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Summary 

It has been demonstrated repeatedly, over a period of many years that some animals can 

perceive magnetic field parameters and use this sensory information to their advantage. The 

sensory mechanisms involved are, however, still poorly understood. Due to a general lack of 

understanding of magnetoreception and its properties, experiments to date have been 

somewhat disjointed with many, often very different, investigative approaches being 

employed. As a result, direct corroboration of results is uncommon and progress is often 

slow. 

Advancement of this field is important for numerous reasons, such as improving knowledge 

of factors affecting animal migration in a time of concern over climate change and the 

possible imminent change in Earth’s magnetic field parameters. Perhaps most significantly, 

such studies might provide a potential keystone in the study of the function of quantum 

mechanical processes in biological systems. The current study utilises a novel approach, 

designed to ensure improved reproducibility. 

Reported here for the first time, prepulse inhibition of a startle response is used to 

investigate magnetoreception in the homing pigeon (Columba livia). This powerful, well-

characterised paradigm relies on reflexive behaviours and therefore ensures an objective 

method for demonstrating the perception of a stimulus. Visual psychophysics and polarised 

light vision are also explored. Proof of concept is provided for the use of prepulse inhibition 

to investigate magnetoreception. The value of using liquid crystal displays in an investigation 

of pigeon head movements, in magnetoreception and more generally, is demonstrated. A 

new, low invasiveness technique for tracking head movements is described. The need to 

eliminate anthropogenic electromagnetic signals in order to carry out reliable 

magnetoreception experiments is highlighted. 

Suggestions are also made regarding possible future directions of research in this area. 
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Chapter 1 Introduction 

Magnetoreception (the ability of animals to sense and respond to magnetic field stimuli) has 

become a subject of great interest during the last half century. Many articles have been 

published, including experimental papers in scientific journals as well as frequent reviews 

and correspondences in high impact periodicals (e.g. Wiltschko and Wiltschko 2002; 

Lohmann 2010; Winklhofer 2010). There is also widespread public interest with regular 

articles on the subject in the national media of numerous countries. One of the current 

reasons for this is that magnetoreception may be mediated through the visual system and 

the very recent, exciting idea that quantum effects might facilitate visual magnetoreception 

(Arndt et al. 2009; Ball 2011; Gauger et al. 2011). Finding coherent quantum processes 

functioning in biological systems could have huge implications in a wide range of research 

areas, from informing a new paradigm in the conservation of ecological goods and services 

to helping overcome problems in quantum computing. Logically, an improved understanding 

of how animals navigate also offers great benefit to efforts in areas such as conservation and 

human navigation. 

Despite this widespread interest, surprisingly little is known about this important sensory 

modality (Johnsen and Lohmann 2005). Advances have been made in understanding how a 

magnetic sense might work, but progress in determining the actual mechanism(s) is limited 

by several factors (Kirschvink et al. 2010). Precisely how many, or indeed which, organisms 

possess this sense or its relative importance to each species in unknown. The primary role of 

the work presented in this thesis was to develop a lab-based, easily reproducible assay to 

investigate aspects of magnetoreception. Then to use these techniques, in the first instance, 

to demonstrate the dependence (or otherwise) of magnetoreception on the visual system.  

Magnetoreception has been identified in a wide range of species, both vertebrate and 

invertebrate, aquatic and terrestrial (Figure 1.1) (Lohmann 2007; Reppert et al. 2010; 
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Wajnberg et al. 2010). It is widely accepted that magnetoreception is utilised by many of 

these diverse species as an aid to navigation. In fact, this information may be used to navigate 

both locally and over great distances, such as in seasonal migration, and (sometimes 

ontogenetically changing) manifestations of the sensory modality are expressed by animals 

over a range of life stages (Lohmann 2007; Hellinger and Hoffmann 2009; Wajnberg et al. 

2010; Fuxjager et al. 2011; Putman et al. 2011). 

Recently, it has come to light that magnetoreception may have a role to play in other aspects 

of an animal’s interaction with its surroundings. For example, certain elasmobranch fishes 

have been shown to alter their feeding behaviour in the presence of magnets and it has been 

suggested that magnetoreception could be an explanation for the orientation of foxes 

(Vulpes vulpes) prior to striking their rodent  prey (O’Connell et al. 2010; Červený et al. 2011).  

 

Figure 1.1 A wide variety of species use magnetoreception (Lohmann 2010). 

Additionally it has been suggested that rodents, such as mice and squirrels, may use the 

complex, three-dimensional information potentially provided by visual magnetoreception, 
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to negotiate their immediate environment, quite apart from general, more long distance 

navigation (Phillips et al. 2010). This information could potentially be used for finding food 

caches in seasonally changing surroundings.  

Although this particular field of research is in its relative infancy, thought is beginning to be 

given to the impact of magnetic field distortions on ecosystem function  and potential means 

of avoiding or mitigating harm (Irwin et al. 2004). The European eel (Anguilla anguilla), for 

example, is an enigmatic species, that has received a great deal of research attention recently 

due to its  critically endangered status, which is often attributed to high mortality during 

migration, although little is currently understood about exactly why this might be (van 

Ginneken and Maes 2005; Jansen et al. 2007; Bonhommeau et al. 2009). Magnetic material 

of a biogenic nature has been identified in the lateral line organ (traditionally considered a 

mechanosensory organ) of eels (Moore and Riley 2009). The eel may provide an interesting 

case study on whether the migratory mechanisms of a commercially and ecologically 

significant species are elucidated in time to avoid their possible untimely extinction. 

Aquatic environments provide a number of examples of interesting varieties of 

magnetoreception. Putman et al. (2011) found that loggerhead turtles (Caretta caretta) can 

derive not only longitudinal, but also latitudinal, information using magnetoreception and 

that they might use this information to operate a bicoordinate map system.  

Advancing knowledge of this phenomenon is important for many reasons, among them 

providing a better understanding of ecological function, such as environmental effects on 

animal migration, the potential for the development of biomimetic technological devices for 

navigation, and possible implications for human healthcare. 

Numerous mechanisms have been proposed to explain how a magnetic sense could function 

in animals. The following is a brief overview of the current leading theories: 
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The map/compass sense 

It has been hypothesised that effective navigation requires more than one type of 

information. A memory map can provide information about where features lie in relation to 

each other but this information can only be effectively utilised with reference to an 

orientation, such as a compass bearing. Kramer (1953; 1957) proposed a two stage 

navigational model (Figure 1.2) which has developed into the commonly accepted “Map” 

and “Compass” model of avian navigation.  

 

Figure 1.2 Kramer (1953; 1957) 2 stage navigational model. Adapted from Wiltschko and Wiltschko 
(2009).  

In magnetoreceptive birds, the ability to utilise vector navigation appears to be innate (with 

some species completing their first migration alone), and it is thought that having a 

hereditary urge to migrate along a certain vector to the magnetic field for a certain distance/ 

duration may be the basis for this (Wiltschko and Wiltschko 1972; Berthold and Querner 

1981). This is commonly referred to as compass sense or vector orientation. In addition to 

this, displacement experiments have shown that birds can also draw on experience, using 

environmental cues to recalculate their vector heading based on conditions at their current 

Step 1 

Step 2 

Map 

Compass 
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location (Wallraff 1974). This implies another ‘map-like’ sense, and the use of true 

navigation. Work to date suggests that the compass may be mediated by a 

visual/cryptochrome system, while the map is based on a magnetite system (Beason et al. 

1997; Wiltschko and Wiltschko 2007; Zapka et al. 2009). It has also been suggested that each 

of these mechanisms is utilised by the animal for a different purpose (Wiltschko and 

Wiltschko 2007). The presence of (at least) two separate mechanisms sensitive to magnetic 

fields highlights the likely evolutionary importance of this sensory modality (W. Wiltschko et 

al. 2007). However, Wallraff (1999) claimed that domestic pigeons (Columba livia) are 

unlikely to commonly use a geomagnetic map sense, as this source of information may be 

too unreliable at the local scale for accurate navigation. 

Candidate mechanisms 

The magnetite system 

Experiments have indicated that the application of a magnetic pulse impairs 

magnetoreception in birds, and therefore a magnetic substance must form part of the 

magnetoreceptor (Wiltschko et al. 1994; Beason et al. 1995). Subsequent experiments using 

magnetic pulses indicate the effect may specifically disrupt the map (but not the compass) 

sense of birds (Beason et al. 1997). 

 

Figure 1.3 Transmission electron micrograph of a bacterium showing magnetosomes (Johnsen and 
Lohmann 2008). 
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Two manuscripts written in 1963 (but not published until 2009) describe magnetosensitive 

bacteria, such as that pictured in Figure 1.3, which were found in fresh water whilst 

investigating pathogens (Bellini 2009a; Bellini 2009b). In 1975, the crystals responsible for 

making this magnetosensitivity possible were described and subsequently the biogenic, 

ferromagnetic material, magnetite, was linked with magnetosensitivity and 

magnetoreception in a wide variety of organisms (Blakemore 1975; Johnsen and Lohmann 

2008). It has been suggested that the magnetite system may involve the ophthalmic branch 

(V1) of the trigeminal nerve (V) (Beason and Semm 1996). Sectioning of the ophthalmic 

branch appears to have no discernible effect on the compass sense of birds, supporting 

theories that the magnetite system may be specifically responsible for the map sense 

(Beason and Semm 1996; Zapka et al. 2009). 

Falkenberg et al. (2010) found complex neuronal dendritic systems in which iron minerals 

occur in distinct sub-cellular compartments of the terminals of the ophthalmic nerve, the 

minerals being predominantly Fe III- oxides. They found similar dendritic systems in the inner 

dermal lining of the upper beak of several species of migratory and non-migratory bird, 

suggesting a possible evolutionary significance. Interestingly, trimming of the beaks of 

chickens (Gallus gallus) has been shown to cause magnetic disorientation (Freire et al. 2011). 

 

Figure 1.4 Schematic of nerve ending with magnetite spherules, and enlarged view of a magnetite 
sperule (A) and associated iron platelets (B). Adapted from Fleissner et al. (2003). 
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 Hanzlik et al. (2000) and later Fleissner et al. (2003) used various techniques to investigate 

the nature, and location of the magnetite receptor in pigeons. They concluded that 

magnetite is found concentrated in six specific locations in the beak of pigeons and is 

associated with the necessary nerve endings, which could allow the magnetite to serve as a 

sensory receptor. These findings were accepted by many investigators as reliable, and 

numerous more recent theories of magnetite based magnetoreception in birds have been 

based on the existence of these concentrated areas of magnetite. 

Recently, however, Treiber et al. (2012) carried out an extensive histological study of some 

200 pigeons in order to more accurately describe the distribution of magnetite in the beak. 

Not only were they unable to find any consistency in the distribution of ferrous substances 

in the beaks of pigeons, they also discovered that the majority of objects previously identified 

as magnetite (using Prussian Blue staining, which identifies iron) were actually macrophages. 

The implication of this finding is that there is now little evidence to suggest that the 

magnetoreceptor lies within the beak. Although it still remains possible the beak is involved, 

there have recently been promising developments in investigations that implicate areas of 

the inner ear and vestibular system in magnetoreception (Wu and Dickman 2012; Ward et 

al. 2015). 

The cryptochrome (radical pairs) system 

Another magnetoreceptive mechanism has been proposed that depends on changes in the 

magnetic field inducing different yields in biochemical reactions. Based on quantum 

mechanics, theories have developed that involve a proposed radical pair process, which may 

utilise quantum effects, to deliver this change in yield (Schulten 1982). Only recently has this 

been demonstrated to be feasible, as the forces exerted by the magnetic field were 

previously suspected to be too low to have a physical effect on biological systems (Rodgers 

and Hore 2009). However, gradually, this theory has gained favour due to increasing 
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experimental and theoretical support, and the flavoprotein, Cryptochrome (Cry), found in 

the visual system of many animals, is a strong contender as the biological molecule 

responsible for the process (Schulten 1982; Ritz et al. 2000; Møller et al. 2004; Henrik 

Mouritsen et al. 2004; Ritz et al. 2004; Rodgers and Hore 2009; Phillips et al. 2010). 

There is also a growing body of evidence that the radical pair process is dependent on light, 

with both wavelength and intensity of ambient light having an effect on magnetic orientation 

(R. Wiltschko et al. 2007a; R. Wiltschko et al. 2007b; W. Wiltschko et al. 2007; Gegear et al. 

2008). Gegear et al. (2008) used a behavioural assay to demonstrate that cryptochrome from 

monarch butterflies (Danaus plexippus) requires light wavelengths of 420nm and below to 

function and that, when expressed in transgenic fruit flies (Drosophila melanogaster), the 

flies could use it in detecting magnetic fields. 

 

 

Figure 1.5 A, Photo-excitation results in an electron being moved from a donor molecule (D) to an 
acceptor molecule (A). The spin of the unpaired electrons can be opposite (singlet state) or parallel 
(triplet state); B, This in turn affects retinal response (e.g. neural influence of cryptochrome); C, 
Resultant visual modulation patterns affected by orientation to magnetic field (Liedvogel 2009).  
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Heyers et al. (2007) proposed a visual pathway where retinal neurones propagate the 

sensory signal via the thalamus to the forebrain region known as “cluster N”. In support of 

this hypothesis, lesioning of cluster N in European robins (Erithacus rubecula) resulted in 

disorientation (Zapka et al. 2009). 

Manipulated magnetic fields have been used to disrupt the cryptochrome system. Oscillating 

fields of 1.315 MHz in parallel to the local magnetic field did not appear to change 

orientation, however, when presented at a sufficient angle (over 24°), these fields 

disorientated European robins (Thalau et al. 2005). Disorientation was also observed in 

chickens subjected to an oscillating field of 1.566 MHz (W. Wiltschko et al. 2007). 

Even human cryptochrome has been shown to function as a magnetosensor in transgenic 

fruit flies, and its function is dependent on the wavelength of ambient light, lending support 

to the idea that magnetoreception may involve the visual system in some way (Otsuka et al. 

2001; Foley et al. 2011). 

Inclination/Declination 

There is mounting evidence that many species, including birds, use inclination of magnetic 

field lines rather than polarity to judge direction (Wiltschko and Wiltschko 1972; Light et al. 

1993; Wiltschko et al. 1993; Vacha et al. 2008; Solov’yov and Greiner 2009). The magnetic 

field lines have a specific inclination (deviation from horizontal) in relation to a given point 

on the Earth’s surface. At the equator, the field lines are parallel to the Earth’s surface and 

have an inclination of 0˚. At the magnetic North Pole, they have an inclination of 90˚ and at 

the magnetic South Pole -90˚. Thus, latitudinal location can be approximated given the angle 

of inclination in a given place. This theory does not fully explain how a bird might avoid 

becoming disorientated in equatorial regions, although complementary information from 

(for example) olfactory or celestial cues could theoretically solve this problem. It is 

interesting to consider that this situation is often considered in terms of a standardised 
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dipole when, in fact, the Earth’s magnetic field is asymmetric due to the influence of solar 

wind (to varying degrees) contracting the extent of the field on the side of Earth nearest the 

sun and drawing it further away from the planet on the ‘leeward’ side. There is little if any 

discussion about the effects that this distortion might have on avian navigation. In 

experiments described in Chapters 3 and 6, the inclination angle is flipped by inverting the 

vertical aspect of the ambient magnetic field. 

Declination is the deviation of the direction of magnetic North in a given place from the 

direction of true North (defined by the Earth’s axis of rotation) and varies temporally due to 

irregularities in the movement of the Earth. Due to the inherent variability of magnetic 

declination, it is considered unlikely to contribute to navigation as meaningfully as 

inclination, polarity or intensity. 

Combined system 

The, at times somewhat fierce, debate over whether the magnetite or cryptochrome system 

really holds the key to understanding magnetoreception has recently developed into a 

widely held view that both systems may well be actively involved (Jensen 2010; Wiltschko, 

Gehring, et al. 2010; Wiltschko et al. 2011). Several experiments have demonstrated that, 

when one system or the other is disrupted, certain aspects of magnetoreception remain 

functional and that, to some extent, one modality may be able to compensate for 

underperformance in, or loss of, the other (Wiltschko et al. 2005; Jensen 2010; Wiltschko, 

Stapput, et al. 2010; Hein et al. 2011). 

However, it would appear that each system actually carries out a distinct role and that the 

two mechanisms complement each other, each making a different contribution rather than 

one simply being an evolutionary upgrade of, or substitute for, the other (Wiltschko et al. 

2005; R. Wiltschko et al. 2007a; Wiltschko et al. 2010). Beason and Semm (1996) found that, 
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having administered a magnetic pulse and thus rendering birds disorientated with regard to 

magnetic fields, sectioning of the ophthalmic branch (V1) of the trigeminal nerve alleviated 

this disorientation, and magnetoreception appeared to return. This suggests that, when one 

system malfunctions, it may send conflicting neuronal information and confound the effect 

of the other system, which may otherwise be functioning normally. Another investigator 

commented that interference with the olfactory system could unwittingly affect the 

magnetic system giving a misleading indication that olfaction may be involved (Mora et al. 

2004). This finding highlights the potential complexity of the system underlying 

magnetoreception and the importance of careful experimental design if a specific question 

or mechanism is to be successfully answered or determined. Inverting the vertical 

component of the ambient magnetic field resulted in an axial disorientation where birds 

tended to orient in the opposite direction as opposed to random directions, an effect which 

did not appear to vary with the age of animal (Freire et al. 2005). 

The protein bio-compass 

Towards the end of the period of preparation of this thesis, another potential mechanism 

was proposed, one which provides a concise way in which both magnetite and cryptochrome 

might function together as a magnetic ‘protein bio-compass’ (Qin et al. 2015). In this 

proposed mechanism, a protein complex referred to as magR, containing ferromagnetic 

particles, possibly magnetite, is associated with light dependent cryptochrome (Cry) 

molecules in such a manner that electron transport is possible between the two. Qin et al. 

(2015) discovered that this association does indeed seem to be in evidence in the retinae of 

homing pigeons, and describe a possible mechanism for this complex being sensitive to 

polarity, intensity, and inclination of Earth-strength magnetic fields. 
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Figure 1.6 Proposed protein bio-compass of Qin et al. (2015). Magnetoreceptors orientate spatially 
to the ambient magnetic field, whilst associated cryptochromes contribute, via a light-mediated 
response, information about intensity.  

This proposed mechanism is however, relatively new in the literature, and robust 

validation/corroboration is yet to take place. This does however, offer one theory that could 

explain how the two main proposed mechanisms, may function complimentarily. 

Electroreception 

As well as magnetite and radical pair mechanisms of magnetoreception, it has been 

theorised that some highly electroreceptive species, such as elasmobranch fishes, may use 

electrical induction to detect magnetic field gradients although more experimentation is 

needed to assess if that is the real mechanism (Johnsen and Lohmann 2008; Molteno and 

Kennedy 2009). If true, this could have further evolutionary implications as to the origin of 

magnetoreception. 
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Polarised light 

It is widely accepted that a broad range of species, both vertebrate and invertebrate, can 

sense and derive spatial information  (such as the position of the sun) from polarised light 

(Von Frisch 1967; Greenwood et al. 2003; Johnsen et al. 2011). Recent findings suggest some 

predatory marine species use this information to aid visual acquisition of food items although 

most work has been centred on understanding how species use the information for 

orientation (Stephens et al. 1953; Von Frisch 1967; Freake 1999; Dacke et al. 2003; Johnsen 

et al. 2011). It has been suggested (Able 1982; Moore 1986) that migratory birds use 

polarised light in migratory orientation, and subsequently many studies have provided 

evidence to support this proposal with a range of migratory species using experimental 

manipulations of polarised light (Moore and Phillips 1988; Able 1989; Helbig 1990; Able and 

Able 1993; Able and Able 1995; Muheim et al. 2006; Muheim et al. 2007). The mechanisms 

for detecting polarised light and its specific utilisation by different species remain elusive. 

Although some progress has been made, most studies have been on insects (Labhart and 

Meyer 1999). The range of possible mechanisms is fascinating with some means of polarised 

light sensing not even being reliant on the eye (Phillips et al. 2001). 

There is a paucity of information regarding the ability of pigeons to sense polarised light 

(Horváth 2014). Delius et al. (1976) found that pigeons could correctly distinguish between 

different e-vectors (planes of polarisation) in a conditioning experiment, but this was 

contradicted by subsequent findings (Coemans et al. 1990; Vos Hzn et al. 1995). 

Discrimination between a stationary or rotating axis of polarisation appeared to be possible 

for some birds in a conditioning experiment (Kreithen and Keeton 1974). Furthermore, 

certain species of bird may use polarised light at certain times of the day to calibrate their 

magnetic compass sense (Phillips and Waldvogel 1988; Muheim et al. 2007). 
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An advancement of our understanding on whether and how pigeons use polarised light cues 

would be useful. It has been suggested that certain parallels between magnetic and polarised 

light sensing could be due to a shared system (Muheim 2011). If pigeons are in fact sensitive 

to polarised light, then more knowledge about the function of this system may potentially 

shed light on the mechanism of visual magnetoreception (and vice-versa). Very recently, it 

has even been proposed that there may be some direct interaction between perception of 

skylight polarisation, and the ability to discriminate magnetic field information (Muheim et 

al. 2016). Although not a primary focus of the research in this thesis, the involvement of 

polarised light in possible magnetosensory mechanisms is very intriguing. A novel 

experiment is carried out to try to identify a reliable response to e-vector stimuli in pigeons, 

and in Chapter 7, an entirely original theory, of the author’s own devising, is proposed. 

Experimental design 

Magnetoreception is a difficult phenomenon to investigate, partly due to human inability to 

(at least readily) experience such a perception but even more so because of our limited 

understanding of the processes involved, such that there are not many logical starting points 

for investigation. The major difficulty is the lack of reproducible assays that can powerfully 

test aspects of the mechanisms involved, resulting in too little corroboration (or otherwise) 

of findings and little scope for pursuing new ideas (Harris et al. 2009; Kirschvink et al. 2010). 

In view of the fact that many animals display observable responses to one or more aspects 

of the magnetic field, it is necessary to develop behavioural experiments that can be used to 

investigate the different properties and limits of magnetoreception (Rodgers and Hore 2009; 

Kirschvink et al. 2010). Interdisciplinary study is one potential stepping stone to overcoming 

these problems. The inability of the average behavioural biologist to accurately manipulate 

magnetic fields (spatially and/or temporally) as well as light conditions constrains the 

development of new assays in this area. Conversely animal behaviour is not the normal field 
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of interest or expertise for many engineers. A recent collaboration in these areas here at 

Cardiff University has led to the development of equipment that is capable of accurately 

manipulating the temporal and spatial features of an artificially generated Earth-like 

magnetic field, designed specifically to meet the above mentioned needs (Migalski 2010). 

A large body of work has been developed using homing pigeons as test subjects because: 

they are readily available; have (comparatively) well studied physiology and behaviours; and 

navigate readily without the need for seasonal migratory restlessness (Zugunruhe). 

Reproducible experiments have been designed using anuran amphibians and insects 

(Wajnberg et al. 2010; Landler and Gollmann 2011). However, the study of amphibians 

depends on the animal experiencing migratory restlessness, and knowledge of the 

mechanisms involved in insect magnetoreception has not advanced as much recently as it 

has in birds (Mouritsen and Ritz 2005). 

Migalski (2010) demonstrated that, using a dynamically controlled configuration of 

Helmholtz coils, features of a computer generated Earth-like magnetic field that a test bird 

is exposed to can be accurately manipulated and that this can elicit a qualitative and 

potentially quantitative behavioural response. Mouritsen et al. (2004) observed that birds 

conduct “head scans” (turning of the head through more than a pre-determined number of 

degrees from forward facing) prior to taking off.  
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Figure 1.7 Magnetic field affects head scanning behaviour. Head scans per hour under a range of 
magnetic field conditions. Natural magnetic field daytime (NMF – light), natural magnetic field night 
time (NMF),  changing magnetic field (CMF) and zero magnetic field (ZMF) from Mouritsen et al. 
(2004).  

 In a zero-magnetic field, the number of such scans increased almost three-fold and the 

movement direction on take-off changed from consistent (natural migratory direction) to 

random. This formed the basis for part of a previous study (Migalski 2010), which 

demonstrated that these head scans can be provoked by transitions between different field 

conditions produced by the Helmholtz coil apparatus.  

 

Figure 1.8 Latency of the response (1st head movement > 10°) to field transitions (NF = null Field, SF 
= Static Field, CW = Clockwise sweeping field, CCW = Counter Clockwise sweeping field, error bars 
indicate 1 S E). Figure from Migalski (2010).  
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One objective of the current investigation is to further refine this technique to the point of 

achieving a consistent, reliable experimental approach, which evokes easily measurable and 

more reflexive behavioural responses and, if possible, to use this to assess whether (and if 

so, how) magnetoreception depends on visible light. 

Outline of methodology 

The following sections give an overview of the approaches used to investigate 

magnetoreception in this thesis. Detailed methodology is contained in Chapter 2. 

Helmholtz coils 

In the first instance, an attempt was made to identify spontaneous head movement 

responses to magnetic manipulations made by Helmholtz coils, after Migalski (2010). This 

involved simultaneously making various improvements to the equipment, such as increasing 

the size of the coils, and hence the volume of the experimental arena. 

Optocollic reflex 

An original experimental setup was also designed to investigate the psychophysics of the 

optocollic reflex (an involuntary head movement response to whole-field drifting visual 

stimuli). This would ultimately facilitate investigation into polarisation e-vector vision and 

visual psychophysics in general, and pave the way for such experiments to be carried out 

under magnetic manipulation in order to assess the possible impact of the ambient magnetic 

field on visual perception. 

Optokinetic reflex (OKR) is a visuomotor response that involves an involuntary eye and/or 

head (or occasionally even whole body) movement response to a specific type of moving 

large visual field stimulus, which occurs only if the stimulus is perceived, making it a good 

indicator of perception. The optocollic reflex (OCR) is the head movement component of 
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OKR, with optokinetic nystagmus (OKN) and optomotor response (OMR) being the 

movements of the eyes and whole body, respectively. OKR has been used extensively to 

investigate vision in birds and other animals and can be used in pigeons despite the lateral 

eye position changing some of the standard dynamics observed (Wylie and Crowder 2000; 

Crowder et al. 2003; Crowder and Wylie 2002; Maurice and Gioanni 2004). For example, a 

type of OKR could be used involving a rotating drum with slits allowing light through it to 

elicit an OKN response in a pigeon. The light allowed to reach the eye via slits could be at one 

extreme of the wavelength spectrum that can be seen by pigeons, i.e. 365nm (after 

Emmerton and Delius (1980)). If a change in magnetic field conditions alters the perception 

of light wavelength, then a light of wavelength 370nm may change from visible (OCR 

response) to invisible (no OCR response). This would have to be tested at just above and just 

below both maxima and minima of wavelength sensitivity with a variety of magnetic field 

manipulations. However, a proof of concept study could potentially be carried out quickly 

due to the qualitative nature of the response/no response paradigm and, if successful, could 

enhance our knowledge about the sensory limits of the visual and/or magnetoreception 

systems as well as confirming any link between the two.  

