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Abstract 

In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of 

visualising all structures within the knee joint, which makes it a valuable tool for 

increasing diagnostic accuracy and planning surgical treatments. Therefore, clinical 

narratives found in MRI reports convey valuable diagnostic information. A range of 

studies have proven the feasibility of natural language processing for information 

extraction from clinical narratives. However, no study focused specifically on MRI 

reports in relation to knee pathology, possibly due to the complexity of knee anatomy and 

a wide range of conditions that may be associated with different anatomical entities. 

In this thesis, we describe KneeTex, an information extraction system that operates in this 

domain. As an ontology-driven information extraction system, KneeTex makes active use 

of an ontology to strongly guide and constrain text analysis. We used automatic term 

recognition to facilitate the development of a domain-specific ontology with sufficient 

detail and coverage for text mining applications. In combination with the ontology, high 

regularity of the sublanguage used in knee MRI reports allowed us to model its processing 

by a set of sophisticated lexico-semantic rules with minimal syntactic analysis. The main 

processing steps involve named entity recognition combined with coordination, 

enumeration, ambiguity and co-reference resolution, followed by text segmentation. 

Ontology-based semantic typing is then used to drive the template filling process. We 

adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), 

for use within KneeTex. The original TRAK ontology expanded from 1,292 concepts, 

1,720 synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 

560 relationship instances. This provided KneeTex with a very fine-grained lexico-

semantic knowledge base, which is highly attuned to the given sublanguage. Information 

extraction results were evaluated on a test set of 100 MRI reports. A gold standard 

consisted of 1,259 filled template records with the following slots: finding, finding 

qualifier, negation, certainty, anatomy and anatomy qualifier. KneeTex extracted 

information with precision of 98.00%, recall of 97.63% and F-measure of 97.81%, the 

values of which are in line with human-like performance. 

To demonstrate the utility of formally structuring clinical narratives and possible 

applications in epidemiology, we describe an implementation of KneeBase, a web-based 

information retrieval system that supports complex searches over the results obtained via 

KneeTex. It is the structured nature of extracted information that allows queries that 
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encode not only search terms, but also relationships between them (e.g. between clinical 

findings and anatomical locations). This is of particular value for large-scale 

epidemiology studies based on qualitative evidence, whose main bottleneck involves 

manual inspection of many text documents. 

The two systems presented in this dissertation, KneeTex and KneeBase, operate in a 

specific domain, but illustrate generic principles for rapid development of clinical text 

mining systems. The key enabler of such systems is the existence of an appropriate 

ontology. To tackle this issue, we proposed a strategy for ontology expansion, which 

proved effective in fast–tracking the development of our information extraction and 

retrieval systems. 
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Chapter 1 Introduction 

1.1 Motivation 

Electronic Health Record systems (EHRs) maintain patient medical history in digital 

format. Both US and EU have invested billions to promote the adoption of EHRs (Jensen 

et al., 2012). The adoption rate of EHRs among physicians had increased from 18% in 

2001 to 57% in 2011 (Hsiao et al., 2010). And it is still continuously and rapidly 

increasing. The UK National Health Service (2015) has also planned to digitalise every 

GP practice by 2017. 

Clinical narratives stored in EHRs normally describe a specific clinical event or situation. 

The expressiveness of natural language allows a physician to describe and share detailed 

situation of a patient with other professionals (NUANCE, 2008). Clinical narratives 

contain detailed information that includes but not limited to medications, diseases, 

observations, diagnostic processes and temporal information. it has been demonstrated 

that clinical narratives such as pathology and radiology reports could provide valuable 

information for both diagnostic and research purposes (Jensen et al., 2012; Mohanty et 

al., 2007; Spasic et al., 2005; Spasić et al., 2014). 

Despite the great potential, such information is scattered and heterogeneous, which has 

limited direct analysis (Jensen et al., 2012). By applying natural language processing 

approaches such as text mining onto clinical narratives could help to improve this (Jensen 

et al., 2012; Meystre et al., 2008). Spasić et al. (2014) have also demonstrated the 

feasibility of using text mining to extract structured information in cancer related 

pathology and radiology reports. 

Although the general text mining process could provide syntactic analysis to surface 

textual forms, real-world semantics connected to these surface textual forms is needed. 

Semantic interpretation on the other hand provides real-world interpretations that abstract 

meanings underneath their surface textual forms (Abbe et al., 2015; Albright et al., 2013). 

Musculoskeletal conditions are the second largest contributor to years lived with 

disability (Vos et al., 2012). In the United Kingdom, a total of 33% of individuals aged 

45 and over have sought treatment for osteoarthritis, with the knee being the most 

commonly affected joint (Arthritis Research UK, 2013). The incidence of acute knee 

injuries is reported to be at a rate of 2.29 per 1000 in US population (Gage et al., 2012). 

In the Netherlands, 45-55% of acute knee injuries develop into a long-term medical 
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condition (van Middelkoop et al., 2008). Patients may still experience movement 

deficiency 1 year following knee surgery (K. Button et al., 2014). In particular, 

participation restrictions may persist 2 years following total knee replacement (Maxwell 

et al., 2013). 

If not diagnosed early and, therefore, not treated adequately, acute injuries can become 

chronic and lead to lifelong problems or conditions. When it comes to diagnosing knee 

pathology, magnetic resonance imaging (MRI) has the advantage of visualising all 

structures within the knee joint, i.e. both soft tissue and bone. When used in conjunction 

with medical history and physical examination, this makes MRI a valuable tool for 

increasing diagnostic accuracy and planning surgical treatments (Grover, 2012; Konan et 

al., 2009; Pompan, 2012; Wenham et al., 2014; Yan et al., 2011). 

The MRI procedure is relatively simple and typically lasts 15 to 45 minutes. Following 

an MRI scan, the imaging results are summarised by a radiologist in a diagnostic narrative 

report that conveys a specialist interpretation of the MRI scan and relates it to the patient’s 

signs and symptoms. Depending in the severity of their condition, some patients will need 

to be treated immediately while others may wait. An ability to interpret MRI reports 

automatically would help determine the priority of patients' treatments without the 

overhead associated with reading through a potentially large number of MRI reports. This 

can streamline the patient pathway and thus improve the prospects of their health 

outcomes. 

1.2 Research question 

A range of studies have proven the feasibility of natural language processing (NLP) for 

information extraction from clinical narratives. However, no study focused specifically 

using ontology-based text mining to support semantic interpretation on clinical narratives, 

possibly due to the complexity of knee anatomy and a wide range of conditions that may 

be associated with different anatomical entities. Using this specific domain as a case study, 

we wanted to test the following hypotheses: 

• Semantic interpretation of clinical narratives can be automated with ontology-

based text mining. 

• Ontology expansion can be effectively achieved using a systematic pipeline. 

Automatic semantic interpretation requires machine-readable knowledge representation. 

Ontologies are commonly used to formally describe domain-specific knowledge and 

facilitate information exchange. Ontologies can be coupled with NLP techniques (such 
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as information retrieval and information extraction) to facilitate navigation through large 

volumes of text data. The "big data" aspect is of particular importance for epidemiology, 

the study of the distribution and determinants of health-related states/events in defined 

populations. By its definition, epidemiology relies heavily on statistical methods. 

Unfortunately, many of published research findings are probably limited due to sampling 

bias and low statistical power. Given the complexity and cost of manual interpretation of 

clinical narratives, it is not surprising that the size of such epidemiologic studies has been 

limited to hundreds or even dozens of cases. If interpretation of evidence described in 

clinical narratives such as those found in MRI reports could be automated, then it would 

overcome the size limitation in retrospective cohort studies posed by the need to manually 

sort through the evidence. 

The idea of combining ontologies and NLP to support natural language understanding is 

by no means new. However, the extent of knowledge engineering involved in the 

development of domain–specific ontologies with sufficient detail and coverage for NLP 

applications is known to present a major bottleneck in deep semantic NLP. One of the 

contributions of this thesis is an approach that can be used to rapidly develop ontologies 

that can act as very fine–grained lexico–semantic knowledge bases that are highly attuned 

to the targeted sublanguage.   

1.3 Research outcomes 

1) Rapid ontology development framework 

We adopted an alternative approach based on a set of strategies, primarily data-driven, 

which can be used to systematically expand the coverage of existing ontologies or to 

develop them from scratch. Three of these strategies are data–driven and as such are more 

likely to ensure that the ontology effectively supports the intended NLP application. Each 

data–driven strategy utilises a different approach to extracting the relevant terminology 

from the data either manually or automatically. The fourth strategy is based on integration 

of concepts from other relevant knowledge sources. The two main aims of this strategy 

are: (1) to avoid the over-fitting of the ontology to limited data available, and (2) to 

provide an initial taxonomic structure to incorporate new concepts. 

We also illustrated how these strategies were implemented in practice to expand the 

coverage of the TRAK ontology, which is an ontology developed for modelling 

information related with rehabilitation of knee conditions, to make it suitable for a 

specific NLP application. 
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2) Expanded TRAK ontology 

We practically demonstrated the approach to update the TRAK ontology in order to allow 

interpretation of information contained in knee MRI reports. We expanded TRAK into a 

fine-grained ontology from 1,292 concepts, 1,720 synonyms and 518 relationship 

instances to 1,621 concepts, 2,550 synonyms and 560 relationship instances. 

3) KneeTex 

We developed KneeTex as a human-level performance ontology–driven system for 

information extraction from narrative reports that describe an MRI scan of the knee. 

As an ontology–driven information extraction system, KneeTex makes active use of the 

TRAK ontology to strongly guide and constrain text analysis. The main processing steps 

involve named entity recognition combined with coordination, enumeration, ambiguity 

and co–reference resolution, followed by text segmentation. Ontology–based semantic 

typing is then used to drive the template filling process. On a gold standard, KneeTex 

extracted information with precision of 98.00%, recall of 97.63% and F–measure of 

97.81%, the values of which are in line with human–like performance. These results 

confirmed that, when having an appropriate ontology, we can fully automate semantic 

interpretation of facts about pre–specified types of entities and relationships from knee 

MRI reports. 

4) KneeBase 

We demonstrated KneeBase as an example of the integrated use of ontology and extracted 

information to build an information retrieval system. The system structure and 

programming framework can be reused for other similar ontology-based information 

retrieval tasks. 

The basic principles of all these contributions are generic and are applicable in other 

domains. 

The main results reported in this thesis have been published in the following article: 

Irena Spasić, Bo Zhao, Christopher Jones, Kate Button (2015) KneeTex: An 

ontology-driven system for information extraction from MRI reports. Journal of 

Biomedical Semantics, Vol. 6, 34 
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1.4 Thesis structure 

Chapters 2 and 3 provide a literature review. Chapter 2 provides a review of natural 

language processing, specifically in relation to its clinical applications. Chapter 3 deals 

with clinical knowledge representation and focuses specifically on ontologies. Chapters 

4 to 7 represent the original contribution of this thesis. Chapter 4 describes the data used 

in this study. It is used to illustrate the nature and complexity of semantic interpretation 

of knee MRI reports in addition to setting a gold standard for its evaluation. Chapter 5 

describes our approach to efficiently expanding the TRAK ontology in order to make it 

fit for interpreting information contained in knee MRI reports. Chapter 6 describes the 

KneeTex system specification, including its specification, specific design and 

implementation choices and evaluation. Chapter 7 describes a separate information 

retrieval system structure, which demonstrates a potential of using KneeTex to support 

epidemiological research. Finally, we conclude the thesis by highlighting the main 

contributions to knowledge engineering and NLP, and suggest possible directions of 

future work. 
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Chapter 2 Natural language processing 

Natural language processing (NLP) is a subset of computational linguistics. NLP can be 

defined as the automatic or semi-automatic processing of human language from aspects 

such as morphology, syntax, semantics and pragmatics (Copestake, 2004). NLP includes 

many subareas, such as parsing, knowledge representation, ontology, information 

extraction, text mining, etc.  

NLP is now used for analysis in many domains. However, a well performed NLP 

application in a specific domain may not achieve the same performance in other domains 

due to different language characteristics among different domains as well as biased 

annotated corpus. Therefore, when switching domain, a substantial level of performance 

degradation is usually expected (Cambria and B. White, 2014; J. Jiang, 2008; L Sumathy 

and Chidambaram, 2013). 

The general computational linguistics and NLP terminologies and theories have become 

an obstacle for researchers from other domains due to different criteria, specific 

knowledge and restricted sublanguages available in different domains. As a result, 

specific domain related NLP processes have been carried out to enable practical 

applications (Wintner, 2009). 

In the earlier days, most medical-related data was stored in the form of paper instead of 

stored digitally nowadays, e.g. medical records, patient notes handwritten by doctors or 

nurses, prescriptions, X-ray report, MRI report, etc. With the development of digital 

storage, computing platforms and Internet, medical data is now rapidly transforming to 

digital format. This enables researchers easier access to medical data and the possibility 

to carry out further research without converting paper based data to digital format. 

This chapter introduces the concept of sublanguage and its characteristics, especially 

focusing on clinical sublanguage. Typical information extraction and named entity 

recognition processes and achievements are also described. To help understanding NLP 

applications in the clinical domain, we have also provided a review on state-of-the-art 

clinical NLP systems. 

2.1 Sublanguage 

Languages are made up of many different word sequences with certain restrictions to 

express meanings. These restrictions include syntaxes, co-occurrence patterns, and 

lexical restrictions (Harris, 1991). 
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A practical application of NLP often involves a specific domain. This specific domain is 

also called restricted domain in NLP concepts. Sublanguage is the language used in a 

restricted domain, which is normally used for communications among domain experts 

(Starren and S. M. Johnson, 1996). The development of a sublanguage normally comes 

through the use of general language in under a specific circumstance. Therefore, a 

sublanguage usually has its own characteristics that distinguish it from the general 

language as well as some restrictions inherited from the general language (Harris, 1991; 

Lehrberger, 2014; Zeng et al., 2011). 

Characteristics 

Although sublanguage inherits some restrictions from its general language, it may 

develop some lexical, syntactic, semantic, terminology and sentence structures that 

cannot be applied back to its general language (Zeng et al., 2011). Characteristics of 

sublanguage normally include: 

• Semantic classifications 

Semantic classifications can be applied to relevant words in a sublanguage. Names of 

classified categories are usually informational and can be words from the sublanguage, 

such as disease, injury, body part. 

• Co-occurrence patterns 

A sublanguage is usually structured by frequently repeated co-occurring patterns to 

form meaningful relations, such as bone marrow edema and tear in medial meniscus. 

These patterns may not have different meaning if seen in general language or other 

sublanguages. However, the frequencies of those co-occurrences can be one of its 

characteristics that differ from other sublanguages (Sager et al., 1994). It is also 

possible to have restrictions to constrain which types of words can occur together 

(Friedman et al., 2002). 

• Paraphrastic transformations 

Different expressions can be adopted to represent the same meaning. This often 

involves changing of part-of-speech and tense of words (Friedman et al., 2002; 

Hirschman and Sager, 2002). For example, the following representations are all 

equivalent to each other. 

- SYMPTOM + ADJECTIVE + BODYPART: tear at lateral meniscus 

- SYMPTOM + BODYPART: torn lateral meniscus 

- BODYPART + VERBBE + SYMPTOM: lateral meniscus is torn 
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• Contextual omission 

With given context for a specific domain, implicit information can often be uncovered 

with sufficient knowledge of the context (Friedman, 2006; Friedman et al., 2002; 

Hirschman and Sager, 2002). For example, in a MRI report of the knee, normal 

extensor tendons would be interpreted as normal quadriceps tendon and patellar 

tendon (Sonin et al., 1995). 

• Terminology 

Vocabulary in a sublanguage is restricted. Only limited words of certain 

classifications and limited co-occurrence patterns are allowed. These terms may also 

represent connected but different meanings other than in the general language. The 

frequency of occurrences of these terms are also expected to be much higher than in 

the general language (Ciravegna, 1995; Friedman, 2006; Friedman et al., 2002; Leroy 

and H. Chen, 2001; Nkwenti-Azeh, 2001), such as capsule in knee MRI reports as 

anatomy structure surrounding the joint and capsule in general language as a small 

container. 

Clinical sublanguage 

Clinical language has a long developing history since the Greek era. It has always come 

with great challenges for linguists (Wulff, 2004). Most clinical professionals tend to use 

clinical language more often other than using general language when communicating 

with other professionals (Bourhis et al., 1989). As soon as Harris introduced the term 

sublanguage, language used by clinicians was recognised as a proper sublanguage 

(Patterson and Hurdle, 2011). However, clinical language can still be divided into many 

sublanguages with partly overlapped coverages as there exist sub-domains of the overall 

clinical domain (Friedman, 2000; Stetson et al., 2002). 

Clinical language also has the same characteristics as discussed above, i.e. semantic 

classifications, co-occurrence patterns, paraphrastic transformations, contextual omission 

and terminology. Campbell and Johnson pointed out that there are significant differences 

between clinical and non-clinical texts (Campbell and S. B. Johnson, 2001). Despite of 

frequently used terminologies, clinical texts tend to use some part-of-speech more often 

than general English, as well as some co-occurrence patterns, see Table 2-1 and Table 2-

2. It is very clear that there are significant higher level usages of nouns, adjectives and 

numbers in clinical texts, which is reasonable because clinical texts primarily consists of 

clinical findings, anatomy parts and severity descriptions (Friedman et al., 2002). 
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As a language for professional communication, clinical language tends to be very concise 

(Stetson et al., 2002). Simple noun phrases or short sentence fragments are favoured over 

complete and complex sentence structures. Therefore, abbreviations are frequently used 

instead of their complete forms, such as ACL for anterior cruciate ligament, MCL for 

medial collateral ligament, and NAD for no active disease. 

Table 2-1 Part-of-speech frequency distributions in clinical and non-clinical english texts (Campbell 
and S. B. Johnson, 2001) 

Part-of-speech	 Clinical	 Non-clinical	
NUMBER 5319	 1989	
VERBbase_form 1260	 4345	
NOUNsingular 22615	 17389	
PROPER_NOUNsingular 2740	 5755	
VERBpast_tense 6613	 4171	
MODAL 203	 1188	
ADJECTIVE 11383	 8928	

 

Table 2-2 Part-of-speech bigram frequency distributions in clinical and non-clinical english texts 
(Campbell and S. B. Johnson, 2001) 

Part-of-speech	Bigram	 Clinical	 Non-clinical	
NOUNsingular + VERBpast_tense 3231	 1084	
PROPER_NOUNsingular + PROPER_NOUNsingular 599	 2572	
VERBpast_tense + VERBpast_participle 2014	 470	
NUMBER + NUMBER 1255	 216	
NOUNsingular + ADJECTIVE 1340	 339	
VERBpast_tense + ADJECTIVE 1410	 381	

 

Challenges in clinical NLP development 

Substantial problems exist when NLP development moves from general language to the 

clinical domain. However, these problems are not restricted to the clinical domain only. 

They could apply to NLP development towards any high skilled restricted domain 

(Chapman et al., 2011). These problems present in many aspects such as access to clinical 

data, availability of annotated datasets, availability of sufficient domain knowledge and 

availability of standard formats. 

Unlike developing NLP applications for general language, clinical NLP development 

requires possession of relevant domain knowledge. Lack of such knowledge would lead 

to difficulties in interpreting implicit information underneath partly omitted expressions 

and abbreviations. Lack of domain knowledge also reflects in the availability of properly 

annotated datasets. Although clinical sublanguages have partly overlapped coverages, 

they still differ in syntaxes and semantics. A properly annotated dataset is the premise for 

training and evaluation processes (Chapman et al., 2011; Friedman et al., 2002). 



 10 

The access to clinical text is also restricted by certain laws and rules protecting patient 

privacies. For example, in the UK, access to patient records are governed by many NHS 

Code of Practices and laws, including the The Data Protection Act 1998 (UK Department 

of Health, 2003). 

Clinical text contains many abbreviations that are used for convenience. These 

abbreviations are often derived from the record writer itself based on its own domain 

knowledge and some unregulated common conventions (Raja and Jonnalagadda, 2015). 

Such abbreviations would lead to a high level of ambiguities for NLP processes. For 

example, PT in clinical text have many interpretations such as patient and physical 

therapy, etc. Similar with the abbreviation problem, synonyms are also being used 

frequently. For example, rupture, disruption and split all point to the concept of tear. 

Although there exist many clinical text templates, in most cases, clinical text still uses 

the format of free text, which allows doctors to write precise notes with the flexible 

expressions (van Ginneken et al., 1997). A lot of elements in clinical text that can be 

helpful for clinical NLP developments are often missing inappropriately used, such as 

section headings, punctuations (Raja and Jonnalagadda, 2015). 

Differences in co-occurrence patterns and semantic classifications among clinical sub-

domains also lead to expected performance decreases if a clinical NLP system developed 

for one sub-domain being applied to another (Friedman, 2000; Patterson and Hurdle, 

2011). Hence, the portability of a clinical NLP system is quite limited. 

2.2 Information extraction 

The aim of information extraction is to recognize meaningful information from free text. 

Such meaningful information normally represents some real-world entities, e.g. event, 

findings, locations and relevant attributes, etc. Instead of providing information 

consumers with entire text, these meaningful elements will be picked out and presented. 

Extracted information will be in a structured format and provide the ability to be directly 

stored in databases for query and further analysis (Piskorski and Yangarber, 2013).  

Information extraction originates from template-filling tasks of the Message 

Understanding Conference (MUC) (Moens, 2006). Templates are final output results for 

information extraction task. A template is a structured representation of extracted 

information. An example of template for medical records will be similar as shown in 

Figure 2-1. 
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In each template, there are several slots. For example, in Figure 2-1, the template 

including following slots: patient name, gender, admission date, age, record date, 

symptoms, department and treatments. These slots need to be filled with relevant 

extracted information. 

