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Summary 

 

The development of robust solution schemes for the nonlinear finite element analysis 

of quasi-brittle materials has been a challenging undertaking, due mainly to the 

stability and convergence difficulties associated with strain-softening materials.  The 

work described in this thesis addresses this issue by proposing a new method for 

improving the robustness and convergence characteristics of a finite element damage 

model. In this method, a smooth unloading-reloading function is employed to 

compute an approximate tangent matrix in an incremental iterative Newton type 

solution procedure. The new method is named ‘the smooth unloading-reloading’ 

(SUR) method. A range of examples, based on a set of idealised quasi-brittle 

specimens, are used to assess the performance of the SUR method. The results from 

these example analyses show that the proposed approach is numerically robust, 

effective and results in considerable savings relative to solutions obtained with a 

reference secant model. 

Three acceleration approaches are also proposed in this thesis to further improve the 

convergence properties of the new SUR method. The first acceleration approach, 

named ‘the predictive-SUR method’, predicts a converged value of a damage 

evolution variable using an extrapolation in semi-log space. The second proposed 

method is designated ‘the fixing approach’, in which a damage evolution parameter 

is updated from the last converged step in Stage-1 iterations and then fixed in Stage-

2 iterations. The third acceleration technique employs ‘a slack tolerance’ at key 

stages in a computation. The improvement of the convergence properties of the SUR 

method, when the proposed acceleration approaches are introduced, is illustrated 

using a series of example computations based on the analysis of a range of plain and 

reinforced concrete structural elements.   

In addition, a new element with an embedded strong discontinuity is proposed for 

simulating cracks in quasi-brittle structures. The new formulation is applied to 

quadrilateral elements and exploited to simulate mode-I, mode-II and mixed mode 

fracture. The interface element approach and the smeared crack approach are used as 

reference methods. The results from a series of examples show that the new 

proposed embedded strong discontinuity approach is both effective and accurate.  
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Chapter 1  

 

 

 

1.1    Introduction  

 

Micro-cracking is a feature of quasi-brittle (QB) materials loaded beyond their 

elastic limit and is the primary cause of stiffness and strength degradation in 

materials such as concrete and rocks. Laboratory samples of quasi-brittle material 

frequently exhibit a post-peak softening response when loaded in tension or 

unconfined compression. This macro-scopic softening behaviour is sometimes 

referred to as material softening although it is recognised that this is a structural 

phenomenon, resulting from the micro-cracking, rather than a fundamental response 

of the material (Bažant, 1992; Karihaloo, 1995; van Mier, 1996; Bažant and Planas, 

1997; van Mier, 2012). 

Softening behaviour has presented researchers with two related computational 

challenges; namely, how to (i) obtain mesh-objective predictions and (ii)) stable and 

converged solutions.  Mathematically, these issues are a consequence of the loss of 

ellipticity of the governing partial differential equations (De Borst, 2001; Jirásek, 

2007), when a certain degree of damage is exceeded, and are characterised by the 

associated stiffness matrix becoming non-positive definite (De Borst et al., 2012). 

The first of the above challenges issue can be dealt with, at least to first order 

accuracy, by using the crack-band model of Bažant and Oh (1983). More refined 

means of resolving the mesh-sensitivity problems include the use of integral 

(Pijaudier‐Cabot and Bažant, 1987; Jirásek and Marfia, 2005) and differential (Ru 

and Aifantis, 1993; Peerlings et al., 1996; De Borst et al., 1999; Rodríguez-Ferran et 

al., 2011) non-local models.   However, resolving the mesh sensitivity issue does not 

resolve of all the stability and convergence issues associated with modelling QB 
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materials (Jirásek and Bauer, 2012). The second issue has not yet been fully resolved 

and is still a topic of intense interest in the computational mechanics community. 

The nonlinear equations resulting from the finite element simulation of QB 

structures are frequently solved using incremental-iterative solution schemes based 

on Newton-Raphson (NR) algorithms (Crisfield, 1991; De Borst et al., 2012). It is 

the poor convergence properties of these solution schemes, when solving problems 

involving QB materials, which so frequently cause frustration to finite element 

analysts.  

