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ABSTRACT

We propose a new unsupervised nonparametric temporal
topic model to discover lifestyle patterns from location-based
social networks. By relating the textual content, time stamps,
and venue categories associated to user check-ins, our frame-
work detects the predominant lifestyle patterns in a given ge-
ographic region. The temporal component of our model al-
lows us to analyse the evolution of lifestyle patterns through-
out the year. We provide examples of interesting patterns
that have been discovered by our model, and we show that
our model compares favourably to existing approaches in
terms of lifestyle pattern quality and computation time. We
also quantitatively show that our model outperforms exist-
ing methods in a time stamp prediction task.
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1. INTRODUCTION

A city is more than a place in space, it is a drama
in time. — Patrick Geddes

The lifestyles of different groups of people can differ con-
siderably, and this is reflected in the types of places they
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visit. For example, an office worker may go to the office in
the morning, visit a sandwich shop at midday, and go home
in the evening. Moreover, these lifestyle patterns are not
fixed, as people constantly adapt to changes in their envi-
ronment [15, 9, 36], e.g., the changing weather across dif-
ferent seasons. Our aim in this paper is to characterize the
predominant lifestyle patterns in a given geographic region,
and to analyse how they evolve throughout the year.

In this paper, we will characterize lifestyle patterns from
information that is shared publicly on location-based social
networks (LBSNs) such as Facebook Places and Foursquare,
which enable people to share information about the places
they visit. A check-in or digital footprint, in this context, is a
record of the venue which a user has visited along with a time
stamp of that visit. Several authors have proposed models
for analysing check-in data to get insights into human mo-
bility patterns [35, 32]. For example, [35] proposed a hybrid
model, based on a combination of two existing topic mod-
els, that combines check-in information with a friendship
graph. While their method was able to discover some inter-
esting results, it is computationally demanding and cannot
discover interpretable patterns from small datasets. Most
importantly, the model lacks a temporal component, which
makes it harder to distinguish between some lifestyle pat-
terns (e.g., office workers who go to the pub just after work,
compared to students who go to the pub late in the evening)
and means that it cannot be used to analyse changes over
time.

In this paper, we present a new statistical model for dis-
covering interpretable lifestyle patterns from check-in data
in which we address the aforementioned issues. By relating
the textual content, time stamps and venue categories asso-
ciated with user check-ins, our framework detects the pre-
dominant lifestyle patterns for a given geographic region,
where a lifestyle pattern is characterised by the kinds of
places that are frequented by a given group of people at dif-
ferent times in the day and different days of the week. To
tackle the pattern discovery problem, we develop an unsu-
pervised nonparametric temporal topic model. The tempo-
ral component of our model allows us to analyse the evolu-
tion of lifestyle patterns throughout the year. To deal with
sparsity issues in small datasets, we abstract away from raw
check-in data, and instead consider latent venue types and
discrete temporal units. This allows us, among others, to
study lifestyle patterns at a finer spatial granularity or in
areas of the world where the uptake of LBSNs is relatively
limited.



As we illustrate in Section 4, our method can be used to
gain insight into the lifestyles of different groups of people in
a given region. Among others, the obtained lifestyle patterns
could provide valuable information for advertising, by in-
forming marketers about when and where they can most ef-
fectively reach a particular target audience [22, 9]. The tem-
poral component of the lifestyle patterns would also be useful
for developing time-sensitive recommendation systems (e.g.,
not recommending sandwich shops to office workers during
the weekend). Developing models of people’s lifestyles could
furthermore be useful for the field of medical science [1],
although the fact that LBSNs only cover particular demo-
graphics would constitute an important drawback for such
applications. While this could be alleviated by applying our
model to data sources that have a wider coverage, such as
credit card transaction data or mobile phone traces [35], a
lack of access to such data sources means that we have not
considered this in our experiments. It is important to note
that the use of check-in data is mostly a matter of conve-
nience. We indeed expect that other sources of data, such
as credit card transactions and mobile phone logs would en-
able more detailed predictions. However, we believe that
the model we propose could be straightforwardly applied to
such data sources. The advantage of using check-in data is
that this information is publicly available, which we believe
makes it a suitable information source for developing and
evaluating the model.

2. RELATED WORK

The most closely related work is [35], where the authors
propose an approach that combines the relational topic model
(RTM) [7] with the hierarchical latent Dirichlet allocation
(hLDA) model [4] to discover so-called urban lifestyle pat-
terns from LBSNs. Specifically, the output of this method
is a hierarchical topical pattern, which closely resembles the
tree structure generated by the hLDA model. Each node of
this tree corresponds to a topic, where the further down the
tree we go, the more specific these topics become. The topics
are called living patterns in [35] and intuitively correspond to
soft clusters of related venues, encoded as probability distri-
butions over footprints. Each branch of the tree represents
a lifestyle pattern. In other words, a lifestyle pattern corre-
sponds to a set of living patterns, some of which are shared
with many other lifestyle patterns (viz. those corresponding
to nodes close to the root) while others may be more spe-
cific. The RTM component of the model is used to take into
account a social friendship graph, capturing the intuition
that friends tend to have similar lifestyles. As mentioned in
the introduction, the main limitations of the approach from
[35], which we address in our model, are the fact that it is
computationally demanding, cannot discover interpretable
patterns from small datasets and does not have a temporal
component. In contrast to the approach from [35], our model
generates flat patterns. The main reason why a tree struc-
ture is used in [35] is to capture correlations between dif-
ferent lifestyle patterns. However, this tree structure makes
the model computationally too demanding, and as we will
explain in the next section, in our model we can still capture
correlations between lifestyles patterns, by using a two-level
topic structure. Another important difference is that our
model has a temporal component, which requires a consid-
erably different posterior inference scheme than the one that
was proposed in [35].

