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Abstract. Vector space embeddings can be used as a tool for learning
semantic relationships from unstructured text documents. Among oth-
ers, earlier work has shown how in a vector space of entities (e.g. different
movies) fine-grained semantic relationships can be identified with direc-
tions (e.g. more violent than). In this paper, we use stacked denoising
auto-encoders to obtain a sequence of entity embeddings that model in-
creasingly abstract relationships. After identifying directions that model
salient properties of entities in each of these vector spaces, we induce
symbolic rules that relate specific properties to more general ones. We
provide illustrative examples to demonstrate the potential of this ap-
proach.

1 Introduction

In this paper, we consider the problem of how we can learn symbolic rules from
unstructured text documents that describe entities of interest, e.g. how we can
learn that thrillers tend to be violent from a collection of movie reviews. Ob-
taining meaningful and interpretable symbolic rules is important in fields like
exploratory data analysis, or explaining classifier decisions, as they can be inter-
preted easily by human users.

A straightforward approach might be to directly learn rules from bag-of-
words representations of documents. However, such an approach would typically
lead to a large number of rules of little interest, e.g. rules pertaining more to
which words are used together rather than capturing capturing meaningful se-
mantic relationships. Our approach instead builds on the method from [6], which
induces an entity embedding from unstructured text documents. Their method
finds directions which correspond to interpretable properties in a vector space,
labelled using adjectives and nouns that appear in the text collection. In partic-
ular, these directions induce a ranking of the entities that reflects how much they
have the corresponding property. For example, in a space of wines, a direction
may be found that corresponds to the property of being “Tannic”, allowing us
to rank wines based on the number of tannins.

In order to obtain symbolic rules, we first derive a series of increasingly
general entity embeddings using auto-encoders (see Section 3). To induce rules
from embeddings, we link properties derived from those embeddings together.



As an example, below is one of the rules we have derived using this method:

IF Emotions AND Journey THEN Adventure (1)

Using a set of symbolic rules that qualitatively describe domain knowledge is a
promising approach to generate supporting explanations. Explanations of classi-
fication decisions can give valuable insight into why a system produces a result.
For example, in fields such as medicine it is important for experts to verify the
predictions of a system and justify its classification decisions [7, 9]. In the domain
of movies, we may have a situation where the synopsis or reviews mention the
words “Emotions” and “Journey”, from which the system could derive that it is
probably an “Adventure” movie and use rule (1) as a supporting explanation.
We note that the ideas presented in this paper may also be directly useful for
explaining predictions of some kinds of deep neural networks.

The rest of the paper explains how we use unsupervised methods to learn
rules such as (1). In Section 2, we recall the method from [6] for identifying
interpretable directions in entity embeddings. Subsequently in Section 3 we detail
how we build on this method using stacked denoising auto-encoders, and how we
induce rules that explain the semantic relationships between the properties that
we discover. In Section 4 we qualitatively examine these properties and rules,
and in Section 5 we place our work in the context of related work. Finally, in
Section 6 we provide our conclusions.

2 Learning Interpretable Directions

In this section, we recall the method from [6] that learns a vector space represen-
tation for the entities of a given domain of interest, such that salient properties
of the domain correspond to directions in the vector space. The method proceeds
in several steps, detailed next.

From bags-of-words to vectors. We use a text collection where each document
describes an entity. For example, if the entities are movies, a collection of movie
reviews. We first learn a vector space of entities using classical multidimensional
scaling (MDS), which takes a dissimilarity matrix as input. MDS is commonly
used in cognitive science to generate semantic spaces from similarity judgements
that are provided by human annotators. It outputs a space where entities are
represented as points and the Euclidean distance between entities reflects the
given dissimilarity matrix as closely as possible. It was empirically found to lead
to representations that are easier to interpret than the more commonly used
singular value decomposition method [5]. To obtain a suitable dissimilarity ma-
trix, we quantify how relevant each term is to an entity using Positive Pointwise
Mutual Information (PPMI). PPMI scores terms highly if they are frequently
associated with an entity but relatively infrequent over the entire text collection.
We create PPMI vectors for each entity using the PPMI values for each word
as the components of its vector, and calculate the dissimilarity between those
vectors using the normalized angular difference. These dissimilarity values are
then used as the input to MDS.



