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Hot electrons in AlGaN/GaN high electron mobility transistors are studied during radio frequency

(RF) and DC operation by means of electroluminescence (EL) microscopy and spectroscopy. The

measured EL intensity is decreased under RF operation compared to DC at the same average

current, indicating a lower hot electron density. This is explained by averaging the DC EL intensity

over the measured load line used in RF measurements, giving reasonable agreement. In addition,

the hot electron temperature is lower by up to 15% under RF compared to DC, again at least

partially explainable by the weighted averaging along the specific load line. However, peak

electron temperature under RF occurs at high VDS and low IDS where EL is insignificant suggesting

that any wear-out differences between RF and DC stress of the devices will depend on the balance

between hot-carrier and field driven degradation mechanisms. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4921848]

AlGaN/GaN electronic devices have been recognized as

very promising for applications in the field of radio fre-

quency (RF) amplification as well as power switching.

Despite extensive studies on DC-related device degradation

and lifetime testing,1 limited attention has been paid to RF

induced device wear-out. In order to overcome RF life test

complexity, the DC counterpart is generally used.2 However,

the comparison between DC and RF stress is always a matter

of debate.2–5 According to Joh and Del Alamo,3 RF stress

degrades the device more severely than DC stress at the

same bias point, and this effect increases with input power.

The degradation has been attributed to trap formation due to

hot carriers. Generation of traps with 0.5 eV activation

energy, both due to DC and RF, has been reported by Chini

et al.,4 likewise with more severe degradation observed

under RF. However, data also exist that suggest the device

degradation may actually be no worse or even less under RF

operation, compared to DC stressing as, for example,

observed by Caesar et al.5 Hence, it is essential to identify

the microscopic processes involved in the conduction and

degradation mechanisms of high electron mobility transistors

(HEMTs) under DC and RF conditions, in particular, the hot

electron behavior, to justify any DC life test developed for

RF reliability assessment. Electroluminescence (EL) has

been used as a tool to monitor hot carriers under DC opera-

tion.1,6 It has been suggested that the amount of device deg-

radation is correlated to the EL intensity, which would in

this case indicate degradation due to hot electrons to be the

dominant mechanism.7,8 However, EL characteristics of

AlGaN/GaN HEMTs during RF operation have not been

investigated so far. In this letter, we characterize hot electron

effects during device RF operation by means of EL micros-

copy and spectroscopy. It is demonstrated that hot carrier

density and temperature under RF operation are, on average,

significantly less in RF than under DC device operation.

However, it is also shown that the highest electron tempera-

ture occurs under conditions where EL intensity is insignifi-

cant suggesting that EL is not necessarily a reliable indicator

of device wear-out.

The 4� 100 lm HEMT studied here consist of an

AlGaN/GaN heterostructure with a Fe-doped GaN buffer

layer on a semi-insulating SiC substrate, with a 0.25 lm gate

length and source connected field plate. During testing under

RF excitation, the device was operated in class B using a

passive matching section circuit, built following active load-

pull characterization. This is a practical and compact solu-

tion for RF amplification integrated with optical benches

(microscopy and spectroscopy). Class B operation is fre-

quently employed in RF power amplifier stages since it

delivers high power added efficiency. It involves applying a

resistive load at the fundamental frequency and a short cir-

cuit at the second harmonic. The result is a nominally sinu-

soidal drain voltage and a half wave rectified current

waveform, which flows primarily when the voltage is at a

minimum, thus minimizing dissipation and maximizing effi-

ciency. A 1 GHz signal was applied to the gate of the device

using a vector network analyzer (VNA). The dynamic

current-voltage locus was varied by changing the input RF

power. While the correct fundamental load could be realized,

the inevitable losses in the passive tuner meant that a reflec-

tion coefficient of 0.8 (64% reflection) was present at the

second harmonic.

EL intensity measurements of light emitted from the

AlGaN/GaN HEMTs were performed using an optical

microscope with a 50� objective and a Hamamatsu digital
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CCD camera, while optical spectra from EL emission were

obtained using a Renishaw InVia spectrometer. Micro-

Raman thermography was used to determine device tempera-

ture with more details on the technique given in Ref. 9.