Startle/Prepulse Inhibition 

The acoustic startle response (ASR) is mediated by a simple set of sensory and motor neural 

circuits, and has been demonstrated to be a good test of perception, as it can be reliably 

attenuated by a prepulse inhibition (PPI) (if a particular prepulse stimulus is perceived, an 

altered ASR is elicited) (Koch 1999; Swerdlow et al. 2001). 
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Figure 1.9 Principle of prepulse inhibition (PPI) adapted from (CopperKettle 2007). ISI = inter 
stimulus interval, Pulse = acoustic startle stimulus, prepulse = sensory stimulus (e.g. light, touch, 
magnetic field change).  

The principle of prepulse inhibition arises from sensory-motor gating whereby the brain can 

only process and respond to a finite amount of information in a given moment. If a subject 

is repeatedly startled by a loud noise (ASR) or a flash of light, a response baseline can be built 

up giving a clear picture of the typical startle response of that subject. Then, if a prepulse 

stimulus (any stimulus which can be perceived by the subject, but does not cause a startle 

response) is delivered a short time before the startle stimulus, the sensory systems are 

effectively overwhelmed and the magnitude of the startle response is reduced (i.e. 

inhibited). In essence, the perception of a prepulse reduces the amount of perception of the 

startle stimulus, and hence the amount of response to it. Various aspects of the paradigm 

can be modified to give the best results in a given circumstance. The prepulse and startle 

stimuli can be adjusted in terms of magnitude (volume of sound/brightness of light, etc.) and 

duration (usually in ms). The time between prepulse and startle stimuli, the inter stimulus 

interval (ISI), also in ms, can also be adjusted, as can the interval between trials or repeats of 

the experiment, i.e. the inter trial interval (ITI). Usually many trials are carried out to gather 

Baseline response 

Inhibited response 
ISI 
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a robust data set, and startle only and prepulse trials are alternated, so that a comparison 

between the response to each can be made, accounting as much as possible for any order 

and/or habituation effects. 

The duration of the acoustic startle stimulus has an effect on the startle response, and in 

rats, 8-10 ms has been suggested as optimal because anything less than 8ms reduces ASR 

amplitude whereas for durations above 10ms, no further increase is observed (Blaszczyk, 

2003). Other effects have been found in pigeons with prepulse stimuli 15-2000 ms prior to 

startle inhibiting the amplitude of response and those presented less than 10 ms before the 

startle stimulus reducing the latency of response (Stitt et al. 1976). 

Siqueira, Vieira and Ferrari (2005) used a chamber with sensors in the base to assess the  

magnitude of startle in pigeons and found especially good responses in the subjective night 

time, this suggests that such a technique could effectively be used to measure PPI (with 

change in magnetic field being the prepulse stimulus) in both light and dark conditions. 

Atkinson et al. (2008) had difficulty using this method to measure PPI in chickens (ISI<500ms) 

and found that, although it could be done, it only worked well in certain strains of the species. 

This may indicate that there might also be a potential for variability between individual birds 

within a species, i.e. during a pigeon study. Background noise, intensity and duration of 

startle stimulus and prepulse, and the time period between the two, are all important 

variables in experimental design of PPI paradigms. 

As the response measured is reflexive, under properly controlled conditions, PPI is a very 

reliable measure as no bias is introduced through training of subjects. The principle of PPI 

works powerfully to indicate whether the prepulse stimulus is perceived, as, by definition, 

perception of the prepulse will result in some attenuation of the startle response. This gives 

the opportunity to measure accurately whether subjects can perceive magnetic field 
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changes, without the need to know where the sensory reception mechanism resides within 

the body, how it works, or where in the brain the information is processed. 

The intention was to use the Helmholtz coils to deliver magnetic field manipulation prepulses 

in a way that is entirely novel and, if successful, might facilitate many extended experiments 

involving the titration of the wavelength of ambient lighting, time of day, and almost any 

other potential variable that becomes relevant in the future. 

Operant conditioning 

Operant conditioning has been used in many species to assess their ability to perceive 

magnetic (or other sensory) stimuli (for review see Mora, Davidson and Walker (2009)). 

Although there has been some success in using operant conditioning in pigeons to investigate 

magnetoreception, on the whole such assays are often inconclusive (Mora et al. 2004; R. 

Wiltschko et al. 2007a). Suggested reasons for this include possible difficulty in associating 

magnetic stimuli with reinforcement, changes to the magnetic stimulus being significantly 

different from those that the animal might naturally encounter, and the possibility that 

animals may at times disregard magnetic field stimuli altogether (R. Wiltschko et al. 2007b). 

The area of operant conditioning, specifically with regard to investigating magnetoreception 

in pigeons, is another good example of the need for inter-disciplinary study, in this case 

requiring skills in both biology and psychology (at least) to design and interpret a meaningful 

assay. It is interesting to note that some of the more successful previous studies involved a 

more open arena (i.e. with more, if still limited, space to move) rather than a traditional 

Skinner box approach in which a subject is closely confined and offered buttons or levers to 

press to indicate a response to a learned cue (Bookman 1977; Mora et al. 2004; R. Wiltschko 

et al. 2007a). 
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An experiment carried out by Mora et al. (2004) found that pigeons could discriminate 

between spatially varying magnetic stimuli in a way that could be refined and adapted to 

examine the sensory limits of magnetoreception from the point of view of light dependence. 

That is, the same experiment could be repeated with a range of light wavelengths and 

intensities to explore functional requirements of visual magnetoreception. Before this could 

be reliably informative, however, it would have to be clearly established whether the 

magnetite, cryptochrome or other system is in play, a confounding factor in many 

magnetoreception studies. Although impairment of one or more systems could be used to 

isolate that which is under investigation, caution would be advisable to avoid introducing 

further complication (i.e. suppression of an animal’s behaviour in general due to 

discomfort/disorientation or inadvertently impairing the system under investigation). Having 

considered these factors, it was decided that the use of conditioning paradigms was beyond 

the scope of this investigation, and did not offer the potential for robust, reproducible data 

gathering that the other techniques discussed could provide. 

The following chapter gives more detailed information about the construction of apparatus, 

and design of experiments. 
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Chapter 2 Materials and development of methods 

All work reported in this thesis was done in strict accordance with relevant animal welfare 

regulations, and carried out under Home Office licence where necessary, in compliance with 

the Animals (Scientific Procedures) Act 1986, as amended, which encompasses EU Directive 

2010/63/EU. Home Office project licence numbers were 30/2724 and 30/3144. Pigeons were 

obtained from a local homing pigeon breeder, and were housed in mixed sex pairs. 

Controlling the ambient magnetic field 

Helmholtz coils can be used to accurately control the intensity of the ambient magnetic field 

with a high level of uniformity. This technique is commonly used in scientific experiments to 

cancel out aspects of the geomagnetic field. A pair of symmetrical coils placed along a 

common axis will generate a flux along that axis, which, when properly controlled, can 

enhance, reverse, or negate the intensity of the ambient magnetic field on that axis. 

 

Figure 2.1 A typical Helmholtz coil arrangement (Ansgar Hellwig 2005).  

 

 

I - Current 
R - Radius of coil 
X - Direction of 
magnetic flux created 
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The following formula allows calculation of the intensity of the magnetic field along the 

common axis of the coils (after Migalski 2010). 

R

NI
H 715.0  

Formula 2.1 

Where:  

 H- magnetic field intensity [
m

A
] 

 N – number of turns [-] 

 I – current inside the coil [A] 

 R – radius [m]  

The placement of three pairs of Helmholtz coils, in an orthogonal nested arrangement such 

that each pair has its common axis along one of the three physical dimensions (i.e. x, y, z 

axes), allows 3 dimensional control of the ambient magnetic field in such a way as to be able 

to enhance or negate all aspects of it. This means that the ambient magnetic field can be 

cancelled out completely (a new approach to behaviour experiments, developed for this 

research), and a new field effectively superimposed on the space inside the coils. Aspects of 
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the field that can be altered, which are desirable for the planned experiments, include overall 

intensity, polarity, and vertical inclination of the field.  

 

Figure 2.2 Line diagram of one circuit of the Helmholtz coils system (from Aldoumani et al. 2013) 
and expanded view of 3 axis magnetometer (PA = Power Amplifier, DAQ = Data Acquisition Card, R 
= resistor).  

Figure 2.2 shows a single circuit or channel of the coil system. By sampling the intensity of 

the ambient magnetic field in all three axes, software can, via an external control card, send 

the appropriate signals to the amplifiers, such that the precise current required in order to 

generate the desired magnetic field is delivered to the coils. This principle was successfully 

employed by Migalski (2010) and, for this thesis, was carried out using greatly improved 

software, developed by Tomasz Kutrowski (Cardiff University), with the technical assistance 

of Noor Aldoumani (Cardiff University), as well as testing and development feedback carried 

out by the author. 

General rationale for use of Helmholtz coils 

Nested Helmholtz coils offer several advantages over other methods of manipulating the 

geomagnetic field, such as use of permanent magnets, electromagnets, and 1 or 2 axis 

Helmholtz coils. The main advantages are that the field can be altered very subtly if desired, 

with the possibility of great precision in producing and adjusting fields (permanent magnets 

allow no such inherent adaptability), and three dimensional control of the magnetic field, 
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such that all aspects of a ‘natural’ field can be emulated, and manipulated temporally, 

including inclination. Together these advantages facilitate the generation of a field which is 

theoretically very similar to the normal field an animal might ordinarily experience. Many 

past experiments in the area of magnetoreception research have employed magnetic 

manipulations which simply change the ambient field ‘a lot’, with little control, adaptability 

or reproducibility between experiments, an issue which has arguably slowed progress in the 

research field, and which was addressed in the PhD thesis of Migalski (2010). 

The coil system of Migalski (2010)  

 

Figure 2.3 The Helmholtz coil system used by Migalski (2010). 

Figure 2.3 shows the older coil system used by Migalski (2010). Note the confined 

experimental area and the three axis magnetometer, which must be removed during 

experiments (after a sample of the ambient field has been taken). 

Whist the experiments of Migalski (2010) did appear to yield some meaningful results, 

showing that the three axis Helmholtz coil approach is worthy of further use, there were 

some limitations which the current research sought to overcome. Firstly, the Migalski (2010) 

experiments depended on physical shielding (5 layers of mumetal) in order to block the 

Magnetometer 

20 cm 
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ambient magnetic field, allowing the coils to generate the desired field in its place. The 

experiments were also carried out inside an insulated room which blocked radio frequency 

electromagnetic signals. This room was used partly out of convenience, and was not at the 

time considered essential as deliberate manipulations of the magnetic field were of 

significantly greater intensity contrast than the oscillations of these signals. Programming 

was carried out by a summer research student (Dominic Walker) and a post-doctoral 

research associate (Dr Tomasz Kutrowski) on the software used to operate the coils, which 

allowed the ambient field to be actively compensated for. That is, the natural field could be 

actively cancelled out, and the desired field superimposed, without the need for expensive, 

cumbersome physical shielding. The second desired development was to substantially 

increase the volume of uniformly controlled magnetic field within the coils from 10x10x10cm 

to 30x30x30cm, thus allowing a broader range of behavioural experiments, as well as 

uniformly controlling the field that the whole subject is exposed to, rather than only the head 

as in Migalski (2010). This required making a new, larger coil system, something difficult to 

achieve when previously reliant on the available physical shielding. 

The new coil system 

Early in the design process, thought was given to how visual psychophysics might be 

investigated whilst simultaneously manipulating the magnetic field. This could potentially 

provide some means of indirectly measuring an animal’s response to magnetic stimuli. 

Although beyond the scope of the current research, the coils can only be built once within 

the constraints of the project, and so attempts were made to predict what parameters would 

be useful.  

Figure 2.4 shows an example of one postulated way that visual psychophysics might be 

explored whilst manipulating the magnetic field. A series of visual stimuli could be presented, 

for example drifting horizontally, and their effects on the Optocollic Reflex (OCR) response 



28 
 

could be investigated during field manipulation. It is known that pigeons can see a greater 

range of visual light wavelengths than humans, (Bowmaker 1977), and there are various 

reasons to suspect some role of visible light in magnetoreception generally (see Chapter 1 

Introduction). Therefore, it was considered advantageous to be able to present stimuli 

consisting of light at a variety of frequencies. 
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Figure 2.4 An example of an early idea for presenting visual stimuli within the Helmholtz coils 
without interfering with the magnetic field.  

1m 
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Figure 2.5 Comparison of human and pigeon photopigment sensitivity (Bowmaker, 1991). Each peak 
represents the maximal activation of a particular photoreceptor cone. 

With a view to being able to carry out a range of experiments including presentation of visual 

stimuli in the future, the larger set of Helmholtz coils was designed and built. Much of the 

technical work of drawing and designing the coils was carried out by Noor Aldoumani, as part 

of her PhD research study, being carried out in parallel to that of the author’s. The author 

contributed significantly to the creative process of designing the coils with regard to the 

envisaged requirements of future experiments. Significant contributions were also made by 

Dr Tomasz Kutrowski, Dr Turgut Meydan (Cardiff University), and Prof. Jonathan Erichsen 

(Cardiff University). 

 

Figure 2.6 the new Helmholtz coil system, in situ in the laboratory. 

Aperture for lighting of 

experiments, as well as 

filming of video 

Perspex box used to confine 

the pigeon to the centre of 

the coil system 
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Testing of new coil system 

The uniformity of the magnetic field generated by the new coil system was carefully 

measured by Noor Aldoumani and Dr Tomasz Kutrowski with the assistance of the author 

and was reported in (Aldoumani et al. 2014). The following figures help visualise those 

measurements. 

 

Figure 2.7 Observed intensity of magnetic field in all axes when desired intensity is zero. Note that 
the expected field condition persists for over the desired ±15cm in all directions (from Aldoumani 
et al. 2014).  

 

Figure 2.8 COMSOL model showing the uniformity of the generated field as viewed from the side 
(left panel) and top (right panel) produced by Noor Aldoumani. Consistency of colour implies 
uniformity of magnetic field intensity (from Aldoumani et al. 2014).  

 

µT 
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Sound and vibration testing 

Testing was also carried out by Dr Kutrowski to confirm that no sound or vibration artefacts 

were produced during magnetic field changes using accurate recording equipment (preamp: 

Bruel & Kjaer type 2671 serial: 2373743, Mic: Bruel & Kjaer serial: 2407256, Conditioning 

amp: NEXUS Charge Amplifier serial: 2026082, Accelerometer: KISTLER 8636C5).  

 

Figure 2.9 Sound and vibration recordings in Volts recorded by Dr Kutrowski. Field manipulations 
take place in the first 25s, and a light tapping on the apparatus by hand occurs at approx. 127s.  

Various field manipulations took place within the first 25s (5s normal field, 5s null field, 10s 

rotating field with 3 full rotations, 5s null field) and then the signal was terminated meaning 

the natural ambient field is restored. No changes in sound or vibration recordings was 

observed when field manipulations took place, but a very pronounced change can be seen 

as a result of lightly tapping on the structure to which the coils are attached which occurred 

at approximately 127s (Figure 2.9). The steady fluctuation in sound is a result of the 

amplifiers and does not change noticeably during field manipulation. 
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Background field measurements 

In order to assess the environmental background ‘noise’ in the ambient magnetic field, the 

author used the three axis magnetometer to simply monitor the ambient field over a period 

of almost 4 days between 23/06/2014 and 27/06/2014. Sampling in three orthogonal 

directions (i.e. 3 dimensions), at a rate of 1000Hz, a total of 957717 (319239x3) data points 

were recorded in this period of approximately 88 hours and 40 minutes. 

Data were plotted raw, and then values were differentiated to show the amount of change 

from one point to the next, allowing a clear view of the periods of greater and lesser activity, 

and an indication of the extent of fluctuation. 

 

Figure 2.10 Ambient field intensity in all three axes  (top row) and the same data differentiated to 
show spontaneous changes (bottom row).  

Figure 2.10 shows the variation in the ambient magnetic field during a time when the lab was 

unused, and all equipment other than the PC to which the magnetometer recorded data, 
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was switched off. Note the regular periods of activity, particularly during the daytime. The 

magnitude of the variation can be seen to be around ±0.05µT during the ‘quiet’ hours, and 

around ±0.1µT during the ‘working day’ (approximately 0.2% and 0.4% the total intensity of 

the local geomagnetic field respectively). As a result of these findings, it was decided that 

behavioural experiments would be conducted at night time, in order to minimise any 

possible disruption arising from this background noise in the magnetic field. It was also 

assumed that manipulations made during experiments would remain salient, as the changes 

made would be much greater (as much as 60µT in the case of inclination flipping, during 

which the vertical aspect of the ambient field is inverted, reversing the angle of inclination) 

than those occurring in the background field (approx. 0.1 µT).  

Experimental design for coil experiments 

In order to carry out behaviour experiments using the coil system, a set procedure 

(developed by the author) was followed as standard. 

To minimise perceptual distraction of the subjects, experiments were carried out in a quiet, 

isolated environment. Carrying out experiments at night had the advantage of minimising 

the potential influence of background field variation, as previously discussed. Also that there 

were no other staff on that floor of the building, and only the odd staff member in the 

building at all. This meant that there were none of the normal daytime noises and vibrations 

associated with general use (i.e. foot traffic, wheeling trolleys past the lab, or people talking 

to each other). Additionally experiments were carried out under cover of ambient white 

noise (65 dB) to further minimise the influence of any unwanted sounds. 

All windows to the lab were closed with blackout blinds in place, meaning that the lighting 

of experiments could be precisely controlled, and that no extraneous stimuli in the form of 

changing patterns in the ambient lighting would be present. Lighting of experiments was 
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done using a fibre optic light, presenting white light at 158 lux in emulation of lighting 

employed in Migalski (2010). Light entered the experimental arena from above the subject, 

via a fibre optic cable. The light source itself was shielded from the coils using two layers of 

mumetal shielding. During experiments, the lab was separated into two halves using a 

secure, light-proof divider which also damped further any unwanted noises. This meant that 

the subject, within the coil system, was in one half of the lab, with the experimenter, control 

PC and amplifiers, together in the other half of the lab. 

Using the new bespoke software, an experimental trial could be planned and designed (e.g. 

1 minute of static field, immediately followed by 1 minute of flipping field, then another 

minute of static field), prior to bringing subjects to the lab. 

All subjects had visited the lab on at least one occasion, and been regularly handled by the 

author prior to experiments. This was to minimise stress in subjects during experiments 

which may occur when exposed to unfamiliar people or surroundings. White noise would be 

playing and amps would be switched on before subjects arrived in the lab. The subjects 

would then be given a minimum of five minutes to acclimate to the lab conditions prior to 

experiments. This was again intended to minimise any stress experienced by the subjects.  

To carry out an actual trial, the subject would be placed into a Perspex box within the coils 

and left for 2 minutes to get comfortable in its new surroundings (the initial impulse is to 

explore and to try to escape, followed quickly by simply standing). The box measured 

304x138x209mm and was designed to allow appropriate space to stand comfortably but to 

prevent the pigeon turning around. Lighting and sound were kept constant (i.e. set up before 

introducing the subject). On commencing the experiment, the experimenter simply clicks 

start on the bespoke graphical user interface (GUI) (produced by Dr Tomasz Kutrowski using 

LabVIEW, a product of National Instruments, Austin, USA) which prompts the initiation of 

video recording, as well as beginning the manipulation of the magnetic field. From this point 
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on, the video recording and magnetic field changes are synchronised such that it is possible 

to tell what was happening in any given frame of the video. Upon completion of a trial, the 

subject is immediately removed from the arena and placed back into its travel 

accommodation, either to ‘rest’ before the next trial (in which case water was provided ad 

lib), or be returned to the animal housing facility. 

The method of measuring and recording pigeon head movements is described in the 

following section. 

Measuring pigeon head movements 

In order to automate the otherwise laborious and time consuming process of extracting the 

head angle of subjects from every frame of recorded videos, Migalski (2010) employed a 

specially written program created using the LabVIEW programming environment. This was 

apparently successful and yielded enough data for the analysis desired in that study. The 

intention was to employ that same program in the current research. Upon testing the 

software, a serious issue was immediately apparent. The software relied on image 

recognition algorithms designed to recognise a novel pattern in each frame, and identify its 

location and rotational orientation. Testing carried out by the author and undergraduate 

project student, Andrew Moss, revealed that the recognition of the marking used on the 

heads of pigeons was inconsistent. Running the same data extraction, in exactly the same 

procedural way, twice, would yield different data each time. A small amount of variation 

could be tolerated, and indeed expected as a result of slight differences that may arise in the 

way that the head marking is manually identified in the initial frame before automated 

analysis begins, however the variation in the data reported was, in some cases, alarmingly 

large.  
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Figure 2.11 Example of inconsistent head angles reported by the old video analysis software on 
repeat analysis.  

The above figure shows the head angle in each frame of a test video, for two separate 

analyses using the old version of the video analysis software. Note that, when the subject 

keeps its head relatively still, repeat analyses are fairly consistent. However, as the subject 

becomes more active (as evidenced by more change in head angle over successive frames) 

greater inconsistency occurs. Some of the differences between the two data sets are 

substantial. Many of the frames return a head angle in one analysis that is flipped 180° from 

that in the other, indicating that the software has failed to tell one end of the template from 

the other and has somehow rotated it. In other cases, the difference is not 180°, suggesting 

that it is not a simple case of transposing the ends of the template, but actually recording 

angles that must be wrong (both cannot be correct if they are different). An investigation 

was carried out by the author and Dr Tomasz Kutrowski to ascertain whether Migalski (2010) 

had experienced this issue, and whether it was perhaps overcome with some kind of filtering. 

As it transpired, it seems that Migalski (2010) had no such issues and detailed investigation 

into the programming by Dr Kutrowski (assisted by the author) revealed that certain 

components of the software, specifically a video codec and certain LabVIEW sub-VI’s (Virtual 

Instruments, building blocks which allow pre-defined commands to be employed in scripts) 
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had been updated since their original use, were no longer fit for purpose, and could not be 

easily replaced. 

This resulted in a situation where there was no option other than to painstakingly sift through 

the whole program, replacing, updating and re-writing sections as necessary. In doing so, it 

was decided that the program should simultaneously be improved in certain ways. This was 

a significant undertaking, requiring several months of intense work, the bulk of which was 

carried out by the project’s lead programmer, Dr Kutrowski, although the author contributed 

significantly to both the design and extensive testing of the new software. This resulted in a 

bespoke package which ultimately proved very effective at extracting head angles from 

video. 

Improvements to video analysis 

Many ways of improving the method were investigated, including the employment of region 

of interest (ROI) analysis which limits the search area to a certain distance from the identified 

position of the head marking in the previous frame, and edge detection, which looked 

specifically at the shape of the template, rather than simply contrast between groups of 

pixels. The use of contrast thresholding, such that a high-contrast template could be isolated 

from its surrounding by adjusting the white-balance of the image, and using a colour 

template (and camera) to give even greater contrast were also explored. The first three 

advancements were ultimately implemented, along with a new style of head marking of the 

author’s design (Figure 2.12). This marking further increased contrast, both in luminance 

(predominantly white, whereas pigeon’s head feathers are typically dark grey) and in outline 

(employed a 3 dimensional, straight edged oblong marker which looked similar in side-on 

profile to when viewed from above). This allowed the software to recognise it even when 

the pigeon’s head was tilted, something impossible with a 2 dimensional marking, such as 

the paint streaks used by Migalski (2010). 
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Figure 2.12 The new style head marking: 3 dimensional, asymmetric, and highly contrasting the 
colour of the subject’s head.  

An extensive investigation into the merits of using colour markers was carried out by the 

author, with the assistance of undergraduate project student, Tim Jerome, which revealed 

that, although some advantage was offered in the use of coloured markers (in terms of 

increasing contrast with pigeon feathers), the benefit was not large enough to outweigh the 

inherent cost of using colour video filming. Specifically, the only available colour camera had 

a slower frame rate, but created video files at least an order of magnitude larger than those 

created using the black and white (and lower resolution) camera. This, combined with the 

fact that only a certain amount of data could be held in the memory of the PC for writing 

(only a limited amount of data could be recorded in any one continuous run), meant that it 

was unrealistic to be able to store all of the videos created by an extensive experiment, and 

videos would have to be shorter than required. 

The improvements in image recognition and in the marking used for the head, as well as the 

employment of some contrast thresholding, did ultimately result in a system which was very 

reliable. The software development and its validation were summarised in Kutrowski et al. 

(2014). 
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Figure 2.13 Simple flow diagram showing the process of video analysis extracting head angles from 
each frame (from Kutrowski et al. 2014).  

Improvements were also made to the GUI used by the experimenter to execute the analysis. 

Upon opening the GUI and loading the desired video for analysis, the first frame of the video 

is shown in a window. A scroll bar allows selection of a video frame in which the head marking 

is seen clearly enough, and in which the subject is facing forwards. The reason for selecting 

a frame in which the subject is facing forwards is that whatever frame is used for the 

template, will be assigned zero degrees, and all rotational orientations measured from that 

set point. An alternative method is to use any frame, and correct the resulting data so that 

zero equates to straight forwards, this can be achieved using a protractor. For the research 

presented in this thesis, it was decided that using a frame where the bird was facing 

approximately straight forwards (±5°) was sufficient, as no specific examination of direction 

faced was undertaken, only the change in said direction, i.e. movements. Once a suitable 
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frame is identified, the template is manually drawn around the head marking by the 

experimenter. This involves clicking the left button of the mouse to create a vertex wherever 

the cursor is in the window, and then repeatedly clicking around the head so that the marking 

is encompassed by the resulting box.  

 

Figure 2.14 A view of the GUI used to control the video analysis software (blue box = region of 
Interest, red box = marking template).  

Drawing the box around the marking, with a small boundary included, means that the 

template created contains the highly contrasting area where the marker ends, and the 

pigeon’s feathers begin. It is this edge contrast, as well as the overall shape of the marker, 

for which the software searches in each other frame of the video. Once selected, the 

template is automatically saved (Figure 2.14) so that it can be used again if necessary. 

Another crucial advancement in the new software is that a minimum matching score may be 

assigned. When the software identifies a match to the template in a given video frame, it 
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calculates how closely the identified pixels match those of the template, 1000 being a perfect 

match, 0 being no match at all. Due to variation in lighting angle and distance from the 

camera lenses, the marking does look slightly different in some video frames to others, 

meaning that searching only for a perfect match results in a huge amount of data being lost. 

However, setting the matching score too low allows for the including of false matches, where 

the software has identified entirely the wrong pixels as matching the template (Figure 2.15). 

 

Figure 2.15 False matches where the software has identified the wrong group of pixels typically have 
a matching score of 225–507, whereas the actual marking has a matching score of 982 in this case 
(From Kutrowski et al. 2013).  

After extensive testing, it was decided that setting the matching score no lower than 700 

resulted in highly reliable data extraction. This was further assisted by the addition of the 

new style head marking, meaning that a minimum matching score of 800 could be employed. 

