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Background & Aims: Use of targeted mass-spectrometry (MS)-based methods is increasing in 1 
clinical chemistry laboratories. We investigate whether MS-based profiling of plasma improves 2 
non-invasive risk estimates of non-alcoholic steatohepatitis (NASH) compared to routinely 3 
available clinical parameters and PNPLA3 genotype at rs738409. 4 
 5 
Methods: We used MS-based analytical platforms to measure levels of lipids and metabolites in 6 
blood samples from 318 subjects who underwent a liver biopsy because of suspected NASH. The 7 
subjects were randomly divided into estimation (n=223) and validation (n=95) groups to build and 8 
validate the model. Gibbs sampling and stepwise logistic regression, which fulfilled the Bayesian 9 
information criterion, were used for variable selection and modeling. 10 
 11 
Results: Features of the metabolic syndrome and the variant in PNPLA3 encoding I148M were 12 
significantly more common among subjects with than without NASH. We developed a model to 13 
identify subjects with NASH based on clinical data and PNPLA3 genotype (NASH Clin Score), 14 
which included aspartate aminotransferase (AST), fasting insulin, and PNPLA3 genotype. This 15 
model identified subjects with NASH with an area under the receiver operating characteristic 16 
(AUROC) of 0.792 (95% CI, 0.726–0.859). We then used backward stepwise logistic regression 17 
analyses of variables from the NASH Clin Score and MS-based factors associated with NASH to 18 
develop the NASH ClinLipMet Score. This included glutamate, isoleucine, glycine, 19 
lysophosphatidylcholine 16:0, phosphoethanolamine 40:6, AST, and fasting insulin, along with 20 
PNPLA3 genotype. It identified patients with NASH with an AUROC of 0.866 (95% CI, 0.820–21 
0.913). The NASH ClinLipMet score identified patients with NASH with significantly higher 22 
accuracy than the NASH Clin Score or MS-based profiling alone. 23 
 24 
Conclusion: A score based on MS (glutamate, isoleucine, glycine, lysophosphatidylcholine 16:0, 25 
phosphoethanolamine 40:6) and knowledge of AST, fasting insulin and PNPLA3 genotype is 26 
significantly better than a score based on clinical or metabolic profiles alone in determining risk of 27 
NASH. 28 
 29 
KEY WORDS: liver; non-alcoholic fatty liver disease; diagnosis; prediction; triglycerides 30 

31 
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Abbreviations 1 

 2 
ALT  alanine aminotransferase 

AST aspartate aminotransferase 

AUROC area under the receiver operating characteristic curve 

BIC bayesian index criterion 

BMI  body mass index 

DNL de novo lipogenesis  

fP fasting plasma 

fS  fasting serum 

GGT gamma glutamyl transpeptidase 

GC gas chromatography 

Glu glutamate 

Gly glycine 

HbA1c glycosylated hemoglobin 1c 

HDL high-density lipoprotein 

HOMA-IR Homeostasis model assessment of insulin resistance 

Ile isoleucine   

IR insulin resistance 

LC lipid cluster 

Leu leucine   

LDL  low-density lipoprotein 

LysoPC lysophosphatidylcholines 

MetS             metabolic syndrome 

MS mass spectrometry 

MUFA monounsaturated fatty acid 
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NAFL non-alcoholic fatty liver 

NAFLD    non-alcoholic fatty liver disease 

NASH  non-alcoholic steatohepatitis 

NPV negative predictive values 

PC   phosphatidylcholine 

PE phosphatidylethanolamine 

PG phosphatidylglycerol 

PNPLA3   patatin-like phospholipase domain-containing protein 3 

PPV positive predictive values 

Ser serine 

SFA saturated fatty acid 

SM sphingomyelin 

TG triacylglycerol 

TOFMS time-of-flight mass spectrometry 

Tyr tyrosine 

UPLC ultra-performance liquid chromatography 

Val valine  

 1 

  2 
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Introduction  1 

The spectrum of non-alcoholic fatty liver disease (NAFLD) ranges from the nonalcoholic fatty liver 2 

(NAFL) to non-alcoholic steatohepatitis (NASH), which increases the risk of cirrhosis and 3 

mortality from liver disease.1 Only a fraction of patients with NAFLD progress to NASH, of which 4 

the diagnosis requires a liver biopsy. There is thus a need to develop non-invasive tools to identify 5 

patients, who might be at risk of having NASH. 6 

 7 

Factors such as age, gender, liver enzymes, components of the metabolic syndrome (MetS) as well 8 

as circulating markers of inflammation, fibrosis, apoptosis and extracellular matrix components 9 

have been shown to associate with NASH.1 Genetic factors, especially the I148M variant in 10 

PNPLA3 also confers susceptibility to NASH.1 11 

 12 

Ultra-performance liquid chromatography mass spectrometry (UPLC-MS) based techniques are 13 

rapidly entering clinical chemistry laboratories and replacing many conventional techniques.2 Few 14 

data are available regarding such approaches to identify new markers for non-invasive estimation of 15 

the risk of NASH. In 24 obese patients with NASH, 11 with steatosis and 25 lean controls, who did 16 

not undergo a liver biopsy, plasma concentrations of glutamate (Glu), isoleucine (Ile), leucine 17 

(Leu), tyrosine (Tyr) and valine (Val) were significantly increased but diagnostic performance 18 

compared to routinely available markers was not examined.3 Barr et al. characterized lipids and 19 

metabolites in serum of 467 Caucasian patients and found between 9 and 237 metabolites to be 20 

markers of NASH depending on the degree of obesity.4 21 

 22 

The human liver lipidome differs markedly between subjects with NAFLD associated with insulin 23 

resistance (‘IR NAFLD’) compared to those without, and between subjects with NAFLD and the 24 

PNPLA3 I148M genotype (‘PNPLA3 NAFLD’) compared to those lacking the gene variant.5 The 25 

liver lipidome is markedly enriched with saturated and monounsaturated triglycerides and free fatty 26 
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acids in ‘IR NAFLD’, and with polyunsaturated triglycerides in ‘PNPLA3 NAFLD’.5 These 1 

differences also influence the circulating lipidome in NAFLD in subjects whose liver fat content 2 

has been measured using proton magnetic resonance spectroscopy but who have not undergone a 3 

liver biopsy.6 There are, however, no studies in patients who have undergone a liver biopsy which 4 

would have determined whether knowledge of the PNPLA3 genotype influences biomarkers of 5 

NASH as compared to non-NASH (NAFL or normal liver histology) subjects. Furthermore, no 6 

study has analysed whether MS -based markers significantly improve predictive performance of 7 

scores based on routinely available physical and biochemical parameters. In the present study, we 8 

developed scores based on i) routinely available clinical parameters and PNPLA3 genotype, ii) 9 

UPLC-MS analyses alone and iii) all available information for estimation of the risk of NASH. The 10 

diagnostic performance of the three models was then compared.  11 

 12 

Materials and methods 13 

Study subjects  14 

Metabolic studies were conducted at the University of Helsinki (Finland) and Antwerp University 15 

