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Summary 

It is well recognised that nasal airflow (secondary to patency) is not constant 

and can be influenced factors such as exercise and disease. There are also 

periodic fluctuations, which occur termed the nasal cycle. The term 

“classical” nasal cycle has been applied to the periodic and reciprocal 

changes in nasal airflow and has been defined by Flanagan and Eccles 

numerically [1].  

 

Nasal airflow data was collected using anterior rhinomanometry for 30 

subjects over an eight hour period on two study days at an approximately 1 

week interval. Subjects also used the Subjective Ordinal Scale to self assess 

prior to each set of nasal airflow measurements. All data was analysed using 

the r-value (correlation coefficient comparing left and right nasal airflow) and 

the Airflow Distribution Ratio, the Nasal Partitioning Ratio was also used for 

the comparison of objective and subjective data. 

 

The frequency of a “classical” nasal cycle within the subject group was 

comparable with that reported by Flanagan and Eccles at the first study day. 

The nasal cycle was demonstrated to be unstable for most subjects with only 

37.5% of the subjects with a “classical” nasal cycle at study day 1 continuing 

in this group at study day 2. However a tendency towards reciprocity was 

demonstrated as overall r-values were seen to become more negative from 

study day 1 to study day 2 this was demonstrated by a correlation coefficient 

of -0.73 (p <0.001).  

 

The r-value was not found to be useful in conjunction with the Subjective 

Ordinal Scale as no correlation was found between subjective and objective 

values. A good correlation was found for the Airflow Distribution Ratio and 

the Nasal Partitioning Ratio (NPR) since the NPR can be used independently 

it may be useful as a tool in the subjective assessment of the nasal cycle. 
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1.1 Normal nasal airflow and factors influencing airflow 
 

Normal nasal airflow 
 

At rest and low levels of exertion inspired and exhaled air passes through the 

nasal passages. The nose when considered as an organ is responsible for 

Olfaction, filtration of the air and the provision of humidification and heating of 

the air flowing through it [2]. 

 

The cost of airflow through the nose is the resistance that is applied; this has 

been estimated to be around 30-50% of the total resistance to airflow during 

inspiration [2]. There is of course a great degree of variability due to 

structural and physiological variance, however one study has demonstrated 

that on average nasal airflow is responsible for over half the work of 

breathing [3]. There are three main areas of the nose that may be considered 

as contributing to the resistance to airflow. The nasal vestibule which 

accounts for around one third, the nasal valve which is the main area of 

resistance and the lateral nasal wall and structures which contribute little [4].  

 

The nasal valve is the narrowest point of the nasal passage; it is made up of 

the cartilage at the end of the nasal vestibule and the start of the bony cavum 

and the erectile tissues of the inferior turbinates and septum [5]. Work by 

Haight and Cole (1983) [6] has shown the site of greatest resistance to lie at 

the level of the end of the inferior turbinate in the first few millimetres of the 

bony cavum, whilst noting that the tip of the inferior turbinate can extend by 

around five millimetres when engorged [6]. As air enters the narrowing of the 

nasal valve it accelerates and once it enters the larger cavity of the nose 

decelerates again disturbing the airstream in a phenomenon called orifice 

flow [5]. 
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The nasal cavity has a rich arterial blood supply. The nasal septum and 

inferior turbinates of the nose both contain venous erectile tissue made up of 

venous sinusoids [4]. The drainage of blood from the venous sinusoids is 

controlled by longitudinal muscle fibres in distal veins. This allows for 

shunting of blood through the system as well as pooling of blood and 

therefore venous congestion [7]. Both the nasal septum and inferior 

turbinates are components of the nasal valve so filling of these vascular 

structures will increase the resistance to airflow at the nasal valve. It is worth 

noting that the venous sinusoids are particularly well developed in these 

areas to the point where they may be able to obstruct the nasal airway [8]. 

 

Control by the autonomic nervous system 
 

The filling of the venous sinusoids is under the control of the autonomic 

nervous system and predominantly the sympathetic component. Sympathetic 

activity causes vasoconstriction and drainage of the venous sinusoids. This 

will be discussed in detail later in section 1.2. 

 

The influence of the autonomic nervous system is traditionally seen as 

causing an alternating reciprocal pattern of congestion and decongestion of 

the venous tissues of the nasal cavity referred to as the nasal cycle.  

 

Defining the nasal cycle 
 

The first reported description of the nasal cycle is attributed to Kayser [9] 

despite the fact that he did not use the term “nasal cycle”. There is some 

disagreement in the published literature about who first used the term “nasal 

cycle”, but the earliest reference found on a Pubmed search is that of 

Stoksted’s 1953 paper “Rhinometric measurements for determination of the 

nasal cycle” [10]. Using this term Stoksted referenced Kaysers original 

observations that “the nasal cavities are subject to continuous alternating 

changes in the lumen and this cycle had no effect on the total nasal passage” 

[10]. This is clearly an idealised description of what occurs within the nasal 
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cavity and significant variation from this is seen in reality. Since Kayser’s and 

Stoksted’s descriptions the term nasal cycle has been used to describe 

changes in the nasal tissues which do not conform to this idealised 

description. In order to differentiate the type of activity Stoksted referred to, 

the term “classical” nasal cycle is used in this paper to refer to nasal airflow 

patterns, which resemble Kayser’s original description. Some definitions of 

what can be considered a “classical” nasal cycle are listed in table 1.1. 

Flanagan and Eccles’ [1] description applied quantifiable terms to a definition 

for a “classical” nasal cycle. The correlation coefficient and Airflow 

Distribution Ratio will be discussed in detail later in section 1.4. However it is 

clear that combining the two measures means that nasal airflow patterns 

fitting these criteria will have equal distribution of airflow between the two 

sides of the nose and thus fit well with Kayser’s original description of the 

nasal cycle. 

 

Paper Definition 

Stoksted 1952 [11] “under ideal conditions, uniform nasal septa and uniformly 

developed turbinates will show symmetrical curves (nasal 

airflow)” 

Hasegawa and Kern 1977 [12] “Alternating congestion and decongestion of the nasal 

turbinates sufficient to produce a change in resistance of 

20% or more in two consecutive calculations”  

Fisher et al 1993[13] “alternating, bilateral reciprocal rhythm” 

Fisher et al 1994 [14] “Reciprocal and alternating congestion/decongestion” 

Fisher et al 1995 [15] “Alternating reciprocal changes in nasal patency” 

Mirza et al 1997 [16] Alternating reciprocal changes in nasal airflow  

Flanagan and Eccles 1997 [1] Correlation coefficient more negative than -0.6 and Airflow 

Distribution Ratio greater than 0.7 

Table 1.1 – Definitions of a “Classical” nasal cycle 

 

Function of the nasal cycle 
 

The function of the nasal cycle remains an area of discussion [17]. Certain 

possibilities have been excluded, such as an effect on the humidification of 

inhaled air, as no relationship between nasal patency and humidification of 
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nasally inhaled air is seen [18]. It has been suggested that the nasal cycle 

may allow a side to “rest” whilst the other predominates in function [19] and a 

possible beneficial effect on olfactory acuity [17]. There is evidence that there 

is increased plasma production in the decongested nostril, likely related to 

vasoconstriction of the venous sinusoids. This leakage of plasma fluid rich in 

immunoglobulins is likely to have an immune function as well as providing a 

physical flushing mechanism to remove pathogens [20]. An MRI based study 

has shown that the more patent nostril dehydrates in comparison to the 

congested nostril, where hydration is maintained in the congested nostril 

efficient mucociliary clearance can take place [21]. The physiological 

vasoconstriction and resultant decongestion of a nasal passage which is 

seen in the nasal cycle is maintained in upper respiratory tract infections to 

the point where there is only a 30% increase in total nasal resistance seen, 

so maintenance of the nasal airway in disease may be a key function of the 

nasal cycle [17]. Studies have shown variation in mucocillary clearance 

times, with this being slightly increased in the more congested nostril, but it 

remains uncertain as to whether this is clinically significant [19]. 

 

Exercise  
 

There is of course a generalised increase in sympathetic activity with the 

initiation of exercise [8]. It logically follows that there would be bilateral 

vasoconstriction within the nasal cavity abolishing the nasal cycle to allow 

improved airflow and decrease the work of breathing. However this is only 

likely to be significant in low to moderate exercise before mouth breathing 

predominates [8]. The vasoconstriction induced by exercise is also able to 

overcome the congestion caused by exposure to freezing temperatures [22]. 

 

A decrease in nasal resistance is seen in proportion to the intensity of 

exercise with recovery to pre exercise levels taking up to 15 minutes [23]. 

Exercise has been proven useful as a method of decongesting the nose for 

assessment of septal abnormalities, in Brom’s 1982 rhinomanometric study it 

was shown that exercise provided greater decongestion than Oxymetazoline 
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nasal drops [24]. The effect of exercise is believed to be mediated by the 

sympathetic nervous system [25].  

 

Posture  
 

Adopting a supine posture has an amplification effect on the nasal cycle, but 

this is a filling effect related to changes in the Jugular venous pressure and 

not down to any neural response [8, 26]. 

 

Haight and Cole in 1986 [27] showed that in response to adopting a lateral 

recumbent position for a prolonged period (over 12 minutes) the nasal cycle 

was reversed with congestion of the nostril on the dependent side and 

decongestion contra laterally. He theorised that this occurred in response to 

stimulus from pressure receptors in the thorax and pectoral and pelvic 

girdles, which can be termed the corporo-nasal reflex and he demonstrated 

that the response could be eliminated by an intercostal nerve block [27]. This 

corporo-nasal reflex can of course also be observed during sleep, with 

changes in dominant nasal airflow triggered by repositioning [28]. However 

after time the cycle will continue resulting in decongestion of the nostril on 

the dependent side and congestion contra laterally [29]. In 1970 Rao [30] and 

in 1985 Davies [31], excluded other explanations for this response such as 

gravitational diversion of blood by comparing nasal airflow in subjects in a 

lateral recumbent position to the placement of a crutch under the arm to 

simulate pressure with comparable results [30] [31]. This gave scientific 

backing to a technique, which had been practiced in Yoga for hundreds of 

years [8]. Such effects of pressure stimulus whilst triggering changes in nasal 

blood flow are also recognised to influence sweating with an ipsilateral 

inhibition and contralateral increase further emphasising that this is indeed 

an autonomic response [8]. 
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Sleep 
 

In normal sleep where a recumbent posture is seen, the aforementioned 

changes to nasal airflow relating to posture are of course seen. Studies of 

the nasal cycle during sleep using a portable rhinoflowmeter suggest that in 

addition to the postural changes, the duration of cycle length increases [28, 

32] and the amplitude of changes in nasal congestion increase [28] the latter 

probably remains an effect of posture rather than sleep itself. There also 

appears to be a tendency for changes in the cycle to occur during REM sleep 

[32], which may relate to higher levels of sympathetic activation at this time 

[28]. One study also suggested that the nasal cycle is synchronised with the 

sleep cycle and changes in the nasal cycle occur after multiples of the sleep 

cycle have passed [33]. 

 

Eating and the Nasal Cycle 
 

Only one study seems to have considered the effect eating may have on the 

nasal cycle. It is weakened by its method of self-reporting of relative nostril 

patency for one subject and the observation of nasal misting of a mirror for a 

second. Funk and Clarke in 1980 [34] reported that right nostril 

predominance for one subject and left nostril predominance for a second 

during the main meals of breakfast and lunch which both fell on a regular 

schedule, based on observations over a month [34]. Regular cyclic patterns 

are expected in observations of the nasal cycle and therefore may occur 

independently of eating, with a possibility that sleeping patterns may apply a 

coordinating influence [33]. 

 

Temperature and nasal airflow  
 

Exposure to the cold particularly where an acute temperature change occurs 

can cause an overall increase in nasal resistance to airflow, due to increased 
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venous congestion [35]. For instance exposure to a cold environment (15 

degrees centigrade) during the summer is more likely to have a greater effect 

on nasal resistance than cold exposure in the winter months [36]. Where an 

increased temperature is concerned studies on the effects of temperature on 

nasal resistance in 50 healthy subjects have concluded that environmental 

changes in the tropics between 18-22°C and 30-33°C have no significant 

effect on nasal resistance [37]. 

 

Humidity and nasal airflow 
 

Increased humidity may increase nasal cavity volume and therefore airflow, 

as suggested by an acoustic rhinometry study using nasal nebulisers to 

simulate humidity changes [38]. However a smaller study using humid room 

temperature air does not confirm these findings [39]. 

 

Disease and nasal airflow 
 

Both structural and mucosal disease can affect nasal airflow detrimentally. 

The two main structural problems are nasal septal deviation and alar 

collapse due to weakened lateral cartilages. Both occur frequently, 

secondary to trauma. 

 

Significant nasal septal deviation is difficult to define and there is a wide 

range in the reported prevalence within the literature (1-80%) [40]. The 

location of a septal deviation is key to its impact on airflow and it has long 

been recognised that the nasal valve region is the most significant area [6]. A 

significant septal deviation posterior to the nasal valve may have little effect 

on nasal airway resistance, whereas a septal deviation in the nasal valve 

region may more than double resistance [41]. The nasal cycle has been 

observed to be present in subjects with anterior septal deviations, in a similar 

proportion to a control population, when measured by acoustic rhinometery. 

It also appeared that there was a greater amplitude of change in minimum 
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cross-sectional area in the nostril from which the septum deviated away from 

[42]. 

 

Mucosal disease can occur acutely e.g. upper respiratory tract infection 

(URTI) or chronically e.g. allergic rhinitis. Both result in the release of a mix 

of inflammatory mediators and the predominating result is vasodilation and 

nasal congestion. For allergic rhinitis histamine is the main mediator, 

whereas bradykinin is the main mediator for infectious rhinitis [8]. 

 

Rhinitis of any form will tend to result in a symmetrical vasodilation, but this 

will be superimposed on any asymmetry already present, be that structural or 

physiological. Rhinitis has little impact on sympathetic vasoconstriction and 

therefore little impact on nasal airflow will be seen where there are high 

levels of sympathetic activity. This means that sympathomimetic drugs such 

as decongestants or the decongestive effects of exercise remain at least in 

part. Where the inflammatory process is unopposed by sympathetic activity, 

high levels of congestion and resistance to nasal airflow can be expected [8]. 

Hence subjective nasal obstruction is frequently reported in URTI [43]. 

 

Drugs and their effect on nasal airflow 
 

Alcohol 

 

Alcohol is known to significantly increase upper airway resistance in both the 

pharynx and nasal cavity and therefore consumption is linked to exacerbation 

of obstructive sleep apnoea [44]. Alcohol is known to cause peripheral 

vasodilation and have central depressant action, which may affect the 

sympathetic nervous system, both factors are thought to be involved in the 

observed increase in nasal resistance seen with alcohol [45]. 
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Medications 

 

Many different medications can influence nasal airflow via effects on the 

vascular smooth muscle or the sympathetic nervous system [8]. 

 

Sympathomimetics and sympatholytics 

 

Ephedrine, pseudoephedrine, phenylpropanolamine and phenylephrine all 

have direct and indirect sympathetic actions causing release of 

neurotransmitters and working as alpha and beta-receptor agonists. Their 

side effects and duration of action vary, but the mechanism by which they 

affect airflow is similar and will override the nasal cycle for their duration of 

action [46]. Oxymetazoline and xylometazoline are used topically and have 

predominantly alpha2-agonist activity, with oxymetazoline having weak 

partial alpha1-agonist activity [47]. In prolonged use topical decongestants 

can lead to rhinitis medicamentosa where rebound congestion is seen and a 

cycle of chronic use may develop [46]. Decongestion caused by these 

medications is equivalent to that which occurs physiologically e.g with 

exercise [48]. 

 

Menthol 

 

Menthol does not cause any objective decongestive effect only a subjective 

sensation of decongestion, in fact inhaled menthol may increase nasal 

congestion [46]. 