Many approaches have been developed for improving the efficiency and robustness 

of these Newton-Raphson procedures (tangent stiffness matrix is computed in every 

iteration).These techniques include modified Newton-Raphson (tangent stiffness 

matrix is only updated occasionally), Quasi-Newton approaches (tangent matrix is 

computed in the first iteration of each step and in subsequent iterations is obtained by 

a secant approximation rather than re-evaluating it at every iteration), line search 

algorithms and arc-length procedures for tracing the complete equilibrium path, etc. 

(Crisfield, 1991; Crisfield, 1997; De Borst et al., 2012).  

None of the aforementioned algorithms are completely robust, nor do they fully 

resolve all the stability and convergence difficulties encountered when analysing QB 

structures. These problems are clearly expressed in the following three quotations: 

 Oliver et al. (2006a) stated “It is a very well-known that finite element 

formulations for modelling materiel failure suffer, very often from lack of 

robustness. Even if powerful continuation methods to pass structural 

unstable points are used, it is noticed that, as the material failure progresses 

across the solid, the condition number of the structural tangent stiffness 

deteriorates, the iterative Newton-Raphson fails and, eventually, the 

numerical simulation cannot be continued”.  

 

 Graça-e-Costa et al. (2013) reported that “Localisation of initially distributed 

cracking is a numerical challenging task, which is difficult to accomplish 

with conventional iterative methods, e.g. Newton-Raphson methods”.  

 

 Slobbe (2015) pointed out that “The conventional way of doing nonlinear FE 

analysis is by using incremental-iterative procedures, like regular or 

modified NR procedures, etc. However, in case of modelling failure these 

procedures may be unstable and convergence problems can be faced”.   
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These on-going stability and convergence difficulties of incremental-iterative 

solution schemes based on NR have undoubtedly been behind the development of 

solution algorithms that avoid multiple iterations to simulate QB structures. These 

methods include for example the ‘implicit-explicit’ approach of Oliver et al (Oliver 

et al., 2006a; Oliver et al., 2008a) or modified implicit-explicit method (Prazeres et 

al., 2015). The implicit-explicit methods employ a projected state variable, e.g. a 

damage parameter, to determine a predicted consistent tangent matrix. An alternative 

approach that also avoids using iterations, is the ‘Sequentially Linear Approach 

(SLA)’, which was proposed by Rots (2001). This method imposes an increment of 

damage instead of an increment of displacement or force, and uses a ‘saw-tooth’ 

function to replace the post-peak softening function. The SLA method has been 

improved over years by a number of investigators i.e. (Rots and Invernizzi, 2004; 

Rots et al., 2008; Eliáš et al., 2010; Graça-e-Costa et al., 2012; Vorel and Boshoff, 

2015).  

The numerical robustness of implicit-explicit and SLA approaches cannot be 

questioned and their effectiveness at dealing with a certain class of problem has been 

demonstrated.  Despite the fact that there are considerable benefits to using these 

approaches, they can result in non-smooth responses, and would require further 

development before being able to cope well with constitutive models that include 

non-linear crack closure in combined shear and normal modes. Currently they are 

not compatible with non-linear plasticity models for other materials, which would be 

an issue for solving soil-structure problems.  

The issue of poor convergence properties and the lack of robustness of existing 

solution schemes, when solving problems involving QB materials, provides the main 

motivation for the work of this thesis.   

The second motivation for this work results from a major drawback of the nonlocal 

integral and gradient models (which involve a length scale related to the fracture 

process zone). The particular issue in question is that these non-local approaches 

require a sufficiently fine resolution of the localized zone (several elements across 

the thickness of the localized zone) to accurately capture the deformation of the 

localized region and guarantee mesh objectivity (Mosler and Meschke, 2004; Foster 

et al., 2007; Dujc et al., 2010; Mosler et al., 2011). This requirement can make the 
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simulation of large structures computationally very expensive, especially when the 

location of the strain localization is not known a priori (Oliver et al., 2004; Mosler, 

2006; Parvaneh and Foster, 2016). 

Therefore, the strong discontinuity approach has been developed in recent years and 

has become a topic of intense interest for the simulation of material failure either by 

the embedded SD approach or by XFEM (Belytschko and Black, 1999; Oliver et al., 

1999; Borja, 2000; Jirásek, 2000; Oliver et al., 2003b; Oliver et al., 2006b). The 

main characteristic of the embedded SD approach is the enhancement of finite 

elements with additional local degrees of freedom to capture the displacement jumps 

associated with the discontinuities (Armero and Linder, 2008). Indeed, one main 

advantage of the embedded SD approach, which is  considered in this study, is the 

local (element) nature of this enhancement, which does not affect the number of 

global equations, since static condensation is performed at the element level (Linder 

and Armero, 2007; Dias-da-Costa et al., 2010). 

