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A cell-based smoothed finite element method with discrete shear gap technique is employed to study the static bending, free
vibration, and mechanical and thermal buckling behaviour of functionally graded material (FGM) plates. The plate kinematics
is based on the first-order shear deformation theory and the shear locking is suppressed by the discrete shear gap method. The
shear correction factors are evaluated by employing the energy equivalence principle. The material property is assumed to be
temperature dependent and graded only in the thickness direction.The effective properties are computed by using theMori-Tanaka
homogenization method. The accuracy of the present formulation is validated against available solutions. A systematic parametric
study is carried out to examine the influence of the gradient index, the plate aspect ratio, skewness of the plate, and the boundary
conditions on the global response of the FGM plates. The effect of a centrally located circular cutout on the global response is also
studied.

1. Introduction

With the rapid advancement of engineering, there is an
increasing demand for new materials which suit the harsh
working environment without losing their mechanical, ther-
mal, or electrical properties. Engineered materials such as
the composite materials are used due to their excellent
strength-to-weight and stiffness-to-weight ratios and their
possibility of tailoring the properties in optimizing their
structural response. But due to the abrupt change in material
properties from matrix to fibre and between the layers, these
materials suffer from premature failure or from the decay
in the stiffness characteristics because of delaminations and
chemically unstable matrix and lamina adhesives. On the
contrary, another class of materials, called the functionally

gradedmaterials (FGMs), aremade up ofmixture of ceramics
and metals and are characterized by smooth and continuous
transition in properties from one surface to another [1]. As a
result, FGMs are preferred over the laminated composites for
structural integrity. The FGMs combine the best properties
of the ceramics and the metals and this has attracted the
researchers to study the characteristics of such structures.

Background. The tunable thermomechanical property of
the FGM has attracted researchers to study the static and
the dynamic behaviour of structures made of FGM under
mechanical [2–5] and thermal loading [6–12]. Praveen and
Reddy [7] and Reddy and Chin [13] studied the thermoelastic
response of ceramic-metal plates using first-order shear
deformation theory coupled with the 3D heat conduction
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equation. Their study concluded that the structures made
up of FGM with ceramic rich side exposed to elevated
temperatures are susceptible to buckling due to the through-
thickness temperature variation. The buckling of skewed
FGM plates under mechanical and thermal loads was studied
[9, 14] by employing the first-order shear deformation theory
and by using the shear flexible quadrilateral element. Efforts
have also been made to study the mechanical behaviour of
FGM plates with geometrical imperfection [15]. Saji et al.
[16] have studied thermal buckling of FGM plates with
material properties dependent on both the composition and
temperature. They found that the critical buckling temper-
atures decreased when material properties are considered
to be a function of temperature as compared to the results
obtained where the material properties are assumed to be
independent of temperature. Ganapathi and Prakash [9] have
studied the buckling of FGM skewed plate under thermal
loading. Efforts have also been made to study the mechanical
behaviour of FGM plates with geometrical imperfection [15].
More recently, refinedmodels have been adopted to study the
characteristics of FGM structures [17–19].

Existing approaches in the literature to study plate and
shell structures made up of FGMs use finite element method
(FEM) based on Lagrange basis functions [14] and meshfree
methods [20, 21], and recently Valizadeh et al. [22] used
nonuniform rational B-splines based FEM to study the
static and dynamic characteristics of FGM plates in thermal
environment. Loc et al. [23] employed isogeometric finite
element method to study thermal buckling of functionally
graded plates. Even with these different approaches, the
plate elements suffer from shear locking phenomenon and
different techniques were proposed to alleviate the shear
locking phenomenon. Another set of methods have emerged
to address the shear locking in the FEM. By incorporating the
strain smoothing technique into the finite element method
(FEM), Liu et al. [24] have formulated a series of smoothed
finite element methods (SFEM), named as cell-based SFEM
(CS-FEM) [25, 26], node-based SFEM [27], edge-based
SFEM [28], face-based SFEM [29], and 𝛼-FEM [30]. And
recently, edge based imbricate finite element method (EI-
FEM) was proposed in [31] that shares common features with
the ES-FEM. As the SFEM can be recast within a Hellinger-
Reissner variational principle, suitable choices of the assumed
strain/gradient space provide stable solutions. Depending on
the number and geometry of the subcells used, a spectrum
of methods exhibiting a spectrum of properties is obtained.
Interested readers are referred to the literature [24, 25] and
references therein. Nguyen-Xuan et al. [32] employed CS-
FEM forMindlin-Reissner plates.The curvature at each point
is obtained by a nonlocal approximation via a smoothing
function. From the numerical studies presented, it was con-
cluded that the CS-FEM technique is robust, computationally
inexpensive, free of locking, andmost importantly insensitive
to mesh distortions. The SFEM was extended to various
problems such as shells [33], heat transfer [34], fracture
mechanics [35], and structural acoustics [36] among others.
In [37], CS-FEM has been combined with the extended FEM
to address problems involving discontinuities. The above list
is no way comprehensive, and interested readers are referred

to the literature and references therein and to a recent review
paper by Jha et al. [38] on FGM plates.

Approach. In this paper, we study the static and the dynamic
characteristics of FGM plates by using a cell-based smoothed
finite element method with discrete shear gap technique [39].
Three-noded triangular element is employed in this study.
The effect of different parameters, namely, the material gra-
dient index, the plate aspect ratio, the plate slenderness ratio,
and the boundary condition on the global response of FGM
plates, is numerically studied. The effect of centrally located
circular cutout is also studied. The present work focuses on
the computational aspects of the governing equations and
hence the attention has been restricted to Mindlin-Reissner
plate theory. It is noted that the extension to higher order
theories is possible.

Outline. The paper is organized as follows: the next section
will give an introduction to FGM and a brief overview
of Mindlin-Reissner plate theory. Section 3 presents an
overview of the cell-based smoothed finite element method
with discrete shear gap technique. The efficiency of the
present formulation, numerical results, and parametric stud-
ies are presented in Section 4, followed by concluding
remarks in the last section.

