% (w/v) NaOH until macrophages had detached. Cell 

suspension was removed into Eppendorf tubes. Radioactivity from media and cell suspension 

was measured using scintillation counting. Background cholesterol efflux (unstimulated with 

ApoA1, not displayed on graph) was subtracted from ApoA1 stimulated cells. Results 

expressed as percentage cholesterol efflux. Error bars indicate +/- SD from three independent 

repeats. Statistics were performed using a Students two tailed t-test. ** P ≤0.01.  

0

2

4

6

8

10

12

14

16

18

20

AcLDL DGLA

%
 c

h
o

le
st

e
ro

l e
ff

lu
x

** 

AcLDL + Vehicle AcLDL + DGLA 



 
 

186 
 

5.4.2.6 Expression of key genes implicated in cholesterol efflux 

Given the ability of DGLA to increase ApoA1 stimulated cholesterol efflux, it was of 

interest to determine the specific role of the fatty acid in this complex process. It has 

been shown that the ABC transporter proteins play a crucial role in transport of free 

cholesterol from the cytoplasm of the macrophage to the plasma membrane for 

transfer to cholesterol carriers. In addition to this, expression of macrophage ApoE 

has been previously shown to promote cholesterol efflux (Hasty et al. 1999; Curtiss 

2000; Su et al. 2003; Baitsch et al. 2008). The effect of DGLA on the mRNA 

expression of ABCA1 and ABCG1 and the protein expression of ABCA1 and ApoE 

was measured in cholesterol loaded THP-1 macrophages.  

THP-1 macrophages were pre-incubated with 50 μM DGLA or vehicle control for 24 

hours prior to cholesterol loading with 25 μg/ml of acLDL. The mRNA expression was 

measured by RT-qPCR using primers specific for ABCA1 and ABCG1 (Figure 5.10A). 

Protein expression of ABCA1, ApoE and β actin was determined by western blot 

analysis (Figure 5.10B). Each graph represents the average of one independent 

experiment performed in triplicate.  

It was found that on cholesterol loading of THP-1 macrophages, mRNA and protein 

expression of ABCA1 was induced. At the mRNA level, this was attenuated by an 

average of 30% on pre incubation with DGLA. However at the protein level, 

expression of ABCA1 was not affected by pre-incubation with DGLA. The mRNA 

expression of ABCG1 was induced on average 1.5 fold following cholesterol loading 

in macrophages. Pre-treatment of the cells with DGLA followed by cholesterol loading 

had no effect on ABCG1 expression. Finally, ApoE was measured at the protein level. 

Expression of ApoE remained constant under all conditions.  
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Figure 5.10 – Effect of DGLA on the expression of ABCA1, ABCG1 and ApoE in acLDL loaded macrophages 

THP-1 macrophages were incubated with DMSO vehicle or 50µM DGLA for 24 hours followed by 25 μg/ml acLDL for a further 24 hours (control cells 

were pre-treated with DMSO followed by further incubation in the absence of acLDL). A - RNA was extracted, subjected to reverse transcription and RT-

qPCR with primers specific for ABCA1, ABCG1 and GAPDH. B - Proteins were extracted, separated by gel electrophoresis and transferred onto a 

membrane. Membranes were probed with antibodies specific for ABCA1, ApoE and β actin. Membranes were exposed to X-ray film and bands were 

analysed by densitometry for quantification. Graphs display the average of one independent experiment performed in triplicate (+/- SD). 
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5.4.2.6.1 LXR gene expression 

Expression of ABCA1, ABCG1 and ApoE are regulated by LXRs (Schwartz et al. 

2000; Laffitte et al. 2001). Given the relationship between the cholesterol efflux genes 

measured in Figure 5.10 and LXRs, the effect of DGLA on the expression of these 

receptors was measured by RT-qPCR. THP-1 macrophages were incubated with 50 

μM DGLA for 24 hours prior to RNA extraction and reverse transcription. RT-qPCR 

was performed using primers specific for LXR-α, LXR-β and GAPDH.  

As shown in Figure 5.11, incubation of macrophages with DGLA significantly 

attenuated the expression of LXR-α and -β by an average of 70% and 55% 

respectively.  

 

 

Figure 5.11 – DGLA significantly inhibits LXR-α and -β mRNA expression in 

THP-1 macrophages 

THP-1 macrophages were incubated with vehicle or 50 µM DGLA for 24 hours. Total RNA 

was subjected to reverse transcription and RT-qPCR with primers specific for human LXR-α 

or LXR-β. Graphs display average gene expression (mean +/- SD) (control arbitrarily assigned 

as 1) from 3 experiments. Statistical analysis was performed using a two tailed Students t-

test. * P ≤0.05, *** P ≤ 0.001 
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5.4.3 DGLA metabolites 

5.4.3.1 Effect of PGE1 on MCP-1 expression and monocyte migration  

PGE1 is a product of DGLA (produced by the action of COX) with beneficial anti-

inflammatory actions in number of diseases (Sinzinger et al. 1991; Palumbo et al. 

2000; Wang et al. 2012). To determine the role of this prostaglandin in the anti-

inflammatory actions of DGLA, key experiments were repeated using PGE1 to 

determine if the metabolite mimicked the actions of DGLA. Two key parameters that 

showed positive results with DGLA were chosen; the inhibition of IFN-γ induced MCP-

1 and ICAM-1 expression and monocyte migration. For gene expression, THP-1 

macrophages were pre-treated with PGE1 for 1 hour prior to the addition of 250 U/ml 

of IFN-γ for 3 hours. A shorter pre-incubation time of PGE1, compared to DGLA, was 

chosen due to the short half-life of the prostaglandin (Fan and Chapkin 1998). 

Concentrations of 10 to 100 µM were used initially to determine the optimum 

concentrations for use in further experiments.  

Treatment of THP-1 macrophages with IFN-γ significantly increased the expression 

of MCP-1 and ICAM-1. On pre-incubation with PGE1, significant inhibition of the IFN-

γ induced expression of MCP-1 and ICAM-1 was observed with all the concentrations 

used (Figure 5.12). Treatment with PGE1 inhibited the IFN-γ induced expression of 

MCP-1 and ICAM-1 by an average of approximately 80% and 45% respectively 

across all concentrations. There was no significant difference between doses for 

either MCP-1 or ICAM-1 expression observed. This was also repeated in HMDMs 

where comparable results were obtained (Figure 5.13). In HMDMs, PGE1 inhibited 

the IFN-γ induced MCP-1 expression by an average of 80% across all concentrations. 

For ICAM-1, PGE1 had a dose response effect on IFN-γ induced expression 

attenuating expression by 17%, 22%, 30% and 40% on average for the 

concentrations used. A concentration of 10 µM was carried forward for future 

experiments as this was the lowest concentration at which marked effects were 

observed and there was no significant difference found between various 

concentrations. 

For monocytic migration, THP-1 monocytes were co-incubated with 10 µM PGE1 (or 

vehicle control) and MCP-1. MCP-1 significantly increased monocyte migration by 

70% (Figure 5.14). On co-incubation with PGE1 this increase was completely inhibited 

and levels of monocyte migration returned to that of the control.   
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Figure 5.12 – PGE1 significantly inhibits the IFN-γ-induced expression of MCP-

1 and ICAM-1 in THP-1 macrophages 

THP-1 macrophages were incubated with vehicle or 10-100 µM PGE1 for 1 hour prior to 

treatment with vehicle or 250 U/ml IFN-γ for 3 hours. Concentration of vehicle control was 

used to match that of highest concentration of PGE1.  Total RNA was subjected to reverse 

transcription and RT-qPCR with primers specific for human MCP-1 (panel A), ICAM-1 (panel 

B) or GAPDH. Graphs display average normalised gene expression (mean +/- SD) (control 

arbitrarily assigned as 1) from three independent experiments. For MCP-1, statistical analysis 

was performed using a robust equality of means test followed by Dunnetes T3 post hoc 

analysis, as conditions for ANOVA were not met. For ICAM-1, ANOVA was used followed by 

Tukey’s post hoc analysis. * P≤0.05 ** P≤0.01 
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Figure 5.13 – PGE1 inhibits the IFN-γ-induced expression of MCP-1 and ICAM-1 

in HMDMs 

THP-1 macrophages were incubated with vehicle or 10-100 µM PGE1 for 1 hour prior to 

treatment with vehicle or 250 U/ml IFN-γ for 3 hours. Concentration of vehicle control was 

used to match that of highest concentration of PGE1. Total RNA was subjected to reverse 

transcription and RT-qPCR with primers specific for human MCP-1 (panel A), ICAM-1 (panel 

B) or GAPDH. Graphs display average normalised gene expression (mean +/- SD) (control 

arbitrarily assigned as 1) from two independent experiments.  
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Figure 5.14 – PGE1 significantly inhibits the MCP-1 induced migration of THP-1 

monocytes  

THP-1 monocytes were incubated with 10 μM PGE1 or vehicle control and +/- MCP-1 (20 

ng/ml), for 3 hours. Monocyte migration was calculated by counting the number of monocytes 

that have migrated across a cell insert and expressed as a percentage of total cells. Statistical 

analysis was performed using a robust equality of means test followed by Dunnetes T3 post 

hoc analysis. *** P≤0.001 
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5.4.3.2 COX knockdown 

Given the ability of PGE1 to mimic key responses as observed with DGLA, it was 

hypothesised that metabolism of the PUFA to the prostaglandin may be the 

mechanism by which DGLA exerts its anti-inflammatory/anti-atherogenic actions. To 

test this experimentally, THP-1 monocytes were transfected with siRNA to 

knockdown the expression of COX-1 and COX-2 enzymes and then differentiated into 

macrophages. As shown in Chapter 3, COX-2 plays an important role in PGE1 

production in THP-1 macrophages, with a lesser role for COX-1. Previous work 

however has indicated a role for both COX isoforms in the metabolism of DGLA to 

PGE1 therefore both enzymes were targeted to ensure maximum knockdown of 

production of the prostaglandin. IFN-γ induced expression of MCP-1 was then 

measured by RT-qPCR. THP-1 monocytes were transfected with COX-1 and COX-2 

siRNA or a negative control siRNA for 24 hours prior to differentiation into 

macrophages.  Following knockdown, macrophages were incubated with 50 µM 

DGLA or vehicle control for 24 hours, followed by 250 U/ml IFN-γ or vehicle control, 

for a further 3 hours. Before measuring MCP-1 expression, the knockdown of COX-1 

and COX-2 was validated at the mRNA and protein level by RT-qPCR and western 

blotting, respectively. Figure 5.15 depicts the knockdown of COX-1 and COX-2. For 

COX-1, there was an average 75% knockdown at the mRNA level accompanied by a 

50% average knockdown at the protein level. COX-2 showed a 60% and 20% 

knockdown on average at the mRNA and protein levels respectively. COX-2 is an 

inducible enzyme, the detection of COX-2 was low at both the protein and mRNA 

levels. 

Following confirmation of knockdown of COX-1 and COX-2, MCP-1 gene expression 

was measured by RT-qPCR. As shown in Figure 5.16, in macrophages expressing a 

negative siRNA, IFN-γ significantly stimulated the expression of MCP-1. On pre 

incubation with DGLA, this expression was attenuated by approximately 30%. In cells 

where the expression of both COX-1 and COX-2 was knocked down, IFN-γ once 

again increased the expression of MCP-1 significantly. In DGLA pre-treated, ‘COX 

knockdown’ macrophages however, there was no attenuation of MCP-1 expression. 

The attenuation of IFN-γ induced MCP-1 signalling by DGLA was completely 

abolished on knockdown of COX-1 and COX-2 enzymes.   
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Figure 5.15 - COX1/2 knockdown by siRNA at mRNA and protein level 

THP-1 monocytes were incubated for 24 hours with 7.5 nM COX-1 and COX-2 siRNA or a control siRNA followed by differentiation with PMA for 24 hours. 