It should be noted that most of available embedded discontinuities finite elements 

approaches are based on constant strain triangle with constant displacement jumps. 

Quadrilateral elements with linearly varying kinematics of displacement jumps are 

less common (Armero and Linder, 2008; Dujc et al., 2013; Dias-da-Costa et al., 

2009b). A new computationally convenient formulation for introducing 

discontinuities into elements is described in this thesis. 

 

1.2    Aims and objectives  

 

There are two main aims of this study. The first aim is to develop a robust 

incremental-iterative solution scheme for non-linear finite element analysis of quasi-

brittle materials. The second aim is to develop a new formulation for quadrilateral 

elements with embedded strong discontinuities.  In order to fulfil these main aims, 

the following specific objectives are addressed in this thesis: 

1. Develop a robust incremental-iterative solution scheme, based on a 

Newton type solution procedure, that employs a smooth unloading-

reloading (SUR) function as the basis for an approximate tangent matrix.  
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2. Employ the proposed SUR approach with a finite element damage model. 

 

3. Develop new acceleration techniques to improve the convergence 

properties of the SUR approach. .. 

 

4. Assess the robustness and efficiency of the proposed SUR approach by 

comparing its performance with that of a reference ‘secant’ model for a 

range of idealised examples. 

 

5. Develop a new formulation for elements with embedded strong 

discontinuities to simulate failure in quasi-brittle structures.  

 

6. Evaluate the characteristics and efficiency of the proposed SD 

formulation by comparing its performance with those of a model with 

interface elements and a smeared crack model.  

 

7. Develop a tractable expression for calculating the element characteristic 

length parameter.  

 
 

 

1.3    Outline of the thesis 

 

The remainder of this thesis is arranged as follows described below.  

Chapter 2 comprises 5 main parts; the first part provides historical background on 

the finite element modelling of cracking using discrete and smeared crack concepts. 

Then, constitutive models for concrete materials are discussed, with an emphasis on 

the type of continuum damage model used for the work described in this thesis. After 

this, issues associated with strain localization are highlighted. Non-linear finite 

element solution techniques for simulating quasi-brittle materials are reviewed in 

Section 2.4. Finally, Section 2.5 reviews previous work on the strong discontinuity 

approach 

Chapter 3 proposes a robust incremental-iterative method, named the smooth 

unloading-reloading (SUR) approach, for the numerical simulation of quasi-brittle 

materials. This chapter has 7 Sections:  Section 3.2 describes the continuum damage 
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model used in this study. The proposed approach for the nonlinear finite element 

analysis of quasi-brittle materials is described in Section 3.3, after which the method 

used for fracture energy computations is given. A new method for computing the 

characteristic length parameter for triangular and quadrilateral elements is presented 

in Section 3.4, after which a set of convergence criteria are given in Section 3.5. 

Section 3.6 presents five selected numerical examples used in to assess the 

performance of the proposed incremental-iterative method. In the last section of this 

chapter, results are discussed and some conclusions are drawn.  

Three acceleration approaches are described in Chapter 4 for improving the 

convergence properties of the proposed SUR method described in chapter 3. The 

performance of these acceleration algorithms is demonstrated using four numerical 

examples. The advantages of using these three acceleration techniques are discussed 

and compared with each other.    

A new formulation for elements with embedded strong discontinuities to model 

failure of quasi-brittle materials is presented in Chapter 5. This chapter contains 7 

Sections: A brief summary of the basic kinematics associated with the strong 

discontinuity approach is presented in Section 5.2. The derivation of the new 

formulation for 2D quadrilateral elements is described in detail in Section 5.3. The 

formulation of a particular interface element, used in some comparisons, is given in 

Section 5.4. The damage function used to govern the nonlinear behaviour of 

discontinuities is described in Section 5.5. Section 5.6 presents several representative 

numerical simulations to illustrate the performance of the newly proposed SD 

approach. The chapter finishes with discussion and conclusion of the developed 

approach in Section 5.7.   