Some authors have already studied topic models with a
temporal component. For example, [5] proposes a Marko-
vian temporal topic model, which generates topics based on
the change in co-occurrence information over time. A non-
Markovian temporal topic model has been proposed in [31],
based on the assumption that document time stamps are
generated from a Beta distribution. Several temporal topic
models that are specifically aimed at social network data
have recently been proposed. Yin et al. [34] proposed topic
models to capture user behaviour in social media. Their
underlying assumption is that users’ intrinsic interests de-
pend on the temporal context. Some nonparametric tempo-
ral topic models have been proposed as well [10]. Temporal
features have also been used in [28], which focuses on linking
Twitter posts to external documents to improve the quality
of topic models. However, to the best of our knowledge, tem-
poral topic models have not yet been considered for study-
ing lifestyle patterns. The reason why we need a new model
to capture lifestyle patterns is that existing temporal topic
models are aimed at modelling documents (which are asso-
clated with single time stamps) whereas we need to model
user behaviour (which is associated with sequences of time
stamps), and because lifestyles are best modelled using two
levels of topics, as we will discuss below.

Some works have extended topic models with both tem-
poral and spatial features. For example, Zhou et al. [3§]
proposed a location-time constrained topic model to capture
Twitter events. In [16], the authors study urban dynamics
using the LDA model [6], analysing the temporal and spatial
nature of topics in a post-hoc step. Bauer et al. [2] proposed
a topic model that considers both spatial and temporal fea-
tures to model the topics discussed by Foursquare users,
aiming to provide insights into the cultural idiosyncrasies
of different cities. Temporal and spatial features are also
prominent in approaches that study human mobility pat-
terns. For example, [23] studies the structural and temporal
changes in the spatial network formed by human movement
patterns. Kim et al. [14] used the LDA model to discover
topic-based place semantics without using any predefined
semantic categories. In addition, the authors studied the
temporal dynamics of the place semantics.

The idea of two-level topic models is also used in the
Pachinko Allocation Model (PAM) [20], which generates super
and sub-topics that can be represented as a directed acyclic
graph. A nonparametric extension to the PAM model has
been proposed in [19]. A nonparametric extension of PAM for
short texts has been proposed in [26]. In [25] and [12], graph-
ical models have been proposed that generate a hierarchy
of topics, aimed respectively at document co-clustering and
topic segmentation. In [37], a hierarchical topic structure
is proposed consisting of different levels of the Hierarchical
Dirichlet Processes (HDP) [27] model. Our model is signifi-
cantly different from the above graphical models, which do
not consider the change of topics over time. Moreover, in
contrast to the PAM model, our model does not impose any
arbitrary relationships on the hierarchy.

3. OUR FRAMEWORK

A lifestyle pattern in our model corresponds to a prob-
ability distribution over lifestyle topics, which are in turn
probability distributions over abstract footprints (see be-
low). Lifestyle topics play a similar role as the living pat-
terns in [35], but they are based on latent venue categories



rather than individual venues and they incorporate a tem-
poral component. Intuitively, a lifestyle topic models one
aspect of a given lifestyle. By describing lifestyles in terms
of such topics, we allow the model to make explicit the com-
monalities between different lifestyles. This high-level view
makes lifestyle patterns easier to interpret and enables us to
more clearly describe how two lifestyle patterns differ or how
a given lifestyle pattern changes over time. Moreover, the
fact that lifestyle patterns can share lifestyle topics means
that fewer parameters have to be learned, leading to more
robust results.

An important issue in dealing with check-in data is spar-
sity, as we may only have limited information about some
venues. This problem is exacerbated by our use of a tempo-
ral component, which requires sufficient numbers of check-
ins for different times of the day, days of the week and
months of the year. To deal with this issue, we abstract
away from specific venues and specific time stamps, as we
explain in Section 3.1. This design makes our model more
reliable, essentially avoiding overfitting by estimating top-
ics from the abstract check-in behaviour of many users. In
Section 3.2, we then introduce the graphical model which
relates the resulting abstract footprints to lifestyle patterns.
Section 3.3 explains how we can do posterior inference in
this model to discover these lifestyle patterns.

3.1 Dealing with Sparsity

The input to our method consists of a set of check-ins for
each user, along with the user comments associated with the
check-ins and the tags and categories associated with each
venue. Rather than estimating lifestyles from the check-in
data directly, we first convert each check-in to an abstract
footprint, in which the specific name of the venue is replaced
by a venue category. While we could use the categories
provided by Foursquare and similar services, the taxonomies
which are used by these LBSNs are not always sufficiently
fine-grained. Moreover, these taxonomies are LBSN-specific,
which causes problems when we want to integrate check-in
data from different LBSNs.

To obtain a suitable category structure, we first represent
each venue as a bag of words, consisting of (i) the tags as-
sociated with each venue, (ii) the names of the categories
assigned to the venue, and (iii) the nouns and adjectives
occurring in the user comments associated with the venue.
To generate the venue categories that will be used in the ab-
stract footprints, we then use the Hierarchical Dirichlet Pro-
cess (HDP) model, a nonparametric counterpart of the well-
known Latent Dirichlet Allocation (LDA) method in which
the appropriate number of topics is chosen automatically
based on the characteristics of the data. The output of the
HDP method consists of a number of latent topics, which we
will interpret as venue categories. Note that each venue cat-
egory is thus represented as a probability distribution over
words. Finally, we assign a label to each of the discovered
venue categories. To this end, we select the most repre-
sentative word from each probability distribution using the
PMI based technique from [18]. In cases where there is more
than one category with the same label, the second most rep-
resentative word is added to the label. While this method
is simpler than some other existing label selection methods
[17, 21, 18], we found it to yield good results in this context.