Hospital (Belgium). A total of 318 subjects were recruited amongst those referred to the 16 

Department of Gastroenterology (Finland, n=54) because of chronically elevated serum 17 

transaminase concentrations and amongst those referred for bariatric surgery in Belgium (n=193) 18 

and Finland (n=71). Subjects were eligible if they met the following criteria: (a) age 18 to 75 years; 19 

(b) no known acute or chronic disease except for obesity or type 2 diabetes on the basis of medical 20 

history, physical examination and standard laboratory tests (blood counts, serum creatinine, thyroid-21 

stimulating hormone, electrolyte concentrations) and electrocardiogram; (b) alcohol consumption 22 

less than 20 g per day. Hepatitis B surface antigen, transferrin saturation, and antibodies against 23 

hepatitis A and C and anti-smooth muscle-, anti-nuclear- and anti-mitochondrial antibodies were 24 

measured in all patients referred to the gastroenterologist because of chronically elevated liver 25 

function tests using routine methods of local laboratories. Patients were excluded if they used 26 
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thiazolidinediones or were pregnant. The study protocol was approved by the ethics committees of 1 

the Helsinki and the Antwerp University Hospitals. Each participant provided written informed 2 

consent.  3 

 4 

Metabolic study 5 

All subjects were invited to a clinical visit one week prior to surgery for metabolic characterization 6 

after an overnight fast. After anthropometric measurements (body weight, height and waist 7 

circumference), an intravenous cannula was inserted in an antecubital vein for withdrawal of blood 8 

for measurement of HbA1c, serum insulin and adiponectin, plasma glucose, LDL- and HDL-9 

cholesterol, triglyceride, total blood counts, albumin, AST, ALT, ALP, GGT and albumin 10 

concentrations and for genotyping of PNPLA3 at rs738409 as described.9 Blood sampling was 11 

performed prior to intake of any medications. 12 

 13 

Histological assessment 14 

Immediately at the beginning of the surgery, wedge biopsies of the liver were obtained. The 15 

biopsies from Belgium were sent to Finland, where they were assessed simultaneously with the 16 

Finnish samples by an experienced liver pathologist in a blinded fashion according to the criteria 17 

proposed by Brunt et al.7 Liver fat was quantified as the percentage of hepatocytes with 18 

macrovesicular steatosis.   19 

  20 

MS-based profiling  21 

Lipidomic analysis. An unthawed plasma sample was used from all subjects and extracted for 22 

lipidomic and metabolomic analysis (vide infra). An established platform based on acquity ultra-23 

performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-24 

QTOFMS) was used to analyze the plasma samples. The data were processed by using MZmine 2 25 
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software8 and the lipid identification was based on an internal spectral library (Supplementary 1 

Methods).   2 

 3 

Metabolomic analysis. Polar metabolites are analyzed using comprehensive two-dimensional gas 4 

chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS, 5 

Supplementary Methods).  6 

 7 

Other analytical procedures and measurements 8 

Body weight, waist circumference, blood pressure, and fasting concentrations of plasma glucose, 9 

serum free insulin, lipids (HDL and LDL cholesterol and TGs), liver enzymes (AST, ALT and 10 

GGT) concentrations were measured as previously described.9 The MetS was defined and PNPLA3 11 

at rs739409 was genotyped as described.9 12 

 13 

Statistical analyses 14 

Assessment of abundances of TG species. After log2 transformation, the average abundances of TG 15 

molecules were compared between the NASH and non-NASH groups by student’s t-tests. Multiple 16 

comparisons were corrected by using Benjamini-Hochberg's method.10 (Supplementary Methods) 17 

  18 

Cluster analysis of lipidomics data. Lipids were grouped by using Bayesian model-based clustering 19 

as previously described.11  20 

 21 

Diagnostic model. The biopsy subjects were randomly divided into estimation (n=223) and 22 

validation (n=95) groups to build and validate the model, respectively (vide infra). All study 23 

subjects (n=318) were used as the second validation group. Shapiro-Wilk’s test was used to test the 24 

normality of the distribution. The unpaired t-test or Wilcoxon’s rank sum test was used to compare 25 

the differences between the estimation and validation groups. Normally distributed data are shown 26 
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as means ± SEM and non-normally distributed data as median followed by the 25th and 75th 1 

quartiles. Multiple hypotheses testing was performed by using Benjamini-Hochberg's false 2 

discovery rate method to calculate q-values.10 In the data with a large number of variables measured 3 

by UPLC, Gibbs sampling algorithm was used for simulation.12 After sampling for 10000 times, the 4 

variables were selected amongst the models based on Bayesian information criterion (BIC). 5 

Logistic regression including all the selected variables was used to build the scores. Variables in the 6 

scores were finally assessed by backward stepwise regression to identify the optimal NASH score. 7 

The area under the ROC-curve (AUROC) was used to describe the diagnostic accuracy of the 8 

scores. The optimal cut-off point was calculated using the Youden index. The sensitivity, 9 

specificity, positive predictive values (PPV) and negative predictive values (NPV) for relevant cut-10 

offs were calculated as described.6 The AUROCs were compared using the generalized U-11 

statistics.13 One-way analysis of variance was used to compare three groups. Tukey's Honestly 12 

Significant Differences test was used for post hoc analyses. A two-sided p-value of less than 0.05 13 

was considered as statistically significant. The statistical analyses were performed by using R 14 

version 3.0.1 (http://www.r-project.org/).  15 

 16 

 17 
Results 18 
 19 
Characteristics of the study groups  20 

Comparison of NASH and non-NASH groups (Table 1) 21 

Characteristics of the NASH and non-NASH groups are shown in Table 1. Liver fat content and all 22 

liver enzymes were significantly higher in the NASH than the non-NASH group (Table 1). Features 23 

of the MetS (hyperglycemia, hypertriglyceridemia, hypertension and low HDL cholesterol) were 24 

significantly more common in the NASH than the non-NASH group. The NASH group had a 25 

significantly increased prevalence of the PNPLA I148M variant compared to the non-NASH group 26 

(p<0.001). These significances remained significant after adjusting for age (data not shown).  27 
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 1 

Comparison of estimation and validation groups (Supplementary Table 1) 2 

The estimation and validation groups were comparable with respect to clinical and biochemical 3 

features such as age, gender, BMI, components of the MetS, prevalence of NASH, liver fat, liver 4 

function tests, as well as PNPLA3 genotype (Supplementary Table 1). Within the estimation and 5 

validation cohorts (Supplementary Tables 2 and 3), the NASH group displayed similar 6 

abnormalities compared to the non-NASH group as was observed in the entire group (Table 1). 7 

 8 

Development of a model to predict NASH  9 

We first developed a model based on clinical parameters and the PNPLA3 genotype alone, then 10 

models based on MS-based profiling and finally a model using all data.  11 

 12 

Model based on clinical parameters and I148M variant in PNPLA3 (‘NASH Clin Score’)  13 