The overall result of these improvements was that data were highly consistent and reliable, 

with no observed instances of transposition (180° rotation) of head angle, and no case of 

misidentifying the head marking, both of which had been significant issues in the original 
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software when tested. Any frame for which the software was unable to identify the head 

marking, was assigned an angle of -999°, i.e. an obviously impossible value which would 

never occur in the case of a positive match. The process of extracting data from experimental 

videos was to: open the software; load the desired video; assign a template; test the 

template on a number of frames using the scroll bar to change frame and the match template 

button to test the template; then assuming the template is deemed satisfactory press start, 

upon which the software cycles through all frames of the video in order, assigning each a 

head angle. The data produced are saved in the form of a comma separated value (.csv) file 

with one single column of head angles, in the order of the frames in the video. This can then 

be imported into a range of other software for analysis. Initiation of video recording is done 

automatically by the software used to operate the coils. This means that each frame is 

effectively time-stamped to allow users to have confidence about exactly when magnetic 

manipulations take place.  

 

Figure 2.16 Three different extractions of the same video file using the new software. 

The above figure shows an example of the data produced by the new software. Three 

different templates were used. It can be seen that the zero point of each template is slightly 

different, however the change in position with each frame is highly consistent, meaning 
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measures of movement over time give identical results. Note that there are no missing data, 

no 180° transposed values, and no obvious inconsistency as with the old software (Figure 

2.11). 

Saccade detection 

In order to identify saccadic movements in head angle data, MATLAB (MathWorks inc. Natick, 

Massachusetts, USA.) was used to write a script which carried out several processes. The 

author produced a script containing many instructions for accessing the correct file, naming 

output, setting thresholds (if necessary) for any data to exclude, or the possibility of 

examining discreet portions of the data if desired, and a pre-existing method of identifying 

saccades was included. A modified script written by Lee McIlreavy (Cardiff University), which 

identifies saccades based on jerk (the third derivative of position) values, was initially 

employed with some success. However, tiny, but very fast movements were present in the 

recorded head angles as noise. This is likely the result of head angles being reported to three 

decimal places, which may be slightly more accurate than the detection software can reliably 

achieve, meaning that a small ‘jitter’ effect is present, where head angles change by a tiny 

fraction of a degree repeatedly between frames where the head is effectively still. Although 

small (hence contributing negligibly to any assessment of total movements), and consistent 

between videos/analyses (meaning comparison between trials is still meaningful), this jitter 

does affect the use of jerk as a criterion on which to base saccade detection. The result was 

that many saccades were detected which were clearly not real. The author must at this point 

give great thanks to Lee McIlreavy for assisting with the extended effort of trying to resolve 

the issues arising from this jitter. In the end, the most reliable solution was to apply a 

Gaussian filter to the data (Figure 2.17), as is consistent with eye movement literature 

(Kolarik et al. 2010). This had the effect of smoothing the data significantly, such that the 

jitter was no longer evident, but the larger movements (over 1° for example) were still clear, 

https://en.wikipedia.org/wiki/Natick
https://en.wikipedia.org/wiki/Massachusetts
https://en.wikipedia.org/wiki/USA
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and could then be analysed with the saccade detection algorithm (Figure 2.18). Repeated 

testing showed that the extended period of development had been successful, as 

comparison of saccades identified by the software to those manually observed both by 

watching videos and by examining raw data (head angle), traces showed a high level of 

consistency. 

 

 

Figure 2.17 Unfiltered vs filtered data plot (top) with zoomed in section to illustrate the effect of 
filtering (bottom).  
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Figure 2.18 Detection of saccades in filtered data is more reliable (green = saccade, black = slow-
phase).  

The software jointly produced by the author and Lee McIlreavy identifies saccades and slow-

phase movements, and writes each to a separate csv file. Data outputs include start frame, 

end frame, duration (in frames), amplitude (°), mean velocity (°/frame), peak velocity 

(°/frame), and direction for both slow-phase movements and saccades. Simple additional 

calculations in Microsoft Excel or similar allow conversion from frames to seconds (duration) 

and degrees/frame to degrees/second (velocities), as well as gain of slow-phases (velocity of 

slow-phase/velocity of stimulus). These metrics provide a robust way of comparing head 

movement responses in pigeons, and are employed in the analyses of data in the following 

results chapters. 

Investigating the Optocollic reflex 

Rationale for LCD presentation of regular optokinetic stimuli 

Optokinetic nystagmus (OKN) and Optocollic Reflex (OCR) are reflexive movements of the 

eye and head, respectively, which are primarily involved in gaze stabilisation. The response 

is highly stylised and can be characterised by a smooth pursuit phase, in which displacement 

of the visual world about the animal is followed by the eyes and head, and a saccadic reset 
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where the eyes and head ‘flick’ back at high velocity to a suitable position to continue smooth 

pursuit. The movement serves the purpose of stabilising the view of a moving visual 

environment for the greatest proportion of time possible, thus minimising retinal slip.  

OKN is used in a clinical setting for a simple assessment of the function of the visual pathway, 

as an incomplete pathway (indicative of damage or developmental issues) will not produce 

the response (Anstice and Thompson 2014). In laboratory settings, OKN and OCR are 

commonly used in assessment of visual pathway function, often in studies on the effects of 

contextual, chemical, lesioning, or sectioning treatments on the function of the various 

neural tissues involved (Conley and Fite 1980; Gioanni and Vidal 2012). 

Both OKN and OCR movements have various characteristics that can be quantified and 

compared, both between species, for example to highlight possible evolutionary trends, and 

within species to assess effects of treatments or ontogenetic changes, or simply to explore 

psychophysical limits. Frequency, amplitude, and peak and mean velocity of the reset 

saccades are commonly used, along with measures of how closely smooth pursuit velocity 

matches that of the moving stimulus, and the time latency for the onset and ending of 

smooth pursuit in relation to that of the stimulus. All of these factors vary depending on 

stimulus parameters such as velocity, luminance contrast, spatial frequency, waveform, or 

shape of the stimulus, and ontogeny or health of subject. 

Each species would be expected to show a range of measurements for each of these 

parameters, though only for a comparably small number of species have any of these 

parameters been reported in the literature, and usually only one or two parameters are used, 

often over a limited range. 

Assessment of OKN/OCR is dependent on the ability of the investigator to display a drifting 

stimulus, often consisting of a square wave grating or a pattern of dots, over as large an area 
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as possible of the subject’s visual field. This is most often achieved by use of a rotating drum, 

which either rotates the stimulus about an axis in front of the subject, or about an axis 

vertically in line with the eye, such that the stimulus drifts horizontally (or occasionally 

vertically or at other angles) across the visual field (Gioanni 1981; Türke et al. 1996; Knapp 

et al. 2013). 

Stimuli are generally presented using a physical sheet of suitably patterned material. Some 

more recent studies have employed a rotating dome, containing a light source and 

penetrated with holes or slots, such that a rotating pattern of light patches is produced on 

an outer hemisphere which encloses the subject (Gioanni and Vidal 2012). This is limited in 

terms of exact stimulus presentation (for example, if testing acuity). With both techniques, 

changing stimulus parameters such as spatial frequency, style (i.e. sinusoidal, square wave, 

spots etc.), contrast or colour requires a separate trial, as the drum/dome must be stopped, 

and the subject disturbed, in order that the stimulus be changed. Similarly there can be 

complications around rotating the drum steadily, but at a variety of accurately controlled 

speeds and direction changes. 

Due to the restrictions mentioned, studies to date have reported limited measurements, 

representing only the minimum number and range of responses immediately necessary to 

the study in hand, with very little opportunity for extending/varying the investigation, or 

utilising the data produced for further studies. There are also issues in some previous studies, 

particularly in avian subjects, with problematic subject behaviour, resulting in high rejection 

rates where trials have to be abandoned, and a need for extensive training of subjects to the 

experimental apparatus (Conley and Fite 1980). 

Measuring head and eye movements is problematic in many species. Whilst eye tracking 

technology has developed significantly in recent years, the accurate assessment of OCR head 

movements in many species remains a challenge. This results in a situation where 
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parameters available for a given species often overlap very little between various studies and 

little or no independent reproduction of such experiments takes place. Attempting to build 

any kind of extensive range of responses, such as for an evolutionary or detailed 

psychophysical study, is extremely difficult due to physical constraints on carrying out 

experiments, and paucity of published data.  

In addition to the complications already mentioned, measuring OKN or OCR in species with 

laterally directed eyes, and hence reduced or non-existent binocular vision, prevents use of 

single liquid crystal displays (LCDs), as are occasionally used in humans (Anstice and 

Thompson 2014). Intuitively, only a visual display encompassing the full 360° field of view 

can be used to maintain a regular OCR or OKN response in subjects of such species (without 

fixing the head in position in the case of OKN). 

The presentation of psychophysical stimuli using LCD or other flat panel electronic displays 

is not a new one, but its use for OKN/OCR has, until recently, been almost non-existent, due 

in large part to the technical complications of presenting stimuli that fill enough of the visual 

field to be suitable for a range of tests. However certain benefits seem clear, with almost any 

conceivable stimulus parameters being possible, in any combination within a trial. 

New LCD method for investigating Optokinetic Reflex 

LCD displays offer the possibility of complex, dynamically varying visual stimuli, as well as 

having the potential for investigating e-vector discrimination. A 360° visual arena was 

constructed using 6 Philips 190S7FS 48cm (19") SXGA LCD monitors, each having a horizontal 

viewing area of 375mm, placed in a regular hexagon (Figure 2.19). A wooden frame was built 

to fit the arena which could support a video camera for filming the experiment from 

overhead. This was designed such that the camera was positioned vertically directly above 

the centre of the arena, and hence the pigeon’s head. The wooden frame also served to 
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support a blackout curtain which entirely covered the arena, ensuring that extraneous visual 

stimuli were excluded. The camera was positioned within the blackout ‘tent’, and the cable 

to operate and record from it passed through a small hole in the fabric. All visible surfaces 

within the arena were covered with matte black material in an attempt to minimise potential 

points of visual fixation extraneous to the presented stimuli, as well as to minimise reflection-

based artefacts in polarised light experiments. 

A platform was placed in the centre of the arena and positioned such that the head of the 

pigeon, in a normal comfortable position, would be as close as possible to the centre of the 

arena in terms of being equidistant from each screen, as well as being sufficiently elevated 

that the head is near the centre of the screens vertically. Between the pigeon and the 

supporting platform was a contoured piece of soft foam, carefully shaped so that the 

restrained pigeon would rest in a position such that the angle of its torso to the horizontal 

plane was as natural as possible. This ensured that the angle of the neck, in holding the head 

level (eye-beak tip angle approx. 30° decline, Erichsen et al. 1989), was as comfortable and 

unrestricted as possible. 

Restraint was in the form of an elasticated tubular bandage, placed around the torso, wings 

and legs of the bird, so that it was not able to stand, or extend its wings, but, properly 

supported, would assume a resting posture and sit for 10 minutes or longer without any 

significant struggle or sign of unease. The bandage used was highly breathable, and to ensure 

the bird was able to thermoregulate properly, trials were limited to a couple of minutes at a 

time, interspersed with periods (equal or longer duration than trials) unrestrained and free 

to move around, and with ad lib. access to water. 

Because of the blackout curtain enclosing the LCD arena, the small amount of heat generated 

by the screens could not dissipate as freely as it might normally. This coupled with the fact 

that the pigeon was restrained and unable to relocate if it felt too warm, meant that it was 
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important to provide cooling and ventilation to the arena. This is done by having a small fan 

constantly introducing air through a small aperture at the bottom of the arena, to the rear 

of the pigeon’s resting viewing direction (i.e. bottom-rear of the arena), and another small 

fan, extracting rising warm air, through a loosely covered opening at the top-rear of the 

arena. Ambient temperature was checked before and after each experiment, as well as 

periodically between subjects to ensure it never rose above 24°C in accordance with relevant 

guidance (Home Office 2014). 

 

Figure 2.19 Annotated photograph of OCR arena. Inset - the arena when covered by the blackout 
curtain.  
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Care was taken to ensure that all screens were functioning properly and had the same on-

device settings in all cases. The signal from the PC was split using an 8-way VGA (15 pin) signal 

splitter. One of the extra ports from the splitter was used to send the signal being displayed 

on the screens in the arena, to an identical outside test screen. This is helpful for setting up 

code for experiments/testing stimuli etc., and can simply be turned off as desired during 

experimental trials, although blackout curtain renders this unnecessary in most cases. 

Stimulus presentation 

Visual stimuli were created and displayed using MATLAB and the Psychophysics Toolbox 

extensions (Brainard 1997; Pelli 1997; Kleiner et al. 2007). Coding of specific stimuli was done 

by the author by modifying various parameters of script written originally by Prof. Chris 

Harris (University of Plymouth) and Dr Matt Dunn (Cardiff University). All stimuli were 

presented as a square wave grating, with various adjustable parameters available for spatial 

frequency, luminance contrast, and drift velocity (Figure 2.20).  

 

Figure 2.20 View of grating from within arena. 

Camera 

Recordings were made using an ImagingSource DMK 21BF04 digital camera connected to the 

PC via FireWire. This camera can record video at VGA resolution 640x480, at sample rates of 

60, 30, 15, 7.5, or 3.75 frames per second (fps). 
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Recording –LabVIEW  

The bespoke video analysis software discussed earlier in this chapter was used to extract 

head movement data from the videos recorded. This image analysis program is also 

described in detail in Kutrowski et al. (2014). 

The soft, removable adhesive foam strip discussed earlier was used as the marker for the 

video analysis software to identify head orientation in video frames. The size and weight of 

the strip are such that it has no noticeable effect on the behaviour of the subject, and allows 

a non-invasive measurement of head angle, whereas previous methods of recording OCR 

head movements may require the attachment of a mechanical measuring device (which 

could potentially cause some discomfort or retardation of normal behaviour), magnetic 

search coils which are inappropriate for subsequent magnetoreception experiments, or 

complex combinations of individual sensors such as photocells (Fite 1968; Gioanni and Vidal 

2012). Homing pigeons, as well as several other bird species, have been shown to be sensitive 

to ambient magnetic fields, but the location, sensitivity limits, and function of the 

magnetoreceptive structure remain unknown (Mouritsen and Hore 2012). For this reason, 

our method is preferable to magnetic search coil techniques, as it reduces the risk of 

inadvertently adding a potentially distracting stimulus to experiments. 

Providing the pigeons are used to being handled, and have experienced the sock restraint 

method on one or more occasions, (so that they are not unduly agitated by the experience 

of being put into the arena), they will sit in position quite peacefully and are immediately 

responsive to the stimulus with no specific conditioning or training required. 
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LCD technology and polarised light 

One of the possible future experiments for the newly developed coil system, would involve 

the use of visual stimuli, in conjunction with manipulations of the ambient magnetic field. 

This combined with the fact that polarisation e-vector acuity may be of significance in 

magnetoreseption and in navigation generally means that an easy way of generating visual 

stimuli, which ideally can also present stimuli comprising of particular e-vectors of polarised 

light, was required. At this point, the use of LCD screens for delivering such visual stimuli was 

considered. LCD screens allow a wide range of visual stimuli to be displayed and have the 

added advantage of working on a principle of polarised light e-vector manipulation. 

 

Figure 2.21 Cross section of LCD screen. 

In Figure 2.21 it can be seen that several layers make up the screen in a LCD. Initially diffuse, 

white light is polarised as it enters the rear of the screen. This polarised light passes through 

an orientation film meaning that e-vectors are lined up appropriately for manipulation by 

liquid crystals. Depending on the voltage applied to a liquid crystal, it adopts a rotational 

position relative to the e-vector of incident light, transmitting more light, the closer the 

match in rotational e-vector. This process is linked with a colour filter, such that light of 
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various colours, is orentated to different e-vectors. At this point light e-vectors have been 

twisted to various extents depending on colour desired in each pixel, meaning that if viewed 

(by a human) together, the screen still appears entirely white. Only the final polarising filter 

on the outermost face of the screen causes this light to be separated into those parts which 

complement the e-vector orientation of the screen. This results in the light of each pixel 

being emitted from the screen and reaching the eye, being the precise RGB scale colour 

desired. 

If only two settings are used for all pixels and component colours (i.e. 0 and 155 in most LCD 

technology), then pixels will appear either white or black. Which, being dependant directly 

on e-vector orientation in relation to the outermost filter. Black pixels have all three colours 

filtered out completely, and white pixels have all three colours transmitted maximally. 

If one were to draw black and white bars on the screen in the form of a square wave grating, 

then the reason the black bars appear black is that the light leaving the liquid crystals is 

orientated perpendicular to the final filter, whereas the white bars are comprised of light 

leaving the liquid crystals which is parallel to the final filter. This means that we have a grating 

of orthoganally orientated e-vecors, such as in Figure 2.22 below. 

 

 

 

Figure 2.22 The orthogonal arrangement of e-vectors in light arriving at the final filter of an LCD 
display, when black and white bars are being drawn (in some screens, the e-vectors may all be 
rotated 45°, however the orthogonal relationship is the same).  

With the knowledge that highly contrasting patterns of e-vectors can be produced in this 

way, it only remains to remove the final filter on the outside of the LCD display, and what is 

left is a display which looks enirely white (i.e. blank) to humans, and yet to an animal which 
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can discriminate between different e-vectors has contrasting vertical bars. The level of 

contrast (i.e. the difference in e-vector) can be adjusted simply by changing the grey-scale 

values of the bars. This allows the potential for assessing e-vector acuity (the finest difference 

in e-vector a subject can resolve), although it should be noted, that the rotation of the e-

vector does not occur linealy with change in greyscale, due to the sine-wave function of light 

passing through the filters (i.e. not an all-or-nothing filtration). This technique has been used 

with some success in cephalapods by Temple et al. (2012). For the current research, a simple 

qualitative assay as to whether pigeons are able to descriminate e-vecter ‘at all’ is sufficient, 

meaning that no such calculations are necessary, and fully black and white bars can be used. 

 

Figure 2.23 Removal of the outer polarising filter from LCD screens requires some dismantling 
(dependent on screen manufacturer and model); a is the main power and control part of the device, 
b contains the light source, and materials described in the cross section of an LCD (Figure 2.21), 
minus the outer polarising filter (c) which lies to the right of the picture. All other items are housing 
/support.  

The process of removing the polarising filter is technically trivial (Figure 2.23), however 

removing it in such a way as to avoid damaging other screen components requires a good 

deal of care, and the removal of any residual glue is time consuming. Removing the filter in 

one piece (useful so that it can be used as a handy removable filter to test screens/stimuli) 

is also labour intensive, as it is prone to tearing and buckling. 

All e-vector only experiments were conducted in the same way as those described in the 

previous section, but with a separately produced arena of screens with outer polarising filters 

having been removed as described above.  

a 

b c 
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Prepulse inhibition 

As discussed in the Introduction, prepulse inhibition provides a highly controlled and 

reproducible way to investigate sensory psychophysics. The use of the prepulse inhibition 

paradigm, to investigate magnetoreception (by using a magnetic field manipulation as a 

prepulse) is, to the best of the author’s knowledge, completely novel. Whilst the adoption of 

this technique provides a very exciting opportunity to investigate magnetoreception in a 

more controlled and reproducible (hence arguably more rigorous) way, it also presents some 

technical challenges. Due to the novelty of the approach, and the scarcity of previous 

prepulse inhibition experiments involving pigeons, the startle-response measuring 

equipment, and the methods of delivering prepulse, and startle stimuli had to be developed, 

mostly from scratch. The system was based around a standard SanDiego Instruments (SDI) 

(SanDiego, USA) SR-Lab startle response system. Much of the SR-Lab was standard. The 

software used to operate the SR-Lab, the control box which generates and amplifies signals, 

the response box which receives incoming data and the data acquisition card (DAQ) (National 

Instruments) were mostly unmodified. The startle chamber itself however was entirely 

bespoke, having been built to required specifications to a design primarily conceived by the 

author and Prof. Jonathan Erichsen (Figure 2.24). 

 

Figure 2.24 Design drawing of the bespoke startle chamber, designed specifically for use in 
magnetoreception experiments with pigeons.  
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For the experiments to be carried out as desired, two main differences were necessary from 

the standard startle chamber. Firstly, the chamber had to be specifically sized such that a 

pigeon could stand comfortably with a little space facilitating comfort movements and 

looking around, but restricted enough so that the pigeon could not turn around. For this 

reason the box was designed to be of identical dimensions (304x138x209mm) to the already 

existing Perspex box, utilised in the Helmholtz coils, and originally built by Migalski (2010). 

Secondly the box and all of its connections had to be as non-magnetic as possible. To this 

end the Perspex sides of the box were bonded together, but not secured with any metal 

screws or fixings, the feet of the box (which support it slightly off the surface on which it rests 

meaning the sensor beneath is not under undue mechanical pressure) were made of rubber, 

and also bonded to the surface of the box. The sensor itself was a piezo-electric disc, highly 

sensitive in detecting small movements, firmly affixed to the underside of the box, precisely 

where the pigeon is expected to have its feet (and hence its weight supported) when 

standing normally, and protected by a large rubber disc surrounding all external surfaces. 

The cable carrying the startle response signal back to the response box, and ultimately the 

PC for recording, had a negligible effect on the generated magnetic field, as assessed by Noor 

Aldoumani and reported in a thesis currently in production. 
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Figure 2.25 Flow diagram of prepulse inhibition apparatus (DAQ = data acquisition card). 
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Problems with sound stimuli 

Initially the hope was that a sound-based stimulus consisting of a square wave click of white 

noise could be employed for both the prepulse and startle stimuli. One of the few studies in 

the literature to have explored startle response in pigeons (Stitt et al. 1976) discovered that 

use of a bright flash of light as a startle stimulus was far more effective in eliciting a 

measurable startle response from pigeons than an acoustic startle stimulus (Figure 2.26), as 

is normally used in rodents, for example (Koch 1999). The hope was to carry out a similar 

comparison in the initial stages of the investigation using the new equipment. The intention 

of carrying out magnetoreception experiments during the night (due to reduced background 

noise in the ambient magnetic field) was further supported by the finding of Siqueira et al. 

(2005) that startle response is greater, and more consistent in pigeons during the subjective 

night time. 

 

Figure 2.26 Light is far more effective a startle stimulus than sound (Stitt et al. 1976). 
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Upon testing the sound emitted by the startle stimulus set up, it quickly became apparent 

that the equipment was unable to achieve a loud enough volume to be used for startle 

(minimum 100dB, but ideally 120dB) during the short time required in order to properly time 

the inter-stimulus-interval for experiments (Figure 2.27). After much liaison with SDI, it was 

decided that the control box (containing the small amplifier responsible for sound volume) 

should be returned to the manufacturer for diagnostics and repair. After several months of 

not being able to use the equipment, it was declared repaired and returned to Cardiff for 

use. Upon testing in Cardiff, the issue appeared to persist. It was decided at this point that a 

light based startle stimulus would be employed from the outset, as the equipment limitations 

and the literature both suggested this would be the most effective approach. 

 

Figure 2.27 Observed stimulus volume. Ideally, for use as a startle stimulus, a volume of 120dB 
should be achieved in under 10ms. In the above recording, it is clear that this volume is not achieved 
until approximately 600ms after onset.  

Testing the use of sound as a prepulse stimulus (as it does not need to achieve volumes as 

great as for a startle stimulus, only to be perceived by the subject at all), revealed that the 

issue with sound amplification went beyond maximal volume. It was also clear that the 

volume level, even when relatively low, was inconsistent and would waver over time, and 

eventually build to a high level (completely of its own volition) before dying off into silence. 
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At this point in the research project, there was not enough time to send the equipment back 

to the USA for further work, and so technicians in the School of Engineering (Cardiff 

University) carried out in-house diagnostics and elected to replace the amplifier. After some 

weeks of delays with parts, etc., the equipment was returned to the lab, only for the same 

issue to arise within minutes of use. At this point, it was clear that light would be the only 

option for delivering both prepulse, and startle stimuli. 

Using LEDs as a prepulse 

It was decided that a strip of LEDs would be used as a control prepulse. Magnetic 

manipulation would be the experimental prepulse, however a control was needed to verify 

the parameters of the experiment were suitable and that equipment was functioning as 

expected. The LEDs were in a single row, at the pigeon’s approximate eye level, which 

extended across the entire front face of the pigeon box and for approximately 10cm along 

each side, meaning that it was clearly visible to the pigeon even when not looking directly 

forwards. For experiments conducted in the light, a layer of adhesive tape was placed over 

the light sources, to reduce the brightness slightly, such that it was clearly visible, but had 

little chance of causing a startle response in its own right. For experiments conducted in 

darkness, this was increased to three layers, to account for the greater relative change in 

luminance. It is imperative to avoid the prepulse causing a startle response, as the timing 

and recording of the desired startle response is adversely affected. Both LED strips were still 

clearly visible in their respective lighting conditions, as is evidenced by the successful 

elicitation of meaningful prepulse inhibition described in Chapter 6. The assistance of Dr 

Kutrowski in making and attaching a switch to the LEDs such that the 5v TTL (transistor-

transistor logic) signal generated by the SR-Lab could be used to turn them on and off at 

exactly the correct times is greatly appreciated. 
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Camera flash as startle stimulus 

It was decided that a flash of light would be used for the startle stimulus. A Metz Mecablitz 

76 MZ-5 digital camera flash was used, which could be activated by means of a 5v TTL signal 

generated by the SR-Lab equipment. The unit is a ‘hammer head’ style large photographic 

flash unit which produces a very bright flash of light. It was not possible to obtain use of a 

sensor that could measure the brightness of the flash output, as the flash only lasts 6.6   ms, 

but as a guide to flash power, the unit was rated with a G/N value of 76. 

Effect of flash on sensor 

It was noticed very quickly upon initial testing of the setup that the flash discharging had a 

noticeable effect on the piezo-electric movement sensor attached to the pigeon chamber. 

This was somewhat surprising as the sensor is meant to respond purely to mechanical signals. 

Various possibilities have been considered for why this might be. The unit does create a small 

‘pop’ sound upon discharging, it could be that the sound wave itself activates the sensor, 

particularly if the sound contains low frequencies. Perhaps the discharging of the flash 

produces enough heat to create a small plume of expanding air emanating from it, or the 

electromagnetic flux involved could potentially interact with the connecting wire between 

the sensor and the rest of the SR-Lab equipment, creating an artefact of some sort. The flash 

was mounted on a tripod, separate from the sensor save for both being in indirect contact 

with the floor of the lab. The effect of the flash on the sensor was only evident if the sensor 

was in the path of the light emitted, no effect was noticeable if the sensor was to the side or 

rear of the device, and the effect was linked with distance. A series of trials were recorded 

using the SR-Lab to generate flashes, and record the response expected via the sensor, but 

with no bird present in the experimental box, meaning that any ‘response’ observed was 

caused by the flash. This was repeated at a variety of distances.  
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Figure 2.28 The effect of the flash unit discharging on the piezoelectric movement sensor. The flash 
fails to discharge in some instances (circled). Trials are in the order that different distances were 
sampled.  

It is clear in Figure 2.28 that there is an effect that varies with distance. Evidently the next 

step of preparation should be to find a distance at which the flash is sufficient to startle the 

subject, but not to activate the sensor such that the genuine response of the subject 

becomes swamped and unrecognisable. Examining the data in Figure 2.28 also identified an 

issue with the flash not discharging on numerous occasions. This was solved by replacing a 

defective power source, and ensuring a minimum of 25s between discharges, to allow the 

flash to prime properly each time. 