 

Anti-histamines 

 

H1 receptor antagonists do not appear to have any positive effect on the 

relief of nasal congestion, Chlorpheniramine maleate has been shown to 

have a small effect on nasal airway resistance after histamine challenge, 

whilst a H2 receptor antagonist Ranitidine was not shown to have any 

significant effect on nasal airway resistance. Combined use of H1 and H2 
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receptor antagonists at a relatively high dose did however produce a 

significant reduction in nasal airway resistance [49]. 

 

Corticosteroids 

 

Topical corticosteroids when used consistently are effective at improving 

nasal airflow following allergen provocation. This has been proven with 

ciclesonide where anterior rhinomanometry measurements showed 

improvement at day 5 of use [50]. 

 

Anti-hypertensives 

 

ACE-Inhibitors are known to infrequently cause symptomatic nasal 

congestion as a side effect but exact prevalence is not known [51] and 

objective measurement is lacking. Beta-blockers may also cause nasal 

congestion with associated “Rhinitis” as a side effect being reported [52]. 

 

Effects of hormones on nasal airflow 
 

The main hormone to affect the nasal mucosa is adrenaline and its 

analogues. However both male and female sex hormones are seen to affect 

the nasal mucosa with increased levels of nasal secretion and congestion 

seen in puberty, pregnancy and with menstruation [8]. Early oestrogen rich 

oral contraceptive pills were seen to cause nasal congestion and squamous 

metaplasia was seen in the nasal mucosa [53]. 

 

Menstrual cycle 

 

Histological evidence shows that there are no structural changes that occur 

in the nasal mucosa during the menstrual cycle that may be caused by 

changes in levels of oestrogen and progesterone [54]. Later cytological 

evidence has shown higher levels of young epithelial cells in the nasal cavity 

during menstruation, but whether this relates to any increase in physiological 
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congestion is uncertain [55]. Work by Ellegard and Karlsson (1994) [53] 

using home measured nasal peak inspiratory flow showed higher levels of 

resistance during the menstrual phase, when oestrogen levels would be at 

their lowest [53]. However detailed multi-method work by Philpott et al (2004) 

[56] showed nasal congestion mid cycle, consistent with a change caused by 

raised oestrogen, this was accompanied by an increased mucocilary 

clearance time [56]. Haeggstrom et al’s study (2000) [57] using acoustic 

rhinometry and rhinostereometry demonstrated that the nasal mucosa was 

more sensitive to the effects of histamine during the oestrogen peak levels of 

ovulation [57]. 

 

Pregnancy 

 

Subjective reporting of nasal obstruction is frequent in pregnancy. 

Histological studies have demonstrated differences in the ultrastructure of the 

nasal mucosa of both asymptomatic and symptomatic pregnant females. 

Asymptomatic individuals were found to have glandular hyperactivity, 

increased phagocytic activity, and an increased amount of acid 

mucopolysaccharides with symptomatic individuals also showing features of 

allergic rhinitis [58]. Ellegard and Karlsson’s 1999 [59] study did not show 

any objective decrease in nasal airflow in pregnancy, only a subjective 

increase in nasal obstruction associated with “pregnancy rhinitis” [59]. Later 

work by Philpott et al (2004) [60] showed a decrease in nasal resistance, as 

assessed by anterior rhinomanometry, as pregnancy progressed but failed to 

show any significant changes with peak inspiratory nasal flow rate or 

acoustic rhinometry. This suggests that there is not a simple positive effect of 

congestion by oestrogen and progesterone on the nasal mucosa as levels of 

both rise as pregnancy progresses. Inflammatory mediators and other 

hormones such as placental growth hormone may also be involved [60]. 
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1.2 Autonomic control of the nasal mucosa 
 

The autonomic nervous system is responsible for homeostasis within the 

core of the body and allows adaptation to environmental stressors [61]. It is 

divided into the sympathetic and parasympathetic components. The 

sympathetic component’s functions are mostly focused on the flight and fight 

response, where it acts upon blood vessels it generally causes 

vasoconstriction (with the exception of cardiac vessels) and in most glands it 

acts to decrease secretion (with the exception of sweat glands). In its 

component nerves preganglionic axons release acetylcholine at their 

synapses, and noradrenaline is the transmitter released by postganglionic 

axons (except in sweat glands, where it is acetylcholine). The 

parasympathetic systems functions include secretory functions as well as 

those contributing to feeding and sexual function. Acetylcholine is the main 

neurotransmitter for parasympathetic synapses [62]. The autonomic nervous 

system generally acts with symmetrical effects on paired organs despite 

anatomical division into the left and right, the bilateral constriction of the pupil 

in response to a stimulus of light in one eye is a physiological example of this 

[63]. Within the human nasal mucosa sympathetic innervation is seen for 

arteries, veins and arteriovenous shunts [64]. Sympathetic stimulation of the 

nasal mucosa causes a constriction of resistance vessels and a redistribution 

of blood flow away from shunt vessels, which feed the venous sinusoids [65]. 

Parasympathetic stimulation has a mainly secretory function within the nasal 

mucosa. 

 

Sympathetic control 
 

Sympathetic nerves supplying the soft tissues of the nasal airways have a 

vasoconstrictive effect as in other areas of the body. Such an effect allows 

drainage of the venous sinuses located within the turbinates and on the nasal 

septum, which increases nasal patency and airflow. Often this occurs in an 

alternating regular pattern between the two nasal cavities known as the nasal 

cycle. Noradrenaline is the primary neurotransmitter involved in sympathetic 

control, which acts upon alpha-adrenoceptors along with a lesser input from 



15 
 

neuropeptide Y, both have a strong vasoconstrictive effect [66]. The nasal 

mucosa is very sensitive to this adrenergic effect and has been shown to be 

five times as sensitive to adrenaline compared to the cardiac tissues [67]. 

This effect of sympathomimetic substances is frequently used by the ENT 

surgeon to facilitate examination and surgical access within the nasal cavity 

and is utilised in the pharmacological relief of nasal congestion [68]. Work by 

Malm in 1975 [69] evidenced that both resistance vessels (pre and post 

capillary vessels determining regional blood flow) and capacitance vessels 

(encompassing the whole venous component) are both constricted by 

adrenaline or noradrenaline [69]. Anggard and Densert’s 1974 [70] functional 

and histological study showed that the majority of sympathetic neurons were 

acting on blood vessels with a sparse innervation of the acini of the mucosal 

glands [70]. 

 

The sympathetic innervation to the nasal mucosa is supplied from the 

cervical plexus via branches of the trigeminal nerve and the nerve of the 

pterygoid canal (the Vidian nerve); these are innervated by the superior 

cervical ganglion, which takes preganglionic fibres from the thoracolumbar 

region of the spinal cord, specifically the first and second thoracic segments 

in the lateral horn cells [2] [8]. 

 

Animal experimental models have been the main basis for establishing the 

innervating nerves and areas of control relevant to the venous sinuses of the 

nasal cavity. In 1913 Tschalussow stimulated the cervical sympathetic nerve 

in dogs eliciting a vasoconstrictive response within the nasal cavity. 

Sternberg expanded on this in 1915 by sectioning the vagosympathetic trunk 

to show a vasodilatory response. Together implying that alternation of 

sympathetic drive could cause expansion and relaxation of the venous nasal 

tissues to alter airflow [8]. Stoksted in 1953 [71] demonstrated that inhibition 

of the sympathetic system through stellate ganglion blockade in humans 

resulted in a predominantly ipsilateral nasal congestion [71]. These findings 

were replicated by Malcomson in 1959 with the addition of demonstrating the 

Vidian nerve as a pathway by its excision [67]. Malm in 1973 [72] proved that 

although the Vidian nerve provided a significant route for sympathetic fibres 
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that a second pathway exists by sectioning the nerve in cats and stimulating 

the cervical sympathetic chain. The same study also demonstrated crossover 

of fibres into the contralateral nostril where an instantaneous response was 

seen to sympathetic stimulation [72]. In 1974 Eccles and Wilson [73] 

confirmed the Vidian nerve as part of the pathway by stimulation in a cat 

model, where a relatively high voltage showed vasoconstriction [73]. Wilson 

and Yates in 1975 [74] confirmed earlier findings that there is a small amount 

of crossover by sympathetic fibres to the contralateral nasal cavity. They 

observed limited vasoconstriction in the contralateral nostril on sympathetic 

stimulation [74]. Anatomical variations in this crossover could potentially 

explain deviation from the “classical” nasal cycle.  

 

Later experimental models on cats have shown that both the hypothalamus 

and brainstem have influence over these sympathetic fibres. Where 

stimulation of the hypothalamus causes a bilateral and profound 

vasoconstrictor response in the nasal mucosa, without any reciprocal 

changes [75]. Stimulation of the brainstem resulted in a transient ipsilateral 

vasodilation during active stimulation followed by vasoconstriction with 

contralateral vasodilation [76]. This suggests that central control for the nasal 

cycle is most likely to originate in the brainstem, where oscillations may occur 

to manifest as a rhythmic cycle [77].  

 

Parasympathetic control 
 

Parasympathetic innervation plays a different role within the nasal cavity; it is 

mainly responsible for stimulation of nasal secretion.  

 

Parasympathetic innervation originates from the superior salivatory nuclei of 

the brainstem. Fibres are joined with those of the facial nerve, travelling via 

the geniculate ganglion to join post ganglionic sympathetic fibres in the 

superior cervical ganglion, from here they are relayed to the greater 

superficial petrosal nerve and the nerve of the pterygoid canal (Vidian nerve) 

to the sphenopalatine ganglion where they synapse and are distributed within 
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the nasal cavity [2] [8]. Stimulation of both the brainstem and Vidian nerve in 

cats is shown to produce a watery nasal secretion [78]. It is the general 

consensus that parasympathetic fibres contribute little if at all to the control of 

nasal venous sinuses and mainly influence glandular blood flow and 

secretions [68]. However some animal studies have shown a small 

vasodilator effect [67, 79], Eccles and Wilson in 1974 [73] showed that low 

voltage stimulation of the Vidian nerve had a vasodilator effect, suspected to 

be due to stimulation of the parasympathetic component [73]. Anggard in 

1974 [80] isolated the parasympathetic component of the Vidian nerve by 

prior superior cervical ganglionectomy to demonstrate production of nasal 

secretions with a small increase in blood flow through the nasal tissues but 

concluded it was not large enough to significantly affect nasal patency [80]. 
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1.3 Control of the nasal cycle 
 

Stoksted in 1953 was the first to theorise about an area of central control for 

the nasal cycle, he pointed towards the hypothalamus as the originating 

centre of control [8], whilst the hypothalamus certainly can influence the 

nasal mucosa it is thought to be an area of the brainstem between the level 

of the trigeminal motor nucleus to the level of the genu of the facial nerve, 

which holds the key to control of the nasal cycle [76]. 

 

Using the cat as an animal model Eccles and Lee in 1981 [81] expanded on 

Malcomson’s earlier 1959 experiment to show the influence of the 

hypothalamus on the nasal mucosa with exclusion of the influence of 

catecholamines by bilateral adrenalectomy. Their results showed that 

electrical stimulation of the hypothalamus, on either side, lead to bilateral 

vasoconstriction within the nasal mucosa with the addition of an effect on the 

nictitating membrane. This suggests a generalised sympathetic output from 

the hypothalamus not consistent with the reciprocal changes seen in the 

nasal mucosa of the nasal cycle [81]. Later work on the cat model by 

Bamford and Eccles (1982) [76] with unilateral stimulation of the brainstem, 

between the level of the trigeminal motor nucleus to the level of the genu of 

the facial nerve was however more conclusive. It was found that an electrical 

stimulus in the brainstem produced ipsilateral vasoconstriction with a 

reciprocal contralateral vasodilation, which could be reversed by stimulating 

the opposite side of the brainstem. A conclusion was therefore drawn that the 

area of control for the nasal cycle is likely to lie in these areas [76]. Work 

using an Electroencephalogram (EEG) by Werntz in 1983 [82] suggested a 

link to predominance in cerebral hemispheric activity. A close correlation was 

seen between predominant nasal airflow and levels of contralateral cerebral 

hemispheric activity, as has been seen with other autonomic functions [82]. 

How this may link to the brainstem and its sympathetic outflow to the nasal 

mucosa remains uncertain. There remains little evidence for any peripheral 

or nasal input into the nasal cycle, however Eccles in 1978 [83] observed in a 

porcine model that unilateral section of the cervical sympathetic nerve 

resulted in a bilateral loss of cyclical activity within the nasal cavity, 
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suggesting some sensory input from both nostrils may be required [83], 

figure 1.3 summarises our current knowledge of the control of the nasal 

cycle. 

 

 
Figure 1.3 – A diagram to show our current knowledge of the control of the 

nasal cycle. Both the hypothalamus and an area of the brainstem (between 

the trigeminal motor nucleus and the level of first genu of the facial nerve) 

influence the nasal cycle. The input of sympathetic nerves to the nasal 

mucosa is then derived from the trigeminal and vidian nerves via the superior 

cervical ganglion. 
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Because of the obvious ethical issues involved there have been few human 

experimental studies in this area apart from those, which are non invasive. A 

study by Haight and Cole in 1983 [84] failed to show any change in the 

contralateral side of the nose in response to changes brought about by 

histamine, Xylometazoline or physical obstruction of the nostril, which 

suggests there does not appear to be any afferent input from the nasal cavity 

that influences the central control of the nasal cycle [84]. There is however 

afferent input to the nasal mucosa received from postural factors, which have 

been discussed earlier in section 1.2. The presence of a regular cycle 

involving reciprocal changes as classically seen in the nasal cycle, implies 

that there is an area of control. The lack of an afferent input to the cycle in 

the region of the nasal cavity points towards control within the central 

nervous system. 

 

There are however more observational studies which have endeavoured to 

add to our knowledge. Ishii et al in 1993 [85] observed the retention of the 

nasal cycle in 4 out of 5 patients with Horner’s syndrome, where it would be 

expected to be lost with interruption of the sympathetic drive [85]. This could 

possibly be explained by the small crossover of sympathetic fibres between 

the two nasal cavities. Saroha et al in 2003 [86] looked at patients following 

cervical spinal cord trauma, using acoustic rhinometry to monitor nasal 

patency and concluded that trauma may initially disrupt the cervical 

sympathetic nerves supplying the nasal cavities and therefore the nasal 

cycle, with recovery of the cycle seen around 1-4 years later [86]. Fisher et al 

in 1994 [14] observed using acoustic rhinometry the presence of the nasal 

cycle in patients who had undergone laryngectomy, although this was seen 

less frequently than in control patients, finding the presence of a “classical” 

cycle in 25% of patients. This proved that a lack of airflow through the nose 

did not result in loss of the cycle [14]. Galioto et al’s 1991 [87] small study on 

patients with Kallmann’s syndrome (a disorder of development of the 

hypothalamus, resulting in hypogonadotrophic hypogonadism) found an 

absence of the nasal cycle in such patients compared to a control group 

(non-Kallmann hypogonadotrophic hypogonadism) suggesting a circadian 
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rhythm maintained by the hypothalamus may influence the control centre of 

the nasal cycle [87]. 
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1.4 Methods used in the study of nasal airflow and patency 
 

Active Rhinomanometry 
 

Active rhinomanometry is a functional test, measuring nasal airflow and 

resistance. Air moving through the nose, does so down a pressure gradient, 

as is the case with the movement of all fluids. Rhinomanometry measures 

the difference in pressure between anterior and posterior parts of the nose 

during inspiration and expiration as well as the airflow through the nose. The 

key formula used in rhinomanometry is; Nasal resistance = pressure 

difference across the nose / nasal airflow [88] Rhinomanometry can either be 

performed by an anterior or posterior technique. The first person to 

demonstrate the technique of rhinomanometry was Courtade in 1903 [89]. 

