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Landscape determinants of 
fine-scale genetic structure of a 
small rodent in a heterogeneous 
landscape (Hluhluwe-iMfolozi Park, 
South Africa)
Isa-Rita M. Russo1, Catherine L. Sole2, Mario Barbato1,†, Ullrich von Bramann3 & 
Michael W. Bruford1

Small mammals provide ecosystem services, acting, for example, as pollinators and seed dispersers. In 
addition, they are also disease reservoirs that can be detrimental to human health and they can also act 
as crop pests. Knowledge of their dispersal preferences is therefore useful for population management 
and landscape planning. Genetic data were used alongside landscape data to examine the influence 
of the landscape on the demographic connectedness of the Natal multimammate mouse (Mastomys 
natalensis) and to identify landscape characteristics that influence the genetic structure of this species 
across a spatially and temporally varying environment. The most significant landscape features shaping 
gene flow were aspect, vegetation cover, topographic complexity (TC) and rivers, with western facing 
slopes, topographic complexity and rivers restricting gene flow. In general, thicket vegetation was 
correlated with increased gene flow. Identifying features of the landscape that facilitate movement/
dispersal in M. natalensis potentially has application for other small mammals in similar ecosystems. 
As the primary reservoir host of the zoonotic Lassa virus, a landscape genetics approach may have 
applications in determining areas of high disease risk to humans. Identifying these landscape features 
may also be important in crop management due to damage by rodent pests.

Small mammals provide important ecosystem services1, and knowledge of their dispersal preferences is useful for 
population management and landscape planning2. Small mammals can regulate insect populations, act as polli-
nators and seed dispersers, support forest regeneration, aerate soil and provide food for carnivores and humans1. 
In addition, the transport of minerals from deeper layers of the soil to the surface can act as a source of nutrients 
for plants, and the burrowing activity of some rodent species influences surface water runoff1. Small mammals are 
also disease reservoirs that can be detrimental to human health and they can also act as crop pests3,4. Ecosystem 
services, food security and health risks posed by small mammals can only be regulated by managing habitats such 
that opportunities for migration are available, and this remains a key goal in population management5. It is for 
these reasons that it is important to understand how the landscape affects dispersal in small mammals and their 
associated diseases.

Dispersal in rodents is thought to be a response to a number of factors, including inbreeding avoidance, 
mate searching, variation in habitat quality and local competition6. However, despite its importance, information 
regarding dispersal patterns for many species, especially for small mammals, is often limited7.

The majority of small mammals are found in semi-isolated populations due to habitat heterogeneity8. In 
cases where the landscape between habitat patches severely restricts dispersal, patterns of population genetic 
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differentiation should reflect landscape permeability9. A comparative analysis of arvicoline species (lemmings, 
voles and muskrats) has demonstrated frequent short distance dispersal events of hundreds of meters6, however, 
some small mammal species are capable of dispersing over much longer distances of kilometres7.

More specifically, the Natal multimammate mouse (Rodentia: Muridae; Mastomys natalensis) is an opportun-
istic generalist, nocturnal and omnivorous. They are to some extent dependent on water but occur in areas where 
water is only seasonally available10. “Swimming behaviour” has also been described for this species11. The species 
is a major pest in sub-Saharan Africa3 with a wide habitat tolerance10. These mice are almost ubiquitously distrib-
uted across the continent and when found in close contact with humans they have been linked to the transmission 
of disease, most significantly Lassa fever virus12,13, and with loss and contamination of food sources3. Dispersal 
rates and dispersal distances per generation in M. natalensis have been shown to be relatively high3 with individ-
uals moving over distances larger than 400 m and occupying home ranges of > 1 000 square meters14.

Previous studies on small mammals15 have called for additional approaches to population genetics, for exam-
ple landscape genetics, to better understand dispersal in small mammal populations. Knowledge of how land-
scape features interact with genetic variation at both the population and individual level is required to understand 
gene flow and adaptation to the environment16. Landscape features can both restrict and facilitate the movement 
of individuals in natural populations17. Therefore, studying patterns of gene flow in relation to environmen-
tal characteristics provide indirect information on life history traits and ecological function. In addition, this 
provides critical information for both small mammal ecosystem services (pollinators and seed dispersers) and 
management18,19.

To date, small mammals have received less attention in landscape genetic studies and these studies have largely 
been carried out in temperate and/or developed regions, where anthropogenic effects on the landscape can be 
profound20,21. However, barrier effects can be just as relevant in less modified landscapes and such studies can 
provide relevant information for managing ecologically similar species22. Landscape modification can impact 
on the movement of species differently and it is therefore crucial to understand similarities among species for 
landscape planning23.

In this context, we investigated genetic structure and landscape heterogeneity in the Natal multimammate 
mouse from the Hluhluwe-iMfolozi Park (HiP), South Africa. Population structuring and division is expected 
to be evident in small mammals such as M. natalensis at small spatial scales15,24, but here we aimed to test how 
landscape and/or habitat features interact with dispersal. We tested the hypothesis that local-scale habitat heter-
ogeneity (for example temperature, food availability and shelter from predators) influences patterns of genetic 
structure. Genetic data were therefore used alongside high-resolution landscape data to examine the influence of 
the landscape on the demographic connectedness of M. natalensis and to identify landscape characteristics that 
influence the genetic structure of this species across a spatially and temporally varying environment.