Medical	Records	Template	
PATIENT NAME: GENDER: 
ADMISSION DATE: AGE: 
RECORD DATE: SYMPTOMS: 
DEPARTMENT: TREATMENTS: 

Figure 2-1 A template for medical records information extraction 

 

Information that can be extracted and filled into these slots normally shows up in free 

texts frequently with consistent co-occurrence patterns. These patterns can be used to 

help identifying and extracting relevant information. Template designs and patterns can 

vary a lot for different domain related information. In each domain, it may contain several 

scenarios, which are some specific events or relations. A scenario can be surgery 

information, pharmacotherapy information or else in the domain of medical notes 

(Grishman, 1997; Muslea, 1999). 

Early stage information extraction systems normally based on rules and patterns 

recognised by human experts through iterating corpus text. Manual approaches could 

provide sufficient precision but lack extensibility. It is normally limited to a specific 

scenario, domain and language. And the whole process is time-consuming. Later it started 

to develop towards the direction of solving general purpose tasks and extendible system 

frameworks.  

To reduce human burdens in information extraction systems, machine learning 

approaches had been gradually introduced. Although initially limited to supervised 

learning, it still started leading the trend of moving from traditional knowledge 

engineering approaches to trainable approaches. Traditional knowledge engineering 

approach requires input from both system designer and domain experts. But with 

trainable machine learning approaches, it only requires domain experts input on training 

corpus annotation when switching to a new scenario, domain or language as the system 

structure can be reused. 
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Figure 2-2 A common information extraction system structure (Piskorski and Yangarber, 2013) 

 

Information extraction systems may have different structures for different tasks. However, 

there are some common components in most information extraction systems. Figure 2-2 

shows a common information extraction system structure (Piskorski and Yangarber, 

2013): 

a) Background analysis collects information about the whole input dataset, including 

input format, data structure, related domain and relevant metadata. 

b) With domain information and data structure obtained from background analysis, 

template format and slots can be determined. 

c) Tokenization split texts into word-like tokens. Meanwhile, POS tagging will be 

performed to classify token types. 

d) Boundary detection helps to segment input text into sentences. 

e) Sometimes a word can have varied forms depending on its tense, person, etc. 

Morphological analysis could use POS tags and lemmas to help with 

disambiguation. 

f) Phrase recognition extracts small structures from input texts. These small 

structures are normally common phrases or frequently co-occurred meaningful 

words. 

g) Named entity recognition is performed to identify entities from input texts, both 

domain independent and domain specific. Domain independent entities include 
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temporal information, numbers, currencies, etc. Domain specific entities will vary 

as focus domain changes. 

h) With all previous processes, patterns can be recognized or compiled to identify 

and extract relevant concepts to fill the slots in previous designed template. 

i) Co-references happen frequently in natural language. Demonstrative pronouns, 

such as this, that, it, etc., are quite often used to reference an entity mentioned in 

previous text. Co-references solutions will help to identity which entity the 

demonstrative pronoun refers to. 

Template filling stage will allocate previous extracted entities into slots in predefined 

template. 

Named entity recognition 

The concept of named entity (NER) was proposed during the 6th Message Understanding 

Conference (MUC-6). It was one of the subtasks that extracts person, location and 

organization related terms using tag ENAMEX, short for entity name expression 

(Grishman and Sundheim, 1996). The process of extracting these named entities is called 

NER, short for named entity recognition. 

Named entity is now used to identify basic elements in text that can be classified into pre-

defined categories. These categories may include persons, locations, organizations, time 

and some other domain related categories. For example, in this knee injury research, there 

are categories like anatomical locations, findings, etc. 

Named entity recognition approaches in different domains may vary. Most NER systems 

are specifically dedicated to certain domains, e.g. emails, gene information, etc. Although 

there may be some general rules or patterns that apply to most domains, extending a 

current NER system into another domain without making proper tuning will lead to 

significant drop in its performance (Nadeau and Sekine, 2007). Meanwhile, named entity 

tags can be different for different domains as different domain sublanguages may use 

different semantic classifications as mentioned in 2.1.1. For example, in clinical domains, 

the tag locations may be replaced by anatomical entities. 

Similar to POS tagging, NER can be performed using either manually rule-based or 

machine learning approach. Manually compiled rules often rely on grammatical, syntactic 

and morphological features, as well as dictionaries if possible. See Textbox 2-1 for a basic 

dictionary-based NER rule. In this example, a title Dr., and a name Banner are recognised 
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using predefined dictionary. Based on the rule RULEPERSON: TITLE + NAME, Dr. Banner 

is recognised as a person entity. 

 

Textbox 2-1 A basic NER manual rule example 

 

Although manually compiled rules have been proven that they have better performance 

than machine learning approaches in restricted domains and complex entities, compiling 

these rules manually can be time consuming, tedious and error prone. Disadvantages of 

manually compiled rules are also obvious. Performance will drop significantly if a 

manually compiled rule was applied to another domain, as manually compiled rules are 

weak on portability. Even a slight change in the same domain, compiled rules might need 

to be rewritten. Therefore, manually compiled rules are often restricted by domain and 

language (Mansouri et al., 2008). 

Machine learning approaches use classification models to perform identification process 

through supervised or unsupervised methods. At least one training dataset is required for 

supervised learning. The training dataset normally contains pairs of input and output, of 

which the correct output is usually annotated and curated manually. This paired dataset 

together with given set of parameters are then used to generalise a relationship model 

between inputs and outputs (Lison, 2012; Maimon and Rokach, 2005). Supervised NER 

can be achieved using various statistical models, including hidden Markov model, 

maximum entropy, decision trees and support vector machines, etc (Mansouri et al., 

2008). 

Unsupervised learning methods are normally used when available training dataset 

contains only input information. Pure unsupervised approaches are quite unusual. A pure 

unsupervised NER system will learn from given data without any human input. Normally 

unsupervised approaches are used to refer to weakly supervised approaches or semi-

supervised approaches. A weakly supervised approach usually includes human error 

correction stage where automatically induced patterns will be reviewed and corrected by 

human (Hastie et al., 2008; Maimon and Rokach, 2005; Mansouri et al., 2008). 

DICTIONARYTITLE : Mr.,Mrs., Ms., Dr., Prof., ...  

DICTIONARYNAME : Abigale, Banner, Brown, Colin, ...  

RULEPERSON: TITLE + NAME 

EXAMPLE: 

<title>Dr.</title> <name>Banner</name> found an acute grade III MCL injury. 
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Rule-based approaches and machine learning approaches could also be combined 

together to make hybrid approaches. Hybrid approaches will combine advantages from 

both rule-based approaches and machine learning approaches. Hybrid approaches 

normally will have better performances. As hybrid approaches still include rule-based 

part, it still requires a stable restricted domain (Mansouri et al., 2008). 

Clinical named entity recognition 

Clinical named entity recognition, sometimes also known as clinical concept extraction, 

is an important aspect of clinical natural language processing. Extracted clinical entities, 

such as symptoms, diagnosis and treatments, form the basis to interpret underlying 

knowledge and support further research (Jonnalagadda et al., 2012; Tang et al., 2013). 

Clinical NER has been significant attentions in recent years. Following the MUC 

conference for information extraction (Grishman and Sundheim, 1996), The Informatics 

for Integrating Biology and the Bedside (i2b2) has been holding annual challenges 

focusing on the clinical domain since 2006 (Uzuner et al., 2006). Table 2-3 lists out 

entities that have been focused on in the past i2b2 challenges. 

i2b2	 Targeting	entities	
2006	 Private	health	information	(PHI)	
2006	 Smoking	status	
2008	 Obesity	
2009	 Medication	
2012	 Temporal	information	
2014	 Heart	disease	risk	factors	
2014	 Private	health	information	(PHI)	

Table 2-3 Yearly i2b2 shared task challenges (Uzuner, 2009; Uzuner et al., 2006; 2008; 2007; 2010; 
2011; Uzuner and Stubbs, 2015) 

 

In general, systems that integrated statistical learning and regular expression rules have 

the best performances in identifying PHI in i2b2 2006 (Uzuner et al., 2007). Wellner et 

al. (2007) achieved the best F-measure of 0.9736 for this challenge using their submission 

built on Conditional Random Fields (CRFs) based Carafe system and regular expression 

patterns. 

Clark et al. (2008) built a system that combines Support Vector Machine (Vapnik, 1982) 

based supervised learning and linguistic rule-based extraction. This system achieved the 

best micro-averaged F-measure of 0.90 compared with other submissions. Clark et al. 

(2008) suggested that the use of linguistic rules played an important part in such 

achievement, which helped reducing limitations caused by restricted training set size. 
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In 2008 i2b2 challenge of identifying obesity entities (Uzuner, 2009), the challenge is 

divided into two subgroups: the textual task for identifying explicitly described obesity 

terms and the intuitive task for identifying descriptions implicitly describing obesity. 

Rule-based approaches and machine learning approaches contributed most to the textual 

task and intuitive task respectively. Rule-based systems manually curated by domain 

experts proved to be very efficient in this closed-domain obesity challenge. However, 

generalisability is an issue for these systems if were to be applied to new tasks and 

domains. 

The 2014 i2b2 challenges of identifying heart disease risk factors have overlapped with 

some of previous challenges on smoking status, obesity, medication and temporal 

information. Therefore, it benefits from previous tasks for have an enriched annotated 

training set. This has proved to have the biggest positive affect on the success of 

submitted systems (Stubbs et al., 2015). For example, the best performance on past 

smokers category has an increased F-measure of 0.8869 compared with 0.67 in 2006. The 

U.S. National Library of Medicine (NLM) (Roberts et al., 2015) team achieved the best 

performance in i2b2 2014 is a micro-averaged F-measure of 0.9276. The team devoted 

large effort on re-annotation of 2/3 of the training corpus, which has greatly improved the 

system performance from 0.9021 to 0.9276 in F-measure. 

Evaluation 

 

Figure 2-3 Introduction of precision and recall (Maedche, 2012) 
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Precision, recall and F-measure are commonly used measures in information extraction 

evaluation. These three measures are originally used in information retrieval systems. 

Figure 2-3 gives a brief idea of precision and recall. Precision measures the amount of 

retrieved relevant items and recall measures relevant items that are retrieved. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑅𝑒𝑐𝑎𝑙𝑙	 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

Definitions: 

• True Positive: number of retrieved items that belongs to relevant items 

• True Negative: number of irrelevant items that are not retrieved 

• False Positive: number of retrieved items that are irrelevant 

• False Negative: number of relevant items that are not retrieved 

Precision measures how many items are correctly retrieved. Recall measures how many 

items that should be retrieved are actually retrieved. Normally, we would prefer precision 

and recall both as high as possible at the same time. However, sometimes system 

precision and recall values are conflicted. Therefore, F-measure, which is a weighted 

average of precision and recall, is introduced and also often used as a key measure 

(Hripcsak and Rothschild, 2005). 

𝐹 =
1 + 𝛽8 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝛽8 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  

β is the weighting of precision towards recall. Sometimes if overlapped matching is 

allowed when calculating precision and recall, there would be different weighting value. 

Normally precision and recall are treated equally (Maynard et al., 2006). In this case, β 

is set to 1, so the equation can be simplified to: 

𝐹 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  

2.3 Clinical NLP applications 

Clinical NLP applications are normally developed to solve specific questions. There are 

many questions in the clinical domain, such as identification of risk factors for a specific 

disease (Uzuner and Stubbs, 2015), identification of medical records from documents. 

Meanwhile, there have also been many systems available already to solve them. 
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MetaMap 

MetaMap is a concept search program built based on the UMLS Metathesaurus. It maps 

text input with UMLS Metathesaurus and other relevant knowledge bases to identify 

biomedical concepts mentioned in text (Aronson, 2001). 

The original MetaMap program was developed to improve the retrieval of bibliographic 

materials such as MEDLINE citations.  

MetaMap uses two parsers together to parse input text: the SPECIALIST minimal 

commitment parser (McCray et al., 1994) and the Xerox POS tagger (Cutting et al., 1992). 

The SPECIALIST parser identifies phrases, and allocates SPECIALIST lexicon tags. 

There are 11 SPECIALIST lexicon tags: noun, verb, adjective, adverb, auxiliary, modal, 

pronoun, preposition, conjunction, complementizer and determiner. If there would be any 

word that does belong to the lexicon, it will then be passed on to the Xerox POS tagger 

for normal POS tagging. A group of variants will be generated for each phrase that can 

be recognised using SPECIALIST lexicon and the supplement synonym database. These 

variants include acronyms, abbreviations, synonyms, derivational variants, inflectional 

variants and spelling variants with edit distance score (Aronson, 1996). With generated 

variants for each phrase, a set of candidates will then be retrieved from the Metathesaurus. 

Various optional parameters could be added to this process for better efficiency and 

precision, such as occurrence frequency, stop words and user-defined indexes. Each 

candidate will be evaluated towards matched phrase from the input text and provided a 

candidate score from 0 indicating no match at all to 1000 indicating perfect match 

(Aronson, 2006). Candidates will then be joined together to make mapping suggestions. 

Mapping suggestions also come with mapping scores where higher score indicates more 

confident MetaMap interpretation of matched text. 

With no further implementation, MetaMap achieved a precision range from 53.19% to 

91.30%, and a recall range from 94.59% to 100% in a recent evaluation towards a set of 

radiographic image reports (Al-Safadi et al., 2013). However, there were also a few 

weaknesses spotted: 

• The Metathesaurus that MetaMap was built on does not cover every concept. As 

a result, uncovered concepts cannot be retrieved using MetaMap. 

• Relationships within the phrase are ignored. For example, MetaMap output for a 

tear found in lateral meniscus will be two individual concepts tear and lateral 

meniscus. 
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• Word variants with punctuations such as dots and hyphens cannot be retrieved, 

e.g. M.R.I and cardio-thoracic. 

• Concept names and variants in the Metathesaurus sometimes are different from 

commonly used terms in clinical free text. 

• MetaMap does not handle spelling mistakes very well. 

MEDLEE 

MEDLEE, short for Medical Language Extraction and Encoding System, is a NLP system 

originally developed to extract clinical information from patient reports and store into a 

database for other programs to use (Friedman et al., 1994). It analyses input text both 

semantically and syntactically. It attempts to analyse the whole sentence as a start with 

additional analysis on segmented phrases if the first attempt failed (Friedman et al., 2008). 

MEDLEE turns input patient radiology report into structured data through four steps: pre-

processing, parsing, phrase recognition and encoding (Friedman et al., 2008). 

Pre-processing Unformatted and formatted information is separated and extracted from 

the input patient report. A lexicon is used to retrieve specialized expressions used in 

relevant sublanguages to ensure the accuracy of retrieved information. A sentence will 

be saved for further parsing process if it contains any word not included in the lexicon.  

Parsing Medical sublanguage expressions for the same concept may have quite different 

syntactic structures, but will normally share the same semantic structure. Therefore, the 

parser uses a grammar that focuses on semantic structures, but also includes some 

syntactic features. Variants that cannot match the lexicon but match predefined semantic 

grammar, will be sent for phrase recognition. However, if a sentence that its components 

match neither any lexicon term nor the semantic grammar, it will not be processed. 

Phrase recognition Sometimes a multi-word may occur in a discontinuous form, e.g. 

enlarged heart may be separated by other words and become heart appears to be 

enlarged. This component uses parsing output to compare with a multi-word phrase 

mapping database to identify these phrases. 

Encoding To keep consistency with its controlled vocabulary, retrieved information will 

then be compared to a synonym database to match controlled vocabulary terms for the 

final output. 

MEDLEE was evaluated on a set of randomly selected 230 radiology reports, focusing 

on four types of diseases: neoplasm, chronic obstructive pulmonary disease, acute 
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bacterial pneumonia and congestive heart failure. Three physicians were involved in this 

evaluation. They had also helped creating the gold standard. MEDLEE achieved an 

average precision of 87% and an average recall of 70% (Friedman et al., 1994). However, 

it is found that although MEDLEE has good performance in precision, its performance in 

recall is relatively lower than other tools (Barrows et al., 2000). 

MPLUS 

MPLUS is a probabilistic model based medical text process tool. Different from other 

rule-based tools, MPLUS uses a semantic model built on Bayesian Networks to enable 

the capability of inferring patterns from contexts as well as with predefined rules 

(Christensen et al., 2002). 

The semantic Bayesian Networks model used in MPLUS not only provides a semantic 

structure, but also works as a probabilistic inference engine. Unlike other NLP tools that 

perform semantic analysis and syntactic analysis separately, MPLUS integrates the 

semantic Bayesian Networks into its syntactic analysis process. In other words, the 

semantic analysis and syntactic analysis in MPLUS are interleaved and mutually 

constrained. Each recognised word-level phrase will be created an instance in the 

semantic Bayesian Networks model. These instances can also be united to match larger 

grammatical patterns. A probability value is also assigned to each model instance. 

Probability values of phrases are determined by its associated instances. Phrases are 

processed in the order of their probability. This process is mutually constrained 

syntactically and semantically.  If a phrase with correct grammar cannot be semantically 

interpreted, it will be rejected. Similarly, if a interpretable phrase has a low probability 

value, it is also very unlikely that it will be included in the final output (Christensen et 

al., 2002). 

MPLUS was evaluated on a set of 2,600 head CT (computerized tomography X-ray) scan 

reports, of which 600 were randomly selected to form the test set and the rest 2,000 

reports become the training set. The task is to classify these reports into positive and 

negative groups, of which positive means present of suspected diagnosis concepts. A gold 

standard is created by four certified physicians. An average recall of 88% and average 

precision of 86% is achieved in the gold standard. MPLUS achieved an average recall of 

87% and an average precision of 85%, which were both quite close to the gold standard 

performance (Fiszman et al., 2002). A pure rule-based and knowledge-based NLP system 

may be incomplete while applying it to a specific domain. The use of semantic Bayesian 
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Networks model allows MPLUS to process partially matched terms and terms that are 

not included in associated knowledge bases. 

cTAKES 

cTAKES, short for clinical Text Analysis and Knowledge Extraction System, is an open 

source NLP system designed to extract information from free-text clinical reports based  

on UIMA and OpenNLP (Savova et al., 2010). 

cTAKES processes input text using a module-based pipelined system structure. It divides 

input text into sentences using punctuations such as period, question mark, and 

exclamation mark. Tokenization uses a 2-step method: sentences are split into tokens 

using spaces and punctuations; relevant tokens are rejoined together to create specific 

types of tokens such as date, time, measurement, and personal titles. Tokens are then 

normalized to match the lexicon to improve the tolerance of term variants and therefore 

improve the recall performance in later NER stage. The dictionary used in the NER 

process is formed by a subset of UMLS and corresponding synonyms together with a pre-

defined list of terms. The NER process uses noun phrases identified by POS tagging 

process and matches them to the dictionary. The NER also implements the NegEx 

(Chapman et al., 2001a) algorithm to recognise negation patterns. 

cTAKES was evaluated with two different parameters: exact NER annotation and 

overlapping allowed NER annotation. With exact annotation, cTAKES achieved 80.1% 

in precision, 64.5% in recall and 71.5% in F-measure. With overlapped annotation 

allowed, it achieved 88.9% in precision, 76.7% in recall and 82.4% in F-measure. 

Although cTAKES has achieved reasonable performance, it can still be improved in 

many aspects: 

• To implement disambiguation ability into NER process. 

• To correctly resolve coordinated terms into multiple individual concepts. 

• To recognise relationship between recognised concepts. 

NegEx 

NegEx is an algorithm developed to identify negation indications (Chapman et al., 2001a), 

which is widely integrated into many other clinical NLP tools such as MetaMap (Aronson 

and Lang, 2010) and cTAKES (Savova et al., 2010). In clinical narratives, mention of a 

clinical finding term or its descriptions do not always indicate the presence of the actual 
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finding. In fact, many of those frequently explicitly mentioned or described findings are 

usually absent in the patient, known as ‘pertinent negatives’ (Chapman et al., 2001b). 

With low level of ambiguities in clinical sublanguages, NegEx assumes that occurrences 

of pertinent negatives in clinical text are limited to a limited number semantic types. And 

such occurrences have frequent and regular patterns. Therefore, NegEx is developed as a 

simple algorithm without sophisticated linguistic analysis. The algorithm uses two 

lexicon-based regular expressions to detect negations: 

PATTERN1: negation phrase + [ 0-5 words] + UMLS term 

PATTERN2: UMLS term + [ 0-5 words] + negation phrase 

The above two regular expressions use two different lexicons respectively, 23 negation 

phrases for PATTERN1 and 2 negation phrases for PATTERN2. Meanwhile, there is also a 

lexicon of 10 false negation triggers to remove ambiguous negations or double negatives, 

such as not rule out. 

NegEx was evaluated on 1000 sentences containing 1235 occurrences of UMLS terms. 

This test set can be divided equally into two groups: group 1 contains NegEx negation 

phrases and group does not. Both groups are annotated by physicians in advance as gold 

standard. A much simpler algorithm that uses a very limited lexicon (no, not, n’t, denied, 

denies, without and ruled out) is used as baseline method. The baseline method negates 

all UMLS terms between a negation phrase and the end of the sentence. 

On group 1, NegEx achieved a precision of 84.49% and recall of 82.41%, compared with 

the baseline performance of 68.42% in precision and 88.27% in recall. Neither NegEx 

nor the baseline algorithm works on group 2 as there is no NegEx phrases contained in 

those sentences. 

NegEx relies on the recognition of UMLS terms in text. In other words, NegEx does not 

work if no UMLS term is found in a sentence. Limitations in lexicons and regular 

expressions also affect its performance. NegEx cannot work on texts that do not contain 

negation phrases from pre-defined lexicons. The regular expression patterns limit only 

up to 5 intervening words can exist between the UMLS term and negation phrase, which 

has led to a decrease of its recall performance compared with the baseline method. 

2.4 Summary 

This chapter introduces some key concepts that are relevant to this research, including 

sublanguage and named entity recognition. We focused especially on their applications 
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in the clinical domain. Sublanguages have several characteristics that differentiate them 

from general languages. We also discussed substantial challenges to NLP applications in 

relevant sublanguage domains brought by these characteristics. 