 

Anterior Rhinomanometry 
 

In anterior rhinomanometry a test nostril remains patent, whilst the non-test 

nostril is occluded usually with surgical tape through which a nasal pressure 

hose is applied (2mm internal diameter). As the nostril is otherwise sealed 

this measures the pressure in the posterior nasopharanx, whilst air flows 

freely through the test nostril, airflow is measured by a flowhead through a 

facemask. This is illustrated in the figure 1.41. Issues with anterior 

rhinomanometry may arise due to air leaks around the surgical tape for the 

occluded nostril, air leaks around the face mask, due to a septal perforation 

or due complete occlusion of one nostril [88]. 
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Figure 1.41 – A diagram showing the set up for anterior rhinomanometry 

 

Posterior Rhinomanometry 
 

Posterior rhinomanometry measures total nasal airflow and resistance, but 

can be adapted for single nostril measurements by occluding a nostril with 

surgical tape. In posterior rhinomanometry a large bore cannula (3mm 

internal diameter) is inserted into the mouth and the lips sealed around it, to 

allow the pressure within the posterior nasopharanx to be measured. This is 

illustrated in the figure 1.42. Training is required to keep the tongue and soft 

palate from blocking airflow and around 10% of test subjects are unable to 

manage this. Because of the path of airflow any constriction added by the 

soft palate or adenoidal tissue will raise the measured resistance, which may 

be an important consideration when choosing an experimental technique 

[88]. 

 

Nasal pressure hose 

Airflow to flowhead 
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Figure 1.42 – A diagram showing the set up for posterior rhinomanometry 

 

Rhinospirometry 
 

Rhinospirometry is purely a measure of expired nasal airflow, with no 

pressure measurements recorded. It has been performed using a spirometer 

adapted to the purpose by the use of a nasal piece [90] and with custom 

made equipment where simultaneous measurements of airflow through both 

nostrils are taken [91]. Airflow data are usually presented as a Nasal 

partitioning ratio using the formula vol L – vol R / vol L  + vol R (volumes of 

expired air), the ratio has a range of +1 (complete right sided obstruction) to -

1 (complete left sided obstruction) [90]. 

 

Acoustic Rhinometry 
 

Acoustic rhinometry uses the reflection of sound waves within the nasal 

cavity to calculate the cross sectional area at any given point. As such it can 

be used to assess the relative patency of the two nasal cavities, be that as a 

pre-operative tool or for physiological studies of the nasal cycle [92]. Strictly 

Airflow to flowhead 

Pharyngeal pressure hose 



25 
 

speaking it is an anatomical rather than a functional measurement as there is 

no active recording of nasal airflow [88]. 

 

Long-term rhinoflowmetry 
 

Long-term rhinoflowmetry is a relatively new technique, with only three 

papers published detailing its use [28, 93, 94]. The system takes the form of 

a wearable data collection unit with attached nasal speculae adapted to 

measure relative airflows. It has the advantage of continuous data capture, 

so short lived changes are not missed and it can also be worn during sleep, 

whereas with rhinomanometry and other methods this would not be possible 

[28]. Little critique is as yet available, but possible issues would include the 

dislodging of equipment during movement (particularly sleep) and error 

introduced into readings due to the lack of a sealed system. 

 

The hygrometric method (mirror technique) 
 

Zwaardemaker was the first in 1889 to measure nasal airflow using a mirror, 

by observing the size of resultant condensation spots [68], a technique still 

used as a simple and quick assessment tool in the ENT clinic today. This 

only provides a relative measure of airflow as it is clearly difficult to quantify 

precisely [95]. It may be made more precise by the use of specially designed 

polished metal plate, with concentric semi-circles at 1cm distance to aid in 

the estimation of misting [89]. The area of elliptical misting patterns produced 

can be calculated using the formula area = (π x width x length)/4 [15]. When 

compared to acoustic rhinometry there is only a 47% agreement between the 

two methods [15]. 

 

Subjective Self Assessement 
 

Visual Analogue Scale (VAS) 
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A visual analogue scale is a commonly used tool for patient self assessment 

in many situations. In this case it is adapted as a means for subjects to 

indicate relative airflow between two nostrils. It is printed as a 100mm scale 

and has been used to aid assessment of septal deviation [96] and in the 

assessment of nasal airflow. Such scales can either be used to rate the 

patency of each nostril individually [97] or to indicate to which side nasal 

airflow predominates as shown in figure 1.43 from Boyce and Eccles 2006 

[96].  

 

Figure 1.43 – The visual analogue scale for assessment of relative nasal 

airflow from Boyce Eccles 2006 [96] 

 

Subjective ordinal scale for asymmetry of airflow  

 

The Subjective ordinal scale is a self assessment tool for nasal patency, 

whereby the subject assigns a numerical value for how freely they feel air 

flows through each nostril. It was created by Boyce and Eccles in 2006, A 

copy of the scale taken from their 2006 paper is presented in figure 1.44. The 

scale has a high sensitivity of 81% and specificity of 60% for detecting an 

abnormal Nasal Partitioning Ratio [96]. 
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Figure 1.44 - The Subjective ordinal scale for assessment of nasal patency 

from Boyce and Eccles 2006 [96] 

 

Qualitative subjective assessment of nostril dominance 

 

Funk and Clarke in 1980 [34] found that subjective assessments of nostril 

dominance i.e. self assessment of which nostril felt more patent, were 

concordant with rhinomanometric assessment in 114 out of 123 

measurements (93%), however they were not able to use this to demonstrate 

a “classical” nasal cycle [34]. 

 

Measurements of asymmetry and reciprocity 
 

Nasal Partitioning Ratio 

 

The nasal partitioning ratio (NPR) represents relative airflow between the left 

and right nasal passages. Hanif first described this measure in 2001 [90]. A 

value of -1 indicates complete obstruction of the left and a value of +1 

indicates complete obstruction of the right [98]. The NPR can be calculated 

using rhinospirometery or rhinomanometry and is comparable for both [90]. A 



28 
 

weakness of the NPR is that in representing asymmetry of airflow it does not 

represent any obstruction that is shared in both nostrils, as may be seen with 

an S-shaped nasal septum [99]. 

 

The nasal partitioning ratio can be calculated using the formula: 

 

NPR = Left vol - Right vol / Right vol + Left vol 

 

Correlation coefficient 

 

The correlation coefficient represents the correlation of the two airflows of the 

left and right nasal passages, describing the relationship of their changes, 

with a value r. The value ranges from -1 to +1, where -1 represents a strict 

reciprocal relationship and +1 represents changes in airflow that are strictly in 

phase [1]. A value of 0 indicates that there is no linear relationship within the 

data. For normally distributed data, the correlation coefficient is best 

calculated using Pearson’s method, for non-parametric data Spearman’s 

rank correlation can be used. The significance of an r value can be 

demonstrated with hypothesis testing. A simple way of doing this is to look at 

the two-tailed P value, a value of less than 0.05 is commonly used to 

demonstrate statistical significance. A table has been reproduced (table 1.41 

from Altman 1991 [100]) to provide relevant examples, where the r exceeds 

the tabulated value for the relevant sample size, the Two-tailed probability 

(P) is less than the value for the relevant column, which gives a statistical 

measure of the significance of r [100]. So for a sample size of 8 sets of data 

an r value over 0.7067 could be said to represent significant reprocity as its 

two-tailed probability will be less than 0.05. 
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Sample size Two-tailed probability (P) 

 P<0.05 P<0.01 

6 0.8114 0.9172 

7 0.7545 0.8745 

8 0.7067 0.8343 

9 0.6664 0.7977 

Table 1.41 – Showing the correlation coefficient required to achieve 

statistical significance in different sample sizes - reproduced from Altman 

1991 [100] 

 

Airflow distribution ratio  

 

The airflow distribution ratio represents the distribution of airflow between the 

left and right nasal passages over a fixed period of time. It is calculated as a 

percentage of the total volume of nasal airflow (formula below). It is recorded 

as a value of 0 to 1, where 1 indicates equal airflow in both nostrils and 0 

would indicate complete obstruction of one nostril, the value itself does not 

indicate which nostril has the greater amount of airflow [1]. 

 

ADR = (airflow A / total airflow) / (airflow B / total airflow) 

 

Where A is the lower value of airflow 

 

 

Combination of correlation coefficient and ADR in graph 

 

The combination of a correlation coefficient and airflow distribution ratio can 

be used to create a numerical assessment of the classical aspects of the 

nasal cycle. For a group of cycles this can be displayed in scatter graph form, 

with sections to indicate which cycles fulfil set criteria. An example of this 

from Flanagan and Eccles 1997 [1] is shown in figure 1.45. In this case nasal 

cycles that have a high ADR and highly negative r value are highlighted as 

being “classical” in nature (marked out by the box in the lower right corner). 

The distribution of other cycles not fitting these criteria is also shown [1]. 
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Figure 1.45 – A graph from Flanagan and Eccles 1997 [1] showing the 

distribution of r and ADR values for his subjects, those fitting the “classical” 

criteria are marked out separately in the bottom right corner 
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1.5 Studies on the nasal cycle – a description 
 

Establishing the presence and frequency of the nasal cycle 
 

The discovery of the nasal cycle through a physiological study is attributed to 

Kayser in 1895, although he did not put the name “nasal cycle” to his 

observations [9], Stoksted in 1953 appears to be the first to use the term 

“nasal cycle”[10]. Kayser’s study involved timing the flow of air through the 

nasal passages into a set of bellows controlled by a fixed weight. He noted 

that there was variation in the rate of airflow over time and that there 

appeared to be a pattern to this. He correctly attributed these observations to 

changes in blood volume within the nasal tissues[9]. Following on from 

Kayser’s work others sought to confirm his findings and establish the 

frequency of the nasal cycle’s occurrence within the normal population.  

 

Heetderks in 1927 [101] performed visual observations of the nasal turbinate 

mucosa at 10 minute intervals over 2 hours, in 60 subjects across a range of 

ages. Heetderks observed fluctuation in the size of the turbinates in all 

observed subjects and classified 80% as being cyclical and 20% as non-

cyclical i.e without reciprocal changes, the length of the cycle varying 

between 50 minutes to 4 hours [101]. Unfortunately there was little to 

quantify Heetderks observations, with no reported quantifiable 

measurements beyond the time periods described in his paper. 

 

Beickert in 1951 [102] studied the nasal cycle using bulb shaped probes to 

measure the nasal cavity volume directly at 30 minute intervals. He also 

performed stimulation of the nasal cavity through histamine application and 

unilateral stellate ganglion block. Beickert concluded that there was 

rhythmical oscillation of the vascular innervation with compensatory 

contralaterality. He demonstrated that blockade of the stellate ganglion had 

an effect of vasoconstriction on the nasal cavity and proposed that this 

implicated a central origin for the control of the nasal cycle [102]. 
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Stoksted’s 1953 study [71] is unique in its level of intervention on human 

subjects. Stoksted applied a stellate ganglion block and studied the effects of 

this on the nasal cycle using a rhinomanometric technique. He observed a 

significant increase in ipsilateral nasal resistance after application of the 

stellate ganglion block, as well as a much smaller contralateral increase in 

nasal resistance simultaneously. His observations show us that blockade of 

the sympathetic input causes an increase in nasal tissue volume and 

therefore nasal resistance. They also suggest a small crossover of 

sympathetic fibres to the contralateral side within the nasal cavity [71]. 

 

Hasegawa in 1977 [12] used a rhinomanometric technique to look at a group 

of 50 subjects looking for an alternating congestion and decongestion of the 

nasal turbinates sufficient to produce a change in resistance of 20% or more 

in two consecutive calculations and established a frequency of 72% within 

the subject group [12].  

 

Mirza’s 1997 study [16] using liquid crystal thermography exhalation monitor 

to measure relative airflow between the two nostrils demonstrated a lower 

frequency of the nasal cycle in older subjects, compared to younger subjects, 

using the definition of an alternating reciprocal pattern [16]. 

 

Flanagan and Eccles in 1997 [1] used rhinomanometry to observe nasal 

airflow and a numerical definition to establish a frequency for the nasal cycle 

of 21% in a normal population [1]. This study will be discussed in more detail 

later in this section. 

 

Abolmaali et al in 2013 [103] looked at a group of 28 subjects over periods of 

up to 14 hours using MRI imaging at 30 minute intervals. They were able to 

demonstrate detectable changes in mucosal thickness and nasal airway 

volume. Using a definition of inverse correlation between the left and right 

nasal cavity they described a frequency of 50% for the presence of the nasal 

cycle in the subject group [103]. 
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Studies of the nasal cycle in pathological states 
 

Stoksted in 1952 [11] performed a small study on 8 subjects using an early 

form of rhinomanometry based on work by Heetderks. Stoksted looked at 

subjects he considered healthy as well as those with rhinitis and nasal septal 

deviation. With small numbers of subjects he concluded that subjects with 

nasal septal deviation were likely to have asymmetrical nasal airflow 

patterns. He also found the absence of a regular cycle in a subject with 

vasomotor rhinitis and minimal activity in a subject with atrophic rhinitis [11]. 

These being observations of single subjects it is not satisfactory to draw any 

conclusions from this study in regards to rhinitis and the nasal cycle.  

 

Ishii et al in 1993 [85] looked at subjects with autonomic disturbance, 

including 20 with a facial palsy, to represent loss of parasympathetic function 

and 5 with Horner’s syndrome to represent loss of sympathetic function. 

Nasal airflow was recorded by the use of anterior rhinomanometry. They 

observed the presence of a reciprocating nasal cycle in 65% of the subjects 

with facial palsy and 80% of those with Horner’s syndrome, concluding that 

the parasympathetic pathway has little to do with control of the nasal cycle 

and concluded there may be compensation by a secondary neural pathway 

for sympathetic stimulation of the nasal mucosa [85]. 

 

Fisher et al in 1994 [14] looked at 20 subjects (with an age matched control 

group of 10) who had undergone total laryngectomy on average 4 years prior 

to the study (range 2 weeks to 10 years) using acoustic rhinometry. The 

patterns of nasal patency were assigned to four groups; “classical”, in 

concert, irregular and nil. Fisher found that only 25% of the laryngectomy 

subjects had a “classical” nasal cycle compared to 50% of the control group, 

with 40% of the laryngectomy subjects having and irregular nasal cycle 

compared to 20% of the control group. This study proves that a lack of 

airflow through the nose does not stop the nasal cycle occurring; proving that 

peripheral stimulus within the nose is not required for the nasal cycle to 

occur. That there is a lesser frequency of the “classical” nasal cycle present 

in post laryngectomy subjects is not surprising as the cervical sympathetic 
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nerves would be disrupted during neck dissection [14], however the numbers 

for the control group in this study were small and therefore may be subject to 

type 1 error. 

 

Sung et al in 2000 [42] demonstrated that the presence of a nasal septal 

deviation did not influence the presence of the nasal cycle. They looked at 24 

subjects (control group 26) with an anterior nasal septal deviation using 

acoustic rhinometry. They found a nasal cycle in 83% of the subjects with a 

nasal septal deviation and 77% of the control group [42].  

 

Animal studies looking at the nasal cycle 
 

Malcolmson in 1959 [67] studied the nasal tissues of cats using a direct 

rhinomanometry in animals that had been tracheotomised. He found that 

stimulation of the superior cervical ganglion or sympathetic chain, caused 

vasoconstriction within the nasal cavity without any systemic effects, whilst 

section resulted in vasodilation. He also demonstrated vasoconstriction 

secondary to hypothalamic stimulation but also noted a generalised 

sympathetic response. [67] Although there were no cyclical effects 

demonstrated, this work helped identify the neural pathways involved in 

control of the nasal cycle. 

 

Bojsen-Moller and Faherenberg in 1971 [104] were able to demonstrate the 

presence of a spontaneously alternating nasal cycle in rabbits and rats. They 

used hygroscopy (the measurement of the area of condensation on a cold 

mirror) over an 8 to 10 hour period. They demonstrated such a pattern of 

airflow changes in 19 out of 20 rats and 13 out of 15 rabbits, proving that 

such changes in airflow patterns are not confined to humans but are present 

in other animals. The length of the nasal cycle varied from 30-85 minutes in 

rats and from 80 to 150 minutes in rabbits [104]. 