Following differentiation, macrophages were pre-treated with 50 µM DGLA or vehicle control for 24 hours prior to addition of IFN-γ or vehicle control for a 

further 3 hours. For gene expression, RNA was extracted and subjected to reverse transcription and RT-qPCR with primers specific to COX-1, COX-2 and 

GAPDH (A). For protein analysis, protein was extracted and subjected to western blot analysis with antibodies specific to COX-1, COX-2 and βactin (B). Each 

knockdown was compared to its negative siRNA counterpart, which has been arbitrarily assigned as 1. Graph displays average of 4 independent repeats (+/- 

SD). Statistics were performed using a Student’s two tailed Ttest. * P≤0.05. N.S – not significant 
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Figure 5.16 – Knockdown of COX-1 and COX-2 abolishes the attenuation of IFN-

γ induced MCP-1 expression by DGLA 

THP-1 monocytes were incubated for 24 hours with control siRNA (panel A) or  7.5 nM COX-

1 and COX-2 siRNA (panel B) followed by differentiation with PMA for 24 hours. Following 

differentiation, macrophages were pre-treated with 50 µM DGLA or vehicle control for 24 hours 

prior to addition of IFN-γ or vehicle control for a further 3 hours. Following validating of 

knockdown of COX-1 and COX-2, RNA was extracted and subjected to reverse transcription 

and RT-qPCR with primers specific to MCP-1 and GAPDH. Graph displays average of 4 

independent repeats (+/- SD).Statistics were performed using a one-way ANOVA followed by 

Tukey’s post-hoc analysis. ** P≤0.01, *** P≤0.001. N.S – not significant 
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5.5 Discussion  

5.5.1 IFN-γ induced STAT1 activation  

Data presented in the previous chapter indicated that DGLA inhibited the IFN-γ 

induced expression of two pro-inflammatory genes in macrophages; MCP-1 and 

ICAM-1. To understand the molecular mechanisms underlying this effect, IFN-γ 

signalling through the JAK/STAT pathway was investigated. Signalling through 

STAT1 plays an important role in IFN-γ actions and has been implicated to play a role 

in atherosclerosis (Li et al. 2010; Sikorski et al. 2011a). In addition to IFN-γ signalling, 

STAT1 has been described as a point of convergence and signalling integration for 

other pro-inflammatory signalling pathways, namely TLRs and IL-6, resulting in 

increased SMC and leukocyte activation and migration (Sikorski et al. 2011a; Sikorski 

et al. 2011b). Therapeutic inhibition of STAT1 with a decoy oligonucleotide has 

implicated it to play a role in myocardial graft tissue survival (Hoelschermann et al. 

2006). Targeting STAT1 prolonged cardiac graft survival by 40% due to a reduction 

in the recruitment of leukocytes, a process which causes acute myocardial rejection. 

It was observed that the expression of adhesion molecules VCAM-1 and ICAM-1 were 

reduced (Hoelschermann et al. 2006). In addition, induction of foam cells with oxLDL 

in THP-1 macrophages was reduced on treatment with a STAT1 inhibitor (Agrawal et 

al. 2007). This was also observed in BMDM from STAT1-/- mice and in vivo in ApoE-/- 

STAT1-/- mice. Deficiency of STAT1 reduced oxLDL induced cholesteryl ester and 

lipid accumulation in comparison to wild type animals (Agrawal et al. 2007).  To 

determine the role of DGLA on activation of STAT1, the phosphorylation of key sites 

TYR701 and SER727 were determined by western blotting.  

As shown in Figure 5.4, treatment of THP-1 macrophages significantly increased the 

phosphorylation of STAT1 at TYR701 and SER727 sites. On pre-treatment with DGLA, 

the induction of SER727 phosphorylation was attenuated by approximately 31%. There 

was no effect on phosphorylation at the TYR701 site. As previously described in 

Section 5.1.1.1, phosphorylation at TYR701 is required for transcriptional activity of 

STAT1, however this can occur independent of SER727 phosphorylation (McLaren and 

Ramji 2009; Li et al. 2010). Despite this, phosphorylation at SER727 is required for 

maximum transcriptional activity of STAT1 and inhibition of the process attenuates 

IFN-γ induced pro-inflammatory gene expression (Varinou et al. 2003).  Knock-in 

mice were used to study the effect of loss of STAT1 SER727 phosphorylation in vivo. 

The SER727 site in the transactivation domain of STAT1 was substituted for an alanine 

residue, preventing phosphorylation and maximal activity of STAT1 (Varinou et al. 
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2003). This resulted in a decrease in IFN-γ  induced gene expression in macrophages 

and transcription factor activity of STAT1 (Varinou et al. 2003). In addition, attenuation 

of SER727 phosphorylation in human macrophages by inhibition of upstream kinases 

attenuated the IFN-γ induced expression of ICAM-1, MCP-1, IP-10 and MIP-1β at the 

mRNA and protein level (Li et al. 2010). IFN-γ induced uptake of acLDL and oxLDL 

was also reduced (Li et al. 2010). Given the results presented in Figure 5.4, this 

indicates a role for DGLA in the attenuation of STAT1 activity which can lead to a 

reduction in IFN-γ-mediated pro-inflammatory gene expression. The data highlights 

a new potential mechanism by which DGLA may aid in the attenuation of foam cell 

formation and atherosclerosis. 

A number of kinases have been implicated in the phosphorylation of STAT1 at 

SER727. Inhibition of ERK and JNK selectively decreased the IFN-γ induced SER727 

phosphorylation in human macrophages (Li et al. 2010). PKCδ and CAMK II inhibited 

phosphorylation at both sites while p38 had no effect (Li et al. 2010). Given the 

selective role of ERK and JNK phosphorylation of SER727, future avenues could 

evaluate the effect of DGLA on the activity of these kinases to further elucidate the 

role of the fatty acid in IFN-γ signalling through the JAK/STAT pathway.  

5.5.2 Modified LDL uptake in macrophages 

As reported in Chapter 4, DGLA attenuated the accumulation of cholesteryl esters in 

macrophages following cholesterol loading with a modified form of LDL, acLDL. In an 

attempt to delineate the mechanisms underlying this action, a number of processes 

were targeted for investigation including cholesterol uptake, metabolism and efflux. 

In atherosclerosis, macrophages recognise and internalise excess amounts of 

modified forms of LDL in an unregulated manner. As a result, excess cholesterol is 

stored as cholesteryl esters in lipid droplets which are deposited in the cytoplasm, a 

hallmark of foam cell formation (Shashkin et al. 2005; Lusis 2012). Inhibiting the 

uptake of modified forms of LDL would therefore prevent the accumulation of excess 

cholesterol in macrophages and their transformation into foam cells. Uptake was 

measured using a fluorescently labelled modified form of LDL; Dil-oxLDL. As shown 

in Figure 5.5, DGLA inhibited the uptake of Dil-oxLDL by 21% on average. Previous 

studies have reported comparable results using omega-3 fatty acid DHA (McLaren et 

al. 2011b). DHA inhibited Dil-acLDL and Dil-oxLDL uptake in THP-1 macrophages. 

This process was found to be dependent on both scavenger receptors and 

macropinocytosis (McLaren et al. 2011b). The data presented in Figure 5.5 indicates 

that the decrease in cholesteryl ester accumulation observed in Chapter 4, may be in 
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part as a result of a reduction in modified LDL uptake. Cholesteryl ester studies were 

performed using acLDL, in contrast uptake was measured using oxLDL. Both 

modified forms of LDL have been used extensively in lipid uptake and foam cell 

formation studies, yielding comparable results in mechanisms of uptake, cholesterol 

accumulation and efflux (McLaren et al. 2010; McLaren et al. 2011b). This suggests 

that the both acLDL and oxLDL can be interchangeable when studying these 

processes.   

5.5.2.1 Scavenger receptors 

Receptor-mediated endocytosis is an important mechanism by which macrophages 

bind and internalise a number of molecules, including pathogens and LDL. Scavenger 

receptors are expressed on the surface of macrophages and internalise unregulated 

amounts of modified forms of LDL. CD36 and SRA have been shown to take up large 

amounts of oxLDL and acLDL and contribute to foam cell formation and 

atherosclerosis (Febbraio et al. 2000; Kunjathoor et al. 2002; Kuchibhotla et al. 2008). 

The effect of DGLA on the expression of these two receptors in THP-1 macrophages 

at the mRNA (SRA and CD36) and protein level (SRA) was measured by RT-qPCR 

and western blotting respectively (Figure 5.6). On treatment with DGLA, the mRNA 

expression of CD36 and SRA was reduced by approximately 20%. The protein 

expression of SRA was decreased by 40%. No previous work has detailed the effect 

of DGLA on the expression of SRA and CD36. However, a previous study 

investigating the role of omega-6 PUFA, LA, demonstrated comparable results. LA 

treatment in THP-1 macrophages and HMDMs significantly decreased the expression 

of SRA and CD36. This was accompanied by a significant decrease in the cholesterol 

content of foam cells (Song et al. 2013).  

As reported in the previous chapter, DGLA reduced the acLDL induced cholesteryl 

ester accumulation in macrophages. The data presented in Figure 5.6 indicates this 

may be in part due to a reduced expression of scavenger receptors on treatment with 

DGLA which may potentially result in a reduction in uptake of modified LDL. Previous 

studies evaluating the role of SRA and CD36 knockdown have shown comparable 

results. Cholesteryl esters fail to accumulate in macrophages from SRA and CD36 

knockout mice (Kunjathoor et al. 2002). SRA-/- macrophages degraded 70% less 

acLDL in comparison to wild type animals and specific binding of acLDL was reduced 

by 44% (Kunjathoor et al. 2002). CD36 plays a lesser role in acLDL binding and 

degradation with CD36-/- macrophages accounting for 28% less binding and 13% less 

degradation (Kunjathoor et al. 2002). There was however a bigger effect on oxLDL 

degradation and binding in these macrophages. CD36-/- macrophages reduced 
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binding of oxLDL by 90% and degradation by 68% (Kunjathoor et al. 2002). Again, 

SRA-/- played a lesser role in oxLDL metabolism, reducing binding by 40% and 

degradation by 25% (Kunjathoor et al. 2002). Therefore both scavenger receptors 

play a role in internalisation and degradation of modified LDL, but have different 

preferences for acLDL and oxLDL. Uptake of oxLDL by CD36, in addition to its 

function in foam cell formation, has also been indicated to play other pro-inflammatory 

roles. CD36 uptake of oxLDL decreased macrophage efflux from atherosclerotic 

plaques, promoted macrophage trapping and increased plaque progression (Park et 

al. 2009). Also, oxLDL binding to CD36 has been shown to activate platelets and 

contribute to pro-thrombotic state (Chen et al. 2008). Finally, CD36-/- macrophages 

expressed reduced levels of IFN-γ, MCP-1 and TNF-α in the presence or absence of 

oxLDL (Kennedy et al. 2011).  

The uptake assay and cholesteryl ester accumulation assay were performed with 

oxLDL and acLDL respectively. Given the data presented in Figures 4.16, 5.5 and 

5.6, taken together with previous studies, it suggests that DGLA can reduce modified 

LDL uptake and cholesteryl ester accumulation by reducing the uptake of acLDL and 

oxLDL though the reduction in the expression of scavenger receptors SRA and CD36. 

The data highlights a potential new mechanism for the anti-inflammatory and anti-

atherogenic action of DGLA.  

5.5.2.2 Macropinocytosis 

Macrophages can also take up molecules by receptor independent mechanisms. 

Macropinocytosis is a form of non-selective endocytosis for solute macromolecules 

(Swanson and Watts 1995). Following stimulation with M-CSF or phorbol esters, 

ruffling at the cell surface of macrophages can be observed which gives rise to 

macropinosomes (Swanson and Watts 1995). Macropinocytosis has been linked to 

LDL uptake by macrophages and foam cell formation. An inhibitor of 

macropinocytosis, cytochalasin D, attenuated the uptake of acLDL in THP-1 

macrophages which translated to reduced intracellular cholesterol levels (McLaren et 

al. 2011b; Michael et al. 2013). This result was conserved in HMDMs (Michael et al. 

2013). Treatment with the inhibitor increased the expression of SRA and CD36 which 

suggested the reduction in uptake and accumulation of acLDL was receptor 

independent (Michael et al. 2013). Macrophages incubated with acLDL and oxLDL 

increased membrane ruffling and formed macropinosomes resulting in a 1.5 fold 

increase in fluid phase uptake (Jones and Willingham 1999) suggesting a role for the 

pathway in modified LDL uptake. OxLDL induced foam cell formation was also 

reduced by an inhibitor of macropinocytosis in RAW264.7 macrophages (Yao et al. 
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2009).  In addition to uptake of modified forms of LDL, macropinocytosis has also 

been shown to take up native LDL. M-CSF differentiated macrophages showed an 

increased uptake of native LDL in the fluid phase which increased cholesterol 

accumulation (Zhao et al. 2006). Similarly, M-CSF stimulated HMDMs treated with a 

macropinocytosis inhibitor showed a 40% decrease in LDL uptake (Anzinger et al. 