1m 0.5m 0.1m Off 1.5m 
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Figure 2.29 Effect on the piezo electric sensor (y-axis, in mV), with the flash at varying distances, 
compared between two scenarios, one with a subject present, and one without.  

Figure 2.29 indicates that in the flash off condition, and flash at 1.5m, the response of the 

bird is visibly greater than the signal from the flash. At all other distances, the flash signal 

alone (left side of each pairing) is higher. To make this clearer, the following figure plots 

only the 1.5m and flash off data.  

 
Figure 2.30 Response level with flash unit 1.5m from the subject/sensor (y-axis, in mV). The 
response with the bird is greater than without, suggesting startle could be meaningfully isolated.  
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The fact that most of the responses of the bird to the flash, clearly outweigh the flash signal 

alone, suggests that presenting the flash at 1.5m can give the opportunity to establish a clear 

startle response ready for PPI experiments. 

Due to laboratory space constraints, and the fact that the coils were aligned North/South to 

assist aspects of potentially desirable magnetic field generation, the only appropriate way to 

ensure that the flash unit was 1.5m from the subject and sensor was to place the flash unit 

within the coil system, beneath the table holding the enclosure box and subject. The light 

from the flash was reflected in a carefully angled mirror so as to direct as much of the light 

as possible directly into the front of the subject enclosure. Obviously, this positioning has the 

potential to interfere with the magnetic field generated in the experimental arena, and so 

two layers of mumetal shielding were employed to cover all areas of the unit except the lens, 

as well as the small wire which carries the 5vTTL signal from the SR-Lab equipment. Testing 

with the three axis magnetometer showed no noticeable effect on the field at the position 

of the subject whilst the flash was re-charging/priming to flash. Some interference was 

observable when the camera actually discharged, but this was not considered a serious 

concern, as the crucial time for magnetic field control is during the presentation of the 

prepulse, before the flash discharges. At this point, it was possible to begin collection of 

experimental startle data, and investigate the possibility of eliciting a prepulse inhibition in 

subjects. 
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Chapter 3 Use of dynamically shielded Helmholtz coils 

system to investigate behavioural responses to magnetic 

stimuli 

The newly designed Helmholtz coil system was tested in various ways. Initially, during the 

construction and development phase, there were many tests and assessments of the 

uniformity and predictability of the field generated, in terms of insuring that the signals sent 

from the control PC, resulted in the expected manipulation of the magnetic field. This 

included checking both the 3 dimensional integrity of the field in terms of intensity, as well 

as the timing of desired changes to the field (more detailed explanation and figures in 

Chapter 2). It was then necessary to carry out actual experiments using live subjects to assess 

whether the manipulations of the field would affect their behaviour. Initially, an assessment 

of the re-analysed data of Migalski (2010) was carried out, followed by a brief experiment 

using the new coils, and then a subsequent, much more substantial experiment to look for 

responses. 

Re-analysis of Migalski (2010) data 

Having identified the shortcoming necessitating the improvements to the video analysis 

software discussed in Chapter 2, the next obvious step was to re-examine the data presented 

in Migalski (2010), to ensure that the reported results were reliable and a sound basis for a 

comparison using newly collected data relying on the new ‘active shielding’ paradigm. This 

was also important in confirming the results of Migalski (2010), as, in that study, position was 

averaged over every 5 frames for ease of subsequent manipulation and analysis, meaning 

that some of the movement dynamics may have been lost. 

Data were reproduced and certain crucial figures from Migalski (2010) were selected for 

comparison. It should be noted that, although the method of extracting the raw head angle 
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in each frame of video is expected to be consistent, there may be some slight differences 

arising from the subsequent procedure of identifying ‘head movements’ (continuous 

movements in a given direction, regardless of velocity) in Migalski (2010), as compared to 

‘saccades’ using the newly developed saccade detection software. However, it seems likely 

that the sudden, large and continuous movements counted by Migalski (2010) were in fact 

saccadic movements, and so a clear similarity in observed responses should be apparent. 

With this in mind, a direct comparison was made between the Migalski (2010) figures, and 

those produced having re-analysed the videos for validation/confirmation of results. 

 

Figure 3.1 Number of head movements in each step in the sequence of experimental and control 
conditions (from Migalski (2010) Figure 4.2). Error bars represent +/- 1 standard error. (NF- null field, 
SF – static field, CW – field sweeping clockwise, CCW – field sweeping counter-clockwise).  

Figure 3.1 shows the mean and median number of head movements for each condition in 

the sequence of conditions used, under both control (amp off) and experimental conditions. 

During the first six stages of the sequence, there are more responses under experimental 

conditions than there are under control conditions. This gives the distinct impression that 

the magnetic manipulations are having an effect on head movement frequency. 
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Figure 3.2 Re-analysed version of Migalski data, showing comparison of mean number of saccades 
(top) and median number of saccades (bottom) between control and experimental trials.  

Figure 3.2 shows the re-analysed version of the Migalski data, having been obtained using 

both the updated video analysis software, and the new saccade detection software. Some 

differences are evident (likely due to the slightly different methods of identifying relevant 

head movements) between the original and subsequently re-analysed data (Figures 3.1 and 

3.2). However, the overall trend is the same, in that the majority of sequence stages have a 

greater number of head movement responses under manipulated (labelled experimental) 

conditions then they do under control conditions. 
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Figure 3.3 Distribution of all head movements of all 16 experimental birds (From Migalski (2010) 
Figure 4.3). Each point denotes a head movement with its amplitude and the time when it occurred 
within the experimental sequence (NF- null field, SF – static field, CW – field sweeping clockwise, 
CCW – field sweeping counter-clockwise).  

 

Figure 3.4 Distribution of all head movements of all 10 control birds(From Migalski (2010) Figure 

4.4). Each point denotes a head movement with its amplitude and time when it occurred within the 
experimental sequence (NF- null field, SF – static field, CW – field sweeping clockwise, CCW – field 
sweeping counter-clockwise).  

Comparison of all head movement amplitudes between manipulated (Figure 3.3) and 

unmanipulated (Figure 3.4) from Migalski (2010) Figures 4.3 and 4.4, respectively, shows a 

far greater number of responses under the manipulated field condition. This difference is 

particularly evident when considering only movements of greater than 10° amplitude. It 

appears that, in several subjects, the Clockwise rotation of the field results in a large increase 
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in responses compared with the stage before (null field). This marked increase is not evident 

in Figure 3.4 representing the control sessions. 

 
Figure 3.5 Comparison of re-analysed Migalski data showing amplitude of each saccade under 
experimentally manipulated (top) and control (bottom) conditions.  

Comparison of all head movement amplitudes in Figure 3.5 between manipulated (top) and 

unmanipulated (bottom) trials from Migalski (2010) Figures 4.3 and 4.4, respectively, using 

the recently re-analysed data show similar trends to those in the previous two figures from 

the original Migalski (2010) analysis. A much higher frequency of head movements can be 

seen in the manipulated conditions as compared to the control sequence, and there is also 

a marked increase in movements from null field to clockwise rotation conditions. 

 

   NF        SF            NF           CW             NF          CCW            SF             NF 

   NF        SF            NF           CW             NF          CCW            SF             NF 
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Together these comparisons demonstrate that the process used by Migalski (2010) was 

apparently reliable in identifying head movements, and that the results reported are 

accurate. This reasserts the finding of Migalski (2010) that a manipulation of the ambient 

magnetic field under physically magnetic/electromagnetic shielded conditions will elicit a 

head movement based behavioural response in pigeons. Having confirmed the reliability of 

the result of Migalski (2010), it was then logical to carry out a further experiment using the 

new system to see if any such response could be found. If a response was found, this would 

show that dynamic shielding is adequate for experiments, whereas should no response be 

seen, this may be a result of the dynamic shielding being inadequate. If no response was 

observed, this would suggest that a physical shield blocking high frequency electromagnetic 

signals is necessary for magnetic manipulations to be salient enough to be recognised over 

any background ‘noise ‘in the magnetic environment.  

Experiment 1: Identifying behavioural responses to magnetic 

field inclination flip 

After initial setup and testing of the new Helmholtz coil system, an experiment was carried 

out to look for a clear way to identify head movement responses to magnetic field 

manipulation. In addition to comparing frequency and size of saccadic head movements, 

other kinds of head movement, previously identified as possible responses in preliminary set 

up testing with subjects, were also investigated.  

These additional behaviours were defined as: 

 Head tilt - Head tilted to the side more than 60°, such that one eye only has a clear 

view upwards 

 Look up - Head tilted backward more than 60°, such that both eyes have a clear view 

upwards 

 Head shake – High velocity oscillatory movement, mostly in the horizontal plane, 

reminiscent of shaking off water 
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 Open mouth – Mouth is opened unusually wide, as though yawning 

 Eye blinks – Eyes can be seen to close completely. 

Eight subjects were used (four male, four female), each being exposed to four separate 

experimental trials during a single day. Trials consisted of an initial control (amplifiers are 

switched off), two inclination flip trials (one with a flip every 30s, and one with a flip every 

5s), and a final control, for 4 x120s trials. In the flipping trials, the amps were switched on 

immediately prior to introducing the subject into the experimental arena. The coils did not, 

however, have any influence over the magnetic field in the arena until the start of the flipping 

trials (i.e. the amps are on but no signal is sent to the coils until the desired flipping session 

begins). The flipping trials were ordered differently for different subjects, and all subjects 

had a break of a minimum 4 minutes between trials. The two sexes of each housed pair were 

run alternately although they were separated 15 minutes before the experiments began and 

did not spend any time in the same room until all trials for that pair were completed. 

Pair 1 Pair 2 Pair 3 Pair 4 

Trial Subject Order Trial Subject Order Trial Subject Order Trial Subject Order 

1 33 1 1 38 9 1 32 17 1 35 25 

1 34 2 1 37 10 1 31 18 1 36 26 

5 33 3 30 38 11 5 32 19 30 35 27 

30 34 4 5 37 12 30 31 20 5 36 28 

30 33 5 5 38 13 30 32 21 5 35 29 

5 34 6 30 37 14 5 31 22 30 36 30 

2 33 7 2 38 15 2 32 23 2 35 31 

2 34 8 2 37 16 2 31 24 2 36 32 

Table 3.1 Order of trials and subjects used in each. 1 = 120s initial control. 30=120s with inclination 
flip every 30s. 5 = 120s with field flip every 5s, 2 =120s final control. 
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Figure 3.6 Mean number of times a subject looks up under the different experimental conditions (1 
= initial control period, 2 = final control period, 5 = inclination flip every 5s, 30 = inclination flip every 
30s.  

Figure 3.6 presents the mean number of times that the subject looks up during a two minute 

trial. Conditions 1 and 2 represent the initial and final controls, respectively, 5 and 30 

represent the 5s per flip and 30s per flip conditions, respectively. It is immediately clear that 

there are a greater number of responses during the manipulated field condition trials than 

during the control trials. Both manipulated field trials have a greater number of responses 

than both control trials. There additionally appears to be a difference on the basis of sex, 

with females showing a greater mean number of responses than males in all trials. However, 

a relatively small number of trials were carried out, and the observed patterns do not reach 

statistical significance (repeated measures ANOVA), although a disparity on the basis of sex 
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does appear to come somewhat close (F1,8=3.853, P=0.151), and may warrant a future 

investigation with a greater sample size. 

  

Figure 3.7 Mean number of saccades observed under each different experimental condition (1 = 
control 1, 2 = control 2, 5 = Inclination flip every 5s, 30 = inclination flip every 30s, Error bars ± SE).  

A comparison of the mean frequency of saccadic responses of all subjects combined between 

the different conditions is shown in Figure 3.7. Error bars represent the standard error of the 

mean. There appears to be some difference between the number of responses under the 5 

second per flip condition and the final control condition, however the final control condition 

appears to have clearly fewer responses than the initial control also. This might well indicate 

that the difference between conditions 5 and C2, and 30 and C2 are potentially due to low 

sampling rate as both approach significance under pairwise comparison (P=0.070, and 

P=0.115 respectively), whereas repeated measures ANOVA shows a significant difference on 

the basis of condition (F3,24=3.201, P=0.041). 
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Figure 3.8 Frequency of saccades under each different experimental condition, separated by subject 
(1 = control 1, 2 = control 2, 5 = Inclination flip every 5s, 30 = inclination flip every 30s).  

When considering the number of saccadic movements greater than 20° recorded for each 

subject, under each different experimental condition (Figure 3.8), it is immediately apparent 

that, in many cases, the number of saccades is greater under the manipulated field 

conditions than under control conditions. In all cases except one (subject 37), one or other 

of the manipulated field conditions shows a greater frequency of saccadic movements than 

in both control conditions. It is interesting to note that the manipulated field condition that 

shows the greatest response varies from subject to subject and that in only two out of eight 

subjects both manipulated conditions show a greater number of saccades than both control 

conditions.           
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Figure 3.9 Frequency of saccades under combined manipulated condition vs pooled control 
condition, separated by subject (c comb = both control periods combined, m comb = both 
manipulated field types combined).  

Combining the responses greater than 20° under both manipulated conditions, and 

comparing with the combined responses under control conditions (Figure 3.9) gives a clearer 

picture of the apparent overall effect. Only one subject of the eight birds (37) did not show 

an increase under manipulated conditions. The responses of subject 37 only differ by one 

saccade between the control and manipulated conditions, with 8 and 7 responses, 

respectively. All other subjects show a marked increase under manipulated conditions, with 

6 of the 8 having more than three times the number of saccadic movements when the 

magnetic field is manipulated. 
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Figure 3.10 Mean number of saccades under manipulated and control field conditions for all 

subjects (c comb = both control periods combined, m comb = both manipulated field types 

combined). *=significant (ANOVA P<0.05), Error bars ± 1 SE.  

A comparison of the means of all subjects’ responses greater than 20° under control and 

manipulated field conditions (Figure 3.10) shows a significantly greater number of responses 

under the manipulated conditions than the combined controls. Interestingly, however, a 

paired samples t-test does not quite reach significance, although it does come very close 

(P=0.053). Unfortunately, the clearer difference observed in saccades over 20° between 

manipulated and control conditions is confounded by the trade-off effect of having very 

much fewer observations overall to compare. For the entire experiment, only 209 responses 

were recorded, and an average of only 26 responses for each subject over the entire 

experiment (approx. 6.5 responses per trial) was observed. For this reason, future 

experiments are expected to be longer in duration, as well as including more subjects and 

trials, in order to gather a more versatile data set.  
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Figure 3.11 Mean number of blinks during experimental trials, comparison between conditions (1 = 
control 1, 2 = control 2, 5 = Inclination flip every 5s, 30 = inclination flip every 30s).  

Past informal observations suggested that there might be a possible correlation between 

blinking and changing magnetic field conditions. Personal observation, as well as that of 

Evinger et al. (1994), show that pigeons always blink when they carry out a saccadic head 

movement. However, pigeons are also observed to blink independently of saccadic head 

movement, meaning that a greater number of responses can be evident. A comparison of 

the mean number of blinks for all subjects between conditions (Figure 3.11) shows that there 

is little, if any effect of magnetic field manipulation on frequency of blinks. Whilst there is a 

slight increase under manipulated conditions, this appears unlikely to be significant with the 

current data set. Because the process of counting blinks (manually by watching back video 

recordings) is highly time consuming, and there is no strong suggestion that a real difference 

might exist, it was decided that this analysis for a much larger data set, which would be 

needed to investigate saccadic responses effectively, would be outside of the scope and time 

constraints of the current thesis project. 
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Figure 3.12 Total number of instances of mouth opening behaviour under each different condition 
(1 = control 1, 2 = control 2, 5 = Inclination flip every 5s, 30 = inclination flip every 30s).  

Another interesting behaviour observed in previous trials was a mouth opening, yawn-like 

movement. Videos were manually watched and these behaviours counted (Figure 3.12). The 

total number of mouth opening behaviours for all subjects, between conditions, shows a 

somewhat similar trend to that seen in the eye-blink responses, namely that both 

experimental conditions show a greater response rate than both control conditions, but only 

by a very small margin, which, considering the low overall sample number (50 for the entire 

experiment), explains a lack of significance under repeated measures ANOVA. 

 

Figure 3.13 Total number of instances of head shaking behaviour under each different condition (1 
= control 1, 2 = control 2, 5 = Inclination flip every 5s, 30 = inclination flip every 30s).  
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The combined number of head shakes for all subjects between conditions (Figure 3.13) 

shows a similar pattern to the two previous figures in that there are more responses under 

manipulated conditions. One interesting difference from the previous two figures is that the 

head shaking response does not occur whatsoever in the control conditions during which the 

amps are switched off and the magnetic field is unmanipulated. Repeated measures ANOVA 

shows a significant difference for condition (F3,24=3.304, P=0.037). 

 

Figure 3.14 Total number of instances of head tilt behaviour under each different condition (1 = 
control 1, 2 = control 2, 5 = Inclination flip every 5s, 30 = inclination flip every 30s). 

Head tilts are also evident in greater numbers under manipulated conditions than under 

control conditions (Figure 3.14), as are instances of the subject looking up (Figure 3.15). 

 

Figure 3.15 Total number of instances of looking up behaviour under each different condition (1 = 
control 1, 2 = control 2, 5 = Inclination flip every 5s, 30 = inclination flip every 30s).  
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Repeated measures ANOVA revealed no significant differences between conditions for 

either looks up, or head tilts (F3,24=1.379, P=0.273, and F3,24=0.505, P=0.683 respectively). 

While the alternative responses investigated show some promise in terms of identifying a 

novel method of measuring behavioural responses to magnetic stimuli, they are very time-

consuming, and in large data sets, this becomes a real issue in terms of carrying out a timely 

analysis. Some level of automation using similar image-analysis software techniques to those 

employed in our rotational head angle software would make this type of analysis far more 

likely to be viable on a larger data set. To this end, initial steps towards developing an inertial 

measurement unit (IMU) based head tracking sensor were undertaken (described in detail 

in Chapter 7), which would facilitate the possibility of characterising any type of head 

movement and automating the analysis of large data sets. 

For future experiments within the scope of this thesis, it was decided that analysis would 

concentrate on the identification and comparison of saccadic rotational head movements, 

as the characterisation of the behaviour and the automation of video analysis had already 

been successfully developed. 

Conclusions of preliminary experiment 

 Alternative behaviours (looking up, head tilt, eye blinks, head shaking and opening 

mouth) may provide a good indication of a response to a magnetic field stimulus, 

however a large data set would be required, as each behaviour occurs relatively 

infrequently, and either automation of video analysis or large amounts of time (to 

manually count responses) would be required. This is outside of the scope of the 

current thesis, but may be of merit in future investigations. The development of a 6 

degree sensor to measure head movements would remove the need for video 

analysis, however writing the necessary software to identify these movements 

accurately from the raw data recorded would be a challenging task. 

 Automated saccade detection appears to work well and is suitable for large data 

sets. 
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 Larger saccades appear to show a greater difference between manipulated and 

unmanipulated conditions. 

 Frequency and amplitude of saccades are the best option currently available for 

comparing head movements under manipulated and unmanipulated conditions. 

Using this measure also allows a direct comparison with the previous results of 

Migalski (2010). 

Experiment 2: Extended investigation into behavioural 

responses to various magnetic field manipulations 

A larger experiment was carried out in order to produce a bigger data set and to investigate 

a range of different magnetic field stimuli. In addition to the flipping stimulus previously 

used, clockwise and anti-clockwise rotations (field rotates around a vertical axis), and null 

field conditions were introduced. Instead of running a sequence of short, varying stimulus 

types as did Migalski (2010), the experimental design was to present one minute of a 

generated static (normal) field, followed by one minute of a manipulated field condition, and 

then another final minute of static field. The main goal was to compare the birds’ behaviour 

during the crucial, second minute of each trial, with controls and the various manipulated 

conditions being represented in separate trials. If the response is at all comparable to that 

observed by Migalski (2010), there should be an apparent difference between the response 

to the control conditions, and that observed when the field is deliberately changed. 

In each session, ten pigeons were exposed to two trials per day as follows (SF = static field): 

Control trials: 

 SF – SF – SF      Control 1 

 SF – SF – SF (Amps off)     Control 2 

Experimental trials: 

 SF - Null field - SF   E 1 

 SF - Flipping field (1/3s) – SF  E 2 

 SF - Flipping field (1/20s) - SF  E 3 
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 SF - CW sweep (20 °/s) - SF  E 4 

 SF - CCW sweep (20 °/s) - SF  E 5  

 Control day    E 6 

Each section of each trial lasts 60s, for total trial length of 120s. 

Routine: 

Each pigeon received one control trial and one experimental trial each day alternating 

between control 1 and control 2 and whether experimental condition comes 1st or 2nd, i.e. 

C2-NF-C2 and C2-C2-C2. The static field (amps off) control was added to compare with the 

generated static field control, to ensure that it did, in fact, function as a control, and did not 

elicit an unexpected response. 

 
Figure 3.16 Mean number of saccades (over 10°) under each experimental condition. N = 10. C1= 
Static field control, C2 = amps off control, E1 = null field, E2 = flip every 3s, E3 = flip every 20s, E4 = 
clockwise rotation, E5 = counter-clockwise rotation (Error bars ± 2 SE).  

The chart above represents the data collected in the new experiment. The mean frequency, 

±2 standard errors of the mean is presented for the second minute of trials for each 

condition. All 10 subjects are pooled. Two main observations can be made from this 
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presentation of the data: Firstly, the data show nothing like the amount of variation between 

conditions that is apparent in the Migalski (2010) data (see Figure 3.1) with means varying 

very little, and a very large overlap being in evidence, and no significance found using linear 

mixed model repeated measures ANOVA. Whereas the Migalski (2010) data show evidence 

of a large difference between control and experimental conditions, the new data do not. 

Secondly, the mean number of saccades is between 2 and 4 per minute. This is very much in 

line with Migalski (2010)’s control condition frequencies, which were typically around 1 per 

20s (3 per minute). This gives good confidence that despite the updated method of 

identifying important movements, the general baseline frequency of movements is 

consistent between the two experiments, which used different cohorts of pigeons. 

Comparing the amplitude of all head movements in the Migalski (2010) data between 

experimental and control trials (Figure 3.3 and Figure 3.4 respectively), it is clear that more 

large amplitude movements occur during experimental trials. This is especially evident in the 

case of the clockwise rotation, which shows no great difference from the preceding null, and 

static field conditions during the control trials, but a large increase is apparent in the data for 

the experimental trials. The pattern is particularly evident in movements greater than 10°, 

the amplitude identified by Migalski as a useful threshold for investigating the response. 

Summary of Helmholtz coil experiments 

The results presented in this chapter illustrate two important trends in the data: 

 The results of Migalski (2010) appear to be confirmed, despite the significantly 

improved methods of extracting head angles from video frames, and subsequent 

identification of saccades from head angle data. 

 There is no evidence, examining saccades in the data from the newly performed 

experiment, for a measureable differential response to magnetic field manipulation 

as compared to control conditions. 
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Taken together these results would seem to suggest that the experiment of Migalski (2010) 

was successful in eliciting a measurable behavioural response to magnetic field stimuli, 

whereas the present experiment was not. Several differences in experimental design were 

introduced for various reasons, however the changes made were expected to refine and 

enhance the experiment (more detail in Chapter 2). The most likely explanation for the 

difference between the results of the experiments was that the experiments of Migalski 

(2010) were performed inside an electromagnetically shielded room, whereas the recent 

experiment was executed under active magnetic shielding, with no shielding of high-

frequency electromagnetic signals. The field generated was good at replicating the ambient 

field, and making changes to it, but was potentially susceptible to anthropogenic 

electromagnetic background noise (see Chapter 2) in the ambient magnetic field. 

Taking this result along with the recent findings of Engels et al. (2014), who demonstrated 

that European robins may not be able to orientate using the geomagnetic field when exposed 

to the general anthropogenic electromagnetic noise of urban or semi-urban environments, 

suggest that homing pigeons may also experience a reduction in salience of magnetic cues 

when exposed to such noise. This poses an interesting option for future experimentation, i.e. 

repeating the recent experiments, in an electromagnetically shielded environment similar to 

that employed by Migalski (2010). This prospect is discussed in more detail in Chapter 7. 

In order to investigate the possible connection between the magnetic sense and vision, the 

OCR equipment described in Chapter 2 was developed. Ultimately it would be beneficial to 

be able to investigate visual psychophysics under magnetic manipulation, to explore the 

possibility that the limits of vision may somehow be altered by changes in the magnetic field. 

However, producing a more robust response to magnetic field manipulations will be an 

important first step. The following chapter describes the initial testing, proof of concept, and 

initial research findings using this newly developed equipment. 
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Chapter 4 Use of LCD screen technology to investigate 

polarised light sensitivity in homing pigeons 

Introduction 

As discussed in the introductory chapter, an understanding of whether pigeons are able to 

discriminate e-vectors of polarised light would be advantageous, both because it is widely 

considered an important navigational cue in its own right, and because there may be some 

potential link between the mechanisms for polarisation sensitivity and magnetoreception 

(Moore 1986; Moore and Phillips 1988; Muheim et al. 2016; Author’s own theory Chapter 

7). 

Having briefly verified that the OCR apparatus could record meaningful and accurate head 

movement data in relation to the moving stimuli, and having made the necessary 

modifications for ‘e-vector only’ stimuli (removal of outer polarising filter, as detailed in 

Chapter 2), an experiment was carried out to investigate e-vector discrimination in pigeons. 

Experimental procedure 

Six homing pigeons were used. Each had experience of wearing the sock bandage restraint 

and had visited the laboratory on at least two occasions, but none had previously been 

exposed to any e-vector only stimuli. 

The stimulus presented consisted of a range of three spatial frequencies of vertical black and 

white grating, all drifting at 10°/s, repeated in both horizontal directions, giving 6 total 

stimulus presentations per trial. The three spatial frequencies (0.088, 0.175 & 0.35 cycles/°) 

used are in the range found during exploratory trials to elicit a following response using 

normal screens. The rationale for varying this was to look for any noticeable difference in the 

effect of stimulus spatial frequency between the normal screen paradigm, and the e-vector 
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only, and 10% contrast paradigms (described below). Direction was alternated, and the order 

of grating sizes was designed to avoid both presentations of the same grating size appearing 

successively. All periods of stimulus presentation lasted 60 seconds, and were separated by 

a 10s period of blank screen (hence no drift).  

 

This produced trials which lasted 430 seconds in total, and each subject was exposed to three 

separate trials: 

 FF - Filtered screen (normal LCD with maximal luminance contrast between grating 

bars) 

 UF - Unfiltered screen (polariser removed, meaning screen appears all white unless 

e-vector can be discriminated) 

 10% - 10% luminance contrast on screen, as opposed to 100% luminance contrast in 

the other two paradigms (to account for possible artefacts produced by unfiltered 

screen) 

The order of the trials was varied between subjects, and a break of at least 10 minutes was 

provided for each subject between trials, during which time the bird could move around and 

had ad lib. access to water. 

Results 

Slow-phase gain 

The first analysis made was to compare the gain of slow-phase movements between the 

three treatment conditions. Slow-phase gain is calculated as the ratio of head movement 

velocity to stimulus velocity, with a gain of 1 representing exact following of the stimulus. 