 

Eccles and Maynard (1975) [105] were the first to study the nasal cycle itself 

in animals; previous animal studies were based on nasal secretions and the 
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nervous supply of the nose. Their study on nine pigs used nasal spirometry 

to demonstrate cyclical changes in airflow [105]. A later porcine study by 

Eccles [83] used a fixed forced airflow through the nasal cavity in the 

anaesthetised pig and measurement of air pressure proximally and distally to 

the nasal cavity to measure resistance. The reciprocal activity of the nasal 

cycle was demonstrated in this way in 10 out of 13 animals, which was 

eliminated by section of the cervical sympathetic nerve [83].  

 

Bamford and Eccles in 1982 [76] performed a feline study, using nasal 

plethysmography to monitor the effects of brain stimulation. Without 

stimulation changes in the nasal tissues representative of the nasal cycle 

were demonstrable. It was possible to create a reciprocal change in the side 

of the nose in which vasoconstriction occurred through stimulation of the 

reticular formation of the brainstem, with ipsilateral vasosconstriction and 

contralateral vasodilation seen in response to such stimulus [76]. This study 

suggests the origin of stimulus for the nasal cycle lies in the region of the 

reticular formation. 

 

Studies using analytical techniques 
 

Gilbert and Rosenwasser in 1987 [106] appear to have been the first to try to 

apply numerical standards to the nasal cycle and did so on a sample of 16 

subjects. They used the correlation coefficient as a measure of reciprocity 

and autocorrelation analysis to assess for rhythmicity. Their study had a very 

high sampling density and produced 49 paired measurements for each 

subject, allowing them to perform the autocorrelation analysis with some 

accuracy. Despite this they were unable to produce statistically significant 

periodicities but regularly repeated autocorrelation peaks were seen in 7 

subjects with only 2 of these being bilateral. For this study a statistically 

significant level of reciprocity was used for the correlation coefficient 

(p<0.05), which in this case meant a r value of less than -0.29, meaning that 

43.8% of subjects were considered to have a statistically significantly 

reciprocal nasal cycle [106]. 
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A later small study of nine subjects by Gilbert in 1989 [107] repeated his 

1987 work with the observation density doubled to a frequency of one every 

5 minutes, with a range of 88 to 97 paired measurements taken for each 

subject. 44% of subjects in this study were considered to have reciprocal 

airflow patterns, as with the previous study a statistical level of significance 

(p<0.05) was used to judge whether a correlation coefficient represented a 

reciprocal nasal cycle. Bilateral rhythmicity as assessed by autocorrelation 

analysis was seen in 22% of subjects, with periods of 3.5 to 6 hours 

estimated [107]. 

 

Mirza in 1997 [16] used both the correlation coefficient and autocorrelation 

analysis, to look at different types of nasal cycle in 4 age groups. The 

technique for studying airflow was liquid crystal thermography, where colour 

change on a heat sensitive material is measured to quantify airflow. A 

statistical level of significance was used with the correlation coefficient to 

identify “classical” and parallel nasal cycles. Where these were not seen 

autocorrelation analysis was used to identify “hemi-cyclical” airflow patterns. 

A decrease in the frequency of a “classical” nasal cycle and an increase of 

non-cyclical activity was reported with increasing age [16].  

 

Work by Flanagan and Eccles in 1997 [1], analysed the nasal cycle 

according to numerical features. The Correlation coefficient (r value) and 

Airflow Distribution Ratio (ADR) were utilised to define a “classical” nasal 

cycle. The correlation coefficient is a statistical test to describe the 

relationship of two sets of data. The number it gives ranges from -1 to +1, 

where -1 shows a strictly reciprocal relationship and +1 a relationship that 

can be considered strictly in phase. The ADR measured from 0 to 1 

describes whether there is equality of airflow throughout all measurements 

made for a nasal cycle. Where 1 indicates equal volumes overall and 0 

indicates all airflow is on a single side. Criteria of an r value of less than -0.6 

and an ADR of over 0.7 were set to define a “classical” nasal cycle. Their 

study reported a “classical” cycle according to these numerical features in 
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21% of test subjects (sample size 52), with 34.6% of subjects having a 

correlation coefficient of less than -0.6 and 51.9% having a ADR over 0.7 [1].  

 

Studies using objective and subjective methods 
 

Gungor in 1999 [108] combined the technique of acoustic rhinometry with a 

visual analogue scale (VAS) to monitor the nasal cycle. Gungor looked for a 

correlation between CSA2 measurements taken using acoustic rhinometry 

and the VAS but was unable to find any correlation, indicating that the VAS is 

a poor tool for monitoring the nasal cycle [108]. 
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1.6 Rationale of this thesis 
 

The concept of the nasal cycle has long been established along with the 

idealised “classical” nasal cycle where alternating reciprocal changes in 

nasal patency and airflow are seen [14, 15]. It is widely acknowledged that 

the “classical” nasal cycle is often only seen in a small proportion of subjects 

with a figure of 21% reported by Flanagan and Eccles in their 1997 study [1]. 

Mirza et al in 1997 showed that the reciprocity within nasal airflow patterns 

was seen less frequently in older compared to younger subjects [16], 

however there has yet to be any work to show how reciprocity as a measure 

of the “classical” nasal cycle changes over short periods of time.  

 

The subjective assessment of nasal airflow is complicated due to the indirect 

way in which the sensation of airflow is detected by the nervous system, 

which is primarily due to a cold sensation [95]. Previous work has found a 

good correlation between subjective and objective data when looking at 

subjects assessed for nasal septal deviation [96, 109] and artificially induced 

nasal obstruction [110]. But when such scales have been used to monitor the 

nasal cycle there have been mixed results, with Gungor et al (1999) reporting 

no correlation between the Visual Analogue Scale and acoustic rhinometry 

[108] but Clarke et al (2005) found a good correlation between unilateral 

airflow and the Visual Analogue Scale in patients with upper respiratory tract 

infections [111]. No study has looked at the use of the Subjective Ordinal 

Scale developed by Boyce and Eccles [96] in assessment of the nasal cycle. 

 

This thesis presents a pilot study into the stability of nasal airflow over time. It 

looks objectively (using data from anterior rhinomanometry) at the concept of 

the “classical” nasal cycle by measuring reciprocity using the r-value 

(correlation coefficient of left and right nasal airflow) and the equality of 

airflow using the Airflow Distribution Ratio. Secondarily a comparison is 

made between the objective measurement of nasal airflow and subjective 

assessment using the Subjective Ordinal Scale. A potential relationship 

between change in nostril dominance and meal times was also explored. 
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Methodology 

 

Ethical Approval 
 

The study has been reviewed and approved by The School of Biosciences 

Research Ethics Committee, Cardiff University. It has been conducted in 

accordance with the ICH Harmonised Tripartite Guideline for Good Clinical 

Practice [112]. All subjects provided informed consent and signed a study 

consent form prior to screening. 

 

 

Study design 
 

The study was a prospective pilot study involving normal healthy volunteers. 

Subjects were recruited by email and poster advertisements and those 

responding were invited to a screening visit. This consisted of a medical 

interview and examination of the anterior nasal cavity to determine suitability 

for enrolment according to the inclusion and exclusion criteria (as listed 

below). Subjects who were included were invited back to two study days, one 

week apart (allowed window of six to nine days). On the study days the 

inclusion/exclusion criteria were revisited to ensure the subjects remained 

suitable. The subjects were given a 30 minute rest period to acclimatise to 

the environment of the lab and anterior rhinomanometry readings were taken 

every hour (allowed window of 15 minutes either side).  

 

Inclusion criteria 

1. Aged 18 or over 

2. Have given written informed consent 

 

Exclusion criteria 

1. Any history of chronic nasal conditions 

2. Active nasal disease e.g. current upper respiratory tract infection 
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3. Any history of trauma to nose or sinuses 

4. Any significant septal abnormality 

5. Presence of upper lip facial hair that may interfere with use of the 

rhinomanometer 

6. Known allergy to surgical tape 

7. Any disease or medical or surgical history that the investigator deems 

may affect nasal physiology and influence the results of the study e.g. 

chronic respiratory disease or intake of medicines known to affect the 

nose such as topical corticosteroids. 

8. Member of study staff or partner or relative of study staff (except for 

Prof R Eccles) 

9. Intake of more than 4 units of alcohol within 12 hours of measurement 

of nasal airflow 

10. A current smoker, defined by a daily use of any tobacco product 

 

Study Population 
 

39 subjects were recruited to the study, with 30 completing. Of those who did 

not complete, 1 was excluded at screening due to significant nasal septal 

deviation, 1 was excluded on the first study day due to complete nasal 

obstruction preventing measurement and the remainder were lost due to 

non-attendance. Of those who completed the study 13 were male and 17 

female, with a mean age of 22.7 (range 19-66 years). Measures of the nasal 

index and height and weight were omitted in one subject. For the remaining 

29 subjects the mean nasal index was 68.78 with a range 58.42-96.74, mean 

BMI was 23.2 with a range 19.84-32.03 (the measures from which these are 

derived are summarised in table 2.1). 5 subjects reported a medical history; 2 

seasonal allergic rhinitis, 1 essential hypertension, 1 iron deficiency anaemia, 

1 Crohn’s disease. None of these conditions were felt to impact upon nasal 



42 
 

airflow during the study period. For those with a history of seasonal allergic 

rhinitis this was not an issue as the study was conducted in a pollen free 

environment in the winter time. 20 of the subjects recruited reported current 

medication usage, 15 were taking a herbal medicine (pelagonium) for a con-

current study, 8 were on an oral contraceptive, 1 had the contraceptive 

implant, 1 lisniopril, 1 ferrous sulphate, 1 Humira. None of these medications 

are known to impact on nasal airflow. 

 

 Nasal 

height 

(mm) 

Nasal 

width 

(mm) 

Nasal 

Index 

Height 

(cm) 

Weight 

(kg) 

BMI 

Mean 49.74 33.98 68.78 172.46 69.48 23.20 

Minimum 43.00 29.50 58.42 150.00 48.00 19.84 

Maximum 61.50 44.50 96.74 190.50 106.10 32.03 

Table 2.1 – A summary of the physical characteristics of the subject group 

 

Study environment 
 

The study was conducted in the Common Cold Centre of Cardiff University, 

subjects were acclimatised to room temperature conditions over a period of 

30 minutes. Exposure to stimulants such as caffeine and nicotine was 

prohibited. Subjects were also instructed to refrain from sleep, lying down or 

exercise 

 

Choice of method and equipment 
 

Rhinomanometry is considered the gold standard for assessment of nasal 

obstruction [113], as the nasal cycle causes obstruction of the nostrils 

through venous engorgement of the turbinates and septum, a 

rhinomanometry based study was considered to provide the most accurate 

results. Posterior rhinomanometry is noted to have measurement benefits 

over the anterior method, such that total or near total unilateral nasal 

obstruction is not problematic. However posterior rhinomanometry requires 

training in its use and as such 10-20% of subjects are unable to perform a 
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measurement with this method. It was therefore decided to use anterior 

rhinomanometry for this study. The Happersberger Otopront RHINO-SYS 

system (manufactured by Happersberger Otopront in Germany, D-65329 

Hohenstein) provides a user-friendly interface and guides test subjects with a 

traffic light system during use. This provides useful feedback for test subjects 

and it was felt that it would therefore facilitate data collection from subjects. 

 

Anterior rhinomanometry technique 
 

Measurements were recorded using an Otopront RHINO-SYS 

rhinomanometer according to SOP No. 24 - Procedure for measurement of 

nasal airflow using the otopront RHINO-SYS Rhinomanometer. The anterior 

rhinomanometry technique works on the basis of the measurement of nasal 

pressure via the non test nostril as this is equal throughout the nasal cavity 

and the measurement of airflow via a flowhead in the test nostril. From these 

readings nasal resistance is calculated by the rhinomanometer software. 

Each resistance measurement is recorded at a fixed reference pressure, 

commonly either 75 Pa or 150 Pa is used. In this case a reference pressure 

of 75 Pa was chosen as the higher pressure of 150 Pa may not be achieved 

in a physiological study such as this [114]. To ensure the reliability of results 

two readings were recorded for each nostril and a coefficient of variation was 

calculated, readings were only accepted if this was 15% or less.  

 

Recording the nasal cycle - Airflow vs resistance measurements 
 

Recording nasal resistance to airflow has a disadvantage statistically when a 

totally (or near totally) obstructed nose is encountered, as in this situation no 

value for resistance could be recorded. However if nasal airflow is recorded 

instead a value of zero can be recorded allowing statistical analysis [88]. It is 

for this reason that the resistance values initially obtained were converted to 

airflow for presentation and analysis. 
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The subjective ordinal scale 
 

The subjective ordinal scale created by Boyce and Eccles in 2006 [96] has 

been described in the introduction (section 1.4). It has been shown to have 

greater specificity than a Visual Analogue Scale (VAS) when assessing 

differences in nasal airflow [96]. However previous use was limited to 

assessment of nasal septal deviation and its inclusion in this study is 

explorative, to give an indication of the scale’s usefulness in studies of the 

nasal cycle. The scale was completed by the subject prior to each set of 

anterior rhinomanometry measurements.  

 

Subject expenses 
 

Subjects for the trial were paid a total of £80 by cheque at completion of the 

study, a smaller sum of £5 was given if they failed screening. Subjects also 

received a standardised lunch during the study days, this consisted of a cold 

sandwich, packet of crisps, a chocolate bar and bottled water. 

 

Calculation of airflow 
 

In order to calculate the airflow distribution ratio and for the plotting of data, 

resistance measurements were converted to flow velocities, using the 

formula below where the pressure is fixed at the reference pressure: 

 

Resistance = pressure (75 Pa ref pressure) / flow (v) 

 

This is reversed to: 

 

V= 75/r 
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Statistical analysis 
 

The correlation coefficient is used both as a measure of reciprocity within the 

nasal cycle and for calculation of relationships. In both cases Pearson’s 

method is used. Differences between subjects at study day 1 and study day 

2 were tested by the use of a paired Student’s t-test. 

 

Calculation of the correlation coefficient 
 

The correlation coefficient was calculated using Pearson’s coefficient of 

variance as using this method the values for left and right nasal airflow are 

compared at each data point. Whereas the alternative method of Spearman’s 

rank correlation reorganises the values as part of the calculation and uses an 

assigned rank number instead of the original data inputted for the calculation.  

 

Calculation of the Airflow Distribution Ratio 
 

The Airflow Distribution Ratio (ADR) was calculated using the formula:  

 

ADR = (airflow A / total airflow) / (airflow B / total airflow) 

 

Where A is the lower value of airflow 

 

Calculation of the Nasal Partitioning Ratio 
 

The Nasal Partitioning Ratio (NPR) was calculated using the formula: 

 

NPR = vol L – vol R / vol L + vol R (total rate of airflow) 
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The characteristics of the nasal cycle in the study population at the first day 

of examination by anterior rhinomanometry 

 

Aim – To establish, numerically, what characteristics the nasal cycles of the 

study population have at the start of the study. 

 

Introduction 
 

Types of nasal cycle 
 

The nasal cycle can be defined as “the spontaneous and often reciprocal 

changes in unilateral nasal airflow associated with congestion and 

decongestion of the nasal venous sinuses” [95]. When reciprocal changes in 

the congestion of the nasal mucosa are seen in observations of the nasal 

cycle, such cycles are often referred to as “classical”. Other types of cycle 

that have been described include “in phase” (“in concert”) and “irregular”. 

Where cycles are said to be “in phase” parallel changes occur in the 

congestion and decongestion of the nasal mucosa, an “irregular” cycle may 

have a mixture of features of the “in phase” and “classical” groups or no 

discernible pattern at all [15]. 

 

Numerical descriptors used in studying the nasal cycle 
 

Both the correlation coefficient (r value) and Airflow Distribution Ratio (ADR) 

can be used to describe the nasal cycle numerically. The correlation 

coefficient as a measure of reciprocity has been used in studies of the nasal 

cycle examining nasal airflow, those using acoustic rhinometry [115] and in 

those using Magnetic resonance imaging techniques [103]. 