The time stamp associated with check-in records will be
used in two ways. First we will use it to analyse how lifestyle
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topics evolve throughout the year. Second, the lifestyle top-
ics themselves will have a temporal component, which re-
lates venues to times of the day and days of the week. For
example, we may want to express that a given group of peo-
ple tends to go to the pub in the evening on weekdays. For
the latter purpose, we consider the discrete temporal units
shown in Figures 1 and 2. Note that the boundaries of units
such as Morning are necessarily somewhat arbitrary. Al-
though we could learn appropriate boundaries from data
(e.g., making the boundaries dependent on the geographic
region), the definitions in Figures 1 and 2 will be sufficient
to explain the main principles. The aim of these temporal
units is to allow us to express information about the context
of typical visits. This idea could be extended to capture
weather information (e.g., allowing us to express that some
group of people tends to go to the beach on sunny days) or
particular types of recurring events (e.g., train strikes, bank
holidays, school holidays, sales periods). Including such ad-
ditional context factors offers scope for making the proposed
model more useful in practice, but it does not affect any of
the technical details.

In summary, we represent each check-in record as an ab-
stract footprint, which is composed of a venue category, an
intra-day time unit and an intra-week time unit. An exam-
ple of an abstract footprint is [Restaurant: (LunchTime,
Weekday)].

3.2 Lifestyle Pattern Discovery

For each user, we construct a user activity document,
consisting of the abstract footprints that correspond to the
user’s check-ins. In this section, we propose a novel Bayesian
nonparametric graphical model for discovering lifestyle pat-
terns from a given set of such user activity documents. Specif-
ically, the model will discover lifestyle topics, which intu-
itively correspond to soft clusters of abstract footprints, and
lifestyle patterns, which intuitively correspond to soft clus-
ters of lifestyle topics. At the same time, lifestyle patterns
will correspond to hard clusters of users. An example of a
lifestyle topic is:

{[0ffice: (Weekday,Morning) 0.5],
[Restaurant: (Weekday,LunchTime) 0.2],
[Gym: (Weekday ,DinnerTime) 0.1],...}
where the probabilities reflect the proportions of check-ins
that correspond to each abstract footprint. Note that lifestyle

topics are similar to the topics that are considered in LDA,
but instead of considering distributions over unigrams, we



consider distributions over abstract footprints. Lifestyle pat-
terns capture the intuition that there will typically be sev-
eral lifestyle topics that apply to a given user. For example,
an office worker who enjoys going for a hike in the weekend
may be modelled as a mixture of an “office-worker” topic
and an “outdoor” topic. In the model, each user will be as-
signed to one of the lifestyle patterns. The output can thus
be interpreted as a clustering of users, where each cluster
corresponds to a lifestyle pattern.

Each user activity document corresponds to a single lifestyle
pattern, but is associated with a mixture of different lifestyle
topics. Therefore, the lifestyle topics are sampled from a
Dirichlet process whereas hierarchical Dirichlet processes are
used to generate samples from the lifestyle topics. To gener-
ate the abstract footprints of a user activity document, we
first sample a lifestyle pattern. Given that lifestyle pattern,
we then sample a sequence of lifestyle topics for the docu-
ment, each time also sampling an abstract footprint from
the lifestyle topic.

Figure 3 depicts the model in plate notation, where plates
signify repetition of variables and latent variables are rep-
resented in unshaded circles. Note that our model captures
various interactions of the user with respect to the loca-
tion, time, activity, and comments all in a unified model.
In addition, interactions between topic hierarchies are also
modelled in the same graphical model, which makes our task
more challenging. The number of repetitions for the inner
larger plate corresponds to the number |C| of abstract foot-
prints in a given user’s activity document, while the number
of repetitions for the outer plate corresponds to the num-
ber of users |U|. The observed variables correspond to the
abstract footprints f; and their time stamp ¢;.

The variable w is the parameter or hyperparameter of the
Dirichlet process associated with the lifestyle patterns. The
variable a represents the distribution over lifestyle patterns.
Each user corresponds to a specific lifestyle pattern [, which
is drawn from the distribution a. The lifestyle pattern [ is
used to determine a probability distribution 6 over lifestyle
topics for the user. Specifically, 6 is obtained from a Dirich-
let process mixture, based on a corpus-wide distribution of
lifestyle topics m and a vector 7; of hyperparameters that is
dependent on the chosen lifestyle pattern [. These hyper-
parameters are encoded for each lifestyle pattern [ in the
matrix 7. Note that because of the two-level topic struc-
ture, a matrix of hyperparameters is needed, as opposed to
a vector in traditional HDP models. The variable  is the hy-
perparameter of w. The distribution 6 is subsequently used
to assign a lifestyle topic z; to each abstract footprint in the
corresponding user activity document. The matrix ¥ de-
fines each of the lifestyle topics as a probability distribution
over abstract footprints. It depends on the vector p, whose
dimension is equal to the number of footprints in the vocab-
ulary. In particular, p determines a Dirichlet distribution,
so a sample from p is a distribution over footprints.