2010). Uptake of LDL by macropinocytosis can therefore be independent of 

modification and still induce cholesterol accumulation in macrophages.  

Previous work has indicated a role for PUFAs in macropinocytosis. Treatment of THP-

1 macrophages with EPA and DHA reduced acLDL uptake. This was accompanied 

by a reduction in the uptake of a marker of macropinocytosis on treatment with the 

PUFAs (McLaren et al. 2011b). The effect of DGLA on macropinocytosis was 

measured in PMA differentiated macrophages. PMA, a phorbol ester, has been used 

frequently in the literature to induce macropinocytosis in differentiated macrophages. 

PMA increased macropinosomes in BMDMs (Swanson 1989) and induced LDL and 

modified LDL uptake in HMDMs (Kruth et al. 2002; Kruth et al. 2005) and THP-1 

macrophages (McLaren et al. 2011b; Michael et al. 2013). To measure 

macropinocytosis, LY was used as a marker which can be measured by FACS 

analysis. LY has been commonly used in measuring macropinocytosis in previous 

studies (Swanson 1989; Jones and Willingham 1999; McLaren et al. 2011b; Michael 

et al. 2013). As shown in Figure 5.7, pre incubation with DGLA inhibited LY uptake 

by approximately 17% in PMA differentiated macrophages. Given the role of 

macropinocytosis in the uptake of modified forms of LDL including acLDL, this may 

indicate another mechanism, independent of receptor-mediated uptake, in which 

DGLA inhibits the uptake and accumulation of cholesteryl esters as seen previously. 

In addition, DGLA may also attenuate the uptake of native forms of LDL through 

inhibiting macropinocytosis. Despite the effect of DGLA on LY uptake by 

macropinocytosis, it will need to be directly assessed if this translates to uptake of 

modified LDL and native LDL.  

5.5.3 Cholesterol metabolism  

In addition to uptake mechanisms of modified LDL, it was of interest to determine the 

role of DGLA in the metabolism of internalised cholesterol in macrophages. Free 

cholesterol is removed from the cell by RCT transport, a process dependent on the 

nCEH enzymes. nCEH enzymes hydrolyse cholesteryl esters to free cholesterol 

which can be removed from the cell through transporter proteins (Okazaki et al. 2008). 

Of the numerous nCEH enzymes, NCEH1 is highly expressed in macrophages and 

plays an important role in foam cell formation and atherosclerosis (Okazaki et al. 
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2008; Sekiya et al. 2009; Igarashi et al. 2010) (see Section 5.1.2.3.2. for more details). 

NCEH1-/- macrophages show an increase in cholesterol esters and a decrease in 

cholesterol efflux, key features of foam cell formation (Sekiya et al. 2009). In addition, 

overexpression of NCEH1 in THP-1 macrophages decreased the accumulation of 

cholesteryl esters induced by acLDL uptake (Igarashi et al. 2010). The effect of DGLA 

on this enzyme was therefore of interest.  

Excess free cholesterol is stored as cholesteryl esters in lipid droplets within the 

cytoplasm. This accumulation of cholesteryl esters is a key feature of macrophage 

foam cells and gives them their foamy appearance under the microscope (Ghosh et 

al. 2010). ACAT1 is responsible for cholesteryl ester formation in macrophage foam 

cells. ACAT1 is expressed in human atherosclerotic lesions and macrophages 

including the THP-1 cell line (Miyazaki et al. 1998; Yang et al. 2004; Wan et al. 2009). 

ACAT1-/- macrophages treated with acLDL showed an increase in the efflux of acLDL 

derived cholesterol and an increase in free cholesterol (Ghosh et al. 2010). Inhibition 

of ACAT1 is therefore expected to attenuate atherosclerotic lesion development by 

preventing the formation and storage of cholesteryl esters and increase free 

cholesterol for efflux (Ghosh et al. 2010).  

THP-1 macrophages were treated with DGLA for 24 hours before measuring gene 

expression by RT-qPCR. As shown in Figure 5.8, DGLA did not affect the basal 

expression of NCEH1 and ACAT1 in THP-1 macrophages. Given this, no further 

experiments were carried out. Potential future follow-up experiments could measure 

the expression of the two genes at the protein level by western blotting. In addition, 

the role of DGLA on the expression of NCEH1 and ACAT1 could be determined in 

cholesterol-loaded macrophages.  

Despite the promising role of ACAT1 as a target to prevent cholesteryl ester 

accumulation and development of foam cells, disruption of the gene in mouse models 

has proved controversial. The subsequent increase in free cholesterol as a result of 

disruption of ACAT1 can also contribute to atherosclerosis. LDLr-/- ACAT1-/- deficient 

mice displayed increased lesion sizes in comparison to wild type controls despite a 

decrease in the number of plaque macrophages (Fazio et al. 2001). Free cholesterol 

accumulated in arterial wall promoted atherogenesis (Fazio et al. 2001). In mouse 

peritoneal macrophages from ACAT-/- mice, efflux of cholesterol was increased along 

with a decrease in esterification. Despite this, there was also a 134% increase in 

cholesterol synthesis in macrophages, which may contribute to atherogenesis (Dove 

et al. 2005). Partial inhibition of ACAT1 in the liver and intestine of ApoE-/- mice 
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however significantly reduced atherosclerosis. Mice treated with ACAT1 inhibitor 

showed a significant reduction in lesion size and immune-staining of macrophages 

(Kusunoki et al. 2001). The controversial results obtained from disruption of ACAT1 

in relation to atherosclerosis highlights the drawbacks of targeting the gene as a 

potential therapeutic mechanism. Clinical trials evaluating the use of ACAT inhibitors 

as a therapeutic in atherosclerosis have also proved unsuccessful (Nissen et al. 2006; 

Meuwese et al. 2009).  

5.5.4 Cholesterol efflux 

The final mechanism targeted in the studies in this chapter to understand the 

molecular basis underlying the action of DGLA on cholesteryl ester accumulation in 

macrophages, was cholesterol efflux. RCT from macrophages is discussed in more 

detail in Sections 1.2.2.3 and 5.1.2.4. The effect of DGLA on cholesterol efflux was 

measured in THP-1 macrophages. The cells were incubated with acLDL to induce 

the accumulation of intracellular cholesterol and stimulated with ApoA1. ApoA1 is the 

apolipoprotein constituent of HDL and acts to promote cholesterol efflux from 

macrophages via ABC transporter proteins (Yvan-Charvet et al. 2008). A number of 

studies utilise ApoA1 as a positive control in cholesterol efflux assays (McLaren et al. 

2010; Ouimet et al. 2011; Sene et al. 2013). Concentrations of acLDL and ApoA1 

used in the assays and analysis of results were as previously reported (McLaren et 

al. 2010; Ouimet et al. 2011; Sene et al. 2013). On loading with acLDL and treatment 

with ApoA1, cholesterol efflux increased in comparison to unloaded macrophages 

(data not shown). Pre-treatment with DGLA followed by acLDL loading and ApoA1 

stimultion, significantly increased cholesterol efflux from THP-1 macrophages by 

approximately 10% (Figure  5.9).   

The inverse correlation between HDL and CHD has been widely recognised in 

numerous studies (Gordon et al. 1977; Gordon et al. 1989; Feig et al. 2014). HDL and 

its component ApoA1 act to remove cholesterol from macrophages by RCT and 

transport it to the liver for degradation, therefore reducing the accumulation of 

cholesterol in periperhal cells including macrophages. ApoE-/- ApoA1-/- mice showed 

an increase in free cholesterol accumulation and lesion area (Boisvert et al. 1999). In 

addition BMDMs expressing a macrophage ApoA1 gene were transplated into ApoE-

/- mice with pre exisiting atherosclerosis. Transplant mice in comparison to ApoE-/- 

mice showed a significant increase in cholesterol efflux and the expression of ABC 

transporter genes  which lead to a reduction in atherosclerosis lesions in the proximal 

aorta (Su et al. 2003). Efflux of cholesterol to ApoA1 can therefore reduce the 

accumulation of cholesterol in macrophages and protect against atherosclerosis. The 
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data in Figure 5.9 shows that DGLA significanly increases cholesterol efflux to ApoA1 

in THP-1 macrophages. This indicates a potential mechanism by which cholesteryl 

ester accumulation is attenuated in THP-1 macrophages incubated with DGLA, which 

can lead to a reduction in foam cell formation and atherosclerosis.  

To date, no study has investigated the role of DGLA in cholesterol efflux in 

macrophages. A handful of studies however have addressed the role of omega-6 

PUFA LA, with contrasting results. In THP-1 macrophages and HMDMs, LA 

significantly decreased the cholesterol content of foam cells and increased 

cholesterol efflux to lipid free ApoA1 (Song et al. 2013) comparable to that seen in 

Figure 5.9.  In contrast however, LA treatment of murine macrophages had an 

opposing effect. In RAW264.7 macrophages, LA decreased ApoA1-mediated 

cholesterol and phospholipid efflux (Wang and Oram 2002). In addition, LA treatment 

of mouse BMDM significantly decreased HDL-mediated efflux (Wang and Oram 

2002). Future experiments may act to determine the effect of DGLA in cholesterol 

efflux from murine macrophages to evaluate any species specific roles.  

5.5.4.1 ABC transporter proteins and ApoE 

To attempt to determine the mechanisms underlying the increase in cholesterol efflux 

from macrophages on treatment with DGLA in THP-1 macrophages, the protein 

expression of key genes involved in RCT were measured by western blotting. Initially 

the study focused on the ABC transporter proteins. Increased expression of ABCA1 

and ABCG1 has previously been shown to increase cholesterol efflux from 

macrophages and significantly prevent atherosclerosis (Singaraja et al. 2002; 

Burgess et al. 2008). In contrast, disruption of these transporter proteins has opposing 

effects resulting in an increase in atherosclerosis (Yvan-Charvet et al. 2007; Tarling 

et al. 2010; Westerterp et al. 2013). ABCA1 and ABCG1 have different mechanisms 

for removal of cholesterol. ABCA1 promotes cholesterol and phospholipids efflux to 

lipid poor ApoA1. In contrast, cholesterol efflux to HDL specifically required ABCG1 

(Kennedy et al. 2005). Given the use of ApoA1 as a cholesterol acceptor used in 

efflux experiments (Figure 5.9), it was hypothesised that DGLA may act through 

increasing expression of ABCA1. The expression of ABCA1 was measured in THP-1 

macrophages loaded with acLDL in an independent experiment, by RT-qPCR and 

western blotting. It was found that on cholesterol loading with acLDL, the mRNA and 

protein expression of ABCA1 was increased in comparison to un-loaded 

macrophages (Figure 5.10). This has also been observed in previous studies (Uehara 

et al. 2007). On pre-treatment with DGLA followed by acLDL loading, the protein 

expression of ABCA1 was not different to acLDL only loaded macrophages, but 
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decreased at the mRNA level. The results are based on a single experiment 

performed in duplicate; further repeats must be performed to establish any significant 

changes.  Previously, no studies have directly measured the effect of DGLA on 

ABCA1 expression. However, studies have reported the effect of other omega-6 and 

omega-3 PUFA with contrasting results. LA treatment  decreased  the expression of 

ABCA1 and reduced ApoA1 binding activity in RAW264.7 macrophages (Wang and 

Oram 2002). A decrease in ABCA1 expression was also observed in EPA and AA 

treated macrophages (Uehara et al. 2002; Uehara et al. 2007). In BMDMs, ABCA1 

expression was significantly inhibited by 95% following LA treatment (Spartano et al. 

2014). However in THP-1 macrophages, endogenous ABCA1 expression  was not 

affected by conjugated LA (CLA) (Salehipour et al. 2010) or LA (Song et al. 2013), 

comparable to results observed in Figure 5.10.  

Following this, the expression of ABCG1 was also measured at the mRNA level. 

Protein level of the transporter protein was not measured due to time constraints. The 

trend observed from a single experiment, suggested that the expression of ABCG1 

was significantly increased on cholesterol loading of macrophages with acLDL 

(Figure 5.10). Pre-treatment with DGLA followed by cholesterol loading had no 

observed effect on ABCG1 mRNA expression. To date, no study has provided insight 

into the effect of DGLA on ABCG1 expression in macrophages. A previous study has 

however investigated the role of omega-6 PUFA, LA on ABCG1 expression in 

RAW264.7 macrophages (Uehara et al. 2007). Comparable to results presented in 

Figure 5.10, cholesterol loading of RAW264.7 macrophages dramatically induced the 

activity of the ABCG1 promoter. However in contrast, it was observed that LA 

significantly supressed ABCG1 promoter activity. In addition, in unloaded 

macrophages, LA significantly decreased endogenous ABCG1 protein expression 

(Uehara et al. 2007). Data presented in Figure 5.10 need further repeats to clarify the 

expression of ABCG1 at the mRNA and the protein level.  