To build the ‘NASH Clin Score’, we used variables differing significantly between NASH and non-14 

NASH groups in univariate analysis in the estimation group (Supplementary Table 2). The model 15 

was developed using multivariate logistic regression analysis based on clinical variables and 16 

PNPLA3 genotype. The final model included the same predictors as the ‘NASH score’, which was 17 

recently developed in a group of 296 Finnish patients and validated in a cohort of 380 Italians12 i.e. 18 

fasting insulin, AST and PNPLA3 genotype. ‘The NASH Clin Score’ was as follows: 19 

 20 

 -3.05 + 0.562 × PNPLA3 genotype (CC=1/GC=2/GG=3) – 0.0092 × fS-insulin (mU/L)  + 0.0023 × 21 

AST (IU/L)  + 0.0019 × (fS-insulin×AST) 22 

 23 

The AUROC for the ‘NASH Clin Score’ in the entire group (n=318) was 0.778 (95%CI: 0.709, 24 

0.846).  25 

 26 
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Lipidomics and metabolomics data  1 

Using the two MS-based analytical platforms, a total of 597 molecular lipids and metabolites were 2 

measured and 168 identified. Total fS-TG measured enzymatically was closely correlated with the 3 

sum of plasma TGs identified by UPLC-MS (r=0.92, p < 0.001).  4 

 5 

Cluster analysis of lipidomics data 6 

We analyzed the global lipidome by clustering the data into a subset of clusters using Bayesian 7 

model-based clustering. The lipidomic platform data were decomposed into 8 lipid clusters (LCs), 8 

which to a large extent adhered to different lipid functional or structural groups. Data on each 9 

cluster and representative lipids are shown in Table 2. In the NASH as compared to the non-NASH 10 

group, significant differences were found in 3 lipid clusters (LC3, LC4, LC6) (Supplementary Fig. 11 

1). We found NASH to be significantly associated with increased concentrations of saturated and 12 

monounsaturated TGs (LC4). In contrast, concentrations of sphingomyelins (LC3) and 13 

lysophosphatidylcholines (lysoPC) (LC6) were significantly lower in the NASH than the non-14 

NASH group (Supplementary Fig. 1, Table 2).  15 

 16 

Absolute and relative concentrations of TGs 17 

Absolute concentrations of circulating TGs between the NASH and non-NASH groups are 18 

compared in a heatmap (Fig. 1, panel on the left).  In the NASH as compared to the non-NASH 19 

groups, the absolute concentrations of especially saturated and monounsaturated TGs such as 20 

TG(46:0), TG(48:0), TG(50:0), TG(46:1) and TG(51:1) were significantly increased.  21 

 22 

The relative distribution of TGs (the concentration of an individual TG divided by total TGs 23 

measured by UPLC-MS) between the NASH and non-NASH groups is shown in Fig. 1 (panel on 24 

the right). The relative concentrations of saturated and monounsaturated TGs were increased in the 25 

NASH as compared to the non-NASH group (Fig. 1, on the right). Consistent with an increase in 26 
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TGs containing saturated and monounsaturated TGs, the fold-changes (NASH/non-NASH) of 1 

absolute (r = -0.75, p < 0.0001; Fig. 2, panel on the left) and relative (r = -0.75, p < 0.0001; Fig. 2, 2 

panel on the right) concentrations of TGs were inversely correlated with the number of double 3 

bonds.  4 

 5 

Lipidomics-based model 6 

Using the lipidomics data from the estimation cohort, we derived a logistic regression model (see 7 

methods) for NASH. The final score based on lipidomics data (‘NASH Lip Score’) included 3 8 

selected molecular lipids, TG(48:0), PE(40:6) and LysoPC(16:0), and was as follows: 9 

 10 

2.531 + 2.334 × log10(TG(48:0)) (µM) + 1.555 × log10(PE(40:6)) (µM) – 4.081 ×  11 

log10(LysoPC(16:0))  (µM) 12 

 13 

In the estimation group, the AUROC was 0.767 (95%CI: 0.687, 0.847). For the validation group 14 

(n=95; n=318), the AUROC was 0.809 (95% CI: 0.714, 0.905) and in the entire dataset 0.779 (95% 15 

CI: 0.717-0.841). The NPV, PPV, sensitivity and specificity of the entire dataset are shown in Table 16 

3. 17 

 18 

Metabolomics-based model 19 

We also derived a logistic regression model for NASH using the metabolomics data from the 20 

estimation cohort. The score based on metabolomics (‘NASH Met Score’) included 5 selected 21 

molecular metabolites, Glu, Ile, Tyr, glycine (Gly) and serine (Ser). The ‘NASH Met Score’ was as 22 

follows:   23 

 24 

-10.701 + 1.852 ×  log10(Glu) (µM) + 6.461 ×  log10(Ile) (µM)+ 3.556 ×  log10(Tyr) (µM) – 3.908 × 25 

log10(Gly) (µM) - 2.822 ×  log10(Ser) (µM) 26 
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The model had an AUROC of 0.729 (95% CI: 0.649-0.808) in the estimation cohort. In the 1 

validation group (n=95), the AUROC was 0.710 (95% CI: 0.604 -0.816). In the entire group, the 2 

AUROC was 0.719 (95% CI: 0.655-0.782) (Table 3).  3 

 4 

Model based on all data 5 

By applying backward stepwise logistic regression analyses of the variables from all 6 

aforementioned models, we developed the ‘NASH ClinLipMet Score’ (NASH score based on 7 

clinical variables, PNPLA3 genotype, lipidomics and metabolomics data, corrected for the number 8 

of variable included in the model, which was as follows: 9 

 10 

-8.167 + 0.954 ×  PNPLA3 genotype (CC=1/GC=2/GG=3) + 0.0451 × AST (IU/L) + 0.0667 × fS-11 

insulin (mU/L) - 3.151× log10(LysoPC(16:0)) (µM) + 2.617 × log10(PE(40:6)) (µM) + 2.357 × 12 

log10(Glu) (µM) + 7.813 ×  log10(Ile) (µM) – 6.102 × log10(Gly) (µM)    13 

 14 

The AUROC was 0.882 (95%CI: 0.827, 0.938) in the estimation and 0.856 (95% CI: 0.774, 0.938) 15 

in the validation cohort. In the entire group, the AUROC was 0.866 (95%CI: 0.820, 0.913).  The 16 

sensitivity was 85.5% and specificity 72.1% (Table 3).  17 

 18 

Diagnostic performances in the subgroups 19 

Because bariatric patients might differ from non-bariatric patients, we excluded 54 patients not 20 

undergoing bariatric surgery and measured the performance of all scores in the specific group with 21 

bariatric patients.  The AUROCs of the ‘NASH Clin Score’, ‘NASH Lip Score’ and ‘NASH Met 22 