Results
Genetic results. A null allele was detected for locus MH60 and we therefore excluded this locus from all 
further analyses. No consistent departures from Hardy-Weinberg equilibrium were detected and no consistent 
linkage disequilibrium was observed. The number of alleles per locus ranged from 4 to 39 and genetic clusters 
showed significant differentiation (FST =  0.025–0.124). Allelic richness (254 diploid individuals) ranged from 3.99 
to 38.98. Expected heterozygosity for the five loci in common with Brouat et al.15 was also higher in the present 
study. The mean expected heterozygosity varied from 0.167–0.763 for these five loci.

STRUCTURE analysis indicated that the most likely value of LnPr(X|K) was K =  7 however, the method of 
Evanno et al.25 indicated that the most probable number of clusters of individuals was two, followed by four (see 
Supplementary Fig. S4). Over all runs the probability of the data increased from K =  1 to K =  10 with a clear ten-
dency to asymptote (see Supplementary Fig. S4). Clustering based on the Evanno method for K =  2 is shown in 
Fig. 1a,c. Cluster I predominantly originated from sites located south of the Black iMfolozi River and showed less 
evidence of admixture, whereas Cluster II showed scattered assignment across the area (Fig. 1a,c).

For the next highest ∆ K value (at K =  4; see Supplementary Fig. S4) results showed no clear evidence 
of geographic structure among sites. Again, Cluster I predominantly originated from sites south of the Black 
iMfolozi River (Fig. 1b,d), whereas further sub-structuring of Cluster II into three additional clusters was 
evident (Fig. 1b,d). Cluster IIa occurred mostly in grid 10 and 12. Individuals with an admixture coefficient 
proportion equal or greater than 0.7 for Cluster IIb were more commonly found north of the White iMfolozi 
River (χ2 =  16.27, P <  0.001). In contrast, Cluster IIc was mostly distributed in the south of the park (χ2 =  15.43, 
P <  0.001). Genetic clusters were scattered across the park and therefore no strict geographic assortment was 
evident (Fig. 1d). These groups were also observed after the very low number of related individuals was removed 
from the analysis (not shown). When a full progressive partitioning method was implemented, the number of 
population clusters was K =  7 and in agreement with the LnPr(X|K) method, although not geographically or 
biologically meaningful (not shown).

Spatial autocorrelation. After adjusting the P-value for multiple comparisons (P-value =  0.017) a 
Mantel correlogram showed significant and positive autocorrelation values in the first (0.026–2.63 km), second  
(2.63–5.24 km), third (5.24–7.85 km) and forth (7.85–10.46 km) distance classes, exhibiting short distance struc-
turing of genetic variability (Fig. 2a). Results showed a higher and significant genetic correlation among individ-
uals than expected within some distance classes. When testing for association between genetic and resistance 
distances (resistance with a constant value of 1), significant (corrected P-value =  0.017) and positive autocorrela-
tion values were only observed in the smaller resistance distance classes (Fig. 2b).

Univariate and multivariate model optimisation. Landscape resistance as a function of aspect showed 
the highest correlation coefficient with genetic distance, after removing the effect of the isolation-by-resistance 
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Figure 1. Bayesian clustering analysis in STRUCTURE. (a) Plot showing the individual membership 
coefficients for K =  2 when considering all rodents. Cluster I =  most of the individuals south of the Black 
iMfolozi River, Cluster II =  remainder of the individuals. (b) Plot of the individual membership coefficients for 
K =  4. Here, Cluster II was further divided into three clusters. Cluster IIa occurred mostly in grid 10 and 12, 
Cluster IIb was more common north of the White iMfolozi River and Cluster IIc was mostly distributed within 
the southern part of the park. See maps c (K =  2) and d (K =  4) for the geographic distribution of clusters. The 
colours indicate different clusters and the size of the pie charts represent the frequency of occurrence for each 
grid sampled. Numbers (above graphs) show sampling grid numbers as indicated in Table S1. The green lines 
show the four major rivers in the park. Graphs were generated in Microsoft Excel for Mac v 15.19.1 (2016) and 
maps were generated in ArcGIS v 10.1 (http://www.esri.com/software/arcgis/arcgis-for-desktop).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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IBR model (Table 1). Land cover and topographic complexity followed aspect respectively (r =  0.112, P =  0.028; 
r =  0.101, P =  0.042; Table 1). Partial Mantel correlations for natural barriers (rivers) and man-made barriers 

Figure 2. (a) A Mantel correlogram showing a positive correlation between genetic distance (proportion of 
shared alleles) and Euclidean distance in the first (0.026–2.63 km), second (2.63–5.24 km), third (5.24–7.85 km) 
and fourth (7.85–10.46 km) distance classes and (b) a Mantel correlogram between genetic distance and 
resistance distance showing significant and positive autocorrelation values for the smaller resistance classes. 
White and black squares represent non-significant and significant relationships between genetic and Euclidean/
resistance distances for the different distance classes, respectively.

Landscape variable Parameter values
Partial 

Mantel r P-value

Aspect 90°; x =  10; Rmax =  2 0.116 0.024

Land cover x =  1; Rmax =  1 000 0.112 0.028

Topographic complexity (TC) x =  10; Rmax =  2 0.101 0.042

Rivers Classified; Rmax =  5 000 0.036 0.254

Roads Classified; Rmax =  2 0.030 0.289

Table 1.  The best univariate models of effective landscape resistances based on partial Mantel correlation 
after removing the effect of the isolation-by-resistance (IBR) model. Models are ranked according to the 
Partial Mantel r-value. Optimised parameter values, partial Mantel r and significance of support are shown. 
Supported models are indicated in bold.
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(roads) were not significant, regardless of scale and could therefore be excluded from the remaining analyses 
(Table 1).