Identifying directions for frequent terms. To discover terms that correspond
to interpretable properties in the MDS space, the nouns and adjectives that
occur in sufficiently many reviews are used as the input to a linear Support
Vector Machine (SVM). The SVM is trained to find the hyperplane that best
separates the entities that contain the term at least once in their associated
textual description. To accommodate class imbalance, we increase the cost of
positive instances such that their weight is inversely proportional to how many
times the term has occurred. To assess the quality of the hyperplane found by the
SVM, we use Cohen’s Kappa score [4] which evaluates how well the hyperplane
separates positive/negative instances while taking class imbalance into account.
We consider terms with a high Kappa score to be labels of properties that
are modelled well by the MDS space. The direction corresponding to a given
term/property is given by the vector perpendicular to the associated hyperplane.
This vector in turn allows us to determine a ranking of the entities, according
to how much they have the property being modelled. This ranking is obtained
by determining the orthogonal projection of each entity on an oriented line with
that direction. It is easy to see that if v is the vector modelling a given property,
then entity e1 is ranked before entity e2 iff e1 · v < e2 · v. Another way to
look at this is that entities are ranked according to their signed distance to the
hyperplane.

Identifying saleint properties by clustering directions. It can sometimes be am-
biguous as to what property each term is referring to. For example, it is un-
clear whether “mammoth” refers to the animal or an adjective meaning large.
In this paper, we have chosen the number of clusters equal to the number of
dimensions. To determine the cluster centers, we first select directions whose
associated Kappa score is above some threshold T+. We use the highest scoring
direction as the center of the first cluster and find the most dissimilar direction
to the first cluster’s direction to get the centre of the second cluster. Continu-
ing in this way, we repeatedly select the direction which is most dissimilar to
all previously selected clusters. By doing so, we obtain a collection of cluster
centres that capture a wide variety of different properties from the space. We
then associate each remaining direction to its most similar cluster centre. In this
step, we consider directions whose associated Kappa score is at least T−, where
typically T− < T+. Finally, we take the average of all directions in a cluster to
be the overall direction for a cluster. The value of T+ should be chosen as large
as possible (given that the terms with the highest Kappa scores are those which
are best represented in the space), while still ensuring that we can avoid choos-
ing cluster centers which are too similar. Choosing the value of T− represents a
trade-off. A cluster of terms is often easier to interpret than a single term, which
means that we shouldn’t choose T− to be too high. On the other hand, choosing
T− to be too low would result in poorly modelled terms being added to clusters.
For example, we would not want to term “Bee” to be added to the cluster for
“Emotional”, even though the direction for “Bee” is closest to that cluster.

Note that as each cluster produced by the above procedure is associated
with a direction, it induces a ranking of the entities. This gives us two ways to



disambiguate which properties a term is referring to: the first being examining
which terms it shares its cluster with e.g. we know that “Mammoth” refers to
the adjective because it is shared with “Epic”, “Stupendous”, and “Majestic”,
and the second being examining which entities score highly in the rankings for a
cluster direction e.g. “Monster” defines a ranking in which “Frankenstein” and
“The Wolfman” appear among the top ranked movies.

3 Inducing Rules from Entity Embeddings

In this section, we explain how we obtain a series of increasingly general entity
embeddings, and how we can learn symbolic rules that link properties from
subsequent spaces together.

To construct more general embeddings from the initial embedding provided
by the MDS method, we use stacked denoising auto-encoders [16]. Standard auto-
encoders are composed of an “encoder” that maps the input representation into
a hidden layer, and a “decoder” that aims to recreate the input from the hidden
layer. Auto-encoders are normally trained using an objective function that mini-
mizes information loss (e.g. Mean Squared Error) between the input and output
layer [2]. The task of recreating the input is made non-trivial by constraining the
size of the hidden layer to be smaller than the input layer, forcing the informa-
tion to be represented using fewer dimensions, or in denoising auto-encoders by
corrupting the input with random noise, forcing the auto-encoder to use more
general commonalities between the input features. By repeatedly using the hid-
den layer as input to another auto-encoder, we can obtain increasingly general
representations. To obtain the entity representations from our auto-encoders, we
use the activations of the neurons in a hidden layer as the coordinates of entities
in a new vector space.

The main novelty of our approach is that we characterize the salient prop-
erties (i.e. clusters of directions) modelled in one space in terms of salient prop-
erties that are modelled in another space. Specifically, we use the off-the-shelf
rule learner JRip [7] to predict which entities will be highly ranked, according to
a given cluster direction, using as features the rankings induced by the clusters
of the preceding space. To improve the readability of the resulting rules, rather
than using the precise ranks as input, we aggregate the ranks by percentile, i.e
1%, 2%, ..., 100%, where an entity has a 1% label if it is among the 1% highest
ranked entities, for a given cluster direction. For the class labels, we define a
movie as a positive instance if it is among the highest ranked entities (e.g. top
2%) of the considered cluster direction. Using the input features of each layer
and the class labels from the subsequent layer, these rules can be used to ex-
plain the semantic relationships between properties modelled by different vector
spaces. We note that one drawback of discretizing continuous attributes is that
the accuracy of the rules extracted from the network may decrease [14]. However,
in our setting, interpretability is more important than accuracy, as we do not
aim to use these rules for making predictions, but use them only for generating
explanations and getting insight into data.