Score’ in the bariatricsurgery patients were 0.774 ((95%CI: 0.696, 0.852), 0.789 (95%CI: 0.720, 23 

0.858) and 0.738 (95%CI: 0.672, 0.804). The ‘NASH ClinLipMet Score’ had an AUROC of 0.865 24 

(95%CI: 0.812, 0.918). The AUROCs of the ‘NASH ClinLipMet Score’ did not differ significantly 25 

between the bariatric surgery group and entire cohort (p = 0.961). 26 
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To assess potential confounding effect of lipid lowering medications, we excluded 58 patients who 1 

received lipid medications and reanalyzed the diagnostic performance of all scores. In subjects not 2 

using lipid-lowering medications, the AUROCs of the ‘NASH Clin Score’, ‘NASH Lip Score’, 3 

‘NASH Met Score’ and ‘NASH ClinLipMet Score’ were 0.799 ((95%CI: 0.725, 0.873), 0.816 4 

(95%CI: 0.754, 0.878), 0.731 (95%CI: 0.660, 0.801) and 0.889 (95%CI: 0.844, 0.934) . The 5 

AUROC of the ‘NASH ClinLipMet Score’ was not significantly different between the entire cohort 6 

and the group not using statins (p = 0.496). 7 

  8 

Comparison of AUROCs  9 

The AUROC of the ‘NASH ClinLipMet Score’ was significantly higher than that of the ‘NASH Lip 10 

Score’ (p < 0.05), the ‘NASH Met Score’ (p < 0.001) and the ‘NASH Clin Score’ (p < 0.01) 11 

(p<0.001) (Fig. 3). Performance of each score is summarized in Table 3.  12 

 13 

Comparison of NASH to NAFL 14 

We also determined whether the MS-based markers in the NASH group were specific to NASH or 15 

also observed between NAFL as compared to Non-NAFLD subjects. The clinical characteristics of 16 

NASH, NAFL and Non-NAFLD groups are shown in Table 1.  17 

 18 

Comparison of lipid concentrations between the three groups are shown as Supplementary Fig. 1. 19 

Of the three lipids entering the final lipidomics model, TG48:0 (shown as 20 

TG(14:0/16:0/18:0)+TG(16:0/16:0/16:0) in Supplementary Fig. 2) differed significantly between 21 

NASH, and NAFL and NAFL and Non-NAFLD. PE40:6 and LysoPC16:0 differed significantly 22 

between NASH and NAFL but not between NAFL and controls (Supplementary Fig. 2).    23 

 24 

 25 

 26 
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Discussion 1 

This is the first study to develop an MS-based model and score for NASH and compare its 2 

diagnostic performance to scores based on routinely available data and on PNPLA3 genotype at 3 

rs738409. We identified a set of lipids and metabolites that significantly associated with NASH in a 4 

liver biopsy cohort of 318 subjects. We performed Gibbs sampling and backward stepwise logistic 5 

regression to select variables that fulfilled BIC. A model which included AST, the PNPLA3 6 

genotype, fasting insulin, LysoPC(16:0), PE(40:6), Glu, Ile and Gly best predicted NASH (the 7 

‘NASH ClinLipMet Score’). The AUROC of this score was 0.86, which was significantly higher 8 

than that of the ‘NASH Lip score’, ‘NASH Met Score’ and the ‘NASH Clin Score’,6 ‘NASH Liver 9 

Fat Score’6, 9  and the ‘NAFLD lipid triplet score’.14 These data show that MS-based profiling 10 

combined with clinical variables may help in the development of non-invasive diagnosis of NASH.  11 

 12 

The NASH as compared to the non-NASH group had an absolute and relative excess of saturated 13 

and monounsaturated TGs in their circulating lipidomics profile (Fig. 1) TGs containing saturated 14 

fatty acids (SFAs) and monounsaturated fatty acid (MUFAs) were previously shown to be 15 

overproduced in a study involving 9 subjects by the splanchnic area.15 De novo lipogenesis 16 

produces exclusively SFAs.16 Stable isotope studies tracing the origin of intrahepatocellular TGs 17 

suggest that de novo lipogenesis (DNL) is prominent and perhaps the only abnormal pathway in 18 

patients with NAFLD.17 Hence, circulating TGs containing SFAs and MUFAs might reflect 19 

increased DNL. Individual TGs did not, however, remain significant independent predictors of 20 

NASH in the final model including both clinical and MS-profiling based parameters (NASH 21 

ClinLipMet). This is most likely because of multicolinearity i.e. saturated and monounsaturated TG 22 

were were closely correlated with features of IR such as fS-insulin and thus more markers of IR and 23 

steatosis than NASH. 24 

 25 
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Circulating LysoPC16:0 deficiency was associated with NASH. This metabolite as well as other 1 

lysoPCs and PCs (Supplementary Fig. 2), which were also deficient in NASH, are mostly found in 2 

the HDL lipoprotein fraction, which was low in the NASH as compared to other groups.18 3 

LysoPC16:0 was recently found to be the most deficient metabolite when comparing 180 4 

metabolites between 20 insulin resistant and 20 insulin-sensitive morbidly obese subjects with 5 

NAFLD.19 In 14 subjects who underwent a liver biopsy, lysoPC16:0 levels were higher in insulin 6 

resistant subjects with a trend toward higher inflammation in their liver.19 Low lysoPC16:0 7 

concentrations were also observed in preadipocyte cultures from 10 metabolically unhealthy as 8 

compared to 10 metabolically healthy obese subjects.20 9 

 10 

The metabolite data are consistent with those reported in several small studies. Branch chain amino 11 

acids (BCAA) and essential amino acids are increased in obese/insulin-resistant subjects.21 BCAA 12 

also promote IR induced by high fat feeding. Increases in BCAA are accompanied by increases in 13 

C3 and C5 acylcarnitines, which are BCAA metabolites in the liver and in skeletal muscle.22 The 14 

increase in the BCAA Ile, and in Glu, which is the first step of BCAA catabolism, could therefore 15 

be attributed to the obesity/IR, which is associated with NASH. Increases in Glu have previously 16 

been found in studies that included 243 and 1623 patients with NASH. Very recently, a genome-17 

scale metabolomics model was constructed to interpret liver transcriptome data in NASH patients. 18 

Altered Glu metabolism was predicted to be the single most abnormal site of metabolism in 19 

NASH.24 The second most common abnormality was predicted to be Ser deficiency, which is 20 

known to characterize patients with NASH and insulin resistant as compared to insulin sensitive 21 

subjects.3, 25 Consistently, Ser deficiency also characterized the patients with NASH in the present 22 

study. Gly is formed from Ser in a reaction catalyzed by SHMT1, an enzyme leading to Ser 23 

formation that was predicted to be down-regulated in NASH.24 Thus, the observed changes in 24 

amino acid concentrations in the NASH as compared to the non-NASH group reflect previously 25 

described pathophysiologic changes in humans and in experimental animals.  26 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 18