Some state-of-the-art clinical named entity recognition systems are reviewed, focusing 

on annual i2b2 shared task challenges. We selected a few top performance systems and 

briefly discussed their methods and performances. 

With characteristics such as applicable semantic classification, controlled vocabulary, 

frequent co-occurrence patterns, contextual omissions, restricted abbreviations, knee 

MRI report narratives, which will be used for analysis in this project, is considered as a 

subpart of the clinical sublanguage. Therefore, it will also lead to corresponding 

difficulties. 

Regarding challenges caused by sublanguage characteristics, we addressed through the 

following aspects: 

• Semantic coverage of concepts in the reports was identified by applying MetaMap 

as an initial process that maps texts to UMLS, followed by classifications of these 

concepts by consulting with domain expert. 

• Co-occurrence patterns and frequent term variants were identified using 

FlexTerm that groups similar phrases, and also through manual annotation. 

• Meanwhile, manual annotation on part of the training set also helped reducing the 

disadvantage caused by the lack of annotated corpus.  

With regard to NLP related problems, we addressed from the following aspects: 

• Common NLP pre-processing steps, including tokenisation and segmentation, 

were performed using Stanford NLP 

• NER was performed using a combination of dictionary-based and pattern-based 

approaches. 

• Spelling mistakes were resolved by incorporating soft dictionary matching in 

dictionary-based NER using PathNER. 

Patterns compiled in Mixup language were used to identify implicit concepts, as well as 

help resolving negated concepts and ambiguities. 
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Chapter 3 Clinical knowledge representation 

In this chapter we provide a review of existing work related to formal knowledge 

representation, focusing specifically on ontologies as formal specification of domain 

knowledge commonly used to sharing and reuse such knowledge particularly in life 

sciences and clinical applications. We provide more details about a couple of knowledge 

resources of relevance to our own application, namely Unified Medical Language System 

(UMLS), Orchard Sports Injury Classification System (OSICS), Taxonomy for 

RehAbilitation of Knee conditions (TRAK) and Radiology Lexicon (RadLex). We also 

discussed some ontology related tools and applications to showcase use of ontology in 

the clinical domain. 

3.1 Development of knowledge representation 

To understand the real world, a human might need to go through the following steps to 

obtain enough information (Grenon, 2008): 

• Observing around. 

• Memorizing or making notes to help remember observations 

• Analyzing observations and trying to structure them 

• Experimenting with previous analysis results 

The step of memorizing observations is a type of knowledge representation of a human. 

Human can solve a problem by using its own relevant information of the domain 

consciously or unconsciously. However, for a computer to achieve a solution for a 

problem, it needs to understand the problem first and then compute with relevant 

information. For example, if a doctor was told to treat a patient, he/she would use relevant 

medical knowledge to find out what injury the patient has and how serious it is. Then the 

doctor will be able to diagnose the patient and provide appropriate treatment. For a 

computer, if it were only told to treat the patient, it would not be able to do anything 

without proper representation of the exact problem and relevant knowledge background 

of the domain. 

In order to enable a computer the ability of solving problems, it needs to go through a 

few more steps other than human actions as shown in Figure 3-1 (Poole and Mackworth, 

2010): 

• Represent the problem using a language that can be reasoned by a computer 

• Compute represented problem to generate relevant output 
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• Interpret generated output as a solution to the original problem 

 

Figure 3-1 Problem solving steps (Poole and Mackworth, 2010) 

 

Generally speaking, knowledge can be: 

• Facts: attributes of an object or a group of objects 

• Events: what, when, where, how 

• Actions 

• Meta-knowledge: rules of how to represent and apply knowledge 

Knowledge must be represented in a form that computers can access and understand. A 

good representation scheme is a prerequisite. It should be (Poole and Mackworth, 2010): 

• To cover every necessary detail aspect of the domain for problem solving 

• To provide as accurate as possible representation of problems 

• To represent with clear relationship between represented knowledge and original 

knowledge 

• To be maintainable when there will be any change to the original knowledge 

• To be efficient for computation 

There are several general knowledge representation methods: logical representations, 

production rules and semantic networks. 

Logical representation is a typical knowledge representation method and is the closest 

one to the format of natural language. Meanwhile, it has strict rules to allow 

communication with accuracy and no ambiguity. Its expressiveness also provides the 

ability to cover in-depth details. The higher the logic order is, the more expressive the 

logic representation is. However, it will also become more difficult to be reasoned (Gow, 

2009). 
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Production rules are set of condition-action and premise-conclusion pairs. Production 

rules are also called if-then rules. An obvious advantage of production rules is that each 

rule is an independent item, so it can be added, modified or deleted accordingly. Any rule 

can be triggered at any time if its condition is met despite of other rules. As there may be 

multiple rules being triggered, a confliction resolution mechanism must be defined in 

advance (Lewis, 2010). 

Semantic network is a type of graphical knowledge representations. It was first proposed 

by Quillian in 1969 as a hierarchical memory structure (Collins and Quillian, 1969). 

Semantic network is composed of nodes and connections, where nodes represent facts or 

concepts, and connections represent relations between nodes. The semantic network 

scheme has four fundamental components: lexical part, structural part, procedural part 

and semantic part. Lexical part decides what labels can be included in the representation 

to name nodes and connections. Structural part decides how those nodes are connected 

and what are those relations among them. Procedural part decides the access procedure 

to the semantic network. With definitions in this part, it will allow the creation of new 

nodes and connections, and the deletion of existed nodes and connections. End-users will 

also be able to derive answers to questions by following the procedure. Semantic part 

explains meanings underneath each node and connection (Bullinaria, 2005). 

Using semantic networks as knowledge representation scheme has some obvious 

advantages: 

• The ability to express the real world structure with its hierarchical structure and 

connections 

• The semantics part allows accurate interpretations of real word concepts. 

• Problems can be explicitly expressed. Therefore, they can be understood easily. 

3.2 Ontology 

The concept of ontology originated from the domain of philosophy dealing with 

existences. In the domain of information science, ontology was first mentioned by John 

McCarthy in the 1980s as a formalized general representation of a list of everything that 

exists (McCarthy, 1987). But it was Patrick Hayes who made the first ontology in his 

research of Naïve Physics (Hayes, 1983). In early 1990s, ontology became a standard 

component in knowledge systems (Neches et al., 1991). However, there is no standard 

definition of ontology. 
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Zúñiga (2001) proposed that a knowledge representation, which consists concepts for at 

least one specific domain and uses a specific formal language, can be considered as an 

ontology. Gruber defines an ontology as a group of formal concepts, relationships 

together with their definitions that forms knowledge of a domain (Liu and Özsu, 2009). 

Uschold et al. (1998) also provide a similar definition that the essentials of an ontology 

are a vocabulary of terms and relevant meaning. Concepts and relations in an ontology 

can be used as logical input and output for a knowledge system. Lightweight ontologies 

normally only have concepts and limited types of relationships. See Figure 3-2 for an 

example. Constraints could also be added into an ontology to put restrictions on 

relationships and interpretations (Kalibatiene and Vasilecas, 2011). 

 

Figure 3-2 Part of a light-weighted ontology with only is_a type relationship 

 

Ontology is also considered to be part of the Semantic Web, which is a computational 

meaningful form for Web content. Semantic Web is an extension of the existed Web, not 

a different version. It links relevant data together to enable machine understanding of 

linked information and relevance based search (Berners-Lee et al., 2001). 

As the development of ontology, the term ontology is now widely used in many 

knowledge related approaches. It is now can be referred to any hierarchically presented 

structure in a computer language format (Grenon, 2008). 

Ontologies can be constructed using many ontology design methods. However, as 

ontology can be count as some kind of software, it should also follows the IEEE Standard 
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1074-1997 guideline, which describes a general software development process 

(Fernandez-Lopez and Gomez-Perez, 2002; IEEE, 1998): 

• Project management activities: define project initiation and expected output, 

plan for the whole design processes, and set up monitoring and control methods. 

• Pre-development activities: study the domain where ontology will be used for, 

and review the possibility and feasibility applying the ontology. 

• Development activities: identify system requirements and carry out actual design 

activities 

• Post-development activities: apply the ontology with relevant knowledge 

system and identify possible future improvements 

• Integral activities: evaluate the system, compile documentations and training 

manuals. 

 

Figure 3-3 Skeletal ontology building method (Uschold et al., 1995) 

 

There are many ontology building methods. Most of them follow the skeletal method 

(Figure 3-3), which is designed to provide a fundamental method that can be expanded 

into some future comprehensive ontology building methods (Uschold et al., 1995). The 

skeletal method initiates with identifying purposes and expectations of building the 

ontology. A clear understanding of its purposes and expectations would help to 

distinguish what concepts and relations need to be extracted from the domain and to be 

included in the ontology. Existing ontologies could be referenced to avoid duplicated 

extraction works and provide a guidance of categories of concepts and relations that need 
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to be extracted. It will also be able to help determining representation format. The 

ontology will be evaluated based on predefined purposes and expectations. If it does not 

meet the requirements, it will need to go back to look into extraction and representation 

again for better performance. Once satisfied the requirements, the ontology will be 

presented using selected representation format, provided with relevant documentations. 

3.3 Available resources 

There exist a lot of available clinical knowledge representations, such as MeSH 

(Lipscomb, 2000), OSICS (Rae and Orchard, 2007), RadLex, etc. Many of these clinical 

representations are included and indexed in the Unified Medical Language System 

(UMLS) (Bodenreider, 2004). Here we discussed some of these resources that were 

considered or referenced in this research. 

UMLS 

UMLS, short for Unified Medical Language System, includes one of the most widely 

referenced biomedical controlled vocabularies repository (Bodenreider, 2004). It also 

comes with a group of tools. MetaMap, as mentioned earlier, is one of these tools. 

The repository is made up of three components: the Metathesaurus, the Semantic 

Network and the SPECIALIST Lexicon. The UMLS Metathesaurus is the key component 

that contains a large set of biomedical concepts. The Semantic Network includes 131 

semantic types, which categorize all those concepts in the Metathesaurus (UMLS, n.d.). 

The SPECIALIST Lexicon includes common English vocabulary and biomedical 

vocabulary with relevant variants. It provides necessary lexical information for the NLP 

system (UMLS, n.d.). 

The Metathesaurus is built from a large amount of health related thesauri, classification, 

code sets and various controlled vocabularies from different domains such as patient care, 

clinical research. With quarterly updates, it now covers over 150 vocabularies, such as 

NCBI taxonomy, Gene Ontology, MeSH, SNOMED CT and ICD-10-CM (UMLS, n.d.). 

For example, the NCBI taxonomy covers all names and classifications for all organisms 

from GenBank (Federhen, 2012). The SNOMED CT provides a set of standardized 

clinical representations (ihtsdo, 2014). 

The UMLS was evaluated by Friedlin and Overhage on a collection of 3,000 chest x-ray 

reports to find out whether UMLS can be used to fully represent concepts derived from 

clinical narratives (Friedlin and Overhage, 2011). Among 5,975 unique noun phrases, 
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UMLS recognised 5,787 of them, which accounts 97% of total. Of all unique noun 

phrases, there were 1,687 (28%) of them being fully mapped to the Metathesaurus while 

4,100 (69%) of them only being partially mapped. Apart from errors caused by MetaMap, 

the tool which was used to recognise and map terms, about 15% of all non-matched and 

partially matched phrases were because of missing relevant concepts in the 

Metathesaurus. The other major cause was that although some concepts were covered in 

the Metathesaurus, it was not represented properly to include necessary or commonly 

used synonyms. 

OSICS 

OSICS, short for Orchard Sports Injury Classification System, is a classification system 

developed for sports related injuries to support diagnosis and research. It was firstly 

developed in 1992 and the latest version is OSICS-10 (Rae and Orchard, 2007). OSICS-

10 provides a vocabulary of sports injury related terms, definitions and basic hierarchical 

structure. According to definitions of ontology motioned earlier in Section 3.2, OSICS-

10 can also be considered as a simple ontology.  

OSICS-10 is an improved version comparing to its predecessor OSICS-8. Version 8 was 

compiled using a 3-tier coding structure. In version 10, the coding structure was 

redesigned to become 4-tier to describe further detail for injuries, see Figure 3-4. The 

first tier indicates the anatomical site and the second tier indicates pathology. The last 

two characters provide more detailed classifications based on information indicated from 

the first two characters. In this coding system, ‘X’ is used as non-specific code. ‘X’ has 

different meanings when it was used at different tier. It means location unspecified at tier 

1 and injury unspecified at tier 2. For tier 3 and tier 4, it means no further classification 

can be identified. 

 

Figure 3-4 Example of the 4-tier coding structure used in OSICS-10 (Rae and Orchard, 2007) 
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For evaluation, Hammond et al. (2009) collected 335 diagnoses from professional sports 

unions and coded them using OSICS-10. All diagnoses were able to be coded using 

OSICS-10 coding structure, and in total there were 352 codes generated. The system uses 

a best-fit coding discipline, where it uses the highest tier of coding if possible. Although 

OSICS-10 managed to code all diagnoses, the coding system was not perfect enough. 

Among all coded diagnoses in tier 2, 49.2% of them could have be given a more specific 

tier 3 or tier 4 code instead due to the lack of specific classifications in the coding system. 

TRAK: Taxonomy for RehAbilitation of Knee conditions 

TRAK (K. Button et al., 2013), short for Taxonomy for RehAbilitation of Knee conditions, 

is an ontology developed for modelling information related with rehabilitation of knee 

conditions, as well as providing a framework for data collection that supports 

epidemiologic studies and clinical practices. This information includes classification of 

knee conditions, detailed knowledge about knee anatomy and an array of healthcare 

activities that can be used to diagnose and treat knee conditions (see Figure 3-5). TRAK 

was developed using OBO ontology language following the design principles 

recommended by the Open Biomedical Ontologies (OBO) (Smith et al., 2007). 

The original TRAK ontology consisted of 1,292 unique concepts and 518 relationship 

instances. Extra information provided with these concepts includes their preferred names, 

definitions, synonyms, unique identifiers and cross-references with external knowledge 

resources. TRAK ontology re-uses and cross-references with existing knowledge 

resources in its development process to keep consistency and avoid duplicated work. 

These external resources include UMLS Metathesaurus, Foundational Model of Anatomy 

and Orchard Sports Injury Classification System, etc. 

Prior to the development of TRAK ontology, systematic literature review (K. Button et 

al., 2012) and questionnaire survey are integrated together for knee rehabilitation data 

collection. Collected terminologies are compared with UMLS for curation and 

standardisation, as well as obtaining extra information such as concept identifiers, 

synonyms, definitions and hierarchical structures. Such information, together with 

professional knowledge from domain experts, help with the definition of initial ontology 

structure and classification of rehabilitation concepts. 
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Figure 3-5 Upper-level hierarchy of TRAK with definitions of upper-level classes imported from the 
cross-referenced sources 

 

The ontology also expands to include further information about knee conditions, 

diagnosis and treatment activities and anatomical locations for the purpose of supporting 

consistent and unambiguous data collection. 

Knee conditions OSICS-10 is referenced and partially extracted to support systematic 

knee conditions classification. Each knee condition concept in OSICS-10 consists of two 

parts: the condition and affected anatomical location. These two-part concepts are 

separated and incorporated into the ontology under two semantic types, and also cross-

referenced with UMLS for consistency. Most of the condition concepts are classified as 

injury or disease, which are classes re-used from the Ontology for General Medical 

Science (Robinson et al., 2008). Several additional categories from other existing 

resources (Grenon et al., 2004; Herre, 2010; Scheuermann et al., 2009) are also included 

for further subdivision of these concepts. 
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Diagnosis and treatment activities Concepts of diagnosis and treatment activities are 

obtained mostly by keyword-based searching from the UMLS. These keywords are 

proposed by domain experts who has professional knowledge. A few knee condition self-

assessment questionnaires (Bellamy et al., 1988; Roos et al., 1998; Tegner and Lysholm, 

1985) are also referenced to cover activities that cannot be found in the UMLS. 

Anatomical locations Anatomical concepts are primarily from two sources: concepts 

derived from OSICS-10 and the Foundational Model of Anatomy (FMA) (Rosse and 

Mejino, 2003). Concepts derived from OSICS-10 are those knee anatomical sites that 

affected by injuries and diseases. To achieve the generalisability, FMA is referenced and 

partially re-used. The structure of extracted FMA portion is also preserved. 

With the vocabulary and taxonomy provide in TRAK, it can be used to support 

information retrieval system in the domain of knee injuries and rehabilitations. The 

largely cross-references terminologies and preserved general structure also enables it to 

be extensible to support other tasks in the domain. For example, the knowledge about 

knee anatomy, which is cross–referenced to a total of 205 concepts in the Foundational 

Model of Anatomy (FMA) (Rosse and Mejino, 2003), is directly applicable to 

interpretation of reports describing knee MRI scans. 

RadLex 

RadLex (Langlotz, 2006) is a lexicon of radiology terminologies developed by the 

Radiological Society of North America (RSNA). RadLex is available from BioPortal 

(Whetzel et al., 2011). The original intentions of developing RadLex is to solve 

limitations coding in indexing and retrieving online image-based teaching materials, 

because of no available complete set of imaging terminologies from other resources at 

that time. These limitations are primarily caused by lack of details and human readable 

coding system. Therefore, RadLex is designed to provide a standard lexicon for all 

radiology-related information. 

Although RadLex focuses on providing a standard lexicon, it has adopted a simple 

subsumption hierarchy, making it a basic ontology. There are 14 braches of different 

types of terms such as property, radlex descriptor, anatomical entity and clinical finding, 

etc. RadLex now contains34,446 active classes and a total of 58,065 terms. 

The coverage of RadLex has been evaluated by various researchers. Hong et al. reviewed 

RadLex with 2,509 unique terms from 70 radiology reporting templates, and found an 

overall match rate of 67%, which consists 41% exact match and 26% partial match (Hong 
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et al., 2012). Woods and Eng (2013) also evaluated the coverage of RadLex in the domain 

of chest radiography reports. Among 339 unique terms, RadLex achieved an overall 

match rate of 62%. Woods and Eng’s research also revealed a significant shortcoming of 

RadLex on lack of inclusion of many frequently mentioned medical procedures. 

3.4 Use of ontologies 

Ontologies are developed to model, share and reuse knowledge within a specific domain. 

Many ontologies, relevant tools and ontology-based applications have been developed 

for various domains, including clinical, linguistic, chemical, etc. Stevens, Goble and 

Bechhofer classified usages of ontologies into three types, which are domain-oriented, 

task-oriented and generic uses. These usages are not completely isolated from each other. 

Usually, ontologies and ontology-based applications would have mixed usages of these 

three types. 

Ontology repositories 

There exist two major online ontology repositories: the NCBO BioPortal (Whetzel et al., 

2011) and the EBI Ontology Lookup Service (OLS) (Côté et al., 2006). 

NCBO BioPortal 

NCBO BioPortal is a web service that provides online access to various biomedical 

ontologies represented using popular ontology languages such as OWL and OBO. After 

years of improvement, BioPortal now contains 446 ontologies from various domains, 

including health, human and anatomy as the top 3 sources (NCBO, 2013). It provides 

users convenient accesses to ontologies for term information retrieval and the capability 

to be implemented into other software applications through its public APIs (Whetzel et 

al., 2011). The BioPortal web services and its APIs are both developed based on RESTful 

Web services. Information can be retrieved includes the ontology metadata, all terms 

from an ontology, detail information of each term and cross mapping among all available 

ontologies on BioPortal. 

Ontology Lookup Service 

The OLS was one of the earliest public online ontology browsers. It now contains 148 

ontologies (EMBL-EBI, 2016). There are overlapped coverage of ontologies compared 

with BioPortal. However, some ontologies are only available at one of the two 

repositories. OLS also provides functions as ontology querying and visualisation, as well 

as a RESTful API based that allows retrieval of meta-data from ontologies and terms. 
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Ontology tools 

There are many tools available for developing, editing and querying ontologies, such as 

Protégé (Stanford Centre for Biomedical Informatics Research, n.d.), OBO-Edit (Day-

Richter et al., 2007) and OntoCAT (Adamusiak et al., 2011). 

Protégé 

Protégé is an open-source general purpose ontology editor developed at the Stanford 

University. It also provides a framework that can be used to build ontology-based 

applications. Benefit from the implementation of the OWL API (Horridge and Bechhofer, 

2011), Protégé supports a wide range of ontology languages such as OWL, OWL/XML, 

RDF/XML and OBO Flat file format. 

OBO-Edit 

Compared to Protégé as a general purpose ontology editor, OBO-Edit is designed 

specifically for biology related uses. It has limited number of supported formats with 

optimised support for its OBO format. With features of human-readable and more concise 

structure compared with XML, the OBO format is recommended by the Gene Ontology 

Consortium (The Gene Ontology Consortium, 2015). 

OntoCAT  

OntoCAT (Adamusiak et al., 2011) is a software package that provides ontology search 

using various programming languages such as Java, R and RESTful API. It is developed 

for access and search ontologies in OWL and OBO format from various locations 

including BioPortal, OLS and local storages. OntoCAT allows searching for terms, 

synonyms, definitions and annotations within an ontology. It also allows hierarchy based 

retrieval to obtain child and parent terms, relationships and paths towards the root term. 

Ontology-driven applications 

Ontologies are often integrated for tasks in the clinical domain, such as concept extraction, 

data integration, document classification and clinical decision support system, etc. Here 

we selected only a few recent ontology-based applications only to showcase some typical 

uses. 

Rahimi et al. (2014) developed a Diabetes Mellitus Ontology (DMO) and a corresponding 

ontology-based algorithm to diagnose and manage patients with diabetes. The DMO 

ontology provides an in-depth well covered knowledge base to represent clinical data 
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extracted from electronic health records, and provide support for making clinical 

decisions about diabetes care, as well as support for researches about diabetes. The 

algorithm is based on ontology queries using Semantic Protocol and RDF Query 

Language (SPARQL). Given achieved sensitivity of 100% and specificity of 99.88% in 

identify reason for visit, 96.55% and 98.97% in medication, 15.6% and 98.92% in 

pathology, the algorithm has been proved as sufficient to support clinical decisions. 