Figure 4.1 shows a comparison of the frequencies with which different gain values were 

achieved, including gains for each individual slow-phase movement made. 
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Figure 4.1 Comparison of slow-phase gain of individual slow-phase movements between different 
treatment conditions (10 = 10% contrast, FF = filtered normal screen, UF = unfiltered e-vector only 
screen). All 6 subjects combined.  

It is clear in Figure 4.1 that the normal ‘filtered’ screen (FF) was effective at eliciting a strong 

following response, as evidenced by the high number of movements with a gain close to 1. 

This is very different to both the 10% contrast (10) and unfiltered (UF) e-vector only screens, 

each of which elicited very few movements with a gain close to 1. This suggests that only the 

filtered screen is effective in producing a strong following response. ANOVA revealed that 

condition has a significant effect on the gain of the birds' responses, with the gain during the 

FF condition being significantly greater than both 10% and UF conditions (P<0.001; Tukey 

HSD post hoc test). 

 

 

 

Number of saccades 
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Figure 4.2 Comparison of mean gain across different spatial frequencies, for different treatment 
conditions (10 = 10% contrast, FF = filtered normal screen, UF = unfiltered e-vector only screen). All 
6 subjects combined.  

Figure 4.2 illustrates the relationship between mean gain and the different spatial 

frequencies of grating used. For the filtered screen (FF), an increase in gain can be seen as 

spatial frequency increases, in accordance with the patterns observed in Chapter 5. 

However, no such pattern can be seen in the 10% luminance contrast (10) or unfiltered 

screen (UF) conditions. Although some variation is seen, the large overlap between these 

treatments (both of which differ from the filtered screen condition), coupled with the 

generally low gain values in both cases, again suggest that no meaningful following of the 

drifting pattern occurred at the group level. 
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Figure 4.3 Comparison of mean gain across different subjects, separated by treatment condition (10 
= 10% contrast, FF = filtered normal screen, UF = unfiltered e-vector only screen). Spatial frequencies 
combined.  

Separating out the results from individual subjects in Figure 4.3 shows a similar pattern to 

previous figures. The response to the filtered screen (FF) shows a markedly stronger 

following in general, having in almost all cases, a higher gain value than the 10% contrast 

(10%) or unfiltered (UF) conditions, which do not seem to differ from one another. Two 

notable exceptions to this are: subject 76, which had an unusually high mean gain in the 10% 

contrast condition, although judging by the spread of values, this is likely due to chance, as 

a large number of slow-phase movements, some of which might have been significantly 

faster than the stimulus itself, converge on a mean of approximately 0.6; and subject 74, 

which seemed to respond differently to all three stimuli. In half of the subjects, the mean 

gain is higher for 10% contrast than for unfiltered conditions, and in the other half, the 

opposite is true. In all cases, the filtered screen elicits slow-phase movements with higher 

gain values than in either of the manipulated screen conditions. 
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Saccade frequency/amplitude 

 
Figure 4.4 Frequency histogram showing the number of saccades of each size (amplitude in degrees), 
across the three different treatment conditions (10 = 10% contrast, FF = filtered normal screen, UF 
= unfiltered e-vector only screen). All 6 subjects combined.  

Figure 4.4 gives the amplitude (°) of each saccade under each treatment condition, with all 

of the 6 subjects combined. It is clear that the filtered screen (FF) produces the greatest 

number of saccades. ANOVA showed that the difference was significant with FF being 

different from both 10% and UF conditions (P=005 and P=001 respectively, Tukey post hoc 

test). Interestingly, the 10% contrast (10%), and unfiltered (UF) conditions appear to produce 

slightly more saccades of over 50°, than does the filtered screen. This may be because the 

manipulated screen conditions produce some kind of visual stimulus, but not one salient 

enough to produce the OCR response. The bird is possibly looking around, trying to find a 

point of fixation, or even exhibiting a mild alarm response, rather than pursuing, as in the 

filtered condition. Also interesting is that the distribution of saccade frequencies in the 

unfiltered condition, matches more closely the filtered screen, than the 10% contrast screen, 

to which it was otherwise more similar in the previous analyses. 

(°
) 

(°) 
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Q-ratio 

  
Figure 4.5 Mean Q-ratio over the three different treatment conditions. All subjects combined. 

Q ratio represents the slope of the data for individual saccadic movements when peak 

velocity multiplied by duration is plotted against amplitude 
pV.𝐷𝑢𝑟

Amp
 (discussed further in 

Chapter 5). The Q-ratios for saccadic movements in response to filtered (FF) are different 

from those produced under 10% contrast (10%) and unfiltered (UF) conditions, showing a 

significant ANOVA result (P<0.001 Tukey post hoc test). This indicates that the saccades 

observed under unfiltered and 10% contrast conditions are not of the regular, visually guided 

OKN/OCR type, and may perhaps represent a different behaviour, whose resultant saccades 

may have different psychophysical or mechanical properties.  
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Figure 4.6 Mean Q-ratio across the three treatment conditions, with subjects separated (10 = 10% 
contrast, FF = filtered normal screen, UF = unfiltered e-vector only screen). All 3 spatial frequencies 
combined.  

Separating out the subjects from one another in Figure 4.6, shows that the patterns observed 

in Figure 4.5 are not a result of combining data from the various subjects, as the within-

subject variation maintains the patterns observed, namely that the Q-ratio in the filtered 

screen (FF) condition is different from that of the manipulated screen conditions, which tend 

not to vary as much between one another. It is interesting to note that the spread of within-

subject measurements is lower under the filtered screen condition than in the other two. 

This again suggests some fundamental difference between the presumably visually guided 

saccades, and those where the stimulus is not meaningfully followed (manipulated screen 

conditions). Two of the subjects show far greater spread of values under the 10% contrast 

condition than unfiltered or filtered. 
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Goldfish control experiment 

It is well established that goldfish (Carassius auratus) are able to discriminate e-vector 

orientation and use this information behaviourally (Kleerekoper et al. 1973; Pignatelli et al. 

2011; Roberts and Needham 2007; Hawryshyn 2010). A brief qualitative assessment was 

carried out to test whether a following response could be induced in goldfish using the same 

two experimental arenas as used for pigeons. The same drifting grating was presented 

drifting at 20°/s in a clockwise direction. The goldfish were placed into a 20cm diameter x 

5cm deep circular glass bowl, with vertical glass sides of approximately 1mm thickness. The 

goldfish were able to swim freely in any direction within this container. Therefore, the 

expected response was optomotor (i.e. the whole body moves) rather than optocollic (head 

movements). Fortunately, the head movement detection software worked well at identifying 

the orientation angle of the fish, which confirms its potential usefulness in assessing the 

responses of other species. 

 
Figure 4.7 Optomotor response of goldfish (1) to filtered grating drifting at 20°/s. 

Figure 4.7 shows the response of one goldfish to the drifting grating under the filtered (i.e. 

clearly visible to humans and, apparently, the pigeons) condition. The behavioural response 

of the fish consisted of swaying side to side repeatedly, with a strong bias for turning to the 

right (increase in orientation angle). It can be seen that, although the data appear somewhat 

FF 
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noisy (due to the swaying behaviour), there is a clear trend for the goldfish to rotate around 

the bowl consistently to the right. The arrow clarifies this steady drift in orientation and its 

slope represents a drift of 20°/s. It can be seen that the goldfish makes 9 full rotations during 

the three minute trial. The fact that the goldfish rotates overwhelmingly in the direction of 

the stimulus drift, and matches the speed of the drift very closely, confirms that it is able to 

see the stimulus in this condition. Subsequent trials were carried out using the 10% contrast 

and unfiltered (i.e. e-vector only) conditions. 

 

 
Figure 4.8 Optomotor response of 1 goldfish to a grating drifting at 20°/s with luminance contrast 
set to 10% (10%-top) and polarising filters removed (UF-bottom). 

Figure 4.8 shows a markedly different response from the goldfish to both 10% luminance 

contrast (10%) and unfiltered, hence e-vector only (UF) conditions, as compared to the 

filtered (FF) screen condition shown in Figure 4.7. In the 10% contrast condition, there is 

10% 

UF 
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some evidence of an overall clockwise drift (i.e. the direction of the drifting pattern) in the 

second half of the trial. However the rate of rotational drift does not match that of the 

stimulus nearly as well as in the FF condition, nor does the behaviour display the same clear 

level of consistency. Under the UF condition an overall trend to drift to the right can be seen, 

however this response is also far less consistent and well matched with stimulus velocity 

than the FF condition. This indicates that the fish is not able to follow either the 10% or UF 

gratings as well as they followed the FF grating. There is a possibility that the clockwise 

rotation seen under the UF condition could potentially be due to visual artefacts created 

when the UF stimulus is refracted and reflected by the glass dish in which the fish swims. The 

lack of a consistent following, however, implies that neither e-vector orientation contrast, 

nor any visual artefacts, can be clearly seen by the subject. These observations imply that 

goldfish are unable, or markedly less able, to follow the UF grating and hence, are unable to 

discriminate the contrasting e-vector orientations in the same experimental setup that failed 

to demonstrate and OCR response in pigeons. Anecdotally, optomotor responses to rotation 

gratings of differing e-vector orientation can be induced in goldfish, however that 

experiment was carried out using daylight-emulating light sources, containing low 

wavelength and UV light (van der Meer 2011). This is consistent with the fact that the ability 

of teleost fishes to discriminate e-vector orientation and contrast is associated strongly with 

availability of UV light (Hawryshyn 2010). Because LCD screens typically do not emit light in 

the UV wavelengths, a future experiment could be conducted by adding UV light to the 

display screens. This is discussed in more detail under Future directions in Chapter 7. 
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Summary of polarised light experiment 

The data presented in Chapter 6 provide a clear example of how, using this methodology, 

meaningful measurements can be obtained for evaluating the head movements of pigeons. 

However, no evidence can be observed for the existence of e-vector discrimination in the 

pigeon, the response generally being similar to the response to 10% luminance contrast, both 

of which differed markedly from that under filtered ‘normal’ screen conditions in a variety 

of ways. 

The frequency of saccades under unfiltered conditions appeared relatively similar to those 

under normal filtered screen conditions, noticeably more so than the 10% contrast 

treatment, which, to the human eye, is easier to see and follow. 

The small amount of variation between and within subjects of the Q-ratio, can likely be 

explained in terms of limitations in the accuracy of recording and analysing head movements 

(primarily sample rate, see Chapter 5). The greater difference between treatments, and 

within subjects under the 10% contrast and unfiltered screen treatments appears to be a real 

effect resulting from the difference in stimulus presentation. This is interesting because a 

maximal reflexive ballistic movement such as a saccade should have predictable dynamics, 

particularly within-subject, regardless of stimulus used. 

These results suggest that there may be some promise to further investigating this possible 

sensory modality using the general approach described. If this were to be the case then 

certain improvements to the technique would be advisable. The original theory of the author 

combined with the knowledge that pigeons can see into the UV area of the light spectrum 

(Vos Hzn et al. 1994) suggests that it would be worthwhile to display the stimuli used with 

UV light as is found in regular daylight in a natural environment, or possibly to try the 

experiment using only the UV range of the spectrum. This was beyond the scope of the 
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current investigation, but is discussed more in Chapter 7, under Future directions. The results 

of testing with goldfish show a similar trend, with the FF condition eliciting a strong following 

response, which was not present under 10% or UF conditions. This further supports the 

implication that UV light might be necessary for a following response to be obtained using 

this experimental approach. 

Nevertheless the methodology does seem effective in obtaining a rapid, and highly adaptable 

means of investigating visual psychophysics in pigeons and the optomotor response in fish. 

The next chapter will investigate more closely the way that this method can be applied to 

studying vison in pigeons.
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Chapter 5 Using the LCD arena to explore the optocollic 

reflex more generally 

Having designed and built a system capable of psychophysical testing using pigeon head 

movements, consideration was given to how this may be used more generally. In the long 

term (see ‘Future directions’ in Chapter 7), it would be very interesting to use this approach 

to establish psychophysical limits of vision, for example spatial acuity and/ or contrast 

sensitivity, and then assess whether these are affected by manipulating the ambient 

magnetic field. To test acuity, screens of higher resolution than those available would be 

required and the time needed for such an investigation was beyond the scope of this thesis. 

However, it was possible to test whether such techniques could work in principle, even if the 

theoretical limits of spatial vision cannot be reached with the current setup. To this end, a 

series of investigations were carried out to establish the reliability of the method in eliciting 

a consistent reflexive response, and to begin investigating how the methodology might be 

employed in future investigations of visual psychophysics. The following experiments were 

conducted during the prolonged period during which debugging and repair of the prepulse 

inhibition equipment was in progress. 

Effect of stimulus velocity on saccadic head movements 

In order to verify the reliability of the measurements of head movement responses using the 

experimental approach, a comparison was made with data available in the literature, 

obtained using more traditional methods (i.e. physical rotating drum stimulus). 



100 
 

 

Figure 5.1 Effect of stimulus velocity on frequency of saccades, from Fite (1968). 

Figure 5.1 shows data recorded by Fite (1968) illustrating the relationship between frequency 

of saccadic head movements and stimulus velocity, for two different paradigms. In the 

ramped trials, velocity was increased in regular equal increments, from one velocity to the 

next, meaning any one change in velocity was relatively small. In the stepped paradigm, each 

velocity was presented with an abrupt step from 0°/s, presumably incurring a greater 

increase in retinal slip for higher stimulus velocities, as the new target begins travelling much 

faster than the one currently being pursued. Consequently, it can be seen that in the 

paradigm where the increase in stimulus velocity is gradual, head movement frequencies 

increase steadily up to stimulus velocities of almost 50°/s. Whereas those changes in velocity 

which are more abrupt, show only minor, if indeed any, real changes in saccadic head 

movement frequency. 

An attempt was made to replicate the above findings using the newly developed apparatus, 

but this was limited by certain factors. In order to present a smoothly drifting visual stimulus 

using Psychtoolbox, it is important that the spatial frequency of the stimulus be a factor of 

screen width, each being measured in pixels. This also has a bearing on the precise stimulus 

Stepped 
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velocities which can be reliably employed. Despite this, a wide range of stimulus velocities 

can be presented, meaning a comparison of differing paradigms for increasing velocity can 

be made. The only outstanding difference in the stimulus presentation, is that using the 

current method, contrasting bands are delivered in the form of a regular square wave 

grating, with a ‘Black to White stripe ratio’ of 1:1, as opposed to the 1:2.2 and 1:22 ratios 

used by Fite (1968). Consequently, direct comparison of saccade frequencies with Fite (1968) 

is not possible, however similar variation in the trends shown under abruptly changing vs 

gradually changing velocities should be apparent. A trial was carried out using 5 birds, with 

2 presentations of each stimulus velocity (one in each rotational direction), utilising 2 

differing paradigms; 

 Ramped velocities changed in regular equal increments 

 Randomised velocities involved a random order of velocities, with a 10s pause 

between each presentation, meaning that, each time a stimulus began to move, it 

was changing instantaneously from a velocity of zero to the presentation velocity. 

Subjects were 5 homing pigeons, 2 male, 3 female, all of which had been handled regularly 

and had experienced having the sock-bandage restraint put on them at least once. Two 

continuous trials were run for each bird, such that each stimulus velocity was presented in 

both rotational directions. In the ramped trial, velocity increased in 10°/s steps over the 

course of 4 minutes 40 seconds, giving 20 seconds of continuous stimulus motion at each 

chosen velocity. This meant that each subject experienced two 280s trials, and a total of 

about ten minutes of mild restraint for the entire experiment. A break of several minutes 

was given between trials, during which time the restraint was removed and the pigeon was 

free to move around and extend its wings (but not fly), as well as having ad lib. access to 

water. Intervals of 20s for each stimulus were chosen as preliminary trials showed this to be 

adequate time to produce a response, whilst minimising trial time, and hence potential stress 

to the subject. In the randomised trials, each velocity was separated by a period of 10s of 
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stationary stimulus, and the direction of trials was alternated. This was done in order to 

minimise any effect of lag effects from one stimulus presentation carrying over to affect the 

subject’s ability to pursue the next. For subsequent analysis of saccades and slow-phase 

gains, data for the two different directions was combined. Because of the self-imposed time-

limits for restraining the pigeons, and the introduction of stationary phases, a slightly 

different number of stimulus velocities were employed. There are, therefore, some 

important differences between the paradigms employed here and those of Fite (1968): 

 The spacing of black and white bands. 

 The specific stimulus velocities employed. 

 The duration of each stimulus presentation (and overall trial), was shorter than in 

Fite (1968). 

 The randomised trial was more broken up than the stepped paradigm of Fite (1968), 

with changes in stimulus velocity being greater in some cases. 

Despite these considerations, it was still possible to present a wide range of stimulus 

velocities, extending to include previously published limits, and to explore the effect of the 

motion elicited by one stimulus on the ability to pursue the next. 

Consequently, based on Fite’s (1968) results, one would expect to observe a much steeper 

curve in the case of the incrementally ramped velocity trial, than in the trial involving abrupt 

(and in some cases large) increases in velocity from zero (Randomised). 
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Figure 5.2 Effect of stimulus velocity on frequency of saccades (Error bars ± 2 SE) N = 5. 

In Figure 5.2, a clear distinction can be seen between frequencies of saccades under the two 

paradigms. A gradual increase in velocity clearly results in a steady increase of saccadic 

frequency up to approximately 60°/s, whereas in the randomised paradigm, the abrupt 

changes in stimulus velocity result in only small variations in a relatively constant saccade 

frequency, which do not appear to be related to stimulus velocity. The general patterns 

observed between saccade frequency and stimulus velocity, and the effect of stimulus 

change from one velocity to the next, appear to match well with the previous findings of Fite 

(1968). 
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Relationship between amplitude and peak velocity of saccades 

The nature of a saccadic head movement is such that there is a very close relationship 

between the amplitude of a movement, and the peak velocity achieved during that 

movement. This is due to the reflexive, maximal nature of the movement in question, 

meaning that over greater movement amplitudes, greater maximum velocities are achieved. 

Head movements were analysed using the MATLAB code developed by Lee McIlreavy 

described in Chapter 2. The following figures show that a clear relationship between head 

movement amplitude and condition is evident in the data. 

 

Figure 5.3 Effect of stimulus velocity on mean amplitude of saccades (all 5 subjects combined). 

Figure 5.3 suggests there is a gradual (albeit small) increase in the mean amplitude of 

saccades between velocities of approximately 30 to 40°/s, which then falls gradually back to 
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starting level beyond 60°/s. In the randomised data, no such relationship with stimulus 

velocity is apparent. 

 

Figure 5.4 Effect of stimulus velocity on mean peak velocity of saccades (average of all 5 subjects). 

Figure 5.4 shows an almost identical relationship between mean peak velocity of head 

movements and stimulus velocity as between mean amplitude and stimulus velocity in Figure 

5.4. This clearly demonstrates the known relationship between amplitude and peak velocity 

of saccadic movements, and provides supporting evidence that the apparatus and paradigms 

used are effective in eliciting the Optocollic Reflex, whose dynamics are affected by 

experimental condition. 

Further investigation into the main sequence of saccades under each paradigm may be 

possible and will be discussed further in Chapter 7. 
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Effect of stimulus velocity on slow-phase gain 

As well as demonstrating that the apparatus is capable of producing results in accordance 

with previous studies, the above findings also pose an interesting question about how 

moving targets are seen by pigeons: how does the relative change in stimulus velocity affect 

their ability to pursue the target? 

In order to shed light on this issue, a comparison of slow-phase gains was made between the 

two paradigms. Gain, in terms of visual pursuit, is an effective measure of the ability of an 

observer to accurately pursue a moving visual stimulus. Expressed as a ratio, visual pursuit 

gain is the mean slow-phase rotational velocity of the head divided by the velocity of the 

target. Such that a target moving at 30°/s that is eliciting a following response at 27°/s would 

be expressed as a gain of 0.9. Pursuing a visual target with eye/head velocity perfectly 

matching that of the stimulus would be expressed as a gain of 1. Generally head movement 

pursuits would rarely be expected to be exactly 1, as some contribution is made by 

movements of the eyes, which was not measured here. 
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Figure 5.5 Effect of stimulus velocity on mean gain of slow-phase movements under two different 
conditions (all 5 subjects combined).  

It can be seen from Figure 5.5 that the relative change in stimulus velocity has a clear effect 

on the ability of the pigeon to accurately pursue the stimulus, with abrupt increases in 

stimulus velocity (randomised) resulting in a much steeper drop in gain than gradual 

increases (ramped). 

At very low velocities, both paradigms show gains of greater than 1. This occurs when the 

stimulus is not being effectively pursued, and is moving at a lower velocity than the typical 

resting head movements of the pigeon. The fact that these very slow velocities are not being 

pursued is suggestive of a minimum low-velocity threshold for activating the Optocollic reflex 

in pigeons. The data presented in Figure 5.5 show that this threshold is likely to be in the 

region of 10°/s. At greater velocities than 10°/s, gain begins to reduce. This reduction in gain 

is steep and apparently somewhat linear in the randomised paradigm, with little or no 

pursuit occurring at velocities above 40°/s. In the ramped paradigm, gain falls away more 

(°/s) 
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gradually with the slope of the curve steepening with increased velocity. It appears that the 

pigeons may be pursuing the target to some extent, right up to 90°/s, which was the highest 

velocity used in that paradigm, although by that point the gain value has dropped 

considerably, and whether they can be described as meaningfully pursuing the target is a 

simple case of applying an arbitrary threshold for gain. 

 ‘Build up’ and ‘Break down’ effects 

The observation that the amount of retinal slip may be affecting the ability of the bird to 

pursue, begs the question of whether the bird requires a period of exposure to the moving 

stimulus (‘building up’) in order to reach pursuit velocities, i.e. gains closest to 1. 

The figure below shows the same ramped data as plotted in Figure 5.5 with the notable 

difference that each period of a given stimulus velocity has been divided into two, allowing 

comparison of mean gain during the first and second half of each velocity presentation. 

 
Figure 5.6 Effect of stimulus velocity on mean gain of slow-phase movements, 1st and 2nd half of 
each velocity presentation separated (all 5 subjects combined).  
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The fact that the first and second half of each stimulus presentation shows differences in 

gain at certain velocities is potentially very interesting (Figure 5.6). When the green (2nd) gain 

value is higher, this suggests that the bird is ‘building up’ to the stimulus velocity, rather than 

achieving a gain of close to 1 in under 50ms, as would be expected in adult humans (Crane 

et al. 2007). When the green marker shows lower gain than the blue, the bird is finding it 

increasingly difficult to follow the stimulus, and hence gain (for a given stimulus velocity) 

‘breaks down’. 

In order to investigate this effect further, a comparison was made between two different 

stimulus velocities, arising spontaneously from a stationary stimulus (i.e. from the 

randomised recordings above). Hence, in the figure below, 22°/s stimulus is twice the 

velocity of 11°/s. 

 

Figure 5.7 Build-up of slow-phase gain (1 subject, ID B1). 

Figure 5.7 shows that, rather than instantaneously reaching pursuit velocity, the head 

movements of the pigeon actually build gradually towards a gain of 1. Not only is this build 
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up effect clearly present, but it also appears to be a function of stimulus velocity (and/or 

change therein). 

The above chart implies that the duration of stimulus presentation (in this case 20s) is too 

short to explore the full effect. This provides an opportunity for future investigations, utilising 

greater durations of stimulus presentation, combined ideally with a greater sampling rate, in 

order to better characterise this build up effect. This also presents the possibility of 

comparing directly with humans (which, in adulthood, are not thought to express such a 

build-up effect in pursuit eye movements (Crane et al. 2007)), and other species, in order to 

investigate evolutionary relationships in visual pursuit behaviour 

Acuity 

A common property of vision that may be assessed using OKN/OCR techniques is visual 

acuity. This denotes the finest distinction in spatial resolution that can be made by the eye, 

and can be measured as a function of spatial frequency (width of bars in this approach). 

Luminance contrast can also be tested by varying the brightness contrast between bars. A 

combination of the two, using the greatest point at which both measures elicit a response 

can be plotted to produce a contrast-sensitivity curve. In some case 1/contrast threshold is 

employed as a contrast sensitivity function (CSF), thus, low contrast thresholds of vision 

represent high CSF values. 

An attempt was made to measure the effect of spatial frequency on slow-phase gain. A 

simple, exploratory trial was conducted which involved only one subject, and one 

presentation of each stimulus. For a detailed investigation more subjects/trials would clearly 

be required. 
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Figure 5.8 Effect of spatial frequency on slow-phase gain (1 subject ID B1). 

As can clearly be seen in Figure 5.8, some stimuli are too wide to follow (low number of cycles 

per degree). This is due to the fact that edges (areas of visible contrast) are only visible for a 

small proportion of the time, the bars being so wide that they show no visible change during 

large periods of the presentation, meaning that movement cannot be observed, and the 

optocollic reflex is not stimulated. As spatial frequency increases, so does gain, as the bars 

presumably become small enough for the subject to track the edges. This trend should reach 

a peak and come back down, as the bars now become so narrow they become harder and 

harder to discriminate from one another, to determine the narrowest bar the pigeon can 

see. The spatial frequency of this narrowest bar (at maximum contrast) is known as the 

spatial acuity of the subject. This experiment is however limited by screen resolution. Due to 

the size of pixels in the Philips displays used, and the specific number of pixels that a stripe 

must contain in order to be redrawn smoothly enough to appear as a steady drift, the 

greatest spatial frequency possible was slightly over 0.03 cycles per degree.  No comparison 

of luminance contrast was performed in this trial. 
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Pigeon acuity has been measured in various ways, with values between 3 and 12 cycles per 

degree having been previously reported (Bloch and Martinoya 1982; Gunturkun and 

Hahmann 1994). Future experiments may be conducted using much higher resolution 

screens, allowing more of the spatial contrast sensitivity curve to be assessed. The numerous 

screens used were selected simply on the basis of their availability, having been kindly 

offered for use in this research by Cardiff University. Screens with resolutions that can 

theoretically produce gratings suitable for a full investigation into spatial acuity, have 

recently become commercially available, and are discussed in more detail in Chapter 7. 

Main sequence of saccadic movement 

Saccadic eye and head movements have a stereotypical relationship between the amplitude 

of a given saccade, and its peak velocity. Similarly, peak velocity and mean velocity are closely 

correlated. This stereotypy is referred to as the saccadic main sequence, and is useful in 

various ways (Bahill et al. 1975). It is possible to compare features of the main sequence 

(such as the slope/ratio of peak velocity multiplied by duration and mean amplitude 
pV.𝐷𝑢𝑟

Amp
 

of saccadic movements known as Q), between subjects/species. This can be useful to 

investigate differences and similarities in the musculature employed in facilitating the 

movements, as well as the underlying neural substrate responsible for their control. 

Comparisons within subject may be useful in comparing before and after treatments, such 

as lesioning or sectioning certain pathways. 

In the case of this investigation, the main sequence is useful in validating the experimental 

approach, as any problems in recording or calculating saccades may potentially be visible as 

a deviation from the stereotypical shape of standard plots. The plots commonly employed 

are: peak velocity vs amplitude, duration vs amplitude, and peak velocity x duration vs 
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amplitude (the gradient of the slope created by this chart also gives Q-ratio). An example of 

these plots can be seen below. 

