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Abstract  

Cardiovascular disease (CVD) is a major cause of mortality and the main cause of morbidity worldwide. CVD may lead to heart 
attacks and strokes and most of these are caused by atherosclerosis; this is a medical condition in which the arteries become 
narrowed and hardened due to an excessive build-up of plaque on the inner artery wall. Arterial calcification and, in particular, 
abdominal aortic calcification (AAC) is a manifestation of atherosclerosis and a prognostic indicator of CVD. In this paper, a 
two-stage automatic method to detect and quantify the severity of AAC is described; it is based on the analysis of lateral vertebral 
fracture assessment (VFA) images. These images were obtained on a dual energy x-ray absorptiometry (DXA) scanner used in 
single energy mode. First, an active appearance model was used to segment the lumbar vertebrae L1-L4 and the aorta on VFA 
images; the segmentation of the aorta was based on its position with respect to the vertebrae. In the second stage, feature vectors 
representing calcified regions in the aorta were extracted to quantify the severity of AAC. The presence and severity of AAC was 
also determined using an established visual scoring system (AC24). The abdominal aorta was divided into four parts immediately 
anterior to each vertebra, and the severity of calcification in the anterior and posterior walls was graded separately for each part 
on a 0-3 scale. The results were summed to give a composite severity score ranging from 0 to 24. This severity score was 
classified as follows: mild AAC (score 0-4), moderate AAC (score 5-12) and severe AAC (score 12-24). Two classification 
algorithms (k-nearest neighbour and support vector machine) were trained and tested to assign the automatically extracted feature 
vectors into the three classes. There was good agreement between the automatic and visual AC24 methods and the accuracy of 
the automated technique relative to visual classification indicated that it is capable of identifying and quantifying AAC over a 
range of severity. 
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1. Introduction 

Cardiovascular disease (CVD) may lead to heart attacks and strokes and it is a major cause of mortality and the 
main cause of morbidity worldwide. The most prevalent form of CVD is a condition called atherosclerosis, in which 
the arteries become narrowed and hardened due to an excessive build-up of plaque on the inner artery wall. More 
than 50% of patients with atherosclerosis die without prior clinical symptoms1. Arterial calcification and, in 
particular, abdominal aortic calcification (AAC) is a manifestation of atherosclerosis and a predictor of CVD2. The 
presence of AAC means that is it very likely that there is some atherosclerosis in the largest artery and elsewhere in 
the arterial system. 

Different imaging modalities have been used to detect and quantify arterial calcification; these include ordinary 
projection radiography and x-ray computed tomography (CT)3. Dual energy x-ray absorptiometry (DXA) is a 
standard diagnostic technique that is widely used to diagnose and monitor osteoporosis through the measurement of 
bone mineral density (BMD). Modern DXA scanners are capable of vertebral fracture assessment (VFA) imaging in 
the lateral projection to detect vertebral fractures, which are a strong indicator of established osteoporosis. However, 
VFA images can also reveal AAC and it has been suggested that this technique may have a dual role in assessing 
CVD as well as osteoporosis4. It has been shown that VFA can identify AAC with good sensitivity and specificity 
compared with standard lateral spine radiographs5,11. However, studies relating to the risk of cardiovascular events 
are relatively scant and few have focused directly on AAC. 

Several manual quantification methods of the severity of AAC as seen on standard lateral radiographs have been 
described.  An established and validated visual approach is that of Kauppila et al.6, in which calcification in the 
walls of the abdominal aorta is scored on a scale ranging from 0 to 24. This method is known as AC24 and it was 
applied by the Framingham study group7-9 to estimate CVD risk from lumbar aortic radiographs. The same scoring 
system was utilised by Mohammad et al.10 who used the scores to classify AAC as mild, moderate or severe. 

Work has also been done on automatic methods of image analysis for the diagnosis of CVD so that a large 
number of cases may be handled with the same accuracy and high efficiency. A robust algorithm for the delineation 
of anatomical structures and other regions of interest is crucial for successful automation. Standard image 
segmentation methods include thresholding, region growing, clustering, classifiers, Markov random field (MRF) 
models, artificial neural networks, deformable models and atlas-guided approaches. As regards detecting and 
quantifying ACC on ordinary radiographs, de Bruijne13 combined pixel classification based on local image structure 
with a spatially varying prior derived from a statistical model of the combined shape variation in the aorta and the 
spine. However, the method used one threshold for the entire dataset, which is not applicable in many cases 
(including the work described in this paper). In another study20, the severity of atherosclerotic plaque in standard 
radiographic images was assessed by applying an in-painting technique to remove the plaque followed by an 
estimation of image background for uncalcified aorta. The main disadvantage of this approach was the fact that 
manual segmentation influenced the in-painting process. 