In addition to ABC transporter genes, ApoE has been indicated to play a role in 

cholesterol efflux in macrophages. ApoE is a component of lipoprotein particles and 

aids in transport of cholesterol as well as their clearance in the liver (Curtiss 2000). 

However, in macrophages it has been shown to have an additional role. ApoE 

expression from arterial macrophages in ApoE-/- mice show a significant reduction in 

atherosclerosis, despite plasma cholesterol levels comparable to that of control 

(Hasty et al. 1999). Expression of ApoE in macrophages in vivo has also been shown 

to increase cholesterol efflux in macrophages (Zhu et al. 1998) and to reduce free 

cholesterol accumulation in lesions (Boisvert et al. 1999). In addition to macrophages, 
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ApoE expression in the arterial wall of transgenic mice also decreased atherosclerotic 

lesion sizes and reduced cholesterol content (Shimano et al. 1995). Given this, the 

role of DGLA on the expression of ApoE in cholesterol loaded macrophages was 

determined by western blotting. It was observed that acLDL treatment of THP-1 

macrophages had no effect on the protein expression of ApoE. There was also no 

change in expression on pre-treatment with DGLA followed by acLDL loading. 

Previous studies however, indicate that ApoE expression is increased on cholesterol 

loading. In hypercholesterolemic rabbits, ApoE mRNA expression was increased and 

localised to cholesterol loaded macrophages (Polanco et al. 1995). In mouse 

peritoneal macrophages loaded with 25 μg acLDL, mRNA expression of ApoE was 

also up regulated (Mazzone et al. 1989). In addition, in THP-1 macrophages loaded 

with 100 μg acLDL, the expression of ApoE was significantly increased (Garner et al. 

2002). The induction of ApoE on cholesterol loading was not observed in this study 

(Figure 5.10). The experiment however was performed in isolation and further repeats 

would be needed to determine a more accurate understanding of ApoE expression. 

In addition, Garner et al (2002) observed an increase of ApoE protein expression in 

THP-1 macrophages at a much larger concentration of 100 μg of acLDL compared to 

a concentration of 25 μg used for the studies in Figure 5.10 which may explain in part 

the differences observed between the studies. Further experiments are required to 

determine the effect of concentration of acLDL on ApoE expression in THP-1 

macrophages.  

ABC transporters are LXR regulated genes. Agonists of LXRs activate ABC1 gene 

expression and induce cholesterol-mediated transport (Schwartz et al. 2000). In 

addition LXR ligands are key regulators of ApoE expression in macrophages (Laffitte 

et al. 2001). As shown in Figure 5.11, DGLA significantly inhibited LXR gene 

expression in un-loaded THP-1 macrophages. Previously it has been documented 

that PUFAs inhibit LXR activation. In RAW264.7 macrophages, EPA and LA inhibit 

LXR activity (Uehara et al. 2007) while in rat hepatoma cells AA antagonise LXR 

activation (Pawar et al. 2003). Taken together, the results presented in this chapter 

and previous studies suggest that the increase in cholesterol efflux from THP-1 

macrophages on treatment with DGLA is independent of ABC transporter protein and 

ApoE expression. Data presented in Figure 5.10 and Figure 5.11 and previous work 

indicates that DGLA may in fact inhibit LXR activation and the induction of ABC 

transporter genes and ApoE, however further experiments will need to be performed 

to determine this directly.  
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Alternative mechanisms of cholesterol efflux induced by PUFAs, independent of ABC 

transporters and ApoE, have been suggested previously. In THP-1 macrophages 

treated with LA there was no effect on ABCA1 expression but an increase in 

cholesterol efflux. This was associated with specific effects on gene profiles of genes 

involved in lipid droplet metabolism including cell death inducing DFF45 like effector 

(CIDE) and perilipin adipophilin TIP47 (PAT) family members following PUFA 

treatment (Song et al. 2013). In addition, ALA treatment in macrophage foam cells 

significantly increased cholesterol efflux and decreased cholesterol storage. This was 

associated with a decrease in the expression of stearoyl CoA desaturase (SCD1), the 

rate limiting enzyme in synthesis of MUFA (Zhang et al. 2012).  In addition to this, 

future work could explore the role of DGLA metabolites in cholesterol efflux. As shown 

previously in Chapter 3, DGLA metabolises to PGE1, a COX metabolite. Studies have 

indicated a role for COX metabolites in cholesterol efflux in macrophages. In THP-1 

macrophages, inhibition of COX enzymes with inhibitors significantly decreased 

cholesterol efflux and increased foam cell formation (Chan et al. 2007). In addition, in 

skin fibroblasts, stimulation of cAMP by PGE1 enhanced cholesterol efflux to HDL3 

(Middleton and Middleton 1998). It is therefore possible that DGLA is acting through 

PGE1 to induce cholesterol efflux.  

5.5.5 DGLA metabolite PGE1 

An important feature of PUFA signalling in disease is their ability to form eicosanoids. 

As shown previously in Chapter 3, administration of DGLA to THP-1 macrophages 

increases the production of the COX metabolite PGE1. PGE1 has been well 

documented to play a number of anti-inflammatory roles, discussed in detail in 

Section 3.1.3. Given the effect of DGLA on aspects of foam cell formation, it was of 

interest to determine if these effects were due to the action of DGLA or its metabolite 

PGE1. The effects of PGE1 on IFN-γ induced MCP-1 and ICAM-1 gene expression, 

along with MCP-1 induced monocyte migration, were measured.  

THP-1 macrophages were pre-treated with PGE1 for one hour prior to treatment with 

IFN-γ. Doses of PGE1 ranging from 10-100 µM were used to determine the optimum 

concentration for use in further experiments. Gene expression was measured using 

RT-qPCR. IFN-γ invreased MCP-1 and ICAM-1 expression by 62% and 55% 

respectively (Figure 5.12). When pre-incubated with PGE1 prior to cytokine 

stimulation, MCP-1 induction was inhibited, returning to a level below basal 

expression in a dose-dependent manner. ICAM-1 expression was attenuated by an 

average of 40-55% at all doses.  Both results were significant at the lowest dose used 

(10 µM) and this concentration was employed in further experiments. This result was 
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confirmed in HMDMs (Figure 5.13). As shown in Figure 5.14, MCP-1 induced 

monocyte migration significantly by 70% as observed previously. On co-incubation 

with 10 µM PGE1, monocyte migration was inhibited and returned to levels observed 

in un-stimulated cells.  

Similar results have been previously observed in vivo. PGE1 has been shown to inhibit 

MCP-1 expression in mice with induced glomerular immune injury (Jocks et al. 1996). 

In addition, patients with peripheral vascular disease receiving PGE1 therapy showed 

a significant decrease in circulating levels of adhesion molecules ICAM-1, VCAM-1 

and E-selectin (Palumbo et al. 2000). In mouse macrophages, PGE1 inhibited PMA-, 

IFN-γ- and LPS-mediated induction of MIP-1β and MIP-1α inflammatory genes 

expressed in atherosclerosis (Martin and Dorf 1991). PGE1 was also shown to inhibit 

the expression of pro-inflammatory genes induced by numerous other cytokines 

(Martin and Dorf 1991). 

To determine if the anti-inflammatory actions of DGLA were as a result of production 

of PGE1, RNA interference techniques were used to knockdown the expression of 

COX enzymes. As discussed previously in Chapter 3, there is some debate as to the 

specific role of the COX isoforms in PGE1 formation. Nevertheless, both COX-1 and 

COX-2 have been shown to metabolise DGLA to PGE1 (Levin et al. 2002) therefore 

both enzymes were targeted to ensure that synthesis was inhibited at the maximum 

level. To evaluate the role of PGE1 synthesis from DGLA in inflammation, the robust 

IFN-γ induced MCP-1 response was initially investigated. siRNA techniques were 

used to target COX-1 and COX-2 enzymes prior to differentiation into macrophages, 

incubation with DGLA and stimulation with IFN-γ. Following knockdown, the levels of 

COX-1 and COX-2 were measured at the mRNA and protein level (Figure 5.15). 

COX-1 was knocked down by an average of 75% and 50% at the mRNA and protein 

level, respectively. COX-2 knockdown was 60% at mRNA level and 20% at protein 

level (Figure 5.15). COX-2 knockdown seemed less efficient than COX-1 knockdown; 

however COX-2 is an inducible enzyme while COX-1 is constitutively expressed. 

Basal levels of COX-2 mRNA and protein were very low in unstimulated 

macrophages. Absolute quantification of COX-1 and COX-2 was not determined; 

however in doing so it may be possible to more accurately compare the levels of 

COX-1 and COX-2 knockdown. Despite this, knockdown of COX-1 and COX-2 

enzymes were sufficient to see changes in IFN-γ induced MCP-1 expression.  

As expected, IFN-γ induced MCP-1 expression which was significantly attenuated on 

pre-treatment with DGLA (Figure 5.16). In macrophages where the expression of 
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COX-1 and COX-2 was knocked down, MCP-1 was still significantly induced by IFN-

γ. However, pre-treatment with DGLA did not significantly reduce MCP-1 expression. 

The effect of DGLA on reducing MCP-1 induction was abolished following knockdown 

of COX-1 and COX-2. This indicates that on treatment of the cells with DGLA, the 

COX metabolites PGE1 plays a role in the inhibition of IFN-γ induced MCP-1 gene 

expression. Future experiments may explore the use of the COX inhibitor naproxen 

to evaluate ICAM-1 gene expression and monocyte migration.  

Previous research supports the data presented in Figure 5.16. Oral administration of 

DGLA to mice, significantly reduced the induction of inflammation in the ears, 

triggered by application of an inflammatory agent (Watanabe et al. 2014). DGLA 

reduced infiltration of cells, swelling and chemokine production (Watanabe et al. 

2014). When mice were administered COX inhibitor naproxen prior to DGLA feeding, 

this reduction in inflammation was attenuated (Watanabe et al. 2014). Naproxen 

prevented a reduction in infiltration of cells to the inflamed areas along with the 

reduction in the levels of MCP-1 (Watanabe et al. 2014). This indicates a role of the 

COX DGLA metabolite PGE1 in migration and MCP-1 production in vivo. In addition, 

ApoE deficient mice fed DGLA significantly reduced lipid accumulation in the mouse 

aortas (Takai et al. 2009). Following treatment with naproxen, lesion size was reduced 

so that there was no significant difference between the vehicle and DGLA and 

naproxen treated groups (Takai et al. 2009). The inhibition of inflammatory markers 

ICAM-1 and VCAM-1 in mice supplemented with DGLA was also reversed with 

naproxen treatment (Takai et al. 2009). 

In addition to metabolising DGLA into PGE1, COX enzymes can also metabolise AA 

into PGE2 (Levin et al. 2002). As previously shown, in macrophages pre-treated with 

DGLA and then stimulated with IFN-γ there was a significant induction of PGE2 

(Figure 3.9). It can be assumed therefore that knockdown of the two enzymes would 

limit the production of both prostaglandins. As the knockdown is not specific to 

inhibition of individual prostaglandins, the experiment cannot specifically identify 

which is responsible for the results observed. However, given the roles of PGE1 on 

MCP-1 and ICAM-1 expression presented in this report (Figure 5.12 and 5.13) and in 

the literature (Martin and Dorf 1991; Jocks et al. 1996; Watanabe et al. 2014), the 

induction of PGE1 on treatment of DGLA in macrophages and the widely reported pro-

inflammatory actions of PGE2, it can be assumed with confidence that the results 

shown in Figure 5.16 are due to the inhibition of PGE1 production from DGLA.  
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The anti-inflammatory actions of DGLA are not solely dependent on PGE1 production 

however. DGLA inhibited TNF-α release from PBMCs, as did PGE1. However 

inhibiting PGE1 production, did not affect the reduction of TNF-α after DGLA 

supplementation (Dooper et al. 2003). This indicates DGLA has a direct effect or is 

acting through the production of an alternative eicosanoid. Another series 1 

prostaglandin synthesised from DGLA, PGD1 has previously been shown to reduce 

severity of atopic dermatitis in mice, reducing scratching and scores (Amagai et al. 