 

Figure 5.9 Stereotypical aspects of the saccadic main sequence, in human eye movements from 
Harwood et al. (1999).Showing: a) peak velocity vs amplitude, b) duration vs amplitude c) peak 
velocity x duration vs amplitude.  

These figures (5.9 a-c) were reproduced using the data recorded in the LCD arena. Figure 

5.10 (a-c) contains combined data from all birds/trials, hence shows a more ‘noisy’ signal 

than in the above example, which only employs one single subject. However, the 

stereotypical trends should still be apparent. 

a 

b 

c 
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Figure 5.10 Reproduction of Figure 5.9, using the data from the 5 bird experiment recorded to 
compare saccade frequency with Fite (1968). Showing; a) Amplitude vs Peak Velocity, b) Amplitude 
vs Duration, and c) Amplitude vs Peak Velocity x Duration.  

a 

b 

c 



115 
 

As can be seen in Figure 5.10, the plot of peak velocity vs. amplitude (a) shows the 

stereotypical trend expected. The data is predictably noisy due to variation between subjects 

and individual saccadic movements recorded. The actual values achieved are somewhat 

different from those of Harwood et al. (1999), due to differences in eye and head movement 

saccades, and the small amount of noise or jitter present in the raw data (discussed in 

Chapter 2). However, the expected trend is clearly visible. The trend in plot b, on the other 

hand, is markedly different from that expected based on the results of Harwood et al. (1999). 

Further investigation is needed to find the cause of this anomalous finding. However, the 

most likely reason is that the sampling rate of the camera used for these experiments was 

too low (60 Hz vs. 1000 Hz used by Harwood et al. (1999)). This would severely bias the 

measurements of saccade duration. This suggests that, for detailed analysis of saccadic main 

sequence features, a camera with a greater sampling rate and/or an improved filtering 

method (to remove more noise from the recorded data) may be necessary. Plot c shows 

again the stereotypical trend pattern that might be expected, but due to the issue with 

measuring duration, the values are likely to be somewhat inaccurate, meaning that this 

approach requires refinement before measures of Q-ratio can be derived using it that will be 

comparable with existing published data.  

Vertical OKR 

As well as the optocollic reflex, various other types of visually induced head movement can 

potentially be investigated using this apparatus. The optokinetic reflex may manifest as 

extending and shortening of the neck, allowing the head to remain stable vertically when the 

rest of the animal moves, as well as the classic head bobbing movement seen in mobile birds, 

which fixates the image of the world for the maximum possible time, with fast bobs 

equivalent to OCR saccades in allowing the following to continue after the animal reaches its 
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physical limit (i.e. maximum head rotation in OCR or neck extension in head bobbing) (Frost 

1978). 

In order to assess the suitability of the apparatus for measuring head bobbing, an exploratory 

trial was carried out using vertically drifting stimuli. In order to fill as much of the vertical 

visual field as possible, the subject was placed nearer to the front of the arena, allowing the 

front screens to subtend a larger vertical angle. The stimulus drifted upwards at 20°/s for 

three seconds, before reversing (i.e. downwards) for 3 seconds. This was repeated such that 

the stimulus was presented twice in each direction. For these trials, the pigeon was videoed 

from the side, and positions were extracted manually, by measuring the distance travelled 

on the viewing screen. 

 

Figure 5.11 Pigeon response to vertically drifting stimulus (1 subject). 

Figure 5.11 shows the relationship between stimulus motion and vertical head movements 

(neck extension). In this trial, the range of head movement in this subject was approximately 

2cm. Typically the pigeon achieved a full range movement in approximately 1 second, 

beyond which the head position was relatively stable. At full extension, there were signs of 

regular small amplitude bobbing/nystagmus where only minor movements were made in 
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order to fixate the stimulus, however these were observed visually, and higher precision 

recording of position is required to characterise this more accurately. 

During the initial 1s of movement, the head follows the stimulus with a mean gain of 0.56. 

With greater sampling rates it should be possible to develop an accurate picture of head 

bobbing dynamics in both the horizontal and vertical direction. 

Direction of saccades 

An investigation was made into the effect of stimulus velocity on saccade frequency, when 

separated by direction. Below is a chart showing all saccades recorded during counter 

clockwise (CCW) stimulus drift, under the ‘Ramped’ paradigm already described. 

 

Figure 5.12 Frequency of saccades, separated by direction (all 5 subjects combined). 

Figure 5.12 shows an interesting relationship between the different directions of saccade. At 

low velocities, there is no obvious difference in the frequency of each. At 10- 20 °/s there is 

a large increase in saccades moving with the drection of drift (these are variously referred to 

as ‘catch-up saccades, or mis-directed saccades). Between 10 and 90°/s stimulus velocity, 
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there appears to be an inverse relationship between the two directions. The saccades 

‘against’ stimulus drift follow the now familiar pattern of building to a peak around 60°/s 

before falling away, whereas the catch-up saccades follow what appears to be the opposite 

pattern, being greatest at 20°/s and 80°/s, and dipping in between. 

 

Figure 5.13 Frequency of saccades, separated by direction, and with saccades of less than 5° 
amplitude removed.  

At this stage it was observed that a large number of catch-up saccades at the 10°/s velocity 

were less than 5° amplitude. An arbitrary limit of minimum 5° amplitude was imposed and 

the same chart plotted to examine the trend more closely (Figure 5.13). 

The inverse relationship described above is still in evidence (although the gradual increase in 

catch-up saccades towards the greatest velocities may be eliminated), and poses two 

interesting questions: 

 What is the relationship of catch-up saccades to the velocity of the stimulus? 

 Why are so many of these catch-up saccades less than 5° in amplitude? 
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Future work will concentrate on answering these questions and utilising the resulting 

knowledge to further improve the method of measuring saccades. This will be discussed in 

more detail in Chapter 7. 

Summary of OCR experiments 

The relationship between stimulus velocity and frequency of saccades produces a ‘velocity 

profile’ which, as with other measurements of OCR, is highly stylised for a given species of 

subject. The data presented show this stylised response, with a small amount of saccadic 

movement during presentation of a stationary stimulus (baseline movement), which then 

builds gradually as the stimulus velocity increases, up to a point where the stimulus moves 

too quickly for the subject to effectively track the drifting pattern. Saccades continue to 

occur, however their frequency drops off significantly, once the smooth pursuit (i.e. the slow-

phase head movements of the subject) can no longer keep up with the stimulus velocity. 

This characteristic profile reflects that already published, but has been accomplished by the 

use of a much lower number of birds. The established accuracy of the approach, coupled 

with its increased efficiency in use of subjects, suggests that this technique will be of 

considerable use to those wishing to assess the dynamics and other properties of OKN/OCR 

in the future. 

We have concentrated here on head movements (OCR), but with the addition of eye-tracking 

equipment (available commercially) the eye movements of OKN might be assessed just as 

easily, and with the same range of stimulus variants available. 

Previous studies on OCR in pigeons have reported up to 50% rejection of trials (Conley and 

Fite 1980) and a requirement for extensive training. The new method described produces a 

far lower rejection rate, with 11 out of 12 trials being included for final analysis. Video 

analysis does not return an automated head angle measurement if the bird looks directly 
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upwards or downwards as the head marking is out of view. A threshold is set for how many 

head angles it is acceptable to miss. For this validation, any video from which 5% or more of 

the frames did not return a head angle was simply rejected. With an additional analysis 

and/or manual correction for missing frames, 100% of all head angles can be obtained. Here, 

no extra analysis or manual correction of video’s was done, carrying out only a straight single 

run of the automated analysis, which allows acceptance (>95% frames detected) in over 90% 

of trials. The technique requires no training of the subject beyond familiarisation with 

handling by humans, and a previous experience of wearing the sock bandage restraint. All 

subjects can be tested without difficulty in the present case, without the need to reject any 

prior to automated analysis of the data. 

This method also gives the opportunity to use reasonably short trial times, as the stimulus 

can be presented in the absence of other visual stimulation and the subjects remain alert but 

unstressed, resulting in a clear, consistent OCR response. This facilitates testing of many 

different parameters, in a short session, allowing larger amounts of useful data to be 

obtained, with little or no impact on the subjects. 

The ability to present a huge range of possible variations in stimulus parameters while using 

an accurate (and crucially non-invasive) method for recording head movements, as well as 

the possibility of short quick-fire trials, makes it possible to collect a far greater amount of 

useful quantitative measurements, over a much greater range of stimulus parameters, in a 

shorter time, and critically, with the use of fewer subjects. 

The use, in previous chapters, of Helmholtz coils and LCD screen technology as well as our 

newly developed video analysis and saccade identification software, has demonstrated that 

meaningful experiments can be carried out using these approaches. In the future, the 

optocollic response/LCD screen approach may be combined with the Helmholtz coil system 
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in order to examine the psychophysical limits of vision under different ambient magnetic 

fields (for detailed discussion see Chapter 7 – Future directions). 

This work was useful and informative in its own right, but also served the purpose of allowing 

meaningful investigations to continue, despite unexpected delays in making ready the 

equipment for other experiments. For the next chapter of this thesis, another highly novel 

and experimental approach to investigating magnetoreception will be employed, relying on 

the principle of prepulse inhibition. 
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Chapter 6 Using prepulse inhibition to investigate 

magnetoreception 

The field of magnetoreception research is beset by a very serious lack of reproducibility in 

results between research groups, due, in large part, to the necessity of having to create 

experiments, and the necessary bespoke equipment supporting them (often involving 

biologists who are unlikely to be trained or experienced in electrical engineering). A 

fundamental tenet of the approaches in this thesis is to use novel, but reproducible, 

equipment and techniques, to examine known, reliably reproducible responses, such that 

with the necessary resources, the experiments can be adequately reproduced. Prepulse 

inhibition is a well-established method for investigating psychophysical aspects of animal 

perception. The use of large numbers of trials, coupled with the relatively well understood 

nature of the reflexive startle response in vertebrates, makes for a highly reliable and, 

crucially, reproducible method of experimentation. More details on prepulse inhibition, and 

the approach to the methodology are in Chapter 2. 

An unexpectedly large amount of time and effort had to be invested in the design and 

implementation of the equipment used for prepulse inhibition (PPI) experiments, due to a 

series of unfortunate problems with the hardware. However, it was eventually possible to 

carry out useful experiments with a flash (visual) startle stimulus, allowing for proof of 

concept, and indeed original investigative experiments to be carried out. 

Verifying prepulse timing 

A short experiment was undertaken to verify the timing of stimulus presentation. Two things 

were to be established, 1, that the timing of the prepulse in relation to the startle stimulus 

(inter stimulus interval or ISI) was as intended, and 2, that the magnetic field changes could 

be presented with suitably accurate timing to be used as a prepulse. The first question can 
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be answered simply using exploratory trials with actual subjects because if a significant PPI 

can be elicited, then the ISI is by definition, an effective one. Evidence for this efficacy of 

delivered ISI is presented in Figure 6.1. Additionally, there is no reason to doubt the accuracy 

of the SDI equipment sending the signals at the planned intervals. In order to elucidate the 

other potential concerns mentioned, data were plotted for both magnetic field variation 

times, and expected session times, calculated by examining the inter trial intervals (ITIs) and 

an additional 1.067s that the SDI software takes to begin executing each trial. If these 

intervals match with no signs of drift, it can be taken that both computers involved in the 

experiment are synchronised, i.e. the signal from the SDI software computer is reaching the 

computer that runs the coils, and the act of changing the magnetic field conditions takes 

place at the intended time. 

 

Figure 6.1 Verifying prepulse timing. Red squares represent expected time of trial. 

Figure 6.1 shows periodic change in z axis intensity of magnetic field, as measured with a 

magnetometer, which represent inclination flip prepulses. The red squares represent the 

expected time of each prepulse trial. No signs of time offsets or drift are apparent. This figure 

contains only 5 magnetic field flips for illustration. However, when similar charts are plotted 
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containing an entire session of 40 prepulse trials, there is still no sign of any drifting being 

present, and all prepulses align well with the expected prepulse trials. This figure cannot be 

displayed here due to the very large size necessary to visibly discern important details. 

 

Figure 6.2 A closer look at the timing of inclination flip prepulse. Red square represent start of trial, 
green triangle represents end of trial.  

Figure 6.2 shows an even more magnified view of the same data. One prepulse trial has been 

selected to look in more detail at timing of the all-important prepulse. It is clear that very 

shortly after the expected start time of the trial (red square) the field inclination flips, and 

that it remains flipped until the startle stimulus is presented (camera flash) at which point it 

duly returns to the normal/unmanipulated condition. This is exactly what one would hope to 

see and confirms that the physical aspects of the experiment are being timed, and crucially, 

executed as intended. The period over which the inclination is inverted is exactly 100ms as 

programmed and ends immediately after the startle stimulus is presented. 
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PPI experiment – Initial exploration 

Upon realising that the use of a sound based startle pulse or prepulse was unlikely to be 

achieved in the time available for the project (see Chapter 2), the use of a LED prepulse and 

bright light flash startle was implemented. Various exploratory trials were carried out in 

order to refine the technique and then some data were formally recorded to test its efficacy. 

Four birds were used, in experiments that were carried out over six days. Initially, a trial was 

recorded using one bird, in which the flash was unplugged. This was to ascertain that the 

prepulse does not itself cause a startle, and to give a baseline against which to measure the 

parameters of the startle response. 

Then a brief comparison of inter-stimulus intervals (ISI) was carried out, to explore whether 

the standard (see Chapter 2) delay of 100ms would be suitable. 

Following this, trials were carried out using a LED prepulse, which appeared 100ms before 

the flash startle pulse and was left on, such that the LEDs were illuminated for the full 100ms 

preceding the startle stimulus. In magnetic field treatment trials, the LED prepulse was 

replaced by a sudden flip of the inclination (vertical) aspect of the ambient magnetic field. 

This flip began 100ms prior to startle stimulus, maintaining the same inter-stimulus interval 

as in the LED control. As shown in Figure 6.2, the flip takes only a few milliseconds to occur, 

and the inclination remained inverted for the remainder of the 100ms ISI. 

In a given session, each bird was exposed to 2 trials of 80 startle stimuli each. In one trial 

there would be 40 startle only presentations and 40 with LED prepulse presentations, and in 

the other trial, there would be 40 startle only and 40 magnetic prepulse presentations. Two 

sessions were carried out on each bird, one in darkness and one in white light (158lux). Due 

to equipment and animal licencing constraints, dark and light trials had to be conducted on 

different days, though the order was varied between subjects and a mixture of light and dark 
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sessions carried out each day on different birds to minimise effects resulting from testing on 

different days. 

Four birds were used initially, however problems with the flash (battery failure) resulted in 

data being compromised for subject 52 in the initial ‘dark’ trial, so 52 was not used in the 

following ‘light’ trials, during which there was also an equipment based problem with the 

data for bird 51, hence dark experiments have data for 3 birds, and light experiments, only 

2. Two important measures are returned by the SDI software, these are: 

 Vmax = Maximal voltage (mV) of the response, the ‘peak’ amount of movement. 

 Tmax = Time (ms) between startle stimulus presentation and Vmax, the ‘latency’ of 

the response. 

Baseline (no startle stimulus) 1 subject 

A session was carried out with the flash turned off, meaning all aspects of the experiment 

remain unchanged, but no flash stimulus was presented, hence no startle response should 

be observed. The purpose of this was to assess the likely magnitude of movements involved 

in regular behaviour with no startle stimulus, and whether they would be large enough to be 

mistaken for startle responses as identified by the SDI software. 
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Figure 6.3 Comparing mean amplitude of response between Flash only (startle) and LED prepulse 
sessions, when the flash startle stimulus is turned off.  

As seen in Figure 6.3, there is no obvious difference in Vmax arising from PPI, indicating that 

no startle is occurring 
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1 bird ISI comparison 

 

Figure 6.4 Comparison of inter trial intervals. Prepulse inhibition is apparent, and ISI of 100-300ms 
are effective (1 subject). 

The ISI comparison in Figure 6.4 illustrates three important points. Firstly, there is a good 

clear sign that PPI is elicited utilising the LED prepulse, with mean amplitude of response 

being reduced from approximately 900 on the startle only condition, to  around 300 in all 

prepulse conditions. Secondly the PPI is consistent at 100 ms ISI and even with longer (200-

300ms) ISI times, which suggests that the planned 100ms ISI is effective at inhibiting the 

startle response. The third useful observation is that the amplitude of response when the 

startle is used, both with and without a prepulse, is noticeably greater than those in Figure 

6.3, representing the activity when no startle stimulus is presented (mean amplitude of 

response is around 300 mV in response to startle with a prepulse, as compared with a mean 

of around 80-90mV with no startle). 
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Darkness LED prepulse 

 

Figure 6.5 Comparison of mean startle amplitude between Flash only (startle) and LED PP (LED 
prepulse) sessions, for 3 subjects.  

Figure 6.5 shows that a clear decrease in startle response is apparent when preceded by the 

LED prepulse under dark conditions. All three subjects show a marked decrease in the mean 

amplitude of response when the prepulse is used, and the reduction in amplitude seems 

remarkably constant across individuals, despite there being clear variation between 

individuals receiving the same treatment i.e. there is a variation in responsivity of individuals 

under the startle only condition, and under the prepulse condition, but the decrease in 

response between startle only and prepulse conditions appears constant for all individuals 

with reductions in response amplitude, being on the order of approximately 1000mV. 
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Darkness magnetic prepulse 

 

Figure 6.6 Comparison between mean startle amplitude between Flash only (startle) and Mag Flip 
PP (magnetic prepulse) conditions in the dark for 3 subjects.  

A very different pattern is observed in Figure 6.6 (comparing mean amplitude of response 

when using a magnetic inclination flip prepulse) to the preceding figure of LED prepulse 

under dark conditions. The variability between subjects receiving the same treatment is still 

present, however in this case all signs of PPI are absent. For each subject the mean amplitude 

of response is approximately the same under both startle only, and magnetic inclination flip 

prepulse conditions, with error bars overlapping almost completely. Subject 53 shows signs 

of a very slight decrease in mean response amplitude under the prepulse condition, but 

subject 39 shows an increase. In both cases this trend is unlikely to be of any meaningful 
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significance. Thus, there is no evidence of prepulse inhibition occurring when using a 

magnetic inclination flip prepulse under dark conditions. 

Light LED prepulse 

 

Figure 6.7 Comparison between mean startle amplitude between Flash only (startle) and LED PP 
(LED prepulse) conditions in the light for 2 subjects.  Error bars +/- 2SE. 

Figure 6.7 shows clear signs of a reduction in the startle response under LED prepulse lit 

conditions compared to the startle only condition in one subject (39), and some suggestion 

that PPI is occurring in both subjects, although the reduction is not as large in subject 53. 

This, however, may be the result of low responsivity to the startle, which makes it difficult to 

discern the reduction caused by PPI. This suggestion is supported by the fact that, in both 

subjects, the mean amplitude of response to the LED prepulse condition is approximately 

similar, and thus the reason for a less significant reduction resulting from PPI is simply that 
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the subject responded less intensely to the startle stimulus alone. This, taken together with 

the observed variation between subjects in previous figures, suggests that some subjects will 

perhaps give far more clear/useful results than others, something which should be 

considered in experimental design of future experiments. 

Light magnetic prepulse 

 

Figure 6.8 Comparison between mean startle amplitude between Flash only (startle) and mag flip 
PP (magnetic prepulse) conditions for 2 subjects (Error bars ± 2 SE).  

When using a magnetic inclination flip prepulse under lit conditions, the mean amplitudes of 

response, as in Figure 6.8 show no signs of a reduction under the magnetic flip prepulse 

condition compared with the startle only condition. Subject 39 responds more strongly to 
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the startle stimulus in both cases than subject 53, reflecting the pattern seen in previous 

figures, but no evidence for PPI is present. 

Conclusions 

From this exploratory investigation it appears that a reliable PPI in response to a light 

prepulse stimulus can be elicited in darkness, and potentially in light, although startle 

response amplitudes are so much lower in lit conditions (200-400mV as compared to 

>800mV in darkness) that meaningful comparison between LED and magnetic prepulse in 

light may be problematic. The overall outlook is that there does not seem to be a PPI effect 

from the magnetic prepulse, however a more detailed study with a greater number of 

subjects is necessary. This is the basis of the following experiment. 

  



134 
 

Main PPI experiment 

The previous exploratory experiment demonstrated a measurable PPI in 3 birds in darkness, 

using a control prepulse of an LED switching on 100ms before the startle stimulus (flash of 

light) was delivered, and appeared to show some effect in 1 of 2 individuals tested in lit (158 

lux) conditions.  

No noticeable effect of a magnetic inclination (z-axis) flip could be found, however due the 

small number of subjects in this preliminary experiment no clear conclusions could be drawn. 

Extra batteries were obtained for the startle flash unit, meaning more subjects could be 

tested in a session than in the previous exploratory trial. 

In the current study 5 homing pigeons were subjected to various paradigms over 4 days. 

Details 

Five birds were used, labelled here: A, D, F, G & H. Prepulses (presented before the flash 

startle stimulus) used were:  

 LED switches on 100ms prior to startle (stays on until startle)  

 Flip of inclination (z-axis only) 100ms prior to startle (stays flipped for the 100ms) 

 Null field (geomagnetic field cancelled) for 100ms prior to startle  

Each different prepulse was tested on a different night: 

 Night 1. Flash startle vs LED prepulse. Lights on only – to identify responsive subjects 

 Night 2. Flash startle vs Flip prepulse. Duplicated with lights on and off 

 Night 3. Flash startle vs Null Field prepulse. Duplicated with lights on and off 

 Night 4. Flash startle vs LED prepulse. Duplicated with lights on and off 

On nights 2-4, there were two sessions for each subject, one in light (158 lux) and one in 

darkness. Light and dark sessions comprised 80 trials, sub-divided into 40 startle only trials 
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and 40 with a prepulse. Between nights 1 and 2, a batch of new batteries became available 

which also allowed longer sessions Therefore, night 1 has only ‘light on’ sessions. 

LED lights on test 

 

Figure 6.9 Comparison between mean startle amplitude between Flash only (startle) and LED 
prepulse conditions for 5 subjects (*=significant p<0.05, Repeated measures ANOVA). The capital 
letter prefixing each session denotes the subject. Blue markers (left hand marker in each session 
pair) are startle only trials, green markers represent prepulse trials. AnFLash2 (Blue) = Startle only 
trials, LEDONPP 100 ISI (Green) = LED prepulse trials.  

Figure 6.9 depicts an all subjects comparison of mean peak amplitude of startle response in 

startle only and LED prepulse trials. Lights are on in all sessions. This was to identify any 

subjects which would display evidence of PPI when using a flash of light as a startle stimulus,  

in light conditions. 

Initially, a trial was carried out to assess whether an LED prepulse was effective in eliciting a 

prepulse inhibition when used under lit conditions. Figure 6.9 shows a comparison of the 

mean startle amplitude in millivolts, between startle only and LED prepulse conditions, for 

each subject separately (error bars represent 2 standard errors of the mean). It can be seen 

that subjects D and H show a significantly different response to the startle only, and LED 

prepulse conditions, both having an inhibited response under the LED prepulse condition, 

hence demonstrating PPI. Subject G also has a clear difference between the two conditions, 

* 
* 
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with no measurable startles occurring under the LED prepulse condition. However, the low 

mean startle amplitude for the startle only condition suggest that low responsivity in general 

may be a confounding factor in this particular instance. Subjects A and F do not show clear 

PPI, however there is some difference between the mean startle amplitude under the 

different testing conditions for each subject, suggesting that the LED prepulse might be 

having some kind of effect. Taken together, these results indicate that, in at least some of 

the subjects, the LED prepulse is perceived and hence does result in prepulse inhibition of 

the startle response.  

 

Figure 6.10 Time to peak of startle response for startle only vs LED prepulse in the light (5 birds). 
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Figure 6.11 Closer look at peak response timings for startle only vs LED prepulse in the light. 

 

 

Figure 6.12 Latency of startle response. The peak of the startle response (in mV) can be seen to 
occur approximately 40-43 ms from the time of startle stimulus onset (t=0). No prepulse used.  
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 Figure 6.10 shows the time to peak of the startle response (latency of response) for all birds 

combined under the LED light on paradigm, with a magnified view in Figure 6.11. A clear 

trend can be seen in the timing of the response, with the majority of large amplitude 

responses clustering around 42 ms after the startle stimulus is presented. Stitt et al. (1976) 

reported mean startle latencies of approximately 32ms, measuring from stimulus 

presentation to the start of the startle response. They also reported that PPI does not affect 

latency, except when extremely small (<10ms) inter stimulus intervals are used. The 

measurement of time to peak of response used in the current study represents one measure 

of latency (automatically reported by SDI software), however this obviously differs from the 

measures used previously in the literature (i.e. time to start of the response). Figure 6.12 

shows a sample trace of raw data (1 bird) showing the startle response to 3 startle only (blue), 

and 3 LED prepulse trials (green). It can be seen from these data that the approximate time 

of the start of the startle response is 30-33ms after the startle stimulus onset, and that the 

time from start of the response, to the peak of response is approximately 10ms. Therefore 

the current measures of latency of around 42ms to peak of the response, agree very closely 

with the previously reported latencies of approx. 32ms to start of response. This result is 

encouraging as it demonstrates again that the equipment is working as expected, that 

timings of stimulus presentation and response measurement appear to be accurate, and that 

the parameters of the response itself are in keeping with those previously reported for 

pigeons. 
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Figure 6.13 Frequency histogram comparing Startle amplitude frequencies between startle only 
(Flash) and LED prepulse trials. 

Figure 6.13 displays a frequency histogram, representing a simple count of all startle 

responses in the LED lights on test session (subjects combined), binned by startle amplitude. 

Two clear patterns are immediately evident: 1, the overall number of startle responses is far 

greater in the startle only condition than in the LED prepulse condition, and 2, many more 

large amplitude startles occur in the startle only condition. Whilst the general low amplitude 

trend in the prepulse responses is to be expected (signifies that PPI is indeed occurring), it is 

clear that the prepulse also has an effect on the number of startles occurring. This is likely to 

be because the startle response is inhibited to such an extent, that the movement is no 

longer recognised as a startle response by the SDI software. This presents the interesting 

possibility that frequency of startle responses may offer some useful measure of PPI, along 

with the expected limitation of response amplitude.  

Taken together these results clearly indicate that an effective prepulse inhibition is elicited 

at least in some subjects. 

Flash LED prepulse 
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Main experimental sessions 

Comparison of mean response amplitude 

Inclination flip prepulse 

 

Figure 6.14 All subjects/sessions comparison of mean peak amplitude of startle response in startle 
only and Inclination flip prepulse. The capital letter prefixing each session denotes subject. Blue 
markers (left hand marker in each session pair) are startle only trials, green markers represent 
prepulse trials. Flash only (Blue) = Startle only trials, flip main (Green) = Inclination flip prepulse 
trials.  

