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Abstract: The heavy sediment load of the Yellow River makes it difficult to simulate sediment concentration using classic numerical models.
In this paper, on the basis of the classic one-dimensional numerical model of open channel flow, a variational-based data assimilation method
is introduced to improve the simulation accuracy of sediment concentration and to estimate parameters in sediment carrying capacity. In this
method, a cost function is introduced first to determine the difference between the sediment concentration distributions and available field
observations. A one-dimensional suspended sediment transport equation, assumed as a constraint, is integrated into the cost function. An
adjoint equation of the data assimilation system is used to solve the minimum problem of the cost function. Field data observed from the
Yellow River in 2013 are used to test the proposed method. When running the numerical model with the data assimilation method, errors
between the calculations and the observations are analyzed. Results show that (1) the data assimilation system can improve the prediction
accuracy of suspended sediment concentration; (2) the variational inverse data assimilation is an effective way to estimate the model param-
eters, which are poorly known in previous research; and (3) although the available observations are limited to two cross sections located in the
central portion of the study reach, the variational-based data assimilation system has a positive effect on the simulated results in the portion of
the model domain in which no observations are available. DOI: 10.1061/(ASCE)HE.1943-5584.0001344. This work is made available
under the terms of the Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.
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Introduction

The Yellow River is located in the middle of China, with a drainage
area of 795,000 km2 and a length of 5,464 km (Fig. 1). The Yellow
River is well known for its heavy sediment load and frequent shifts
in its course. The long-term mean annual sediment concentration is
35 kg=m3, and hyperconcentrated floods with sediment concentra-
tions of more than 100 kg=m3 occur quite often (Wu et al. 2008b).
Because of siltation, the lower reach of the Yellow River, down-
stream the Xiaolangdi Reservoir, has become a suspended river
(hanging river) whose bed is higher than the surrounding land
surface, in some locations by more than 10 m (Wang et al. 2005).

The heavy sediment load of the Yellow River always results in dras-
tic fluvial processes and avulsion has become a major threat to hu-
man life and property. Moreover, climate change and human
activities along the river make the sediment transport process more
complicated (Lu et al. 2013; Samaras and Koutitas 2014). To en-
sure the safety of levees, an accurate prediction of sediment con-
centration and water level becomes extremely important.

Numerical models, which are based on the theory of nonequili-
brium sediment transport and address the suspended sediment
exchanges in the near-bed layer, have considerable applications
in practical river dynamics (e.g., Celik and Rodi 1988; Fang et al.
2008; van Rijn 1986). In applying these models, some key param-
eters, including the sediment carrying capacity, recovery coeffi-
cient, and friction factor, should be identified properly. For a
specific water-sediment condition in a flood event, these parame-
ters are often determined on the basis of the data acquired from
laboratory experiments or field measurements (Fang and Wang
2000; Hu et al. 2014; Tsai et al. 2014). Some of the numerical mod-
els can be used to compute the transport of hyperconcentration
sediment occurred in the Yellow River (Fang et al. 2008).

These numerical models are widely used in the pre-design phase
for engineering projects. However, there are two fundamental chal-
lenges when using numerical models for real-time prediction. One
challenge is that the simulated results of classic numerical model
usually disagree with the measurements. The errors between the
simulations and measurements may be attributed to the imperfec-
tion of the model structure and the difficulty in parameter calibra-
tion. Moreover, the heavy sediment load in the lower Yellow River
can also affect the accuracy of water level and bed deformation
predictions. Another challenge is the identification of the parame-
ters in the numerical model. For a natural river, it is difficult to
estimate these parameters using exiting formulas, as the river char-
acteristic changes with the variation of incoming water flow and
sediment concentration from upstream catchments. Consequently,
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empirical coefficients and formulas have been adopted and, some-
times, such numerical models fail in practical applications.

Three approaches can be employed to improve the numerical
model accuracy. The first approach is to use a series of optimal
methods, such as artificial intelligence and neural networks
(e.g., Cheng et al. 2005; Chen and Chau 2006; Taormina and Chau
2015; Wu et al. 2009). The second approach is to build up coupled
numerical models, in which the flow, sediment transport and
morphological evolution processes are strongly coupled with
one another (e.g., Cao et al. 2004). The third approach is the data
assimilation method, which originates from weather prediction.
Compared with other optimization algorithms, the advantage of
the data assimilation method is that real-time observation data
can be included into the numerical model simulation procedure.
Consequently, the simulated variables will be closer to the obser-
vations thus improve the predictions in the next time step.