Likewise, when variables were evaluated based on relative support (RS) when compared to IBR and the first 
step of the causal modelling criteria, the best-supported model was aspect, followed by TC (Table 2). Although 
roads revealed a positive RS value, this model failed (did not pass) the first step of the causal modelling criteria 
with IBR. In contrast, land cover and rivers showed negative RS values and did not pass the causal modelling and 
were therefore not supported (Table 2). Parameter values for aspect were the same as the optimisation based on 
partial Mantel correlation. The Rmax parameter value for TC was greater than optimisation based on the partial 
Mantel correlation. Although land cover did not pass the first step of the causal modelling criteria with IBR and 
RS, this variable was supported based on the partial Mantel correlation (Table 1) and was therefore included in 
the multivariate analysis. We concluded that the best univariate models were aspect, land cover and TC although 
only aspect and TC performed significantly better than distance alone.

Landscape variable
Parameter 

values RSIBR (A) r (A) P (B) r (B) P Supported

Aspect 90°; x =  10; 
Rmax =  2 0.168 0.116 0.023 −0.052 0.832 Yes

Topographic complexity x =  10; 
Rmax =  10 0.094 0.097 0.050 0.003 0.500 Yes

Land cover x =  0.5; 
Rmax =  1 000 −0.012 0.112 0.029 0.124 0.0001 No

Rivers Classified; 
Rmax =  5 −0.024 0.032 0.278 0.056 0.139 No

Roads Classified; 
Rmax =  2 0.021 0.030 0.291 0.009 0.440 No

Table 2.  The best univariate models based on relative support (RS) and causal modelling after removing 
the effect of the isolation-by-resistance (IBR) model. Models are ranked with the best-supported model at 
the top. Optimised parameter values, RS as compared to IBR, partial Mantel r and significance of support are 
shown. Optimised values include equation parameters for x (contrast) and Rmax (magnitude of the relationship). 
(A) GD~LV|IBR - partial Mantel test between genetic distance and the landscape variable, partialling out 
the effect of IBR; (B) GD~IBR|LV - partial Mantel test between genetic distance and IBR distance, removing 
the effect of the landscape variable. The first column of each test indicates the Mantel r-value and the second 
column the related P-value. Supported models are indicated in bold.

Model Parameters RSIBR (A) r (A) P (B) r (B) P (C) r (C) P (D) r (D) P

1) A +  L +  TC A: 225°; x =  4; 
Rmax =  1 000 0.053 0.127 0.016 0.074 0.023 A: 0.124 0.004 A: −0.059 0.891

L: x =  2; 
Rmax =  1 000 L: 0.086 0.071 L: 0.096 0.014

TC: x =  4; 
Rmax =  1 000 TC: 0.110 0.001 TC: −0.073 0.970

2) A +  L A: 225°; x =  4; 
Rmax =  1 000 0.018 0.124 0.022 0.106 0.0008 A: 0.144 0.002 A: −0.087 0.966

L: x =  2; 
Rmax =  1 000 L: 0.102 0.042 L: 0.081 0.064

3) A +  L A: 225°; x =  10; 
Rmax =  2 −0.033 0.115 0.029 0.148 0.0001 – – – –

L: x =  1; 
Rmax =  1 000 – – – –

4) A +  TC A: 225°; x =  4; 
Rmax =  1 000 0.110 0.113 0.026 0.003 0.485 A: 0.113 0.0001 A: −0.018 0.630

TC: x =  4; 
Rmax =  1 000 TC: 0.176 0.0001 TC: 0.050 0.187

Table 3.  The best multivariate models based on relative support (RS), causal modelling after removing 
the effect of the isolation-by-resistance (IBR) model (A,B) and causal modelling criteria with the reduced 
model (C,D). Optimised parameter values, RS as compared to IBR, partial Mantel r and significance of 
support are shown. Optimised values include equation parameters for x (contrast) and Rmax (magnitude of 
the relationship). (A) GD~LV|IBR - partial Mantel test between genetic distance and the landscape variable, 
partialling out the effect of IBR; (B) GD~IBR|LV - partial Mantel test between genetic distance and IBR 
distance, removing the effect of the landscape variable, (C) GD~LM| - partial Mantel test between genetic 
distance and the landscape model after removing the effect of the reduced model; (D) G~|LM - partial Mantel 
test between genetic distance and the reduced model, partialling out the effect of the landscape model. The 
first column of each test indicates the Mantel r-value and the second column the related P-value. Model 
abbreviations: A =  Aspect; L =  Land cover and TC =  Topographic complexity.
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The best multivariate model based on optimisation with partial Mantel correlation after partialling out the IBR 
model (see columns A, Table 3) included three variables: aspect, land cover and TC (model 1). Model 2 and 3 were 
also supported based on the partial Mantel correlation after removing the effect of IBR (Table 3). Model 2 (aspect 
and land cover), with medium contrast (x) and highest resistance (Rmax) for aspect and medium contrast (x) for 
land cover, was slightly better supported than model 3 with the same variables.

When model optimisation was based on RS, the best multivariate model comprised aspect, land cover and TC 
(Table 3, model 1). The RS value improved from 0.018 to 0.053 when TC was included. Model 2 also passed RS 
but model 3 showed a negative value for RS and was therefore not supported. None of the former models passed 
the causal modelling, which indicated that none of these models was supported independently of the IBR model 
(see columns B, Table 3, models 1–3).