Raman and EL measurements were performed from the back

side of the device through the transparent GaN layer and SiC

substrate, enabling access to the entire source-drain region

including areas underneath the metal contacts.

Fig. 1 displays a contour map of EL intensity in the IDS-

VDS plane, determined under DC bias conditions. The high-

est EL signal occurs in the semi-on region, where the product

of drain current and electric field in the channel is maximum.

This is in agreement with earlier reported data.1 The EL in-

tensity decreases to zero or negligible values in the pinch-off

region (IDS� 10 mA) and in the linear region (VDS<Vsat).

The EL intensity, normalized with the IDS, is expected to fol-

low an exponential law with the inverse of the electric field

in the channel given by1

IEL

IDS
� exp � A

VDS � Vsat

� �
; (1)

where IEL is the EL intensity, IDS is the drain current, VDS is

the drain voltage, Vsat is the current-saturation voltage, and

A is a proportionality constant. Fig. 1 also shows the

dynamic current-voltage trajectory (load lines) of the device

studied under RF, taken with an active load-pull system at

different input drive levels and including their corresponding

average DC drain current. Under DC operation, a load line

was used with a resistance (RL) of 125 X. This value has

been selected to track the on-part of the RF load-line

dynamic behavior (as shown in Fig. 1). In that way, a valid

comparison between RF and DC experiment is possible.

The EL intensity as a function of the average drain cur-

rent under RF is compared to the results under DC in Fig. 2.

For RF excitation, the quiescent bias point was set to

VDS¼ 24 V and VGS¼�3.7 V and the RF input power was

varied between �10 and 15 dBm. Clearly apparent is a

decreased EL intensity measured under RF compared to that

measured under DC.

Knowing the RF load line allows the reduced EL inten-

sity under RF to be understood by comparison with the EL in-

tensity at static DC points along this load line. This is shown

in Fig. 3(b) with indices corresponding to 62.5 ps intervals

during the 1 ns cycle defined in Fig. 3(a). The highest EL in-

tensity occurs in the semi-on region of the IDS-VDS plane. By

averaging over the 16 points, the average EL intensity meas-

ured for each load line is obtained. This “RF average” value is

displayed in Fig. 2, for each Pin (or average DC current value),

and compared to the EL intensity measured under RF. Very

reasonable agreement is obtained; the small differences are

presumably due to effects such as self-heating which is greater

under “RF average” than under the actual RF experiment,

inducing a reduction in the overall EL intensity measured, as

already observed previously.10 The results highlight that under

RF there is a lower hot-electron concentration, on average,

than under DC. This is a consequence of the time averaging of

signal on different part of the IDS-VDS plane, where the most

important hot-carrier contribution comes from the semi-on

part. This fact is important for the evaluation of the effect of

stressing on the reliability of AlGaN/GaN HEMTs, since hot

electrons have always been identified as one source of device

degradation and failure.7

FIG. 1. Contour map of the EL intensity of an AlGaN/GaN HEMT as a

function of drain voltage and drain current obtained under DC operation.

Superimposed are the load lines for class B for the indicated input powers

(Pin) and average drain current (AVG IDS). The quiescent bias point is

located at VDS¼ 24 V and VGS¼�3.7 V. The black dotted line represents

the load line used for the DC EL intensity measurements with load resist-

ance RL.

FIG. 2. Electroluminescence (EL) intensity from an AlGaN/GaN HEMT as

a function of average DC drain current for RF class B and DC operations,

and the intensity integrated over the RF load line. The dashed lines are a

guide to the eye. The vertical dashed-dotted line indicates where the current

saturation onset starts (i.e., VDS � Vsat). In the inset, the false color EL

image is overlaid on a white-light image from the 4� 100 lm-wide device.