Nowadays, monitoring technology for suspended sediment
concentration develops fast and real-time field data can be obtained
and rapidly transferred to data center by the internet (Haimann et al.
2014). Therefore, the data can be integrated into the model to im-
prove the accuracy of the prediction, which is the basic principle of
data assimilation. The ensemble Kalman filter and variational-
based methods are among the most popular data assimilation algo-
rithms. The ensemble Kalman filter is an improved edition of the
Kalman filter, which uses Monte Carlo theory to estimate the model
error (Evensen 2009). For decades, the ensemble Kalman filter
has received considerable attention over a wide range of subjects
including ocean circulation, numerical weather forecasting, and hy-
drology (e.g., Moradkhani et al. 2005; Lai et al. 2013; Lewis et al.
2006). The variational-based algorithm implements the minimum
distance between the observations and predictions, while, at the
same time, taking an explicit dynamic system as a constraint
(Le Dimet and Talagrand 1986).

The variational-based data assimilation method has some advan-
tages comparing with the ensemble Kalman filter. The variational-
based data assimilation implements the minimum over a recent time

period whereas the ensemble Kalman filter enhances the prediction
using the observation in the latest time step. As a result, the
variational-based data assimilation can improve the prediction over
the recent time period. This advantage is more useful when the ob-
servations are rare. In contrast, the control equation describing the
sediment transport can be assumed as a constraint, which indicates
that the variational data assimilation considers more physical infor-
mation than the ensemble Kalman filter. Thus, the obvious theoreti-
cal advantage of variational data assimilation is that it can provide
consistency between the forecasts and the dynamics system (Kalnay
2003; Le Dimet and Talagrand 1986; Zhang and Zhang 2012).

In the past 10 years, several cases that integrate data assimilation
with a sediment transport model have been published (Bélanger and
Vincent 2005; Stroud et al. 2009; Thornhill et al. 2012). These
cases use observations to enhance the prediction, but none of them
are applied to solve the problem with heavy sediment load.

To improve the prediction of heavy sediment load in the lower
Yellow River, a one-dimensional numerical model integrated with a
variational-based data assimilation method is used to improve the
simulated sediment concentration and to estimate coefficients of
sediment carrying capacity. In the data assimilation system, a cost
function which describes the difference between the observation
and the simulation is given first. The adjoint equation and param-
eters’ gradients are then applied to the suspended sediment concen-
tration. The results and capability of the assimilation system are
then demonstrated.

Governing Equations and Discretization

The governing equations of the one-dimensional open channel
flows considering the lateral inflow are the de Saint Venant
equations

B
∂Z
∂t þ

∂Q
∂x ¼ ql ð1Þ

Fig. 1. Lower Yellow River and study area
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∂Q
∂t þ ∂

∂x
�
Q2

A

�
þ gA

∂Z
∂x þ g

QjQj
C2AR

¼ 0 ð2Þ

where x = longitudinal direction along the channel thalweg; t =
time; A = flow area; B = width of the cross section; Q = total
volume discharge; Z = water level; ql = lateral inflow discharge
per unit channel length; g = gravitational acceleration; R =
hydraulic radius; and C = Chézy coefficient.

Traditionally, the sediment transport is divided into a suspended
load and a bed load. In the lower reach of the Yellow River, most
sediment, with fine-grained size, is transported as the suspended
load (Wu et al. 2008b). The bed load is only a small portion of
the total load, varying from 0.3 to 0.7% on average at all the hydro-
logic stations along the lower reaches of the river (Wang et al.
2005). Therefore, no bed load transport is considered in this study.
Han (1980) introduced the governing equation for the nonequili-
brium transport of uniform sediment and it is widely used for prac-
tical applications in the Yellow River

∂ðASÞ
∂t þ ∂ðQSÞ

∂x þ αωBðS − S�Þ ¼ Sl ð3Þ

where S = average sediment concentration over a cross section;
S� = sediment carrying capacity in kg=m3; Sl = suspended sediment
concentration in the lateral outflow per unit channel length; α =
recovery coefficient; and ω = average sediment fall velocity, which
is calculated using the Stokes formula.