2. Theoretical Background

2.1. Mindlin-Reissner Plate Theory. The Mindlin-Reissner
plate theory, also known as the first-order shear deformation
theory (FSDT), takes into account the shear deformation
through the thickness. Using the Mindlin formulation, the
displacements 𝑢, V, and 𝑤 at a point (𝑥, 𝑦, 𝑧) in the plate
(see Figure 1) from the medium surface are expressed as
functions of the midplane displacements 𝑢

𝑜
, V
𝑜
, and 𝑤

𝑜
and

independent rotations 𝜃
𝑥
and 𝜃
𝑦
of the normal in 𝑦𝑧 and 𝑥𝑧

planes, respectively, as follows:

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢
𝑜
(𝑥, 𝑦, 𝑡) + 𝑧𝜃

𝑥
(𝑥, 𝑦, 𝑡) ,

V (𝑥, 𝑦, 𝑧, 𝑡) = V
𝑜
(𝑥, 𝑦, 𝑡) + 𝑧𝜃

𝑦
(𝑥, 𝑦, 𝑡) ,

𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑤
𝑜
(𝑥, 𝑦, 𝑡) ,

(1)

where 𝑡 is the time. The strains in terms of midplane
deformation can be written as follows:

𝜀 = {

𝜀
𝑝

0

} + {

𝑧𝜀
𝑏

𝜀
𝑠

} . (2)

The midplane strains 𝜀
𝑝
, the bending strain 𝜀

𝑏
, and the shear

strain 𝜀
𝑠
in (2) are written as follows:

𝜀
𝑝
=

{

{

{

𝑢
𝑜,𝑥

V
𝑜,𝑦

𝑢
𝑜,𝑦

+ V
𝑜,𝑥

}

}

}

, 𝜀
𝑏
=

{
{

{
{

{

𝜃
𝑥,𝑥

𝜃
𝑦,𝑦

𝜃
𝑥,𝑦

+ 𝜃
𝑦,𝑥

}
}

}
}

}

,

𝜀
𝑠
= {

𝜃
𝑥
+ 𝑤
𝑜,𝑥

𝜃
𝑦
+ 𝑤
𝑜,𝑦

} ,

(3)
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Figure 1: (a) Coordinate system of a rectangular FGM plate and (b) coordinate system of a skew plate.

where the subscript “comma” represents the partial derivative
with respect to the spatial coordinate succeeding it.Themem-
brane stress resultants N and the bending stress resultantsM
can be related to themembrane strains 𝜀

𝑝
and bending strains

𝜀
𝑏
through the following constitutive relations:

N =

{

{

{

𝑁
𝑥𝑥

𝑁
𝑦𝑦

𝑁
𝑥𝑦

}

}

}

= A𝜀
𝑝
+ B𝜀
𝑏
− Nth

,

M =

{

{

{

𝑀
𝑥𝑥

𝑀
𝑦𝑦

𝑀
𝑥𝑦

}

}

}

= B𝜀
𝑝
+D
𝑏
𝜀
𝑏
−Mth

,

(4)

where the matrices A = 𝐴
𝑖𝑗
, B = 𝐵

𝑖𝑗
, and D

𝑏
= 𝐷
𝑖𝑗
; (𝑖, 𝑗 =

1, 2, 6) are the extensional and bending-extensional coupling
and bending stiffness coefficients and are defined as follows:

{𝐴
𝑖𝑗
, 𝐵
𝑖𝑗
, 𝐷
𝑖𝑗
} = ∫

ℎ/2

−ℎ/2

𝑄
𝑖𝑗
{1, 𝑧, 𝑧

2

} 𝑑𝑧. (5)

Similarly, the transverse shear force 𝑄 = {𝑄
𝑥𝑧
, 𝑄
𝑦𝑧
} is

related to the transverse shear strains 𝜀
𝑠
through the following

equation:

𝑄
𝑖𝑗
= 𝐸
𝑖𝑗
𝜀
𝑠
, (6)

whereE = 𝐸
𝑖𝑗
= ∫

ℎ/2

−ℎ/2

𝑄
𝑖𝑗
𝜐
𝑖
𝜐
𝑗
𝑑𝑧; (𝑖, 𝑗 = 4, 5) are the transverse

shear stiffness coefficients, and 𝜐
𝑖
, 𝜐
𝑗
is the transverse shear

coefficient for nonuniform shear strain distribution through
the plate thickness. The stiffness coefficients 𝑄

𝑖𝑗
are defined

as

𝑄
11
=𝑄
22

=

𝐸 (𝑧)

1 − ]2
; 𝑄

12
=

]𝐸 (𝑧)

1 − ]2
; 𝑄

16
= 𝑄
26

= 0,

𝑄
44

= 𝑄
55

= 𝑄
66

=

𝐸 (𝑧)

2 (1 + ])
,

(7)

where the modulus of elasticity 𝐸(𝑧) and Poisson’s ratio ]
are given by (20). The thermal stress resultant Nth and the
moment resultantMth are

Nth
=

{
{
{

{
{
{

{

𝑁
th
𝑥𝑥

𝑁
th
𝑦𝑦

𝑁
th
𝑥𝑦

}
}
}

}
}
}

}

= ∫

ℎ/2

−ℎ/2

𝑄
𝑖𝑗
𝛼 (𝑧, 𝑇)

{

{

{

1

1

0

}

}

}

△ 𝑇 (𝑧) 𝑑𝑧,

Mth
=

{
{
{

{
{
{

{

𝑀
th
𝑥𝑥

𝑀
th
𝑦𝑦

𝑀
th
𝑥𝑦

}
}
}

}
}
}

}

= ∫

ℎ/2

−ℎ/2

𝑄
𝑖𝑗
𝛼 (𝑧, 𝑇)

{

{

{

1

1

0

}

}

}

△ 𝑇 (𝑧) 𝑧 𝑑𝑧,

(8)

where the thermal coefficient of expansion 𝛼(𝑧, 𝑇) is given
by (21), △𝑇(𝑧) = 𝑇(𝑧) − 𝑇

𝑜
is the temperature rise from

the reference temperature, and𝑇
𝑜
is the temperature at which

there are no thermal strains. The strain energy function 𝑈 is
given by

𝑈 (𝛿) =

1

2

∫

Ω

{𝜀
𝑇

𝑝
A𝜀
𝑝
+ 𝜀
𝑇

𝑝
B𝜀
𝑏
+ 𝜀
𝑇

𝑏
B𝜀
𝑝

+𝜀
𝑇

𝑏
D𝜀
𝑏
+ 𝜀
𝑇

𝑠
E𝜀
𝑠
− 𝜀
𝑇

𝑏
Nth

− 𝜀
𝑇

𝑏
Mth

} 𝑑Ω,

(9)

where 𝛿 = {𝑢, V, 𝑤, 𝜃
𝑥
, 𝜃
𝑦
} is the vector of the degree of

freedom associated with the displacement field in a finite
element discretization. Following the procedure given in [40],
the strain energy function 𝑈 given in (9) can be rewritten as

𝑈 (𝛿) =

1

2

𝛿
𝑇K𝛿, (10)

where K is the linear stiffness matrix. The kinetic energy of
the plate is given by