The remaining variables of our model aim to capture how
the prevalence of lifestyle topics evolves throughout the year.
The observed variable t; in Figure 3 corresponds to the time
stamp associated with abstract footprint f;, at a given level
of granularity, e.g., t; could be the month or season in which
the check-in occurred. While we will only consider discrete
time units in the analysis of the lifestyle pattern, assuming
a continuous distribution in the underlying model allows for
a more faithful analysis [10, 31, 29]. The discrete time com-
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Figure 3: Graphical representation of our model.

ponent t; of footprint f; is modelled using a hierarchical
Dirichlet process mixture of Gaussians, which is a distri-
bution suitable to model multimodal variation on an un-
bounded timeframe. In addition, it can maintain tractable
inference. To allow a flexible distribution over time, we use
a Dirichlet process as the mixing measure. In particular, for
each lifestyle topic z;, a distribution p., of temporal compo-
nents is obtained from a Dirichlet process with parameters £
and k, where k depends on the hyperparameter A. Each of
these temporal components p., is associated with a Gaus-
sian 7.;, which has been sampled from a Normal-Inverse
Gamma distribution (whose four parameters are denoted by
€ in the graphical model for simplicity). Note that the com-
ponents of the mixtures of Gaussians are thus shared among
different lifestyle topics, which allows us to model correla-
tions between the evolution of different topics.

The hyperparameters w, 7y, and 7 are estimated from the
data. To this end, we place hyper-hyperpriors or hyper-
hyperparameters on these hyperparameters (not shown in
Figure 3). The idea of using hyper-hyperpriors has already
been adopted in some topic models such as [4, 27], where the
aim is to find the posterior of the hyperparameters based on
the data characteristics rather than explicitly specifying the
hyperparameter values. However, we manually set weak hy-
perparameter values for the priors p, &, A, and ¢, as we found
that automatically inferring the values of these parameters
did not affect the results much in this case, while setting
these values manually makes inference more efficient. The
complete generative process of our model is as follows:



1. Draw a global base distribution over latent lifestyle
patterns alw ~ GEM(w)".

2. Draw a global base distribution over time component
distributions x|\ ~ GEM()\)

3. For each lifestyle topic z = 1,2, -

(a) Draw a distribution over abstract footprints ¥ |p ~
Dirichlet(p)

(b) Draw a distribution over time components p |€, k ~

DP(&, k)

4. For each time component t = 1,2, ---

(a) Draw a distribution over time n;|e ~ Normal-inverse

Gammal(e)
5. For each user document u =1,2,--- ,|U|

(a) Draw the lifestyle pattern ljw ~ w

(b) Draw a distribution over lifestyle topics 0|l, 7, 7 ~
DP (7'[', Tl)

(¢) For each abstract footprint f;,4 =1,2,---,|C| in
the user activity document

i. Draw the lifestyle topic z;|0 ~ 6
ii. Draw the abstract footprint f;|¥.,
~ Multinomial(¥,)
iii. Draw a time component indicator ¥;|u., ~
Hez;
iv. Draw a time-stamp &;|n ~ ng,

3.3 Posterior Inference

We use Gibbs sampling to perform posterior inference. As
in some existing nonparametric topic models [10], we adopt
a marginalization technique to speed up posterior inference,
where we marginalize over the temporal distributions in or-
der to sample lifestyle topics, and then sample the temporal
distribution conditioned on the lifestyle topics. Note that
this only has a minimal impact on the quality of the de-
sired posterior [10]. In order to compute the posterior of
the hyper-hyperpriors, we interleave the Metropolis Hast-
ings (MH) steps between iterations of the Gibbs sampler
to obtain new values of the hyper-hyperpriors. After some
iterations of the sampler, these values are computed and
updated and the sampler moves forward with the updated
values. Computing the posterior of the hyper-hyperpriors
using Gamma distributions has been discussed in [27].

In our model, there is an unbounded number of lifestyle
patterns and an unbounded number of lifestyle topics. Note
that because of the two-level topic structure, existing poste-
rior inference methods such as those used in the HDP model or
in [10] cannot be directly applied. In our model, the Dirich-
let process which is responsible for generating the lifestyle
patterns generates an infinite number of HDPs. Each of these
HDPs is comprised of a time HDP and a lifestyle topic HDP,
which are responsible for generating temporal assignments
and lifestyle topics assignments respectively. The Gibbs
sampling algorithm also has to take into account that topic
distributions might change over time. Although the sam-
pling mechanism which we propose is similar to sampling in

'Recall that GEM is a one-parameter stochastic process
obtained from the Beta(a,b) distribution where a = 1 [24].

other temporal topic models [29, 31, 10], an important dif-
ference is that each of the abstract footprints have their own
time stamp. Therefore, our Gibbs sampler needs to sample
lifestyle topics in the usual way, but in addition, it has to
compute the change in the lifestyle topic patterns over time.
This sampling model is also different from [35], which bor-
rows the Gibbs sampling procedure of the hLDA model [4],
where the sampler determines the topic hierarchies.

To enable Gibbs sampling, we need to derive the sam-
pling equations to generate the lifestyle patterns and topics.
For sampling the lifestyle patterns, we can use the Gibbs
sampling method of the stick breaking construction of the
Dirichlet process mixture model. Specifically, the method
to find out the lifestyle patterns follows the Chinese Restau-
rant Process (CRP) scheme of the Dirichlet process mixture
models. We refer to [11] for a detailed explanation of this
standard sampling procedure. Note that we can only give a
brief overview of the sampling equations of our model in this
section. Some of the derivations are not shown here, as they
can easily be derived from the derivations of the existing HDP
model, as both models make an exchangeability assumption.
For example, sampling the abstract footprint in a lifestyle
topic, conditioned on time, closely resembles the HDP based
sampling mechanism. The only difference is that the vec-
tor of hyperparameters 7, depends on the lifestyle pattern [
assigned to that document.