Finally, based on the work presented in this thesis, overall conclusion and 

suggestions for further work are given in Chapter 6. 
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Chapter 2  

Literature review 

 

 

2.1    Finite element method for modelling cracks 

 

The Finite element method (FEM) has been applied to model fracture in quasi-brittle 

materials such as concrete since the late of 1960s. The two dominant methods used in 

finite element modelling of cracking are the discrete crack approach and the smeared 

crack approach  (De Borst, 1997).  In the former approach, a crack is treated as a 

geometrical entity (Rots, 1991; Jirásek, 2011); whereas in the latter approach, the 

cracked material is assumed to remain as a continuum with continuous displacement 

field, and cracks are taken into account by capturing the deterioration process 

through a constitutive relationship, thereby smearing the crack over the a portion of 

the continuum (De Borst et al., 2004). The following subsections of this chapter 

provide an brief overview of some historical developments of these two methods and 

highlight their advantages and disadvantages. 

 

2.1.1    Discrete crack approach 

  

The first discrete crack model was introduced in 1967 by Ngo and Scordelis who 

studied a simply supported reinforced concrete beam. In their study, cracks were 

introduced into the finite element mesh by separating elements along the crack 

trajectory (Rots and Blaauwendraad, 1989). In the early versions of this approach, 

cracks were restricted to propagate along element boundaries, i.e. between existing 

elements. Thus, the response was strongly mesh-depended as cracks could only form 

along the element boundaries (Cervera and Chiumenti, 2006b). However, Ingraffea 

and his group at Cornell University in USA developed a technique which
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automatically redefines the mesh as cracks propagate (Ingraffea and Manu, 1980; 

Ingraffea and Saouma, 1985; Wawrzynek and Ingraffea, 1987; Swenson and 

Ingraffea, 1988). The basic idea of the remesh method is that when a parameter of 

interest (i.e. stress intensity factor, energy release rate or crack opening 

displacement) exceeds a critical value, an existing crack advances by a small 

increment (Xu and Waas, 2015). Despite the fact that the automatic remeshing 

method allows the mesh dependency to be reduced or even eliminated, this method 

requires complex code for the remeshing and has a relatively high computational 

cost (Cervera and Chiumenti, 2006a; Nguyen et al., 2008). 

The complexity of code required to continuously change element topologies to 

model the formation and growth of crack was the main reason behind the 

development of alternative approaches for modelling cracking. These include 

meshless methods, a comprehensive review of which can be found in Nguyen et al. 

(2008), the extended finite element method (X-FEM), which developed by 

Belytschko and his co-workers in Northwestern school (Moës et al., 1999; 

Belytschko and Black, 1999; Sukumar et al., 2000), an exhaustive review of recent 

advances in X-FEM is reported in Fries and Belytschko (2010), and element based 

strong discontinuity approaches (SDA) (Simo et al., 1993; Jirásek, 2000) which is 

discussed in Section 2.5. These methods allow the entire crack to be represented 

independently of the mesh.  

Nevertheless, the large computational demand compared with FE methods as well as 

the complications that ensue when describing phenomena like crack branching, 

coalescence and curved crack boundaries in three dimensions tend to limit the use of 

the above mentioned methods and favour the use of the smeared crack approach 

(Shah et al., 1995; De Borst et al., 2004; May et al., 2015). In summary, it can be 

argued that the discrete crack approach is most suitable for cases where the 

behaviour of a structure is governed by a few dominant cracks; and it may not be 

very effective for RC structures in which the presence of reinforcement generally 

leads to diffuse  cracking (Oliver et al., 2008b).  
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2.1.2    Smeared crack approach  

 

The smeared crack approach was introduced by Rashid in 1968 to model cracks in 

prestressed concrete pressure vessels. This approach comes directly from 

computational continuum mechanics, so the criteria of crack initiation and 

propagation is mostly based on failure criteria expressed in terms of stresses or 

strains (Bažant and Planas, 1997). The simple concept of the smeared crack approach 

is that displacement jumps across cracks are smeared over the effective finite 

elements and the behaviour of the crack is established through a constitutive 

relationship (Cervera et al., 2011). In the smeared approach, cracks are modelled by 

modifying the material properties at the integration points of cracked finite elements 

(Jirásek, 2011). In other words, stress and strain are measured at sampling points (i.e. 