The sediment carrying capacity represents the maximum
amount of sediment that can pass through a given river reach under
a certain flow condition (Ch’ien and Wan 1999). If the input sedi-
ment concentration is higher than the sediment carrying capacity,
the flow is under the condition of extrasaturation and deposition
occurs. Otherwise, the flow is of insufficient saturation and erosion
occurs (Fang and Wang 2000). For decades, several empirical or
semi-empirical formulas, such as Engelund and Hansen (1967),
Ackers and White (1973), Yang (1996), van Rijn (2007a, b) and
Zhang (1961), have been introduced for practical engineering proj-
ects to describe the sediment carrying capacity. Wu et al. (2008a)
computed the sediment transport in the Yellow River using the pre-
vious formulas, and the best predictions were obtained by Zhang’s
method and Yang’s method because of the highly concentrated and
fine-grained sediment. Actually, in China, Zhang’s formula has
been widely used for practical application, especially in the hyper-
concentrated flow. Zhang’s formula is on the basis of the energy
balance theory in which the amount of energy supplied by the fluid
equals frictional energy losses that required to keep sediment in
suspension. This equation can be expressed as

S� ¼ k

�
V3

gRω

�
m

ð4Þ

where k and m = coefficients; V = average cross sectional velocity.
The concepts of sediment carrying capacity, S�, and recovery
coefficient are widely used in Chinese numerical simulations for
nonequilibrium suspended sediment transport, which are reviewed
by Fang and Wang (2000) in detail.

The bed deformation caused by the nonequilibrium sediment
transport can be written as

ρ 0 ∂yo
∂t ¼ αωðS − S�Þ ð5Þ

where y0 = riverbed deformation caused by erosion and siltation;
and ρ 0 = dry bulk density of bed materials.

There are several finite difference schemes for the discretization
of the governing equations [Eqs. (1) and (2)]. These schemes can be
classified as explicit schemes, such as those in leap-frog (Liggett
and Cunge 1975), and implicit schemes, such as Abbott and
Ionescu (1967) and Preissmann (1961) schemes. In the explicit
scheme, the equations are arranged to solve for one point at a time,
while a group of advance points are solved simultaneously for the
implicit scheme. The leap-frog scheme uses centered differences in
both distance and time. In the Abbott scheme, the distinction is
made between the storage width in the continuity equation and
the so-called computational width in the dynamic equation. Among
these discretization schemes, the Preissmann implicit four-point
finite difference scheme is one of the widely used schemes. Instead
of evaluating space derivatives at one of the grid points as the
explicit schemes, the Preissmann method evaluates these deriva-
tives in the middle of the two consecutive grid points, with the
advantages of the numerical stability, the computation of disconti-
nuities, and the calculation of the boundary conditions and the var-
iable spatial intervals (Chanson 2004). In the Preissmann method,
two commonly used assumptions are made during the process
of iteration: Anþ1

j ¼ A�
j þΔAj and Qnþ1

j ¼ Q�
j þΔQj. In the

assumptions, the symbol * denotes variable values at the last iter-
ation step whereasΔA andΔQ are the increments of flow area and
discharge, respectively. Substituting these two relations into the
discretized Eqs. (1) and (2) to linearize the nonlinear terms, one
can obtain the following iteration relations:

a1jΔQj þ b1jΔZj þ c1jΔQjþ1 þ d1jΔZjþ1 ¼ e1j ð6Þ

a2jΔQj þ b2jΔZj þ c2jΔQjþ1 þ d2jΔZjþ1 ¼ e2j ð7Þ

where j = number of the current cross section; ΔZ = increment
of water level; a1j ∼ e1j and a2j ∼ e2j = coefficients related to
hydraulic parameters, geometry, and time (Cunge et al. 1980). Then
the variables in Eqs. (6) and (7), i.e., water level and discharge, can
be mathematically described by a coefficient matrix. There are sev-
eral methods including the Gauss-Seidel, successive over relaxa-
tion method (SOR), and the double sweep method which can be
used to solve the matrix. As a point (j) is linked only to the adjacent
pointsn (j − 1 and jþ 1), the linear system of equations is de-
scribed by a sparse and pentadiagonal coefficient matrix. The dou-
ble sweep method, using the banded matrix structure, is an effective
approach to calculate the linear system of equations (Cunge et al.
1980). Here the pentadiagonal matrix described by Eqs. (6) and (7)
is solved by the double sweep algorithm to obtain ΔQ and ΔZ at
each iteration step. The water level and discharge are then updated
by the assumptions. The iteration is stopped when the ΔZ and ΔQ
are both minimized to a small tolerance.

