
Supplementary File 1: Best Worst Scaling method 
 

Design of the Best Worst Scaling Experiment 
The tasks in the BWS experiment were specified using an orthogonal main-effects experimental 

design that allowed 8 research-impact domains with 4 levels of impact to be tested. An orthogonal 

design allows estimation of the main effects of all research-impact levels independently and has the 

desirable property of level balance, which ensures that all levels of all the research-impact domains 

are equally used in the design (thus they have same likelihood of being presented to a respondent). 

The generated experimental design matrix included 32 rows with each row corresponding to a 

possible combination of research-impact levels, which represents a BWS task. As it might have been 

cognitively difficult for one respondent to evaluate all 32 BWS tasks, the design was divided into four 

blocks so that each respondent was presented with eight BWS tasks. Blocking was specified such 

that there was no correlation between blocking and research-impact levels. The coding of research-

impact levels was chosen to avoid designing tasks (where applicable) showing every research-impact 

at its 'best' level; with every research-impact level at its 'worst' level, and ‘easy to choose’ tasks. 

Modelling Framework 
The aim of the analysis is to derive weights reflecting the relative importance of the research-impact 

levels for the general public and biomedical and health researchers on a common scale. Assuming a 

Random Utility Maximisation framework (McFadden, 1974) and that the random components of the 

utilities are Extreme Value type 1 (EV1) distributed enables the choice data to be analysed using the 

conditional multinomial logit (MNL) model (McFadden, 1974; Train, 2003). Thus the choice of 'best 

research-impact' (i.e., most important) given a set of research impact levels can be described within 

an MNL as follows (Flynn and Marley, 2014): 

𝑃𝑖(𝐵𝑒𝑠𝑡 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ − 𝐼𝑚𝑝𝑎𝑐𝑡|𝑐)  =  
𝑒𝑥𝑝(𝑉𝑖)

∑ 𝑉𝑗𝑗∈𝑐
 

Where: 

Pi is the probability of selecting the 'most important' (best) research-impact level i;  

c denotes the subset of choice alternatives – i.e., research-impact levels that appear in a 

given BWS task out of a total C choice alternatives in the experimental design of 

the study; 

Vi is the observed utility for research impact level i equal to i * Research-Impacti . 

 

The corresponding MNL model for the choice of the 'least important' (worst) research impact can be 

written as (Marley and Louviere, 2005): 

𝑃𝑖(𝑊𝑜𝑟𝑠𝑡 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ − 𝐼𝑚𝑝𝑎𝑐𝑡|𝑐)  =  
𝑒𝑥𝑝(−𝑉𝑖)

∑ (−𝑉𝑗)𝑗∈𝑐
 

where –Vi is the utility of the 'least important' research impact. 

We can similarly write the probability for 'second most-important' and 'second least-important' 

research impact. As per Hensher and Bradley (1993), the variation in the quality and nature of 



responses across 'most important, 'least important', 'second most-important and 'second least-

important' is captured through a corresponding set of scale parameters. As shown in Figure SF1.1, 

Subtask 1 corresponds to the subset of BWS data in which respondents provided their choice for the 

'most important' research impact and Subtask 2 corresponds to the subset of BWS data for choices 

of the 'least important' aspect of research impact. Subtasks 3 and 4 correspond to the subsets of 

BWS data for the 'second most important' and 'second least important' research impacts, 

respectively. For model identification purposes, the scale of Subtask 1 data (1) is set equal to one so 

that the scales of the other three subsets of data (2, 3 and 4) are estimated relative to the scale of 

Subtask 1 data.   

 

Figure SF1.1. BWS model estimation structure 

All parameters are estimated relative to a single research-impact level, which is assigned the value of 

zero. Hence, estimates represent a complete ranking of research-impact levels on a common scale 

and relative to that research-impact level having zero weight. The analysis of the BWS data is also 

aimed at capturing potential bias related to the positioning of the research impacts in the BWS task 

– that is, whether respondents are more likely to select research impacts that appear at the top or 

bottom of a BWS task. We therefore specify and estimate the effect of dummy variables indicating 

the position of the selected research-impact (i.e., top, bottom). 

The analysis reported in Supplementary File 5 explores the variation of preferences across different 

segments of the general-population and researcher samples. For example, do some groups of 

researchers prioritise certain dimensions of impact differently from others; do some groups in the 

general population rate particular research impacts higher than others? Also in Supplementary File 

5, we contrast the valuations of research impacts between the biomedical researchers and general 

public. Given that the BWS parameter estimates between researchers and the general population 

are directly comparable, we express valuations in Years of Life Expectancy. 
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