Manzoor et al. (2015) also built a clinical decision support system based on an automatic 

constructed ontology to predict high-risk pregnant woman.  

Mate et al. (2015) design an ontology-based approach for data integration between 

clinical and research. With this approach, it addresses difficulties in researchable reuse 

terms from electronic medical records (EMR) that are not code and linked to 

terminologies. Three ontologies are created for the whole data integration process: 

clinical source ontology, mapping process ontology and research target ontology. Unlike 

other approaches, an ontology is used to store semantic mapping rules and later to be 

automatically converted into SQL queries to facilitate the processes of database-ontology 

conversion. 

Osborne et al. (2009) utilise the Disease Ontology (Schriml et al., 2012) for human 

genome annotations. The annotation is performed on extracted gene-disease relationships 

from the GeneRIF (Jimeno-Yepes et al., 2013) database. The annotation result is 

evaluated against the Homayouni gene collection (Homayouni et al., 2005) and compared 

with result from the Online Mendelian Inheritance in Man (OMIM) (Rashbass, 1995), 

which is an online gene catalog. The ontology-based approach achieved a precision of 

97% and recall of 91% compared with 98% in precision and 22% in recall for OMIM. 

3.5 Summary 

This chapter introduces the concept of knowledge representation and its development. 

We also introduced ontology, which is a sub-concept of knowledge representation. 

Among all available clinical knowledge representations, we selected and discussed a few 

that are integrated or referenced in this research, focusing on UMLS, OSICS, TRAK and 

RadLex. 

We also reviewed some contemporary ontology-related tools and applications to 

showcase how ontologies can be stored, edited and integrated. 

This thesis is involved with many clinical knowledge representations, including several 

ontologies. The TRAK ontology was particularly studied and expanded in this project. 
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For the expansion of the TRAK ontology, OSICS, RadLex and UMLS are primary 

knowledge sources that we referenced for the inclusion of possible terms and hierarchical 

structure. 

These clinical knowledge representations were used on the following aspects: 

• UMLS and OSICS were used as dictionaries to recognise terms from knee MRI 

report, so that we could identify which terms are not included in the original 

TRAK ontology. Semantic relationships also obtained. 

• We also manually extracted terminologies from RadLex and MEDCIN (a UMLS 

subset) to extend the coverage of possible inclusions from our dictionary-based 

approach. The hierarchical structure of RadLex descriptor branch was also 

incorporated into the expanded TRAK as complementary inclusions on 

descriptors in addition to UMLS. 

• The expanded TRAK ontology itself also acted as a dictionary to drive the 

information extraction process. It also provided semantic relationships for 

ambiguity resolutions. 
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Chapter 4 Annotation and analysis of MRI reports 

In this chapter we describe a corpus of text documents used for training and testing. We 

describe the type of documents considered, the provenance of data and basic statistical 

properties of the corpus. To illustrate its semantic coverage, we report the distribution of 

concepts and semantic types mentioned in the corpus. These mentions were extracted 

automatically from the corpus using the Unified Medical Language System as a reference 

point. We proceed by describing the linguistic pre-processing performed on the corpus. 

We finish the chapter by describing manual annotation of the corpus as part of preparing 

it for training and testing purposes. 

4.1 Data source 

In this section we motivate the use of MRI reports in our system. Magnetic resonance 

imaging (MRI) is a technique that uses a strong magnetic field to visualise organs and 

structures of internal body by detecting radio wave energy pulses emitted by tissues 

(WebMD, 2014). MRI may reveal problems that cannot be seen with other imaging 

methods such as X-ray, ultrasound or CT. For example, compared with X-ray, MRI 

provides better results on soft tissue visualisation. Therefore, MRI is sometimes used to 

provide more details of a suspect problem seen on other imaging results. Meanwhile, 

MRI could also produce three dimensional images so that tissues can be viewed from 

different angles (Kwong and Yucel, 2003). 

For knee pathology diagnosis, together with patient medical history and other 

examinations, MRI could become an effective assistant tool that provides increased 

accuracy in diagnosis and guiding treatments (Grover, 2012; Konan et al., 2009; Pompan, 

2012; Wenham et al., 2014; Yan et al., 2011). For example, meniscus tear is a common 

type of knee injury with 22.4% prevalence among all soft tissue injuries for patients 

attending a trauma department (Clayton and Court-Brown, 2008). With assistance of MRI, 

the accuracy of individual test based meniscus diagnosis can be increased to 96% from 

74% previously without MRI (Konan et al., 2009). In a previous study of meniscus tear 

diagnosis (Yan et al., 2011), comparison result of improved diagnostic performances in 

Table 4-1 shows that combining MRI with patient medical history and other examinations 

brings higher accuracy, sensitivity and negative predictive value among all three 

independent clinical diagnostic factors (giving away, locking and McMurray’s test) for 

meniscus tear diagnosis, see Table 4-1. With this study, it proves that MRI should be 

considered as a recommended diagnosis procedure for knee injuries. 
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Table 4-1 Comparison of diagnostic values for meniscus tear with and without MRI (Yan et al., 2011) 

Diagnosis	factors	 Accuracy	 Sensitivity	 Specificity	 PPV*	 NPV*	
Giving	way+	 49.2%	

88.3%	(MRI)	
43.5%	
95.7%	(MRI)	

84%	
74.2%	(MRI)	

94.4%	
87.5%	(MRI)	

19.4%	
90.2%	(MRI)	

Locking+	 60.9%	
89.9	(MRI)	

55.2%	
97.4	(MRI)	

96%	
75.8%	(MRI)	

98.8%	
88.4%	(MRI)	

25.8%	
94%	(MRI)	

McMurray’s	test+	 76%	
89.4%	(MRI)	

75.8%	
97.4	(MRI)	

76.9%	
74.2%	(MRI)	

95.1%	
87.7%	(MRI)	

35.1%	
93.9%	(MRI)	

* PPV = Positive predictive value, NPV = Negative predictive value 
+ Giving way, lock and McMurray’s test are three key factors that helps to diagnose meniscal tear 

 

Another recent research has also highlighted the importance of MRI in symptomatic early 

knee osteoarthritis diagnosis and treatment planning. MRI will be recommended to the 

patient if it has some symptoms from clinical examinations but has a normal X-ray result. 

The MRI report will then be used as an evidence to determine whether the patient needs 

surgical or nonsurgical treatment. MRI could also greatly decrease the need for costly 

and invasive arthroscopy diagnosis (Luyten et al., 2012; Wenham et al., 2014). 

Clinical radiology images, including MRI, are usually accompanied with corresponding 

reports, which provide professional interpretations of images. These reports also relate 

patient symptoms and images together to provide suggested diagnosis (Royal College of 

Radiologists, 2006).  

For research purposes, MRI images and reports are also important supporting evidences 

for knee pathology epidemiologic studies (Guermazi et al., 2012; Roemer et al., 2011). 

Particularly in the longitudinal studies of knee osteoarthritis, MRI has proved its 

importance that it could identify early lesions, which are not shown on other radiographic 

reports and are believed to be indicative of subsequent osteoarthritis development (Javaid 

et al., 2010; Pessis et al., 2003). 

However, in recent studies, it is quite usual to have false findings due to low statistical 

power, bias, number of studies on the same question and the ratio of true to no 

relationships among probed relationships (Ioannidis, 2005). One major cause underneath 

these concerns is the low sample size of studies, although the relationship is not simple 

or proportional. Normally large scale studies also require more funding and personnel 

resources (K. S. Button et al., 2013). Therefore, it is not surprising to have size limited 

(hundreds normally or even dozens in rare cases) epidemiologic studies due to the 

complexity and cost of manual interpretation of medical notes. Large datasets could be 

analysed within a short time using computers. Therefore, if the interpretation process of 
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MRI reports could be automated, it would be able to eliminate the obstacle of sample size 

limitation in relevant studies those require manual annotation of complex data such as 

images. 

In previous studies, it has been proved that clinical narratives such as pathology and 

radiology reports could provide valuable diagnostic information (Mohanty et al., 2007). 

It has also been proved that NLP approaches could be applied to those narratives to extract 

structured information in a recent cancer-related research (Spasić et al., 2014). This 

means that it is in principle feasible to automate interpretation of clinical narratives such 

as those found in imaging reports. 

4.2 Data provenance 

A dataset, which consists of 1,468 MRI scan reports, was obtained from the Cardiff and 

Vale University Health Board (C&V UHB). During a period of 11 years and 5 months 

from January 2001 to May 2012, there were 6,382 individual patients visited the Acute 

Knee Screening Service at the Emergency Unit of the Cardiff and Vale University Health 

Board (C&V UHB). 1,657 of these patients were referred to take an MRI scan. A 

radiology report was provided by a radiologist from a group of five following each MRI 

scan. Each report includes a professional interpretation of its MRI scan image result 

together with previous clinical assessment if applicable. These reports were stored 

securely in a C&V UHB managed database, which was originally designed for service 

evaluation and auditing purposes. Not all of those 1,657 patients who were referred to 

take an MRI scan have actually attended. Therefore, only a total of 1,468 MRI reports 

were identified and extracted from the database. These 1,468 records formed the dataset 

used in this study. All these reports were made anonymised prior to their release, i.e. any 

information that can identify a patient or radiologist was removed from these reports. The 

dataset was transferred using an encrypted memory stick. All devices that contain these 

records were stored securely in locked rooms. To carry out research using these reports, 

we have obtained ethical approval from the South East Wales Research Ethics Committee, 

reference number 10/MRE09/29. 

The Radiological Society of North America (RSNA) has created a library of clear and 

consistent report templates to improve reporting practices and help radiologist to provide 

high-quality radiology reports more efficiently. It also provides a template for knee MRI 

reports, including the following sections: procedure, clinical information, comparison, 

findings and impression (Radiological Society of North America, 2012). However, 
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structures from reports that we have obtained do not match this template. See Textbox 4-

1 for a sample report. 

 

Textbox 4-1 An example of MRI report structure 

 

A typical MRI report from our dataset consists of three sections: history, latest scan result 

and conclusion. These sections are usually indicated using upper case phrases, such as 

HISTORY, MRI RIGHT/LEFT KNEE, INDICATION, FINDINGS and CONCLUSION. 

The history section describes previous diagnosis record. The latest scan result section 

usually starts with MRI RT/RIGHT KNEE or MRI LT/LEFT KNEE, containing the actual 

description of the corresponding knee that was scanned. The CONCLUSION section 

provides summarized description based on previous diagnosis record and latest scan 

result. History and conclusion parts are not necessarily included in every report.  

4.3 Statistical properties 

The dataset consists of 1,468 individual MRI reports. The size of the overall dataset is 

1,002KB. The dataset has 13,991 sentences, of which in total 178,931 tokens. Among 

those tokens, there are 3,277 distinct tokens and 2,681 distinct stems. An average size of 

an individual MRI report is 0.68KB(±0.40KB) with an average of 9.53(±5.13) sentences 

and 110.81(±64.60) tokens. The overall dataset was separated into a training set and a 

test set. The test set was annotated manually by a domain expert to create a gold standard. 

As this task required specialised expertise and considerable manual effort, which was not 

readily available, we randomly selected only 100 MRI reports from the whole dataset. 

Documents selected for the test set were then removed from the dataset and were not 

considered while building the system. The test set was to be used for system evaluation 

at later stage so it was kept unseen. After removing the 100 documents selected to become 

HISTORY Twisting injury, ACL rupture and medial meniscal tear 
MRI RT KNEE There is some oedema within the ACL but the fibres are intact 
and this would represent sprain or partial tear. The PCL is buckled but 
it is intact. Both menisci are intact. Normal collateral ligaments. There 
is a small amount of soft tissue oedema just posterior to the proximal MCL 
insertion. It is probalbly due to direct trauma. There is no evidence of 
a meniscal cyst. There is a small popliteal cyst. The popliteus tendon and 
posterolateral corner are intact. Normal articular cartilage and extensor 
tendons. 
CONCLUSION ACL sprain/partial tear. Both menisci are intact. Soft tissue 
oedema from direct trauma posterior to the proximal MCL insertion. The 
collateral ligaments are intact. 
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the test set, the remaining 1,368 reports formed the training set for building the system. 

Table 4-2 shows some statistics of the training set. 

Table 4-2 Training set statistics 

 Overall	 Average	 Standard	Deviation	
Sentences	 13,051	 9.54	 5.09	
Tokens	 166,824	 121,948	 69.72	
Distinct	Tokens	 3,188	 -	 -	
Distinct	Stems	 2,611	 -	 -	
Size	(KB)	 934	 0.68	 0.41	

 

As there is no existing annotated corpus in this domain, to achieve higher efficiency in 

system development, a subset of 100 documents was also randomly selected from the 

training set to form an active development set. This development set will be intensively 

used at later stage for manual annotation and performance evaluation during the 

development process. 

4.4 Semantic coverage 

To figure out what information was included in these reports, we started with term 

identification. We considered both UMLS and RadLex as external resources for this 

process. However, the result from a previous research in which Wang and Vall (2011) 

compared coverages of RadLex and UMLS on radiology reports, shows that UMLS has 

much better coverage than RadLex on radiology reports. They were both applied on a set 

of de-identified radiology reports that contain 176,091 noun phrases. Only 2.32% of 

phrases can be exactly mapped to RadLex, and only 50.53% can be partially mapped. On 

the contrary, 10.40% of phrases can be exactly mapped to UMLS and 85.95% can be 

partially mapped. Meanwhile, the vast majority (68%) of existing TRAK concepts were 

originally cross–referenced to the UMLS in an attempt to standardise the TRAK 

terminology and facilitate its integration with other terminological sources (Button et al. 

2013). During the initial development of TRAK, the UMLS was searched collaboratively 

by a physiotherapist (who was both practitioner and researcher) and an informatician to 

obtain concept identifiers, synonyms and definitions, where such information was 

available. Therefore, we decided to use UMLS instead of RadLex to search for potential 

terms to be included into TRAK for its better coverage on radiology reports and to keep 

consistency with the original development of TRAK. MetaMap is a software tool for 

recognizing mentions of the UMLS concepts in text (Aronson and Lang, 2010). We 

applied MetaMap to the training set that consists of 1,368 MRI reports, and obtained 
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Concept Unique Identifiers, preferred concept names and semantic types from the 

candidate output. See Textbox 4-2 for a sample output.  

 

Textbox 4-2 An example of MetaMap candidates output 

 

 

Figure 4-1 MetaMap output saved in database 

 

Semantic types from the MetaMap output provide a consistent categorization of all 

UMLS concepts. Among all 239,839 candidates suggested in MetaMap output shown in 

Figure 4-1, there were a total of 121 different semantic types and combinations. Using 

Pareto principle (i.e. 80:20 rule) as a guideline, we assumed that most observations made 

by radiologist fell into top 20% frequently occurred semantic types (Clauset et al., 2009), 

see Figure 4-2. Table 4-3 lists out top 20% frequently occurred semantic types. 

Furthermore, these top 20% semantic types could be classified into 6 categories: medical 

condition, condition extent, body part, tissue, functional mechanism, and spatial qualifier 

(Table 4-4).  

Candidate: 
  Score: -861 
  Concept Id: C0022742 
  Concept Name: Knee 
  Preferred Name: Knee 
  Matched Words: [knee] 
  Semantic Types: [bpoc] 
  MatchMap: [[[2, 2], [1, 1], 0]] 
  MatchMap alt. repr.: [concept start: 2, concept end: 2] 
  is Head?: true 
  is Overmatch?: false 
  Sources: [FMA, HL7V2.5, LCH, UWDA, AOD, CHV, CSP, SNMI, SNOMEDCT] 
  Positional Info: [(9, 4)] 
  Pruning Status: 0 
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Figure 4-2 Semantic types distribution by frequency 

 

Table 4-3 Top 20% frequently occurred semantic types 

Semantic	Types	 Frequency	

Body	Part,	Organ,	or	Organ	Component	 43795	
Spatial	Concept	 24843	
Qualitative	Concept	 19659	
Quantitative	Concept	 13808	
Injury	or	Poisoning	 12111	
Functional	Concept	 11191	
Intellectual	Product	 9116	
Body	Location	or	Region	 8625	
Tissue	 8535	
Idea	or	Concept	 8216	
Body	Substance	 8033	
Finding	 7855	
Body	Space	or	Junction	 7181	
Medical	Device	 4209	
Diagnostic	Procedure	 3648	
Disease	or	Syndrome	 3482	
Bacterium	 3098	
Body	System	 3003	
Pathologic	Function	 2995	
Eukaryote	 2504	
Gene	or	Genome	 2040	
Clinical	Attribute	 1924	
Organism	Attribute	 1748	
Laboratory	Procedure	 1689	

 

Based on the semantic types classification above, we defined an information extraction 

template that consists of the following slots: finding, finding qualifier, negation, certainty, 

anatomy, and anatomy qualifier. Medical condition corresponds to what we call finding 

slot. Condition extent was split into finding qualifier, negation and certainty. Body part 
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corresponds to anatomy slot. Tissue, functional qualifier and spatial qualifier were 

merged into anatomy qualifier. 

Table 4-4 Classification of semantic types 

Classification	 Definition	 Example	

Medical	condition	 Injury,	disease	or	symptom.	 loss,	 tear,	 bruising,	
oedema	

Condition	extent	 The	extent	of	a	medical	condition.	 large,	 early,	 possible,	 not	
found	

Body	part	 An	 anatomical	 entity	 (body	 part)	 affected	 by	
the	medical	condition.	

femoral	condyle	

Tissue	 Specific	tissue	of	the	body	part	affected	by	the	
medical	condition.	

cartilage,	bone	marrow	

Functional	
qualifier	

Further	specifies	the	body	part	in	terms	of	its	
functionality.	

weight	 bearing	 surface,	
extensor	mechanism	

Spatial	qualifier	 Further	specifies	the	body	part	of	the	medical	
condition.	

posterior	 horn,	 centre,	
distal	third	

4.5 Annotation 

For the purpose of system development and evaluation, the test set and a limited subset 

of the training set were annotated manually with tags corresponding to slots and 

relationships from the predefined template. 

The test set was annotated and kept unseen from the system designer to ensure that the 

system was designed unbiased. The annotated test set was used to create a golden 

standard for system evaluation. The annotated training subset of 100 documents was used 

to test the system during development and meanwhile to provide manually annotated 

terms for ontology expansion. 

Tag set 

Based on the distribution of top 20% of semantic types in the corpus (see Table 4-3), we 

have chosen a set of six tags, which are described in Table 4-4. In essence, we grouped 

related semantic types into a general category. For example, concepts from semantic 

types such as Finding, Injury or Poisoning, Disease or Syndrome, Pathologic Function, 

etc. are covered by the finding tag. Similarly, Body Part, Organ, or Organ Component, 

Body Location or Region, Body Space or Junction, etc. represent anatomical sites and as 

such are simply annotated using the anatomy tag. 

We introduced a certainty tag to annotate the confidence with which the radiologist 

diagnosed a given finding. The negation tag is used to explicitly annotate negative 

findings. We also introduced two relationship tags: applies_to and observed_in. 



 46 

observed_in connects finding to anatomy. And applies_to is used on the following 

relation pairs: 

• finding_qualifier - finding 

• anatomy_qualifier - anatomy 

• certainty - finding 

• negation - finding  

Table 4-5 Semantic type classifications to annotation tags conversion interpretation and examples 

Tag	 Interpretation	 Example	
finding	 Clinical	 manifestations	 observed	

by	a	radiologist.	
intact,	lesion,	cyst,	tear	

finding	qualifier	 Property	of	a	finding.	 partial,	complex,	thinning	
anatomy	 Anatomical	entity	affected	by	the	

given	finding.	
lateral	meniscus,	ACL,	bone	marrow	

anatomy	qualifier	 Further	anatomical	localisation.	 posterior,	inferior,	posterolateral	
certainty	 Certainty	with	which	a	radiologist	

diagnosed	the	given	finding.	
seen,	appear,	evidence	

negation	 Indication	of	a	negative	finding.	 no,	not,	without	

Guidelines 

Given the above tag set, the annotation process was carried out under the following 

guidelines: 

• A phrase that describes a clinical finding (e.g. injury, disease or symptom) will be 

tagged as finding. 

• If there is any phrase that further specifies a finding, it will be tagged as its 

finding_qualifier, and will be connected using tag applies_to. 

• A finding tag can be linked with multiple finding_qualifier tags. 

• An anatomical site directly affected by a given finding will be tagged as anatomy, 

and the finding will be connected to the anatomy using tag observed_in. 

• A finding tag can be linked with multiple anatomy tags. 

• If there is any further specification that describes the anatomy, it will be tagged 

as anatomy_qualifier and will be connected using tag applies_to. 

• An anatomy tag can be linked with multiple anatomy_qualifier tags. 

• Any phrase that describes the radiologist's certainty in diagnosing the given 

finding will be tagged as certainty. 

• A finding tag can be linked with multiple certainty tags.  

• Any phrase that indicates that a given finding is negative will be tagged as 

negation. The absence of a negation tag indicates that the finding is positive. 
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• A finding tag can be linked with at most one negation tag. 

 

Figure 4-3 An example of annotated report featuring the use of different tags and relationships 

 

Figure 4-3 provides an example of annotated report. Manual annotation was performed 

using BRAT, a web-based annotation tool (Stenetorp et al., 2012). It provides a highly 

intuitive graphical annotation interface. New annotation can be added by double-clicking 

on a word or drag-selecting a phrase. Meanwhile, relationship instances can be added by 

dragging one annotation onto another. The back end is also highly configurable with 

functions such as customized visualizing scheme, external search. 