 

Flanagan and Eccles [1] defined a “classical” nasal cycle numerically as 

having a correlation coefficient more negative than -0.6 and an ADR (as 

defined in section 1.4) greater than 0.7. Their study was based on eight sets 

of airflow recordings taken at hourly intervals from 52 healthy volunteers; of 
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this group 21% had a “classical” nasal cycle according to these criteria [1], 

however these criteria were chosen arbitrarily. Gilbert and Rosenwasser in 

1987 [106] had previously used a statistical level of significance for the 

correlation coefficient (where the p value is 0.05) to help define a “classical” 

or reciprocal nasal cycle, in this case 49 sets of airflow measurement were 

obtained for each nasal cycle. So a correlation coefficient more negative than 

-0.29 was considered significantly reciprocal [106]. 

 

 

Method 
 

Anterior rhinomanometry was performed over a seven-hour period with 

subjects at rest in lab conditions. The subjects were given a 30 minute rest 

period prior to measurements to allow for acclimatisation. Measurements 

were taken every hour, as per the study protocol. Airflow measurements 

were obtained by conversion from resistance measurements, with 

measurements being taken at a reference pressure of 75 Pa. 

 

The correlation coefficient was calculated for each subject’s nasal cycle 

using Pearson’s method. This method was chosen as it meant that the 

airflow values were paired, whereas Spearman’s method ranks values. 

 

The period in which a set lunch was taken was recorded as being the time 

after a set of nasal airflow measurements were taken. For an assessment of 

any potential relationship to meals and a change in nostril dominance the 

time of the last data entry was recorded and the point of changeover on the 

nasal airflow graph was read. 

 

Results 
 

The correlation coefficient for all 30 subjects at study day 1 ranged between -

0.89 to 0.97 with a mean value of -0.39. The airflow distribution ratio ranged 

between 0.26 to 1 with a mean value of 0.72. The combination of these data 



49 
 

and their distribution is represented in figure 3.1, where a clear grouping is 

seen in the top left hand corner, representing subjects with correlation 

coefficients close to -1 and an airflow distribution ratio close to 1. 

 

 

Figure 3.1 – A graph showing the distribution of values for r and ADR for 

each subject at study day 1 

 

Using Flanagan’s criteria for a “classical” nasal cycle (r -0.6 to -1 and ADR 

0.7 to 1) eight of the group of 30 subjects (26.7%) can be defined as having a 

“classical” nasal cycle. Overall 23 subjects (76.7%) were seen to have a 

negative correlation coefficient and 12 subjects (40%) were seen to have a 

correlation coefficient of less than -0.6. 17 subjects (56.7%) overall had an 

ADR of greater than 0.7. 

 

Subjects 15, 17, 18, 21 and 24 meet Flanagan’s criteria for the “classical” 

nasal cycle. In addition subjects 33, 35 and 36 all conform to a higher level of 

the “classical” criteria having a statistically significant correlation coefficient of 

less than -0.7 and an ADR of over 0.7. An example of this group subject 35 

(see figure 3.2) could be said to have a very long cycle, from a critical point 

of view the highly negative correlation coefficient and high ADR could be 

explained by the high peaks in right-sided airflow for the final two data points. 
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Figure 3.2 – A graph showing airflow for the left and right nasal passages for 

subject 35 on study day 1 

 

From this group subject 021 (see figure 3.3) makes the best visual example 

of what is expected from a “classical” nasal cycle, with generally clear 

reciprocal changes taking place and even distribution of airflow. It also 

appears to display periodicity within the cycle, although the sampling rate for 

this study is unlikely to be high enough to detect the peaks required for 

measurement of this. 
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Figure 3.3 – A graph showing airflow for the left and right nasal passages for 

subject 21 on study day 1 

 

 

On the converse side if a high correlation coefficient (>0.6) can be 

considered to represent subjects who are “in phase” two subjects fit this 

criterion. Below are graphs demonstrating the airflow patterns of the two 

subjects with a correlation coefficient greater than 0.6. As the correlation 

coefficient increases from 0.62 to 0.97 from subject 011 (see figure 3.4) to 

subject 019 (see figure 3.5) visually an “in phase” nasal cycle is more 

obvious, with no cross over points seen in 019’s cycle.  
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Figure 3.4 – A graph showing airflow for the left and right nasal passages for 

subject 11 on study day 1 

 

 

Figure 3.5 – A graph showing airflow for the left and right nasal passages for 

subject 19 on study day 1 

 

This leaves 20 out of 30 subjects (66.7%) who fit neither the criteria for a 

“classical” nasal cycle nor the criteria for an “in phase” nasal cycle. These 
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subjects can be termed to have non-significant nasal airflow patterns, this 

term is used since the criteria for both the “classical” nasal cycle and “in 

phase” nasal cycle are determined using a statistical test (the correlation 

coefficient).  

 

Of the 30 subjects in the study the period of the meal time was omitted from 

the data in two cases. In six cases there was no cross-over point following on 

from the meal period. This meant that 8 subjects in total were omitted from 

this analysis. For the remaining 22 subjects the mean time from the start of 

the meal period to cross over was 1 hour 41 minutes with a range of 7 

minutes to 4 hours 52 minutes (data detailed in table 3.1). A correlation 

coefficient calculated for the relationship of the start of the meal period to the 

subsequent cross over point was non-significant with a value of -0.24 (p 

>0.2). 
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Subject no Meal Period Meal period start Cross-over time Time lag 

1 3 11:35 am 1:00 pm 01:25 

2 4 12:41 pm 12:48 pm 00:07 

8 3 11:34 am 3:33 pm 03:59 

11 3 11:26 am 2:45 pm 03:19 

16 3 11:43 am 2:12 pm 02:29 

17 4 12:21 pm 2:20 pm 01:59 

18 4 12:29 pm 12:36 pm 00:07 

21 4 12:35 pm 1:54 pm 01:19 

22 4 12:31 pm 3:42 pm 03:11 

24 4 12:36 pm 12:54 pm 00:18 

25 4 12:27 pm 2:03 pm 01:36 

27 3 11:33 am 12:09 pm 00:36 

28 4 12:30 pm 1:30 pm 01:00 

29 3 11:38 am 4:30 pm 04:52 

31 4 12:29 pm 1:30 pm 01:01 

32 4 12:24 pm 12:48 pm 00:24 

33 4 12:29 pm 3:54 pm 03:25 

34 4 12:20 pm 2:45 pm 02:25 

35 4 12:25 pm 2:39 pm 02:14 

36 4 12:30 pm 1:00 pm 00:30 

37 4 12:25 pm 12:39 pm 00:14 

38 4 12:36 pm 1:24 pm 00:48 

Table 3.1 – A table showing meal times for subjects on study day 1 who 

subsequently had a change in nostril dominance and the time lag from meal 

start time to the change in nostril dominance. 

 

Discussion  
 

Not all subjects with what would appear at visual inspection to be a 

“classical” nasal cycle were represented in this way numerically. An example 

of this is subject 027 (see figure 3.6) who has a highly negative r value, but 

the ADR is just under 0.7. Whilst initial inspection of the chart for subject 027 

suggests a “classical” nasal cycle, it is clear that in the sample period right 

sided airflow does predominate as the left sided points never peak as highly 

and drop to lower levels that the right side, which results in an uneven 

distribution of airflow. 
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Figure 3.6 – A graph showing airflow for the left and right nasal passages for 

subject 27 on study day 1 

 

 

Subject 36’s chart (see figure 3.7) shows a negative r value and a significant 

ADR and therefore is numerically “classical” but visual inspection would 

suggest this is not the case. The changes in airflow do not appear to occur in 

a reciprocal fashion to visual inspection at points 2 and 7. However it is clear 

that right and left sided peaks and troughs for airflow occur at similar levels 

allowing for an even distribution of airflow and a highly negative correlation 

coefficient. 
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Figure 3.7 – A graph showing airflow for the left and right nasal passages for 

subject 36 on study day 1 

 

 

Conclusions 
 

Using Flanagan’s criteria for a “classical” nasal cycle 8/30 (26.7%) subjects 

in this study can be classified as such at study day 1. This is slightly higher 

than the 21% value obtained by Flanagan and Eccles’ original study [1]. 

Other reported rates for the presence of a nasal cycle are higher, but often 

less stringent criteria are used. For example a study by Abolmaali et al using 

MRI imaging to assess the nasal cycle only used a correlation coefficient 

more negative than -0.5 to define the presence of a nasal cycle, thus 

reporting a frequency of 46% in their study of 28 healthy subjects [103]. 

Gilbert and Rossenwaser’s earlier study [106] again used the correlation 

coefficient as one of their criteria for assessment of the nasal cycle 

(autocorrelation analysis was also used to assess rhythmicity). In their 

sample seven of 16 subjects were shown to have significant reciprocity 

however a statistical definition of significance was applied (p<0.05) meaning 

a correlation coefficient of less than -0.29 was seen as significant due to a 

large sample of airflow measurements [106].  
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Using a criterion of r >0.6 two subjects were considered to have an “in 

phase” cycle and this is demonstrated graphically. 

 

There is no proven relationship between the start of the meal period time and 

the subsequent crossover in dominance of nasal airflow. 
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How the characteristics of the nasal cycle in the study population change 

over time 

 

Aim - To study the stability of the nasal cycle over a period of 6-9 days 

 

Introduction 
 

There has been little work on the stability of the nasal cycle over time and no 

studies to date have assessed this objectively using numerical values such 

as the correlation coefficient and Airflow Distribution Ratio (ADR). A single 

study of 18 healthy subjects used anterior rhinomanometry to monitor 

changes in the nasal cycle over a 3 month period with nasal airflow 

measurements performed at the start and end of this period. Subjects were 

classified subjectively as cyclical, irregular and noncyclical according to their 

airflow patterns at the start and the end of the study. Of the 18 subjects 7 

were classified in a different group at the end of the study compared to the 

beginning. Unfortunately this study is weakened significantly by its use of 

subjective assessment as the examples presented do not clearly represent a 

“classical” nasal cycle although they are reported as such [116]. 

 

The changes in nasal airflow patterns seen in the subject group will be 

described and assessed numerically.  

 

Method 
 

Nasal airflow measurements for the two study days were recorded using 

anterior rhinomanometry as described previously in chapter 2. The 

correlation coefficient (r value) and Airflow Distribution Ratio were calculated 

for each nasal cycle (as previously described in Chapter 2). Comparative 

statistics are used as well as the correlation coefficient to assess how these 

variables change over time.  

 



60 
 

Results 
 

There was a 100% return rate for study day 2, two subjects had a delay in 

return, one due to illness and one due to a family bereavement. One subject 

did not complete study day 2 needing to leave early, so only 6 of 8 

measurements were obtained for subject 29 on study day 2. 

 

The mean r value became more negative from study day 1 to study day 2 

moving from -0.32 (range -0.89 to 0.97) to -0.47 (range -0.9 to 0.5). The 

mean ADR also showed a slight decrease from study day 1 to study day 2 

from 0.72 (range 0.26 to 1) to 0.68 (range of 0.19 to 1) (as summarised in 

table 4.1). The distribution of r values and ADR values is shown in figure 4.1. 

 

 r study day 1 ADR study day 1 r study day 2 ADR study 2 

Mean -0.32 0.72 -0.47 0.68 

Min -0.89 0.26 -0.9 0.19 

Max 0.97 1 0.5 1 

Table 4.1 – A summary of r values and ADR values at study day 1 and study 

day 2 

 

 

Figure 4.1 – A graph showing the distribution of values for r and ADR for 

each subject at study day 2 
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The number of subjects with a “classical” nasal cycle according to Flanagan’s 

criteria [1] decreased slightly from study day 1 to study day 2 with a decrease 

from 26.7% to 16.7% of subjects meeting both criteria. However when a 

statistical level of significance for the r value (p <0.05) is used, i.e r less than 

-0.7, there is an increase in the number of subjects meeting the two criteria. 

This is summarised in table 4.2. A graphical representation of how the r value 

and ADR have changed from study day 1 to study day 2 is shown in figure 

4.2. Overall the correlation coefficient has become more negative and the 

ADR has reduced in the subject group. 

 

 Study day 1 Percentage Study day 2 Percentage 

r <-0.6 12 40 11 36.7 

ADR > 0.7 17 56.7 15 50 

r <-0.6 and ADR > 0.7 8 26.7 5 16.7 

r <0 23 76.7 27 90 

r>0.6 2 6.7 0 0.00 

r <-0.7 5 16.7 9 30 

r <-0.7 and ADR > 0.7 3 10 5 16.7 

Table 4.2 – A summary of the change in classification of r values and ADR 

values, with the numbers and percentages for each group listed. 
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Figure 4.2 - A graph showing the distribution of values for r and ADR for each 

subject at study days 1 and 2. 

 

Overall there was a tendency for the correlation coefficient to be more 

negative at study day 2 compared to study day 1. In total most of the 

correlation coefficient values obtained over both days are negative. This is 

illustrated in figure 4.3 which shows that where there was an initially high r 

value this decreased often becoming negative at study day 2. 
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Figure 4.3 – A graph showing the change in r value for individual subjects 

from study day 1 to study day 2. 

 

Furthermore there is a relationship between the r value at study day 1 and 

the change in r value. Where the r value was more negative the change 

tended to be small, as the r value increases and becomes positive there are 

larger changes in the r value from study day 1 to study day 2. All subjects 

with a positive r value at study day 1 and those with an r value close to 0 

showed a negative change in r value from study day 1 to study day 2.  This is 

illustrated in figure 4.4, where there is a strong negative correlation of -0.73 

for the relationship between study day 1 r value and the change in r value 

from study day 1 to study day 2. This relationship is significant with a p value 

of less than 0.001. 
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Figure 4.4 – A graph showing the relationship between study day 1 r value 

and the change in r value.  

 

Subjects in “classical” group at study day 1 
 

Of the eight subjects at study day 1 who met Flanagan’s criteria for a 

“classical” nasal cycle only three subjects (37.5%) continued to meet these 

criteria at study day 2 (subjects 17, 21 and 36), although all continued to 

have a negative r value at study day 2. The changes in the r-values and ADR 

values are shown in table 4.3. Of those three subjects only subject 36 met 

the higher statistical level of significance for the r-value at both study days. 
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Subject r study day 1 ADR study day 1 r study day 2 ADR study day 2 

15 -0.61 1 -0.21 0.85 

17 -0.69 0.78 -0.75 0.98 

18 -0.68 0.72 -0.75 0.5 

21 -0.64 0.96 -0.86 1 

24 -0.64 0.87 -0.35 0.66 

33 -0.7 0.92 -0.86 0.55 

35 -0.89 0.95 -0.73 0.3 

36 -0.75 1 -0.72 0.76 

Table 4.3 – A summary of the r-values and ADR values of those subjects in 

the “classical” group at study day 1 

 

Subjects in “in phase” group at study day 1 
 

Subjects 11 and 19 were considered to have nasal cycles that were “in 

phase” on study day 1 due to r-values of 0.62 and 0.97 respectively. Their 

nasal airflow patterns are shown as figures 3.4 and 3.5. At study day 2 

subject 11’s r-value decreased to 0.5 and subject 19’s decreased to -0.57. 

Therefore neither remained within the “in phase” group, nor did they enter the 

“classical” group.  

 

Subjects in non-significant group at study day 1 
 

The majority of subjects (20 out of 30) were deemed to have non-cyclical 

patterns on study day 1, not fitting with Flanagan’s criteria for a “classical” 

nasal cycle nor having a high r-value to indicate an “in phase” cycle. At study 

day 2 three (15%) of these subjects (subjects 2, 12, 15) met Flanagan’s 

criteria for a “classical” nasal cycle. None moved into the “in phase” group.  