Use of the predictive equation developed in this study requires set-up of an assay specifically 1 

measuring each component. This is feasible given that an increasing number of analytical methods 2 

in clinical chemistry laboratories use targeted MS-based methods.26 Once established and 3 

automated, such method requires a minute amount of plasma and is less time-consuming and 4 

cumbersome for clinicians than assessment of the different components of especially scores that 5 

necessitate inclusion of parameters from physical examination such as waist circumference.27 6 

Regarding the cost and reproducibility of the “omics” technology, it is important to establish 7 

whether screening using the NASH ClinLipMet Score is cost-effective. This can not be performed 8 

based on the present study, which is a first step and shows that it is possible to improve the 9 

diagnostic accuracy of predictive score for NASH using MS-based analytical platforms in morbidly 10 

obese patients with a high prevalence of NASH.  11 

 12 

Limitations of the present study should be considered when interpreting the results. The score was 13 

derived from a cohort including a large number of obese patients, which may hamper its application 14 

to the general population. Although the histologic criteria for NASH are similar irrespective of 15 

obesity, it is important to validate the NASH ClinLipMet Score in a cohort which is not morbidly 16 

obese. Treatment with lipid-lowering drugs may influence their plasma lipid levels and play as a 17 

potential confounder. However, the performance of the NASH Clin Score’, ‘NASH Lip Score’, 18 

‘NASH Met Score’ and the ‘NASH ClinLipMet Score’ was not influenced by use of lipid lowering 19 

medications, which thus suggest that the scores are robust and that use of lipid lowering 20 

medications does not limit usefulness of these scores. The study was cross-sectional and thus the 21 

term ‘predictor’ merely denotes a factor that is associated with risk of NASH. Scores should ideally 22 

be validated in a longitudinal study, but such a study is challenging as it is ethically unacceptable to 23 

obtain repeated liver biopsies from individuals with no indication for such a procedure. Although 24 

the ‘NASH ClinLipMet Score’ had the highest AUROC of 0.86 in diagnosing NASH amongst the 25 

formulae tested with sensitivities and specificities of 80.6% and 75.3%, the diagnosis of NASH will 26 
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be missed in 19.4% of those with NASH and 24.7% will be incorrectly diagnosed as having the 1 

disease. The score developed in Finnish and Belgian Caucasian subjects may not be valid in other 2 

ethnic groups.  3 

 4 

In conclusion, use of MS-based methods helps in improving non-invasive diagnosis of NASH 5 

compared to scores relying on routinely available clinical data and PNPLA3 genotype at rs738409. 6 

In the present study the findings of increases of the saturated TG 48:0, Glu, Ile, and decreases in 7 

lysoPC 16:0, Ser and Gly in a relatively large cohort of patients with NASH are consistent with 8 

known pathophysiology of NASH.  9 

 10 
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FIGURE LEGENDS 1 

Fig. 1. Comparison of concentrations of TGs between NASH and non-NASH groups. 2 

The color code denotes the log2 of the ratio between means of the groups for an individual TG (Left: 3 

absolute concentrations of TG. Right: relative concentrations of TG). The y-axes denote the number of 4 

carbons, and the x-axes the number of double bonds. Blue represents a decrease in NASH as compared 5 

to ‘non-NASH’. The significances (*p < 0.05, **p < 0.005, ***p < 0.0005) for the comparisons are 6 

marked. 7 

 8 

Fig. 2. Relationships between fold changes of mean concentrations of individual TGs (NASH/non-9 

NASH) and numbers of double bonds contained in each TG. Each dot represents a TG molecule. 10 

The y-axis denotes the log2 of of the ratio of concentrations of TGs between NASH and non-NASH 11 

patients, and the x-axis the number of double bonds in TGs. Left: log2 of fold changes of absolute 12 

TG abundances plotted against the number of double bonds. Right: log2 of fold changes of relative 13 

TG abundances plotted against the number of double bonds. 14 

 15 

Fig. 3. ROC-curves of the three scores to predict NASH in the entire biopsy cohort. The AUROCs 16 

are compared in Table 3. Please see text for definition of scores. 17 
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Table 1. Clinical characteristics of the study subjects according to liver fat (%) and a proposal by Brunt et al. 

Total Non-NASH 
(n=249) 

Non-NAFLD  
(n=132) 

NAFL 
(n=117) 

NASH 
(n=69) 

Liver fat/Steatosis (%) 5 (0 - 15) 0 (0 - 5) 15 (10 - 30) 40 (30 - 60)***††† 

Microscopic steatosis % 10 (0 - 30) 0 (0 - 10) 30 (11 - 40) 40 (20 - 40)***††† 

Grade (0/1/2/3) 249/0/0/0 132/0/0/0 117/0/0/0 0/57/11/1*** 

Ballooning 0 0 0 12***  

Inflammation 0 0 0 69***  

Fibrosis stage (0/1/2/3/4) 210/31/6/0/2 117/10/3/0/2 93/21/3/0/0 6/47/10/5/1*** 

Fibrosis stage > 0 (%) 15.7 11.4 20.5 91.3***  

Age (years) 45.4 ± 0.8 45.1 ± 1.1 45.9 ± 1.1 49.4 ± 1.3 

Gender (n, % women) 160 (64.2) 96 (72.7) 64 (54.7) 37 (53.6) 

BMI (kg/m2) 39.6 ± 0.6 39.0 ± 0.8 40.3 ± 0.8 41.1 ± 1.0 

Waist circumference (cm) 118 ± 1 114 ± 1 122 ± 1 126 ± 2***††† 

fS-Insulin (mU/l) 12.7 (8.0 – 18.1) 11.0 (7.5 – 15.9) 14.3 (9.5 – 18.9) 20.6 (14.3 – 28.7)***†††## 

fP-Glucose (mmol/l) 4.9 (4.4 – 5.7) 4.8 (4.2 – 5.6) 5.1 (4.6 – 5.8) 5.7 (5.0 - 6.4)***†††### 

HbA1C (%) 5.6 (5.4 – 5.9) 5.5 (5.3 - 5.8) 5.7 (5.5 - 6.0) 6.0 (5.7 - 6.6)***†††## 

HOMA-IR (mmol/l x mU/l) 2.8 (1.9 – 4.0) 2.4 (1.5-3.5) 3.2 (2.2-4.4) 5.0 (3.1-8.5)***†††### 

fP-Triglycerides (mmol/l) 1.35 (1.03 – 1.92) 1.28 (0.97 - 1.78) 1.50 (1.04 - 1.95) 1.76 (1.26 – 2.54)***†††# 

fP-HDL cholesterol (mmol/l) 1.25 (1.03 - 1.51) 1.27 (1.09 - 1.51) 1.19 (0.96 - 1.46) 1.07 (0.94 - 1.27)***††† 

fP-LDL cholesterol (mmol/l) 2.90 ± 0.06 2.83 ± 0.08 2.92 ± 0.09 2.99 ± 0.12 

P-AST (IU/l) 28 (24 - 38) 26 (22 - 33) 32 (27 - 42) 42 (29 - 58)***†††### 

P-ALT (IU/l) 37 (30 - 51) 34 (27 - 42) 46 (33 - 62) 54 (40 - 89)***†††# 

P-GGT (U/l) 28 (21 - 48) 27 (21 - 49) 30 (22 - 48) 47 (29 - 73)***††† 

P-Albumin (g/l) 42.4 ± 0.3 42.1 ± 0.5 42.7 ± 0.5 41.7 ± 0.7 

B-Platelets (x109/l) 259 (219 - 311) 264 (219 - 310) 258 (222 - 310) 240 (197 - 302) 
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PNPLA3 (CC/CG/GG) (n) 133/91/10 79/44/2 54/47/8 25/30/11** 