𝑇 (𝛿) =

1

2

∫

Ω

{𝑝 (�̇�
2

𝑜
+ V̇2
𝑜
+ �̇�
2

𝑜
) + 𝐼 (

̇
𝜃
2

𝑥
+

̇
𝜃
2

𝑦
)} 𝑑Ω, (11)

where = ∫

ℎ/2

−ℎ/2

𝜌(𝑧)𝑑𝑧, 𝐼 = ∫

ℎ/2

−ℎ/2

𝑧
2

𝜌(𝑧)𝑑𝑧, and 𝜌(𝑧) is the
mass density that varies through the thickness of the plate.
When the plate is subjected to a temperature field, this in turn
results in in-plane stress resultants, Nth. The external work



4 Mathematical Problems in Engineering

due to the in-plane stress resultants developed in the plate
under a thermal load is given by

𝑉 (𝛿) = ∫

Ω

{

1

2

[𝑁
th
𝑥𝑥
𝑤
2

,𝑥
+ 𝑁

th
𝑦𝑦
𝑤
2

,𝑦
+ 2𝑁

th
𝑥𝑦
𝑤
,𝑥
𝑤
,𝑦
]

+

ℎ
2

24

[𝑁
th
𝑥𝑥

(𝜃
2

𝑥,𝑥
+ 𝜃
2

𝑦,𝑥
) + 𝑁

2

𝑦𝑦
(𝜃
2

𝑥,𝑦
+ 𝜃
2

𝑦,𝑦
)

+ 2𝑁
th
𝑥𝑦

(𝜃
𝑥,𝑥

𝜃
𝑥,𝑦

+ 𝜃
𝑦,𝑥

𝜃
𝑦,𝑦

)] } 𝑑Ω.

(12)

Substituting (9)–(12) in Lagrange’s equation of motion, one
obtains the following finite element equations:

Static bending:

K𝛿 = F. (13)

Free vibration:

M ̈
𝛿 + (K + K

𝐺
) 𝛿 = 0. (14)

Buckling analysis:

Mechanical buckling (prebuckling deforma-
tions are assumed to be zero or negligible in the
analysis (including those coming from in-plane
and out-of-plane coupling related to FGM and
temperature variation through the thickness of
the plate)):

(K + 𝜆
𝑀
K
𝐺
) 𝛿 = 0. (15)

Thermal buckling:

(K + 𝜆
𝑇
K
𝐺
) 𝛿 = 0, (16)

where 𝜆
𝑀

includes the critical value applied to in-plane
mechanical loading, 𝜆

𝑇
is the critical temperature difference,

and K and K
𝐺
are the linear stiffness and geometric stiffness

matrices, respectively. The critical temperature difference is
computed using a standard eigenvalue algorithm.

2.2. Functionally Graded Material. A rectangular plate made
of a mixture of ceramic and metal is considered with the
coordinates 𝑥, 𝑦 along the in-plane directions and 𝑧 along
the thickness direction (see Figure 1).Thematerial on the top
surface (𝑧 = ℎ/2) of the plate is ceramic rich and is graded to
metal at the bottom surface of the plate (𝑧 = −ℎ/2) by a power
lawdistribution.The effective properties of the FGMplate can
be computed by using the rule of mixtures or by employing
the Mori-Tanaka homogenization scheme. Let 𝑉

𝑖
(𝑖 = 𝑐,𝑚)

be the volume fraction of the phase material.The subscripts 𝑐
and 𝑚 refer to ceramic and metal phases, respectively. The
volume fraction of ceramic and metal phases is related by
𝑉
𝑐
+ 𝑉
𝑚

= 1, and 𝑉
𝑐
is expressed as

𝑉
𝑐
(𝑧) = (

2𝑧 + ℎ

2ℎ

)

𝑛

, (17)

where 𝑛 is the volume fraction exponent (𝑛 ≥ 0), also known
as the gradient index. The variation of the composition of
ceramic and metal is linear for 𝑛 = 1, the value of 𝑛 = 0

represents a fully ceramic plate, and any other value of 𝑛 yields
a composite material with a smooth transition from ceramic
to metal.

Mori-Tanaka Homogenization Method. Based on the Mori-
Tanaka homogenization method, the effective Young’s mod-
ulus and Poisson’s ratio are computed from the effective bulk
modulus𝐾 and the effective shear modulus 𝐺 as [41]

𝐾eff − 𝐾
𝑚

𝐾
𝑐
− 𝐾
𝑚

=

𝑉
𝑐

1 + 𝑉
𝑚
(3 (𝐾
𝑐
− 𝐾
𝑚
) / (3𝐾

𝑚
+ 4𝐺
𝑚
))

,

𝐺eff − 𝐺
𝑚

𝐺
𝑐
− 𝐺
𝑚

=

𝑉
𝑐

1 + 𝑉
𝑚
((𝐺
𝑐
− 𝐺
𝑚
) / (𝐺
𝑚
+ 𝑓
1
))

,

(18)

where

𝑓
1
=

𝐺
𝑚
(9𝐾
𝑚
+ 8𝐺
𝑚
)

6 (𝐾
𝑚
+ 2𝐺
𝑚
)

. (19)

The effective Young’s modulus 𝐸eff and Poisson’s ratio ]eff can
be computed from the following relations:

𝐸eff =

9𝐾eff𝐺eff
3𝐾eff + 𝐺eff

, ]eff =

3𝐾eff − 2𝐺eff
2 (3𝐾eff + 𝐺eff)

. (20)

The effective mass density 𝜌eff is computed using the rule of
mixtures (𝜌eff = 𝜌

𝑐
𝑉
𝑐
+𝜌
𝑚
𝑉
𝑚
). The effective heat conductivity

𝜅eff and the coefficient of thermal expansion 𝛼eff are given by

𝜅eff − 𝜅
𝑚

𝜅
𝑐
− 𝜅
𝑚

=

𝑉
𝑐

1 + 𝑉
𝑚
((𝜅
𝑐
− 𝜅
𝑚
) /3𝜅
𝑚
)

,

𝛼eff − 𝛼
𝑚

𝛼
𝑐
− 𝛼
𝑚

=

(1/𝐾eff − 1/𝐾
𝑚
)

(1/𝐾
𝑐
− 1/𝐾

𝑚
)

.

(21)

Temperature-Dependent Material Property. The material
properties that are temperature dependent are written as [41]

𝑃 = 𝑃
𝑜
(𝑃
−1
𝑇
−1

+ 1 + 𝑃
1
𝑇 + 𝑃
2
𝑇
2

+ 𝑃
3
𝑇
3

) , (22)

where 𝑃
𝑜
, 𝑃
−1
, 𝑃
1
, 𝑃
2
, and 𝑃

3
are the coefficients of temper-

ature 𝑇 and are unique to each constituent material phase.