2015). Future work could include determining the roles of other eicosanoids 

metabolised from DGLA in the regulation of the inflammatory response in 

atherosclerosis, to obtain a better understanding of the role of the PUFA and its 

metabolites.  
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CHAPTER 6 

GENERAL DISCUSSION 

6.1 Introduction 

In 2008 it was estimated that 17.8 million people died of CVD related disease, more 

than any other disease in the Western society. With mortality rates predicted to 

increase in the coming years, the need for new therapeutic advances is crucial. 

Atherosclerosis is the primary cause of CVD. It is characterised by the accumulation 

of lipid-rich plaques in the walls of large and medium arteries as a result of a chronic 

inflammatory response (Buckley and Ramji 2015). Atherosclerosis is a progressive, 

mutli-factorial disease, with complex pathology. A key feature is the formation of lipid-

loaded macrophages, termed foam cells, which accumulate in the walls of arteries 

and form the underlying basis for the development of plaques (Michael et al. 2012). 

Targeting the early stages of atherosclerosis and the ongoing inflammatory response 

is of therapeutic interest in the prevention and management of the disease.  

Statins are the primary drug therapy used in the management of atherosclerosis 

(Michael et al. 2012). Use of statins has been well documented to have had a marked 

impact in reducing the mortality rates from the disease, however there are a number 

of limitations and drawbacks to the therapy (Mishra and Routray 2003). The maximum 

reduction in mortality rates that can be attributed to statins is about 30%, with many 

studies reporting issues such as side effects and tolerability (Mishra and Routray 

2003). In addition to this, the result of a number of clinical trials investigating key 

targets in the disease (PPAR agonists, inhibitors of CETP and ACAT-1) have been 

disappointing (Fazio et al. 2001; Weber and Noels 2011; Michael et al. 2012; Ramji 

and Davies 2015). The need for new preventative and therapeutic agents is therefore 

essential. 

Nutraceuticals are potentially promising drug alternatives, as prevention or limiting 

agents. It is important to determine the beneficial effect of these agents by 

understanding the molecular mechanisms underlying their actions in vitro and in vivo. 

DGLA is an omega-6 PUFA which has been implicated to play an anti-inflammatory 

role in a number of diseases such as atopic eczema and atherosclerosis (Kawashima 

et al. 2008; Takai et al. 2009). In addition to this, the PUFA has been shown to reduce 

SFA induced hypertension in rats (Hassall and Kirtland 1984), inflammatory 

responses induced by croton oil in mice (Watanabe et al. 2014) and promote 
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antithrombotic effects in humans (Kernoff et al. 1977). In vivo studies have indicated 

that DGLA is well tolerated in mice, rats and humans, with no side effects reported 

(Umeda-Sawada et al. 2006; Takai et al. 2009; Teraoka et al. 2009; Tanaka et al. 

2012).  

The project was based on two broad aims. First; determine the uptake and 

metabolism of DGLA in vitro and in vivo. Second, delineate the molecular 

mechanisms underlying the anti-inflammatory action of DGLA, in relation to 

atherosclerosis. For in vitro analysis, macrophage cell lines and HMDMs were used 

throughout the study due to the key roles of these cells in foam cell formation and the 

pathology of atherosclerosis.  

6.2 Results 

6.2.1 Summary of key findings with DGLA 

In vitro 

1. Supplementation with DGLA significantly increased the incorporation of the 

PUFA into TPL and TAG fractions of THP-1 macrophages. There was no 

increase in the incorporation of AA into lipid fractions. 

 

2. Attenuated MCP-1 induced monocytic migration of THP-1 monocytes. 

 

3. Inhibited pro-inflammatory cytokine (IFN-γ, IL-1β, TNF-α) induced expression of 

MCP-1 and ICAM-1, two robust markers of inflammation, in THP-1 

macrophages. Inhibition of IFN-γ response was also confirmed in RAW264.7 

and HMDMs.  

 

4. Inhibited STAT-1 SER727 phosphorylation, involved in activation of IFN-γ 

signalling in THP-1 macrophages. 

 

5. Attenuated acLDL induced cholesteryl ester accumulation in RAW264.7 

macrophages. 

 

6. Decreased Dil-oxLDL uptake by THP-1 macrophages. 

 

7. Decreased scavenger receptor expression and uptake by macropinocytosis in 

THP-1 macrophages. 
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8. Increased cholesterol efflux in cholesterol-loaded THP-1 macrophages 

stimulated with ApoA1. 

 

9. Increased production of eicosanoids PGE1 and 15-HETrE in THP-1 

macrophages. 

 

10. PGE1 inhibited IFN-γ induced MCP-1 and ICAM-1 expression and monocyte 

migration in THP-1 macrophages. 

 

11. Knockdown of COX enzymes abolished the inhibition of DGLA on IFN-γ induced 

MCP-1 expression in THP-1 macrophages. 

In vivo 

12. Mice supplemented with 4.4 % (w/w) DGLA (isolated from mutant algal powder) 

in their diet increased the relative amount of this PUFA in plasma, liver and 

kidney lipid fractions.  

 

6.2.2 Lipid uptake in vitro 

In Chapter 3, initial studies focused on determining the uptake of DGLA into THP-1 

macrophage lipid fractions. Lipid analysis was performed using TLC and GC. A time 

point of 24 hour incubation with DGLA had been optimised previously in the 

laboratory. Using this time point a dose response experiment was performed based 

on concentrations used previously in the laboratory and other studies (Iversen et al. 

1991; Iversen et al. 1992; Dooper et al. 2003). It was found that DGLA levels 

increased in a dose-dependent manner into TPL and TAG fractions of THP-1 

macrophages (Figure 3.2). A concentration of 100 µM was used in further 

experiments due to the more pronounced lipid changes observed in comparison to 

lower concentrations.  

Lipid analysis following treatment of THP-1 macrophages with 100 µM DGLA (or 

vehicle control) was repeated for statistical analysis. It was found that treatment of 

the cells with 100 µM DGLA resulted in a significant increase in the level of the PUFA 

into TPL and TAG fractions in equal proportions (Figure 3.3). In addition there was an 

increase into individual phospholipids PC, PS, PE and PI (Figure 3.5). It was also 

observed that in all the lipid fractions analysed, there was no significant increase in 

the level of AA. This indicated that in THP-1 macrophages, treatment with DGLA 

resulted in a specific accumulation of the PUFA and that it was not rapidly desaturated 
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to AA. The result was comparable to previous studies in vitro (Johnson et al. 1997; 

Dooper et al. 2003). It has previously been shown that macrophages have limited 

desaturase activity (Chapkin et al. 1988; Chapkin and Coble 1991; Johnson et al. 

1997) which may explain the resulting lack of an increase in the levels of AA on 

supplementation with DGLA. This was a positive result as fatty acid composition of 

lipid pools directly influences the production of eicosanoids. DGLA gives rise to anti-

inflammatory eicosanoids, while AA produces classically pro-inflammatory 

eicosanoids. The selective increase in the level of DGLA over AA, may therefore 

affect the inflammatory potential of THP-1 macrophages by altering eicosanoid 

production. Given the important role of macrophages in the chronic inflammatory 

response in atherosclerosis, altering the production of eicosanoids from these cells 

may potentially have an important impact on the disease.  

6.2.3 Eicosanoids production 

Following on from the changes in fatty acid composition of THP-1 macrophages 

observed on treatment of the cells with DGLA, HPLC-MS was used to measure 

eicosanoid production. This would determine if changes in lipid composition of THP-

1 macrophages translated to a change in eicosanoid production. Prostaglandins, 

produced from the metabolism of DGLA and AA by COX, were measured. In DGLA 

treated macrophages, there was a significant increase in the concentration of PGE1, 

with no change in the levels of PGE2 (Figures 3.7 and 3.8). The concentration of PGE1 

did not exceed that of PGE2 in any experiment. However, the ratio of PGE2:PGE1 was 

dramatically reduced on treatment of the cells with DGLA. This indicated that the 

accumulation of DGLA into THP-1 macrophages did influence the production of 

eicosanoids with the significant increase in its COX metabolite PGE1. As expected, 

there was no rise in the production of AA metabolite PGE2. Similar results were also 

observed in vitro in mouse peritoneal macrophages (Chapkin and Coble 1991; 

Iversen et al. 1992). In addition to this, DGLA supplementation also significantly 

increased the production of LOX metabolite 15-HETrE, with no increase in AA LOX 

metabolites 5-, 11-, 12- and 15-HETE (Figure 3.6). PGE1 and 15-HETrE have been 

well documented to play a number of anti-inflammatory roles (Zurier and Ballas 1973; 

Zurier et al. 1977; Horrobin 1991). This suggested that supplementation of 

macrophages with DGLA can influence the inflammatory potential by increasing the 

production of anti-inflammatory mediators PGE1 and 15-HETrE.   

Eicosanoid production, on induction of an inflammatory state, was also measured. 

IFN-γ is a well-established pro-inflammatory cytokine (McLaren and Ramji 2009) and 

has been used routinely in the laboratory and throughout this study. IFN-γ stimulation 
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of macrophages did not significantly change the production of any eicosanoids 

measured. However, pre-treatment with DGLA followed by stimulation with IFN-γ 

significantly increased the production of PGE2 which was not seen in any other 

treatment (Figure 3.7). In addition to this, production of PGE1 in DGLA and IFN-γ 

stimulated macrophages, also increased to almost twice that seen in DGLA only 

treated macrophages (Figure 3.8). However, this difference was not significant due 

to a high variability between individual repeats. 

It was hypothesised that IFN-γ stimulation following DGLA pre-treatment may-be 

increasing the desaturation of the PUFA to AA and its accumulation into THP-1 lipid 

fractions. However, fatty acid analysis indicated that IFN-γ alone, and pre-treatment 

with DGLA followed by IFN-γ stimulation, did not result in an increase in the relative 

amount of AA into lipid fractions (Appendix 2). The next hypothesis was that IFN-γ 

affects the expression of COX enzymes, responsible for the production of 

prostaglandins. RT-qPCR was used to measure the effect of the cytokine on COX 

gene expression. It was observed that IFN-γ stimulation only, had no effect on the 

expression of COX-1 and COX-2 (Figure 3.9). On incubation with DGLA followed by 

stimulation with IFN-γ however, there was a significant decrease in COX-1 expression 

and a significant increase in COX-2 expression. There was also a significant decrease 

in COX-1 expression in DGLA only treated macrophages. These data indicated that 

DGLA in combination with IFN-γ was significantly increasing the expression of COX-

2 which, under identical conditions, was also increasing the production of PGE2 and 

to some extent PGE1. This suggested that COX-2, not COX-1 was primarily 

responsible for prostaglandin synthesis in THP-1 macrophages. The result was 

supported by data presented in previous studies (Ariasnegrete et al. 1995; Barrios-

Rodiles and Chadee 1998; Caughey et al. 2001; Levin et al. 2002). Future work would 

need to confirm these changes at the protein level.  

Despite the increase in PGE2 on treatment with DGLA and IFN-γ, results presented 

in Chapter 4 indicated an overall anti-inflammatory role in DGLA treated 

macrophages. For example, attenuation of IFN-γ induced gene expression on pre-

treatment with DGLA was observed in THP-1 macrophages, a condition in which 

PGE1 and PGE2 production was induced (Figure 3.7 and 3.8). This suggests that the 

role macrophages play in inflammation may be as a result of the ratios of PGE1 to 

PGE2 produced. Supplementation with DGLA, and induction of PGE1, may prove 

sufficient to offset any pro-inflammatory actions that may be promoted through the 

induction of PGE2.  
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6.2.3.1 Role of PGE1 

Given the induction of PGE1 production from macrophages treated with DGLA, and 

the anti-inflammatory roles of the eicosanoid reported previously (Martin and Dorf 

1991; Palumbo et al. 2000) the role of PGE1 was investigated in Chapter 5. Initially it 

was observed that DGLA inhibited IFN-γ induced gene expression and monocyte 

migration (Figure 4.10 and 4.15). The experiments were mimicked using PGE1. It was 

observed that PGE1 attenuated the IFN-γ induced expression of MCP-1 and ICAM-1 

in THP-1 macrophages and HMDMs (Figure 5.12 and 5.13) and inhibited MCP-1 

induced monocyte migration (Figure 5.14) comparable to that of DGLA. It was 

therefore hypothesised that the production of PGE1 from DGLA was playing a role in 

these processes.  

To test this hypothesis, the effect of DGLA on IFN-γ induced MCP-1 expression was 

measured in macrophages following siRNA-mediated knockdown of COX genes. 