In addition, when we applied the causal modelling criteria with the reduced model to model 1, the par-
tial Mantel correlation was significant (P =  0.001) when partialling out the effect of the reduced model 
(GD~(A +  L +  TC)|(A +  L), while the opposite (GD~(A +  L)|(A +  L +  TC) was not significant (P =  0.970), indi-
cating that the inclusion of TC improved the model (Table 3). Likewise, aspect passed the causal modelling with 
the reduced model. However, land cover failed the causal modelling with the reduced model so the only variables 
that were included in the final multivariate model were aspect and TC (Table 3, model 4). Model 2 also passed the 
causal modelling with the reduced model. The only supported models in the multivariate framework were A +  L 
and A +  TC (Table 3; model 2 and 4). When we compared models 2 and 4 against each other and IBR using RS, 
model A +  TC performed best (see Supplementary Table S3). The RS for model A +  TC compared to A +  L and 
IBR was only slightly greater than zero, but it still passed the causal modelling criteria for significance (Table 3). 
In addition, model A +  TC performed significantly better (r =  0.113, P =  0.026) than distance alone (r =  0.003, 
P =  0.485). We concluded that the best multivariate model was A +  TC, indicating that aspect influenced gene 
flow and this pattern is driven by the availability of water and favourable vegetation. Topographic complexity was 
also likely to influence gene flow.

Mixed effect models. Statistical models based on resistance distances suggested that environmental vari-
ables explained more variation in genetic differentiation than the IBR model that only explained approximately 
3% of the variance in genetic distance. The following variables were highly correlated (VIF values >  5) and thus 
excluded from the linear mixed effect models: TC, IBR, roads and geographic distance. We therefore built a 
full model (aspect, land cover and rivers) in an attempt to exclude correlated variables. After the inclusion of 
the remaining landscape variables the amount of variation that has been explained increased to approximately 
5% (Table 4). The best-supported model based on the corrected Akaike Information Criterion (AICc; Table 4, 
model A) included aspect alone (AICc =  − 12577.60; wi =  0.88). In general, models within two AIC units of the 
best-supported model are interchangeable and models with a AICc ≤  ~10 show marginal support. We therefore 
inferred that the reduced model B (Table 4) that included aspect and land cover (AICc =  − 12573.60; wi =  0.11) 
and model C (aspect and rivers) showed marginal support.

Although model B only showed marginal support based on AICc, this model explained more of the variation 
(5.2%) in the dependent variable followed by model D that explained 5.1% of the variation (Table 4). Model D 
comprised aspect, land cover and rivers. In addition, the R2

β values of model D (full model) and model B were 
similar (R2

β =  0.051). Likewise, models A (aspect; R2
β =  0.046) and C (aspect +  rivers; R2

β =  0.047) had similar R2
β 

values that explained slightly less of the variation in genetic distance. Based on mixed effect models, we concluded 
that aspect, land cover and rivers were the variables that explained variation best.

Based on our best-supported multivariate hypotheses, the most likely regions of genetic connectivity for M. 
natalensis are represented in Fig. 3. Areas with highest resistance to gene flow are indicated in light yellow. All 
maps showed high spatial heterogeneity in connectivity with a north to south gradient of high to low connec-
tivity except for map “Aspect +  Rivers”. Eastern aspect and land cover presented the least resistance to dispersal/
movement through the landscape for this small mammal. Map “Aspect +  Rivers” showed that the rivers in the 

Model
Type of 
model Variables R2

β VIF AICc ∆AICc Weight (wi)

A Reduced Aspect 0.046 3.12 − 12577.60 0.00 0.88

B Aspect 0.052 3.12 − 12573.60 4.03 0.11

Land cover 1.69

C Aspect 0.047 3.12 − 12565.70 11.86 0.01

Rivers 1.54

D Full Aspect 0.051 3.12 − 12563.00 14.59 0.00

Land cover 1.69

Rivers 1.54

Table 4.  Mixed effect models showing the relationship between pairwise genetic distances and resistance 
distances for different environmental variables. In order to minimise colinearity among predictors, all 
variables with VIF values >  5 were removed. VIF =  Variance Inflation Factor. The best fitting model was selected 
using the corrected Akaike Information Criterion (AICc, ∆ AICc, wi). We used R2 statistics (R2

β) to describe the 
amount of variation explained by the model. Models with the highest AICc support are in bold (∆ AICc ≤  2). 
Marginally supported models are also indicated (∆ AICc ≤  10).
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park exhibit low current density (restriction to gene flow). This map also showed no clear north to south gradient 
of high to low connectivity but rather displayed high landscape connectivity in the northern part of the park.

Discussion
We present the first landscape genetics study for an African small mammal, identifying features that may poten-
tially explain contemporary genetic structure in a relatively unmodified landscape. Our results showed a higher 
and significant genetic correlation among individuals than expected at smaller geographic scales (up to about 
11 km) confirming the results of van Hooft et al.3 suggesting that M. natalensis exhibit a pattern of kin clustering 
at smaller geographic scales while, long distance dispersal events result in no pattern of IBD as suggested by 
spatial autocorrelation at larger geographic scales. It has also been documented that if animals breed at a young 
age that they will show a greater tendency to breed close to their natal site14. This further supports the pattern of 
IBD as indicated by spatial autocorrelation at smaller geographic scales. Long distance dispersal will erode IBD 
patterns and therefore weak patterns of IBD could be due to rare long distance dispersal as we report in this study 
for M. natalensis and as has been found for other small mammals26.