Use of lipid-lowering drugs (%) 17.7 12.1 23.9 20.3 

Type 2 Diabetes (n) 40 14 26 30**** 

Data are in n (%), means ± SEM or median (25th-75th percentile), as appropriate. *P ≤ 0.05, **P ≤ 0.01,***P ≤ 0.001 for comparison with the ‘Non-NASH’. †p < 0.05, ††p < 0.01, 
†††p < 0.001 for one-way ANOVA. #p < 0.05, ##p < 0.01, ###p < 0.001  for Tukey HSD test compared with the ‘NAFL’. NASH: non-alcoholic steatohepatitis; NAFLD: non-
alcoholic fatty liver; NAFLD: non-alcoholic fatty liver disease; BMI: body mass index; HOMA-IR: Homeostasis model assessment of insulin resistance was calculated by formula: 
fS-Insulin (mU/L) x fP-Glucose (mmol/L) / 22.5; HDL: High-density lipoprotein; LDL: low-density lipoprotein; AST: aspartate aminotransferase; ALT: alanine aminotransferase; 
GGT: gamma glutamyl transpeptidase; PNPLA3: patatin-like phospholipase domain-containing protein 3. 
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Table 2. Composition of circulating lipid clusters 

Cluster name Size Representative members 

LC1 18 TG(16:0/18:2/18:1); TG(18:1/16:1/18:2)+TG(18:2/18:2/16:0); TG(18:1/18:2/18:1); TG(18:1/18:1/18:1); TG(54:5);  

LC2 24 PC(34:2); PC(36:2); PC(34:1); PC(36:3); PC(38:3);  

LC3 32 
SM(d18:1/24:1); SM(d18:1/16:0); SM(d18:1/22:0); SM(d18:1/24:0); SM(d18:1/18:0); SM(d18:1/20:0); SM(d18:1/23:0); 
SM(d18:0/16:0); SM(d18:0/20:4);  

LC4 23 
TG(14:0/16:0/18:0)+TG(16:0/16:0/16:0); TG(16:0/16:0/18:0); TG(14:0/16:0/16:0)+TG(16:0/18:0/12:0); TG(44:0); TG(16:0/18:0/18:0); 
TG(44:1); TG(54:1) 

LC5 15 PC(38:6); PC(40:6); PC(36:5); PE(40:6); PS(38:1); PS(36:1); PC(38:5); PE(38:5); PE(40:6) 

LC6 18 LysoPC(16:0); LysoPC(18:2); LysoPC(18:0); LysoPC(18:1); LysoPC(18:3); LysoPC(20:3);  

LC7 14 PC(38:7); PC(40:7); PE(38:4); PE(40:7); PE(40:6); PE(40:4);  

LC8 16 PC(34:1e)+PE(37:1e); PC(33:2)+PE(36:2); PC(31:1)+PE(34:1); PC(33:1)+PE(36:1); PC(33:2)+PE(36:2) 

LC: lipid cluster; TG: triacylglycerol; PC: phosphatidylcholine; SM: sphingomyelin; LysoPC: lysophosphatidylcholines; PE: phosphatidylethanolamine. 
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Table 3. Comparison of the performances of the scores for diagnosing NASH in 318 biopsy patients (see main text for statistical comparisons of AUROCs) 
 
 

Test Scores AUROC  (95% CI) Cut-off Sens.% Spec.% PPV (%) NPV (%) 

NASH ClinLipMet Score 0.866   (0.820, 0.913) 0.134 85.5 72.1 45.3 94.8 

NASH Lip Score 0.779 (0.717, 0.841) 0.148 88.4 53.8 34.7 94.4 

NASH Met Score 0.719  (0.655, 0.782) 0.203 65.2 69.1 36.9 87.8 

NASH Clin Score = NASH score  
(Hyysalo et al., 2013) 

0.792 (0.726, 0.859) -1.354 77.4 70.7 41.7 92.0 

 
NASH: non-alcoholic steatohepatitis; NAFLD: non-alcoholic fatty liver disease; PPV: Positive predictive values. NPV: Negative predictive values.  
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Supplementary Fig. 1. Mean lipid concentrations within each cluster between NASH 

(non-alcoholic steatohepatitis) and ‘non-NASH’ groups. *p < 0.05, **p < 0.01, ***p 

< 0.001 for differences between the groups. 

 

Supplementary Fig. 2. Comparison of concentrations of lipids between NASH, NAFL 

and Non-NAFLD groups. The color code denotes the log2 of the ratio between means of 

the groups for an individual lipid. The y-axe represents names of lipids, and the x-axe the 

groups for comparison (NAFL vs. Non-NAFLD, NASH vs. NAFL and NASH vs. Non-

NAFLD). Tukey's Honestly Significant Differences post-hoc test was used to compare two 

groups after one-way analysis of variance. Blue represents a decrease while red shows an 

increase between groups. The brighter the red color, the greater increase of absolute 

concentration of the individual lipid between groups. The brighter the blue color, the 

greater decrease. The significances (*p < 0.05, **p < 0.005, ***p < 0.0005) for the 

comparisons are marked. NASH: non-alcoholic steatohepatitis. NAFL: nonalcoholic fatty 

liver. NAFLD: nonalcoholic fatty liver disease. 
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Lipidomic analysis by UPLC-QTOFMS 

An aliquot (10 µL) of the plasma sample was diluted with 10 µL of 0.15 M (0.9%) sodium chloride 

and 10 µL of internal standard mixture 1A was added. This mixture contained PC(17:0/0:0), 

PC(17:0/17:0), PE(17:0/17:0), PG(17:0/17:0)[rac], Cer(d18:1/17:0), PS(17:0/17:0) and 

PA(17:0/17:0) (Avanti Polar Lipids, Inc., Alabaster, AL) as well as monoacylglycerol 

(17:0/0:0/0:0), diacylglycerol (DG) (17:0/17:0/0:0) and TG(17:0/17:0/17:0).  The lipids were 

extracted using a mixture of HPLC-grade chloroform and methanol (2:1; 100 µL). The lower phase 

(60 µL) was collected and 10 µL of an internal standard mixture containing labeled PC (16:1/0:0-

D3), PC(16:1/16:1-D6) and TG(16:0/16:0/16:0-13C3) was added.   