Comparing the mean amplitude of startle response under the different magnetic field 

conditions/sessions shows a number of relevant patterns. There are no obvious instances of 

PPI occurring in either the flip (Figure 6.14) or null (Figure 6.15) sessions, under either lit or 

unlit conditions. In the flip session (Figure 6.14) all subjects can be seen to have responded 

with measurable startle responses under each treatment condition. Subject D is clearly more 

responsive than the others under unlit (dark) conditions, in this and in other sessions, yet 

despite having a very clear and pronounced startle response, no evidence of PPI is apparent 

in the comparison of means of startle amplitude. Only subject G, under lit conditions shows 

any sign of a difference between startle and prepulse conditions, and in this case the large 

range of standard errors, overlapping the values for startle only, suggest this difference is 

Flash only 

Flash only 
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not significant. It may be that very few startle responses were recorded under these 

conditions. This will be investigated later in this chapter.  

Null 

 

Figure 6.15 All subjects/sessions comparison of mean peak amplitude of startle response in startle 
only and null field prepulse. The capital letter prefixing each session denotes subject. Blue markers 
(left hand marker in each session pair) are startle only trials, green markers represent prepulse 
trials. An Flash Only (Blue) = Startle only trials, null PP (Green) = null field prepulse trials.  

A comparison of the mean amplitude of startle response for the null field prepulse session 

showing some similar trends to those observed under the flip prepulse session can be found 

in Figure 6.15. Subject D is again very responsive under the unlit condition. Subjects F and H 

also respond clearly in unlit conditions, having startle amplitudes with a mean above 1000mV 

(similar to those shown in the previous figure representing the flip prepulse), and other 

subjects have mean responses between 300-800mV. Again, no subject shows any clear sign 

of prepulse inhibition occurring under lit or unlit conditions. In 2 subjects (A and H) under lit 

conditions, the startle response in the prepulse condition is lower than in the startle only 

condition, however the overlap of error bars, combined with the fact that the opposite is 

true in some other cases (F and G lit, H unlit) suggest this is not a significant difference arising 
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from meaningful PPI. As with the previous figure, looking in more detail at the number and 

size of responses from individual subjects may shed light on this, and is carried out later in 

this chapter. 

LED prepulse 

 

Figure 6.16 All subjects/sessions comparison between Startle only and LED prepulse, trials repeated 
in darkness and lit room conditions. The capital letter prefixing each session denotes subject. Blue 
markers (left hand marker in each session pair) are startle only trials, green markers represent 
prepulse trials (*=significant: D_LED_Dark F=17.251 df=1 P<0.001; F_LED_Dark F=5.319 df=1 
P=0.024; H_LED_Dark F=4.063 df=1 P=0.047; H_LED_Light F=14.021 df=1 P<0.001).  

Figure 6.16 displays the mean amplitude of the startle response for all subjects under lit and 

unlit conditions both with, and without, an LED prepulse. Subject D responds more vigorously 

than all others under unlit conditions, matching its trend in previous sessions, however in 

this case there is a clear indication that PPI is occurring, as the mean is over 100mV less in 

the prepulse condition, additionally, the 2 x standard error bars do not overlap, suggesting 

that this may be a significant difference in the means. Subject H under lit conditions also 

shows a difference between means with error bars that do not overlap, and in some other 

subjects, a reduction in mean response is evident, although error bars do overlap (A-lit, F-

dark, F-lit, H-dark). With a prepulse of LED light, over half of the sessions show some sign of 

* 

* 

* 
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PPI occurring, this pattern is very different from the previous 2 figures (representing the 

same data for null and flip magnetic prepulse conditions), in which no subjects/sessions show 

any clear sign of PPI. 

Timing of response (startle latency) 

 

Figure 6.17 Time to peak of startle response for inclination flip prepulse and startle only. 
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Figure 6.18 Closer look at peak response timings for Inclination flip sessions and startle only. 

 

Figure 6.19 Time to peak of startle response for null field prepulse and startle only. 
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Figure 6.20 Closer look at peak response timings for null field prepulse and startle only. 

 

Figure 6.21 Time to peak of startle response for LED prepulse and startle only. 
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Figure 6.22 Closer look at peak response timings for LED prepulse and startle only. 

Figures 6.17 - 6.22 show the relationship between peak amplitude of response in mV, and 

time to peak of response in milliseconds. Comparing the figures makes it clear that the timing 

of the response latency is very similar under all treatment conditions. Separating the 

latencies between startle only, and prepulse conditions shows no clear difference arising in 

timings as a result of introducing a prepulse 100ms before the startle stimulus. This is in 

keeping with observations reported by Stitt et al. (1976). There is also no clear difference 

resulting from the type of prepulse, with the majority of startle responses reaching their peak 

amplitude between 39 and 42 ms after startle stimulus presentation, under LED prepulse, 

null prepulse, flip prepulse and startle only conditions. As with Figure 6.1 this provides some 

reassurance that the equipment is functioning and that genuine startle responses are being 

observed. It is interesting to note that presence or absence of a prepulse, and even PPI, has 

no discernible effect on startle latency. 
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Figure 6.23 Frequency histogram comparing Startle amplitude frequencies between startle only 
and Inclination flip prepulse trials. 

Figure 6.23 shows the frequency of startle responses, binned by amplitude and separated by 

condition (startle only vs prepulse) for the magnetic flip prepulse treatment session. A similar 

pattern arises in both cases. The overwhelming majority of responses have an amplitude 

between 200 and 1000 mV, with numbers tapering off towards 2000mV. A number of 

responses do occur with amplitudes between 2000 and 5000mV, and while the patterns are 

not perfectly symmetrical, approximately the same number appear to occur under each 

condition. The smaller number of responses in this range, combined with the variability 

between subjects observed in the earlier figures might explain this lack of symmetry. 
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Figure 6.24 Frequency histogram comparing Startle amplitude frequencies between startle only 
and null field prepulse trial. 

Figure 6.24 shows the number of startle responses, binned by response amplitude and 

separated by condition for the null field prepulse sessions. Some similarities are present to 

the previous figure representing the flip prepulse. Firstly, the majority of responses are 

clustered towards the lower amplitude range, with numbers tapering off as amplitude 

increases. However in this case the responses seem to taper quite smoothly towards 4000-

5000mV. This is the case for both startle only and prepulse conditions, suggesting that any 

difference from the flip prepulse histogram is unlikely to be the result of experimental 

differences (the startle only treatment is exactly the same in all regards in all sessions). This 

apparent difference may simply be a result of chance, and a greater sample may potentially 

result in histograms which are much more similar. Importantly, there again seems to be no 

obvious difference in the number, or amplitude of responses between the startle only and 

null prepulse conditions. 
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Figure 6.25 Frequency histogram comparing startle only trials with LED prepulse trials (sessions 
combined). 

Figure 6.25 Shows the frequency of startle responses in the LED prepulse sessions, binned by 

amplitude, and separated by condition (i.e. startle only vs LED prepulse). In this figure some 

differences can be observed resulting from the different treatments. As opposed to the 

previous two figures, representing the flip and null field prepulse sessions, which showed a 

high level of symmetry and very little difference between treatments, this figure shows a 

more apparent effect of the introduction of a prepulse. Specifically the responses in the 

startle only condition have a distribution which includes fewer low amplitude responses, and 

more high amplitude responses than does the prepulse condition. This is indicative of 

prepulse inhibition, because the startle responses under the prepulse condition, have a 

generally lower amplitude. 

Together these results appear to support the implications of Figures 6.9, 6.14, 6.15 & 6.16, 

representing the mean amplitudes of response, namely that no PPI is in evidence under the 

null, or flip prepulse conditions, but some evidence for PPI is apparent under LED prepulse 

conditions. Repeated measures ANOVA comparing startle only responses with prepulse 
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responses for each treatment shows that this pattern is statistically significant. Separating 

the light and dark LED conditions shows that a significant PPI occurred under dark LED 

conditions (F=9.827, df=1, P=0.002) but not lit LED conditions. This contrasts with the initial 

LED test session in which only lit conditions were used to test the LED prepulse, and which 

does show a statistically significant difference in means representing effective PPI (F=6.001, 

df=1, P=0.016). 

These results suggest that a deeper understanding of effects may be gained by: 1, dividing 

frequency histograms by subject, to isolate those which responded well from the 

confounding effects of those which did not; and 2, understanding whether there is some 

possibility that a decrease in responsiveness over subsequent sessions may be occurring, 

particularly under lit conditions, as this may explain the apparent loss over time of PPI in the 

LED lit condition. The following charts will seek to elucidate these trends and hopefully 

answer some of the questions raised.
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Change in responses over time (session days) 

Because the response to the LED prepulse paradigm under lit conditions varies substantially 

between the first and last day of recording, a simple comparison was made to assess whether 

the subjects startled less often, or with a lower Vmax, over subsequent sessions.  

Dark 

 

 

Figure 6.26 Number of responses for each subject, during each experimental session in darkness. 

Figure 6.26 shows the number of startle responses for each subject, in each session under 

dark conditions. All subjects show a decrease in the number of valid startle responses 

measured over the course of the experiment. Subjects A, D, and F show only a modest 

decrease as compared to subjects H, and G, with G showing by far the largest reduction. This 
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reduction in responsivity over successive sessions may indicate the necessity of a period of 

acclimatisation to successive startle sessions, so that a baseline may be reached, giving more 

stable results. Due simply to time constraints, no such period was possible during this 

experiment, as is discussed in more detail in Chapter 2. The data in Figure 6.34 also make it 

abundantly clear how variable responsivity can be between subjects, indicating another way 

to improve a future experiment, i.e. to have some selection criteria for subjects, perhaps 

assessed during the acclimation period. Again, this was not possible because of the limited 

number of subjects available. With the exception of subject G, the overall trajectory of 

reduction in startle frequency is not steep. Accordingly there is no reason to assume that the 

reduction represents a crossing of any important threshold in terms of measuring meaningful 

startle responses. 

 

Figure 6.27 Mean amplitude of response for each subject during each session in darkness. 
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Figure 6.27 shows the mean amplitude of startle responses over successive sessions, 

separated by subject. A slight downward trend is apparent in subjects D, H, and F, whereas 

the response amplitude of subjects A, and G remain stable. Subjects A and G do however 

exhibit generally very low numbers of startle responses, and hence could arguably be 

considered under-responsive. Overall the general trajectory of reduction does not appear to 

be pronounced in terms of the ability to measure meaningful responses over successive 

sessions. One interesting possibility is that the decrease in PPI between the first and last LED 

sessions might be due, at least in part, to some sort of acclimation to the LED prepulse, rather 

than to the startle stimulus itself. 

Light 

 

Figure 6.28 Number of responses for each subject, during each experimental session in the light. 

Figure 6.28 shows the number of valid startle responses measured over successive sessions 

under lit conditions, separated by subject. A great deal of variability can be seen. All subjects 

N
u

m
b

er
 o

f 
re

sp
o

n
se

s 



154 
 

have a lower number of startle responses on the last session than they do the first, however 

frequencies do not follow a steady downward trajectory, but vary widely from session to 

session. All subjects show responses greater in one or more sessions than they do in the first, 

and interestingly, the session order in which these peaks and troughs in responsiveness occur 

do not coincide between subjects, suggesting that it is not a case of the specific day, or 

session of the experiment dictating changes, but perhaps variability in the arousal of each 

subject between different days. That said, with the low numbers of responses measured, it 

is also possible that the data are simply noisier and thus more samples are required for a 

clear signal to emerge. This also supports the notion that a period of acclimation and 

observation/subject selection would be beneficial, as variability of specific subjects over 

successive sessions could then be better taken into account. 

 

Figure 6.29 Mean amplitude of response for each subject during each session in the light. 
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Figure 6.29 shows the mean startle amplitude, for each successive session, under lit 

conditions, separated by subject. In this case, no clear downward trend is apparent. Indeed 

in some cases there is rather an interesting upturn in responsivity. This might perhaps be due 

to the generally low amplitude responses not representing ‘good clear startles’. There is 

some evidence in Figures 6.17 – 6.22 that low amplitude startles do not fit the latency values 

expected and hence might not represent very reliable measures of the startle response. 

Summary of results 

 The startle equipment and experiment appear to function as expected, with startle 

only and prepulse trials differing significantly in Vmax (F1,1961.740=24.432, P<0.001). 

 No clear PPI effect of magnetic prepulse can be seen, but a PPI can be elicited using 

an LED prepulse, the two being significantly different (F3,27.289=46.382, P<0.001). 

 Startle is elicited under all conditions in most subjects however PPI is significantly 

more effective at changing Vmax in darkness than in light (F1,1947.037=184.175, 

P<0.001). 

 PPI is evident when using the control (LED) prepulse. 

 There is some evidence that an acclimation period would be beneficial. 

 It may also be worthwhile to include some selection criteria for both the responsivity 

(in frequency and amplitude of responses), and in terms of consistency of 

responsivity over successive sessions. 

 PPI is present in some subjects in both first and last sessions, suggesting that had a 

meaningful PPI been possible during the magnetic prepulse sessions, the effects of 

changes over successive sessions are unlikely to have affected the results. 

Summary of prepulse inhibition experiments  

Several lessons can be learned from the results in this chapter. The first is that there has been 

a demonstrable level of success in eliciting startle responses, and prepulse inhibition, when 

using an LED prepulse. This shows that the experiment works in terms of equipment 

specifications, and experimental parameters employed, such as the timing of the relevant 

stimulus presentations. It seems clear that there is, however, no sign of PPI occurring when 
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a magnetic field manipulation is employed as a prepulse. Whether that manipulation takes 

the form of a null field prepulse, where the field in all three physical dimensions is negated 

for 100ms prior to startle, or if the vertical element and hence inclination of the field is 

inverted, no evidence is present to suggest that the prepulse is perceived by the subject.  

This suggests very strongly that under the experimental conditions used, pigeons are unable 

to perceive these supposedly salient changes in the ambient magnetic field. In light of the 

positive results obtained by Migalski (2010) (see Chapter 3), this may well be due to 

interference swamping the sensitivity of the magnetoreceptor, a concept which is discussed 

in more detail in Chapter 7. 

Other significant lessons learned in terms of carrying out these experiments pertain to the 

large amount of variability between subjects when carrying out PPI experiments, regardless 

of the type of prepulse stimulus being used. The susceptibility/sensitivity of birds to the 

startle stimulus is highly variable, and this is borne out in the large differences observed in 

responsivity, both in number of startles, and the amplitude of individual startles.  

Future experiments should seriously consider establishing rejection criteria, and select only 

responsive subjects before moving on to real PPI experiments, as the effect of unresponsive 

subjects is confounding in terms of grouped data. This step was not taken in the current study 

due to constraints of both time and the limited number of subjects available. Another 

recommendation for future PPI experiments in pigeons would be to expose all subjects to a 

standardised period of acclimation, during which numerous sessions of startle only stimulus 

presentation should be employed. This would provide two clear benefits: 1, subjects should 

hopefully attain a baseline level of response, alleviating the effects observed in Figure 6.29 

of the responsivity varying significantly from session to session, independently of stimuli 

used; and 2, this in turn would provide an ideal assessment period in which to exercise 

whatever rejection criteria are to be employed in subject selection.  
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To facilitate this, a larger initial cohort of subjects should be employed, in order to cover any 

shortfall in subjects that may arise from rejections if a smaller cohort were used.  Some 

consideration would also have to be given to session timings, if larger numbers of subjects 

were to be used. It would be important to avoid unwanted confounding effects resulting 

from the subjects being predisposed to different behaviours at different times of the day (for 

example courtship rituals such as the bow-coo towards the end of daylight hours). 
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Chapter 7 Conclusions and future directions 

Magnetoreception experiments 

No clear evidence was found in the experiments detailed in Chapters 3 and 6 to support 

pigeons being able to detect magnetic field stimuli. However, referring back to the primary 

literature (see Chapter 1 – Introduction), there is clearly some evidence that pigeons in fact 

can sense changes in the ambient magnetic field. Moreover, the re-evaluation of the data of 

Migalski (2010) identified signs of a significant response to changes in the magnetic field (see 

Chapter 3). This suggests that there was a crucial difference in the experimental design 

and/or execution of the present experiments as compared to those of Migalski (2010). 

All experiments were carried out in a highly controlled and experimentally rigorous way, with 

great care being taken over the planning and execution of all approaches. Additionally, a 

good deal of effort was made both by the author and by various colleagues to ensure that all 

aspects of the equipment set-up functioned as intended before relying on them in the 

experiments. Thus, although not impossible, it seems unlikely that both the coil-only head 

movement experiments and the prepulse inhibition (PPI) experiments would produce 

negative results erroneously. Therefore, the lack of a positive result may have its origin in 

one or more of the known ways in which experiments were performed` differently to those 

of Migalski (2010). 

Many changes were made to the procedures used by Migalski (2010). All were made with 

the best of intentions, hoping to improve the way such experiments were carried out. It 

seems evident that changing the head markings and software used to investigate the head 

movements of pigeons was a success, with greater accuracy (and much less lost data) being 

achieved in the video recordings. The handling and care of subjects was improved slightly in 

that, as opposed to Migalski (2010) who had to move the subjects across campus to the 
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laboratory (a somewhat disruptive procedure involving going outside and travelling in 

motorised vehicles), the current study involved simply moving them to a different room on 

the same floor of the building in which they were housed. Additionally, subjects were 

exposed to this local travelling experience a number of times before experiments took place, 

meaning that they were calmer and more relaxed during experiments. Whilst this reduction 

in stress is arguably a great benefit to the subjects in terms of welfare, and in terms of trying 

to observe changes in ‘normal’ behaviour of pigeons, it cannot be ignored that possibly some 

element of heightened arousal is important to experimentally eliciting a behavioural 

response to magnetic manipulations, and that the transfer of subjects in Migalski (2010) 

helped to achieve this. 

Carrying out experiments at night time was also planned as an improvement, minimising 

environmental noise and disruption, both magnetically and in general. However, given the 

necessary time, it would seem advantageous in future experiments to change the lighting 

regime of the subjects’ housing, such that subjects could be used at night time, but for some 

at least, it could be during their own, subjective daytime, in case there is any link between 

magnetoreceptive abilities and time of day. This could even be extended to carrying out 

(brief) experiments during the subjects’ own subjective twilight hours. If it were possible to 

house subjects or perhaps pairs of subjects separately, lighting regimes could be adjusted 

such that all animals are tested during the same subjective time of day. Personal 

observations showed that even a slight disruption to daylight hours could induce seasonal 

mating and /or moulting behaviour in the subjects, which would take several weeks to abate. 

Hence, any changes to the daylight schedule of the subjects’ housing must be planned 

carefully, and executed early in the preparations for experiments. 

The most important change between the work of Migalski (2010) and the current research 

was the use of physical shields (magnetic/electromagnetic) by Migalski (2010), as opposed 
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to the active/dynamic shielding of only the magnetic field used in the current research. The 

intention was that, by dynamically cancelling out the ambient magnetic field, far more 

flexibility would be afforded in the design of experiments. Dynamically shielded coils, if 

effective, could potentially be used in a wide range of sizes and locations, even potentially 

being usable on a mobile platform, for various field-based experiments, perhaps on wild 

and/or migrating subjects. Towards the end of the current research it became clear that 

dynamically shielding only steady magnetic fields might be insufficient. The recent work of 

Engels et al. (2014) strongly suggests that a method of shielding from electromagnetic signals 

may in fact be necessary, however this was simply not known at the time of building the 

apparatus and planning the experiments reported here. It was supposed by the author and 

colleagues that, because deliberate manipulations of the field would be significantly larger 

than variations resulting from background noise, they would still be salient to the subjects. 

However, the implication of the work of Migalski (2010) and Engels et al. (2014), taken 

together with the findings presented in this thesis, is that such background noise can, in fact, 

disrupt the effect of magnetic manipulation. Perhaps it is the case that, particularly in today’s 

modern era of high-technology, electromagnetic noise is so common that it can interfere 

with birds’ ability to respond to magnetic field manipulations. Presumably there is a certain 

amount of magnetic field variation, beyond which all stimuli are filtered out such as to 

prevent potentially harmful distractions occurring. The lack of results in the PPI experiments 

suggests very strongly that, if such filtering does indeed occur, it must do so before subjects 

become aware of such signals. That is to say, that signals are not consciously ignored, but 

subconsciously filtered before the subject becomes conscious of them, as, by definition, if 

the subject became conscious of the magnetic prepulse, prepulse inhibition should have 

been observed. Therefore, the main, overarching recommendation for work continuing from 

that reported in this thesis, would be to reproduce the experiments reported here, inside 

high-frequency electromagnetic shielding similar to that used by Migalski (2010). 
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Main findings of magnetoreception experiments 

 Head movement analysis (software and markings) has been greatly improved, and 

offers a non-invasive way to measure head movements, even at high sampling rates, 

which is very useful for a range of behavioural assays. 

 The use of prepulse inhibition to investigate magnetoreception is feasible. Although 

the present results were negative for magnetic field stimuli, the experiment was a 

success using light stimuli. This provides at the very least, strong proof of concept 

that PPI is an effective means of investigating magnetoreception. This represents an 

entirely novel approach, and a potentially very powerful one. 

 Time of day might potentially have some influence on magnetoreceptive abilities, 

and should be controlled for in future experiments. 

 Anthropogenic electromagnetic background noise may swamp the sensory abilities 

of pigeons in such a way as dynamic magnetic shielding is insufficient. Therefore, 

physical shielding of high frequency electromagnetic noise should be employed. 

Future directions 

The logical next step for this type of investigation is to repeat the experiments reported in 

this thesis, using physical shielding as did Migalski (2010), i.e. a high frequency shielded room 

removing unwanted ac signals. It would be the prediction of the author, based on the findings 

reported, that such experiments would be likely to prove very effective, especially properly 

shielded PPI experiments. If it should transpire that PPI experiments in the physical shielding 

do not elicit a response, but experiments involving longer lasting manipulations do, this 

would indicate that the time taken for field manipulations to be perceived by pigeons is 

greater than the 100ms used in the PPI experiments. Such a result would potentially shed 

light on the function of the neural processes and/or sensory mechanisms involved. 

Additionally, once a reliable response can be identified, many other experiments would be 

possible. Repeating the experiments reported here, under electromagnetic shielding, could 
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be complemented by experiments controlling for time of day. Then, responses could be 

assessed under different wavelengths of monochromatic light and even involving other 

visual stimuli. One example of the latter, would be to elicit an OCR response using 

monochrome coloured bars, and test the limit of the response in terms of acuity, contrast 

and/or colour. To achieve this, a response could be obtained as in the OCR experiments 

described in Chapter 5, and the bars incrementally reduced in width (i.e. increased spatial 

frequency) to test the subjects acuity and/or the wavelength of the colour could be changed 

gradually to test the limits of the subjects colour vision range under these circumstances (i.e. 

what the bird is able to visually perceive and thus pursue when in motion). This could be 

repeated under normal magnetic conditions, and under a series of manipulated field 

conditions, to investigate the link between magnetoreception and vision, and whether the 

identified psychophysical limits change at all as a result of magnetic manipulations. The 

author would strongly recommend that a reliable PPI response to magnetic field stimuli be 

established, using the high-frequency shielding now deemed necessary. Then a titration of 

ambient lighting wavelength could be carried out to assess the contribution of different parts 

of the visual spectrum. Together these experiments may offer some insight into the 

contribution of vision to magnetoreception. As well as performing the experiments 

mentioned in the high-frequency electromagnetically shielded environment, there is also the 

possibility of carrying out experiments in some locations without the need for high frequency 

shielding. In the future it may still be possible to employ dynamically shielded coils in 

experiments in areas of low ambient electromagnetic noise. However a detailed 

investigation into proposed areas would need to be carried out in advance to establish the 

presence or absence of electromagnetic noise, and suitable areas are likely to be in remote 

locations. 
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OCR experiments 

The combination of the new head movement detection software and LCD screens for 

presenting 360° stimuli was, at the time of conception, highly novel. Due to the flexibility and 

range of different stimulus patterns available, and the ability to change them dynamically if 

required, it is likely that this type of approach will be widely used in the future. The work 

reported here has provided a number of beneficial insights. The OCR response can be 

investigated in an extremely time-efficient, and minimally invasive way, which provides 

highly accurate data. Potential uses include studying the effect of stimulus velocity and 

spatial frequency on frequency and amplitude of saccadic movements as well as slow-phase 

gain. The LCD setup was also briefly used as proof of concept that vertical head movements 

can also be elicited and recorded. This gives the opportunity for future studies of the visual 

system that produces head bobbing behaviours. 

The research presented here also uncovered a number of interesting behavioural effects 

which merit further investigation. There appears to be a delayed effect whereby pigeons do 

not pursue moving stimuli with maximal gain immediately, but rather their ability to pursue 

‘builds up’ over time, and only reaches maximal pursuit ability (the highest gain the subject 

can achieve for a given velocity) after several seconds. This may give some insight into 

evolutionary similarities and differences in brain structure and function between birds and 

other animals, such as humans, which exhibit no such build-up effect. 

Additionally, the presence of a break down effect, where pursuit does not simply stop when 

maximal velocity is exceeded but exhibits a gradual decrease in gains towards zero and the 

evident increase in the prevalence of saccades in the same direction as stimulus drift under 

certain conditions seem interesting and potentially worthy of further research. 
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OCR future directions 

The OCR experiments reported here open up a potentially rich vein of possible future areas 

of research. Studies of the build-up/break-down effects may prove of interest to 

neuroscientists and behavioural ecologists, as may the cause of saccades in the same 

direction as stimulus drift. Improvements to the screens used (i.e. greater resolution and 

high contrast ratios) would facilitate the investigation of the contrast sensitivity curve in 

pigeons and other birds. This involves identifying the smallest and largest spatial frequency 

at which the subject can perceive the movement of the drifting bars, and combining these 

data with those for the lowest level of luminance contrast that can be perceived by the 

subject. This luminance threshold varies with spatial frequency such that a curve can be 

produced illustrating the contrast sensitivity of the subjects’ visual system across a range of 

spatial frequencies. Thus the lowest luminance contrast that can be seen is plotted on the y-

axis, often as a contrast sensitivity function (1/contrast threshold), for each different spatial 

frequency that can be seen (on the x-axis). 

 

Figure 7.1 Example of a contrast sensitivity curve for pigeons, recorded using operant conditioning 
techniques (Hodos et al. 2002). 0Hz = stationary grating, 8Hz = drifting grating 8 cycles/s.  

The methodology employed by Hodos et al. in Figure 7.1 involved substantial training of 

subjects to recognise gratings, for the purpose of later comparison with more rapid, but 
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highly invasive electrophysiological recordings. The approach reported in this thesis is 

minimally invasive, with no harm to the subject, and requires no training. At the time of 

writing, a full set of screens with 4k resolution (3840 × 2160 pixels) has been procured, which 

can not only present a grating of high enough spatial frequency to test pigeon acuity, but 

also is able to display the moving lines smoothly enough that the grating drifts steadily across 

the visual scene. Plans are currently being made for using these screens to reproduce the 

contrast sensitivity curve in Figure 7.1 (Hodos et al. 2002), by which demonstrating the proof 

of concept that this much more time-efficient, and minimally invasive approach can be used 

in this way. A grant application has been made to Cardiff University for an undergraduate 

summer studentship to carry out these experiments in 2016. This will then allow the 

combining of tests of acuity and contrast sensitivity with magnetic manipulations to 

investigate the relationship between magnetoreception and vision as previously discussed. 