Using a finite difference scheme, the equations of sediment
transport and bed deformation are discretized as

Atþ1
j Stþ1

j −At
jS

t
j

Δt
þQtþ1

j Stþ1
j −Qtþ1

j−1Stþ1
j−1

Δxj−1
þ½αωBðS−S�Þ�tþ1

j ¼ Stþ1
l

ð8Þ

Δyo ¼
Δt
ρ 0 ½αωðS − S�Þ�tþ1

i ð9Þ

where Δy0 = thickness of cross averaged bed deformation.
The initial value of sediment concentration and bed deforma-

tion are calculated directly by Eqs. (8) and (9). Once the observed
sediment concentration is available, the predicted sediment
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concentration will be updated using variational assimilation
method. Then, the bed deformation can be updated by

Δyþ0j ¼
Δt

ΔxjBρ 0 ðQjþ1 · S
þ
jþ1 −Qj · S

þ
j Þ ð10Þ

where Sþ and Δyþ0 = updated sediment concentration and bed de-
formation, respectively. This equation describes the balance of the
rate of sediment transport between two cross sections.

The model used in this paper has been applied to fine suspended
loads and to hyperconcentrated flows in the Yellow River (Fang
et al. 2008; Lai et al. 2013), but with some simplifications in sedi-
ment carrying capacity.

Variational-Based Data Assimilation for Sediment
Concentration

The general idea of the variational-based data assimilation for sus-
pended sediment concentration is as follows. Firstly, a cost function
is introduced to measure the differences between the observations
and the calculated values, which consists of a weighted sum of
square of the differences between the observations and the calcu-
lated values over the entire temporal and spatial domains (Navon
1986). Secondly, a set of adjoint equations are derived to calculate
the gradient of the parameters. The adjoint equation of a nonlinear
system is firstly used in the area of meteorology and is considered
to be a powerful tool for data assimilation, parameter estimation,
and stability analysis (Errico 1997). Finally, the cost function and
its gradient are used to find the optimal initial conditions. The im-
proved initial conditions are then used to calculate variables in the
next time step, which makes the predictions closer to the observa-
tions. The steepest descent algorithm is applied for the minimiza-
tion of the cost function. Compared with other algorithms
(e.g., quasi-Newton methods), the steepest descent algorithm is
both effective and easy to program.

Cost Function

For a variational data assimilation system, a cost function, also
called the objective function, is introduced first. The cost function
is a measure of the magnitude of the discrepancy between obser-
vations and predictions (Talagrand 2010). The form of the cost
function can be designed according to the needs of a specific varia-
tional problem. A general shape of the cost function JðSÞ, describ-
ing the differences between the observed and calculated sediment
concentrations, can be written as

JðSÞ ¼
Xl

i¼1

ðHS − ~SiÞTE−1ðHS − ~SiÞ ð11Þ

where S = variable of sediment concentration whose size equals the
number of model grid cells m; ~S = observation whose size equals l;
and i = ith observation. Because the number of the observation is
much less than the number of grid cell, the size of l is much less
than m; H = linearized operator that transforms model variables
to observation space, whose size equals l. For example, H can be
a simple linear interpolation from the model grid to the nearest
location of the observations; E = observational error covariance
whose size is l × l. Choosing appropriate values for the covariance
matrices is important for weighting correctly. The superscriptT rep-
resents the transpose of the matrix whereas is the symbol for inverse.

The observation error covariance matrix E is simplified to have
a diagonal form, assuming that there is no cross-correlation be-
tween the observation errors. According to the observation standard

for suspended sediment in China (Ministry of Water Resources of
the PRC 1992), the error in the observed sediment concentration is
assumed as following a normal distribution whose mean is 0 and
variance is 2.1% of the observed value.

Adjoint Equation and Gradients

Adjoint method, which integrates the model equations as a con-
straint, has been found to be an efficient way to obtain the gradients
of the cost function with respect to the variables (Yu and O’Brien
1991; Schlitzer 1993). In this case, the model equation is the
sediment transport equation. By appending the equation to the cost
function as dynamic constraint, a Lagrange function can be con-
structed to optimize the value of sediment concentration

Lðλ; S;α; k;mÞ

¼ JðSÞ þ
X
t;j

λt
j

�
Qtþ1

j Stþ1
j −Qtþ1

j−1Stþ1
j−1

Δxj−1
þ Atþ1

j Stþ1
j − At

jS
t
j

Δt

þ
�
αωB

�
S − k

�
V3

gRω

�
m
��

tþ1

j
− Stl

�
ð12Þ

where t = time; j = number of the current cross section; JðSÞ = cost
function described by Eq. (11); λ = Lagrange multipliers, also
called adjoint variables (Sanders and Katopodes 2000). The differ-
ential equation listed in curly bracket is the constraint condition
expressed as Eq. (8).