FIG. 3. (a) Load line for class B RF operation used, indicating points used

for the detailed analysis of the EL intensity and EL spectrum. Only the 15

dBm load line is shown for clarity. (b) EL intensity versus index on the load

line, over a full RF cycle. On the top x-axis the time scale is shown.
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However, electron temperature is also a key parameter

since above a certain energy threshold, hot carriers can mod-

ify point defects in the AlGaN or GaN.11 Hence, to gain fur-

ther insight into the difference between RF and DC

operation, the energy distribution of hot electrons has been

investigated through EL spectroscopy. In fact, spectrally

resolved EL emission is known to follow a Maxwell-

Boltzmann distribution which, in the high energy part of the

spectrum, can be approximated by an exponential function

of the following form:1

EL Eh�ð Þ � exp � Eh�

kB Tel � Tlattð Þ

� �
; (2)

with photon energy Eh�, electron temperature Tel, lattice tem-

perature Tlatt, and kB the Boltzmann constant. For higher elec-

tric fields in the channel, a higher electron temperature is

anticipated. The lattice temperature rise under the operating

conditions was estimated with Raman thermography to be at

most 30 �C in the range of currents used in the experiment and

was insignificant compared to the electron temperature. The

effect of lattice temperature increase was taken into account by

the Tlatt term, hence the outcomes of the experiment were less

affected by self-heating, unlike the intensity measurements

Figure 4 compares the electron temperature extracted

under RF operation to DC. The values obtained under RF are

significantly lower than under DC conditions by at most

500 K at the same average current, consistent with the

reduced EL intensity under RF of Figure 2. To better under-

stand the spectral measurements, similar to the intensity

measurements, an average hot-electron temperature under

RF was extracted using the DC bias points along the meas-

ured RF load line and added to Figure 4. This also produced

an “RF average” electron temperature lower than the DC

value, but not as low as the RF experiment. This averaging

process has a strong weighting towards the highest intensity

contribution as can be inferred from the spectra in Figure

5(a). Averaging the EL spectra along the RF load line is

dominated by the spectrum under semi-on conditions due to

its high intensity (Fig. 5(a) with index 5 in Fig. 3(a)). The

comparison between “RF average” and RF experimental

shows a reduction of the electron temperature due to a reduc-

tion of the effective electric field in the device under RF.

The main reason for that is thought to be the charge trapping

under RF, either in the buffer12 or on the surface13,14 (virtual

gate), responsible for current collapse during high frequency

operation. The effect is substantially a smear-out of the elec-

tric field under RF, i.e., a reduction of the effective electric

field and therefore of the hot carrier temperature.

To consider the implications of the results obtained here

for device reliability, i.e., RF versus DC lifetime testing, it is

important to realize that the RF experimental EL data are

effectively averaged values, but there are peaks in hot carrier

density and temperature at certain times in the RF load line. In

particular, the high VDS and low IDS (high negative VGS) part

of the IDS-VDS plane does not contribute significantly to the

EL intensity (see Fig. 1) and spectrum (as shown in Figure

5(a)), but it does result in carriers with high electron tempera-

ture. This is apparent in the electron temperature map in

Figure 5(b). The density of these very hot carriers may be

small, however these are carriers with much higher energy

than under DC, and pure electric field induced device degrada-

tion contributes here as well.15–17 This part of the RF load line

will ultimately determine whether RF stress results in faster or

slower device degradation. Only if this region is not dominant

will RF stress result in lower device degradation than under

DC due to the smaller average hot carrier density and energy.

In conclusion, hot-electron concentration and tempera-

ture during RF operation in class B in AlGaN/GaN HEMTs

were compared with DC conditions using EL intensity and

spectrum measurements. The results showed that hot elec-

tron density under RF operation along a class B load line is

lower, on average, than under DC operation, obtained on a

load line with the same load resistance. The results suggest

that degradation under RF compared to DC should be

reduced, but only if field-driven degradation at high VDS is

insignificant. The corollary is that electroluminescence is

only a good reliability indicator if field driven mechanisms

can be excluded.
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FIG. 4. Electron temperature obtained on an AlGaN/GaN HEMT operated

under RF and DC as a function of average drain current determined by the

EL spectrum. The curves are a guide for the eye.

FIG. 5. (a) Spectra of three representative points of the 15 dBm class B load

line with index numbers shown in Fig. 3(a) and the spectrum obtained as a

sum of all the spectra over all the indices. (b) Electron temperature contour

map in the IDS-VDS plane measured under DC conditions. The crosses repre-

sent the points of measurement.
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