Gaussian integration points) of an element, thus when the crack initiates or grows, 

the mechanical properties (stiffness and strength) are reduced at these integration 

points according to a softening stress-strain relationship (De Borst et al., 2004). This 

approach has become well-known and widely accepted because it is generally much 

more convenient to represent cracks by changing the constitutive properties of 

individual finite elements than to change the topography of an entire finite element 

mesh.  

Over the years, a number of numerical and practical problems have surfaced with the 

application of the smeared crack models. Among these is spurious mesh dependency 

(Bažant, 1976; Crisfield, 1982a). This dependency can relate to both the fineness of 

the mesh and to the orientation of the elements. However, this problem can be 

greatly alleviated, although not fully resolved, by relating the governing constitutive 

softening function to the element size and orientation. This is most readily 

accomplished using the crack-band theory (Bažant and Oh, 1983), with an 

orientation dependent element characteristic length (Oliver, 1989; Volokh, 2013). 

Section 2.3 reviews these issues in more depth.  

The smeared crack approach has been widely used for modelling concrete materials, 

and is available in many commercial FE packages (e.g. ABAQUS, ANASYS, 

DIANA and LUSAS) (Bažant, 2002; Cervera and Chiumenti, 2006b; Cervera, 2008; 

Slobbe et al., 2014; Jefferson et al., 2016).  
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However, it can be stated that both discrete crack and smeared crack approaches 

have their domain of application. Discrete crack models are appropriate for 

modelling one or more dominant crack, whilst smeared crack models can simulate 

diffuse cracking patterns that arise due to the heterogeneity of the concrete 

structures, e.g. reinforcement concrete (ACI, 1997; De Borst et al., 2004).       

 

2.2    Concrete modelling  

 

During recent decades, much effort has been devoted to the development of 

advanced constitutive models to simulate quasi-brittle materials such as concrete, 

rocks, ceramics, etc. The behaviour of concrete materials is highly complex and 

investigators have been carrying out research to better understand and describe its 

behaviour. Before start the review of available constitutive models, it is necessary to 

highlight some features of concrete material behaviour that provide the basis for the 

constitutive models.  

 

2.2.1    Mechanical behaviour of Concrete 

 

Concrete is a heterogeneous material which exhibits complex nonlinear mechanical 

behaviour under different loading conditions (Karihaloo, 1995). For instance, under 

uniaxial compression, concrete exhibits considerable ductility and non-linearity prior 

to reaching the peak stress, whereas in tension, the behaviour of concrete is quasi-

brittle. In addition, the uniaxial compressive strength of concrete materials is 

approximately 10 to 20 times greater than its uniaxial tensile strength (Torrenti et al., 

2013). Furthermore, when concrete reaches its compressive capacity, the loss of 

stiffness and strength occurs in all directions; while in tension, the degradation of 

strength is predominately confined to one direction (van Mier, 1996). 

Moreover, the failure of quasi-brittle materials in tension and unconfined 

compression is characterised by ‘strain softening’, which describes the post-peak 

gradual decline of stress at increasing strain (or relative displacement). This 

structural phenomenon is accompanied by a reduction of the unloading stiffness of 

the material and permanent deformations, which localize in relatively narrow zones 
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often called cracks. Whereas when concrete is subjected to compression under high 

confinement, its behaviour is characterised by a ductile hardening response, in which 

stress increases with increasing strain (Grassl et al., 2013). Nevertheless, concrete 

also exhibits strain softening beyond the peak stress in compression. The typical 

failure modes in concrete are cracking in tension and unconfined compression and 

crushing in compression (Grassl and Jirásek, 2006).  

When concrete is subjected to monotonic tensile or compressive loading beyond the 

elastic limit, irreversible deformations occur. This can be attributed to interfacial 

slips between mortar and aggregate when macro-cracks formed and the crushing of 

the mortar (Chen and Han, 2012). Therefore, due to the distinctive behaviour of 

concrete under tensile and compressive loadings, researchers have developed 

constitutive models with different levels of complexity and applicability in order to 

take into account these aforementioned differences in the concrete behaviour.   

 

2.2.2    Constitutive models for concrete  

 

A large number of constitutive models to describe the nonlinear response of concrete 

structures under different conditions have been developed over the last few decades. 