The problem of minimizing the cost function J subject to the
dynamic constraint in Eq. (12) is now transformed into a problem
of minimizing the unconstrained Lagrange function, L. The sedi-
ment transport equation for the best fit solution requires that all first
order partial derivative of the Lagrange function with respect to λ,
S, and the three parameters (α, k, m) are equal to zero

∂L
∂λ ¼ 0 ð13Þ

∂L
∂S ¼ 0 ð14Þ

∂L
∂α ¼ 0 ð15Þ

∂L
∂k ¼ 0 ð16Þ

∂L
∂m ¼ 0 ð17Þ

Eqs. (13)–(17) are Euler-Lagrange equations. Differentiating L
in Eq. (13) with respect to λ yields the Eq. (3), whereas differen-
tiating L in Eq. (14) with respect to S results in the adjoint equation

ðStj − ~StjÞ þ
Qt

jλ
t
j −Qt

j−1λtj−1
Δxj−1

þ At−1
j λt−1

j − At
jλ

t
j

Δt
þ ½αωBλ�tj ¼ 0

ð18Þ

Eq. (18) is expressed as a backward difference approximation
because the Lagrange multipliers, λ, can only be solved by solving
the equation backward in time. Using the computed Lagrange
multipliers, the gradients of the cost function (J) with respect to
the three parameters (α, k, m) can be derived from Eq. (15) to
Eq. (17) as follows:

© ASCE 04016010-4 J. Hydrol. Eng.
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∇αL ¼ λtj

�
ωB

�
S − k

�
V3

gRω

�
m
��

t

j
ð19Þ

∇kL ¼ −λtj
�
αωB

�
V3

gRω

�
m
�
t

j
ð20Þ

∇mL ¼ −λtj
�
αωBk

�
V3

gRω

�
m

· ln

�
V3

gRω

��
t

j
ð21Þ

The values of the three parameters (α, k, m) can be updated and
expressed into a simple form

ζniþ1 ¼ ζni − β∇ ð22Þ
where ∇ = gradient of the three parameters; ζ = value of the three
parameters; β = iterative step; and ni = number of the iteration.

Optimal Process

The flow chart of the data assimilation procedure used to optimize
the sediment concentration is illustrated in Fig. 2 and can be sum-
marized by the following steps:
1. Define the assimilation step and time step. The assimilation step

defines how long a time of the observations will be used in the
assimilation system whereas the time step is the discrete set of
points covering the temporal field. The combinations of the two
steps with different values can determine both the efficiency and
accuracy of the data assimilation system.

2. Calculate the discharge and water level using Eqs. (6) and (7).
3. Calculate the sediment concentration and bed deformation using

Eqs. (8) and (9). The two variables, water level and discharge,
will be assumed as initial values for the variational-based data
assimilation system.

4. The observed values of sediment concentration are added into
the adjoint equation to estimate the Lagrange multipliers.
Because the number of observations is far less than the number
of points on the computational grid, the calculations are inter-
polated into the points of observations.

5. Calculate the gradients of the three parameters: α, k, and m.
6. Update the values of the three parameters using Eq. (22). To find

the steepest way to minimize the cost function, the iterative step
in Eq. (22) can be varied in each iteration.

7. Calculate the sediment concentration again using the updated
parameters.

8. Check whether the cost function satisfies with a convergence
criterion ε. The symbol ε is the criterion specifying the value
to determine whether the minimum cost function is reached.
Normally, the minimum cannot be reached in the first iteration.
Thus, it is necessary to return to Step 4 to continue the process
and stop when the value of the cost function is less than ε.

9. Now, the optimal values of the sediment concentration are ob-
tained and the bed form can be adjusted using Eq. (10).

Results

Study Area and Boundary Condition

The study area is located in the lower Yellow River from Xiaolangdi
toGaocun, consisting of a distance of approximately 281 km (Fig. 1).
There are four hydrological stations along the river: Xiaolangdi,
Huayuankou, Jiahetan and Gaocun, with Xiaolangdi and Gaocun
being set as the input and output boundaries, respectively.