Low to moderate differentiation indicates a pattern of sub-clustering of up to four potentially relevant clus-
ters that differ in their geographic coherence/genomic integrity that does not coincide with those expected if 
divergence was driven solely by isolation-by-distance (all FST values were significant and ranged from 0.025–
0.124 between clusters). The most closely related individuals are not necessarily those that come from the same 

Figure 3. Current maps generated in CIRCUITSCAPE showing connectivity between 101 Mastomys 
natalensis trapping transects from Hluhluwe-iMfolozi Park, South Africa for the following best-supported 
landscape hypotheses: “Aspect + Land cover”, “Aspect + Topographic complexity”, “Aspect + Land 
cover + Rivers” and “Aspect + Rivers”. Dark blue represents areas with highest current densities whereas areas 
with highest resistance (lowest current densities) are represented in the light yellow colour. Areas indicated in 
dark blue will therefore facilitate gene flow (higher connectivity) whereas areas in light yellow may restrict gene 
flow. Maps were modified in ArcGIS v 10.1. (http://www.esri.com/software/arcgis/arcgis-for-desktop).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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geographical area. This indicates that forces imposing population genetic structuring are not based purely on 
IBD as suggested by spatial autocorrelation. Rather, movement seems to be restricted providing support for the 
hypothesis that restricted dispersal is one of the forces driving patterns of genetic structure in M. natalensis. This 
has also been evident in other landscape genetic studies of rodent species27. Complex and inconsistent patterns of 
genetic heterogeneity have been described as “chaotic genetic patchiness” consistent with the patterns observed 
in this study28 and the landscape features investigated in this study may underlie this pattern.

In the broader sense, a landscape genetics approach should be incorporated into spatial models of disease 
processes to increase the ability to predict patterns of disease occurrence, to prevent the spread of disease and to 
develop management policies29. Likewise, the identification of barriers to movement in mammal disease reser-
voirs is important as this can assist in disease containment strategies30, pest and crop management31.

The results of the univariate/multivariate parameter optimisation suggest that slope aspect is the landscape 
variable most strongly correlated with gene flow in M. natalensis, followed by land cover, topographic complex-
ity (TC) and rivers. Slope aspect promotes gene flow in M. natalensis, with western facing slopes posing greater 
resistance than eastern facing slopes. Similarly, Castillo et al.32 provided evidence that eastern facing slopes are 
positively correlated with genetic connectivity in the American pika. Land cover is also strongly correlated with 
gene flow in M. natalensis with thicket vegetation as the most favourable. TC and rivers (movement across rivers) 
are the two landscape features that most strongly restrict gene flow. This suggests that M. natalensis dispersal is 
mainly restricted by physical limitations. Complex topographies such as ridges and steep slopes pose more resist-
ance to movement. Resistance to gene flow increases as a landscape becomes more complex because of greater 
energetic cost to movement due to the small body size of M. natalensis. Rivers/streams may act as barriers to gene 
flow as is evident from the Bayesian clustering analysis (Cluster I). Although not explicitly tested in this study, the 
size/width of the watercourse/river is also likely to determine the extent to which a barrier is permeable. Having 
stated this, there may or may not be facilitation of gene flow along rivers. In general, rivers appear to be barriers 
to gene flow but it is evident from this study that M. natalensis are able to traverse these barriers confirming their 
swimming behaviour as described by Hickman and Machiné11. Watercourses have shown to have a small effect on 
gene flow and may impede movement but it does not act as a complete barrier to gene flow. Likewise, it has been 
shown that migration between small mammal sub-populations occurs across rivers27.

Mastomys natalensis is commonly found across a large range of different habitats except deserts and very 
high altitudes24. Although classified as a generalist, some landscape features may still have an influence on gene 
flow in this small mammal. A number of studies have suggested that landscape features can be prominent in 
shaping genetic structure in generalist species. For example, it has been shown that a river and a motorway repre-
sented a barrier to dispersal in the Eurasian badger (Meles meles)33. Genetic differentiation for habitat specialists 
is expected to be larger than for generalist species34. Here, we identify aspect and the associated vegetation cover 
as important landscape features in shaping the genetic structure in this generalist species.

Due to the fact that this park is in the southern hemisphere, western facing slopes represent a heterogeneous 
dry tropical savanna habitat. In contrast, the eastern facing slopes are characterised by a mesic and cooler habitat 
(lower solar radiation) with dominant vegetation featuring wooded trees35. Eastern facing slopes are in general 
cooler (lower temperatures because of morning sun) whereas western facing slopes experience higher afternoon 
temperatures. In addition, southern/eastern facing slopes in the region tend to desiccate more slowly than the 
northern/western facing slopes (G Clinning, personal communication, Ezemvelo KZN Wildlife).

South Africa is in general characterised by a decrease in rainfall from east to west and the eastern regions of 
the coastal plateau are more humid36. Southern/eastern facing slopes are therefore wetter in general than north-
ern/western facing slopes because moisture and air masses originate from the Indian Ocean (see Supplementary 
Fig. S5)36. These air masses cause the trapping of rain that moves inland37. This area of South Africa is also known 
as the “mist belt”; the mist is usually associated with southerly winds providing moisture to eastern facing slopes36. 
This higher rainfall provides suitable conditions to sustain thicket vegetation however, there may be dry periods 
that prevent the development of forest38. Thicket is renowned for its high biodiversity and includes evergreen, 
sclerophyllous or succulent trees, shrubs and vines38. Thicket often comprises dense impenetrable vegetation 
(shrubs) with no distinct layer of trees and shrubs38, providing small mammals with cover and protection against 
predators while foraging and dispersing. In addition, thicket may provide a greater variety of food sources such 
as fruits and vegetative plant material, i.e. leaves, stems and seeds10. The apparent preference of M. natalensis for 
eastern facing slopes (areas of higher rainfall) and thicket vegetation (areas of seasonally available water) demon-
strate the species’ dependency on seasonally available water10.