 

The extracts were analyzed on a Waters Q-Tof Premier mass spectrometer combined with an 

Acquity Ultra Performance LCTM. The column (at 50 °C) was an Acquity UPLCTM BEH C18 2.1 × 

100 mm with 1.7 µm particles. The solvent system included A. ultrapure water (1% 1 M NH4Ac, 

0.1% HCOOH) and B. LC/MS grade acetonitrile/isopropanol (1:1, 1% 1M NH4Ac, 0.1% HCOOH). 

The gradient started from 65% A / 35% B, reached 80% B in 2 min, 100% B in 7 min and remained 

there for 7 min. The flow rate was 0.400 ml/min and the injected amount was 2.0 µl (Acquity 

Sample Organizer, at 10 °C). Reserpine was used as the lock spray reference compound. The lipid 

profiling was carried out using electrospray ionization mode and the data were collected at a mass 

range of m/z 300-1200 with a scan duration of 0.2 sec.  

 

The data processing included alignment of peaks, peak integration, normalization and identification. 

Lipids were identified using an internal spectral library. The data were normalized using one or 

more internal standards representative of each class of lipid present in the samples: the intensity of 

each identified lipid was normalized by dividing it with the intensity of its corresponding standard 

and multiplying it by the concentration of the standard. All monoacyl lipids except cholesterol 
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esters, such as monoacylglycerols and monoacylglycerophospholipids, were normalized with 

PC(17:0/0:0), all diacyl lipids except ethanolamine phospholipids were normalized with 

PC(17:0/17:0), all ceramides with Cer(d18:1/17:0), all diacyl ethanolamine phospholipids with 

PE(17:0/17:0), and TG and cholesterol esters with TG(17:0/17:0/17:0). Other (unidentified) 

molecular species were normalized with PC(17:0/0:0) for retention times < 300 s, PC(17:0/17:0) for 

a retention time between 300 s and 410 s, and TG(17:0/17:0/17:0) for longer retention times.  

 

Quality control of the method showed that the day-to-day repeatability of control serum samples, 

and the relative standard deviation for values identified was on average below 25% and 20% for 

discovery and validation sets, respectively. The internal standards added to all samples in the study 

had an average relative standard deviation of 25% and 13 % in the discovery and validation sets.   

 

For further identification of unknown lipids, fractions collected from UPLC run were infused to a 

LTQ-Orbitrap (Thermo Fischer Scientific, San Jose, CA) mass spectrometer by a TriVersa 

Nanomate (Advion Biosciences, Ithaca, NY) using chip-based nanoelectrospray in positive and 

negative ionisation mode. Identifications were based on the exact mass and MSn spectra. The 

instrument was calibrated externally according to the instructions of manufacturer. MS2 and MS3 

were acquired using either low resolution or high resolution up to target mass resolution R = 60 000 

at m/z 400. The normalized collision energies of 30-40% were applied in MSn experiments. 

 

Metabolomic analysis 

Polar metabolites are analyzed using using comprehensive two-dimensional gas chromatography 

combined with time-of-flight mass spectrometry (GC×GC-TOFMS).1 400 µl methanol and 10 µl 

internal standard mixture (C17:0 (93.3 mg/l), valine-d (18.5 mg/l) and succinic acid-d4 (31.5 mg/l)) 

were added to 30 µl of plasma samples. The samples were vortex mixed (2 minutes at 20 Hz). After 

30 minutes at room temperature the samples were centrifuged for 5 min at 10000 rpm. The 
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supernatant was moved to a gas chromatography (GC) vial and evaporated to dryness under 

nitrogen. The samples were trimethylsilylated with 25 µl MOX (45°C, 60 minutes) and 25 µl 

MSTFA (45°C, 60 minutes) and 5 µl of retention index solution in hexane was added to samples 

(150 mg/l C11, C15, C17, C21 and C25 alkanes).  

 

For metabolomics analysis, a Leco Pegasus 4D GC×GC-TOFMS instrument (Leco Corp., St. 

Joseph, MI) equipped with a cryogenic modulator was used. The GC part of the instrument was an 

Agilent 6890 gas chromatograph (Agilent Technologies, Palo Alto, CA), equipped with 

split/splitless injector. The first-dimension chromatographic column was a 10-m RTX-5 capillary 

column with an internal diameter of 0.18 mm and a stationary-phase film thickness of 0.20 µm, and 

the second-dimension chromatographic column was a 1.5 m BPX-50 capillary column with an 

internal diameter of 100 µm and a film thickness of 0.1 µm. A methyl deactivated retention gap (3 

m x 0.53 mm i.d.) was used in the front of the first column. High-purity helium was used as the 

carrier gas at a constant pressure mode (39.6 psig). A 5-s separation time was used in the second 

dimension. The MS spectra were measured at 45 – 700 amu with 100 spectra/second. For the 

injection, a pulsed splitless injection (0.5 µl) at 240 °C was utilized, with pulse pressure of 55 psig 

for 1 minute. The temperature program was as follows:  the first-dimension column oven ramp 

began at 40 °C with a 2 min hold after which the temperature was programmed to 295 °C at a rate 

of 7 °C/minute and then held at this temperature for 3 minutes. The second-dimension column 

temperature was maintained 20 °C higher than the corresponding first-dimension column. The 

programming rate and hold times were the same for the two columns. 

 

ChromaTOF vendor software (LECO) was used for within-sample data processing, including 

quantitation of selected target metabolites, and Guineu software was used for alignment, 

normalization and peak matching across samples. The peaks were first filtered based on number of 

detected peaks in the total profile of all sample runs. The normalization was performed by 
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correction for internal standards. Other mass spectra from the GC×GC-TOFMS analysis were 

searched against The Palisade Complete Mass Spectral Library, 600K Edition (Palisade Mass 

Spectrometry, Ithaca, NY). Data were processed using the Guineu software.1 

 

After non-targeted profiling of the discovery set, thirteen metabolites were selected for quantitative 

analysis (amino acids, free fatty acids) which were then quantified in both validation and discovery 

sets using external calibration curves, after normalization with the labelled group-specific internal 

standards.  Quality control of the method showed that the day-to-day repeatability of control serum 

samples, and the relative standard deviation (RSD) for values identified was on average below 22% 

and 19% for discovery and validation sets, respectively. The internal standards added to all samples 

in the study had an average RSD of 20% and 18 % in the discovery and validation sets.   