Additionally, the same approach, with only very minor modification, could be used to 

investigate similar psychophysical properties in almost any bird species and, with a little 

modification of the restraint method, a potentially huge range of different species of animal. 

Polarisation experiment conclusions 

No evidence was found here for the ability of homing pigeons to discriminate different e-

vector arrangements. There are two main possibilities for why this might be. Firstly, the 

ability to see e-vector may not function in such a way that drifting whole field movements 

are salient, and secondly that the equipment used was for some reason unable to provide a 

salient stimulus. Because the mechanism by which birds detect e-vector orientation remains 

unknown, and the fact that there is a considerable amount of contention over whether 

pigeons can see polarisation patterns of light at all (see Chapter 1), it is difficult to be sure 

that the stimulus presented contained any visually salient information. If pigeons cannot in 

fact discriminate e-vector, or if only one orientation can be detected at a time (for instance 
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if a tiny portion of the visual field is dedicated to e-vector discrimination), then no positive 

result would be expected in these experiments. However, the paradigm is easy to carry out, 

and the LCD arenas have such a diverse range of applications, that is would be a shame to 

abandon this avenue of research completely. One technological advancement that could 

potentially be worth investigating would be to add shorter wavelength light to the emissions 

of the screens. As discussed in Chapter 1, there is some suggestion in existing literature that 

wavelengths of light at the UV to blue end of the visible spectrum might be important in 

magnetoreception, and the original theory of the author presented later in this chapter 

describes how low-wavelength light may be important for discrimination of e-vector (and 

indirectly detecting magnetic field intensity). Unfortunately, this low-wavelength light, due 

to its high-energy interaction with matter, is often deliberately removed from displays to 

safeguard human health. Ultraviolet light, for example, is absorbed by body tissues over only 

a shallow penetration, meaning that a great deal of energetic interaction occurs in the outer 

layers of tissue. Consequently, excessive UV light has been linked with various maladies, 

including skin cancer and eye damage in humans (Willmann 2015; Holm 2015; van Norren 

and Vos 2015). For this reason, most electronic display screen equipment (DSE) has no UV 

light component, either in its light source or, due to filtering, in its emitted light. In order to 

investigate whether this low-wavelength light has a special role in any of the visual 

phenomena discussed in this thesis, it would be advantageous to be able to engineer LCD 

displays that emit full daylight spectrum light, including UV. This could potentially require 

some reverse engineering of screen components, such as the light source, and also some 

aspects of the screen itself may have to be changed. For example, most types of glass filter 

out a high proportion of UV light. Consequently, an investigation into appropriate materials 

would be needed, as well as due consideration of health and safety and any potential risks 

involved, followed by the actual engineering task of assembling such a device. The author 

would recommend that it would be beneficial to assess the feasibility of creating such a 
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display. Should the work seem feasible and the necessary time and funding be available, then 

it would be very interesting to be able to carry out OCR and OMR experiments using full 

spectrum daylight, both from the point of view of investigating polarisation vision and 

facilitating the investigation of visual psychophysics under magnetic field manipulation, as it 

would appear that full spectrum daylight might also be important for this in its own right. 

IMU head tracking 

During the course of this research, the author was highly involved in the conception, design, 

and early stage testing of a device for tracking avian head movements based on an inertial 

measurement unit (IMU) (Figure 7.2). The IMU can measure six degrees of motion, that is, 

translocation in the x, y, and z axial planes, as well as pitch, roll and yaw (rotation about the 

three axes). Thus, all kinds of movement of the head can be accurately recorded in three 

dimensions, rather than the two-dimensional movements in the horizontal plane extracted 

from video frames. The prototype was built with an on-board battery and Bluetooth wireless 

connectivity device for transfer of data, attached to a small backpack worn by the pigeon. 

The IMU itself was attached to a hood, specially designed for subduing falcons before and 

after flights by comfortably covering their eyes. Holes were simply cut into the hood so that 

vision was unobstructed. Validation of the accuracy of the device in two dimensions was 

carried out by the author by recording a simple OCR session using both the now well 

established video extraction method and the IMU at the same time. The work on analysing 

the IMU data for comparison to the video extraction data provided by the author, and the 

design and building of the device itself, was carried out by Noor Aldoumani and is to be 

reported in her PhD thesis, which is being prepared in parallel to this one.  
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Figure 7.2 Sensor and head marking in place for validation of IMU device. 

The clear advantages of the IMU approach to pigeon head tracking are that movements in 

all directions are measured, allowing for much more complex analyses of head movements, 

and also allowing for analysis of head different movements such as bobbing or monocular 

foveation of visual targets, in a freely moving pigeon (as the subject no longer needs to be 

confined to the area a camera can see). More testing would be required, however, before 

the device could be used in magnetoreception experiments, to ensure that Bluetooth signals 

sent to the recording PC do not interfere with magnetoreception. If this is the case, a hard-

wired connection or on-board data storage may be more suitable. 

Magnetic field effects in humans 

A growing body of anecdotal evidence suggests that humans may be able to detect very 

strong magnetic fields due to their effects of causing mild dizziness, nausea, or slight loss of 

balance. Although these phenomena have only very recently come to the attention of 

primary researchers, the growing exposure of humans to anthropogenic electromagnetic 

fields, and the increased vigilance being adopted in terms of health and safety, means that 
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there is growing interest in this area. By analysing the posture of walking human subjects, 

Theysohn et al. (2014) demonstrated that there may be some vestibular effect resulting from 

exposure to strong magnetic fields (effects were observed at 7T, but not at 1.5T or 0T). Even 

more relevant to the research presented in this thesis is a study by Ward et al. (2015) in 

which human subjects are reported to experience a strong horizontal nystagmus (eye 

movement) effect when entering and leaving the bore of a 7T MRI machine, and it is 

proposed that this is the result of a Lorentz force interacting with the vestibular system. An 

alternative approach to studying magnetoreception in humans and/or other species could 

be to begin with very strong magnetic fields, and try to investigate whether the effects of 

strong and weak fields bear any common causes or mechanisms. As described in Chapter 1, 

there is a growing body of evidence suggesting the involvement of the vestibular system in 

magnetoreception. Perhaps the vestibular effects of very strong fields have a similar 

mechanism, meaning that use of strong fields may be helpful in describing the physiological 

processes involved. One specific experiment which the author has considered is to use eye-

tracking equipment (cameras + software) to measure nystagmus in humans exposed to a 

strong magnetic field in MRI machines. This would be similar to the study described in Ward 

et al. (2015), but more comprehensive in scope, building a robust data set that can then be 

compared across different field strengths. This could then be expanded to include various 

other species that are reported to be able to detect Earth strength magnetic fields to look 

for any physiological or psychophysical correlates to field strength changes. The fundamental 

questions are: do all species respond the same way or differently, and does a response at 

weaker field strengths depend on sensitivity variation between species, or are there 

completely different mechanisms involved? Eye tracking equipment suitable for use in MRI 

scanners is already available. 

In addition, the prepulse inhibition experiment can easily be adapted for use in humans, and 

the author, with some assistance from Dr Matt Dunn, has begun to design and test the 
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equipment and experimental protocols necessary for this. Specifically the main adaptations 

involve adjustments to the piezo electric movement sensor used to measure the startle 

response, and the addition of a large, non-metallic bed. Use of a bed means that the head of 

the human subject can be comfortably supported in the ‘sweet spot’, where the uniformity 

of the generated field is well characterised, and where the controlled magnetic manipulation 

prepulses occur. This adapted setup facilitates testing in both waking and sleeping human 

subjects, as well as allowing longer exposure (non PPI-based) experiments, such as examining 

the effect of manipulated magnetic field conditions on sleep patterns. 

A proposed mechanism for the polarimetric detection of 

geomagnetic field properties by animals 

The following is a theory initially conceived by the author in early 2012, and gradually refined 

over time. To the best of the author’s knowledge, this proposed mechanism of navigation in 

animals is entirely novel. This theory proposes that the interesting coincidence of 

magnetoreception and polarised light vision might be because the two mechanisms are 

fundamentally linked. The following pages describe how well known physical effects of 

magnetic fields on polarisation e-vector of light, could allow animals to derive magnetic field 

information using e-vector acuity alone.  

It is known that many animals are able to discriminate between different e-vectors of linearly 

polarised light. The precise mechanisms for this are somewhat poorly understood and are 

considered to vary between different species (Horváth 2014). There is also a growing, and 

increasingly informative, literature demonstrating that many animals are able to in some way 

sense features of Earth’s magnetic field. The mechanism by which this is achieved is still 

unknown. However, of the two leading theories, the more popular, and arguably better 

supported, relies on the availability of light of particular wavelengths, suggesting a visual 

component. (Wiltschko et al. 2005; Phillips et al. 2010). Whilst many of the species identified 
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as having the ability to discriminate e-vector, are also sensitive to Earth’s magnetic field, 

there has hitherto been very little consideration of whether, or how, these sensory 

modalities might interact or support one another in some way.  

What follows is a summary of a potential way in which these two seemingly separate sensory 

modalities may in fact be one and the same in certain cases. A theoretical analysis of how 

the mechanism could work is presented together with some suggestions for how this might 

be investigated experimentally. 

Polarised light 

Light propagates as an electromagnetic wave, the electric and magnetic components of 

which oscillate orthogonally to one another and to the direction of propagation (Figure 7.3).  

 

Figure 7.3 the relationship of electric and magnetic wave propagation in light (NOAA 2012). 

Diffuse light, such as from the sun or many man-made sources, is comprised of light with the 

electric field (and hence, inextricably the magnetic field) oscillating in all directions 

perpendicular to the direction of propagation. However, when reflected off the surface of an 

object or passed through a filter that only allows one direction of oscillation, the light 

becomes (predominantly) linearly polarised. This property is used to great effect in LCD 

display screens (see Chapter 2 for description) as well as many other applications. In natural 

settings, the polarisation of light is somewhat more chaotic due to the vast number of 

unpredictable interactions a propagating photon may encounter on its journey. However, 
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there are many situations where the amount of light that is polarised can be significant to 

animal vision. For example anglers commonly benefit by applying a polarised filter to their 

view when looking into water and aiming to avoid surface reflection, and photographers 

regularly employ methods of filtering certain e-vectors from a visual scene, which can have 

a very striking visual effect. Many animals are known to be able to discriminate different e-

vectors of light and numerous experiments have linked this sensory capability with 

communication with co-specifics, prey detection, and navigation (Muheim et al. 2006; 

Temple et al. 2012; How et al. 2012). One main theory for how polarised light may be used 

in navigation is by viewing the sky at dawn and dusk. Because light reflects off water and 

other molecules in the atmosphere, and light reflecting orthogonally is maximally polarised, 

there is a strongly polarised band of light right across the sky at 90° to the sun (Figure 7.4). 

When looking straight upwards, which gives a view orthogonal to the sun’s direction (i.e. at 

dawn and dusk), a dark band can be observed running approximately North-South through 

the zenith. Humans usually require a (linearly) polarising filter to see this dark band, but 

many animals are suspected to be able to see it readily, and to use it in navigation (Muheim 

2011). It has been suggested that there is a link between this ability and the magnetic 

compass, and that perhaps the polarisation pattern is used to calibrate the compass sense in 

animals before a day of travelling/migrating (Muheim et al. 2006).  
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Figure 7.4 False colour image showing the degree of polarisation of light (%) at various points in the 
sky at twilight (Hallsw 2010). In this scenario the sun is positioned on the horizon at 90° to the band 
of maximal polarisation. 

Earth’s magnetic field 

The generation of the geomagnetic field, and the variations with location, are complex but 

generally obey certain rules. The field can be expressed as a sum-vector, comprising the 

intensity (usually expressed in units of micro Tesla, µT) of the magnetic flux, in each of the 

three dimensions, all added together, to give an intensity in a particular direction. At the 

poles, the vertical component is the biggest contributor, and at the equator the N-S 

horizontal component is strongest. The overall intensity is greater at the poles (up to 60uT) 

than at the equator (as little as 25uT).  
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Figure 7.5 Field lines showing the sum vector intensity of Earth’s magnetic field (Becker 2002).  

Thus, at the poles the field ‘points’ almost directly away from Earth’s surface, whereas at the 

equator the field lines lie parallel to Earth’s surface (Figure 7.5). 

Interaction between light and magnetic field– The Faraday Effect 

Michael Faraday observed that linearly polarised light will experience a twist in e-vector 

orientation as it travels through a magnetic field. This can be characterised as an amount of 

rotation, for a given distance at a certain intensity of magnetic field as illustrated below 

(Figure 7.6). The Verdet constant is a function of the light scattering properties of the 

medium (e.g. air/water etc.). This effect is exploited in modern science with great accuracy. 

For example, in satellite polarimetry, to assess the intensity of Earth’s magnetic field from 

orbiting satellites, by measuring the faraday rotation of e-vectors in linearly polarised light 

reflected off the planet’s surface in predictable patterns. 
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Figure 7.6 Interaction of light and magnetic field intensity (DrBob 2007). 

The amount of e-vector rotation can be calculated using the equation: 

 

Equation 7.1 

Where: 

β = angle of rotation (Radians) 

B = Magnetic flux intensity in the direction of light propagation (Teslas) 

d = Distance over which the light is influenced by the magnetic field (Meters) 

 = Verdet constant, a proportionality constant defining the relationship between 

magnetic flux, Faraday rotation and distance, which arises from the influence of different 

material compositions, and is affected by temperature and wavelength of light. 

Assessment of Verdet constant in atmospheric air 

The relationship above is well understood and commonly applied in lab-based settings under 

highly controlled conditions, often being used to assess the optical qualities of different types 

of glass for example. Measurements of Verdet constant in atmospheric air are much rarer, 

and should be treated with greater caution in terms of their variability, because of the 

changing nature of the medium over large distances. However, recent advances in satellite 
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polarimetry have resulted in some reliable measures of Verdet in the atmosphere in terms 

of the average effect over known distances, and assuming relatively consistent conditions.  

Verdet is dependent on light wavelength, being greatest for shorter wavelengths. The 

shorter wavelengths of the visual spectrum show the greatest Faraday rotation, and hence 

might be crucial to e-vector discrimination of magnetic field intensity over practical 

distances. 

Due to the limited availability of Verdet constants at various wavelengths in atmospheric air, 

a table had to be produced of known values, and then regression (exponential) applied in 

order to find the desired values for Verdet at shorter wavelengths. 

Wavelength (nm) Verdet Units Expressed as Rad/T/m 

650* 5.884x10-5 °/mT.cm 0.001710 

635* 6.221x10-5 °/mT.cm 0.001810 

532* 6.448x10-5 °/mT.cm 0.001880 

450** 10-4 °/mT.cm 0.002910 

1064† 3.91x10-4 Rad/T/m 0.000391 

634.8‡ 1.39x10-9 Rad/G/cm 0.001390 

Table 7.1 known Verdet constant measurements from published literature (sources - *Li and Li 
(2012); ‡Zhang et al. (2007); **Li et al. (2008); †Wu et al. (2003)). 

Taking the known values from Table 7.1 and performing an exponential regression provides 

the projected values in the table below. 

λ (nm) Verdet λ (nm) Verdet 

250 0.005343 700 0.001279 

300 0.004558 750 0.001091 

350 0.003889 800 0.000931 

400 0.003317 850 0.000794 

450 0.00283 900 0.000677 

500 0.002414 950 0.000578 

550 0.00206 1000 0.000493 

600 0.001757 1050 0.000421 

650 0.001499 1100 0.000359 

Table 7.2 Projected values of Verdet constant in atmospheric air.  
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Figure 7.7 The known values of Verdet in air, and those predicted by the regression analysis. 

Using the values obtained and equation 7.1, it was possible to estimate the approximate 

distances light of different wavelengths must travel in order to be rotated by a measurable 

amount in Earth-strength magnetic fields. These values are plotted in Figure 7.7. The 

commonly used approximate distance to the edge of the atmosphere (100km) was used as 

a baseline for the distance light will travel through the atmosphere if travelling vertically, i.e. 

the shortest possible path to the surface of the planet (Figure 7.8). 
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Figure 7.8 Rotation of light of various wavelengths after travelling 100km in atmospheric air. 

Then 1° of rotation was arbitrarily assigned as a hypothetical minimum rotation that may be 

discernible (Figure 7.9). In reality, e-vector resolution of various species may be greater or 

less than this, but it is at least in the range of potential discrimination (Temple et al. 2012). 

Unfortunately, in most terrestrial animals such as birds, polarisation vision has been tested 

only using rotations of 45° or more, however there is some evidence that the nature of the 

effect on electrophysiological recordings in fruit flies and locusts (Schistocerca gregaria) 

(Bech et al. 2014; Velez et al. 2014) is such that the response varies in a continuous fashion 

with changing e-vector, meaning that e-vector acuity of a couple of degrees or less is at least 

theoretically possible. 
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Figure 7.9 Distance light of various wavelengths must travel in air to rotate by 1°. 

Realistic distances of light paths 

If we estimate the distance to horizon for an observer at 100km elevation, we find ~1134km. 

If reversed this is effectively the distance that light will have travelled from the 100km 

altitude (edge of atmosphere) point to an observer on the ground who is looking just above 

the horizon (and extending into the atmosphere). Thus, an observer, looking at a point just 

above the horizon will (not accounting for interference/refraction of planet surface) be 

seeing light that has travelled approximately 1134km in the atmosphere. This is true in both 

(opposite) directions. 
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Figure 7.10 Diagram showing estimated distances of maximal light path in the atmosphere. The 
above is not to scale, and measurements are approximate. This illustrates the possible distances 
light may travel through the atmosphere before arriving at the eye. Inner circle=Earth’s surface. 
Outer circle= edge of atmosphere (approximate transition between mesosphere and 
thermosphere), a point commonly cited as the point at which particles become dense enough to 
have a significant interaction with incident light (see Figure 7.11). 

 A=Observer on Earth’s surface 

 B=Observer at 1km altitude 

 C=Edge of atmosphere in line with horizon from point A 

 D=Horizon when viewed from B 

Figures 7.8-7.10 show that, when viewing the sky just above the horizon, light reaching the 

eye has travelled on the order of 1000km through Earth’s atmosphere. However light of 

certain wavelengths only needs to have travelled approximately 100km for a difference in e-

vector to potentially be discerned. If we conservatively say that light at each end of the 

North-Zenith-South plane has travelled at least 500km through the atmosphere upon 

reaching the eye, it is perfectly possible that an animal with e-vector resolution of a couple 
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of degrees or better, would be able to discern poleward from equatorward, using the effect 

that the magnetic field has on the e-vector of light. 

 

Figure 7.11 Layers of Earth’s atmosphere and their effect on incident light (NASA 2015). 

This implies that any animal that can discriminate a difference of 5 degrees in e-vector for a 

given (probably short e.g. <500nm) wavelength can tell magnetic poleward from 

equatorward, at dawn and dusk, with no other mechanism required. 

Because the optical properties of air are affected by the density of particles, and hence 

altitude, the Verdet constants given must be assumed to be averaged for the entire path 

from 100km altitude to Earth’s surface (whether the path is vertical or otherwise). However, 

they have been shown experimentally to be a good approximation in satellite polarimetry 

(Wu et al. 2003; Zhang et al. 2007; Li et al. 2008; Li and Li 2012). 
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Accounting for change in magnetic field intensity 

The intensity of the Earth’s magnetic field also changes along the path of the light, and with 

altitude, therefore some approximation must be made as to the net effect of the various 

field intensities along the light path. It is reasonable to assume that if the intensity changes 

steadily with location (true on a global scale but not locally), we may estimate the average 

intensity of the field that the light passes through. This is a simple case of taking the median 

value for field intensity over the course of the light path. For example, if the light enters the 

atmosphere where the field intensity is 50uT, and arrives at the observer in a region of 30uT, 

then the median intensity along the path, and an approximation of the intensity over the 

entire path, could be 40uT. However, this makes the assumption that the field is 50uT at 

100km altitude, which is unlikely to be accurate as magnetic field strength tends to degrade 

exponentially with distance from source. Using the NOAA magnetic field calculator (NOAA 

2013), it can be seen that 100km altitude reduces intensity by only 2-3uT, approximately 5-

10%, and so making suitably conservative estimates should account for this. 

So, if we shorten the path of the light by, say, 113km to account for having to look slightly 

above the horizon and if we take a median value for intensity looking equatorward from a 

mid-latitude as, say 35uT and the same median value looking poleward as, say, 47uT, we can 

again, plot the expected amount of rotation, for a range of light wavelengths. 
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Figure 7.12 E-vector rotation after 1000km travelled at median field intensity for different 
wavelengths. 

It can be seen in Figure 7.12 that as much as a 14° rotation can be seen at lower wavelengths. 

Dependant on abilities of specific species, this difference could also be discerned using higher 

wavelengths. 

There are, however, two more important factors that must be taken into account in order to 

understand whether this phenomenon will exist in a real situation. Both relate to the fact 

that not only does the intensity of the magnetic field have an important effect, but so does 

‘direction’ of the summed field vector. 

Accounting for ‘direction’ of magnetic field vector 

The first of these to account for is that the field ‘points’ toward the geographic North Pole 

(technically South magnetic pole). This means that light travelling from the equator toward 

the North is travelling ‘with’ the field direction, whereas that travelling South from the pole 

toward the equator (assuming we are in the geographic Northern hemisphere) will be 

travelling ‘against’ the magnetic field. This, in the simplest sense, means that a negative value 

of field intensity should be used for the calculation of Faraday rotation when light travels 

against the field (i.e. geographic N-S). 
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Making this adjustment gives the following values for e-vector rotation. 

 

Figure 7.13 Rotation of e-vector having taken into account direction of travel in relation to Earth’s 
magnetic field. 

This adjustment, far from confounding the effect, exaggerates it, meaning that an even 

greater divergence in e-vector is theoretically observed (Figure 7.13), making it significantly 

more likely for a wide range of species to be able to discern the difference. It is reassuring to 

note that a rotation of over (or even close to) 180° has not been observed. Such positions 

are given arbitrary notation by humans to distinguish say 181° from -179°, but this distinction 

may not be possible for animals. Hence, it is reassuring that the values do not diverge enough 

to ‘overlap’. 

The remaining correction that must be made pertains to the fact that the sum intensity of 

the field does not point along the path of the light exactly, hence an approximation is 

required of the proportion of the field intensity, which does align (positively or negatively) 

with the path of the light. This must account for the fact that, near the pole, the vertical 

component is by far the strongest component, whereas at the equator it is the horizontal 

component that has most influence. This calculation, and the setting of definite distance 
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limits, together with a thorough breakdown of the appropriate mathematics, will be carried 

out prior to publication. 

This theory provides what appears to be a possible mechanism of using the Earth’s magnetic 

field to tell poleward from equatorward, and even to navigate in other directions in areas of 

high magnetic field variability, by means of polarisation e-vector acuity alone. Very recently 

(February 2016), a paper was published by Muheim et al. in which the key finding was that 

zebra finches (Taeniopygia guttata) orientated normally when the axis of maximal 

polarisation of skylight was parallel to the magnetic field, and became disorientated when 

the skylight polarisation and magnetic field were perpendicular. This was interpreted by 

Muheim et al. (2016) as suggestive that the polarisation level of skylight is an integral factor 

in the functioning of cryptochrome-modulated visual magnetoreception. However, it seems 

plausible that the above theory of the authors may provide an alternative. The implication 

being that it is actually the e-vector being seen by the bird, and the magnetic field 

intensity/direction is being derived from this information. 

The mathematical and engineering aspects of this theory are well established physical 

principles, often utilised in industry (e.g. satellite polarimetry). The crucial question, it seems, 

is whether any animal considered to be magnetoreceptive, also has the ability to visually 

resolve e-vector rotation of a couple of degrees. To try to examine this principle in the 

homing pigeon, the extension of the experiment described in Chapters 2 and 4, 

recommended in Chapter 7 would be necessary. 

Further explanation 

One nice way to imagine how an animal might perceive the difference in magnetic intensity 

via e-vector is to imagine they have a filter, like one might use in photography. The dark band 

at sunrise/sunset runs approximately N-S, but this is not to say that a linear polariser must 

be orientated N-S to see it. The pattern is the region of maximally polarised light in relation 
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to the sun, at the point where it scatters in the atmosphere, but does not necessarily 

represent the orientation of the e-vector of the light arriving at the eye. That is to say, light 

in this polarised band has struck a particle in the atmosphere and been reflected at right 

angles, such that it is now linearly polarised and heading directly towards the observer. At 

the point of reflection, it is polarised predominantly N-S, but on arrival at the eye, the above 

described Faraday effects have taken place, and the field strength becomes apparent 

through e-vector rotation. 

Imagine that you look at the poleward end of the dark band and have to turn your filter to, 

say, 5° to get the darkest possible stripe. Then if you look to the equatorward end of the dark 

band, you now find that you must turn your filter to -10° in order to see the dark band most 

clearly. The difference in the way you need to orientate the filter to best see the dark band 

is a function of the intensity of the magnetic field along the path the light has taken (Figure 

7.14). The smaller the rotation you are able to discern, the more accurate a measure of the 

difference in magnetic field intensity you can achieve. 

 

Although very much beyond the scope of this research study, an obvious experiment to carry 

out would be to use a man-made polarimeter (or simply a light intensity sensor with 

polarising filters which can be very accurately rotated) to assess the amount of Faraday 

rotation actually observed when viewing the two different ends of the plane of maximal 

Poleward 
Equatorward 

Difference in filter alignment 

reflects difference in e-vector 

orientation, hence field 

intensity. 

Figure 7.14 Hypothetical example of deriving magnetic field intensity from e-vector acuity. 
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polarisation. Such devices are beginning to be used for solving navigational questions, 

however the author is unaware of any studies directly measuring Earth’s magnetic field 

intensity by means of ground-based polarimetry. 

It may also be possible that information about Earth’s magnetic field intensity could be 

derived by simply looking straight up at the sky, in different locations at the same time of 

day, possibly tying in with the notion that migratory birds use polarised light to calibrate their 

magnetic compass (Muheim et al. 2007). Additionally, it might be feasible for a travelling bird 

to use this method with polarised light reflecting off the surface of the Earth, such as a water 

body. However, in order for the light to travel far enough, it would seem that the bird would 

have to be flying at considerable altitude (>1km). 

It must not be overlooked that many different animal classes appear to use polarised light 

cues for navigating, some perhaps to a greater extent than birds (Horvath 2014), to which 

this theory is not limited. 

Closing statement 

The work presented in this thesis has demonstrated that interdisciplinary collaboration can 

offer new directions, and improved reproducibility in research into magnetoreception and 

other sensory modalities. The novel use of prepulse inhibition and other techniques has 

demonstrated the importance of electromagnetic shielding in magnetoreception 

experiments. The use of LCD arenas for investigating head movements in pigeons and the 

optomotor response in fish was successful. These findings, along with the knowledge and 

experience gained in the process of obtaining them, offer great insight into how future 

experiments should be conducted. Whilst interdisciplinary research and design of novel 

experimental approaches are by no means without their challenges, they offer the potential 

for significantly improved ways of investigating enigmatic sensory mechanisms. 
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