To generate the lifestyle topics given a lifestyle pattern
[, we use a sampling mechanism with two types of HDPs,
one for the abstract footprints and another for the tempo-
ral component, the latter being associated with a Gaussian
distribution over time. Accordingly, each abstract footprint
will have two assignments: a lifestyle topic assignment and
a temporal assignment. In each iteration, both assignments
need to be sampled.

For abstract footprints, we denote the global pool of lifestyle
topics associated with lifestyle pattern [ as k;. This global
pool is reminiscent of the set of available dishes in the Chi-
nese restaurant Franchise (CRF) analogy for the HDP model.
In addition to the global pool of lifestyle topics, we have
a pool of local lifestyle topic assignments z;, specifying a
lifestyle topic zj; for each abstract footprint f;* in each user
activity document u. This pool of assignments is reminiscent
of the tables in the Chinese restaurant analogy. The mech-
anism is that we first sample a topic k; from the global pool
of lifestyle topics, and then k; is added to one of the local
assignments in the pool z;, which corresponds to assigning
a lifestyle topic to one of the abstract footprints in the cor-
responding user activity document. Each local assignment
can involve several topics ki, as a user activity document is
considered to be a mixture of different lifestyle topics.

Let h;f# denote the conditional density associated with
the abstract footprint f;* in a lifestyle pattern I, given the
mixture component k; and all lifestyle topic assignments ex-
cept fi*. In other words, h;lf# (f#) is the probability that

+* belongs to the topic k;. Throughout this section, when-
ever we place the = symbol, it means that we are ignoring
that variable in the counts. Marginal counts are represented
with dots. Let h denote the probability density function of
H, where H is a base measure. Let g denote one of the
components from G(¥), which is the emission distribution.
As in the usual topic modeling approach, H can be assumed
to be a Dirichlet distribution over the vocabulary and G



is a topic-word multinomial distribution. We estimate the
probability h;f" (f#) as follows:

’
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(1)

where zj; is the lifestyle topic that has been assigned to the
abstract footprint f;* for a lifestyle pattern [. It can be
shown that:
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where n;,, is the number of times an abstract footprint v
has been sampled in a topic z = k; and n;.. denotes the
number of abstract footprints belonging to the topic z = k;.
The form of g(¥y,) is as follows:
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where I' denotes the Gamma function. We also need to
derive the link between the pool of local lifestyle topic as-
signments z; and the global pool of lifestyle topics k;. Let
f7 be the set of all abstract footprints assigned with lifestyle
topic z in the user activity document u. Changing the topic
assignment of all abstract footprints in f;; changes the com-
ponent membership of all data items associated with that
topic. Let us write h;lf“ (£Z%) for the likelihood of the as-
signment of f7 to topic z, given all data items associated
with mixture component k; leaving out f;. It is evaluated
as follows:

fHk;L Hf:‘efi hl(fzuhpkl) Hfﬁ’iff,,vz%:kz hl(fﬁ |\Pkl)g(\pkl)d\pkl

My gez o =, h(f 1 W5,)g (W, )W,
(4)

It can be shown that the above equation can be written as:
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where n;,, is the number of times an abstract footprint v
has been sampled in a topic z = k;, where z is one of the
topics from the global pool of lifestyle topics k; associated

with lifestyle pattern [; n;v‘y denotes the number of times an
abstract footprint v has been sampled excluding the current
abstract footprint for user u from the count, V' denotes the
number of unique abstract footprints in the entire dataset
and nyi. denotes the number of abstract footprints associ-
ated with lifestyle topic z = k;. Let n;.,° denote the number
of abstract footprints with z = k; as one of the topics from
the global pool of lifestyle topics k; associated with lifestyle
pattern ! excluding the current topic assignment.

In order to sample the temporal dynamics of the lifestyle
topics, we define the conditional distribution of the lifestyle
topics given the temporal information. This definition is as
follows:

P2z k, 6, D) P(f 2 7,67 27 97 1) (6)

Let myux denote the number of lifestyle topics associated
with k; in the user activity document u. Let n;,r denote
the number of abstract footprints associated with the global
topic k; in u. Let m;.. denote the total number of lifestyle
topics associated with k; in all user activity documents. Let
r denote the global pool of time components. Let R de-
note the number of time related components which can in-
crease or decrease. Let c;ry denote the number of abstract
footprints associated with lifestyle topic k; drawn from the
global pool and time component 9. Let e, denote the total
number of time components associated with . Then (6) can
be written as:
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Finally, st (t¥) is the posterior predictive time distribu-
tion, defined as follows:

e} 2
/0 Zexp(— 5zl — 77 (- beg)det (1)
where [ is the uninformative location mean prior, & is the
uninformative scale prior, T is the sample mean, n is the
total number of sample points, v is the number of degrees
of freedom and s is the sample variance.

In order to resample the component memberships of all

the data items associated with the lifestyle topic z, we marginal-

ize over the time assignments of all the abstract footprints,
as the sampler will otherwise be too slow to converge. In or-
der to speed up this process, we adopt a selective block based
procedure where we conduct approximation only for a sub-
set of the abstract footprints associated with that lifestyle
topic. We write the estimates as Pest(t), which will be used
to estimate the true Gibbs sampling probabilities. The pro-
cess can be written as:
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4. EXPERIMENTAL RESULTS

In this section we present a number of qualitative and
quantitative results. In particular, we provide several exam-
ples of lifestyle patterns that have been discovered by our
method (Section 4.1), and we illustrate how the model can
be used to analyse the temporal variation in the importance
of lifestyle topics. We present quantitative results related
to lifestyle pattern quality discovery (Section 4.2). We then
present an analysis of the required running time (Section

k; is existing



4.3). We also quantitatively compare our method against
state-of-the-art comparative models on a time stamp pre-
diction task (Section 4.4).