COX-1 and COX-2 were both targeted for knockdown as both genes have been 

implicated in prostaglandin synthesis (Levin et al. 2002). As presented in Chapter 5 

(Figure 5.16), in macrophages containing COX-1 and COX-2, DGLA attenuated IFN-

γ induced MCP-1 gene expression. In macrophages with COX-1 and COX-2 

knockdown, this response was abolished. This indicated that metabolism of DGLA to 

PGE1 played a key role in IFN-γ mediated changes in gene expression. The data was 

supported by results published previously in vivo (Takai et al. 2009; Watanabe et al. 

2014). Given the inhibition of monocyte migration with PGE1 observed in Chapter 5, 

future work could aim to establish the role of the eicosanoid in the effect of DGLA on 

this process. This could be achieved by utilising the COX inhibitor naproxen.  

6.2.4 Cytokines 

Cytokines play an important role in regulating the inflammatory response in 

atherosclerosis. The effect of DGLA on signalling by pro-inflammatory cytokines IFN-

γ, IL-1β and TNF-α was investigated. The three cytokines have been studied 

previously in the laboratory and their roles in atherosclerosis are well documented 

(Gupta et al. 1997; Kirii et al. 2003; McLaren and Ramji 2009; Xiao et al. 2009). The 

induction of two key genes in atherosclerosis, MCP-1 and ICAM-1, was used as 

robust markers of inflammation. The expression of MCP-1 and ICAM-1 is up-

regulated in atherosclerosis and contributes to the pathology of the disease by 

recruiting monocytes and promoting their transmigration into the arterial intima 

(Gosling et al. 1999; Lusis 2000; Kitagawa et al. 2002). RT-qPCR was used to 

measure MCP-1 and ICAM-1 gene expression in response to pro-inflammatory 

cytokine signalling in THP-1 macrophages.  
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6.2.4.1 IFN-γ 

IFN-γ was the primary cytokine employed throughout this study as it has previously 

been extensively studied in the laboratory and has been described as a master 

regulator of atherosclerosis (McLaren and Ramji 2009). IFN-γ significantly induced 

the expression of MCP-1 and ICAM-1 in THP-1 macrophages (Figure 4.10). On pre-

incubation with DGLA, the induction of expression of these genes was significantly 

attenuated. The findings were also replicated in RAW264.7 macrophages and 

HMDMs (Figure 4.11 and 4.12). This indicated that DGLA potentially inhibited IFN-γ 

signalling and the regulation of inducible genes by this cytokine. IFN-γ signals through 

the JAK/STAT pathway. A key step in the pathway is the phosphorylation of STAT1 

molecules. This allows for STAT1 transcription factors to dimerise, translocate into 

the nucleus and activate gene transcription (Varinou et al. 2003). Two 

phosphorylation sites are present on the STAT1 molecule at positions TYR701 and 

SER727. Phosphorylation at TYR701 is crucial for STAT1 function as a transcription 

factor. For maximum activity of STAT1, phosphorylation at both sites is needed. Given 

the important role of STAT1 phosphorylation in IFN-γ signalling through the 

JAK/STAT pathway, the effect of DGLA on this process was determined by western 

blotting. Stimulation of the cells with IFN-γ significantly increased the phosphorylation 

of STAT1 at both phosphorylation sites in THP-1 macrophages (Figure 5.4). On pre-

treatment of the cells with DGLA followed by IFN-γ stimulation, the phosphorylation 

at SER727 was attenuated. There was no effect on phosphorylation at TYR701. 

Although STAT1 translocation into the nucleus and activation of transcription can 

occur independently of SER727 phosphorylation, it has previously been found that 

inhibiting phosphorylation at this site attenuates IFN-γ induced pro-inflammatory gene 

expression including MCP-1 and ICAM-1 (Varinou et al. 2003; Li et al. 2010). The 

data presented in Chapter 5 therefore indicates that DGLA inhibits IFN-γ induced 

gene expression by suppressing the phosphorylation of STAT1 at SER727 thereby 

attenuating the maximum activity of the transcription factor. This is a novel 

mechanism identified for the role of DGLA in pro-inflammatory signalling in 

atherosclerosis. Signalling through STAT1 also plays a role in the regulation of other 

pro-inflammatory pathways including IL-1 and TLR4 (Sikorski et al. 2011b). Given the 

role of DGLA in STAT1 regulation, signalling through these STAT1 dependent pro-

inflammatory pathways may also be affected. Future work may investigate the role of 

DGLA in other STAT1 dependent pathways.  
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6.2.4.2 IL-1β 

Following on from the inhibition of IFN-γ induced gene expression, the effect of the 

PUFA on other pro-inflammatory cytokine signalling was determined. The expression 

of the two inflammatory markers MCP-1 and ICAM-1 induced through IL-1β signalling 

was measured by RT-qPCR. IL-1β significantly induced the expression of the two 

genes in THP-1 macrophages (Figure 4.13). This has been observed in previous 

studies (Myers et al. 1992; Lim et al. 2009; Yang et al. 2010). Pre incubation of the 

cells with DGLA significantly inhibited the IL-1β induced expression of MCP-1 and 

ICAM-1 and returned to levels comparable to that of control. Inhibition of IL-1β 

signalling in vivo has been shown to have athero-protective effects, reducing plaque 

formation, macrophage infiltration and pro-inflammatory gene expression, including 

that of MCP-1 and VCAM-1 (Kirii et al. 2003; Bhaskar et al. 2011). The effect of DGLA 

on IL-1β signalling in vitro has not previously been established. Given the athero-

protective role of inhibiting IL-1β signalling in atherosclerosis, this may therefore be a 

novel mechanism by which DGLA exerts anti-inflammatory and anti-atherosclerotic 

effects.  

In addition to IL-1β signalling, the production of the cytokine from macrophages was 

also of interest. The production of an active form of IL-1β is under the control of a 

multi protein complex termed the inflammasome. A number of inflammasome 

complexes have been identified, however the NLRP3 inflammasome has been 

described as a key regulator of IL-1β production and documented to play a role in 

atherosclerosis (Moore et al. 2013). The role of the NLRP3 inflammasome in IL-1β 

production has also been documented in THP-1 macrophages (Rajamaki et al. 2010). 

ELISA was used to measure the effect of DGLA on the production of IL-1β through 

the activation of the NLRP3 inflammasome. The inflammasome was activated by 

cholesterol crystals, which have previously been demonstrated to induce 

inflammasome activation in vivo  and in vitro, including THP-1 macrophages (Duewell 

et al. 2010). Data presented in Chapter 4 showed that on treatment with cholesterol 

crystals, IL-1β production was induced from THP-1 macrophages as previously seen 

(Duewell et al. 2010) (Figure 4.14). On pre-treatment of the cells with DGLA followed 

by stimulation with cholesterol crystals, IL-1β expression was induced further in 

comparison to cholesterol crystal treatment only. This suggested DGLA induced IL-

1β expression through NLRP3 inflammasome activation. Previous work has proved 

controversial. Some studies have reported similar results with no effect of DGLA on 

LPS and nigericin induced NLRP3 or NLRP1b inflammasome activation (Yan et al. 

2013). In addition, GLA treatment of peripheral blood monocytes failed to inhibit the 
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LPS induced IL-1β induction (Furse et al. 2001). However GLA did inhibit IL-1β 

induction in an LPS independent manner. GLA reduced the stability of pro-IL-1β 

mRNA and attenuated auto induction of IL-1β (Furse et al. 2001). Data presented in 

Chapter 4 and previous studies (Furse et al. 2001; Yan et al. 2013), indicate that 

DGLA has no inhibitory effect on IL-1β production through inflammasome activation. 

Future work with DGLA may focus on evaluating IL-1β production in inflammasome 

independent mechanisms, given the role for GLA previously reported (Furse et al. 

2001).  

6.2.4.3 TNF-α 

Finally, the effect of DGLA on the induction of MCP-1 and ICAM-1 expression by TNF-

α was determined in THP-1 macrophages. Data presented in Chapter 4 demonstrated 

that TNF-α significantly induced the expression of the two genes (Figure 4.13). The 

cytokine has also previously been shown to induce the expression of the two genes 

in vitro and in vivo (Myers et al. 1992; Murao et al. 2000; Xiao et al. 2009). On pre-

treatment of the cells with DGLA followed by TNF-α stimulation, the induction of MCP-

1 and ICAM-1 expression was significantly inhibited. In both cases, the expression of 

genes in DGLA and TNF-α stimulated macrophages was not significantly different to 

that of the vehicle control. Inhibiting signalling through TNF-α in vivo has been shown 

to reduce plaque formation and decrease the levels of pro-inflammatory cytokines 

and chemokines (Ohta et al. 2005; Xiao et al. 2009). DGLA has also been shown to 

attenuate the production of TNF-α from PBMCs (Dooper et al. 2003). Data presented 

in Chapter 4 and previous studies have indicated a role for DGLA in the attenuation 

of TNF-α induced pro-inflammatory signalling and production. Further experiments 

will need to be carried out to determine the role of DGLA on TNF-α production in 

macrophages and in vivo.  

6.2.5 Monocyte migration 

As previously described (Section 4.1.2.2.1), MCP-1 plays an important role in 

monocyte recruitment (Gosling et al. 1999). Given the role of DGLA in inhibiting the 

induction of MCP-1 expression by a number of pro-inflammatory cytokines, it was of 

interest to determine if DGLA had a direct effect on the role of MCP-1. Monocyte 

migration was measured using cell inserts, to mimic endothelial layer of arteries, and 

THP-1 monocytes stimulated with MCP-1. MCP-1 significantly induced monocyte 

migration across the cell insert (Figure 4.15). On co-incubation with DGLA, this 

induction was significantly attenuated. This effect of DGLA on MCP-1 induced 

monocyte migration was a novel finding. Previous work has indicated that inhibiting 
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monocyte migration can significantly protect against the development of 

atherosclerosis in vivo (Feige et al. 2013; Mueller et al. 2013).  

The majority of experiments performed throughout this project, involved pre-

incubation with DGLA which allowed for uptake of the PUFA into THP-1 lipid fractions. 

However, DGLA was co-incubated with MCP-1 for 3 hours in migration studies due 

to the experimental set up. During this time it is hypothesised that there would be a 

lower level of uptake and metabolism of DGLA by monocytes. This may indicate that 

DGLA is having a direct effect on monocyte migration as opposed to a potentially 

indirect effect through its metabolites. This could be the result of DGLA acting on a 

number of fatty acid receptors including PPARs, TLRs, GPCR or SREBPs (as 

discussed in Section 1.4.2). However, data presented in chapter 5 (Figure 5.14) 

showed that PGE1 also inhibited monocyte migration suggesting a role for the 

eicosanoid. Future study could act to elucidate the mechanism by which DGLA 

inhibits monocyte migration. The role of DGLA metabolism to PGE1 in monocyte 

migration could be determined with the use of COX inhibitor naproxen. In addition, 

the role of fatty acid receptors could be evaluated through employing gene silencing 

techniques.  

Taken together, data presented in Chapter 4 indicates that DGLA inhibits the 

induction of MCP-1 expression through the inhibition of pro-inflammatory cytokine 

signalling and its ability to recruit monocytes. Inhibition of MCP-1 and monocyte 

recruitment has been previously shown to attenuate monocyte and macrophage 

content of plaques and significantly reduce atherosclerosis (Gosling et al. 1999; Feige 

et al. 2013; Mueller et al. 2013). Inhibition of MCP-1 induction and function by DGLA 

may be one mechanism by which the fatty acid exerts anti-inflammatory and anti-

atherosclerotic actions.  

6.2.6 Cholesterol uptake and efflux 

The next step following monocyte migration into the arterial intima, is their 

differentiation into macrophages. Macrophages can take up modified forms of LDL in 

an unregulated manner, accumulate cholesterol and store any excess as cholesteryl 

esters in lipid droplets in the cytoplasm (Ghosh et al. 2010). Viewing lipid loaded 

macrophages under the microscope has led to the term foam cells, due to their foamy 

appearance (Brown et al. 1980). The effect of DGLA on modified LDL induced 

cholesteryl ester accumulation was assessed in Chapter 4. Using acLDL as a 

modified form of LDL, the effect of DGLA on cholesteryl ester accumulation was 

determined in RAW264.7. It was found that on treatment with acLDL, RAW264.7 
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macrophages accumulated a significant amount of cholesteryl esters (Figure 4.16). 