Dispersal, resource availability and population densities affect genetic structure in natural populations39 
but landscape heterogeneity may also promote/facilitate gene flow between populations. Patterns of genetic 
sub-structuring observed in this study may be explained by a combination of shorter-distance movements (when 
population densities are low) with increasing distances when population densities increase40.

We used a range of analytical and modelling approaches, all with some limitations. Mantel and partial Mantel 
tests have been widely used in landscape genetic studies41,42 although some authors have debated the use of these 
tests due to the potential increase in Type I error43. Error can be avoided by evaluating the correlation coeffi-
cient itself as opposed to the test for significance, an approach that may explain why landscape variables such 
as rivers and land cover are not supported in the present study using the partial Mantel framework. In addition, 
the effect of rivers on gene flow was not strong enough to be detected in the partial Mantel tests. We therefore 
implemented mixed effect models on distance matrices since analysing data using only one method could result 
in false, method-dependent outcomes43.

In light of global warming, the dry regions of the subtropics are likely to get drier which will result in less cover 
and an absence of thicket vegetation. As such, population connectivity of M. natalensis may be affected by climate 
change. By using M. natalensis in a landscape genetics context, one can expand the results to the ecosystem man-
agement of other small mammal species with similar ecosystem functions. In addition, apart from contributing to 
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landscape genetic studies in Africa21 the present study may have implications in epidemiological and agricultural 
research associated with problem rodents.

Methods
Study site, sampling and genotyping. Hluhluwe-iMfolozi Park (HiP) is situated in the northern escarp-
ment of the KwaZulu-Natal province of South Africa, covering an area of approximately 960 km2 (28°17’49”S; 
31°44’32”E) and contains four large rivers: the Hluhluwe, Nyalazi, Black and White iMfolozi Rivers (Fig. 4)44. The 
climate is coastally modified and varies according to topography with a mean annual rainfall of 985 mm at higher 
altitude44. Annual temperatures range from 13 °C to 35 °C and the park is situated in the Savanna biome of South 
Africa, supporting a variety of habitat types from scrap forest to thicket38.

Rodent samples were collected using a landscape grid (see Supplementary Table S1). All permit informa-
tion was reported (see Supplementary Table S2). The sampling method was carried out in accordance with 
Ezemvelo KZN Wildlife protocols and animals were handled under the guidelines of the American Society of 
Mammalogists (ASM; Animal Care and Use Committee, 2011)45. Ear biopsy sampling received ethical approval 
from Cardiff University in September 2010.

The park was divided into 27 sections, each being approximately 10 km North-South × 5 km East-West 
(Fig. 4). One of the sections (8) was not sampled since it only included a small part of the park and was inacces-
sible (Fig. 4). No M. natalensis could be captured from three (section 19, 20 and 27) of the remaining 26 sections. 
We therefore sampled 23 sections across the park. A total of 150 Sherman traps (H.B. Sherman Traps Inc. Florida, 
USA) were placed in each section under logs, rocks and tussocks in an attempt to stratify sampling across the 
landscape. Sampling was carried out up to a maximum of four nights per section, by using three transects per 
night approximately 50 m apart (~400 (l) ×  100 (w) m), with a 10–15 m inter-trap interval (Fig. 4, inset c). Up to 
21 individuals were collected per section over a total of 4,516 trap nights, resulting in a total of 272 samples, 260 of 
which were analysed; twelve being excluded because of poor amplification success rate. Tissue samples for DNA 
analysis were collected by ear biopsy and stored in 99% ethanol at − 20 °C.

Total genomic DNA was extracted from tissue using a DNeasy®  Tissue Kit (QIAGEN®  Hilden, Germany) 
following the manufacturer’s instructions. Genotyping was carried out using 10 microsatellite markers originally 
isolated from Mastomys huberti46,47. We followed PCR conditions as described in Galen et al.46 and Loiseau et 
al.47. Amplifications were carried out in a total volume of 10 μ l containing 5 μ l of QIAGEN Multiplex PCR Master 
Mix, 0.2 μ M of each of the forward and reverse primers and 1 μ l of DNA (~50 to 100 ng/μ l). The ten primer pairs 
were divided into three multiplexes and one singleplex using three dyes (FAM, HEX and TAM): MH28, MH30, 
MH60, MH133, MH141 (Multiplex 1); MH05, MH74 (Multiplex 2); MH105, MH188 (Multiplex 3) and MH80 
(Singleplex 1). PCR products were processed commercially by Macrogen Inc, Korea (www.macrogen.com/eng/).  

Figure 4. Map of the Hluhluwe-iMfolozi Park (HiP) situated in the KwaZulu-Natal province (see map (b)) of 
South Africa (see map (a) indicated by black square). The park has been divided into 27 grids and samples were 
collected to represent all habitat types. Sampling coordinates along each transect within a grid were combined 
into a midpoint coordinate for that transect. Main rivers (in blue) and thicket vegetation (in light blue-grey) 
are also indicated on the map. Inset (c) shows a schematic diagram of transect layout for grid 15. This map was 
modified in CorelDraw Graphics Suite X3 (2014; http://www.coreldraw.com).

http://www.macrogen.com/eng/
http://www.coreldraw.com
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Electropherograms were scored using GeneMarker v 1.91 (SoftGenetics LLC). Observed allele lengths were 
binned where necessary and rounded to integers using the software TANDEM v 1.848.