The raw dataset used in the experiments has been ob-
tained from the lead author of [8], who initially obtained it
from Foursquare check-ins reported on Twitter over a pe-
riod of five months. This dataset contains check-in data,
including any associated user comments, but only contains
the IDs of the venues. Using these IDs, we have crawled
additional venue description data from Foursquare using its
public API, collecting the tags, categories, name and lo-
cation of each venue. We refer interested readers to find
the statistics and additional details about the dataset from
[8]. We have considered the following countries in our ex-
periments: USA (approximately 8 million check-ins, 93,501
users and 879,476 venues), India (approximately 800,000
check-ins, 2220 users and 12,277 venues), Singapore (approx-
imately 500,000 check-ins, 1207 users and 18,082 venues),
Hong Kong (approximately 400,000 check-ins, 3788 users
and 5282 venues), Australia (approximately 1 million check-
ins, 1000 users and 30,880 venues) and Indonesia (approxi-
mately 6 million check-ins, 69,805 users and 302,725 venues).
Note that the friendship graph that was used in [35] is no
longer publicly available, due to a change in the sharing
policies adopted by the content providers.

In all experiments, the Gibbs sampler for our model is run
for 1000 iterations, which we empirically found was sufficient
for the parameters of the model to converge. We have set
p = 0.01, £ = 0.02, ¢ = 0.01, and A = 0.05 which repre-
sent weak prior values as we have found experimentally that
selecting different weak prior values did not have much im-
pact on the results. The following Gamma priors have been
placed on the hyperparameter values: w = Gamma(1.0, 1.0),
7 = Gamma(1.0,10.0) and v = Gamma(1.0,1.0). While
these priors have parameters, such hyper-hyperparameters
have a much weaker impact on the inference results than
fixing the original hyperparameters for these distributions
[4, 3].

4.1 Illustrative Example

Figure 4 displays some of the lifestyle patterns that have
been discovered from the USA check-in data by our ap-
proach. In the figures, each dot corresponds to a lifestyle
pattern while each text box shows the most prominent ab-
stract footprints of a given lifestyle topic. Arrows in the
diagram indicate which lifestyle topics are associated with
which lifestyle patterns. Since different lifestyle patterns
can share the same lifestyle topics, overlap between lifestyle
patterns is made clear. To generate these diagrams from
the graphical model, we have adopted the following pro-
cedure. For each lifestyle pattern x, we rank the lifestyle
topics y according to the corresponding Dirichlet parameter
Tay. After the model is trained, it outputs the change in
topic distributions over time. We can use this information
to present results based on any desired temporal granular-
ity level, such as seasons, by doing a post-hoc analysis. For
example, some lifestyle topics will have a high probability in
some seasons and a much lower probability in other seasons.
Figure 4 highlights some topics which are specific to summer
and some topics which are specific to winter.

The lifestyle patterns in Figure 4 intuitively correspond to
students, researchers and office workers. The figure makes
explicit the common aspects of their lifestyles, e.g., every

Restaurant:(LunchTime, Weekday University:(Morning, Weekday)
FastFood:(DinnerTime, Weekday) Gym:(Afternoon, Weekday)
Noodlerestaurant:(Morning, Weekend) Library:(LunchTime, Weekday)
Coffee: (Afternoon, Weekday ) \ Dorm:(Night,AnyDay)
Pizza:(DinnerTime, Weekend) ReadingRoom:(Night, Weekend)

Shopping:(Afternoon, Weekend)
Mall: (Afternoon, Weekend)
Mobilestore: (Afternoon, Weekday)
Shop:(DinnerTime, Weekend)
Market:(Afternoon, Weekend)

Bar:(Night, Weekend) I
Pub:(Night, Weekend)

Hotel:(LunchTime, Weekend)

Shopping: (Afternoon, Weekend)
Restaurant:(DinnerTime, Weekend)

Drama:(DinnerTime, Weekend)
Broadway:(Afternoon, Weekend)
Singingclass:(DinnerTime, Weekend)
Theatre: (Afternoon, Weekend)

Moviehall: (Afternoon, Weekend)
Park:(Morning,AnyDay) |
Field:(Afternoon,AnyDay) X
Greenfield:(Morning, Weekend) /

Walk:(Morning, Weekend)

Playground:(Afternoon, Weekend) ‘

Gym:(DinnerTime,AnyDay)
Exercise:(Morning,AnyDay)
Workout:(Morning, Weekend)
Lifting:(DinnerTime, Weekend)
Running:(Morning, AnyDay)
HotChocolate:(AnyTime, AnyDay)
Tea:(Morning, AnyDay)
Soup:(Afternoon, AnyDay)
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Beer:(DinnerTime, AnyDay)

IceSkate: (Afternoon, Weekend)

Ski:(Morning, Weekend)
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Researchroom:(Morning, Weekday)
Conference:(Morning, Weekday )
Presentation:(Afternoon, Tuesday)
Seminarroom:(Afternoon, Weekday)
Scientifictalk:(Morning, Weekday)

Figure 4: Combined lifestyle patterns of some peo-
ple in the USA. In the figure, the coloured light
green rectangles represent the living patterns in
summer and coloured light red rectangles represent
the living patterns during the winter season.



group is associated with a shopping related lifestyle topic.
Furthermore, the summer and winter specific topics clearly
show how people’s lifestyles change based on the seasons,
e.g., researchers and office workers go to the park in summer
while rather staying at home and reading a book in winter.
Other winter specific topics are related to hot drinks, winter
sports and Christmas shopping.