On pre-treatment of the cells with DGLA followed by acLDL loading, this accumulation 

was significantly attenuated. In addition, the relative amount of free cholesterol was 

reduced in acLDL treated macrophages. This was slightly rescued on pre-treatment 

of the cells with DGLA, however this was not significant. The trend, however, 

suggested that DGLA played a role in inhibiting the uptake and/or accumulation of 

cholesteryl esters in macrophages. Studies in Chapter 5 aimed to determine the 

underlying molecular mechanisms behind this effect. 

6.2.6.1 Endocytosis 

In Chapter 5, the uptake of modified LDL by macrophages was investigated. Using a 

fluorescent form of oxLDL, Dil-oxLDL, the effect of DGLA on cholesterol uptake was 

measured by FACS. It was found that on treatment of the cells with DGLA, the uptake 

of Dil-oxLDL was significantly reduced by an average of 21% (Figure 5.5). This 

suggested that DGLA had an effect on the mechanisms underlying uptake. The 

uptake by receptor-dependent and -independent endocytosis was therefore 

determined in THP-1 macrophages. Scavenger receptors are expressed on the 

surface of macrophages and take up unregulated amounts of modified LDL. CD36 

and SRA were selected for study due to their key roles in the uptake of acLDL and 

oxLDL as reported previously (Febbraio et al. 2000; Kunjathoor et al. 2002; 

Kuchibhotla et al. 2008). Gene and protein expression of scavenger receptors was 

measured by RT-qPCR and western blotting respectively. It was found that on 

treatment with DGLA, the mRNA and protein expression of SRA was significantly 

attenuated in comparison to the control (Figure 5.6). The mRNA expression of CD36 

was also significantly reduced.  

In addition to receptor-mediated endocytosis, receptor-independent uptake through 

macropinocytosis was determined by FACS analysis of a marker, LY. 

Macropinocytosis has been documented to uptake native and modified forms of LDL 

and to contribute significantly to foam cell formation in macrophages (McLaren et al. 

2011b; Michael et al. 2013). On treatment of the cells with DGLA, the uptake of LY 

by macropinocytosis was significantly reduced (Figure 5.7).  

Inhibiting these two uptake pathways has been shown to significantly reduce the 

uptake of acLDL, oxLDL and the accumulation of cholesteryl esters in macrophages 

(Kunjathoor et al. 2002). This suggests that DGLA attenuates cholesteryl ester 

accumulation as seen in Chapter 4, by attenuating modified LDL uptake through 

scavenger receptor mediated pathways and macropinocytosis.  
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6.2.6.2 Efflux 

Macrophages efflux cholesterol by a mechanism known as RCT. An imbalance 

between cholesterol influx and efflux leads to an accumulation of cholesteryl esters 

and macrophage foam cell formation in atherosclerosis (Ono 2012). Efflux of 

cholesterol from acLDL loaded THP-1 macrophages was measured using radioactive 

14C cholesterol and scintillation counting. Following incubation with acLDL, ApoA1 

was used to stimulate efflux from macrophages, which has been shown previously 

(McLaren et al. 2010; Ouimet et al. 2011; Sene et al. 2013). It was found that ApoA1 

increased the efflux of cholesterol from acLDL-loaded THP-1 macrophages in 

comparison to the control (Figure 5.9). When macrophages were pre-treated with 

DGLA followed by acLDL loading and ApoA1 stimulation, efflux was significantly 

increased. No study to date has documented the role of DGLA in RCT from 

macrophages. Increase in cholesterol efflux to ApoA1 in vivo was shown to 

significantly reduce atherosclerosis (Su et al. 2003). This suggests that DGLA may 

decrease cholesteryl ester accumulation and foam cell formation by increasing 

cholesterol efflux from macrophages. 

There are a number of mechanisms by which macrophages remove cholesterol. ABC 

transporters ABCA1 and ABCG1 have been well documented to play an important 

role in macrophage RCT (Singaraja et al. 2002; Wang et al. 2007; Yvan-Charvet et 

al. 2007; Yvan-Charvet et al. 2010). Specifically, ABCA1 plays an important role in 

efflux of cholesterol to ApoA1, while ABCG1 is required to efflux to HDL (Kennedy et 

al. 2005). In addition to this, macrophage expressed ApoE has also been indicated to 

play a role in cholesterol efflux (Zhu et al. 1998). Given the role of DGLA in cholesterol 

efflux, the effect of the PUFA on the mRNA and protein expression of ABCA1, ABCG1 

and ApoE was measured by RT-qPCR and western blotting to attempt to establish 

the underlying mechanisms. Due to time constraints, one experiment was performed 

in triplicate for both RT-qPCR and western blotting. From the results of this 

experiment it was found that in THP-1 macrophages, cholesterol loading with acLDL 

induced ABCA1 (mRNA and protein) and ABCG1 (mRNA) expression but not ApoE 

(protein) (Figure 5.10). On pre-treatment of the cells with DGLA, there was no 

observable difference in expression ABCG1 or ApoE in comparison to only 

cholesterol loaded macrophages. For ABCA1, pre-treatment with DGLA decreased 

mRNA expression, however there was no change observed at the protein level.  

Previous studies on the role of omega-6 PUFAs on the expression of ABC transporter 

genes have proved controversial, with some reporting an inhibition of gene and 

protein expression (Uehara et al. 2002; Wang and Oram 2002; Uehara et al. 2007) 
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and other showing no effect (Salehipour et al. 2010; Song et al. 2013). In addition, 

ABC transporters and ApoE are LXR inducible genes. PUFAs have previously been 

demonstrated to inhibit LXR activation and activity (Pawar et al. 2003; Uehara et al. 

2007). The expression of LXR isoforms LXR-α and –β was measured by RT-qPCR in 

unloaded THP-1 macrophages. It was observed that pre-incubation of DGLA 

significantly attenuated LXR-α and -β mRNA expression (Figure 5.11). This suggests 

that DGLA may inhibit LXR activity in THP-1 macrophages, and that the PUFA may 

have an adverse effect on the expression of ABC transporter genes and ApoE on 

further investigation. This also indicates that DGLA is not acting through mechanisms 

dependent on these two proteins. Future work will need to establish the effect of 

DGLA on the expression of LXR genes in cholesterol loaded macrophages.  

Taken together, the increase in cholesterol efflux on treatment with DGLA observed 

in THP-1 macrophages may not be dependent on LXR regulated genes, ABCA1, 

ABCG1 and ApoE. However further investigation will be needed to confirm this. In 

addition, future work will need to identify any alternative mechanisms by which an 

increase in efflux is achieved by DGLA. This may include determining the role of the 

COX metabolite PGE1 which has previously been indicated to increase cholesterol 

efflux in macrophages and fibroblasts (Middleton and Middleton 1998; Chan et al. 

2007).  

6.2.7 Lipid uptake in vivo 

Initial lipid analysis utilised THP-1 macrophages to determine the uptake and 

metabolism of DGLA. Following on from this, mouse feeding studies were performed 

to determine the uptake of the PUFA in vivo. In vitro work used a pure form of DGLA 

(as a free fatty acid) to determine the specific role of the PUFA in inflammation. 

Alternatively, DGLA was also sourced from a mutant form of the green algae P. incisa, 

obtained from collaboration with Ben-Gurion University, Israel. An additional aim of 

the study was to evaluate the algae as a potential new commercial source of DGLA. 

Initially, freeze dried algal powder was added directly to mouse diet. It was found that 

the algal powder was not digested by the mice and the DGLA contained within the 

algal bodies was not absorbed and incorporated into any lipid fractions (Appendix 1).  

Following this, total lipids were extracted from the algal powder and added directly to 

mouse chow diet. Male C57BL/6 mice were starved for 24 hours prior to being given 

either chow control diet or a diet containing 4.4% (TFA) DGLA for 48 hours. Mice 

were sacrificed using schedule 1 procedures and samples of plasma, together with 

tissue samples, were taken for lipid analysis.  
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Plasma was separated into four lipid fractions; TFA, TPL, TAG and steryl esters. In 

the DGLA group, the level of the PUFA was significantly increased into all lipid 

fractions measured, in comparison to control group. There was no significant increase 

in AA level in any lipid fraction of plasma. In addition, lipid fractions of liver, kidney 

and adipose tissue were analysed. Similar to plasma, the level of DGLA was 

significantly increased in TFA, TPL, TAG and steryl ester lipid fractions in DGLA diet 

group. There was a significant rise in the level of AA in TAG fraction only. Individual 

phospholipids were also analysed from the liver. DGLA was significantly incorporated 

into PS, PE and PC in the DGLA group. In the kidney, DGLA level was significantly 

increased in TFA in the DGLA group, but not TPL or TAG. There was however a 

significant increase in AA in the TPL fraction. Finally, in adipose tissue, DGLA 

significantly increased in TFA in the DGLA group, with no significant increase of AA.  

Results are summarised in Table 6.1.  

 

Table 6.1 – Summary of key findings in vivo 

 

Summary of the significant changes in incorporation of DGLA and AA into lipid fractions, 

following DGLA feeding, in vivo. Tick indicates significant increase in incorporation. Cross 

indicates no significant increase. 

Overall, after 48 hours of DGLA supplemented diet, mice incorporated the PUFA into 

the majority of lipid fractions measured in the plasma, liver, kidney and adipose tissue. 

The only significant increase in AA level observed was in liver TAG and kidney TPL 

fractions. Despite this, there was a general trend observed indicating an increase in 

the level of AA on feeding with DGLA in the majority of lipid fractions. Initial in vitro 

                     DGLA                   AA 

 TFA PL TAG SE TFA PL TAG SE 

Plasma     x x x x 

Liver     x x  x 

Kidney  x x - x  x - 

Adipose  - - - x - - - 
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work in macrophages indicated that DGLA was actively incorporated into membranes 

with no subsequent increase in AA. In contrast, in vivo there was a clear trend of 

increase in AA level in lipid fractions on DGLA feeding. This may be explained by the 

different activities of desaturase enzymes found in different cell types. For example, 

it has been reported that desaturase activity in macrophages is low, preventing rapid 

desaturation of DGLA to AA in these cells (Chapkin et al. 1988; Johnson et al. 1997). 

However, liver and kidney have been reported to have both active elongase and 

desaturase (Johnson et al. 1997) and therefore result in an increase in AA level in 

addition to DGLA, following DGLA feeding, in these tissues. The role of DGLA and 

AA incorporation and eicosanoid production in vivo will need to be further investigated 

to understand the role these two PUFA play and the result on inflammation and 

atherosclerosis.   

6.3 Future perspective 

6.3.1 In vitro assays 

Data presented throughout the thesis have provided key insight into the role of DGLA 

in a number of aspects contributing to macrophage foam cell formation in vitro. This 

includes attenuation of monocyte migration, pro-inflammatory gene expression and 

accumulation of cholesteryl esters. A number of experiments could potentially be 

performed to expand on findings presented in the experimental chapters. Some 

examples have been discussed previously (Sections 3.5, 4.5, 5.5, 6.2) relating to 

each key finding in macrophages and are summarised and expanded below. 

It was found in studies presented in Chapter 4 that DGLA inhibited the IFN-γ induced 

expression of key pro-inflammatory genes in THP-1 macrophages. Data presented in 

Chapter 5 indicated that this may be a result of the attenuation of STAT1 

phosphorylation at SER727 preventing maximum transcriptional activity of IFN-γ 

inducible genes. Following on from this, the effect of DGLA could be investigated on 

other aspects of IFN-γ signalling. Given the action of DGLA on STAT1 a number of 

techniques could be used to determine the subsequent effect of the inhibition of 

STAT1 phosphorylation. Translocation into the nucleus could be measured using 

immunofluorescence. STAT1 binding to DNA may also be analysed using chromatin 

immuno-precipitation (ChIP) assays. In addition, BMDMs isolated from STAT1 knock-

in mice, a mouse colony already present in the laboratory, could be utilised to 

investigate any DGLA mechanisms dependent on STAT1. This would provide further 

understanding into the precise mechanisms underlying DGLAs action in inflammatory 

processes.  
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Previous research has indicated that incorporation of omega-3 fatty acids EPA and 

DHA into cholesteryl esters can alter its physical state and increase hydrolysis and 

efflux of cholesterol from THP-1 macrophages (Lada et al. 2003). Unfortunately, due 

to the insufficient concentration of cholesteryl ester accumulated in unloaded THP-1 

macrophages observed in experiments and in previous studies (Lada et al. 2003), it 

was not possible to carry out lipid analysis of cholesteryl esters in these cells. There 

was however a significant increase of DGLA incorporation into cholesteryl esters into 

liver and plasma lipid fractions of mice in vivo (Chapter 3). This indicates that DGLA 

is actively incorporated into steryl esters and may also accumulate in macrophages. 