MetaMap performance 

We also evaluated the performance of MetaMap. We applied MetaMap to the 

development set and compared its output with corresponding annotations from the two 

annotators respectively, see Table 4-6. The performance evaluation is based on exact 

match, where partial match in a phrase does not count as correct extraction. The precision 

and recall scores of MetaMap performances on development set indicates more than 30% 

of recognised terms are incorrect and less than 60% terms have been recognised. 

Table 4-6 MetaMap performances on development set (Exact match) 

 Precision	 Recall	

Annotator	A	 0.665	 0.562	
Annotator	B	 0.69	 0.565	

 

Gold standard 

The main purpose of creating a gold standard was to test the performance of the system 

on unseen data. In order to create a gold standard, the test dataset was annotated manually 

by two independent annotators, i.e. the student and supervisor, based on their expertise 

gained during the development of the TRAK ontology. 
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Fleiss’ Kappa coefficient (Fleiss, 1971) was used to measure the inter-annotator 

agreement to show the reliability of the annotation work (Artstein and Poesio, 2008). 

Fleiss’ Kappa can be calculated using the following equation: 

𝒦 =
𝐴> − 𝐴@
1 − 𝐴@

 

𝐴>  represents observed agreement and 𝐴@  represents expected chance agreement. The 

observed agreement is the percentage of annotations that both annotators agree. The 

expected chance agreement is calculated on the assumption that random assignment of 

categories to items, by anyone of the two independent annotators, is governed by the 

distribution of items among categories in the actual world (Artstein and Poesio, 2008). 

The Fleiss’ Kappa for annotation on the development set was calculated using an online 

tool (Geertzen, 2012). The calculated results were the observed agreement 𝐴> = 0.87 

and the expected chance agreement 𝐴@ = 0.26. Therefore, Fleiss’ Kappa coefficient was 

calculated to be 𝒦 = 0.825 . Following the guidance of Fleiss’ Kappa value 

interpretation (Landis and Koch, 1977), 𝒦 = 0.825 indicates almost perfect agreement, 

see Table 4-7. Figure 4-4 also provides a marginal percentage distribution of tags used 

in annotation, which indicates the frequency of using each tag for each annotator. Such 

inter-annotator agreement shows that it was a reliable annotation. 

Table 4-7 Fleiss' Kappa coefficient value interpretation (Landis and Koch, 1977) 

𝓚 Interpretation	
<	0	 Poor	agreement	

0.01	-	0.20	 Slight	agreement	
0.21	-	0.40	 Fair	agreement	
0.41	-	0.60	 Moderate	agreement	
0.61	-	0.80	 Substantial	agreement	
0.81	-	1.00	 Almost	perfect	agreement	

 

A gold standard was created by the third annotator, a clinician with a specialism in 

treating knee conditions, who independently resolved the inter–annotator disagreements, 

ensured the consistency of annotations and mapped individual annotations of text spans 

to the corresponding concepts in the TRAK ontology. Gold standard annotations were 

converted to filled IE templates represented as JSON objects in order to support their 

comparison to system output during evaluation. Figure 4-4 shows the distribution 

percentage of annotation tags used in the development set and the gold standard. 

Distributions of tags used by the two annotators in the development set are similar with 

tag distribution in the gold standard. The tag N/A represents missing annotation or a term 
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that cannot be tagged using these predefined tags. Compared with annotations on the 

development set from the two annotators, the gold standard is annotated by a clinical 

professional. Thus, it has relatively lower level of N/A tags. 

 

Figure 4-4 Distribution percentage of annotation tags in development set and test set 
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Chapter 5 Rapid ontology development strategies 

In this chapter we describe an existing ontology that used as a formal representation of 

domain-specific knowledge in order to drive the information extraction process and map 

information extracted from textual space to conceptual space. We proceed with the 

description of processes used to make the ontology fit for this purpose. We present four 

strategies used to efficiently and systematically expand the ontology's domain coverage 

and its vocabulary. To achieve this, we devised four strategies to extract concepts and 

terms from available data and knowledge sources. 

5.1 Strategies 

In order to support semantic interpretations of clinical narratives found in MRI reports, 

we need to expand the original TRAK ontology to include all relevant MRI specific 

concepts, such as hyaline cartilage abnormality, bone bruise, cyclops lesion, etc. In order 

to support NLP applications of the ontology, its vocabulary also needed to be expanded 

to include term variants commonly used in MRI reports. Some term variants are confined 

to a specific clinical sublanguage (Hripcsak et al., 2002) and as such are typically 

underrepresented in standardised medical dictionaries such as those included in the 

Unified Medical Language System (UMLS) (Bodenreider, 2004). For example, 

collateral ligament was found to have no other synonyms in the UMLS. Yet, collateral 

ligaments are colloquially referred to as collaterals in clinical narratives. Thus, out of 37 

references to collateral ligaments in the training dataset, six (i.e. 16%) accounted for this 

informal variant of the term. 

Four strategies have been devised for systematic expansion of the coverage of the TRAK 

ontology, of which three are data-driven. The purpose of using data-driven strategies is 

to ensure that the ontology is appropriate for intended NLP applications on such data. 

Each data-driven strategy utilizes a different approach to extract relevant terminologies 

from the dataset either manually or automatically. To avoid over-fitting the ontology 

caused by limited data source in data-driven strategies, and to provide an initial 

taxonomic structure to incorporate new concepts, the fourth strategy integrates 

terminologies and references structures from relevant knowledge bases. These four 

strategies are: 

1) Dictionary-based term recognition 

2) Automatic term recognition 

3) Manual data annotation 
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4) Manual dictionary search 

The four strategies were applied independently and their results were subsequently 

integrated (see Figure 5-1). The following sections outline each strategy in more detail. 

 

Figure 5-1 Ontology expansion strategies 

Strategy 1: Dictionary-based term recognition 

As previously mentioned in Section 4.4, we considered both UMLS and RadLex for this 

process. Besides the fact that UMLS has better coverage than RadLex on radiology 

reports, we used MetaMap, a software tool dedicated for recognising UMLS concepts in 

biomedical text  (Aronson, 2001). RadLex is not currently included as part of the UMLS 

Metathesaurus. Therefore, we decided to use UMLS instead of RadLex to search for 

potential terms. 

Given the availability of MRI reports, we were now able to automate the process of 

finding other relevant concepts in the UMLS. We applied MetaMap on the training set to 

recognise UMLS concepts and obtain their unique concept identifier and a preferred name 

in the UMLS. Given that the majority of TRAK concepts were already cross–referenced 

to the UMLS, we used these identifiers to automatically remove known UMLS concepts 

from unnecessary consideration. The remaining MetaMap output formed a list of 1,121 

UMLS concepts to be considered for possible inclusion in TRAK. 
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To facilitate the manual curation process, the list was ordered by the frequency of 

occurrence of each concept within the training dataset. The frequency graph shown in 

Figure 5-2 shows a power law distribution (Clauset et al., 2009)  of UMLS concept 

mentions. Using the Pareto principle (or 80:20 rule) as a guideline (Y. S. Chen et al., 

1994), we focused on approximately 20% of most frequently mentioned concepts by 

considering only those that occurred at least 100 times in the training dataset. A total of 

215 frequently mentioned UMLS concepts were manually curated and considered for 

inclusion in TRAK. Some examples of highest ranked relevant concepts include intact, 

rupture, laceration, etc. 

 

Figure 5-2 Power law distribution of UMLS concepts frequency to be included into TRAK from MRI 
reports 

 

Strategy 2: Automatic term recognition 

Using the UMLS to identify relevant concepts in text data has the advantage of providing 

not only their definitions and synonyms, but also their classification and a potential 

structure into which to embed them within the TRAK ontology. However, a previous 

lexical study conducted on a large corpus of various types of medical records (discharge 

summaries, radiology reports, progress notes, emergency room reports and letters) 

revealed that clinical narratives are characterised by a high degree of misspellings, 

abbreviations and non–standardised terminology (Hersh et al., 1997). The given study 

found that over 20% of the words used were unrecognisable, i.e. were not recognisable 

medical words, common words or names, and could not be algorithmically or 

contextually converted to such words. However, almost 78% of unrecognisable words 

were judged to be probably correctly spelled medical terms. These findings illustrate the 

challenges clinical narratives pose to dictionary–based term recognition methods such as 

that implemented by MetaMap. 
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In order to extract additional terms from the training dataset that were not found in the 

UMLS, we decided to enrich the original TRAK ontology into a lexicalised ontology by 

including these non-standard variants as new concepts or synonyms for existing concepts. 

Therefore, we complemented the use of MetaMap with FlexiTerm, an in–house data–

driven method for automatic term recognition from a domain–specific corpus (Spasic et 

al., 2005). 

FlexiTerm performs recognition of multi–word terms in three steps: linguistics filtering, 

normalisation and termhood calculation. 

1. Linguistic filtering is used to select term candidates as follows. Once input documents 

have been pre-processed, term candidates are extracted by matching patterns that 

specify the syntactic structure of targeted noun phrases (NPs). These patterns are the 

parameters of the method and may be modified if needed. In our experiments, we 

used the following three patterns1: 

§ (JJ | NN)+ NN, e.g. anterior cruciate ligament 

§ (NN | JJ)* NN POS (NN | JJ)* NN, e.g. Hoffa's fat pad 

§ (NN | JJ)* NN IN (NN | JJ)* NN, e.g. medial condyle of tibia 

Further, lexical information is used to improve boundary detection of term candidates 

by trimming leading and trailing stop words, which include common English words 

(e.g. any), but also frequent modifiers of biomedical terms (e.g. small in small Baker's 

cyst). 

2. Term candidates are normalised in order to neutralise morphological and syntactic 

variation, linguistics phenomena commonly seen in biomedical terminology. The 

bag-of-word based normalisation process consists of the following steps: 

(1) Convert phrase into bag-of-words, and remove punctuation (e.g. ' in possessives), 

numbers and stop words including prepositions (e.g. of). 

(2) Remove any lowercase tokens with ≤2 characters.  

(3) Stem each remaining token.  

                                                

1 Explanation of tags and symbols: JJ (adjective), NN (noun, singular or mass), POS (possessive ending), 
IN (preposition or subordinating conjunction) 

+: one or more occurrences, *: zero or more occurrences 
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Figure 5-3 Example of the term candidate normalisation process with input tear of meniscus, meniscal 
tear and Hoffa’s fat pad 

 

For example, Figure 5-3 shows a process that would map term candidates such as 

tear of meniscus and meniscal tear to the same normalised form {menisc, tear}, thus 

neutralising both morphological and syntactic variation resulting in two linguistic 

representations of the same medical concept. The normalised candidate is used to 

aggregate the relevant information associated with the original candidates, e.g. their 

frequency of occurrence. 

While many types of morphological variation are effectively neutralised with 

stemming used as part of the normalisation process (e.g. transplant and 

transplantation will be reduced to the same stem), exact token matching will still fail 

to match synonyms that differ due to orthographic variation (e.g. haemorrhage and 

hemorrhage are stemmed to haemorrhag and hemorrhag respectively). On the other 

hand, such variations can be easily identified using approximate string matching. For 

example, the edit distance between the two stems is only 1 – a single insertion of the 

character a: h[a]emorrhag. In FlexiTerm, similar tokens are identified based on their 

phonetic and lexical similarity calculated with Jazzy (T. White, n.d.) (a spell checker 

API). Jazzy is based on edit distance (Damerau, 1964), but it also includes two more 

edit operations to swap adjacent characters and to change the case of a letter. Apart 

from string similarity, Jazzy supports phonetic matching with the Metaphone 

algorithm (Philips, 1990), which aims to match words that sound similar without 

necessarily being lexically similar. 

Similar tokens are used to further normalise term candidates, and this makes 

FlexiTerm robust against orthographic variations in addition to morphological and 

syntactic variation and, therefore, suitable for use on clinical narratives. 

3. Finally, termhood, a corpus–based measure that combines strength of collocation 

with frequency of occurrence, is calculated for normalised term candidates in order 

to rank them. The termhood calculation is based on the following formula: 
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Equation 5-1 Termhood value calculation (Spasić et al., 2013) 

𝐶 − 𝑣𝑎𝑙𝑢𝑒 𝑡 =
𝑙𝑛 𝑡 ∙ 𝑓(𝑡), 𝑖𝑓	𝑆 𝑡 = ∅

𝑙𝑛 𝑡 ∙ (𝑓 𝑡 −
1
𝑆(𝑡) 𝑓(𝑠)

P∈R(S)

), 𝑖𝑓	𝑆 𝑡 ≠ ∅ 

where T is a set of all candidate terms, t ∈ T, | t | is the number of words in t, f: T → 

N is the frequency function, P(T) is the power set of T, S: T → P(T) is a function that 

maps a candidate term to the set of all other candidate terms containing it as a subset. 

The method favours longer, more frequently and independently occurring term 

candidates. 

In the original publication, FlexiTerm was thoroughly evaluated on five biomedical 

corpora including a subset of 100 MRI reports from the dataset used in this study. The 

highest values for precision (94.56%), recall (71.31%) and F-measure (81.31%) were 

achieved on this particular corpus. 

 

Figure 5-4 Part of FlexiTerm output on training set 

 

Termhood values are used as evidence to select higher–ranked candidates as terms over 

the lower–ranked ones. FlexiTerm not only extracts terms from text, but it also groups 

term variants such as infrapatellar fat pad, infra-patella fat pad and infra-patellar fat pad 

together (see Figure 5-4 for FlexiTerm output). Preferably, we would only include the 
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nominative singular form for nouns and the first person singular present indicative form 

for verbs into the ontology to preserve its strict formality. However, many of these 

variants are different lexical forms of a word, such as plural, adjective and verb forms of 

nouns, and different tense forms of verbs. For example, meniscal is the adjective form of 

meniscus, and torn is the past participle verb form of tear. Although we would not directly 

include these variants into the ontology, they could still be used as clues for identification 

of new concepts (e.g. posterior horn ranked seventh by FlexiTerm was added as a new 

concept in TRAK), but also identification of previously unknown names of existing 

concepts, which are easily mapped to a concept via its known names. For example, lateral 

femoral condyle was identified as a new synonym for a concept with identifier 

TRAK:0001037 previously known only as lateral condyle of femur. 

We ran FlexiTerm over the whole training dataset of 1,368 MRI reports and extracted 

1,076 term candidates with a total of 1,422 term variants. To facilitate the manual curation 

process, the list of automatically extracted terms was ordered by their termhood 

calculated by FlexiTerm. The termhood graph shown in Figure 5-5 shows a power law 

distribution. Therefore, relying on the Pareto principle, we focused on approximately 20% 

of highest ranked terms by considering only those with termhood over 20. A total of 222 

automatically extracted terms were manually curated and considered for inclusion in 

TRAK.

 

Figure 5-5 Power law distribution of FlexiTerm candidate termhood values 

 

Strategy 3: Manual data annotation 

As mentioned in Chapter 4, we manually annotated the development set and test set for 

the purposes of developing and testing the information extraction system. The annotated 
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test set was later used to create a gold standard for system evaluation. The annotated 

subset of 100 training documents was used to test the system during development, but 

also to inform the expansion of the ontology with terms manually annotated in text. 

This strategy offers a potential to identify additional concepts and their names, 

particularly those that are non–standardised and occur less frequently in the training 

dataset. Recall that MetaMap identifies concepts based solely on the content of 

standardised medical dictionaries included in the UMLS. On the other hand, FlexiTerm 

may identify some non–standardised terminology, but in doing so it relies on the 

frequency of term occurrence. Moreover, FlexiTerm only extracts multi–word terms, thus 

ignoring concepts designated by a single word (e.g. fissure, ganglion, etc.). In addition to 

enabling us to identify relevant concepts overlooked by the previous two strategies, the 

annotation exercise allowed us to explore in detail how the terms were used in context, 

which helped disambiguate their meaning based on which they were embedded into the 

existing ontology structure. 

Manual annotation tags were described earlier in Section 4.5. These tags include: 

• finding - clinical manifestations observed by a radiologist. 

• finding qualifier - property of a finding 

• certainty - certainty with which a radiologist diagnosed the given finding. 

• anatomy - anatomical entity affected by the given finding. 

• anatomy qualifier - further anatomical localisation 

• negation - indication of a negative finding 

 

Figure 5-6 An example of manual annotation tags 

 

Figure 5-6 provides an annotated example, where tearing is the finding, definite its 

certainty and complex its qualifier. The finding refers to medial meniscus as the affected 

anatomical entity, whereas qualifiers posterior horn and body provide further localisation 

of the anatomical site. 
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Table 5-1 Statistics of annotated terms on development set 

Tags	 Unique	terms	 Occurrences	
finding	 484	 2,071	
finding	qualifier	 113	 284	
certainty	 68	 202	
anatomy	 208	 1,232	
anatomy	qualifier	 178	 469	

 

Table 5-1 summarises the extent of the manual annotation on the development set. The 

fact that annotated terms were pre–classified into broad categories based on their labels 

allowed us to focus on particular branches of the TRAK hierarchy one at a time. In 

addition, some categories (e.g. anatomy and anatomy qualifier) were already extensively 

covered by the TRAK ontology. Therefore, the removal of 137 known terms referring to 

60 TRAK concepts from unnecessary consideration greatly facilitated the manual 

curation and allowed us to consider all remaining phrases for potential inclusion in TRAK. 

Strategy 4: Manual terminology search 

So far, all three strategies for identification of new ontology concepts relied on the 

training dataset from which candidates were selected using a combination of automatic 

and manual methods. These data–driven approaches run a risk of overfitting the ontology 

based on the available data, which may result in incomplete coverage of the domain 

because some concepts (possibly the ones less frequently encountered in practice) were 

not mentioned in the available sample of MRI reports. In order to systematically cover 

the domain by including potentially relevant concepts that are not seen in the training 

dataset, we consulted two authoritative knowledge sources relevant for semantic 

interpretation of MRI reports: MEDCIN and RadLex. 

MEDCIN 

The first source, MEDCIN, was identified through the UMLS terminology services 

(UMLS, n.d.). MEDCIN is a medical terminology created and managed by Medicomp 

Systems, Inc., which contains more than 250,000 clinical concepts including symptoms, 

history, physical examination, tests, diagnoses and therapies structured into multiple 

clinical hierarchies. Magnetic resonance imaging of knee was found as one of those 

hierarchies. It provides a detailed taxonomy of findings that can be observed from knee 

MRI scans. We extracted this particular taxonomy from the UMLS by using MRI knee 

as a search term restricted to MEDCIN as the source vocabulary (see Figure 5-7 for a 

screenshot of searching portal and results list). 
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All 703 concepts extracted from MEDCIN were named using phrases that represent 

detailed descriptions rather than traditional terms. As it can be seen from Figure 5-7, 

these phrases were structured as follows: most concept names start with the same header 

(magnetic resonance imaging of knee) signifying that it belongs to a particular hierarchy 

in MEDCIN, followed by a detailed description of a finding. After removing the common 

header, magnetic resonance imaging of knee, from these phrases, we decomposed them 

into four categories: finding, finding qualifier, anatomy and anatomy qualifier.   

 

Figure 5-7 Searching MEDCIN with keyword MRI knee 

 

For example, in the example taken from MEDCIN shown in Figure 5-8, osteochondral 

injury represents the finding, acute its qualifier, lateral femoral condyle the anatomical 

entity affected, whereas posterior aspect is its qualifier, which provides more specific 

location for the given finding. 
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Figure 5-8 An example of decomposition of MEDCIN item 

 

Manually decomposed concepts were compared against the existing TRAK concepts. 

Most anatomical concepts were already covered in TRAK, so the manual curation process 

focused mainly on concepts related to findings and their qualifiers. The resulting list 

consisted of 76 concepts, which were then manually curated and considered for inclusion 

in TRAK. 

RadLex 

The second source, RadLex, was identified through BioPortal, the most comprehensive 

repository of biomedical ontologies (NCBO, 2013). MRI is a technique used in radiology, 

a medical specialty whose concepts are formally described in the Radiology Lexicon 

(RadLex) – a controlled terminology designed as a single unified source of terms for 

radiology practice, education and research in an attempt to fill in the gaps in other medical 

terminology systems (Langlotz, 2006).  

 

Figure 5-9 Radlex descriptor branch screenshot 
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RadLex is currently not distributed as a part of the UMLS. A study conducted on a corpus 

of 800 radiology reports that represented a mixture of imaging modalities including MRI 

revealed that out of 11,962 mentioned terms found in RadLex, 3,310 terms (i.e. almost 

28%) could not be found in the UMLS (Yetisgen-Yildiz et al., 2011). These facts imply 

that much of the RadLex terminology would not be identified by MetaMap, used 

previously to identify UMLS terms. Previous study (Friedman, 1992) suggested that these 

missing terms in UMLS compared with RadLex are mainly modifier information, such 

as certainty, degree and change types. Therefore, we systematically explored RadLex 

using its distribution via BioPortal, especially focused on its RadLex descriptor branch 

(see Figure 5-9). Leaf node children of this branch are mainly adjectives (rather than 

noun phrases, which is customary for terms) that can be used to describe radiology 

findings by specifying their qualifiers (e.g. lobulated would be a qualifier of a cyst). We 

consulted domain expert and considered a total of 41 subclasses out of which 13 were 

relevant for MRI reports (these classes are indicated with an asterisk in Figure 5-9). 

These subclasses were used not only as the source of potential terms for TRAK, but also 

to provide a structure for incorporating such terms into TRAK. Out of a total of 439 terms, 

167 terms were cross-referenced to RadLex. The RadLex descriptor class has been 

renamed to finding descriptor and embedded into TRAK as a subclass of quality. 

5.2 Results 

Each strategy suggested a list of terms to be considered for inclusion or exclusion. Table 

5-2 shows percentages of finally included terms out of suggested terms. These included 

terms contributed to the expansion of new concepts and synonyms. 