In [35], lifestyle patterns are modelled as branches of a
tree, where common topics appear towards the top of the
tree, while topics that are specific to particular groups ap-
pear further down. While this tree representation captures
commonalities between different lifestyles in a natural way,
it relies on the rather restrictive assumption that a single
hierarchical clustering of individuals can be found that ex-
plains all commonalities between people’s lifestyle patterns.
In contrast, in our model commonalities are modelled by
having topics that are connected to many lifestyle patterns.
This allows us to model various forms of overlap between
groups of users. For example, a university related topic may
apply to both students and professors (but not office work-
ers), while an office environment related topic may apply
to both professors and office workers (but not students). A
single tree representation would not be able to capture both
types of commonality.

4.2 Lifestyle Pattern Quality Evaluation

We evaluate the quality of the discovered lifestyle pat-
terns by comparing our model with temporal as well as non-
temporal topic models. One recent work that can discover
lifestyle patterns is the one described in [35], which uses the
hLDA model to generate a lifestyle spectrum (i.e. a tree of
lifestyle patterns). We cannot directly apply the full model
from [35] because we do not have access to the friendship
connections it is based on. However, we can compare the
lifestyle pattern quality of our model with the hLDA com-
ponent of their model. As comparative models, we also
use Latent Dirichlet Allocation (LDA) [6], the Biterm topic
model (BTM), which is a topic model suited for short texts
[33], PAM model [20], nPAM model [19], the topics over time
model (TOT), described in [31], and the nonparametric top-
ics over time model (npTOT), described in [10]. These latter
two models can be regarded as the state-of-the-art temporal
topic models. Note that using these comparative models for
our task required us to make some adaptations. In partic-
ular, the original TOT model assumes that each document
has a unique time stamp, which applies to all the words in
that document. Our user activity documents, on the other
hand, contain different footprints, each with their own time
stamp, i.e., the time stamp associated with words is not con-
stant for all words of the document. We modified the Gibbs
samplers for the TOT and npTOT models to allow each word
to be associated with a different time stamp. To analyse
the usefulness of using a mixture of Gaussians, we also con-
sider a variant of our model where the mixture of Gaussians
is replaced by a single Gaussian distribution. We call this
model Variant in our experimental results. Publicly shared
implementations have been used for all comparative models,
except for npTOT and nPAM.

We use the perplexity metric to quantify the lifestyle pat-
tern quality. In order to compute the perplexity for our
model we followed the technical details from [30]. Lower per-
plexity results represent better generalization ability of the
model. In this experiment, the original data was randomly

Table 1: Perplexity results for the raw dataset.
LDA BTM PAM nPAM TOT npTOT | hLDA Variant | Our
US| 32374 | 49832 | 23450 | 31245 | 23982 | 18934 | 45038 | 21758 | 13029

Ind 198 215 212 254 173 154 213 153 132
Sin 213 324 255 301 243 199 243 176 154
HK 156 214 201 205 143 140 197 134 121
Aus | 5483 6847 5223 5558 5321 4382 6785 5201 4219

Indo | 15032 | 20543 | 18503 | 21504 | 18914 | 13754 | 24543 | 20101 12433

Table 2: Perplexity results for the abstract footprint

dataset.
LDA BTM PAM nPAM TOT npTOT | hLDA Variant Our
US | 31832 | 54321 | 22251 | 20432 | 21514 | 15083 | 42874 | 21203 | 12908

Ind 143 178 155 163 154 143 175 119 121
Sin 209 301 201 167 198 154 214 216 122
HK 123 212 175 134 127 132 154 123 109
Aus | 4322 5487 5111 4858 4274 4132 5187 4154 4091

Indo | 13493 | 18732 | 17233 | 20876 | 15786 | 11876 | 21435 | 21492 11234

split into training and testing sets. We learn the parameters
of the model using the training data (75%), and report the
perplexity results on the held-out data (25%). For the para-
metric topic models, we use a tuning set to determine the
number of topics following the tuning procedure described
in [13]. Our objective is to compare how well our model has
learned all parameters and how it performs in terms of its
generalization ability.

Tables 1 and 2 report the perplexity results for the raw
and abstract footprint data respectively. The non-temporal
topic models do not use the timestamps in the user activity
document during parameter estimation. We apply them in
a traditional setting where the entire user document is the
input to the model.

From the results in Tables 1 and 2, we can see that our
model has the lowest perplexity on the held-out data in most
of the datasets. It consistently performs better in the raw
dataset showing its robustness in handling noisy data. For
the abstract footprint data in Table 2, our model also per-
forms best overall, although the Variant model is slightly
better in the India dataset. We also observe that using ab-
stract footprints improves the perplexity of most models,
with the Variant model on the Singapore and Indonesia
datasets being an exception. This clearly shows the use-
fulness of the abstract footprints for dealing with sparsity,
regardless of the specific model being used.

4.3 Running Time Comparison

In this section, we compare the running time of our method
with a number of existing methods. We present results in
terms of the number of CPU hours spent on generating the
topic model (based on the abstract footprints). We used a
single-threaded implementation in the C programming lan-
guage for all models. The models were run on an Intel Core
i7-3820 3.6GHz machine with 64GB of primary memory.
The number of iterations of the Gibbs sampler was set to
1000 in all cases.