Temperature Distribution through the Thickness. The temper-
ature variation is assumed to occur in the thickness direction
only, and the temperature field is considered to be constant
in the 𝑥𝑦-plane. In such a case, the temperature distribution
along the thickness can be obtained by solving a steady state
heat transfer problem:

−

𝑑

𝑑𝑧

[𝜅 (𝑧)

𝑑𝑇

𝑑𝑧

] = 0, 𝑇 =

{
{

{
{

{

𝑇
𝑐

at 𝑧 =

ℎ

2

,

𝑇
𝑚

at 𝑧 = −

ℎ

2

.

(23)

The solution of (23) is obtained by means of a polynomial
series [42] as

𝑇 (𝑧) = 𝑇
𝑚
+ (𝑇
𝑐
− 𝑇
𝑚
) 𝜂 (𝑧, ℎ) , (24)
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1

2
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O

Δ1

Δ2

Δ3

Figure 2: A triangular element is divided into three subtriangles.
△
1
, △
2
, and △

3
are the subtriangles created by connecting the

central point 𝑂 with three field nodes.

where

𝜂 (𝑧, ℎ) =

1

𝐶

[(

2𝑧 + ℎ

2ℎ

) −

𝜅
𝑐𝑚

(𝑛 + 1) 𝜅
𝑚

(

2𝑧 + ℎ

2ℎ

)

𝑛+1

+

𝜅
2

𝑐𝑚

(2𝑛 + 1) 𝜅
2

𝑚

(

2𝑧 + ℎ

2ℎ

)

2𝑛+1

−

𝜅
3

𝑐𝑚

(3𝑛 + 1) 𝜅
3

𝑚

(

2𝑧 + ℎ

2ℎ

)

3𝑛+1

+

𝜅
4

𝑐𝑚

(4𝑛 + 1) 𝜅
4

𝑚

(

2𝑧 + ℎ

2ℎ

)

4𝑛+1

−

𝜅
5

𝑐𝑚

(5𝑛 + 1) 𝜅
5

𝑚

(

2𝑧 + ℎ

2ℎ

)

5𝑛+1

] ;

(25)

𝐶 = 1 −

𝜅
𝑐𝑚

(𝑛 + 1) 𝜅
𝑚

+

𝜅
2

𝑐𝑚

(2𝑛 + 1) 𝜅
2

𝑚

−

𝜅
3

𝑐𝑚

(3𝑛 + 1) 𝜅
3

𝑚

+

𝜅
4

𝑐𝑚

(4𝑛 + 1) 𝜅
4

𝑚

−

𝜅
5

𝑐𝑚

(5𝑛 + 1) 𝜅
5

𝑚

,

(26)

where 𝜅
𝑐𝑚

= 𝜅
𝑐
− 𝜅
𝑚
.

3. Cell-Based Smoothed Finite Element
Method with Discrete Shear Gap Technique

In this study, three-noded triangular element with five
degrees of freedom (DOFs) 𝛿 = {𝑢, V, 𝑤, 𝜃

𝑥
, 𝜃
𝑦
} is employed.

The displacement is approximated by

uℎ = ∑

𝐼

𝑁
𝐼
𝛿
𝐼
, (27)

where 𝛿
𝐼
are the nodal DOFs and 𝑁

𝐼
are the standard finite

element shape functions given by

𝑁 = [1 − 𝜉 − 𝜂, 𝜂, 𝜉] . (28)

In this work, the cell-based smoothed finite element
method (CSFEM) is combined with stabilized discrete shear
gapmethod (DSG) for three-noded triangular element, called
“cell-based discrete shear gap method (CS-DSG3)” [39]. The
cell-based smoothing technique decreases the computational
complexity, whilst DSG suppresses the shear locking phe-
nomenon when the present formulation is applied to thin
plates. Interested readers are referred to the literature and
references therein for the description of cell-based smoothing
technique [24, 26] and DSG method [43]. In the CS-DSG3,
each triangular element is divided into three subtriangles.The
displacement vector at the center node is assumed to be the
simple average of the three displacement vectors of the three
field nodes. In each subtriangle, the stabilized DSG3 is used
to compute the strains and also to avoid the transverse shear
locking. Then the strain smoothing technique on the whole
triangular element is used to smooth the strains on the three
subtriangles. Consider a typical triangular element Ω

𝑒
as

shown in Figure 2.This is first divided into three subtriangles
△
1
, △
2
, and △

3
such that Ω

𝑒
= ⋃
3

𝑖=1
△
𝑖
. The coordinates of

the center point x
𝑜
= (𝑥
𝑜
, 𝑦
𝑜
) are given by

(𝑥
𝑜
, 𝑦
𝑜
) =

1

3

(𝑥
𝐼
, 𝑦
𝐼
) . (29)

The displacement vector of the center point is assumed to be
a simple average of the nodal displacements as

𝛿
𝑒𝑂

=

1

3

𝛿
𝑒𝐼
. (30)

The constant membrane strains, the bending strains, and the
shear strains for subtriangle△

1
are given by

𝜀
𝑝
= [p△1
1

p△1
2

p△1
3

]

{
{

{
{

{

𝛿
𝑒𝑂

𝛿
𝑒1

𝛿
𝑒2

}
}

}
}

}

,

𝜀
𝑏
= [b△1
1

b△1
2

b△1
3

]

{
{

{
{

{

𝛿
𝑒𝑂

𝛿
𝑒1

𝛿
𝑒2

}
}

}
}

}

,

𝜀
𝑠
= [s△1
1

s△1
2

s△1
3

]

{
{

{
{

{

𝛿
𝑒𝑂

𝛿
𝑒1

𝛿
𝑒2

}
}

}
}

}

.