The data assimilation scheme, previously described, was ap-
plied to investigate a flood event that occurred in 2013, from June
19 to July 11, with a total simulation time of 528 h. To make the
simulation representing better to the true process of the natural
flood, lateral inflow, sand mining, irrigation, evaporation, and
infiltration were considered in the numerical model. During the
simulation, the outflow for irrigation (388 m3=s) and the loss attrib-
utable to evaporation and infiltration (120 m3=s) were taken into
account. The amount of sand loss attributable to mining for con-
struction was set to 0.8% of the total incoming suspended sediment
according to the Yellow River sediment bulletin published in 2013
(Yellow River Conservancy 2013).

Fig. 3 shows the input discharge and suspended sediment
concentration. As given in the figure, the input discharge from
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the Xiaolangdi station was around 4,000 m3=s from the 100th
hour to 320th and then dropped dramatically to 2,000 m3=s in
the 360th hour. From the 400th to 480th hour, the input dis-
charge returned to 3,500 m3=s. Because of the control of the
Xiaolangdi dam, the suspended sediment concentration had a
low value from the beginning to the 350th hour and then greatly
increased from 30 to 50 kg=m3 at the 370th hour to the
470th hour.

The initial values of parameters used in the numerical model
are listed in Table 1. The Manning’s roughness coefficient was
0.008 m−1=3 · s when the flood was confined to the main channel.
The recovery coefficient was 0.02 m−1=3 · s when erosion hap-
pened, and it became 0.005 m−1=3 · s when deposition happened.
The initial values of the coefficients k and m were 0.4 and 0.6, re-
spectively. The iterative step, β, was assumed as a constant value
0.002. The assimilation step was 150 h and the time step was 600 s.
These initial values of the parameters, including Manning’s rough-
ness coefficient, recovery coefficient, and sediment carrying capac-
ity, were calibrated using data obtained from historical floods and
considered to be reasonable for use in the lower Yellow River (Lai
et al. 2013, 2014).

The proposed data assimilation system was performed under
the operation system of Linux Ubuntu 14.0. The programming lan-
guage was GCC Fortran and the compiler was GCC. The comput-
ing costs, with and without data assimilation, were approximately
30 and 20 s, respectively. Approximately an extra 50% extra com-
puting time was needed because of data assimilation. However,
with regarding the improvement in model accuracy, the increased
computing time was considered acceptable.

In this paper, the coefficient of determination (R2) and root mean
square error (RMSE), whichwere critically reviewed byLegates and
McCabe (1999), were used to evaluate the error of simulated results.
These two evaluation criteria are commonly used in the area of both
hydrology and hydraulics. Usually, the R2 parameter defines the
relationship between the observations and the predictions, whereas
the RMSE measures the residuals between those two sets of values.

Simulated Water Level and Discharge

Fig. 4 shows the simulated water level with (represented byWB) and
without (represented byWOB) the bed deformation calculation. The
result demonstrates that the heavy sediment load in the lower Yellow

Table 1. Initial Values of the Model Parameters

Parameter Description Unit Initial value

n Manning’s roughness m−1=3 × s 0.008
ω Settling velocity m=s 8.7 × 10−5
ρ 0 Dry bulk density kg=m3 1,300
Sl Amount of sediment mining kg=m3 0.8% of the calculated suspended sediment concentration
α Recovery coefficient — Erosion: 0.02, deposition: 0.005
k Coefficient — 0.4
m Coefficient — 0.6
β Iterative step — 0.002
Δa Assimilation step h 150
Δt Time step s 600
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River can substantially change the water level. When the bed defor-
mation was considered, the predicted water level was closer to the
observations. This improvement is also illustrated by the RMSEs
andR2s for the two stations. Specifically, at the Huayuankou station,
the RMSE value decreased from 0.31 to 0.28 when the bed defor-
mation was considered in the numerical model. At the Jiahetan
station, in comparison with the Huayuankou station, the RMSE
value reduced slightly from 0.13 to 0.12.

Fig. 5 shows the results of the measured and calculated
discharge for the two stations. As is shown in the figure, the sim-
ulations produced a similar hydrograph to the observations but the
errors were also obvious. The RMSE value for the Huayuankou
station was 186.6 whereas for the Jiahetan station the RMSE in-
creased to 285. For the two stations, the simulated values of dis-
charge were generally higher than the observations, especially from
the 200th hour to the 300th hour.