Table 5-2 Contribution of each ontology development strategy towards final inclusion in to TRAK 

Strategy	 Suggested	 Included	 Percentage	
Dictionary-based	term	recognition	 215	 29	 13.5%	
Automatic	term	recognition	 222	 77	 34.7%	
Manual	data	annotation	 -	 -137	 -	
MEDCIN	search	 703	 76	 10.8%	
RadLex	search	 439	 167	 38.0%	

 

Given that the majority of the original TRAK had already been cross-referenced with 

UMLS, the inclusion percentage of dictionary-based term recognition and terminology 

search from MEDCIN is relatively low, at 13.5% and 10.8% respectively. However, as 

these terms come from existing mature knowledge recourses, they also contributed to the 

final expansion with their corresponding synonyms and relationships. 
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Due to high prevalence of misspelled, abbreviated and non-standard varied terms, which 

are not included in standard knowledge resources, automatic term recognition resulted in 

a relatively higher inclusion rate of 34.7%. 38.0% of RadLex suggested terms were 

included, which is also a relatively high percentage. These terms were systematically 

added as complementary concepts in addition to those data-driven strategies because of 

limited training set size.  

Although manual annotation did not suggested terms for inclusion, it helped to remove 

concepts already existed in TRAK from terms suggested by dictionary-based and 

automatic term recognition, which further improved the efficiency of manual curation 

process.  

Domain knowledge support is consistently required across these strategies, especially for 

manual data annotation and terminology search from MEDCIN and RadLex. Domain 

knowledge support is also essential for manual curations. 

As the final result, the original TRAK ontology was expanded from 1,292 concepts, 1,720 

synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 560 

relationship instances. 

Each of the four strategies made unique contribution to the final expansion of TRAK. 

Dictionary-based and automatic term recognition are primarily automated processes, and 

thus require little human effort and domain knowledge in recognition processes. 

However, manual data annotation, manual terminology search and final curation did 

require support from domain professionals. Sufficient time was also required to finish 

these processes and to ensure their qualities. Therefore, although the manual terminology 

search resulted in higher final inclusion percentages, it was time-costly and thus less 

efficient. 
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Chapter 6 KneeTex: A system for information extraction from 

knee MRI reports 

In this chapter we describe a system we developed to extract information from knee MRI 

reports. The system itself represents the main contribution of this thesis to health 

informatics. To our best knowledge, no other system operates in this domain. The 

methodology we implemented in our approach represents more general contribution to 

computer science. While the idea of ontology-driven information extraction is by no 

means new, traditionally, the extent of knowledge engineering involved in the 

development of domain–specific ontologies with sufficient detail and coverage for text 

mining applications led them to be regarded as prohibitively expensive. In the previous 

chapter we described how the knowledge extracted from text using advanced NLP could 

be curated and used to rapidly update the content of biomedical ontologies. In this 

chapter, we demonstrate how such an ontology can serve as a fine–grained lexico–

semantic knowledge base and play a pivotal role in guiding and constraining information 

extraction achieving results in line with human–like performance. 

6.1 System specification 

Information extraction (IE) is the task of automatically selecting specific facts about pre–

specified types of entities and relationships from free–text documents. In other words, the 

goal of IE is to convert free text into a structured form by filling a template (a data 

structure with predefined slots) with the relevant information extracted (slot fillers) 

(Cowie and Lehnert, 1996). We derived this template from the annotation schema defined 

previously in Section 4.5. These slots and restricted relationships among them also 

exactly match the annotation tag set and guidelines. 

Figure 6-1 provides a graphical representation of a template specific to our system, 

whose structure is illustrated using Unified Modelling Language (UML) (Jacobson, 

1999). The template specifies the types of entities and relationships we aim to extract in 

this particular study. The goal of our system is to extract clinical observations described 

in MRI reports. A clinical observation usually consists of two major parts: finding and 

anatomy. Finding is what is observed from MRI scans, e.g. an injury or a disease. 

Anatomy describes the location of the finding, usually a specific anatomical entity. Both 

finding and anatomy may come with additional information attached. Within the template, 

we refer to them as qualifiers.  
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Figure 6-1 KneeTex information extraction template represented using UML diagram 

 

Figure 6-2 provides an example of headwords and linked qualifiers. Together with 

anatomy, its qualifier provides more specific location information of the finding, e.g. 

lateral as an anatomy qualifier to tibial plateau indicates it is the lateral aspect of tibial 

plateau. Finding qualifier is more complex in the sense that it can modify the finding in 

different ways, e.g. size, shape, severity, direction, injury type, etc. For example, in 

Figure 6-2, fracture is the finding and small indicates size of the fracture, depression 

indicates the type of the fracture. 

 

Figure 6-2 An example of headwords and qualifiers 

 

For finding, there are two specific qualifier types in addition to general qualifiers: 

certainty and negation. Certainty qualifier describes the certainty level of related finding 

judged by the radiologist. Negation qualifier specifies whether described finding is 

actually found. See Figure 6-3 for an example of certainty and negation qualifiers. 
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Figure 6-3 An example of certainty and negation qualifiers and how they are related to finding 

 

In this template, each slot contains actual content extracted and its location in the 

document. The extracted information is further mapped onto the corresponding concept 

in the TRAK ontology. The concept's unique identifier and preferred name are also 

retrieved from the ontology and used to facilitate interpretation of extracted information. 

Figure 6-4 and 6-5 provide examples of a filled template based on information extracted 

automatically from the given sentences. 

 

Figure 6-4 An example of a filled template from original text: ‘There is a small undisplaced vertical 
radial tear of the posterior horn of the lateral meniscus.’ 

 



 66 

 

Figure 6-5 An example of a filled template from original text: ‘A peripheral tear involving the body of 
the lateral meniscus extending into the posterior third is seen.’ 

 

Once coded, the extracted information can be searched systematically. For instance, note 

that in the given examples equivalent phrases, posterior horn and posterior third, were 

mapped to the same concept, which allows for the extracted information to be searched 

by the underlying meaning and not merely its surface realisation in text. Note that 

KneeTex is an IE system and as such does not include an interface to search through the 

extracted information. However, the JSON format of extracted information allows for it 

to be stored directly into a document–oriented database such as MongoDB (mongoDB, 

2015a), from which it can be easily queried. 

6.2 System overview 

Figure 6-6 shows the overall structure for KneeTex information extraction system. 

Modules shown above will be explained in the following sections.  
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Figure 6-6 KneeTex system structure 

6.3 Linguistic pre-processing 

Previous lexical analysis on medical records shows that problems, such as sublanguage 

characteristics, misspellings and abbreviations, could pose difficulties for NLP 

applications (Hersh et al., 1997). Therefore, the training set needs to be prepared before 

more advanced NLP processes. 

We pre-process the training set before applying further analysis, as in many other clinical 

NLP systems (Raja and Jonnalagadda, 2015). Most commonly used text pre-processing 

techniques include segmentation, tokenisation, spell checking and part-of-speech (POS) 

tagging. 

The original MRI reports in dataset were all provided as one line documents. Thus they 

need to be segmented first. We used Stanford NLP for sentence segmentation and 

tokenization (Manning et al., 2014). In total, there were 13,051 sentences, 166,824 tokens 

and 3188 distinct tokens from the training set. 

Levenshtein distance is used for typographical error recognition. A threshold value was 

set at 3 to avoid likely erroneous matching. By matching the training set with a 

comprehensive medical dictionary from Medline Plus (Merriam-Webster, n.d.) against 

the training set, we found that there were a total of 1,138 typographical errors from 

documents in the training set, including misspelling and merged words. On average, there 

were only 0.83 errors per document. With such low rate of typographical errors per 

document, it would not significantly affect process performances at later stage. Therefore, 
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we decided to choose a robust named entity recognition solution instead of implementing 

a separate spelling correction module. 

Part-of-speech (POS) tagging is normally a component of the pre-processing stage in 

many NLP systems. However, Ferraro et al. noticed that leading POS taggers, including 

Stanford POS tagger (Toutanova et al., 2003; Toutanova and Manning, 2000), OpenNLP 

POS tagger (OpenNLP, 2010), LBJ POS tagger (Roth and Zelenko, 1998) and LingPipe 

POS tagger (Alias-i, 2008), have seen with performances declined by 8.5% to 15% in 

accuracy when tested on clinical narratives (Ferraro et al., 2013). Fan et al.  (2011) also 

do not recommend directly applying pre-trained POS taggers on other datasets due to 

declined performance, even within the same domain. Meanwhile, compared to semantic 

tags, POS tags do not provide enough information to solve clinical problems (Taira, 2009). 

Considered that POS tagging is one of the first processes, to avoid cascading problems, 

we also have not included POS tagging at the pre-processing stage. 

6.4 Dictionary lookup 

Having sufficiently expanded the original TRAK ontology, its vocabulary can now be 

used to drive named entity recognition, whose aim is to automatically identify and 

classify words and phrases into predefined categories such as diseases, symptoms, 

anatomical entities, etc. In effect, NER is used here to identify candidates for slot fillers 

and as such represents the main vehicle of IE. The performance of dictionary–based NER 

approaches varies across different dictionaries and tools. A recent evaluation of three 

such state–of–the–art tools on a set of eight biomedical ontologies showed that their 

performance in terms of F–measure varied from 14% to 83% (Funk et al., 2014). 

ConceptMapper (a component of the Apache UIMA Sandbox (Ferrucci and Lally, 2004)) 

generally provided the best performance. Beside performance, we considered the ease of 

use. While converting an OBO ontology to ConceptMapper's dictionary format is 

straightforward, one must adopt the UIMA framework in order to use this particular 

component. For flexibility reasons, we opted to use PathNER (Wu et al., 2013) as an 

alternative to ConceptMapper. 

PathNER (Pathway Named Entity Recognition) is a freely available tool originally 

developed for systematic identification of pathway mentions in the literature. On a 

pathway–specific gold–standard corpus, PathNER achieved F-measure of 84% (Funk et 

al., 2014). It implements soft dictionary matching by utilising the SoftTFIDF method 

(Cohen et al., 2003), a combination of the term frequency-inverse document frequency 
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(TF–IDF) (Salton and Buckley, 1988) and the Jaro-Winkler distance (Winkler, 1990). 

This makes the dictionary lookup robust with respect to the problem of term variation 

commonly seen in biomedical text, which often causes dictionary lookup based on exact 

string matching to fail (Tsuruoka et al., 2007). Typical term variations include 

morphological variation, where the transformation of the content words involves 

inflection (e.g. lateral meniscus vs. lateral menisci) or derivation (e.g. meniscus tear vs. 

meniscal tear), and syntactic variation, where the content words are preserved in their 

original form (e.g. apex of patella vs. patella apex) (Spasić et al., 2013). 

In order to use PathNER to identify TRAK terms in text, we extracted the vocabulary 

from the ontology and converted it into PathNER's internal dictionary format. In effect, 

PathNER is used here to identify TRAK terms in text as candidates for slot fillers and as 

such represents the basis for template filling. We identified a few potential issues in the 

context of the given template. These relate in particular to the fact that the template 

requires two distinct main types of named entities: anatomical entities (e.g. organ, tissue, 

etc.) and findings (e.g. injury, disease, etc.). In order to systematically classify knee 

conditions, TRAK incorporates a knee–relevant portion of the Orchard Sports Injury 

Classification System (OSICS) Version 10 (Rae and Orchard, 2007).  

Table 6-1 An excerpt of conversion from ontology vocabulary to PathNER dictionary 

Ontology	(OBO	format)	 PathNER	dictionary	
id:	TRAK:0000513	
name:	ACL	rupture	
xref:	OSICS-10:	KJAR	
	
id:	TRAK:0000049	
name:	anterior	cruciate	ligament	
def:	“A	major	stabilising	ligament	in	the	knee	
that	 attaches	 the	 surfaces	of	 the	 femur	 and	
tibia.”	
synonym:	“ACL”	EXACT	[]	
	
id:	TRAK:0000211	
name:	tear	
def:	“Forcible	tearing	or	disruption	of	tissue.”	
synonym:	“rupture”	EXACT	[]	
synonym:	“tearing”	EXACT	[]	
synonym:	“disruption”	EXACT	[] 

TRAK:0000513				ACL	rupture	
TRAK:0000049				anterior	cruciate	ligament	
TRAK:0000049				ACL	
TRAK:0000211				tear	
TRAK:0000211				rupture	
TRAK:0000211				tearing	
TRAK:0000211				disruption 

 

OSICS-10 is a classification system in which all classes encompass two types of 

information: (1) type of condition (injury or disease) and (2) anatomical entity affected 

by the condition. Our own approach to formal modelling of knee conditions was to 
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separate these two aspects and represent them by two distinct semantic types that 

correspond to finding and anatomy. For example, TRAK incorporates the following three 

terms: ACL rupture, ACL and rupture (see Table 6-1 for details).  

Obviously, the term ACL rupture, originally imported from OSICS–10, encompasses the 

other two terms. While the nature of taxonomic classification taken in OSICS–10 is useful 

for a range of applications in epidemiologic research (Rae and Orchard, 2007), it may 

pose problems for NER en route to template filling. Namely, PathNER looks for the 

longest possible match. This means that, given the three dictionary entries, the longest 

match in the following sentence: 

 

would result in the following annotation: 

 

Alternatively, two separate annotations of ACL and rupture as follows: 

 

would greatly simplify the process of template filling, since the two recognised named 

entities can be mapped directly to the corresponding slots in the template (anatomy and 

finding respectively) based on their ancestries in the ontology (anatomical entity and 

injury respectively). The use of composite terms during NER could also give rise to 

inconsistent annotations, because sub–terms may occur wide apart in text, e.g. 

 

At this point, we addressed two other problems associated with NER, namely ambiguity 

resolution and recognition of informal names. For example, we noticed that the term joint 

effusion (TRAK:0001410) defined in TRAK as "Increased fluid in synovial cavity of a 

joint" was commonly used in our dataset to refer to its child node knee effusion 

(TRAK:0001411). Although this can be solved later using hyponymy ambiguity 

resolutions, by safely assuming that in the context of knee MRI reports joint effusion will 

always refer to knee effusion, we ignored the concept identified by TRAK:0001410 and 

did not export it into PathNER's dictionary format. Instead, as a one-off solution, a 
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dictionary entry was created to map joint effusion to TRAK:0001411 instead in order for 

PathNER to recognise its intended meaning within the given context. 

Further, we added some new entries to PathNER's dictionary in order to improve the 

performance of NER. The reason why such terms were not directly included into the 

ontology itself is the informal status of such terms (e.g. tib–fib joint is an informal 

synonym of tibiofemoral joint), and as such they do not belong to a controlled vocabulary. 

Given that it is customary for terms to be noun phrases (Justeson and Katz, 2008), we 

also limited the use of adjectives and verbs to the leaf nodes of the finding descriptor 

branch as explained earlier. Still, we needed to use these lexical classes as part of NER 

as we noticed from the training dataset that adjectives and verbs were commonly used to 

refer to concepts formally described in TRAK. For example, in the following sentence: 

 

lateral meniscal refers to lateral meniscus (TRAK:0001089) in which the finding, i.e. 

cyst (TRAK:0001396), is noted. As previously mentioned in Section 5.1.2, we preferably 

only included the nominative singular form for nouns and the first person singular present 

indicative form for verbs into the ontology to preserve strict formality. So it would be 

incorrect to specify lateral meniscal formally as an official synonym of lateral meniscus 

(TRAK:0001089) within the ontology. Therefore, instead, we encoded "unofficial" 

synonyms, which are not actually included in the TRAK ontology, separately within 

PathNER's dictionary, thus enabling the use of informal synonyms in NER while 

preserving the strict formality of the ontology. It was in this manner that the verb form 

ruptured was mapped to the term rupture (TRAK:0000211) in a previously discussed 

sentence. In total, the names of 128 concepts were ignored during ontology–to–dictionary 

conversion and 250 new entries were added to the dictionary. 

6.5 Pattern matching 

Previous dictionary lookup using PathNER does not recognise everything. There are still 

remaining concepts in the text need to be recognised. These concepts include those in 

nested phrases and negation triggers. To help segmenting documents into relevant 

sections, section headings will also need to be recognised. These remaining concepts and 

section headings frequently occur in the training set with regular occurrence patterns. 

Therefore, we implemented a few patterns in the Mixup pattern-matching language 

(Cohen, 2004) to address these remaining problems. 
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Pattern-based named entity recognition 

Following the use of PathNER, a couple of NER–related problems may still persist. For 

example, consider the following three sentences: 

 

with the terms meniscus (TRAK:0000045) and lateral meniscus (TRAK:0001089) 

recognised by PathNER. The analysis of their context reveals that all three references 

should actually be mapped to two concepts: lateral meniscus (TRAK:0001089) and 

medial meniscus (TRAK:0001090), both children of meniscus (TRAK:0000045). The 

first two annotations refer to an abstraction of two more specific concepts mentioned, 

which results in an ambiguous representation of the intended meaning. In the third 

sentence, correct identification of medial meniscus requires the coordinated expression 

medial and lateral meniscus to be interpreted as medial meniscus and lateral meniscus. 

Similarly, dictionary–based NER will fail to recognise enumerated terms. For example, 

the following sentence mentions three types of tear formally described in TRAK: 

 

namely, longitudinal tear (TRAK:0001390), vertical tear (TRAK:0001388) and 

peripheral tear (TRAK:0001389), but only the rightmost one would be recognised by 

PathNER. Finally, in phrases such as medial meniscectomy, patellar tendinitis and 

prepatellar bursitis, PathNER will succeed in identifying terms referring to findings, i.e. 

meniscectomy (TRAK: 0001511), tendinitis (TRAK: 0000229) and bursitis (TRAK: 

0000225), but it will not recognise implicit references to the anatomical entities affected, 

i.e. medial meniscus (TRAK: 0001090), patellar tendon (TRAK: 0000053) and 

prepatellar bursa (TRAK: 0001054). 

In KneeTex, these linguistic phenomena are resolved using a set of 109 pattern–matching 

rules, whose results are used to correct or supplement annotations of named entities 

generated by PathNER. These rules were implemented in Mixup (My Information 

eXtraction and Understanding Package), a simple pattern-matching language (Cohen, 
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2004). For example, the following rules 2  illustrate the recognition of coordinated 

references to medial meniscus: 

 

By applying PathNER to the development set that contains 100 randomly selected 

documents, it generated 4,439 annotations. In addition to PathNER generated annotations, 

430 annotations were created using pattern-matching rules. 

Negation 

In addition to supporting NER, negation terms need to be identified to indicate the 

absence of explicitly mentioned findings. We initially considered using NegEx (Chapman 

et al., 2001a), a simple algorithm for identifying negated findings as mentioned in Section 

2.3.5, for negation term identification. Considering that the NegEx algorithm is also based 

on lexicons and regular expressions, we decided to build our own negation lexicons and 

patterns so that it could have the best adaption to the domain sublanguage. 

We used the following terms as negation triggers: no, not, without and rather than. The 

following examples illustrate their use to negate findings: 

 

                                                
2 Mixup is a pattern language for text spans, i.e. token sequences. Keyword defSpanType defines a span 
type whose structure is specified to the right of the equal sign, where square brackets [ and ] indicate the 
start and end of a span respectively, eqi('foo') matches the token foo and ... matches any sequence 
of tokens. Postfix operator ? specifies that the preceding token can be matched either once or not at all. 
Finally, operator || is used to specify alternative patterns. 

defSpanType conjunction =: ... [ eqi('and') ] ... || 
                           ... [ eqi('or')  ] ... || 
                           ... [ eqi('nor') ] ... || 
                           ... [ eqi('as') eqi('well') eqi('as') ] ... ; 
defSpanType medialLateral =: ... [ eqi('medial') @conjunction eqi('the')? 
eqi('lateral') ] ... ;  
defSpanType TRAK:0001090 =: ... [ @medialLateral eqi('meniscus') ] ... ; 
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Figure 6-7 Concordances of negation terms 

 

Based on our observations on the training data (see Figure 6-7), all negation terms are 

assumed to occur before the finding they negate. We also defined a single exception to 

the negation rule. The negation term no is ignored when it is used as part of the phrase 

no further, in which case the finding is assumed to be positive, e.g. 

 

Section headings 

Although their structure varied across the data set, the given MRI reports generally tended 

to organise information under the following headings: mri of the left/right knee, 

indication, history, findings and conclusion. Their lexical and orthographic features were 

incorporated into a single pattern–matching rule designed to recognize a section heading 

as a sequence of upper case tokens from a list of fifteen. 
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6.6 Rule-based co-reference and ambiguity resolution 

Once recognised, named entities are imported into a relational database and further 

scrubbed in order to disambiguate them. Semantic ambiguity may arise naturally from 

linguistic phenomena such as hyponymy, a relationship between a general term 

(hypernym) and its more specific instances (hyponyms), and polysemy, where a term may 

have multiple meanings. Multiple related interpretations may also arise from nested 

occurrences of named entities. 

Term Nestedness 

During dictionary lookup, PathNER will return longest possible matches with similarity 

scores over a certain threshold. As a result, there will be no overlap between named 

entities recognised in this manner. However, pattern matching used in the second phase 

of NER may introduce nested annotations of named entities. For example, in the 

coordinated expression medial and lateral meniscus, PathNER will recognise two terms 

from the TRAK ontology: medial (TRAK:0000031) and lateral meniscus 

(TRAK:0001089). Pattern matching will subsequently recognise a coordinated 

expression as a reference to medial meniscus (TRAK:0001090). The nested occurrence 

of lateral meniscus should be retained as a valid reference to a named entity. However, 

the nested occurrence of medial represents an unsuccessful match to another named entity, 

medial meniscus, and thus should be removed. The choice between retaining and 

removing nested occurrences of named entities is based on their semantic types. For 

example, all nested occurrences of terms descending from the concept quality 

(TRAK:0000133) defined as "a dependent entity that inheres in a bearer by virtue of how 

the bearer is related to other entities" are removed. This will remove nested occurrence 

of medial in the previous example, but also references to radial (TRAK:0001531) and 

vertical (TRAK:0000077) in the example shown in Figure 6-4. 