(31)

Upon substituting the expression for 𝛿
𝑒𝑂

in (31), we obtain

𝜀
△
1

𝑝
= [

1

3

p△1
1

+ p△1
2

1

3

p△1
1

+ p△1
3

1

3

p△1
1

]

×

{
{

{
{

{

𝛿
𝑒1

𝛿
𝑒2

𝛿
𝑒3

}
}

}
}

}

= B△1
𝑝
𝛿
𝑒
,

𝜀
△
1

𝑏
= [

1

3

b△1
1

+ b△1
2

1

3

b△1
1

+ b△1
3

1

3

b△1
1

]

×

{
{

{
{

{

𝛿
𝑒1

𝛿
𝑒2

𝛿
𝑒3

}
}

}
}

}

= B△1
𝑏
𝛿
𝑒
,
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𝜀
△
1

𝑠
= [

1

3

s△1
1

+ s△1
2

1

3

s△1
1

+ s△1
3

1

3

s△1
1

]

×

{

{

{

𝛿
𝑒1

𝛿
𝑒2

𝛿
𝑒3

}

}

}

= B△1
𝑠
𝛿
𝑒
,

(32)

where p
𝑖
, (𝑖 = 1, 2, 3), b

𝑖
, (𝑖 = 1, 2, 3), and s

𝑖
, (𝑖 = 1, 2, 3) are

given by

B
𝑝
=

1

2𝐴
𝑒

[

[

[

[

𝑏 − 𝑐 0 0 0 0

0 𝑑 − 𝑎 0 0 0

𝑑 − 𝑎 𝑏 − 𝑐 0 0 0
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

p
1

𝑐 0 0 0 0

0 −𝑑 0 0 0

−𝑑 𝑐 0 0 0
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

p2

−𝑏 0 0 0 0

𝑎 0 0 0 0

𝑎 −𝑏 0 0 0
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

p
3

]

]

]

]

,

B
𝑏
=

1

2𝐴
𝑒

[

[

[

[

0 0 0 𝑏 − 𝑐 0

0 0 0 0 𝑑 − 𝑎

0 0 0 𝑑 − 𝑎 𝑏 − 𝑐
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

b1

0 0 0 𝑐 0

0 0 0 0 −𝑑

0 0 0 −𝑑 𝑐
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

b
2

0 0 0 −𝑏 0

0 0 0 0 𝑎

0 0 0 𝑎 −𝑏
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

b
3

]

]

]

]

,

B
𝑠
=

1

2𝐴
𝑒

[

[

0 0 𝑏 − 𝑐 𝐴
𝑒

0

0 0 𝑑 − 𝑎 0 𝐴
𝑒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

s
1

0 0 𝑐 𝑎𝑐/2 𝑏𝑐/2

0 0 −𝑑 −𝑎𝑑/2 −𝑏𝑑/2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

s2

0 0 −𝑏 −𝑏𝑑/2 −𝑏𝑐/2

0 0 𝑎 𝑎𝑑/2 𝑎𝑐/2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

s
3

]

]

,

(33)

where 𝑎 = 𝑥
2
− 𝑥
1
; 𝑏 = 𝑦

2
− 𝑦
1
; 𝑐 = 𝑦

3
− 𝑦
1
; 𝑑 = 𝑥

3
− 𝑥
1

(see Figure 3). 𝐴
𝑒
is the area of the triangular element and

B
𝑠
is the altered shear strains [43]. The strain-displacement

matrix for the other two triangles can be obtained by cyclic
permutation. Now applying the cell-based strain smoothing
[26], the constant membrane strains, the bending strains,
and the shear strains are, respectively, employed to create a
smoothed membrane strain 𝜀

𝑝
, smoothed bending strain 𝜀

𝑏
,

and smoothed shear strain 𝜀
𝑠
on the triangular elementΩ

𝑒
as

follows:

𝜀
𝑝
= ∫

Ω
𝑒

𝜀
𝑏
Φ
𝑒
(x) 𝑑Ω =

3

∑

𝑖=1

𝜀
△
𝑖

𝑝
∫

△
𝑖

Φ
𝑒
(x) 𝑑Ω,

𝜀
𝑏
= ∫

Ω
𝑒

𝜀
𝑏
Φ
𝑒
(x) 𝑑Ω =

3

∑

𝑖=1

𝜀
△
𝑖

𝑏
∫

△
𝑖

Φ
𝑒
(x) 𝑑Ω,

𝜀
𝑠
= ∫

Ω
𝑒

𝜀
𝑠
Φ
𝑒
(x) 𝑑Ω =

3

∑

𝑖=1

𝜀
△
𝑖

𝑠
∫

△
𝑖

Φ
𝑒
(x) 𝑑Ω,

(34)

where Φ
𝑒
(x) is a given smoothing function that satisfies

Φ (x) =
{

{

{

1

𝐴
𝑐

x ∈ Ω
𝑐

0 x ∉ Ω
𝑐
,

(35)

where𝐴
𝑐
is the area of the triangular element.The smoothed

membrane strain, the smoothed bending strain, and the
smoothed shear strain are then given by

{𝜀
𝑝
, 𝜀
𝑏
, 𝜀
𝑠
} =

∑
3

𝑖=1
𝐴
△
𝑖

{𝜀
△
𝑖

𝑝
, 𝜀
△
𝑖

𝑏
, 𝜀
△
𝑖

𝑠
}

𝐴
𝑒

. (36)

The smoothed elemental stiffness matrix is given by

K = ∫

Ω
𝑒

B
𝑝
AB𝑇
𝑝
+ B
𝑝
BB𝑇
𝑏
+ B
𝑏
BB𝑇
𝑝
+ B
𝑏
DB𝑇
𝑏
+ B
𝑠
EB𝑇
𝑠
𝑑Ω

= (B
𝑝
AB𝑇
𝑝
+ B
𝑝
BB𝑇
𝑏
+ B
𝑏
BB𝑇
𝑝
+ B
𝑏
DB𝑇
𝑏
+ B
𝑠
EB𝑇
𝑠
)𝐴
𝑒
,

(37)

where B
𝑝
, B
𝑏
, and B

𝑠
are the smoothed strain-displacement

matrix. The mass matrix M is computed by following the
conventional finite element procedure. To further improve
the accuracy of the solution and to stabilize the shear force
oscillation, the shear stiffness coefficients are multiplied by
the following factor:

ShearFac =

ℎ
3

ℎ
2
+ 𝛼ℎ
2

𝑒

, (38)

where 𝛼 is a positive constant and ℎ
𝑒
is the longest length of

the edge of an element.