Simulated Sediment Concentration and Bed
Deformation

Fig. 6 shows the comparisons between the model simulation and
field observed sediment concentrations, with and without data
assimilation. Fig. 6(a) reveals two peak values of sediment concen-
tration during the flood event in 2013. The first one appeared at
the 410th hour with a value of 27.4 kg=m3, whereas the second
one appeared at approximately the 482th hour with a value of
29.7 kg=m3. Although the numerical model applied without data
assimilation could forecast the two peak values, the simulations
were substantially higher than the observations. However, at the
Jiahetan station, the simulated sediment concentrations were lower
than the observations.

The errors between the numerical model and observations
can be attributed to the problem of parameter estimation such that
the coefficients of recovery and sediment-carrying capacity could
not adjust to the change in the water-sediment relation. However,
when data assimilation was applied, the simulated accuracy was

improved. For the Huayuankou station, the coefficient of determi-
nation increased from 0.97 to 0.98, although the RMSE decreased
from 3.1 to 1.19. Similarly, the coefficient of determination at the
Jiahetan station increased from 0.93 to 0.99 whereas the RMSE
decreased obviously from 3.7 to 0.36.

Fig. 7 shows the calculated and measured amount of erosion
and deposition. The measured sedimentation was derived from
the difference between the sediment loads at the stations along the
river. A negative value refers to erosion whereas a positive value
refers to deposition. During the flood event in 2013, the reach from
Xiaolangdi to Huayuankou experienced deposition whereas from
Huayuankou to Gaocun erosion. The simulated bed deformation
was calculated using Eq. (9) and then adjusted by Eq. (10). It is
concluded that the simulated erosion and deposition were consis-
tent with the observations.

Discussion

An important advantage of the variational data assimilation method
is its ability of parameters estimation. In the area of sediment trans-
port, some parameters, including sediment carrying capacity
and recovery coefficient, are generally analyzed on the basis of
the data from experimental statistics. However, the values of these
parameters and the variation with water-sediment condition are
poorly understood. In this section, the variation of these parameters
with the changing water-sediment condition is discussed followed
by an analysis of the effect of data assimilation system on the model
domain in which no observation is available.

Parameters of Sediment Carrying Capacity

Coefficient k and exponent m are the important factors needed
to determine the sediment carrying capacity. According to the
research of Zhang (1961), coefficient k and exponent m are not
constant values but have a relation to the value of the function
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V3=gRω. Specifically, when the value of V3=gRω increases, the
value of the coefficient k will increase but the value of exponent
m will decrease.

Fig. 8 shows the variation of the two parameters, k and m, in the
equation for the sediment carrying capacity. For the Huayuankou
station, the value of coefficient k was approximately 0.4 whereas
the value of exponent m was around 0.6, with both being close to
the initial values of the two parameters. However, the values of the
two parameters for Jiahetan station changed frequently. At Jiahetan
station, the value of k varied from 0.38 to 0.44 whereas m varied
from 0.5 to 0.7. The values at both stations decreased at the 380th
hour, which indicated a decrease of the sediment carrying capacity.

Recovery Coefficient

The recovery coefficient α is a synthetic empirical parameter,
which exerts a great deal of influence on the rate of riverbed de-
formation. The larger the recovery coefficient is, the greater will be
the rate of riverbed deformation, and vice versa (Fang and Wang
2000). The recovery coefficient is used to account for a variety
of mechanisms that occur during the deposition and erosion proc-
esses. Han (1980) proposed that α ¼ 0.25 or 0.5 for a river or res-
ervoir, if deposition occurred, and α ¼ 1.0 or more if erosion took
place. However, according to the result of one-dimensional numeri-
cal modeling for the lower Yellow River, Wang et al. (2005) con-
sidered that the recovery coefficient was much smaller than 0.25, as
proposed by Han (1980). Wang et al.’s (2005) result demonstrated
that the recovery process in the Yellow River with its heavy sedi-
ment concentration was much slower than other rivers.

Fig. 9 shows the variation of the recovery coefficient at the
Huayuankou and Jiahetan stations. For the Huyuankou station,
the recovery coefficient stabilized near 0.04 from the beginning
to the 380th hour. After that, the value decreased dramatically to
0.005, which indicates that the Huayuankou station was trans-
formed from a situation of erosion to deposition. A similar
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phenomenon also happened at the Jiahetan station. During the first
380 h, the recovery coefficient at Jiahetan fluctuated from 0.04 to
0.16, but then declined rapidly.