Hyponymy 

Hyponymy is a lexical relationship between two terms, where one term (hyponym) is 

subordinate to the other (hypernym) (Stede, 2000). For example, cruciate ligament is a 

hyponym of ligament, and complete tear is a hyponym of tear. When a hypernym is 

mentioned, it could have multiple possible interpretations, either as the hypernym itself 

or as one of its hyponyms. Anatomical hypernyms cause higher level of ambiguity than 

finding hypernyms. Figure 6-8 shows examples of hyponyms of ligament and tear in the 

TRAK ontology. Taking ligament as an example, it has 14 hyponyms in the TRAK 



 76 

ontology. Therefore, when ligament is mentioned in text alone, it could have 15 different 

interpretations pointing to different anatomical locations. Although the mentioning of 

tear may have 16 different interpretations, these interpretations represent the same 

finding with different details. Meanwhile, finding hypernyms occur much less frequently 

than anatomical hypernyms. For example, the standalone mentioning of ligament occurs 

82 times than 14 times of tear in the training set. Therefore, we focused on resolving 

anatomical hypernyms. 

  

Figure 6-8 Examples of hyponyms of ligament and tear in the TRAK ontology 

 

In clinical discourse, co-referential terms are often used to maintain text coherence and 

cohesion, e.g. 

 

In this example, the hypernym ligament co-refers to its hyponym medial collateral 

ligament, and therefore its interpretation should coincide with that of the hyponym. In 

other words, the literal interpretation of the hypernym (ligament) obtained originally by 

dictionary lookup should be corrected using the annotation of the co-referring hyponym 

(medial collateral ligament), e.g. 
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This type of ambiguity is resolved systematically by identifying co-referential named 

entities, i.e. those that refer to the same concept. Co-reference resolution is applied to 

named entities recognised as one of the following concepts: meniscus (TRAK:0000045), 

ligament (TRAK:0001027), tendon (TRAK:0000046) or muscle (TRAK:0001088). In 

such cases, co-reference is resolved by looking for previous closest mentions of their 

ontological descendants. Once a hypernym term is spotted, the system looks for its 

ontological descendant term occurs before the start of current hypernym term. A distance 

threshold of 100 is set to avoid mapping to unrelated hyponym concepts. If multiple 

descendant concepts are found within the distance threshold, the closest one will be 

selected and used to replace existing mapping concept for current hypernym. However, 

if no descendant concept is found, the hypernym concept will remain as it is. 

Polysemy 

Polysemy refers to a linguistic phenomenon where a single word or a phrase may be 

associated with multiple meaning and therefore have the potential to be misinterpreted 

(Krovetz, 1997). 

Sublanguages are restricted to specific semantic domains, which in turn affect the word 

usage. They generally tend to reduce the degree of polysemy. Nonetheless, the problem 

may still persist. For example, as pointed by the domain expert,  word rupture in phrases 

ligament rupture and cyst rupture would be interpreted differently. In the former case it 

should be mapped to the following concept in the TRAK ontology: 

 

In the latter case, it should be mapped to an alternative interpretation represented by the 

following concept: 

id: TRAK:0000211 
name: tear  
def: "Forcible tearing or disruption of tissue." [] 
synonym: "rupture" EXACT [] 
synonym: "tearing" EXACT [] 
synonym: "disruption" EXACT [] 
synonym: "split" EXACT [] 
is_a: TRAK:0000206 ! injury 
relationship: occurs_in TRAK:0000045 ! meniscus 
relationship: occurs_in TRAK:0000046 ! tendon 
relationship: occurs_in TRAK:0001072 ! skeletal muscle 
relationship: occurs_in TRAK:0001027 ! ligament organ 
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In such cases, co–occurrence information is used to resolve typical ambiguities observed 

in the training set. For example, when rupture co–occurs with a cyst (i.e. any descendant 

of the cyst concept), e.g. 

 

it is used to correct its default interpretation as a tear, which represents an injury, to an 

alternative one, which represents a morphologic descriptor: 

 

Thus, we are able to differentiate between the different uses of the term rupture in this 

latter example and that of the following example: 

 

By default, rupture has already been mapped to the TRAK concept with identifier 

TRAK:0000211 representing an injury. It co-occurs with MCL, the abbreviation of medial 

collateral ligament, which matches the relationship defined for concept TRAK:0000211. 

This polysemy interpretation is restricted to the sublanguage of the knee injury domain. 

It may not be correct in or generalisable to other clinical domains. 

6.7 Template filling 

We previously described how the ontology, or more specifically – its vocabulary, is used 

to support NER as the first step in IE. Template filling as its final step is also driven by 

the ontology, or more specifically – its structure, i.e. relationships between concepts. This 

involves accessing information about semantic types by traversing the is–a hierarchy in 

order to identify slot filler candidates. In addition, relationships between the concepts are 

used to check compatibility between potential slot fillers. For example, if the extracted 

finding is a tear, then the anatomical entity affected must be soft tissue such as ligament 

or tendon. Similarly, if the affected anatomical entity is cartilage, then its qualifier must 

be related to bone or joint. 

id: TRAK:0001461 
name: rupture 
def: "The result of breaking open or bursting." [] 
is_a: TRAK:0001456 ! morphologic descriptor 
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We originally considered using OntoCAT (Adamusiak et al., 2011) for this purpose, as it 

provides a programming interface to query ontologies shared on BioPortal or user–

specified local OBO files. However, this would separate ontology querying from 

querying data, which are stored in a relational database. In order to enable integrative 

querying of both data and knowledge, we imported the ontology into the database. This 

allowed us to implement ontology–driven IE as a series of SQL queries that 

simultaneously access the data and the ontology. The remainder of this section describes 

the template filling process, where all semantic interpretations mentioned imply the use 

of such queries. To facilitate the slot filling procedure, a two-step text segmentation 

process is incorporated. The aim of this two-step segmentation is to split long and 

complex sentences into segments that contain at most one finding term in each segment. 

The first segmentation is purely based on lexical clues, while the second segmentation 

combines lexical clues with allocated slot types. Some lexical clues such as and and with 

sometimes are used to connect nested concepts (see Section 6.6.1) and do not necessarily 

indicate a separate finding statement. Therefore, such lexical clues are not considered in 

the first segmentation stage. With identified finding terms, the second segmentation 

works on to further segment a sentence or a segment from previous segmentation when 

there are two finding terms separated by these lexical clues. 

Text segmentation 

In an effort to separate the contexts in which multiple findings are mentioned within the 

same sentence of an MRI report, these sentences are split into segments. Sentence 

segmentation involves separation of items in lists occurring within certain sections of 

MRI reports, namely those of history and conclusions. For example, the following two 

sentences 

 

would be segmented into parts relying on comma as a separator. Other sentences are 

segmented using a set of lexical clues such as but, which, consistent with, etc. For example, 

the following sentence: 

 

would be separated into three segments:  
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Segmentation simplifies subsequent context analysis. When used in combination with the 

ontology to infer relationships between named entities, segmentation minimises the need 

for complex syntactic analysis. In fact, other than analysing prepositional phrases, no 

other syntactic analysis is performed as part of template filling in KneeTex. Alternatively, 

syntactic parsing can be used to support text segmentation, but such an approach would 

be more computationally intensive and not necessarily improving the accuracy. Due to 

the prevalence of ill formed sentences in clinical narratives (Fan et al., 2013; M. Jiang et 

al., 2015), lexical rules may be more robust. For example, in sentence ‘He experienced 

decreased range of motion and tenderness’, decreased should only link to range of 

motion. A person with specific domain knowledge will recognise this correctly. However, 

the parser incorrectly links decreased to both range of motion and tenderness. 

Slot filler candidates 

Once the sentences have been segmented, previously recognised named entities are 

annotated as candidates for specific slots based on their semantic type. Table 6-2 maps 

semantic types to the corresponding slots. For example, all named entities identified in 

the ontology as descendants of certainty descriptor (TRAK:0001422) or visibility 

descriptor (TRAK:0001495) are labelled as candidates for filling the certainty slot in the 

template shown in Figure 6-1. 
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Table 6-2 Corresponding semantic types for slots 

Slot	 Semantic	type	 TRAK	identifier	 Example	
Finding	 accident	 TRAK:0000362	 Direct	fall	onto	anterior	tibia.	

clinical	manifestation	 TRAK:0000092	 There	is	some	oedema	superficial	to	the	
MCL.	

modality-related	
characteristic		

TRAK:0001447	 The	ACL	returns	abnormal	signal.	

morphologic	
descriptor		

TRAK:0001456	 There	is	slight	thickening	of	the	medial	
collateral	ligament.	

normality	descriptor	 TRAK:0001467	 The	articular	cartilage	is	unremarkable.	
pathological	
condition	

TRAK:0000204	 There	is	a	small	Baker's	cyst.	

physical	examination	 TRAK:0000656	 Positive	McMurray's.	
physiological	
condition	descriptor	

TRAK:0001482	 No	evidence	of	articular	cartilage	damage.	

surgery	 TRAK:0000236	 Presumably	this	had	been	excised	during	the	
ACL	reconstruction.	

Finding	
qualifier	

clinical	finding	 TRAK:0000091	 Positive	McMurray's.	
composition	
descriptor	

TRAK:0001322	 Incidental	note	is	made	of	a	simple	popliteal	
cyst.	

distribution	pattern	 TRAK:0001441	 There	is	focal	hyaline	cartilage	fissuring.	
orientation	
descriptor	

TRAK:0001529	 This	could	represent	a	longitudinal	split.	

quantity	descriptor	 TRAK:0001468	 There	are	also	several	loose	bodies.	
size	descriptor	 TRAK:0001485	 There	is	a	small	Baker's	cyst.	
sport	 TRAK:0000323	 HISTORY	Squash	injury.	
stage	of	healing	
descriptor	

TRAK:0001502	 There	is	a	healing	tear	of	the	medial	
collateral	ligament.	

status	descriptor	 TRAK:0001478	 Focal	area	of	severe	chondromalacia	in	the	
medial	compartment.	

temporal	descriptor	 TRAK:0001488	 There	is	acute	ACL	tear.	
Certainty	 certainty	descriptor	 TRAK:0001422	 This	raises	the	possibility	of	a	previous	

patella	dislocation.	
visibility	descriptor	 TRAK:0001495	 Normal	appearance	of	the	articular	cartilage.	

Anatomy	 anatomical	entity	 TRAK:0001337	 The	menisci	,	collateral	ligaments	and	the	
PCL	are	intact.	

Anatomy	
qualifier	

anatomical	location	
descriptor	

TRAK:0001561	 There	is	some	oedema	superficial	to	the	
MCL.	

general	anatomical	
term	

TRAK:0001581	 There	is	a	lot	of	oedema	in	the	ACL	fibres.	

meniscus	zone	 TRAK:0001345	 Complex	tear	of	posterior	horn	of	the	lateral	
meniscus.	

 

In addition, co–occurrence of certain concepts and semantic types is used to determine 

the most appropriate slot filler. For example, when cartilage co–occurs with other 

anatomical concepts, they are labelled as candidates for the anatomy qualifier slot rather 

than the anatomy slot as they otherwise would be, e.g. 
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This is based on an observation that the finding will most likely apply to cartilage as an 

object, an observation drawn from the training data. 

Additional text segmentation 

Preferably, we aim to have at most one finding in each sentence segment. However, there 

are still problems from the previous segmentation in Section 6.7.1 using heuristics lexical 

clues. Some lexical clues such as and and with sometimes are used to connect nested 

concepts (see Section 6.6.1) and do not necessarily indicate another statement about 

clinical findings, e.g. 

 

Now with the finding slot candidates been identified, we can combine this information 

with such lexical clues in order to determine whether to use them to segment a sentence. 

For example, when two findings are separated by and as in: 

 

For the example shown above, once we have the two finding slot candidates identified, 

we could use the conjunction word and to split the sentence into: 

 

Slot filling 

Finally, each segment is analysed in order to fill the template. In the first step, all findings 

are identified within a segment. Following the completion of the two–step segmentation 

process, most segments will contain at most two findings. The analysis of segments with 

a single finding involves identification of candidates for the following slots: finding 

qualifiers, negation, certainty and anatomy, which are all assumed to be linked directly 

to the given finding. Further analysis is required only if there are anatomy qualifiers that 

need to be linked to appropriate anatomy slot fillers. A simple analysis using lexical clues 

of prepositional phrases is used to achieve this. For example, in the following sentence: 
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the prepositional phrase aspect of, is used to link anatomy and anatomy qualifier slot 

fillers. 

If no anatomy filler is found within a segment, an attempt is made to identify a potential 

filler within preceding segments. In the following example: 

 

this approach would result in linking the mention of tear in the second sentence to medial 

meniscus mentioned in the previous sentence. In summary, when a single finding is found 

within a segment, the following workflow in Figure 6-9 specifies the template filling 

rules. 

 

Figure 6-9 Template filling rule for segment with only one finding term 

When two findings are identified within a segment, other slot fillers need to be linked to 

appropriate findings. Using the end of the first finding as a boundary, the remaining slot 
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fillers are divided between the two findings. In the following example where a radiologist 

failed to enter a comma to separate two findings: 

 

this approach would correctly link tenderness to lateral joint line and tear to meniscus. 

An exception is the use of conjunction or, e.g. 

 

in which case the anatomy slot fillers are shared between the two findings. In summary, 

when two findings are found within a segment, the following workflow in Figure 6-10 

specifies the template filling rules. 

 

Figure 6-10 Template filling rule for segment with two finding terms 

Although we made every effort to segment sentences, it is still possible to have more than 

two findings occurring in the same segment. Friedman (2006) pointed out rules that link 

those multiple findings together can be quite complex and it may be impossible for an 

NLP system to output extracted information without loss of substantial information. 

Therefore, when there are more than two findings occurring in the same segment, our 

system will not attempt to extract the segment. Instead, it will make a note to the segment 

for further inspections. 
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6.8 Results 

Gold standard 

A test dataset was created as a subset of 100 MRI reports selected randomly from the 

dataset described previously in Section 4.5.4 and removed from consideration prior to 

system development. Its sole purpose was to test the performance of the system on unseen 

data. In order to create a gold standard, the test dataset was annotated manually by two 

independent annotators. 

Inter-annotator agreement between the two annotators achieved 0.825 in Fleiss’ Kappa 

coefficient value. This indicates almost perfect agreement according to the guideline 

(Landis and Koch, 1977) and therefore the annotation result was reliable. A gold standard 

was created by the third annotator who independently resolved the inter–annotator 

disagreements, ensured the consistency of annotations and mapped individual 

annotations of text spans to the corresponding concepts in the TRAK ontology. The gold 

standard annotations were converted to filled IE templates represented as JSON objects 

(see Textbox 6-1 and 6-2 for examples) in order to support their comparison to KneeTex 

output during evaluation. Figure 6-11 shows the distribution of slot fillers in the gold 

standard. 

 

Figure 6-11 Distribution of slot fillers in the gold standard 
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Total 1253 651 233 1350 473

Distinct	fillers 187 179 49 139 117

Distinct	concepts 85 73 9 60 54
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Evaluation 

The system was evaluated at the conceptual level. Each automatically filled template slot 

was mapped to a TRAK concept. We compared manually annotated and automatically 

extracted mappings to TRAK concepts. In other words, each automatically filled template 

slot, represented by a TRAK concept identifier, was classified either as a true positive if 

it matched the slot filler in the gold standard or as a false positive otherwise. Conversely, 

each slot filler in the gold standard was classified as a false negative if it was not extracted 

by the system. Given the total numbers of true positives (TP), false positives (FP) and 

false negatives (FN), precision (P) and recall (R) were calculated as the following ratios: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃	 + 𝐹𝑃 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃	 + 𝐹𝑁 

The performance was evaluated using recall (R) and precision (P), as well as their 

combination into the F-measure: 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2	 ∙ 	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ∙ 	𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + ! 𝑒𝑐𝑎𝑙𝑙 	

These values were micro–averaged across each slot (vertical evaluation) as well as the 

whole entries that take into account the links between the slot fillers (horizontal 

evaluation). Table 6-3 provides evaluation results. 

Table 6-3 System performances on test set over slots 

Slot	 TP	 FP	 FN	 Precision	 Recall	 F-measure	
Finding	 1251	 5	 3	 99.60	 99.76	 99.68	
Finding	qualifier	 636	 19	 15	 97.10	 97.70	 97.40	
Negation	 91	 1	 4	 98.91	 95.79	 97.33	
Certainty	 232	 8	 2	 96.67	 99.15	 97.89	
Anatomy	 1313	 30	 38	 97.77	 97.19	 97.48	
Anatomy	qualifier	 439	 18	 34	 96.06	 92.81	 94.41	
Overall	 3962	 81	 96	 98.00	 97.63	 97.81	

 

Stepwise performances 

The overall system performance achieved a satisfactory F-measure of 0.9781. Here we 

discuss contributions of different steps in the system. 

We started with linguistic pre-processing. The Stanford NLP that we used successfully 

segmented 96 out of 100 documents. There were 4 documents not being segmented 
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correctly due to incorrectly use of the period punctuation. Therefore, the test set was 

segmented into 940 sentences compared with 942 in the gold standard. 

Using dictionary converted from TRAK, we used PathNER for the dictionary lookup step 

and recognised 82.36% of all terms with F-measure of 0.79 for the original PathNER 

output compared with the gold standard. Next we applied complementary pattern-based 

NER and recognised 92.55% of all term, and improved the F-measure to 0.84. Further 

with rule-based ambiguity resolutions, 99.57% of all terms were recognised and the F-

measure was also improved to 0.96. With pattern-based NER, 95.8% of all negations 

were recognised, achieving an F-measure of 0.97. Finally, 98.73% of all section headings 

were also recognised. 

To evaluate the performance of co-reference resolution, we manually searched the test 

set to examine some concepts that occurs most frequently in the training set, including 

meniscus, ligament, and tendon that occur alone without qualifiers. 29 out of 32 

occurrences of these concepts were mapped correctly to co-referenced concepts. 

We also looked for occurrences of rupture in the test set to examine the performance of 

our polysemy resolution. All 6 mentions of rupture co-occurred together with different 

ligaments were correctly interpreted as tear. 

In order to see how well the two text segmentation processes work, we manually 

examined segmented results on sentences that are longer than 200 characters. There are 

21 of those sentences in the test set, and 20 of them require segmentation. Both 

segmentation processes worked well on these sentences and segmented them into 66 

segments. However, there was also one unnecessary segmentation (see Figure 6-12), 

though it would not affect the system performance: 

 

Figure 6-12 An example of unnecessary segmentation (the second segment: which would be) in the 
first text segmentation process 
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6.9 Discussion 

Performance comparison 

Given that most IE systems represent bespoke software solutions built around a task–

specific template, we were not able to compare the performance of our system to that of 

an external system used as a baseline. However, we provide a like–for–like comparison 

in order to demonstrate that the performance of KneeTex is in line with the state-of-the-

art in similar domains, albeit we admit that KneeTex operates in a relatively narrow 

domain. Given the fact that the systems operate in different domains and were tested on 

different datasets, we emphasise that any values cited hereafter are used purely as a 

reference point rather than a direct comparison. 

We previously discussed two NLP systems that were applied to extract information from 

radiology reports, MedLEE (Hripcsak et al., 2002) and MPLUS (Christensen et al., 2002), 

whose recall was found to be 81% and 87% respectively. In KneeTex, recall ranged from 

92.81% to 99.76% for individual slots, achieving 97.63% overall. With the overall 

precision of 98.00%, which varied from 96.06% to 99.60%, KneeTex compares well to 

MPLUS, which achieved 85% (Christensen et al., 2002). 

Focusing on the negation slot, we compared KneeTex to other systems in terms of their 

performance in determining whether a given finding is negated. In particular, it is useful 

to compare KneeTex to NegEx, a widely used algorithm for identifying negative findings 

in clinical narratives, originally evaluated on discharge summaries where it achieved 

precision of 84.5% and recall of 77.8%. NegEx was incorporated into cTAKES,a generic 

NLP system tailored to the clinical domain, which identified negation in electronic 

medical records with F–measure of 96% (Savova et al., 2010). ConText, a derivative of 

the NegEx algorithm, was evaluated across different types of clinical narratives including 

radiology reports where it achieved precision of 100% and recall of 86%, thus yielding 

an F–measure of 93% (Harkema et al., 2009). KneeTex achieved slightly lower precision 

(98.91%), but balanced it with high recall (95.79%), giving an F–measure of 97.33%. 

By viewing the process of filling the remaining slots as NER problem, we considered 

ConceptMapper, which recently demonstrated the best performance in terms of F–

measure (83%) (Funk et al., 2014). In a different study, ConceptMapper was evaluated 

specifically for two types of entities: diagnoses and anatomical sites. Different 

configuration parameters were used in the experiments and the average values of 

precision, recall and F–measure were 86%, 90% and 88% for diagnoses and  91%, 88% 
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and 89% for anatomical sites (Tanenblatt et al., 2010). KneeTex recorded the following 

values for the F–measure: finding (99.68%), finding qualifier (97.40%), anatomy 

(97.48%) and anatomy qualifier (94.41%). As a matter of fact, PathNER, which drives 

NER in KneeTex, performed much better on our gold standard than on the pathway–

specific corpus, when it was originally evaluated and reached 84% on F–measure, owing 

to a richer dictionary and additional post–processing, which included coordination, 

enumeration and co–reference resolution. 