4. Numerical Examples

In this section, we present the static bending response, the
linear free vibration, and the buckling analysis of FGM
plates using cell-based smoothed finite element method with
discrete shear gap technique.The effect of various parameters,
namely,material gradient index 𝑛, skewness of the plate𝜓, the
plate aspect ratio 𝑎/𝑏, the plate thickness 𝑎/ℎ, and boundary
conditions on the global response, is numerically studied.The
top surface of the plate is ceramic rich and the bottom surface
of the plate is metal rich. Here, the modified shear correction
factor obtained based on energy equivalence principle as
outlined in [44] is used. The boundary conditions for simply
supported and clamped cases are as follows:
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𝜂

1
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3

Figure 3: Three-noded triangular element and local coordinates in
discrete shear gap method.

simply supported boundary condition:

𝑢
𝑜
= 𝑤
𝑜
= 𝜃
𝑦
= 0 on 𝑥 = 0, 𝑎;

V
𝑜
= 𝑤
𝑜
= 𝜃
𝑥
= 0 on 𝑦 = 0, 𝑏;

(39)

clamped boundary condition:

𝑢
𝑜
= 𝑤
𝑜
= 𝜃
𝑦
= V
𝑜
= 𝜃
𝑥
= 0 on 𝑥 = 0, 𝑎, 𝑦 = 0, 𝑏. (40)

Skew Boundary Transformation. For skew plates, the edges of
the boundary elements may not be parallel to the global axes
(𝑥, 𝑦, 𝑧). In order to specify the boundary conditions on skew
edges, it is necessary to use the edge displacements (𝑢󸀠

𝑜
, V󸀠
𝑜
, 𝑤
󸀠

𝑜
)

and so forth in a local coordinate system (𝑥
󸀠

, 𝑦
󸀠

, 𝑧
󸀠

) (see
Figure 1). The element matrices corresponding to the skew
edges are transformed from global axes to local axes onwhich
the boundary conditions can be conveniently specified. The
relation between the global and the local degrees of freedom
of a particular node is obtained by

𝛿 = L
𝑔
𝛿
󸀠

, (41)

where 𝛿 and 𝛿󸀠 are the generalized displacement vector
in the global and the local coordinate system, respectively.
The nodal transformation matrix for a node 𝐼 on the skew
boundary is given by

L
𝑔
=

[

[

[

[

[

[

cos𝜓 sin𝜓 0 0 0

− sin𝜓 cos𝜓 0 0 0

0 0 1 0 0

0 0 0 cos𝜓 sin𝜓

0 0 0 − sin𝜓 cos𝜓

]

]

]

]

]

]

, (42)

where 𝜓 defines the skewness of the plate.

4.1. Static Bending. Let us consider a Al/ZrO
2
FGM square

plate with length-to-thickness 𝑎/ℎ = 5, subjected to a uniform
loadwith fully simply supported (SSSS) boundary conditions.

Table 1: The normalized center deflection 𝑤
𝑐
= 100𝑤

𝑐
(𝐸
𝑐
ℎ
3

/12(1 −

]2)𝑝𝑎4) for a simply supported Al/ZrO2-1 FGM square plate with
𝑎/ℎ = 5, subjected to a uniformly distributed load 𝑝.

Method Gradient index, 𝑛
0 1 2

4 × 4 0.1443 0.2356 0.2644
8 × 8 0.1648 0.2703 0.3029
16 × 16 0.1701 0.2795 0.3131
32 × 32 0.1714 0.2819 0.3158
40 × 40 0.1716 0.2822 0.3161
NS-DSG3 [47] 0.1721 0.2716 0.3107
ES-DSG3 [47] 0.1700 0.2680 0.3066
MLPG [45] 0.1671 0.2905 0.3280
𝑘𝑝-Ritz [46] 0.1722 0.2811 0.3221
MITC4 [47] 0.1715 0.2704 0.3093
IGA-Quadratic [22] 0.1717 0.2719 0.3115

The Young’s modulus for ZrO
2

is 𝐸
𝑐

= 151 GPa and for
aluminum is 𝐸

𝑚
= 70GPa. Poisson’s ratio is chosen as

constant, ] = 0.3. Table 1 compares the results from the
present formulation with other approaches available in the
literature [22, 45–47] and a very good agreement can be
observed. Next, we illustrate the performance of the present
formulation for thin plate problems. A simply supported
square plate subjected to uniform load is considered, while
the length-to-thickness (𝑎/ℎ) varies from 5 to 10

4.Three indi-
vidual approaches are employed: discrete shear gap method
referred to as DSG3, the cell-based smoothed finite element
method with discrete shear gap technique (CSDSG3), and
the stabilized CSDSG3 (where the shear stiffness coefficients
are multiplied by the stabilization factor). The normalized
center deflection 𝑤

𝑐
= 100𝑤

𝑐
(𝐸
𝑚
ℎ
3

/12(1 − ]2)𝑝𝑎4) is
shown in Figure 4. It is observed that the DSG3 results are
subjected to shear locking when the plate becomes thin
(𝑎/ℎ > 100). However, the present formulation, CSDSG3
with stabilization, is less sensitive to shear locking.

4.2. Free Flexural Vibrations. In this section, the free flexural
vibration characteristics of FGM plates with and without
centrally located cutout in thermal environment are studied
numerically. Figure 5 shows the geometry of the plate with
a centrally located circular cutout. In all cases, we present
the nondimensionalized free flexural frequency defined as
follows, unless otherwise stated:

𝜔 = 𝜔𝑎
2

√

𝜌
𝑐
ℎ

𝐷
𝑐

, (43)

where 𝜔 is the natural frequency and 𝜌
𝑐
, 𝐷
𝑐
= 𝐸
𝑐
ℎ
3

/12(1 −

]2) are the mass density and the flexural rigidity of the
ceramic phase. The FGM plate considered here is made up
of silicon nitride (Si

3
N
4
) and stainless steel (SUS304). The

material is considered to be temperature dependent, and the
temperature coefficients corresponding to Si

3
N
4
/SUS304 are

listed in Table 2 [13, 41].Themass density (𝜌) and the thermal
conductivity (𝜅) are 𝜌

𝑐
= 2370 kg/m3and 𝜅

𝑐
= 9.19W/mK
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Table 2: Temperature-dependent coefficient for material Si3N4/SUS304 [13, 41].

Material Property 𝑃
𝑜

𝑃
−1

𝑃
1

𝑃
2

𝑃
3

Si3N4
𝐸 (Pa) 348.43𝑒

9 0.0 −3.070𝑒
−4

2.160𝑒
−7

−8.946𝑒
−11

𝛼 (1/K) 5.8723𝑒
−6 0.0 9.095𝑒

−4 0.0 0.0

SUS304 𝐸 (Pa) 201.04𝑒
9 0.0 3.079𝑒

−4

−6.534𝑒
−7 0.0

𝛼 (1/K) 12.330𝑒
−6 0.0 8.086𝑒

−4 0.0 0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N
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Figure 4: The normalized center deflection as a function of
normalized plate thickness for a simply supported square FGMplate
subjected to a uniform load.