Statistical analyses. We checked for the presence of null alleles using MICROCHECKER49. The rarefaction 
procedure implemented in FSTAT v 2.9.3.250 was used to estimate the expected number of alleles and to compare 
allelic richness (r). Hardy-Weinberg equilibrium (HWE) was analysed for each locus using FSTAT v 2.9.3.250. 
Linkage disequilibrium (LD) between all pairs of loci and F-statistics between clusters were estimated using 
GENEPOP v 4.151. Statistical significance for HWE and LD was assessed by P-values and the implementation of 
the modified false discovery rate (FDR) method52 for multiple tests. Observed (HO) and unbiased expected (UHE) 
heterozygosities were estimated for all loci using GENETIX v 4.5.0.253.

Population structure. Bayesian clustering in STRUCTURE v 2.2.354 was used to infer the most likely num-
ber of population clusters (K). The analysis was implemented for 450 000 iterations following a burn-in of 50 000  
iterations with no a priori locality data. Both the posterior probability of the data for the given value of K (LnPr(X|K))  
and its rate of change (∆ K)25 were used to evaluate population structure. Twenty independent runs were car-
ried out for K values from one to ten and an admixture model with correlated allele frequencies54 was assumed. 
Progressive partitioning at various hierarchical levels using K =  255 was used to further examine structure within 
resolved clusters.

Genetic distance and spatial autocorrelation. We analysed the genetic data (a reduced dataset of 
216 individuals) using transect lines as the unit of spatial analysis. The geographical midpoints of each tran-
sect were used as location coordinates (see Supplementary Table S1). We estimated pairwise genetic distance 
for each transect by using the proportion of shared alleles in MSA v 4.0556 (Table S4). Euclidean geographic dis-
tances in kilometres were calculated between all transects and pairwise resistance distances were estimated using 
CIRCUITSCAPE v 3.557 by creating a raster file with a constant value of 1 for all pixels (isolation-by-resistance 
(IBR) model).

A Mantel correlogram using the per transect association between the proportion of shared alleles and geo-
graphic or resistance distances (rM) was calculated to test for spatial autocorrelation using a permutation test of 
significance (10 000 iterations). The modified false discovery rate method52 was employed to correct for global 
significance.

Landscape resistance optimisation (univariate and multivariate models). Landscape resistance 
was modelled as a function of aspect, river, roads, topographic complexity (TC) and land cover according to a 
landscape resistance hypothesis (see Table 5 for summary). Optimised values included equation parameters for 
x (contrast) and Rmax (magnitude of the relationship). For a full description see the Supplementary information. 
Pairwise landscape resistance matrices for each resistance surface were estimated using CIRCUITSCAPE v 3.557 
by implementing the pairwise mode option with focal points, connecting eight neighbours based on the average 
resistance.

Partial Mantel tests have been widely used in landscape genetic studies although some authors have debated 
the use of these tests58. Partial Mantel tests can be successful when used in the causal modelling framework as was 
done in this study41.

Genetic distance was compared with landscape resistances to identify the functional scale for which each 
variable best explained the observed genetic structure. Scaled transformations for each landscape variable based 
on a unimodal peak of support59 in the partial Mantel correlation coefficient were used to rank variables/models. 
All statistical analyses were performed in R60.

Univariate and multivariate model selection. We used a combination of causal modelling approaches 
proposed by Cushman et al.58 and Wasserman et al.61. The first step58,61 suggests that if a resistance hypothe-
sis is supported independently of the null model then: (A) partial Mantel tests between the genetic distance 
and landscape variable would be significant after removing the effect of IBR (GD~LV|IBR); (B) partial Mantel 
tests between genetic distance and IBR distance would not be significant, partialling out the landscape variable 
(GD~IBR|LV). The second step58 allows for the comparison of causal modelling with a reduced model. If a land-
scape model (true model) is supported independently of the other candidate models then: (C) partial Mantel tests 
between genetic distance and the landscape model would be significant, removing the effect of the reduced model 
(GD~LM|); (D) partial Mantel tests between genetic distance and the reduced model would not be significant, 
partialling out the effect of the landscape model (GD~|LM).

Candidate models with similar parameters to the top model were assessed against each other rather than 
simply against IBR to evaluate models based on relative support (RS). Relative support can be defined as: 
RSA|B =  (GD~A|B)–(GD~B|A) where GD is the genetic distance, A is the resistance distance matrix for variable 
A, B is the resistance matrix obtained for variable B and (GD~A|B) is the partial Mantel r between GD and varia-
ble A after removing the effect of variable B. The landscape model with a positive RS in all comparisons represents 
the best model58. In order for landscape models to be accepted, models also had to pass the causal modelling 
criteria with IBR.