Overall, high recall and precision values, which are equivalent to human–like 

performance, can be attributed to two factors related to the fact that KneeTex operates in 

a relatively narrow domain with the document type restricted to MRI reports and their 

content confined to knee pathology. Firstly, the sublanguage used in this domain is 

proved to have consistent patterns, a property that makes it amenable to modelling by a 

set of sophisticated lexico–semantic rules. Secondly, the TRAK ontology in KneeTex 

provides a fine–grained lexico–semantic knowledge base, which is highly attuned to this 

sublanguage. Traditionally, the extent of knowledge engineering involved in the 

development of domain–specific ontologies with sufficient detail and coverage for text 

mining applications led them to be regarded as prohibitively expensive. However, 

previously we suggested that the knowledge extracted from text using advanced NLP 

could be curated and used to rapidly update the content of biomedical ontologies (Spasic 

et al., 2005). In this study we have demonstrated how this approach can be used in practice. 

Given that the principal link between text and an ontology is a terminology, which aims 

to map concepts to terms, we have focused on ATR as the most relevant NLP task in this 

context and shown how MetaMap (Aronson, 2001) and FlexiTerm (Spasić et al., 2013) 

can be applied for this purpose. 

Error analysis 

In order to get additional insight into the system's performance, we conducted error 

analysis and classified their major causes. 

Dictionary lookup 

Some of the errors stem from incorrectly recognised named entities. For example, in 

segment "his patella tends to lie tilted laterally," string similarity caused PathNER to 

incorrectly recognise patella tends as patellar tendon, therefore failing to extract patella 

instead. While flexible matching based on a combination of the TF–IDF measure and the 

Jaro-Winkler distance makes this dictionary lookup robust with respect to the problem of 
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term variation commonly seen in biomedical text, it can obviously lead to incorrect 

matches based on string similarity. The right balance between flexible and incorrect 

matching requires careful experiments to optimise the similarity threshold used in 

PathNER. 

As mentioned in Section 6.3, POS tagging was not involved in the linguistic pre-

processing due to declined performances on clinical narratives of leading POS taggers. 

They also provided less information than semantic tags that we have used. However, a 

properly domain-specific trained POS tagger could be considered to solve these 

remaining errors. A properly trained POS tagger adapted to this specific domain could be 

considered. 

Co-references 

In Section 6.6.2 we described a simple heuristic approach we use to recognise co-

reference. It is by no means a generic approach to co-reference resolution and, while our 

approach generally provides satisfactory results, some of the co-references will remain 

unresolved. In total, there are 3 co-references not being solved in the test set. For example, 

the following sentence: 

 

would be segmented as: 

 

The following anatomy slot filler was extracted from the second segment: 

 

However, by looking at the whole, it is clear the term meniscal co-refers to the previous 

mention of lateral meniscus. Therefore, the correct slot filler should be: 

 

Additional experiments are needed to see how a generic co-reference resolution method 

would affect the system performance. While our approach may have lower recall, a more 

generic method would most likely have lower precision, so such method would not 

necessarily improve the system's performance. Nonetheless, it would improve the 

{"text":"meniscal", "id":"TRAK_0000045", "name":"meniscus"} 

{"text":"meniscal", "id":"TRAK_0001089", "name":"lateral meniscus"} 
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generalisability of the system and facilitate its portability. Such investigation has been 

identified as an area of future work. 

Preferred interpretation 

Some of the errors were counted as such due to mismatch to manual annotations even 

though the extracted information can still be considered semantically correct. Consider 

for example the following sentence:  

 

The system recognised the word mid as a synonym for middle (TRAK:0001598). Its 

classification as an anatomical location descriptor (TRAK:0001561) was used to fill the 

anatomy qualifier slot as follows: 

 

Its literal interpretation as "an intermediate part or section; an area that is approximately 

central within some larger region" happens to be semantically correct. However, in the 

given context, the following annotation in the gold standard represents preferred 

interpretation: 

 

since body of meniscus (TRAK:0001346) most specifically represents its middle third. 

Such mistakes happened 4 times in the test set. Although this may not affect 

understandings from the domain expert, the preferred interpretation would provide more 

precise information. Pattern-based rules could be implemented in the future to solve 

preferred interpretation problems with co-occurrence patterns. 

Negation 

Most negated representations used typical negation terms as no, not, without and rather 

than. However, negated representations using atypical negation terms that have negative 

meaning may be ignored. Consider for example the following sentence: 

 

The system automatically extracted the following two findings: 

 

{"text":"mid", "id":"TRAK:0001598", "name":"middle"} 

{"text":"mid portion", "id":"TRAK:0001346", "name":"body of meniscus"} 
 

{"text":"low signal", "id":"TRAK:0001309", "name":"low signal intensity"} 
{"text":"normal", "id":"TRAK:0001312", "name":"normal"} 
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However, the system failed to make use of the clue absent found at the end of the sentence 

to recognise that these findings are actually negative. Although this mistake only 

happened once on the test set, it will be used to inform future improvements of the system. 

Generalisability 

Stepwise generalisability 

Although we come up with a reusable system structure that can be referenced for other 

similar tasks, the availability of an ontology or other knowledge base or a dictionary is a 

prerequisite to use this system. 

We used off-the-shelf tools including Stanford NLP and PathNER for linguistic pre-

processing and dictionary lookup processes. Such processes can be directly reused 

without human interference, providing that there is an available knowledge source that 

can be converted into PathNER dictionary. 

For the rest of the system, we used a lot of lexico-semantic rules to help with 

disambiguation and template filling. In general, it is not recommended to apply these 

rules directly on domains other than knee injury MRI reports. However, there are some 

thoughts that could be referenced to solve similar problems. 

In our dataset, we found that radiologists quite often use nested descriptions such as 

medial and lateral compartments, probably for convenience. It is rational to assume that 

this may also happen in other clinical descriptions. 

Hyponym and polysemy are common features of natural languages (Sheeba et al., 2013). 

Although the rules we used are restricted to the domain of knee injury MRI reports, such 

approaches of combining lexical and semantic patterns could be referenced to identify 

rules from targeted domain. 

Slot candidates were annotated based on semantic rules and co-occurrence patterns. The 

TRAK ontology together with professional domain knowledge constructed these rules, 

i.e. these rules are domain specific. Similarly, the template filling rules are also domain 

specific. 

Overall generalisability 

Recall that our information extraction is ontology-driven, where the ontology used for 

this purpose was expanded by applying four strategies, three of which were data-driven. 

The data-driven strategies were applied against the training set, which does not overlap 
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with the test set. Nonetheless, both training and test datasets come from the same source 

upon which our ontology is dependant. Therefore, the results shown in Table 6-3 may 

not be representative of the system performance on a different dataset where unknown 

concepts may be mentioned signifying incompleteness of the ontology. 

In order to assess the generalisability of the system we conducted a series of stage–wise 

experiments in which we removed new concepts identified from the training dataset by 

using the three data-driven strategies. We specifically focused on concepts outside of the 

finding descriptor class for two reasons. Firstly, this class corresponds to the RadLex 

descriptor branch of the RadLex hierarchy and its dependency on the training data is 

minimal. Secondly, concepts from this class are used to fill three "leaf" slots (finding 

qualifier, anatomy qualifier and certainty, see Table 6-2) that have no further 

dependencies (see Figure 6-1) and as such will have no ripple effect on the template 

filling unlike finding and anatomy slots. For example, if finding is not identified, it will 

affect text segmentation as well as linking to other slot fillers. Therefore, the highest 

impact on evaluation results would be caused by concepts outside the finding descriptor 

branch. 

Having identified just over 100 of such concepts, we randomly selected 100 of them, 

randomized their order and removed top k of these concepts (k = 10, 20, ... , 100) from 

the ontology, which was then used to run KneeTex on the gold standard. Figure 6-13 

provides a comparison of evaluation results. As expected, completeness of the ontology 

directly affected the recall of the system. This was most obvious when frequently 

referenced concepts such as body of meniscus (TRAK:0001346) or joint effusion 

(TRAK:0001411) were removed. However, the frequency and meaning of these concepts 

imply that they are of general relevance to the domain and not the result of overfitting to 

the training dataset. On the other side, the removal of less frequently referenced concepts 

did not have a profound effect on recall. For example, after removing as many as 50 

concepts from the ontology, recall was still very high at 92.07% dropping by 5.57 percent 

points. Precision proved to be more stable reaching 94.48% after removing all 100 

concepts, dropping only by 3.52 percent points. In summary, we can conclude that the 

system would most likely maintain high performance across different datasets. Ideally, 

we would like to test this assumption on such datasets, but at this point strict privacy laws 

prevent us from obtaining them from other institutions. 
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Figure 6-13 Stagewise experiments on system generalisability by removing concepts identified from 
training data 

  



 95 

Chapter 7 KneeBase: a reusable web-based information 

retrieval system for epidemiologic study 

In the previous chapter we described KneeTex, a system we developed for information 

extraction from knee MRI reports. Given an MRI report as input, the system outputs the 

corresponding clinical findings in the form of JSON objects. The extracted information 

is also mapped onto the TRAK ontology. As a result, formally structured and coded 

information allows for complex searches to be conducted efficiently over the original 

MRI reports, thereby effectively supporting epidemiologic studies of knee conditions. 

Note that KneeTex is an information extraction system and as such does not include an 

interface to search through the extracted information. In this chapter we describe 

KneeBase, an information retrieval system that supports this functionality, which 

represents an interdisciplinary contribution of this thesis. 

7.1 Motivation 

Ontologies and extracted clinical information can be used in many ways, such as 

predicting treatment outcomes, helping clinicians identifying potential related findings, 

answering clinical questions, etc. 

Schattner et al. (2010) noticed improved clinical practice with support from extracted 

clinical information, even with technical failure in identifying some data. Westbrook et 

al. (2005) found that although experienced clinicians do not often use online information 

retrieval systems, but 88% of system users reported significant helpful for answering 

clinical problems. Overall, Buntin et al. (2011) concluded that 92% of recent health 

information technology related articles have indicated positive impact on healthcare 

delivery. Meanwhile, Bernard et al. (2012) have also noticed an increasing trend of using 

online information in younger practitioners and practices with Internet access. 

Therefore, with demonstrated positive impacts described above, we developed KneeBase 

as an example of web-based information retrieval system that integrates the TRAK 

ontology and extracted information from KneeTex. We also provide a reusable system 

framework that can be used for other similar tasks. 

7.2 System overview 

We provided KneeBase as an internal demonstration of a clinical information retrieval 

system, which is one possible integrated use of ontology and ontology-based extracted 

information. A brief system structure of KneeBase is shown in Figure 7-1. The system 
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is driven by previously extracted information from KneeTex and the TRAK ontology. 

System users are allowed to browse and perform direct or complex searches to obtain 

demanded information. 

 

Figure 7-1 KneeBase system structure 

 

Structured data management 

KneeTex effectively converts unstructured text data into structured data representation 

that conforms to a predefined data model in the JSON format. The JSON format of 

extracted information allows for it to be stored directly into a document–oriented database 

such as MongoDB (mongoDB, 2015a), from which it can be easily queried.  

Database structure 

MongoDB stores data as BSON documents, which is a binary representation of JSON 

with additional type information. All documents are stored in collections, where a 

collection is a group of related documents that share common indexes (mongoDB, 2015b). 

Table 7-1 KneeBase database structure 

Collection	 Content	
documents	 Original	MRI	reports	in	the	development	set.	
sentences	 Segmented	sentences	from	reports.	
sections	 Extracted	section	headings.	
terms	 Terms	mapping	with	TRAK	ontology.	
trak_concepts	 Concepts	from	TRAK	ontology.	
trak_isas	 Parent-child	relations	in	TRAK.	
trak_relations	 Relations	in	TRAK	other	than	parent-child	relation.	
templates	 Filled	templates.	

 

Further permission will be required from NHS for practical use of this system. Therefore, 

for the system function demonstration purpose, we processed only 100 MRI reports with 
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KneeTex, which resulted in filling 1,375 templates represented as JSON objects. We 

stored their BSON equivalents into a MongoDB database. These BSON documents form 

the templates collection in KneeBase database. In order to support complex searches as 

part of epidemiological studies, we also imported seven other collections into the same 

database, see Table 7-1 for details.  

In order to support query expansion as part of information retrieval, KneeBase also 

integrates the TRAK ontology. The TRAK ontology is integrated in two ways: the 

ontology itself and derived database collections. Three collections derived from the 

ontology are: trak_concepts, trak_isas and trak_relations. These collections correspond 

to the vocabulary, taxonomy and a network of domain-specific relationships respectively. 

Core functionality 

Developed as a web-based information retrieval system, KneeBase allows cross-platform 

usages. Figure 7-1 depicts a basic system working flow, which allows users to browse 

and search for both integrated ontology and extracted information. User views including 

document viewer, term viewer and ontology viewer are cross-linked to allow cross-search 

from returned search results. 

The ontology is viewable either as tree structure enabled by using NCBO Ontology Tree 

Widget (NCBO, 2015) to visualize the ontology, or as list of terms from the database. 

System users are able to search the database using customised queries, achieved by 

implementing the jQuery QueryBuilder (Sorel, 2015). Queries can be generated by using 

pre-defined fields (e.g. category, filename, finding, finding qualifier, concept name, 

negated, etc.) with user-defined keywords. 

Example use cases 

Main use cases of KneeBase will be query centred uses. Here we illustrated a few use 

cases. 

Single condition query 

1. User provide login information 

2. System grant access if correct login information provided 

3. User use query builder to submit a simple query, e.g.if the user wants to 

search for information related to tear: 

• Choose search field: Term 

• Fill keyword field: tear 

4. System returns result in term viewer, provide term id, definition, etc. 
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5. Optional further research: 

a. User request to see the term in ontology hierarchy 

b. request to see documents that contains the term 

c. User request to see templates that contains the term 

6. Optional research return results: 

a. System returns ontology viewer and jumps to the term 

b. System returns document viewer showing all related documents, and 

highlight the term 

c. returns template viewer showing all related templates 

7. User may continue other optional search in returned viewers 

The above shows a typical use case to represent user authentication (step 1 and 2), a single 

term search (step 3), retrieval of results (step 4) and optional further search (step 5 and 

6). 

Multi-condition query 

1. Same login process as above 

2. User use query builder to submit a complex query, e.g. if the user wants 

to search for radiology report(s) that have complete tear at posterior horn 

of lateral meniscus or intact ACL: 

a. Set general group condition relation: OR 

b. Add sub condition group and set sub group internal relation: AND 

c. Choose search field: Anatomy, and fill keyword field: lateral 

meniscus 

d. Choose search filed: Anatomy qualifier, and fill keyword field: 

posterior horn 

e. Choose search field: Finding, and fill keyword field: tear 

f. Choose search field: Finding qualifier, and fill keyword field: 

complete 

g. Add a parallel group to the previous one, and set group internal 

relation: AND 

h. Choose search field: Finding, and fill keyword field: intact 

i. Choose search field: Anatomy, and fill keyword field: ACL 

3. System return template viewer showing related templates 

4. Optional further research from the template viewer 

The above shows a typical use case of submit a multi-condition query and retrieval of 

results. Search fields are predefined as mentioned in Section 7.2.2. It is not necessarily to 

choose a specific search field if the user is unsure about the category of intended keyword. 

The search field Term can be chosen instead. Then the system will search for any slot 

that matches the given keyword. 
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Chapter 8 Conclusion 

The aim of research presented in this thesis is to automate semantic interpretation on 

clinical narratives. The intention is that by overcoming obstacles caused by costly manual 

efforts with automated interpretation processes on clinical narratives, we will be able to 

reuse clinical narratives to support epidemiologic research. 

The use of specific document types (knee MRI reports) and ontology (TRAK) allowed 

us to test a hypothesis about the feasibility of our approach to rapid development of high 

performing IE systems. Nonetheless, the approach itself is not restricted to a particular 

domain and as such represents a general contribution to computer science in addition to 

project deliverables that include an extended ontology and two systems it enables to 

perform information extraction (KneeTex) and information retrieval (KneeBase). 

Our achievements include: a reusable rapid ontology development framework 

demonstrated by expanding TRAK; an expanded TRAK ontology; an ontology-based 

information extraction system KneeTex; and a web-based information retrieval system 

KneeBase. Section 8.1 reviews achievements in this research, followed by a discussion 

of limitations in Section 8.2. Possible future work is discussed in Section 8.3. 

8.1 Summary of contributions 

Rapid ontology development framework 

We adopted an alternative approach based on a set of strategies that can be used to 

systematically expand the coverage of existing ontologies or to develop them from 

scratch. Three of these strategies are data–driven and as such are more likely to ensure 

that the ontology effectively supports the intended NLP application. Each data–driven 

strategy utilises a different approach to extracting the relevant terminology from the data 

either manually or automatically. The fourth strategy is based on integration of concepts 

from other relevant knowledge sources. The two main aims of this strategy are: (1) to 

avoid the overfitting of the ontology to limited data available, and (2) to provide an initial 

taxonomic structure to incorporate new concepts. 

In this study, we illustrated how these strategies were implemented in practice to expand 

the coverage of the TRAK ontology to make it suitable for a specific NLP application. 
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Expanded TRAK ontology 

We practically demonstrated the approach to update the TRAK ontology in order to allow 

interpretation of information contained in knee MRI reports. We expanded TRAK into a 

fine-grained lexicalised ontology. The expanded TRAK contains 1,621 concepts, 2,550 

synonyms and 560 relationship instances, compared with 1,292 concepts, 1,720 

synonyms and 518 relationships in the original one. 

The TRAK ontology-based information extraction system KneeTex exhibited human-

level performance, which proves that the TRAK ontology has adequate coverage and 

been highly attuned to the given sublanguage. 

KneeTex 

We developed KneeTex as an ontology–driven system for information extraction from 

narrative reports that describe an MRI scan of the knee. The system exhibited human–

level performance on a gold standard, attributed partly to the use of expanded TRAK 

ontology, which serves as a very fine-grained lexico-semantic knowledge base and plays 

a pivotal role in guiding and constraining text analysis. 

The evaluation results confirm that KneeTex succeeded in making effective use of the 

ontology to support information extraction from knee MRI reports. 

KneeBase 

We demonstrated KneeBase as an example of integrated use of ontology and extracted 

information to build an information retrieval system. The system structure and 

programming framework can be reused for other similar ontology-based information 

retrieval tasks. As it has been proved with many previous studies that information 

retrieval systems have positive impact on clinical practices, we would hope that 

KneeBase can be used to to support large–scale multi–faceted epidemiologic studies of 

knee conditions. 

8.2 Generalisability and limitation 

Most efforts we have put in to this research are generalisable and can be exported to be 

applied to other similar tasks. Here we provide a step-by-step discussion on 

generalisability and limitations of our work. 

The rapid ontology development framework is a partially automated process. It utilises 

primarily data-driven strategies. The two strategies, dictionary-based and automatic term 
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recognition, are automated processes using off-the-shelf software tools, and therefore are 

highly exportable to other similar tasks and require little human operation. Human effort 

is inevitable as required by manual data annotation and manual terminology search, 

though domain expert are not necessaries required in these procedures. However, to 

achieve satisfactory coverage for such a specific domain, domain-specific knowledge is 

still essential. As mentioned, we have referenced to our domain expert for many 

suggestions, helping solving non-agreed annotations and manual curations on suggested 

terms from these strategies. We used manual annotation for the purpose of identifying 

non-standard and infrequent terms. The reason underneath is that we have a rather small 

sized unannotated training set. A large and proper annotated training set would have 

provided sufficient information in the first two automated strategies. 

The KneeTex information extraction system structure can be reused or referenced for 

similar tasks. However, we have used a large amount of lexical patterns and rules for term 

extraction and ambiguity resolution. These patterns and rules are propably restricted to 

the domain of knee injury MRI reports. Although we have not evaluated such patterns 

and rules on other dataset, it is not recommended to apply KneeTex directly on other 

domains without prior domain adaption. 

8.3 Future work 

Although our system achieved satisfactory performance, it also raises some requirements 

of future work, which could still be done to solve errors and further improve performance. 

Domain adapted POS tagger 

As mentioned in Section 6.3, POS tagging was not included in our linguistic pre-

processes. This is due to declined performances of general POS taggers when applied on 

clinical domains. Correct assigned POS tags could be helpful to solve errors as discussed 

in Section 6.9.2. Ferraro et al have seen an increase of 6.2% to 11.4% in accuracy after 

performed domain adaption processes (Ferraro et al., 2013). Therefore, more effort can 

be put into this. 

Dependency based negation resolution 

Negation resolution now assumes that findings that locate to the right of the negation 

term and are within the same segment with the negation term are negated. Although it 

worked quite well in our system, it would be better to have dependency relations involved 

for more accurate identification of negated concepts. 



 102 

Flexible co-reference resolution 

Our current system uses a simple heuristic semantic-rule-based approach to solve co-

reference problems. Exceptions have caused a few unsolved co-references in our system 

as our rules are not flexible enough. Many hybrid and supervised co-reference resolution 

systems participated and performed well in the 2011 i2b2 co-reference challenges 

(Uzuner et al., 2012). To introduce supervised machine learning to create flexible co-

reference resolution is worth considering for future work. 

Reduce human effort 

Human effort still takes a significant part in this project. Manual annotation, terminology 

search and curation all require some human interferences and domain knowledge. 

Although at current stage human effort is to some extent required, it is still possible to 

reduce some human effort with the availability of more data sets, which would improve 

the performance of the two automated strategies we have. There also exist many rule 

induction algorithms, which could potentially be applied to replace part of human effort 

in recognising rules and patterns. 

8.4 Summary 

In this research, we successfully tested our hypotheses that semantic interpretation of 

clinical narratives can be automated with ontology-based text mining and it is also 

feasible to expand an existing ontology effectively in a systematic pipeline. 

We achieved satisfactory performance in the strategies we developed to expand the 

TRAK ontology. Based on this expanded TRAK ontology, we successfully automated 

the semantic interpretation process with support from ontology-based text mining. 

Most of outcomes in this research can be reused or referenced in future research, 

including a rapid ontology development framework, the structure of our information 

extraction system KneeTex, the expanded TRAK ontology and a reusable information 

retrieval system framework. 

Although there is still room for improvement, our research demonstrated the state-of-the-

art performance. We hope that this research could provide useful insights for future text 

mining support on epidemiologic studies. 
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