for Si
3
N
4
and 𝜌

𝑚
= 8166 kg/m3and 𝜅

𝑚
= 12.04W/mK for

SUS304. Poisson’s ratio ] is assumed to be constant and taken
as 0.28 for the current study [41]. Before proceeding with a
detailed study on the effect of gradient index on the natural
frequencies, the formulation developed herein is validated
against available analytical/numerical solutions pertaining to
the linear frequencies of a FGMplate in thermal environment
and a FGM plate with a centrally located circular cutout.
The computed frequencies (a) for a square simply supported
FGM plate in thermal environment with 𝑎/ℎ = 10 are given
in Table 3 and (b) the mesh convergence and comparison of
linear frequencies for a square plate with circular cutout are
given in Tables 4 and 5. It can be seen that the numerical
results from the present formulation are found to be in very
good agreement with the existing solutions. For the uniform
temperature case, the material properties are evaluated at
𝑇
𝑐

= 𝑇
𝑚

= 300K. The temperature is assumed to vary
only in the thickness direction and is determined by (24).
The temperature for the ceramic surface is varied, whilst a
constant value on the metallic surface is maintained (𝑇

𝑚
=

300K) to subject a thermal gradient. The geometric stiffness
matrix is computed from the in-plane stress resultants due to
the applied thermal gradient. The geometric stiffness matrix
is then added to the stiffness matrix, and the eigenvalue

a

b

r

Figure 5: Platewith a centrally located circular cutout. 𝑟 is the radius
of the circular cutout.

problem is solved. The effect of the material gradient index is
also shown in Tables 3 and 5 and the influence of a centrally
located cutout is shown in Tables 4 and 5. The combined
effect of increasing the temperature and the gradient index
is to lower the fundamental frequency and this is due to the
increase in the metallic volume fraction. Figure 6 shows the
influence of the cutout size on the frequency for a plate in
thermal environment (△𝑇 = 100K). The frequency increases
with increasing cutout size. This can be attributed to the
decrease in stiffness due to the presence of the cutout. Also, it
can be seen that with increasing gradient index, the frequency
decreases. In this case, the decrease in the frequency is
due to the increase in the metallic volume fraction. It is
observed that the combined effect of increasing the gradient
index and the cutout size is to lower the fundamental
frequency. Increasing the thermal gradient further decreases
the fundamental frequency.

4.3. Buckling Analysis. In this section, we present the
mechanical and thermal buckling behaviour of functionally
graded skew plates.

Mechanical Buckling. The FGM plate considered here con-
sists of aluminum (Al) and zirconium dioxide (ZrO

2
). The

material is considered to be temperature independent. The
Young’s modulus (𝐸) for ZrO

2
is 𝐸
𝑐

= 151 GPa and for Al
is 𝐸
𝑚

= 70GPa. For mechanical buckling, we consider both
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Table 3: The first normalized frequency parameter 𝜔 for a fully simply supported Si3N4/SUS304 FGM square plate with 𝑎/ℎ = 10 in thermal
environment.

𝑇
𝑐
, 𝑇
𝑚

Gradient index, 𝑛
0 1 5 10

300, 300 Present 18.3570 11.0690 9.0260 8.5880
[48] 18.3731 11.0288 9.0128 8.5870

400, 300 Present 17.9778 10.7979 8.8626 8.3182
[48] 17.9620 10.7860 8.7530 8.3090

600, 300 Present 17.1205 10.1679 8.1253 7.6516
[48] 17.1050 10.1550 8.1150 7.6420

Table 4: Convergence of fundamental frequency (Ω =

[𝜔
2

𝜌
𝑐
ℎ𝑎
4

/𝐷
𝑐
(1 − ]2)]

1/4

) with mesh size for an isotropic plate with
a central cutout.

Number of nodes Mode 1 Mode 2
333 6.1025 8.6297
480 6.0805 8.5595
719 6.0663 8.5192
1271 6.0560 8.4852
[49] 6.1725 8.6443
[50] 6.2110 8.7310
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Figure 6: Effect of the cutout size on the fundamental frequency
(Ω) for a square simply supported FGM plate with a central circular
cutout in thermal environment △𝑇 = 100K (𝑇

𝑐
= 400K, 𝑇

𝑚
=

300K) for different gradient index 𝑛.

uni- and biaxial mechanical loads on the FGM plates. In all
cases, we present the critical buckling parameters as follows,
unless otherwise specified:

𝜆cru =

𝑁
0

𝑥𝑥cr𝑏
2

𝜋
2
𝐷
𝑐

,

𝜆crb =

𝑁
0

𝑦𝑦cr𝑏
2

𝜋
2
𝐷
𝑐

,

(44)
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Figure 7: Effect of plate aspect ratio 𝑎/𝑏 and gradient index on
the critical buckling load for a simply supported FGM plate under
uniaxial compression with 𝑎/ℎ = 10.

where 𝜆cru and 𝜆crb are the critical buckling parameters for
uni- and biaxial load, respectively; 𝐷

𝑐
= 𝐸
𝑐
ℎ
3

/(12(1 − ]2)).
The critical buckling loads evaluated by varying the skew
angle of the plate and volume fraction index and considering
mechanical loads (uni- and biaxial compressive loads) are
shown in Table 6 for 𝑎/ℎ = 100. The efficacy of the present
formulation is demonstrated by comparing our results with
those in [14]. It can be seen that increasing the gradient index
decreases the critical buckling load. A very good agreement
in the results can be observed. It is also observed that the
decrease in the critical value is significant for the material
gradient index 𝑛 ≤ 2 and that further increase in 𝑛 yields
less reduction in the critical value, irrespective of the skew
angle. The effect of the plate aspect ratio and the gradient
index on the critical buckling load is shown in Figure 7 for
a simply supported FGM plate under uniaxial mechanical
load. It is observed that the combined effect of increasing
the gradient index and the plate aspect ratio is to lower the
critical buckling load. Table 7 presents the critical buckling
parameter for a simply supported FGM with a centrally
located circular cutout with 𝑟/𝑎 = 0.2. It can be seen that the
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Table 5: Comparison of fundamental frequency for a simply supported FGM plate with 𝑎/ℎ = 5 and 𝑟/𝑎 = 0.2.

𝑇
𝑐

Gradient index, 𝑛
0 1 2 5 10

300 [49] 17.6855 10.6681 9.6040 8.7113 8.2850
Present 17.7122 10.6845 9.6188 8.7246 8.2976

400 [37] 17.4690 10.5174 9.4618 8.5738 8.1484
Present 17.5488 10.5775 9.5197 8.6309 8.2059

Table 6: Critical buckling parameters for a thin simply supported FGM skew plate with 𝑎/ℎ = 100 and 𝑎/𝑏 = 1.