Landscapes are complex structures and therefore best described using multivariate approaches that incorpo-
rate multiple landscape features. Here, we built rasters equal to the sum of the univariate rasters for each land-
scape variable. The two landscape variables with the highest partial Mantel r when removing the effect of IBR 
were used to create a series of bivariate models by keeping the parameters constant for the first variable, while 
varying the parameters for the second variable. The best-supported model for the second variable was identified 
based on the partial Mantel correlation removing the effect of IBR. Subsequently, we identified the optimum 
parameters for the first variable by holding the second constant. Once we identified the optimum parameters for 
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the first two models, additional landscape variables were added while keeping the first two model parameters con-
stant. We re-optimised the remaining variables until the best-supported model did not change. All models were 
also evaluated using their RS by varying the model parameters for one variable while holding the others constant 
until variable parameters stabilised. Models were required to pass the two causal modelling steps and variables 
were also required to pass the causal modelling criteria with the reduced model. For example, in order for variable 
C to be accepted the following needs to be true for the different multivariate rasters: GD~(A +  B +  C)|(A +  B) 
must be significant and GD~(A +  B)|(A +  B +  C) must be non-significant. Multivariate rasters (A +  B +  C; A +  B) 
contained the combined information of variables A, B and C. Partial Mantel tests were performed in R using the 
“vegan” package62.

Mixed effect models. In addition to causal modelling, we also implemented linear mixed effect models in 
R using the “lme4” package63 to account for dependency between pairwise observations in a distance matrix64. 
To correct for the dependency among pairwise data points in our data, we followed the maximum likelihood 
populations-effects (MLPE) method as described in Clarke et al.65 and more recently in Van Strien et al.66. 
Sampling unit was introduced as a random effect term that accounted for the non-independency of pairwise 
sampling unit distances by assuming an intercept that was different for each unit. The random effect term in the 
model specified the pairwise sampling unit structure of the dataset. In addition, all explanatory variables were 
introduced as fixed effect terms. Restricted maximum likelihood (REML) estimates of the intercept were the same 
as for those obtained from linear regression65 because all explanatory variables were standardised. In each model, 
the random effect was standard with different explanatory variables. First we calculated the Variance Inflation 
Factors (VIF) for each variable in the model67. Variance Inflation Factors values above 5 show evidence for colin-
earity and explanatory variables exhibiting significant levels of multi-colinearity were removed from the models 
to minimise potential error68.

We built a full model with all variables to identify the combined effects of multiple variables on gene flow. This 
model only included the variables that did not show any evidence of colinearity. The full model was refined by 
using multi-model inference in the “MuMIN” package69 of R. Maximum-likelihood populations-effects (MLPE) 
models were fitted with REML estimation to account for the association of each pairwise distance between sam-
pling units. This method is desirable for unbiased estimates of the variance components of mixed models65. 
We used model averaging from a global model to select the best models by calculating the corrected Akaike 
Information Criterion values (AICc)70. Akaike Information Criterion scores are often represented as Δ AICc 
scores, which indicates the difference between the best model (Δ AICc =  0) and all the other candidate models. 
We also calculated AICc weights (wi). Models with the lowest change in the AICc score (Δ AICc =  0) and the 
highest Akaike weight were considered the best71. Models within two AIC units of the best-supported model were 
interchangeable and models with a Δ AICc ≤  10 showed marginal support70.

Variable Hypothesis Parameters Maps

Aspect
The optimal aspect (less resistance) is 
associated with the availability of water and 
favorable vegetation

x =  0.5, 1, 2, 4, 10 200

Rmax =  2, 10, 100, 500, 1 000

θopt =  0, 45, 90, 135, 180, 225, 275, 315, 360

θ =  0, 45, 90, 135, 180, 225, 275, 315, 360

Flat areas =  Rmax/2

Rivers Physical barrier to small mammal movement Rmax =  2, 5 10, 50, 100, 250, 500, 750, 1 000,  
5 000, 10 000 22

Land =  1

Roads Physical barrier to small mammal movement Rmax =  2, 5 10, 50, 100, 250, 500, 750, 1 000,  
5 000, 10 000 22

Land =  1

TC Resistance to gene flow increases as landscape 
becomes more complex x =  0.5, 1, 2, 4, 10 150

Rmax =  2, 10, 100, 500, 1 000

Radii =  1, 2, 5, 10, 25, 50

Land cover Land cover as a source of food and cover 
against predators promotes gene flow

Array of resistance values (permutations) = 1, 
168, 334, 501, 667, 1 000 120

RFH =  1; Rmax =  2, 5, 10, 50, 100, 250, 500, 750, 
1 000, 5 000, 10 000, 100 000 36

x =  0.5, 1, 2, 4, 10; Rmin =  1; Rmax =  2, 5, 10, 50, 
100, 250, 500, 750, 1 000 180

Table 5.  A summary of the landscape variables and the corresponding resistance hypotheses. Parameter 
values for each variable are indicated. These include x (power function), Rmin/Rmax(minimum or maximum 
resistance), θopt. (hypothesised optimal aspect in increments of 45° from 0° to 315°), θ (aspect value in 
increments of 45° from 0° to 315°), radii (buffer area in number of cells) and RFH (favourable habitat). 
Abbreviations: TC =  Topographic complexity. The total number of maps generated for each variable are 
indicated in the last column. For a full description see the Supplementary information.
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In addition, we calculated the R2
β statistic72, which compared a model with fixed effects to a null model (we 

used the IBR model as the null model). The null model comprised of the random effect and an intercept. The R2
β 

was calculated from the Kenward-Rodger F and degrees of freedom73. We used the “KRmodcomp” function from 
the R package “pbkrtest”74. We used the R2

β statistic to describe the proportion of variation being explained by 
the models.

Current maps. Current maps based on our best-supported multivariate hypotheses were generated in 
CIRCUITSCAPE v 3.557 in order to indicate the most likely regions of genetic connectivity/movement for M. natalensis 
 within the Hluhluwe-iMfolozi Park.

Data accessibility. Microsatellite data and GIS raster maps available from the Dryad Digital Repository: 
http://dx.doi.org/10.5061/dryad.492b8.
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