The data for this group are shown in table 4.4. 
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Subject r study day 1 ADR study day 1 r study day 2 ADR study day 2 

1 0.02 0.83 -0.43 0.92 

2 -0.54 0.92 -0.9 0.93 

3 0.12 0.27 -0.63 0.62 

8 0.11 0.75 -0.28 0.54 

10 -0.69 0.53 -0.49 0.19 

12 0.22 0.52 -0.18 0.83 

14 -0.29 0.37 -0.55 0.89 

16 -0.28 0.87 0.11 0.84 

22 -0.58 0.68 -0.37 0.43 

23 0.13 0.39 -0.33 0.61 

25 -0.2 0.89 -0.69 0.7 

27 -0.76 0.67 -0.3 0.38 

28 -0.66 0.26 -0.76 0.61 

29 -0.01 0.65 -0.74 0.93 

31 -0.16 0.4 -0.43 0.26 

32 -0.23 0.67 -0.56 0.71 

34 -0.57 0.99 -0.45 0.98 

37 -0.23 0.66 0.13 0.76 

38 -0.08 0.82 -0.31 0.69 

39 -0.79 0.46 -0.56 0.33 

Table 4.4 - A summary of the r-values and ADR values of those subjects in 

the non-significant group at study day 1 

 

Discussion 
 

It has previously been suggested by Gilbert and Rosenwasser in 1987 that 

the nasal cycle as concept should be considered as an unstable and episodic 

phenomenon [106]. By studying the subjects in groups according to 

Flanagan’s classification [1] using the correlation coefficient and ADR, it has 

been demonstrated that the nasal cycle is not a stable phenomenon when 

viewed over a period of approximately one week. Of those in the “classical” 

group on study day 1 only 37.5% remained in the “classical” group at study 

day 2 and none of those in the in phase group at study day 1 remained in this 

group at study day 2. Of those in the non-significant group at study day 1 

15% entered the “classical” group at study day 2. This demonstrates that 
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large proportions of the study groups moved from one type of nasal cycle to 

another.   

 

In all subjects over the two study days the r value mostly was negative, 

demonstrating some level of reciprocity within the nasal airflow patterns. This 

implies that there is inherent reciprocal input for the control of the nasal 

venous tissues, which influence nasal airflow. That the nasal cycle is 

generally reciprocal in nature has been reported previously [1, 106] and thus 

supports the data obtained for this study. There was a tendency for those 

with a reciprocal nasal cycle to maintain this from study day 1 to study day 2. 

As shown in figure 4.3 none of the 15 subjects who at study day 1 had an r 

value more negative than -0.5 had a positive r value at study day 2. In 

contrast of the 15 subjects whose r value at study day 1 was more positive 

than -0.5, 12 (80%) had a more negative r value at study day 2. This is a 

significant shift towards reciprocity. 

 

The most significant finding is of the trend for the r value to become more 

negative from study day 1 to study day 2. This is demonstrated by a 

significant correlation coefficient of -0.73 (p <0.001), which shows a trend of 

higher study day 1 r values to have a larger negative change over the 

observation period. Again this reinforces the suggestion of an inherent 

reciprocal nature to the nasal cycle, which is likely to originate from a central 

source of control.  
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What are the characteristics of the nasal cycle within the study population 

when assessed using subjective ordinal scale? 

 

Introduction 
 

The subjective ordinal scale (SOS) as a tool for the assessment of nasal 

patency was introduced in 2006 by Boyce [96] and has previously been 

discussed in chapter 1.4. It was designed to detect an abnormal Nasal 

Partitioning Ratio (NPR) (as discussed in chapter 1.4) which would then be 

used as a simple tool in the screening of patients for consideration of nasal 

septal surgery. Results from Boyce’s paper showed that the subjective 

ordinal scale had a sensitivity of 81% for detecting an abnormal NPR [96]. 

The use of this tool was included within this study to establish whether it may 

be used as a simple tool for future studies on the nasal cycle, where subjects 

may be able to self monitor their nasal patency. Previous studies trying to 

relate subjective assessment tools to rhinomanometric measurements of 

nasal airflow have failed to show any consistent correlation. This is 

suspected to be due to the complex way in which the sensation of nasal 

congestion and airflow is picked up indirectly by different receptors within the 

nasal cavity [97]. 

 

The Nasal Partitioning Ratio and Airflow Distribution Ratio are both measures 

which give an indication of the equality of airflow distribution between the two 

sides of the nose. They differ in that the Nasal Partitioning Ratio is able to 

indicate which side the majority of airflow goes through by giving a positive or 

negative value e.g -1 indicates that all airflow is through the right side of the 

nose and +1 indicates all airflow is through the left side of the nose [99]. 

Whereas the Airflow Distribution Ratio gives a value of 0 to 1 where 1 

indicates equal distribution of airflow between the two sides of the nose and 

0 indicates that all airflow is through one side of the nose without indicating 

which side is dominant [1]. Both measures have previously been described 

along with their calculation in chapter 1.4. 
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The focus of this thesis so far has been monitoring the nasal cycle over time 

using an r-value (correlation coefficient), which compares left and right nasal 

airflow and the Airflow Distribution Ratio (ADR). This chapter seeks to 

establish whether monitoring of the nasal cycle is possible using the 

subjective ordinal scale. Therefore the previously collected objective data 

(i.e. obtained from rhinomanometry) are compared with subjective data (i.e. 

obtained from the subject’s self assessment using the subjective ordinal 

scale) and analysed accordingly. 

 

Method 
 

Prior to each set of measurements made in the study using anterior 

rhinomanometry each subject was asked to self assess their nasal patency 

using the subjective ordinal scale and the indicated values recorded. All 

subjects were educated in the use of the subjective ordinal scale prior to the 

start of the study by the investigator.  

 

An r-value (correlation coefficient) comparing the left and right nasal 

passages, an Airflow Distribution Ratio and a Nasal Partitioning Ratio were 

all calculated for each subject on each study day for both the objective 

(rhinomanometric) data and the subjective data (using the subjective ordinal 

scale). Correlation coefficients were calculated using Pearsons method to 

examine for any relationship between the objective (rhinomanometric) data 

and the subjective data (subjective ordinal scale).  

 

Section 1 - r-values (correlation coefficients) 
 

Results 
 

An initial comparison is made between the r-value (correlation coefficients 

comparing left and right sided nasal airflow) for the subject’s objective data 

and the r-value for the subjective data on each study day. This is 

summarised by plots of the two different r-values in figures 5.11 (study day 1) 
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and 5.12 (study day 2). The spread of data on these plots is clearly wide and 

the applied trend line is therefore affected by many outlying points on both 

plots. The correlation coefficients derived from the relationships between the 

r-value for objective data and the r-value for subjective data are low being 0.1 

for study day 1 and 0.16 for study day 2. These are both not statistically 

significant with p-values of over 0.2 (see table 5.11). When calculating the r-

value (correlation coefficient) for the subjective data, the calculation is not 

possible to perform for certain number sequences e.g where the test subject 

had indicated a single value for all eight measurments on one side of the 

nose, hence there are four gaps in the data which can be seen in table 5.12 

(subjects 08, 25 and 34). This meant that when the r-values for the objective 

data and subjective data were compared using the correlation coefficient, 

these subjects were removed from the calculation. The correlation 

coefficients shown in table 5.11 and figures 5.11 and 5.12 therefore only 

represent 28 subjects for each study day. There was no relationship 

demonstrated between the r-values for objective data and subjective data on 

either study day. 

 

 

 

Figure 5.11 – A scatter graph of the r-value for objective data vs the r-value 

for subjective data on study day 1 
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Figure 5.12 - A scatter graph of the r-value for objective data vs the r-value 

for subjective data on study day 2 

 

 Correlation coefficient p-value 

Study day 1 0.1 >0.2 

Study day 2 0.16 >0.2 

Table 5.11 – A table showing the correlation coefficients for the relationship 

between r-value for rhinomanometric data and r-value for subjective ordinal 

scale – two subjects removed due to incomplete data. 
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 Study day 1 Study Day 2 

Subject r -obj r -sub r - obj r -sub 

01 0.02 -0.76 -0.43 -0.9 

02 -0.54 -0.64 -0.9 -0.94 

03 0.12 -0.49 -0.63 -0.08 

08 0.11  -0.28 -0.56 

10 -0.69 -0.54 -0.49 -0.58 

11 0.62 -0.65 0.5 -0.05 

12 0.22 -0.29 -0.18 -0.72 

14 -0.29 -0.29 -0.55 0 

15 -0.61 0.03 -0.21 0.04 

16 -0.28 0.36 0.11 0.16 

17 -0.69 -0.14 -0.75 -0.29 

18 -0.68 -0.3 -0.75 -0.31 

19 0.97 0.07 -0.57 0 

21 -0.64 -0.43 -0.86 0.08 

22 -0.58 -0.34 -0.37 -0.39 

23 0.13 0.68 -0.33 -0.57 

24 -0.64 -0.45 -0.35 0 

25 -0.2 0.54 -0.69  

27 -0.76 -0.82 -0.3 -0.15 

28 -0.66 -0.32 -0.76 0.35 

29 -0.01 0.84 -0.74 0.89 

31 -0.16 -0.79 -0.43 -0.51 

32 -0.23 0.24 -0.56 -0.63 

33 -0.7 -0.95 -0.86 -0.72 

34 -0.57  -0.45  

35 -0.89 -0.49 -0.73 -0.94 

36 -0.75 0.45 -0.72 -0.76 

37 -0.23 0.26 0.13 0.31 

38 -0.08 -1 -0.31 -1 

39 -0.79 0.6 -0.56 -0.03 

Table 5.12 – A table comparing r-values (correlation coefficients) derived 

from objective data with corresponding values derived from the subjective 

data. 
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Discussion 
 

When considering the r-values (correlation coefficients for left and right nasal 

airflow) the agreement between objective (rhinomanometric) and subjective 

(subjective ordinal scale) data is very limited with only nine out of 56 

calculated r-values for the subjective data being within 0.1 of the r-value 

calculated from the objective data (all values are presented in table 5.12). 

 

An example of where the r-values for the objective and subjective data are 

dissimilar is subject 01 for the first study day. This is represented graphically 

in Figures 5.13 and 5.14 showing the airflow data and subjective ordinal 

scale data respectively.  

 

 

Figure 5.13 – A graph showing the left and right nasal airflow of subject 01 

on study day 1 (objective data) 
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Figure 5.14 – A graph showing the left and right subjective ordinal scale of 

subject 01 on study day 1 (subjective data) 

 

An example of where the r-values for objective and subjective data match 

closely is subject 02 on the first study day. This is represented in figure 5.15 

and 5.16 which show the airflow data and subjective ordinal scale data 

respectively.  
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Figure 5.15 - A graph showing the left and right nasal airflow of subject 02 on 

study day 1 (objective data) 

 

 

Figure 5.16 - A graph showing the left and right subjective ordinal scale of 

subject 02 on study day 1 (subjective data) 

 

Such variation between subjects raises the question as to whether some may 

be more “in tune” with their sensation of nasal patency than others. Table 
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5.13 shows data for the 17 subjects who had a difference of less than 0.3 

between their r-values for their objective data (rhinomanometric) and 

subjective data (subjective ordinal scale) on either study day. Colour coding 

has been used to highlight how close the values are (red for less than 0.1, 

yellow 0.1 to 0.2, green 0.2 to 0.3). Only six out of 17 subjects had a 

difference of less than 0.3 between the r-values for their objective and 

subjective data on both study days (subjects 02, 08, 10, 22, 27, and 33). This 

suggests that if the ability to accurately detect changes in nasal airflow is 

possible then it is an uncommon ability. It is also possible that the use of an 

r-value (correlation coefficient for left and right nasal airflow) in combination 

with the ADR as used previously in chapters 3 and 4 strives for a level of 

accuracy, which is beyond that achievable through monitoring of the nasal 

cycle using subjective measures.   

 

Subject Study day 1 r 

diff 

Study day 2 r 

diff 

02 0.1 0.04 

08 0.11 0.28 

10 0.15 0.09 

14 0 0.55 

15 0.64 0.25 

16 0.64 0.05 

21 0.21 0.94 

22 0.24 0.02 

23 0.55 0.24 

24 0.19 0.35 

27 0.06 0.15 

31 0.63 0.08 

32 0.47 0.07 

33 0.25 0.14 

35 0.4 0.21 

36 1.2 0.04 

37 0.49 0.18 

Table 5.13 – A table displaying the differences between r-values (correlation 

coefficients) for objective and subjective assessment of nasal airflow. Colour 
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coding has been used to highlight how close the values are (red for less than 

0.1, yellow 0.1 to 0.2, green 0.2 to 0.3. 

 

No prior studies have looked at the use of an r-value (correlation coefficient 

for left and right nasal airflow) in combination with a subjective form of 

assessment of airflow. Therefore there are not any studies which are directly 

comparable with the results presented here. There have however been 

several studies which have attempted to correlate the subjective assessment 

of nasal airflow with objective findings including some specific to the nasal 

cycle.  

 

Sipila et al in 1994 [109] first looked at a group of 102 subjects referred for 

septoplasty finding that where there was significant septal deviation as 

detected by rhinomanometry, there was good correlation between this data 

and subjective identification of the more obstructed nostril, with 46 out of 62 

subjects in this group correctly identifying the more obstructed nostril. 

However in subjects with a normal airway resistance only half were able to 

correctly identify the more obstructed nostril [109]. Such results suggest that 

subjective assessment of the nasal sensation of airflow is difficult when the 

contrast between nostrils is small.  

 

Sipila et al in 1995 [110] looked at varying levels of nasal obstruction (it was 

divided into four levels), both physiological and artificially introduced, using 

the Visual Analogue Scale (VAS) and rhinomanometry. For unilateral airflow 

there was good agreement between rhinomanometry and subjective data, 

however it was found that agreement with total airway resistance was poor. 

Sipila also stated that there was a better correlation between the VAS and 

unilateral rhinomanometry data when there was a high resistance on one 

side of the nose to produce obstructive symptoms [110]. This supports 

Siplia’s previous study in the suggestion that contrast is needed in order for 

the nose to subjectively assess airflow correctly.  

 

Gungor et al in 1999 [108] looked at the nasal cycle using a Visual Analogue 

Scale (VAS) whilst simultaneously monitoring the nasal cycle using acoustic 
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rhinometry. He observed that nasal volume measurements and CSA2 

measurements in the study recorded using acoustic rhinometry were 

unstable and found no correlation between nasal volume and CSA2 

measurements and the VAS which was observed to be more stable, giving 

the impression that the nose was insensitive to most changes in nasal 

volume [108]. 

 

Clark et al in 2005 [111] in a study of subjects with upper respiratory tract 

infections found a good correlation between unilateral conductance and the 

Visual Analogue Scale with a spearman rank coefficient of 0.5 (p <0.001), but 

failed to find any correlation with overall nasal conductance [111]. It seems 

with more extreme states of nasal congestion that changes in nasal volume 

are easier to detect using a subjective scale. It could be argued that the r-

value as a measure, which looks at bilateral nasal airflow, is similar to total 

nasal conductance and therefore unlikely to correlate with a subjective 

measure of nasal airflow.  

 

Conclusions 
 

There was no significant correlation between the r-values (correlation 

coefficients for left and right nasal airflow) calculated from objective data 

(rhinomanometric) and those calculated from subjective data (subjective 

ordinal scale) on either study day. When this is combined with the fact that 

calculation of an r-value from data obtained from the subjective ordinal scale 

is not always possible (two subjects had to be excluded from the analysis for 

this reason) it seems clear that the subjective ordinal scale cannot be used in 

combination with an r-value for monitoring of the nasal cycle.  
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Section 2 – Airflow Distribution Ratio 
 

Results 
 

In a comparison of the Airflow Distribution Ratios calculated from the 

objective data (from rhinomanometry) and subjective data (from subjective 

ordinal scale) as presented in the two scatter graphs figures 5.21 and 5.22 a 

positive relationship is shown between the subjective and objective data on 

both study days.  This is demonstrated by correlation coefficients between 

the objective and subjective data on each study day of 0.38 for study day 1 

and 0.46 for study day 2. The full data for the Airflow Distribution Ratios 

calculated from the objective and subjective data are presented in table 5.21 

along with the corresponding r-values (correlation coefficients for nasal 

airflow).  