Effect of Data Assimilation System on the Model
Domain with No Observations

In the lower Yellow River, there are 121 measured cross sections
from Xiaolangdi to Gaocun. However, observation data were
only available at the two hydrological stations: Huayuankou and
Jiahetan. Compared with the whole computational domain, the dis-
tributions of the observation data were non-uniform. Unfortunately,
the data assimilation, according to the principle described in section
“Variational-based Data Assimilation for Sediment Concentration,”
can only work in the portions of the domain in which the obser-
vations are available. Therefore, it is not known to what extent the

data assimilation system can affect the portion of model domain
with no observations.

A scheme has been designed to answer this question. At first,
the results of direct simulation without data assimilation were cal-
culated as background data. Then the data assimilation system runs
for three scenarios. Scenarios 1 and 2 represented the assimilation
system runs considering the observations only from the Huayuan-
kou and Jiahtan stations, respectively. In Scenario 3, the model run
with the observation data from both the stations. The changes of the
predicted sediment concentration are calculated using Eq. (23)

RoC ¼ S− − Sþ

S− ð23Þ

where RoC = rate of change; and Sþ and S− = simulated sediment
concentration with and without data assimilation, respectively. The
higher the absolute value of RoC is, the greater effect on the domain
with no observations, and vice versa. A positive value of RoC in-
dicates that the results of direct simulation are larger than the results
of the data assimilation, and vice versa.

Fig. 10 illustrates the results produced with the data assimilation
system and its effect on the model domain with no observations. In
the figure, the horizontal axis represents the distance of cross sec-
tions from the flow input whereas the vertical axis represents the
assimilation time. The units for the horizontal and the vertical axis
are meters and minutes, respectively. The result from Scenario 1
shows that the location of the Huayuankou station is an obvious
boundary to distinguish whether the influence of the data assimi-
lation is great or small. Specifically, the data assimilation system
has a distinct effect on the domain downstream of the Huayuankou
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Fig. 10. (Color) Effects of the data assimilation system on the computational domain with no observations: (a) result of Scenario 1: the data assim-
ilation system runs with the observations only from Huayuankou station; (b) result of Scenario 2: the data assimilation system runs with the ob-
servations only from Jiahetan station; (c) result of Scenario 3: the data assimilation system runs with the observations both from Huayuankou and
Jiahetan stations. The horizontal axis represents the distance of cross sections from the flow input whereas the vertical axis represents the assimilation
time. The units for the horizontal and the vertical axis are meters and minutes, respectively
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station. However, for the domain upstream of the Huayuankou sta-
tion, the influence is not noticeable. A similar phenomenon was
found in Scenarios 2 and 3. The reason for this phenomenon
can partly be attributed to the numerical equations which control
the value of sediment concentration and the sediment transportation
to the model domain with no observations.

Conclusions

In this paper, a variational-based data assimilation system was pre-
sented and applied to simulate the sediment transport process in the
lower Yellow River, China. In the data assimilation system, the var-
iables of the water level and discharge were calculated directly
whereas the suspended sediment concentration was optimized us-
ing variational-based data assimilation method. A form of cost
function was used to describe the difference between the calculated
and observed data. The constraints that are the equations of the
physical model are combined into the cost function to construct
a functional-linear function on vectors. The variable of sediment
concentration and the parameters for sediment carrying capacity
are represented by the gradients of the functional. The adjoint equa-
tions and the steepest descent algorithm were used to minimize the
functional and to obtain the optimized variables.

The data assimilation system was applied to the lower Yellow
River to reproduce the 2013 flood. It was found that the data assimi-
lation system efficiently reduced the error in the suspended sedi-
ment concentration. Using the gradient of the functional, the
parameters for sediment carrying capacity can be successfully es-
timated. The optimal values of the parameters were considered to
be reasonable according to earlier research. Furthermore, the data
assimilation system, under the control of the numerical model, can
affect the model domain with no observations available.

In the future, a more stable and practical variational-based data
assimilation system will be established. As the available data are
mostly sparse and scattered in several hydrostations, some optimal
methods should be applied to make the data assimilation system
more stable. In addition, more historical flood data should be ac-
quired to capture the trajectory of the parameters variation with the
changing water-sediment condition. According to the results of the
inverse parameter problem, the physical meanings of these param-
eter variations help one to better understand the identification
of parameters. However, it is not enough to deeply understand
the parameters’ characteristics with only a collection of the param-
eters variation from a single river and single flood data. The authors
expect to use more flood data to establish a function between these
parameters and the variables (e.g., water level and discharge).
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