These constitutive models, which are briefly reviewed in this section, fall generally 

into three categories: damage models, plasticity models and combination of plasticity 

and damage models. Constitutive models aim at simulating the macroscopic features 

of concrete materials, in which they describe the relationship between stresses and 

strains of a material. However, developing a single constitutive model that is enable 

to describe all aspects of concrete behaviour is still quite a challenging task due to 

the complexity of concrete’s behaviour. Indeed, the choice of a constitutive model 

and the knowledge on its deficiency and limitations is crucial to obtaining model 

predictions that are in a satisfactory agreement with experimental observations.  

Damage models are based on the concept of a gradual reduction of the elastic 

stiffness. Thus, damage models can be suitable for describing stiffness degradation 

and the so-called unilateral effect (also referred to as damage deactivation, crack 

closure effects or stiffness recovery) (La Borderie et al., 1992; Comi and Perego, 

2001; He et al., 2015). Extensive research has been conducted on modelling concrete 
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within the framework of continuum damage mechanics, in which damage is 

considered as either isotropic or anisotropic. However, it should be mentioned that 

continuum damage model alone is not able to describe irreversible deformations and 

inelastic volumetric expansion (dilatancy) in the case of high confined compressive 

loading (Grassl and Jirásek, 2006; Gernay et al., 2013). See subsection 2.2.3 for 

more details on damage models. 

Plasticity-based constitutive models employ a rule for decomposition of the total 

strain, which is traditionally assumed to be the sum of elastic strain and accumulated 

plastic strain. The split of strain into elastic and plastic components provides a 

convenient means of simulating inelastic deformations. Furthermore, plasticity 

models are governed by a yield (or failure) function, which is normally described in 

stress space and bounds an elastic region, a hardening rule, which defines the 

evolution of the yield surface, and also one or more flow rule to define the evolution 

of a set of internal variables that uniquely describe the material state. Plasticity 

models vary in the definition of the yield function as well as hardening and flow 

rules. Good examples of plasticity models are those proposed by Willam and 

Warnke (1975), Han and Chen (1987), Etse and Willam (1994), Feenstra and De 

Borst (1995), Grassl et al. (2002), etc. Many other reviews and references therein can 

be found in Chen (2007).  

Although plasticity models can adequately describe the elastic region, failure 

conditions and the development of permanent stains, they fail to describe the 

stiffness degradation due to cracking, as well as other related effects like stiffness 

recovery upon crack closure (i.e. the so-called ‘unilateral effect’) (Comi and Perego, 

2001; Grassl et al., 2013; Omidi and Lotfi, 2013).  

In spite of the huge progress made in both plasticity and damage models, using 

neither of these models alone would be able to simulate well all of mechanical 

behaviour of concrete (Ibrahimbegovic, 2009). For this reason, great efforts have 

been made to link together the advantages of plasticity and damage theories in a 

single coupled plastic-damage model. In this combined approach, damage theory is 

used to model the material deterioration caused by micro-cracks propagation, while 

the permanent deformations can be captured using plasticity theory (Nguyen and 

Houlsby, 2008; Nguyen, 2005), see Figure 2.1.  
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Plastic-damage models usually combine stress-based plasticity with either isotropic 

(Grassl and Jirásek, 2006; Omidi and Lotfi, 2013) or anisotropic damage theory 

(Ortiz, 1985; Meschke et al., 1998; Jefferson, 2003; Grassl et al., 2013). However, it 

has been noted by many authors that using anisotropic damage models with 

plasticity models for modelling concrete is not straightforward due to inherent 

complexities of the required numerical algorithms. Therefore, isotropic damage 

models have been widely employed in combination with plasticity model for 

simulating concrete structures. It should be mentioned here that plasticity and 

plastic-damage models have not be used in the work described in this thesis and thus 

they are only briefly reviewed.  

 

 

 

Damage model Plastic model   Coupled damage-plasticity model 

 

Figure ‎2.1: Stress-strain curve in damage, plastic and coupled damage-plastic models (Nguyen, 

2005). 