 

 

Figure 5.21 – A scatter graph of the ADR for objective data vs the ADR for 

subjective data on study day 1 
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Figure 5.22 – A scatter graph of the ADR for objective data vs the ADR for 

subjective data on study day 2 
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 Study day 1 Study Day 2 

Subject r - obj r - 

sub 

ADR – 

obj 

ADR - 

sub 

R - obj r - 

sub 

ADR - 

obj 

ADR - 

sub 

01 0.02 -0.76 0.83 0.75 -0.43 -0.9 0.92 0.71 

02 -0.54 -0.64 0.92 0.99 -0.9 -0.94 0.93 0.96 

03 0.12 -0.49 0.27 0.94 -0.63 -0.08 0.62 1 

08 0.11  0.75 0.82 -0.28 -0.56 0.54 0.9 

10 -0.69 -0.54 0.53 0.89 -0.49 -0.58 0.19 0.67 

11 0.62 -0.65 0.95 0.94 0.5 -0.05 0.79 0.89 

12 0.22 -0.29 0.52 0.83 -0.18 -0.72 0.83 0.99 

14 -0.29 -0.29 0.37 0.97 -0.55 0 0.89 0.9 

15 -0.61 0.03 1 0.97 -0.21 0.04 0.85 0.97 

16 -0.28 0.36 0.87 1 0.11 0.16 0.84 0.95 

17 -0.69 -0.14 0.78 0.89 -0.75 -0.29 0.98 0.95 

18 -0.68 -0.3 0.72 0.85 -0.75 -0.31 0.5 0.85 

19 0.97 0.07 0.81 0.99 -0.57 0 0.97 0.88 

21 -0.64 -0.43 0.96 0.85 -0.86 0.08 1 0.95 

22 -0.58 -0.34 0.68 0.86 -0.37 -0.39 0.43 0.78 

23 0.13 0.68 0.39 0.72 -0.33 -0.57 0.61 1 

24 -0.64 -0.45 0.87 0.92 -0.35 0 0.66 0.93 

25 -0.2 0.54 0.89 0.97 -0.69  0.7 0.85 

27 -0.76 -0.82 0.67 0.97 -0.3 -0.15 0.38 0.91 

28 -0.66 -0.32 0.26 0.81 -0.76 0.35 0.61 0.94 

29 -0.01 0.84 0.65 0.79 -0.74 0.89 0.93 0.98 

31 -0.16 -0.79 0.4 0.78 -0.43 -0.51 0.26 0.73 

32 -0.23 0.24 0.67 0.98 -0.56 -0.63 0.71 0.94 

33 -0.7 -0.95 0.92 0.81 -0.86 -0.72 0.55 0.9 

34 -0.57  0.99 1 -0.45  0.98 0.94 

35 -0.89 -0.49 0.95 0.97 -0.73 -0.94 0.3 0.77 

36 -0.75 0.45 1 0.95 -0.72 -0.76 0.76 0.96 

37 -0.23 0.26 0.66 0.94 0.13 0.31 0.76 0.89 

38 -0.08 -1 0.82 0.94 -0.31 -1 0.69 0.97 

39 -0.79 0.6 0.46 0.91 -0.56 -0.03 0.33 1 

Table 5.21 - A table comparing r (correlation coefficient) and ADR derived 

from objective data with corresponding values derived from the subjective 

data 
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Full data were obtainable for the Airflow Distribution Ratio calculations. The 

calculated correlation coefficients comparing the objective data and the 

subjective data are listed in table 5.22. The calculated correlation coefficients 

demonstrated significant relationships for the relationship between the 

subjective and objective ADR on both study days.  

 

 Correlation 

coefficient 

p-value 

ADR study day 

1 

0.38 <0.05 

ADR study day 

2 

0.46 <0.02 

Table 5.22 – A table showing the correlation coefficients for the relationship 

between the ADR for objective data and subjective data 

 

Discussion 
 

Whilst the correlation between subjective and objective data for the Airflow 

Distribution Ratio is clear (as seen in figures 5.21 and 5.22) and statistically 

significant (p-value for study day 1 <0.05 and p-value for study day 2 <0.02), 

the data does not appear to completely conform with a strict direct 

relationship. On both study days it can be seen in figures 5.21 and 5.22 that 

the objective ADR has been calculated to be less than 0.3 for some subjects, 

however the lowest calculated subjective ADR is around 0.7. This represents 

a clear discrepancy where an ADR calculated from subjective data cannot be 

expected to be equal to one calculated from objective data. This problem is 

particularly emphasised by the presence of outlying data points.  

 

As mentioned previously it has been found that there is a poor correlation 

between subjective measurements and total nasal conductance, but a good 

correlation can be found for unilateral conductance [111]. The ADR considers 

the equality of airflow based on two unilateral conductance measures. It is in 

line with the expectation then that we see a significant correlation between 
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objective and subjective measures for the ADR.  This is the first study to look 

at nasal airflow using a combination of subjective measurement and the 

ADR.  

 

Conclusions 
 

There is a statistically significant relationship between the objective data and 

subjective data for the airflow distribution ratio. However this measure in 

isolation without the use of an r-value is unlikely to be useful in monitoring 

the nasal cycle. 

 

Section 3 – Nasal Partitioning Ratio 
 

Results 
 

The data obtained for objective (rhinomanometric) and subjective (subjective 

ordinal scale) assessment of nasal airflow by the Nasal Partitioning Ratio 

(NPR) are presented in figures 5.31 and 5.32. These figures demonstrate the 

correlation between objective and subjective data on study days 1 and 2 

respectively. There is a strong positive correlation between objective and 

subjective data on both study days proven by correlation coefficients of 0.67 

for study day 1 and 0.72 for study day 2. These correlation coefficients are 

statistically significant with p-values of less than 0.001 (see table 5.31). 
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Figure 5.31 - A scatter graph of the NPR for objective data vs the NPR for 

subjective data on study day 1 

 

Figure 5.32 - A scatter graph of the NPR for objective data vs the NPR for 

subjective data on study day 2 
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 Correlation 

coefficient 

p-value 

NPR study day 

1 

0.67 <0.001 

NPR study day 

2 

0.72 <0.001 

Table 5.31 - A table showing the correlation coefficients for the relationship 

between the NPR for objective data and subjective data 
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 Study day 1 Study Day 2 

Subject NPR - 

obj 

NPR - 

sub 

NPR - 

obj 

NPR - 

sub 

01 0.09 0.14 0.04 0.17 

02 0.04 -0.01 0.04 -0.02 

03 0.58 0.03 0.23 0 

08 -0.14 -0.1 0.3 0.05 

10 -0.31 -0.06 -0.69 -0.2 

11 -0.03 -0.03 -0.12 -0.06 

12 -0.31 -0.09 -0.09 0.01 

14 -0.46 -0.01 -0.06 -0.05 

15 0 -0.01 0.08 0.01 

16 0 -0.07 -0.08 0.03 

17 0.12 0.06 -0.01 0.03 

18 0.16 0.08 0.33 0.08 

19 -0.1 -0.01 0.01 0.07 

21 0.02 0.08 0 -0.03 

22 -0.19 -0.08 -0.39 -0.12 

23 0.43 0.16 0.24 0 

24 0.07 -0.04 0.2 -0.04 

25 0.06 -0.01 -0.18 -0.08 

27 -0.2 -0.01 -0.45 -0.05 

28 0.58 0.11 0.24 -0.03 

29 0.21 0.12 0.04 0.01 

31 0.43 0.13 0.58 0.15 

32 0.2 0.01 0.17 0.03 

33 0.04 -0.1 0.29 0.05 

34 -0.01 0 0.01 -0.03 

35 -0.03 -0.01 0.54 0.13 

36 0 0.03 -0.14 -0.02 

37 0.2 0.03 0.13 0.06 

38 0.1 -0.03 0.18 0.01 

39 -0.37 -0.05 -0.5 0 

Table 5.32 - A table comparing the Nasal Partitioning Ratio derived from 

objective data with corresponding values derived from the subjective data 
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Full data were obtainable for the calculation of the Nasal Partitioning Ratio on 

both study days and are presented in table 5.32.  

 

Discussion 
 

Whilst the relationship between subjective and objective data for the Nasal 

Partitioning Ratio (NPR) is proportional, it is clear that the two sets of data 

are not equivalent. As seen in table 5.32 and represented graphically in 

figure 5.31 and figure 5.32 the subjective NPR values range between -0.2 

and 0.17, whereas the objective values range between -0.9 and 0.58. So the 

subjective value for NPR is much lower than the objective NPR value it is 

matched to. By combining the NPR data from both study days as seen in 

figure 5.33 a formula showing the relationship between the objective and 

subjective NPR is demonstrable, this formula is y = 0.1917x + 0.0002, where 

y is the subjective NPR and x is the objective NPR. Such a formula may be 

potentially useful when using the subjective ordinal scale for monitoring the 

nasal cycle.  

 

 

Figure 5.33 – A scatter graph showing the relationship between objective and 

subjective data for the Nasal Partitioning Ratio on both study days with 

formula for the trend line given.  
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It is useful to make a comparison with the results of Boyce and Eccles’ 2006 

study [96], which developed the Subjective Ordinal Scale and demonstrated 

its use in combination with the Nasal Partitioning Ratio (NPR). Boyce’s study 

differed slightly in the use of rhinospirometry rather than rhinomanometry to 

measure nasal airflow. However the Nasal Partitioning Ratio is applicable to 

both methods of nasal airflow measurement. Boyce reported a correlation 

coefficient of 0.8 (p=0.001) for the correlation between his objective and 

subjective data (collected from use of the subjective ordinal scale) [96]. 

There is a difference however in comparison to the data reported by Boyce in 

that the calculated NPR values for subjective and objective data are more 

equivalent as shown in figure 5.34, e.g. an objective value of 0.5 is likely to 

correspond to subjective value of around 0.5. Whereas for the data reported 

in this study there is low corresponding subjective value compared to the 

objective value as previously demonstrated in figures 5.31 and 5.32, e.g a 

subjective value of 0.2 may correspond to objective value of around 0.7. The 

subject groups, which were recruited, may explain this as Boyce’s study 

recruited subjects who were awaiting septoplasty for nasal septal deviation 

[96] and so aware of their asymmetric airflow, whereas this study recruited 

normal subjects in who such deviation was excluded and were therefore less 

aware of any asymmetry in their nasal airflow.  
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Figure 5.34  – A scatter diagram comparing the Nasal Partitioning Ratio 

calculated from subjective and objective data in Boyce’s study – taken from 

Boyce and Eccles 2006 [96] 

 

Conclusions 
 

The relationship between objective (rhinomanometric) and subjective 

(subjective ordinal scale) data for the Nasal Partitioning Ratio (NPR) is 

statistically very significant (p <0.001). Using the NPR in combination with 

subjective ordinal scale is likely to be a reliable method for observing the 

nasal cycle without the use of rhinomanometry. The limitation of this method 

being that the NPR indicates a single point on a graph where airflow 

predominates rather than giving two individual points for left and right nasal 

airflow. 
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Chapter 6: Final Discussion and 
Conclusions 
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Final Discussion and Conclusions 

 

The aims of this study were: 

 

1. To study the nasal cycle in healthy subjects over a period of 7 hours 

2. To study the stability of the nasal cycle over a period of 6-9 days 

3. To assess the use of a subjective ordinal scale as a tool for measurement 

of the nasal cycle 

 

This study uses a numerical definition set out for the “classical” nasal cycle 

by Flanagan and Eccles of having a correlation coefficient more negative 

than -0.6 and an Airflow Distribution Ratio of more than 0.7 [1].  

 

According to the criteria set out by Flanagan and Eccles 26.7% of the 

subjects in this study had a “classical” nasal cycle at study day 1. This is 

comparable with the figure of 21% reported by Flanagan and Eccles 

themselves [1]. This figure did however decrease at study day 2 with only 

16.7% of subjects fitting with the Flanagan and Eccles’ criteria for a 

“classical” nasal cycle. 

 

The nasal cycle was shown to be unstable within the study group, only 

37.5% of those defined as having a “classical” nasal cycle at study day 1 

continued to meet the definition at study day 2, 15% of those previously 

defined as having non-significant airflow patterns moved into the “classical” 

group at study day 2. 

 

There was an overall trend seen within the data for r-values (a correlation 

coefficient for left and right nasal airflow), with a tendency for the r-value at 

study day 2 to be more negative than the corresponding r-value at study day 

1. This is demonstrated by a significant correlation coefficient of -0.73 (p 

<0.001). Such a trend suggests that there is an inherent reciprocal input to 

the nasal cycle. Previous work by Bamford and Eccles using a feline model 

in 1985 has shown the reticular formation of the brainstem is an area capable 

of reciprocal input to the nasal cycle, although non-reciprocal input was also 
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demonstrated in the hypothalamus [76]. Based on these observations a 

model for control of the nasal cycle can be proposed, whereby a 

hypothalamus oscillator gives input to the nasal cycle, which is modified by 

two brainstem oscillators. This is illustrated in figure 6.1. This model is 

proposed because of the variation seen in the types of nasal cycle recorded. 

For example on study day 1 subject 21 (see figure 3.3) and subject 19 (see 

figure 3.5) both display cyclical changes in airflow such as may be generated 

by an oscillator. However where subject 21’s airflow pattern is reciprocal in 

nature, subject 19’s is seen to be in phase. It is therefore proposed that when 

the left and right brainstem oscillators are in equal opposition that an “in 

phase” type of nasal cycle would occur, but this may change to a state where 

the left and right brainstem oscillators predominate in an alternating fashion 

giving negative feedback to one another, which would produce a “classical” 

nasal cycle. This is likely to be an imperfect mechanism, hence airflow 

patterns, which are not easy to classify, may occur e.g subject 8 on study 

day 2 (see figure 6.2). The proof for this model may be difficult to obtain, but 

could potentially lie in the field of imaging with the use of functional Magnetic 

Resonance Imaging and so could be the focus of future research. 
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Figure 6.1 – A diagram illustrating a proposed model for the control of the 

nasal cycle by a hypothalamus oscillator and two brainstem oscillators. 

 

 

Figure 6.2 – A graph showing airflow for the left and right nasal passages for 

subject 08 on study day 2 
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The use of the Subjective Ordinal Scale as a self-assessment tool for 

monitoring the nasal cycle was investigated in this thesis. As with the 

objective assessment of nasal airflow the measures of an r-value and Airflow 

Distribution Ratio (ADR) were applied to the collected subjective data. In 

addition the Nasal Partitioning Ratio (NPR) was also used for comparison of 

the objective and subjective data.  

 

There was no significant correlation between the objective and subjective 

data for the r-value, but significant correlations were found between the 

objective and subjective data for the ADR and NPR. The relationship for the 

NPR was particularly strong with a p-value of <0.001 on both study days, 

suggesting that the Subjective Ordinal Scale could be used in combination 

with the NPR for monitoring the nasal cycle subjectively.  
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Appendix 1: calibration of the 
RHINO-SYS Rhinomamometer 
against GM systems using artificial 
nose’s 

 

As a system designed for clinical use the RHINO-SYS rhinomanometer has a 

simple in built “system test” function, which gives a positive or negative 

outcome to indicate if the system is working correctly. This is not sufficient for 

the research purposes as it lacks a quantifiable output. So a measurement of 

resistance values for the supplied artificial nose was performed for the 

purposes of calibration. The setup for measuring in this way is shown in 

figure A1.1. 

 

 

Figure A1.1 – A graphical representation of the set up for the RHINO-SYS 

rhinomanometer for a system check. 

 

Using a standard measurement procedure resistance values were obtained 

for the supplied calibration artificial nose and a RHINOCAL artificial nose 
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(GM instruments). The values obtained for the RHINOCAL artificial nose did 

not match those specified by the manufacturer so both were also checked 

using a GM instruments rhinomanometer which was calibrated using a 

flowmeter for calibration of airflow and a sloping paraffin manometer for 

calibration of pressure. Sets of resistance measurements were obtained 

(without the use of a filter to avoid this as a confounding factor) and are 

presented in table A1.1. The resistance values obtained for the RHINOCAL 

nose did not match those specified by the manufacturer when tested on 

either machine. However for both artificial noses when a coefficient of 

variance was applied to the mean readings values of less than 10% were 

obtained for all with the exception of the inspiratory resistances for the 

OTOPRONT nose. 