As the results in Table 3 show, the latent topic represen-
tations of our model can be found considerably faster than
those of the hLDA model. In this comparison, we applied
hLDA with three levels, which we consider an absolute min-
imum for describing lifestyle patterns. The running time of
the hLDA model, however, depends crucially on the number
of levels, and the model quickly becomes intractable as this
number is increased. The reason why our model generates
latent representations faster than hLDA is that we have a



Table 3: Running time performance in CPU hours.
US |Ind | Sin | HK | Aus | Indo
hLDA 5.50 | 0.55 | 1.02 | 0.23 | 3.45 | 4.32
nPAM 6.02 | 1.03 | 0.55 | 0.31 | 2.33 | 4.11
npTOT 3.24 1 0.54 | 0.56 | 0.20 | 1.45 | 2.23
Variant | 2.25 | 0.29 | 0.35 | 0.14 | 1.33 | 2.11
Our 229 1028 | 0.35 | 0.14 | 1.32 | 2.11

much simpler CRF representation, which speeds up the pos-
terior inference computation. The hierarchical tree gener-
ation, which arranges topics based on their commonalities
also takes up computational resources, whereas similar com-
monalities can easily be obtained as a post-hoc analysis.

Table 3 also shows the running time of npTOT, which is
again slower than that of our model. In particular, the npTOT
model took a considerable amount of time to estimate the
temporal distribution of every abstract footprint in the doc-
ument, as it was not designed with this kind of information
in mind. The Variant model, which is a simpler version
derived from our model, matches the running speed of our
model and is in some cases slightly better.

4.4 Time stamp Prediction

In this experiment we consider time stamp prediction,
where the objective is to predict the month of a given check-
in, given its abstract footprint. We quantitatively compare
our model with TOT and npTOT. Existing non-temporal topic
models such LDA and its proposed extensions cannot solve
this task because they are not designed to handle different
time stamps in the same document and they do not incorpo-
rate time stamp related meta data in their graphical model.
We have split the collection of user activity documents for
each country into a training set (approximately 75% of the
data) and a test set. The model is learned using the training
set, where the time stamps are visible. In the test set, we
hide the time stamps and try to predict the correct month.
We did not randomly split this data, but the testing set
has later timestamps, where we intend to predict the future
events given the past.

To select the number of topics for the TOT model, we used
25% of the training set as a tuning set and trained the model
on the remaining 75% of the training set. We then selected
the number of topics that led to the highest accuracy. Using
the learned model we can predict the time stamp of an ab-
stract footprint by choosing the time stamp the maximizes
the posterior.

We measure the performance of the models using three
metrics described in [31]. Specifically, we use the L1 er-
ror measure, denoted as L1 in our results, and its expected
value, denoted as E(L1). We also compute accuracy. The
L1 and E(L1) error measures are to be minimized while ac-
curacy is to be maximized. Table 4 shows the micro-average
results for two different configurations: one configuration
in which the abstract footprints were used (as elsewhere
throughout this paper) and one configuration where the ac-
tual venue was used instead of the latent venue category. In
this way, we can see to what extent the use of abstract venue
categories helps each of the models. The results clearly show
that our model outperforms the comparative models. The
results again show the usefulness of the abstract footprints
as a mechanism for addressing sparsity. The better perfor-
mance of our model can be explained by the fact that it has

more parameters, which helps it fit the data better. Note
that the issues of overfitting and underfitting are avoided
because the nonparametric nature of our model means that
it automatically chooses the complexity of the model based
on the data characteristics. It can outperform npTOT, which
is also a nonparametric model, because our model generates
two levels of topics, which enables it to better exploit the
correlations between different topics.

The considered time stamp prediction task is a very hard
task, which we believe cannot be adequately solved by simple
methods. Even for humans, for most check-in records we can
only guess in which month they have taken place, but there
are some check-ins where reasonable estimates can be made
(e.g., check-ins at a beach are more likely to be in summer).
We certainly don’t claim that our method can solve this task.
However, we do believe that it allows us to quantitatively
show that our model captures temporal trends in a better
way than the baselines. The fact that the accuracy scores
are only marginally better than random guessing is simply
a consequence of the fact that for many venue types, the
distribution over months is fairly uniform.

The aim of the perplexity and time stamp tasks is simply
to quantitatively show that our model is capturing certain
aspects of lifestyle patterns better than existing methods.
The fact that we have to use these tasks, rather than tasks
which would directly evaluate the quality of the lifestyle pat-
terns, is because this notion of quality is so subjective, and
because testing the effectiveness of deploying such a model in
real-world applications (e.g. advertising campaigns) would
be extremely challenging for which labeled data sets are dif-
ficult to obtain.

5. CONCLUSIONS

We have proposed a text mining framework for analysing
the lifestyles of users of location-based social networks such
as Foursquare. In particular, our framework is based on a
novel topic modelling approach, in which we explicitly ad-
dress the sparsity of check-in data and incorporate a tem-
poral component for analysing how lifestyle patterns change
throughout the year. The output of our method consists of a
set of lifestyle patterns, each of which corresponds to a prob-
ability distribution over lifestyle topics, the latter intuitively
corresponding to soft clusters of related venues. The non-
parametric nature of our model means that we do not have
to specify the number of lifestyle patterns and topics a priori.
Our experimental results show that useful lifestyle patterns
can indeed be obtained in this way, and that the model can
capture the dynamics of lifestyle topics more faithfully than
existing topic models.
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