4 Qualitative Evaluation

We base our experiments on the movie review text collection of the 15,000 top
scoring movies on IMDB1 made available by [6]. To collect the terms that are
likely to correspond to property names, we collect adjectives and nouns that
occur at least 200 times in the movie review data set, collecting 17,840 terms
overall. We share terms used for the property names across all spaces.

4.1 Software, Architecture and Settings

To implement the denoising auto-encoders, we use the Keras [3] library. For our
SVM implementation, we use scikit-learn [11]. We have made all of the code
and data freely available on GitHub2. We use a 200 dimensional MDS space
from [6] as the input to our stack of auto-encoders. The network is trained using
stochastic gradient descent and the mean squared error loss function. For the
encoders and decoders, we use the tanh activation function. For the first auto-
encoder, we maintain the same size layer as the input. Afterwards, we halve the
hidden representation size each time it is used as input to another auto-encoder,
and repeat this process three times, giving us four new hidden representations
{Input : 200, Hidden : 200, 100, 50, 25}. We corrupt the input space each time
using Gaussian noise with a standard deviation of 0.6. As the lower layers are
closer to the bag-of-words representation and are higher dimensional, the Kappa
scores are higher in earlier spaces, as it is easier to separate entities. We address
this in the clusters by setting the high Kappa score threshold T+ such that the
number of terms we choose from is twice the number of dimensions in the space.
Similarly, we set T− such that 12,000 directions are available to assign to the
cluster centres in every space.

4.2 Qualitative Evaluation of Induced Clusters

In Table 1, we illustrate the differences between clusters obtained using stan-
dard auto-encoders and denoising auto-encoders. Layer 1 refers to the hidden
representation of the first auto-encoder, and Layer 4 refers to the hidden rep-
resentation of the final auto-encoder. As single labels can lead to ambiguity, in
Table 1 we label clusters using the top three highest scoring terms in the cluster.
Clusters are arranged from highest to lowest Kappa score.

Both auto-encoders model increasingly general properties, but the properties
obtained when using denoising auto-encoder properties are more general. For ex-
ample, the normal auto-encoder contains properties like “Horror” and “Thriller”,
but does not contain more general properties like “Society” and “Relationship”.
Further, “Gore” has the most similar properties “Zombie” and “Zombies” in
Layer 1, and has the most similar properties of “Budget” and “Effects” in Layer
4. By representing a category of movie where “Budget” and “Effects” are im-
portant, the property is more general.

1 http://www.cs.cf.ac.uk/semanticspaces/
2 https://github.com/eygrr/RulesFromAuto-encoders
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4.3 Qualitative Evaluation of Induced Symbolic Rules

Our aim in this work is to derive symbolic rules that can be used to explain
the semantic relationships between properties derived from increasingly general
entity embeddings. We provide examples of such rules in this section. Since the
number of all induced rules is large, here we only show high accuracy rules that
cover 200 samples or more. Still, we naturally cannot list even all the accurate
rules covering more than 200 samples. Therefore we focus here on the rules
which are either interesting in their own right or exhibit interesting properties,
strengths or limitations of the proposed approach. The complete list of induced
rules is available online from our GitHub repository3.

For easier readability, we post-process the induced rules. For instance, the
following is a rule obtained for the property “Gore” in the third layer of the
network shown in the original format produced by JRip:

IF scares-L2 <= 6 AND blood-L2 <= 8 AND funniest-L2 >= 22

=> classification=+ (391.0/61.0)

In this rule, scares-L2 <= 6 denotes the condition that the movie is in the top
6% of rankings for the property “scares” derived from the hidden representation
of the second auto-encoder. We will write such conditions simply as “Scares2”.
Similarly, a condition such as funniest-L2 >= 22, which indicates that the
property is not in the top 22%, will be written as NOT Funniest2. In this simpler
notation the above rule will look as follows:

IF Scares2 AND Blood2 AND NOT Funniest2 THEN Gore3

This rule demonstrates an interpretable relationship. However, we have ob-
served that the meaning of a rule may not be clear from the property labels that
are automatically selected. In such cases, it is beneficial to label them by includ-
ing the most similar cluster terms. For example, using the cluster terms below
we can see that “Flick” relates to “chick-flicks” and that “Amazon” relates to
old movies:

IF Flick2 AND Sexual2 AND Cheesy2 AND NOT Amazon2 THEN Nudity3

Flick2: {Flicks, Chick, Hot}

Amazon2: {Vhs, Copy, Ago}

Rules derived from later layers use properties described by rules from previous
layers. By seeing rules from earlier layers that contain properties in later layers,
we can better understand what the components of later rules mean. Below, we
have provided rules to explain the origins of components in a later rule:

IF Emotions2 AND Actions2 THEN Emotions3
IF Emotions2 AND Emotion2 AND Impact2 THEN Journey3
IF Emotions3 AND Journey3 THEN Adventure4

3 https://github.com/eygrr/RulesFromAuto-encoders



We observe a general trend that as the size of the representations decreases
and the entity embeddings become smaller, rules have fewer conditions, resulting
in overall higher scoring and more interpretable rules. To illustrate this, we
compare rules from an earlier layer to similar rules in a later layer:

IF Romance1 AND Poignant1 AND NOT English1 AND NOT French1
AND NOT Gags1 AND NOT Disc1 THEN Relationships2

IF Relationships2 AND Emotions2 AND Chemistry2 THEN Romantic3
IF Emotions2 AND Compelling2 THEN Beautifully3
IF Warm2 AND Emotions2 THEN Charming3
IF Emotions2 AND Compelling2 THEN Emotional3

Rules in later layers also made effective use of a NOT component. Below, we
demonstrate some of those rules:

IF Touching3 AND Emotions3 AND NOT Unfunny3 THEN Relationship4
IF Laughs3 AND Laugh3 AND NOT Compelling3 THEN Stupid4
IF Touching3 AND Social3 AND NOT Slasher3 THEN Touching4

As the same terms were used to find new properties for each space, the
obtained rules sometimes use duplicate property names in their components.
As the properties from later layers are a combination of properties from earlier
layers, the properties in later layers are refinements of the earlier properties,
despite having the same term. Below, we provide some examples to illustrate
this:

IF Emotions2 AND Actions2 THEN Emotions3

Emotions2: {Acted, Feelings, Mature}

Actions2: {Control, Crime, Force}

Emotions3: {Emotion, Issue, Choices}

IF Horror2 AND Creepy2 AND Scares2 THEN Horror3

Horror2: {Terror, Horrific, Exploitation}

Creepy2: {Mysterious, Twisted, Psycho}

Scares2: {Slasher, Supernatural, Halloween}

Horror3: {Creepy, Dark, Chilling}

IF Touching2 AND Chemistry2 THEN Touching3
IF Touching2 AND Emotions2 THEN Touching3
IF Compelling2 AND Emotional2 AND Suspense2 THEN Compelling3
If Romance2 AND Touching2 AND Chemistry2 THEN Romance 3

IF Emotionally2 AND Emotions2 AND Compelling2 THEN Emotionally3



5 Related Work

The work presented in this paper differs from existing works in that it focuses on
inducing rules which involve salient and interpretable features from unstructured
text documents.

The existing neural network rule extraction algorithms can be categorized as
either decompositional, pedagogical or eclectic [1]. Decompositional approaches
derive rules by analysing the units of the network, while pedagogical approaches
treat the network as a black box, and examine the global relationships between
inputs and outputs. Eclectic approaches use elements of both decompositional
and pedagogical approaches. Our method could be classified as decompositional,
as we make use of the hidden layer of an auto-encoder. We will now describe
some similar approaches and explain how our methods differs.

The algorithm in [10] is a decompositional approach that applies to a neu-
ral network with two hidden layers. It uses hyperplanes based on the weight
parameters of the first layer, and then combines them into a decision tree. Neu-
roLinear [15] is a decompositional approach applied to a neural network with
a single hidden layer that discretizes hidden unit activation values and uses a
hyperplane rule to represent the relationship between the discretized values and
the first layer’s weights. HYPINV [13] is a pedagogical approach that calculates
changes to the input of the network to find hyperplane rules that explain how
the network functions.

The main difference in our work is that our method induces rules from prop-
erties derived from the layers of a network, rather than learning rules that de-
scribe the relationships between units in the network itself. Additionally, we
focus on learning increasingly general entity embeddings from hidden represen-
tations rather than tuning network parameters such that weights directly relate
to good rules.

Another recent topic that relates to our work is improving neural networks
and entity embeddings using symbolic rules [8]. In [12] a combination of first-
order logic formulae and matrix factorization is used to capture semantic rela-
tionships between concepts that were not in the original text. This results in
relations that are able to generalize well from input data.

This is essentially the opposite of the task we consider in this paper: using
embeddings to learn better rules. The rules that we derive are not intended to
explain how the network functions but rather to describe the semantic relation-
ships that hold in the considered domain. In other words, our aim is to use the
neural network representations in the hidden layer as a tool for learning logical
domain theories, where the focus is on producing rules that capture meaningful
semantic relationships.

6 Conclusions

In this paper, we have shown how we can obtain increasingly general entity
embeddings from stacked denoising auto-encoders, and how we can obtain rules



from those embeddings that capture domain knowledge. We have qualitatively
evaluated the obtained rules to demonstrate the semantic relationships that they
capture. The results show the potential of the method for exploratory analysis of
collections of unstructured text documents and explaining decisions of classifiers.
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