In addition to this, data presented in Chapter 4 showed an increase in cholesterol 

efflux from THP-1 macrophages loaded with acLDL. Given the data presented in the 

thesis and previous studies (Lada et al. 2003) detailing the effects of PUFAs on 

cholesteryl ester metabolism and efflux, DGLA may play a similar role. Future work 

could act to determine the incorporation of DGLA into THP-1 macrophage steryl ester 

lipid fraction by GC, following cholesterol loading with acLDL. This could also be 

determined in HMDMs.  

In addition to macrophages, a number of other cell types play an important role in 

atherosclerosis pathology, for example endothelial cells and SMCs. Endothelial 

dysfunction is a key early event in the initiation of atherosclerosis while SMC migration 

and proliferation is characteristic of advancing plaques (McLaren et al. 2011a; 

Michael et al. 2012). Future work could include the effect of DGLA on key events 

related to atherosclerosis in these two cell types. The effect of DGLA on endothelial 

dysfunction could be analysed by techniques measuring cell viability, apoptosis, ROS 

and NO production and expression of pro-inflammatory markers. For SMCs, the effect 

of DGLA on proliferation could be measured by incorporation of bromo-2’-

deoxyuridine which is incorporated into cells during cell division. In addition, migration 

could be measured using an in vitro scratch assay (Liang et al. 2007). This would 

allow for a better understanding of the wider role of DGLA in atherosclerosis 

pathology.  

6.3.2 In vivo experiments 

In vivo studies presented in Chapter 3 were used to analyse the uptake of DGLA 

isolated from an algal source provided by collaborators at Ben-Gurion University, 

Israel. Despite the results of the experiment indicating that this novel source could be 

potentially credible, the study provided no investigation into the mechanistic role of 

DGLA in vivo. Data presented in experimental chapters indicate a number of 

beneficial anti-inflammatory and anti-atherogenic roles for DGLA in macrophages in 
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vitro. Future work will need to expand to in vivo models of the disease to evaluate if 

the mechanistic roles of DGLA are conserved. In vivo models of atherosclerosis can 

be utilised to determine if DGLA has the same effect on monocyte migration, cytokine 

production, pro-inflammatory gene expression and modified LDL uptake and efflux as 

reported in macrophage cell lines. Cytokine expression in vivo could be determined 

by the use of multiplex cytokine assays on plasma and plaques isolated from mouse 

models. In addition, cholesterol efflux can be determined in vivo following peritoneal 

injection of cholesterol loaded macrophages in the presence of radiolabeled 

cholesterol. Determining radioactivity of tracer in plasma, faeces and liver lipids would 

allow for measurement of cholesterol efflux (Wang et al. 2014; Xu et al. 2014a).  

In vitro studies in Chapter 3 of eicosanoid production showed that supplementation 

with DGLA resulted in the selective increase in the production of PGE1, with no 

change in PGE2. However, previous studies in vivo have also suggested that DGLA 

supplementation leads to an increase in PGE2 production (Umeda-Sawada et al. 

2006; Amagai et al. 2015). Again, in vivo models could be utilised to measure 

eicosanoid production in response to DGLA feeding and how this impacts on 

atherosclerosis. Plasma levels of eicosanoids isolated from in vivo models could be 

measured by HPLC-MS.  

Previous in vivo research with DGLA has been limited. Relatively few studies have 

investigated the role of DGLA in vivo in diseases such as atopic dermatitis, cancer 

and atherosclerosis. As previously described, DGLA attenuated the development of 

atherosclerosis in an ApoE-/- mouse model (Takai et al. 2009). Despite this beneficial 

insight into the role of DGLA in atherosclerosis, the study provided little mechanistic 

insight.  For example, a limited number of inflammatory genes were measured by 

semi quantitative reverse transcription PCR and the study was performed at a single 

time point using the ApoE-/- mouse model, a more aggressive model of 

atherosclerosis (Plump et al. 1992; Ishibashi et al. 1993) . In addition there was no 

investigation into processes involved in foam cell formation, cytokine levels or plaque 

composition, stability and plaque regression.  

Future work in vivo with DGLA could be performed to expand on the preliminary work 

detailed on the roles of this PUFA in atherosclerosis. The effect of DGLA on plaque 

morphology, regression and stabilisation could be investigated by a number of plaque 

morphometric and immunohistochemistry techniques. This could include determining 

plaque cell content by staining for cells such as macrophage, SMCs and T-cells, foam 

cell quantification and collagen staining (Miller et al. 2008; McLaren et al. 2010). In 
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addition to this, the effect of DGLA on a number of other parameters could also be 

measured. Plasma lipid profiles could be analysed by TLC and GC and immune cell 

profiles measured by FACS. Plasma concentrations of cytokines and chemokines 

could also be measured in vivo using multiplex ELISAs or microarrays, in response 

to DGLA feeding.  

6.2 Conclusions 

Investigation in vitro has indicated an anti-inflammatory and anti-atherogenic role for 

DGLA. Supplementation with DGLA regulates several key pro-atherosclerotic 

processes involved in foam cell formation, a key step in atherosclerosis. These 

include attenuation of monocyte migration, pro-inflammatory cytokine signalling, pro-

inflammatory gene expression, modified LDL uptake through receptor-dependent and 

-independent mechanisms, cholesteryl ester accumulation and increasing cholesterol 

efflux. Supplementation with DGLA in macrophages also alters the production of 

eicosanoids, inducing anti-inflammatory mediators PGE1 and 15HETrE. Metabolism 

of DGLA to PGE1 in macrophages was also shown to play a key role in cytokine 

induced pro-inflammatory gene expression and monocyte migration and therefore 

maybe one mechanism in which the PUFA elicits anti-inflammatory responses. In 

addition, in vitro and in vivo studies showed DGLA was actively incorporated into 

macrophage, plasma, liver and kidney lipid fractions respectively.  

The data presented in the thesis complements previous limited in vitro and in vivo 

studies carried out with DGLA. Taken together, they indicate a positive role for the 

PUFA in the inhibition of foam cell formation and prevention of atherosclerosis.  

However future work will need to be performed in vivo to further understand the 

mechanistic role and potential use of DGLA as a nutraceutical in the prevention and 

treatment of atherosclerosis. 
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APPENDIX 
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Appendix 1 – Uptake of DGLA into plasma lipid fractions in vivo with 

algal powder 

Mice were supplemented with 2% (w/w) algal powder (containing approximately 

30% DGLA) into diet for 48 hours. Animals were sacrificed and plasma fraction of 

blood collected. Lipids were extracted and separated using 1-dimensional TLC. 

Fatty acid profiles of each lipid fraction were analysed by GC. Graphs display 

average fatty acid composition as a percentage (+ SD) of 3 mice (Control) and 3 

mice (DGLA diet). Statistical analysis was performed using a one-way ANOVA 

followed by Tukey’s post hoc analysis. No significant changes were observed. 

C16:0, palmitic acid; C16:1n7, palmitoleic acid; C18:0, stearic acid; C18:1n9, oleic 

acid; C18:1n7, cis-vaccenic acid; C18:2n6, LA; C18:3n3, ALA; C20:3n6, DGLA; 

C20:4n6, AA; C20:5n3, EPA; C22:6n3, DHA;  
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Appendix 2 – Stimulation with IFN-γ has no effect on AA incorporation in THP-

1 macrophage TPL and TAG fractions  

THP-1 macrophages were pre-incubated with 100 µM DGLA or vehicle control for 24 hours 

followed by 250 U/ml IFN-γ or vehicle control for a further 24 hours. Lipids were extracted and 

separated using 1-dimensional TLC. Fatty acid profiles were determined using GC. Graphs 

display fatty acid composition of fraction as a percentage (+/- SD) of one experiment 

performed in duplicate. C14:0, myristic acid; C16:0, palmitic acid; C16:1n7, palmitoleic acid; 

C18:0, stearic acid; C18:1n9, oleic acid; C18:1n7, cis-vaccenic acid; C18:2n6, LA; C18:3n3, 

ALA; C20:3n6, DGLA; C20:4n6, AA; C20:5n3, EPA; C22:5n3, DPA; C22:6n3, DHA; C24:0, 

lignoceric acid.       
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Appendix 3 – Significant increase of less than 1% in DGLA and AA in faeces 

following 4.4% DGLA diet 

Male C57BL/6 mice were split into 2 groups; Control (3) and DGLA (4). For DGLA group, 

normal chow diet was supplemented with 4.4% (TFA) DGLA. Mice were starved for 24 hours 

prior to feeding. Mice were fed control or DGLA containing diet for 48 hours. Following this, 

faeces were collected, lipids extracted and analysed using GC. Statistical analysis was 

performed using a one-way ANOVA followed by Tukey’s post hoc analysis. * P<0.05. ** P 

<0.01. C16:0, palmitic acid; C18:0, stearic acid; C18:1n9, oleic acid; C18:2n6, LA; C18:3n3, 

ALA; C20:3n6, DGLA; C20:4n6, AA. 
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Appendix 4 – DGLA uptake into THP-1 macrophages from algal lipid extract 

THP-1 macrophages were incubated with 100 µM total fatty acids (extract from algal powder) 

or vehicle control for 24 hours. Lipids were extracted and separated using 1-dimensional TLC. 

Fatty acid profiles were determined using GC. Graphs display fatty acid composition of fraction 

as an average percentage (+/- SD) from two independent experiments. C14:0, myristic acid; 

C16:0, palmitic acid; C16:1n7, palmitoleic acid; C18:0, stearic acid; C18:1n9, oleic acid; 

C18:1n7, cis-vaccenic acid; C18:2n6, LA; C18:3n3, ALA; C20:3n6, DGLA; C20:4n6, AA; 

C20:5n3, EPA; C22:5n3, DPA; C22:6n3, DHA; C24:0, lignoceric acid.        

 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

C14:0 C16:0 C16:1n7 C16:1n9 C18:0 C18:1n9 C18:1n7 C18:2n6 C20:3n6 C20:4n6 C20:5n3 C22:5n3 C22:6n3 C24:0

%
 t

o
ta

l f
at

ty
 a

ci
d

s
Polar lipids

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

C14:0 C16:0 C16:1n7 C16:1n9 C18:0 C18:1n9 C18:1n7 C18:2n6 C18:3n3 C20:3n6 C20:4n6 C22:3n6 C22:5n3 C22:6n3

%
 t

o
ta

l  
fa

tt
y 

ac
id

TAG



 
 

232 
 

 

 

 

 

 

 

 

 

Appendix 5 – DGLA (hydrolysed from algal lipid extract) attenuated the IFN-γ 

induced expression of MCP-1 

THP-1 macrophages were incubated with vehicle or 100 µM TFA (hydrolysed from total lipid 

extract of algal powder) for 24 hours prior to treatment with vehicle or 250 U/ml IFN-γ for 3 

hours. Total RNA was subjected to reverse transcription and RT-qPCR with primers specific 

for human MCP-1 or GAPDH. Graphs display average normalised gene expression (mean +/- 

SD) (control arbitrarily assigned as 1) from one experiment performed in triplicate. 
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Appendix 6 – Time course in THP-1 and RAW264.7 macrophages 

THP-1 and RAW246.7 macrophages were incubated with 50 μM DGLA for 24 hours and 48 hours prior to the addition of 50 µM AcLDL and 1µCi [14C] acetate 

for a further 24 hours. Lipids were extracted, separated via TLC and radioactive incorporation into lipid fractions, identified by comparison with known standards, 

was measured by scintillation counting. Graphs display percentage incorporation of [14C] into polar lipids (PL), free cholesterol (FC), free fatty acids (FFA), 

triacylglycerols (TAG) and cholesteryl esters (CE) from a single experiment   
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Appendix 7 – Time course in THP-1 and RAW264.7 macrophages 

RAW246.7 macrophages were incubated with 50 μM or 100 μM DGLA for 24 hours prior to the addition of 50 µM AcLDL and 1µCi [14C] acetate for a further 24 

hours. Lipids were extracted, separated via TLC and radioactive incorporation into lipid fractions, identified by comparison with known standards, was measured 

by scintillation counting. Graphs display percentage incorporation of [14C] into polar lipids (PL), free cholesterol (FC), free fatty acids (FFA), triacylglycerols 

(TAG) and cholesteryl esters (CE) from a single experiment 
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