 

Having proven the consistency of resistance measurements obtained by the 

RHINO-SYS Rhinomamometer and that its resistance measurements are 

comparable with those obtained from the calibrated GM instruments 

machine, it was decided that the supplied OTOPRONT nose could be used 

for a daily calibration check. The target would be for the resistance values 

obtained of 0.18 (sPa/cm3 at 75 Pa) (including a viral filter, the resistance of 

which is confirmed elsewhere) with a tolerance of 10% i.e. +/- 0.02. The 

results of the daily calibration check were documented in a calibration book. 
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 OTOPRONT nose RHINOCAL nose 

Specified resistances Unknown 0.31 inspiratory 

0.29 expiratory 

RHINO-SYS inspiratory resistance 0.16, 0.16 

(0.16) 

0.38, 0.38 

(0.38) 

GM instruments  

inspiratory resistance 

0.185, 0.185 

(0.185) 

0.387, 0.386, 0.387, 

0.390 

(0.388) 

CV of mean of inspiratory resistances 10.2 1.47 

RHINO-SYS  

expiratory resistance 

0.15, 0.15 

(0.15) 

0.40, 0.40 

(0.40) 

GM instruments  

expiratory resistance 

0.149, 0.147 

(0.148) 

0.388, 0.408, 0.404, 

0.406 

(0.402) 

CV of mean of expiratory resistances 0.95 0.35 

 

Table A1.1 – A table demonstrating resistance values (in sPa/cm3 at 75 Pa) 

obtained when testing artificial noses on both the RHINO-SYS and GM 

instruments rhinomanometers for comparison (a mean value is shown in 

brackets) 

  



106 
 

Appendix 2: Testing the resistance 
values of viral filters used with the 
RHINO-SYS rhinomanometer 

 

The RHINO-SYS rhinomanometer is designed to be used with a single 

patient use viral filter in series with the flowhead, both to protect the flowhead 

and prevent transfer of infection between patients. The resistance to airflow 

that this creates is however unspecified and it was therefore uncertain 

whether there may be any significant variability between resistance added by 

the viral filters. 

 

A baseline resistance was established for a viral filter of 0.02 (measured in 

sPA/cm3 at a reference pressure of 75Pa) by removing it from the circuit 

when used with the OTOPRONT artificial nose, (resistance value of artificial 

nose and filter 0.18 at reference pressure of 75Pa, resistance value of 

artificial nose without filter 0.16, values of inspiratory resistance) we sought 

to see if any variability could be found by testing 5 different viral filters. 

 

Method 

 

Five unused and packaged viral filters were selected randomly for use in the 

experiment. The viral filters were connected in series with the OTOPRONT 

artificial nose as per set up for system test and calibration and 4 resistance 

values obtained for each (measured in sPA/cm3 at a reference pressure of 

75Pa). A Coefficient of variance check was performed and a mean value 

calculated for each filter. 

 

Results 

 

The individual results are displayed in table A2.1, the overall mean value for 

all readings was 0.176 with a coefficient of variance of 1.6% for the 5 mean 
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values obtained, showing that there is not significant variance between the 

viral filters used in the study.  

 

Filter Resistance 

value 1 

Resistance 

value 2 

Resistance 

value 3 

Resistance 

value 4 

Coefficient 

of variance 

Mean 

resistance 

value 

1 

 

0.18 0.17 0.18 0.17 3.3% 0.175 

2 

 

0.17 0.18 0.18 0.18 2.8% 0.178 

3 

 

0.17 0.18 0.17 0.17 2.9% 0.173 

4 

 

0.18 0.18 0.18 0.18 0% 0.18 

5 

 

0.17 0.17 0.18 0.18 3.3% 0.175 

Table A2.1 – A table showing the resistance values obtained for 5 test viral 

filters. 

 

Discussion 

 

The resistance values obtained in this test are similar to those recorded in 

daily calibration checks for the RHINO-SYS rhinomanometer. It therefore 

seems conclusive that the resistance added by viral filters is consistent, as 

there is no significant difference between the five individual viral filters in this 

experimental group. 

 

A resistance of approximately 0.02 sPA/cm3 is added by the viral filter and is 

included in all experimental recordings within the research study. Since it is 

consistent, there will be no effect on trends in resistance or airflow patterns. 
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Appendix 3: Testing for error using 
artificial noses 

 

In order to establish the amount of error that may be introduced by the test 

equipment and thus the accuracy of airflow measurements recorded, a test 

of the Rhino-sys system was undertaken using artificial noses. In this test 

resistance measurements for two artificial noses were recorded over two 

seven hour periods at a seven day interval. An artificial nose gives a fixed 

stable resistance to airflow. In this case the two used were the Otopront 

artificial nose (Otopront, Germany) supplied for system checks and a 

Rhinocal artificial nose (GM instruments, UK).  

 

The methodology for testing mirrored the protocol for test subjects. In brief 

four resistance measurements were made every hour for seven hours (a total 

of 8 sets of measurements). The first two were assigned to be group A 

measurements (normally taken for the right side) and the second as group B 

measurements (normally taken for the left side), as the procedure for 

measurements taken with test subjects prescribes that they are taken in this 

order. All measurements were recorded and a coefficient of variation 

calculated. No repeat measurements were required. The setup for measuring 

airflow through an artificial nose is shown in figure A3.1. 

 

For display graphically and comparison, two resistance measurements for 

each group are combined by creating a mean value and converted to an 

airflow measurement using the formula airflow (v) = pressure / resistance 

(the pressure is set at 75Pa as the reference pressure). 
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Figure A3.1 - A graphical representation of the set up for the RHINO-SYS 

rhinomanometer for the measurement of airflow through an artificial nose. 

 

The resistance values for the two artificial noses were established in the 

previous appendix on calibration as being 0.16 sPa/cm3 for the Otopront 

nose and 0.38 sPa/cm3 for the Rhinocal nose, when using the Otopront 

Rhinosys rhinomamometer with a 75pa reference pressure. Added onto 

these is the resistance for the viral filter established in the previous appendix 

as being 0.02 sPa/cm3. Therefore the expected resistance values for this 

experiment were 0.18 sPa/cm3 for the Otopront nose and 0.40 sPa/cm3 for 

the Rhinocal nose. 

 

Results 

 

Data from both artificial noses displayed little variance, with resistance 

measurements staying within +/-0.02 of the expected resistance values, this 

remains within tolerances specified for calibration. All recorded data is shown 

in tables A3.1, A3.2, A3.3 and A3.4. 
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Reading Time A 1 A 2 CV B 1 B 2 CV Right Mean Left Mean 

1 09:35 0.18 0.18 0 0.18 0.18 0 0.18 0.18 

2 10:37 0.17 0.18 4 0.18 0.18 0 0.175 0.18 

3 11:41 0.17 0.17 0 0.18 0.18 0 0.17 0.18 

4 12:31 0.17 0.18 4 0.18 0.18 0 0.175 0.18 

5 13:36 0.17 0.18 4 0.17 0.18 4 0.175 0.175 

6 14:32 0.18 0.18 0 0.18 0.18 0 0.18 0.18 

7 15:39 0.17 0.18 4 0.18 0.18 0 0.175 0.18 

8 16:34 0.18 0.18 0 0.18 0.18 0 0.18 0.18 

Table A3.1 – A table showing the resistance values obtained for the Otopront 

artificial nose on week 1 

 

Reading Time A 1 A 2 CV B 1 B 2 CV Right Mean Left Mean 

1 09:47 0.18 0.18 0 0.18 0.18 0 0.18 0.18 

2 10:45 0.18 0.18 0 0.18 0.18 0 0.18 0.18 

3 11:39 0.18 0.18 0 0.18 0.18 0 0.18 0.18 

4 12:39 0.18 0.18 0 0.18 0.18 0 0.18 0.18 

5 13:42 0.18 0.18 0 0.18 0.18 0 0.18 0.18 

6 14:40 0.18 0.18 0 0.18 0.18 0 0.18 0.18 

7 15:40 0.18 0.18 0 0.18 0.18 0 0.18 0.18 

8 16:36 0.18 0.18 0 0.18 0.19 3.8 0.18 0.185 

Table A3.2 – A table showing the resistance values obtained for the Otopront 

artificial nose on week 2 

 

Reading Time A 1 A 2 CV B 1 B 2 CV Right Mean Left Mean 

1 09:48 0.4 0.39 1.8 0.4 0.4 0 0.395 0.4 

2 10:44 0.39 0.39 0 0.39 0.4 1.8 0.39 0.395 

3 11:48 0.39 0.38 1.8 0.4 0.4 0 0.385 0.4 

4 12:39 0.39 0.39 0 0.39 0.39 0 0.39 0.39 

5 13:38 0.39 0.4 1.8 0.4 0.4 0 0.395 0.4 

6 14:43 0.39 0.39 0 0.38 0.39 1.8 0.39 0.385 

7 15:42 0.39 0.4 1.8 0.4 0.39 1.8 0.395 0.395 

8 16:37 0.39 0.39 0 0.39 0.39 0 0.39 0.39 

Table A3.3 – A table showing the resistance values obtained for the Rhinocal 

artificial nose on week 1 
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Reading Time A 1 A 2 CV B 1 B 2 CV Right Mean Left Mean 

1 09:43 0.4 0.4 0 0.41 0.39 3.5 0.4 0.4 

2 10:38 0.39 0.4 1.8 0.4 0.4 0 0.395 0.4 

3 11:47 0.4 0.39 1.8 0.4 0.4 0 0.395 0.4 

4 12:40 0.39 0.39 0 0.39 0.4 1.8 0.39 0.395 

5 13:41 0.39 0.4 1.8 0.39 0.4 1.8 0.395 0.395 

6 14:40 0.39 0.39 0 0.4 0.4 0 0.39 0.4 

7 15:39 0.39 0.4 1.8 0.39 0.4 1.8 0.395 0.395 

8 16:34 0.39 0.4 1.8 0.39 0.4 1.8 0.395 0.395 

Table A3.4 – A table showing the resistance values obtained for the Rhinocal 

artificial nose on week 2 

 

For the Otopront nose as expected the majority of measurements gave a 

resistance of 0.18 sPa/cm3, for the Rhinocal nose the distribution is skewed 

to a resistance of 0.39 sPa/cm3, with a mean value of 0.394 sPa/cm3 overall. 

The four graphs below (figures A3.2, A3.3, A3.4 and A3.5) show the stability 

of the hourly airflow readings taken, all have high Airflow distribution ratios 

(ADR) and low non-significant correlation coefficients (r). 

 

 

Figure A3.2 - A graph showing airflow for the “right” (group A) and “left” 

(group B) measurements for the Otopront artificial nose on study day 1 
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Figure A3.3 - A graph showing airflow for the “right” (group A) and “left” 

(group B) measurements for the Otopront artificial nose on study day 2 

 

 

Figure A3.4 - A graph showing airflow for the “right” (group A) and “left” 

(group B) measurements for the Rhinocal artificial nose on study day 1 
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Figure A3.5 - A graph showing airflow for the “right” (group A) and “left” 

(group B) measurements for the Rhinocal artificial nose on study day 1 

 

As with the presentation of the study data, hourly resistance values were 

converted into hourly airflow for graphical presentation and minimum, 

maximum and mean airflow values calculated for each side and week. As 

demonstrated in tables A3.5 and A3.6 there is minimal variation between 

sides or the weeks as assessed using the coefficient of variation. 
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Group A    

Airflow Week 

1 

Week 

2 

CV 

Min 416.67 416.67 0 

Max 441.18 416.67 0.04 

Mean 425.68 416.67 1.1 

    

Group B    

Airflow Week 

1 

Week 

2 

CV 

Min 416.67 405.41 0.02 

Max 428.57 416.67 0.02 

Mean 418.15 415.26 1.1 

Table A3.5 – A table showing the weekly airflow values for the Otopront 

artificial nose 

 

Group A    

Airflow Week 

1 

Week 

2 

CV 

Min 189.87 187.50 0.01 

Max 194.81 192.31 0.01 

Mean 191.71 190.19 0.01 

    

Group B    

Airflow Week 

1 

Week 

2 

CV 

Min 187.50 187.50 0 

Max 194.81 189.87 0.02 

Mean 190.21 188.69 0.01 

Table A3.6 - A table showing the weekly airflow values for the Rhinocal 

artificial nose 

 

Comparing the data using a paired t-test there does appear to be a 

difference between Group A and Group B total airflow (over the seven hour 

period) for week 1 using the Otopront artificial nose and week 2 using the 

Rhinocal artificial nose as demonstrated by the two tailed p value (see table 

3.7). When comparing Group A mean airflow between week 1 and 2 for both 
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artificial noses, there are also significant two tailed p values for both (see 

table 3.8). 

 

Table A3.7 – A table showing the differences between group A and group B 

airflow for the two artificial noses over weeks 1 and 2. 

 

 Mean 

week 1 

Mean 

week 2 

Percentage 

difference 

Standard 

deviation 

week 1 

Standard 

deviation 

week 2 

Paired 

t-test 

Two 

tailed P 

OAN Group A 

airflow 

425.68 416.67 2.14 8.6 0 3 0.02 

OAN Group B 

airflow 

418.15 415.26 0.69 4.2 3.98 1.53 0.17 

RAN Group A 

airflow 

191.71 190.19 0.8 1.74 1.54 2.36 0.05 

RAN Group B 

airflow 

190.21 188.69 0.8 2.73 1.27 1.5 0.18 

Table A3.8 - A table showing the differences between week 1 and week 2 

airflow for groups A and B for the two artificial noses. 

 

Discussion 

 

The designation of Group A and Group B to airflow values in this experiment 

was arbitrary, with Group A being the values recorded first by the Otopront 

 Mean A Mean B Percentage 

difference 

Standard 

deviation 

Right 

Standard 

deviation 

Left 

Paired 

t-test 

Two 

tailed P 

OAN Week 1 

airflow 

425.68 418.15 1.78 8.6 4.2 2.38 0.05 

OAN Week 2 

airflow 

416.67 415.26 0.34 0 3.98 1 0.35 

RAN Week 1 

airflow 

191.71 190.21 0.78 1.74 2.73 1.49 0.18 

RAN Week 2 

airflow 

190.19 188.69 0.79 1.54 1.27 2.38 0.05 
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machine. As such differences between the values of the two groups were 

expected to be minimal. 

 

Analysis of the minimum, maximum and mean airflow values using the 

coefficient of variation demonstrated very little variation between airflow for 

weeks 1 and 2 in either group or for either artificial nose. The percentage 

difference between means was 2.14% or below for all analyses of the data, 

with the maximum value obtained comparing Group A airflow from week 1 to 

week 2 on the Otopront artificial nose. 

 

Analysis using a paired t-test does suggest some significant variation 

between Group A and Group B mean airflow for the Otopront artificial nose in 

week 1 and the Rhinocal artificial nose in week 2. In comparing mean airflow 

at week 1 to week 2 for a single group again significant differences appear to 

be seen in group A for both artificial noses. The highest level of significance 

obtained here was for the analysis of group A mean airflow from week 1 to 

week 2 for the Otopront artificial nose, the p-value being 0.02, conferring a 1 

in 50 chance of this result occurring by chance. 

 

In this test model the facemask was used but no seal to the nostril was 

needed due to the use of the artificial nose. It is more likely that a good seal 

was achieved with the facemask in this model as the investigator was 

applying the mask as apposed to a test subject. Therefore a greater 

measurement error may been seen with test subjects due to possible air 

leaks around the mask or nasal seal, although every effort was taken to 

eliminate this. 

 

Conclusions 

 

The largest percentage change between mean values for data groups seen 

in this analysis was 2.14%. This implies that any percentage change greater 

than this can be considered due to changes in the nasal cavity affecting 

airflow or air leaks and not due to measurement artefact accounted for by the 

rhinomanometer. That differences between the arbitrary groups were found 
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with a statistical level of significance (p value 0.05 for 3 out of 4 of these) was 

unexpected, however the percentage differences between these groups and 

standard deviations within them remain very low. Since the Groups A and B 

were assigned arbitrarily to measurements, the differences seen can be 

interpreted as the level of measurement error expected within this study. 
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Appendix 4: Airflow Graphs 
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