This paper describes a method for automatic quantification of AAC on VFA images produced by a Discovery A 
DXA scanner (Hologic, Bedford MA, USA) used in single energy mode, although the DXA manufacturer uses the 
term instant vertebral assessment (IVA) instead of VFA. An automated method for AAC detection and 
quantification is likely to be more precise than manual methods. A statistical shape and appearance model of the 
lumbar spine and the abdominal aorta was built using 20 clinical VFA images from a hospital osteoporosis service. 
A searching active appearance model (AAM) algorithm12 was used to fit the built model to the two objects (spine 
and aorta) in another 53 unseen VFA images. Extracted information was used for automated quantification of AAC 
in the entire data set of 73 images. To evaluate the accuracy of the automatic method, the classification of features 
extracted from the segmented aortas was compared with a classification based on the visual AC24 scoring method. 
All image processing was done in Matlab (MathWorks, Natick MA, USA). 

The remainder of the paper is organised as follows. Section 2 describes automatic segmentation using AAM. In 
the same section, a method for extracting and quantifying AAC is given. In Section 3, AAC classification using the 
manual AC24 system is described while automatic classification with two classifier algorithms is discussed in 
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Section 4. A comparison of the results of manual and automatic classification is presented in Section 5 while 
discussion and a conclusion are given in Section 6. 

Approval for the study was obtained from the Cardiff University School of Engineering Ethics Committee. 

2. Modelling and Feature Extraction 

2.1. Data set 

A set of 73 anonymised VFA images of the lateral spine of patients referred for the investigation of osteoporosis 
at the University Hospital of Wales, Cardiff were obtained. The selected images had different degrees of aortic 
calcification ranging from mild to severe. 

2.2. Building the shape and appearance models 

An appearance model (AAM) was implemented, by creating the shape, appearance and combined shape and 
appearance model using 20 VFA images with clear evidence of aortic calcification selected as a training set. For 
each image in the training set, landmarks were positioned manually at the corners and at the centre of the end-plates 
of each of the first four lumbar vertebrae (L1-L4). A further 32 landmarks were placed along the anterior and 
posterior walls of the calcified aorta adjacent to L1-L4, making 56 landmarks in total. These were used to build the 
shape and appearance models and as references for search results. Fig. 1 shows an example of an original VFA 
image (a) and a cropped image with landmarks (b). The shapes were then aligned using a Procrustes algorithm to 
minimise the sum of the distance of each shape from the mean. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1. Example of an annotated VFA image with 56 landmarks (shown as red dots): (a) original image; (b) cropped image with landmarks. 

Following this, the mean shape  was computed by averaging the position vectors of all landmarks. Principal 
component analysis (PCA)14 was performed to calculate the principal modes of variation  and their variance . 
After PCA, a new approximated vector was produced using: 

                                                                                        (1)

a)

b)
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where  represents the matrix of ordered eigenvectors and is a set of shape parameters. In the implementation, 
10 principal components described 98% of the shape variation. 

The statistical appearance model was formed in three steps: obtaining the pixel information, normalising the data 
to minimise the effect of global brightness variation and modelling the normalised texture variation. The pixel 
information was captured using a piecewise affine warp based on the Delaunay triangulation19. By applying PCA, 
the texture variation was extracted. Any texture example can be created by deforming the mean pixel value  by a 
linear combination of eigenvectors: 

                                                                                       (2) 

where g is the pixel value, is a set of texture parameters and  represents the matrix of ordered eigenvectors15. 
Thus, the shape and appearance of any training example of the modelled object can be identified by the two vectors 

 and . Therefore, for every training vector a new concatenated vector was generated:

                                                          (3) 

 
where is the diagonal matrix of weights for each shape parameter, to give appropriate balance between the shape 
and the texture models. Applying PCA on this vector yielded a new further model: 

                                                                                                (4) 

where  are the eigenvectors and  is a vector of appearance parameters controlling both the shape and grey-levels 
of the model. 

2.3. Active appearance model (AAM) searching algorithm 

To find the two objects (lumbar spine and aorta), the searching AAM developed by Cootes et al.12 was used to fit 
the produced statistical shape and appearance model to new set of 53 unseen VFA images. The mean shape 
produced was placed in an approximate correct position on a VFA image. The algorithm was then used to fit spine 
and aorta edges. To see how the AAM can fit the data, leave-one-out tests were carried out on all images in the 
dataset. Fig. 2 shows the searching process using the AAM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d)c)b)a) e) 
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Fig. 2. Application of the searching active appearance model: (a) initial position; (b) and (c) finding the best fit; (d) segmented spine and aorta in 
binary scale; (e) segmented spine and aorta at the end of the searching process. 