 

Statistical analyses 

Assessment of abundances of TG species. Mean and standard errors of abundances of plasma TG 

molecular species were calculated. After log2 transformation, the average abundances of TG 

molecules were compared between the NASH and non-NASH groups by student’s t-tests. Multiple 

comparisons were corrected by using Benjamini-Hochberg's method.10 The comparisons were 

illustrated by heatmaps, which plot chain lengths of fatty acid against number of double bonds for 

each TG. R Package, metadar (http://code.google.com/p/metadar) was used for data analysis.  
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Supplementary Tables 

Supplementary Table 1. Comparison between the clinical characteristics in the estimation and 
validation group for building of the NASH score 

Total Estimation group 
(n=223) 

Validation group 
(n=95) 

p-value 

Liver fat (%) 15 (5-40) 12.5 (0-47.5) 0.9 

Grade (0/1/2/3) (n) 176/40/7/0 71/19/4/1 0.41 

Stage (0/1/2/3/4) (n) 150/55/12/4/2 65/23/5/1/1 0.99 

NASH (n, %) 47 (21.1) 24 (25.3) 0.5 

Age (years) 46±1 47±1 0.79 

Gender (n, % women) 140 (62.8) 57 (60) 0.73 

BMI (kg/m2)  39.9±0.5 39.8±1.0 0.61 

fP-Glucose (mmol/l) 4.9 (4.4-5.8) 5.0 (4.5-5.7) 0.55 

HbA1C (%) 5.7 (5.4-6) 5.7 (5.4-6) 0.92 

fP-Triglycerides (mmol/l) 1.46 (1.09-2.18) 1.36 (0.96-2.03) 0.39 

fP-HDL cholesterol (mmol/l) 1.17 (0.99-1.46) 1.22 (1.02-1.46) 0.37 

fP-LDL cholesterol (mmol/l) 2.9 (2.19-3.51) 2.81 (2.24-3.49) 0.72 

P-AST (IU/l) 29 (25-42) 32 (24-40) 0.67 

P-ALT (IU/l) 40 (31-59) 42 (32-56) 0.64 

P-GGT (U/l) 30 (22-54) 31 (23-54) 0.63 

P-Albumin (g/l) 41.5±0.4 42.5±0.6 0.25 

B-Platelets (x109/l) 260 (214-311) 256 (215-303) 0.67 

PNPLA3 (CC/GC/GG) (n) 108/85/17 50/35/4 0.49 

Type 2 Diabetes (n, %) 43 (19.5) 18 (18.9) 1 

Metabolic Syndrome (n, %) 145 (65.3) 62 (65.3) 1 

Data are in n (%), means ± SEM or median (25th-75th percentile), as appropriate. BMI: body mass 
index; HDL: High-density lipoprotein; LDL: low-density lipoprotein; AST: aspartate 
aminotransferase; ALT: alanine aminotransferase; GGT: gamma glutamyl transpeptidase; PNPLA3: 
patatin-like phospholipase domain-containing protein 3. 
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Supplementary Table 2. Clinical characteristics of the NASH and the non-NASH groups in 
the estimation group 

Estimation Group 
Non-NASH NASH   

p-value 
(n=176) (n=47) 

Liver fat (%) 10 (0, 25) 40 (26.3, 67.5) <0.001 

Grade (0/1/2/3) (n) 176/0/0/0 0/40/7/0 <0.001 

Stage (0/1/2/3/4) (n) 145/24/5/0/2 5/31/7/4/0 <0.001 

Age (years) 46±1 48±2 0.21 

Gender (n, % women) 115 (65.3) 25 (53.2) 0.17 

BMI (kg/m2) 39.5±0.6 41.4±1.1 0.15 

fP-Glucose (mmol/l) 4.8 (4.4-5.7) 5.7 (5-6.5) <0.001 

HbA1C (%) 5.6 (5.4-6) 6 (5.8-6.7) <0.001 

fP-Triglycerides (mmol/l) 1.38 (1.07-1.95) 1.84 (1.36-2.54) 0.005 

fP-HDL cholesterol (mmol/l) 1.22 (1.01-1.51) 1.07 (0.95-1.25) 0.012 

fP-LDL cholesterol (mmol/l) 2.89 (2.17-3.52) 3 (2.32-3.51) 0.46 

P-AST (IU/l) 28 (24-38) 43 (28-71) <0.001 

P-ALT (IU/l) 37 (30-52) 53 (40-103) <0.001 

P-GGT (U/l) 28 (21-48) 48 (29-74) <0.001 

P-Albumin (g/l) 41.6±0.5 41.3±0.9 0.89 

B-Platelets (x109/l) 264 (219-314) 243 (199-296) 0.11 

PNPLA3 (CC/CG/GG) (n) 90/66/10 18/19/7 0.064 

Type 2 Diabetes (n, %) 24 (13.6) 19 (42.2) <0.001 

Metabolic Syndrome (n, %) 106 (60.2) 39 (84.9) 0.0033 

Hyperglycemic medication (n, 
%) 

18 (10.2) 15 (31.9) <0.001 

 
Data are in n (%), means ± SEM or median (25th-75th percentile), as appropriate.  
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Supplementary Table 3. Clinical characteristics of the NASH and the non-NASH groups in 
the validation group 

Validation Group 
Non-NASH NASH   p-

value (n=71) (n=24) 
Liver fat (%) 5 (0-31.3) 42.5 (30-75) <0.001 

Grade (0/1/2/3) (n) 71/0/0/0 0/19/4/1 <0.001 

Stage (0/1/2/3/4) (n) 63/6/2/0/0 2/17/3/1/1 <0.001 

Necroinflammation (0/1/2) (n) 70/1/0 0/15/9 <0.001 

Age (years) 45±2 52±2 <0.001 

Gender (n, % women) 43 (60.6) 14 (58.3) 1 

BMI (kg/m2) 39.4±1.2 40.8±1.7 0.36 

fP-Glucose (mmol/l) 5.0 (4.6-5.6) 5.5 (4.5-6.3) 0.2 

HbA1C (%) 5.6 (5.4-6.0) 5.9 (5.6, 6.4) 0.042 

fP-Triglycerides (mmol/l) 1.27 (0.94-1.82) 1.86 (1.28-2.77) 0.021 

fP-HDL cholesterol (mmol/l) 1.25 (1.07-1.51) 1.05 (0.91-1.29) 0.028 

fP-LDL cholesterol (mmol/l) 2.81 (2.19-3.5) 2.7 (2.4-3.48) 0.71 

P-AST (IU/l) 31 (24-38) 40 (30-48) 0.0047 

P-ALT (IU/l) 39 (31-51) 54 (40-60) 0.012 

P-GGT (U/l) 29 (22-56) 41 (29-52) 0.18 

P-Albumin (g/l) 42.9±0.7 41.5±1.2 0.46 

B-Platelets (x109/l) 256 (219-296) 248 (195-325) 0.65 

PNPLA3 (CC/CG/GG) (n) 42/24/0 8/11/4 <0.001 

Type 2 Diabetes (n, %) 8 (11.3) 10 (41.7) 0.0028 

Metabolic Syndrome (n, %) 41 (57.7) 21 (87.5) 0.016 

Hyperglycemic medication (n, %) 6 (8.4) 7 (30.4) 0.021 

Data are in n (%), means ± SEM or median (25th-75th percentile), as appropriate.  

 
 

 

 