Skew angle 𝜆cr

Gradient index, 𝑛
0 1 5 10

[14] Present [43] Present

0∘ 𝜆cru 4.0010 4.0034 1.7956 1.8052 1.2624 1.0846
𝜆crb 2.0002 2.0017 0.8980 0.9028 0.6312 0.5423

15∘ 𝜆cru 4.3946 4.4007 1.9716 1.9799 1.3859 1.1915
𝜆crb 2.1154 2.1187 0.9517 0.9561 0.6683 0.5741

30∘ 𝜆cru 5.8966 5.9317 2.6496 2.6496 1.8586 1.6020
𝜆crb 2.5365 2.5491 1.1519 1.1520 0.8047 0.6909

Table 7: Comparison of critical buckling load 𝜆cru =

𝑁
𝑜

𝑥𝑥cr 𝑏
2

/𝜋
2

𝐷
𝑚

for a simply supported FGM plate with 𝑎/ℎ =

100 and 𝑟/𝑎 = 0.2. The effective material properties are computed
by rule of mixtures. In order to be consistent with the literature, the
properties of the metallic phase are used for normalization.

Gradient index, 𝑛 [51] Present % difference
0 5.2611 5.2831 −0.42
0.2 4.6564 4.6919 −0.76
1 3.6761 3.663 0.36
2 3.3672 3.3961 −0.86
5 3.1238 3.1073 0.53
10 2.9366 2.8947 1.43

present formulation yields comparable results. The effect of
increasing the gradient index is to lower the critical buckling
load. This can be attributed to the stiffness degradation due
to increase in the metallic volume fraction. Figure 8 shows
the influence of a centrally located circular cutout and the
gradient index on the critical buckling load under two differ-
ent boundary conditions, namely, all edges simply supported
and all edges clamped. In this case, the plate is subjected to
a uniaxial compressive load. It can be seen that increasing
the gradient index decreases the critical buckling load due
to increasing metallic volume fraction, whilst increasing the
cutout radius decreases the critical buckling load in the
case of simply supported boundary conditions. This can be
attributed to the stiffness degradation due to the presence of a
cutout and the simply supported boundary condition. In case
of the clamped boundary condition, the critical buckling load
first decreases with increasing cutout radius due to stiffness
degradation. Upon further increase, the critical buckling load
increases. This is because the clamped boundary condition
adds stiffness to the system which overcomes the stiffness
reduction due to the presence of a cutout.
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Figure 8: Variation of the critical buckling load, 𝜆cru =

𝑁
𝑜

𝑥𝑥cr𝑏
2
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2

𝐷
𝑐
, with cutout dimensions for a square FGM plate with

𝑎/ℎ = 10 subjected to uniaxial compressive loading for different
gradient index 𝑛 and various boundary conditions.

Thermal Buckling.The thermal buckling behaviour of simply
supported functionally graded skew plate is studied next.The
top surface is ceramic rich and the bottom surface is metal
rich. The FGM plate considered here consists of aluminum
and alumina. Young’smodulus, the thermal conductivity, and
the coefficient of thermal expansion for alumina are 𝐸

𝑐
=

380GPa, 𝜅
𝑐
=10.4W/mK, and 𝛼

𝑐
= 7.4 × 10

−6 1/∘C and for
aluminum 𝐸

𝑚
= 70GPa, 𝜅

𝑚
= 204W/mK, and 𝛼

𝑚
= 23 ×

10
−6 1/∘C, respectively. Poisson’s ratio is chosen as constant,

] = 0.3. The temperature rise of 𝑇
𝑚

= 5∘C in the metal-
rich surface of the plate is assumed in the present study.
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Table 8: Convergence of the critical buckling temperature for a simply supported FGM skew plate with 𝑎/ℎ = 10 and 𝑎/𝑏 = 1. Nonlinear
temperature rise through the thickness of the plate is assumed.

Mesh Gradient index, 𝑛
0 1 5 10

8 × 8 3383.40 2054.61 1539.24 1496.36
16 × 16 3286.90 1995.07 1495.25 1453.99
32 × 32 3263.91 1980.96 1484.76 1443.86
40 × 40 3261.17 1979.30 1483.51 1442.60
[9] 3257.47 1977.01 1481.83 1441.02
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Figure 9: Critical buckling temperature as a function of plate
aspect ratio 𝑎/𝑏 with linear and nonlinear temperature distribution
through the thickness with gradient index 𝑛 = 5.

In addition to nonlinear temperature distribution across the
plate thickness, the linear case is also considered in the
present analysis by truncating the higher order terms in (25).
The plate is of uniform thickness and simply supported on
all four edges. Table 8 shows the convergence of the critical
buckling temperature with mesh size for different gradient
index, 𝑛. It can be seen that the results from the present
formulation are in very good agreement with the available
solution. The influence of the plate aspect ratio 𝑎/𝑏 and the
skew angle𝜓 on the critical buckling temperature for a simply
supported square FGM plate are shown in Figures 9 and 10.
It is seen that increasing the plate aspect ratio decreases the
critical buckling temperature for both linear and nonlinear
temperature distribution through the thickness. The critical
buckling temperature increases with increase in the skew
angle. The influence of the gradient index 𝑛 is also shown
in Figure 10. It is seen that with increasing gradient index,
𝑛, the critical buckling temperature decreases. This is due to
the increase in the metallic volume fraction that degrades
the overall stiffness of the structure. Figure 11 shows the
influence of the cutout radius and the material gradient
index on the critical buckling temperature. Both linear and
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Figure 10: Critical buckling temperature as a function of skew angle
𝜓 for a simply supported square FGM plate with 𝑎/ℎ = 10. Both
linear and nonlinear temperature distribution through the thickness
are assumed.

nonlinear temperature distribution through the thickness
are assumed. Again, it is seen that the combined effect of
increasing the gradient index 𝑛 and the cutout radius 𝑟/𝑎

is to lower the buckling temperature. For gradient index
𝑛 = 0, there is no difference between the linear and the
nonlinear temperature distribution through the thickness as
thematerial is homogeneous through the thickness, while, for
𝑛 > 0, the material is heterogeneous through the thickness
with different thermal property.

5. Conclusion

In this paper, we applied the cell-based smoothed finite
element method with discrete shear gap technique to study
the static and the dynamic response of functionally graded
materials. The first-order shear deformation theory was used
to describe the plate kinematics. The efficiency and accuracy
of the present approach is demonstrated with few numerical
examples. This improved finite element technique shows
insensitivity to shear locking and produces excellent results
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Figure 11: Influence of cutout size on the critical buckling tem-
perature for a square simply supported FGM plate with a centrally
located circular cutout with 𝑎/ℎ = 10 for various gradient indices
𝑛. Linear and nonlinear temperature distribution through the
thickness are assumed.

in static bending, free vibration, and buckling of functionally
graded plates.
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