2.4. Extracting the aorta from the segmented image 

In order to extract the aorta from the segmented image produced by the AAM, a connected component labelling 
algorithm based on pixel connectivity was implemented. The algorithm works by scanning an image pixel-by-pixel 
(from top to bottom and left to right) in order to identify connected pixel regions. Thus, equivalent label pairs were 
sorted into equivalence classes and a unique label was assigned to each class. This was done for all of the 73 VFA 
images in the data set. The aorta was extracted as the labelled object that had the greatest area in the entire image; all 
other objects related to the background and the spine were removed. 

Fig. 3 shows the extracted aorta for the example shown in Fig. 2. Further examples of calcified aortas extracted 
from various segmented images produced from the AAM are presented in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Extracting the aorta: (a) segmented spine and calcified aorta produced by the AAM; (b) object with the greatest area (aorta). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Examples of segmented calcified aortas. 

b)

a)
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2.5. Image Quantisation 

Although the segmented aorta obtained from the AAM clearly masked out all the calcified pixels, sometimes it 
also detected parts of the aorta that had high brightness due to changes in soft tissue composition. This variation in 
brightness and the influence of obesity made the use of a single threshold not applicable in the next stage. Multilevel 
thresholding is a technique that segments a grey level image into several distinct regions17. The technique defines 
more than one threshold for the specified image and it segments the image into regions of certain brightness that 
identify the background and several objects. In the application of multilevel thresholding, every segmented aorta 
was processed using specified quantisation levels and output values. 

The number of optimal thresholds was assigned by calculating the peak signal-to-noise ratio (PSNR) for each 
segmented aorta17. Fig. 5 shows that for three different examples of aorta with low, moderate and high calcification, 
the PSNR reached saturation after seven threshold levels. As the number of thresholds increased, the thresholded 
image tended towards the original image and this was evaluated visually. An example of a quantised image with 
different threshold levels is presented in Fig. 6. It is clear that after 14 levels of thresholding, the image (f) tended 
towards the original (a). 

 

 

 

 

 

 

 

 

 

Fig. 5. Plots of PSNR vs. number of thresholds for three different calcified aortas: moderate AAC; low AAC; high AAC. 

 
 

 
 
 
 
 
 
 
 

 

 

 

 

a) b) c) d) e) f) 



1017 Karima Elmasri et al.  /  Procedia Computer Science   96  ( 2016 )  1011 – 1021 

 

Fig. 6. Image quantisation: (a) original aorta image; (b) 2-level thresholding; (c) 4-level; (d) 6-level; (e) 7-level; (f) 14-level. 

2.6. Feature Extraction 

First-order texture analysis was implemented to extract the features of every segmented aorta. The main 
advantage of this approach is the simplicity of using standard descriptors (e.g. mean and variance). Regions that did 
not represent calcification in the aorta were removed empirically. Over the entire set of quantised images of the 
segmented aorta, the area of these regions varied from 10 to 80 pixels. For automatic removal of these regions, an 
average area of 50 pixels was used. The ratio of the number of calcified pixels to the total number of pixels in each 
aorta was the first feature extracted. In order to capture the spatial dependence of grey-level values, which contribute 
to the perception of texture, a grey-level co-occurrence matrix (GLCM) was computed for every quantised aorta 
image. Seven features commonly used to describe the properties of the image histogram were extracted: mean, 
variance, energy, entropy, homogeneity, contrast and correlation. 

Thus a total of 8 features were extracted for each of the 73 aorta images. Fig. 7 shows an example of a calcified 
aorta after quantisation and thresholding to reveal pixels containing calcification. In this case, the binary image 
shown in Fig. 7(c) was used to calculate the ratio feature. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 7. Feature extraction: (a) original image; (b) segmented aorta quantised using 7 levels; (c) binary image after thresholding. 

 

3. Manual Calcification Scoring and Classification 

To validate the accuracy of the automatic technique, aortic calcification on the VFA images was scored visually 
using the AC24 method6,8 by one observer as shown in Fig. 8. For each image, the abdominal aorta was divided into 
four parts immediately anterior to each of the lumbar vertebrae L1-L4. For each part, aortic calcification severity in 
the anterior and posterior longitudinal walls was graded separately on a 0-3 scale: 0 for no AAC; 1 for small, 
scattered calcified deposits occupying less than  of the wall length; 2 for deposits occupying more than  but less 
than  of the wall length and 3 if  or more of the wall length was calcified. The results were summed to give a 
composite severity score ranging from 0 to 24. Subsequently, the approach of Mohammad et al.10 was used to 

a) b) c)
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classify AAC as follows: mild AAC (score 0-4), moderate AAC (score 5-12) and severe AAC (score >12). Table1 
shows the AC24 scoring for the example shown in Fig. 8. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

Fig. 8. Labelled image with AC24 score points. 

 

 Table 1. An example of AC24 scoring for one VFA image of the aorta. 

Vertebral  AC24 scores  
Level Anterior wall Posterior wall Anterior + Posterior 

 (0-3) (0-3) (0-6) 
L1 2 3 5 

L2 3 1 4 
L3 2 3 5 
L4 2 1 3 

Sum 9 8 17 
Maximum 12 12 24 

 

4. Automatic Calcification Classification 

Two classifiers were tested to evaluate the automatic method for AAC quantification against visual scoring. The 
first was k-nearest neighbour (k-NN) as used by de Bruijne13. The second was a support vector machine (SVM) 
using a linear kernel function from LIBSVM (a Library for Support Vector Machines). A K-folds cross validation 
method was implemented with 5 folds to partition the data set into two parts: a set to train the classification model 
and a set to validate the model. The output of this implementation was the assignment of each aorta image into one 
of three classes based on the values of the extracted features. Again, the three classes used were as follows: class 1 
for mild AAC, class 2 for moderate AAC and class 3 for severe AAC. 
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4.1 Feature selection 

In general, the performance of any automatic classifier is not optimised when all features are used. In order to 
assess the relative importance of the 8 extracted features, s-fold cross-validation18 was utilised as a feature selection 
algorithm to obtain correct classification rates (CCR). Fig. 9 shows the CCR for the individual features: 1 ratio of 
calcified area/total area, 2 entropy, 3 variance, 4 energy, 5 correlation, 6 mean, 7 contrast and 8 homogeneity. 

The three optimum features were the area ratio, entropy and variance; these had CCR values of 0.977, 0.963 and 
0.923 respectively. CCR deteriorated for the other features; contrast and homogeneity had the worst CCR values of 
0.746 and 0.694 respectively. In practice, the k-NN and SVM classifiers used an appropriate combination of features 
for image classification. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Variation of CCR with feature number. 

5. Comparison of Automatic and Visual Classification 

The results of automatic AAC classification compared with visual classification are shown in Fig. 10.  The 
accuracy of k-NN (93.1%, 90.4% and 95.2% for classes 1, 2 and 3 respectively) was better than that of SVM 
(87.7%, 83.3% and 94.5%) as shown in Fig. 10(a). The performance of the two automatic classifiers was also 
assessed by receiver operating characteristic (ROC) analysis. Fig 10(b) shows the area under the curve (AUC) of 
sensitivity vs. (1 – specificity) for each classifier. Similar performance was found for all classes. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Comparison of automatic and visual classification: (a) accuracy of k-NN and SVM classifiers for AAC classes 1, 2 and 3; (b) AUC for 
each classifier and AAC class. 
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6. Discussion and Conclusion 

In this work, the severity of abdominal aortic calcification was measured automatically on single energy vertebral 
fracture assessment images acquired on a dual energy x-ray absorptiometry scanner. This confirms that VFA 
imaging with a bone densitometer can simultaneously detect prevalent vertebral fracture, a strong indicator of 
prevalent osteoporosis, and abdominal AAC, which is an important risk factor for cardiovascular disease. 

The automatic method comprised two stages. In the first stage an active appearance model was employed for 
automatic segmentation. The novelty and advantage of the current study is that the active appearance model used 
here was based on training images originating from patients undergoing DXA for the diagnosis and monitoring of 
osteoporosis. The model was trained on 20 VFA images and tested on another 53 unseen VFA images. AAM was 
able to extract two relevant objects (the aorta and the spine) with high accuracy; the method was robust and it took 
only few seconds to complete the searching process. 

To quantify AAC automatically, a new method based on feature extraction was developed. This was validated 
against an established manual technique (AC24) using k-NN and SVM as classifiers. For the selected data set of 73 
images, the automatic method achieved high accuracy for all classes of AAC severity. This suggests that this 
approach may assist in the identification of patients with atherosclerosis before symptoms of cardiovascular disease 
develop. 

In the future, the work will be extended to include VFA images from patients who have little or no aortic 
calcification. 
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