 

 

In summary, there is no doubt that the most appropriate constitutive models for a 

realistic description of concrete materials behaviour are those based on combination 

of plasticity and damage models. However, damage models alone are often capable 

of providing an adequate description of concrete behaviour up to failure for a wide 

range of loading conditions, especially when the tensile loading is the main cause of 

the structural failure (Comi and Perego, 2001; Carol et al., 2001; Voyiadjis et al., 

2008). As a consequence, continuum damage models are the most used for 

describing the constitutive behaviour of quasi-brittle materials (Jirásek and Bauer, 

2012).  
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2.2.3    Continuum damage mechanics 

 

The term “continuum damage mechanics” (CDM) was coined in 1972 by Hayhurst. 

However, the essential concept of CDM was first introduced by Kachanov in 1958 to 

model creep damage in metals using the effective stress concept. The effective stress 

concept is based on considering a fictitious undamaged configuration of a body and 

comparing it with the actual damaged configuration (Kattan and Voyiadjis, 2001). 

Continuum damage mechanics can be defined as a constitutive theory that describes 

the progressive loss of material integrity due to the propagation and coalescence of 

micro-defects such as micro-cracks and micro-voids. The influences of these defects 

and their growth within the microstructure of a material lead to a degradation of the 

material stiffness observed on the macroscopic scale (Jirásek, 2011).   

Continuum damage theory uses a set of damage variables to describe the local loss of 

material integrity. The damage variable can be related to stress or strain through a 

damage evolution law. There are many ways to phenomenologically define, or 

micromechanically derive, damage variables. The damage variable can be as a 

singular scalar variable (Mazars and Lemaitre, 1985; Oliver et al., 1990; Jirásek and 

Zimmermann, 1998), a single subdivided scalar variable, or separate two scalar 

variables, that distinguish between tension and compression damage mechanisms 

(Mazars, 1986; Faria et al., 1998; Comi and Perego, 2001) , a vector (Krajcinovic 

and Fonseka, 1981), a second-order tensor (Murakami and Ohno, 1981) and a fourth-

order tensor parameters or higher (Chaboche, 1981; Litewka and Debinski, 2003). 

The choice of which type of damage variables should be used depends on the nature 

of the problem (Lemaitre and Chaboche, 1990).   

The damage of concrete is an anisotropic phenomenon in reality. Nevertheless, 

isotropic damage models have been extensively used in research because of their 

simplicity and ability to capture the main macroscopic features of the behaviour of 

concrete materials in an approximate manner (Mazars, 1986; Tao and Phillips, 2005; 

Richard et al., 2010; He et al., 2015). An isotropic damage model has been used for 

the work described in this thesis. 
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2.2.3.1    Mathematical description of Isotropic damage models 

 

As the name suggests, isotropic damage models are based on the assumption that the 

stiffness degradation is isotropic i.e. the stiffness moduli corresponding to different 

directions decrease proportionally and independently of the direction of loading. 

Moreover, Poisson’s ratio is generally assumed to remain unaffected by damage in 

such models.  The classical constitutive equation for this type of model is as follows: 

 

   εDσ 0 :ω1  (2.1) 

 

where σ  and ε  are the stress and strain tensors, respectively, 0D  is the elastic 

material stiffness tensor, ω  denotes  the scalar damage variable, noting that 

 0,1ω ., here “ : ” denotes tensor contraction. Tensor and matrix notations are 

defined in Appendix A. 

In the strain-driven version of the model, the damage variable explicitly depends on 

the maximum previously reached level of a scalar measure of a strain, called the 

equivalent strain ( ε


). The maximum level of equivalent strain, i.e. ( κ ) plays the role 

of an internal variable, and is formally described by loading-unloading conditions:    

 

 0κ, fκ;0κ;0κεκ, f  )()()( εεε 


 (2.2) 

 

The isotropic damage model of Mazars (1986) and Mazars and Pijaudier-Cabot 

(1989) is one of the most popular isotropic models that was designed specifically for 

concrete. The model introduces two damage variables to take into account the 

dissymmetric behaviour of concrete under tension and compression. One damage 

variable ( t ) is associated with tensile damage and the other ( c ) corresponds to 

compressive damage. These two damage parameters are evaluated from tensile and 

compressive evolution functions which are assumed to be governed by the 

equivalent strain. The equivalent strain is a scalar measure of the strain level. The 

total damage scalar ( ) is assumed to be a linear combination of the tensile damage 

and the compressive damage, and computed as in the following equation. 
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cctt    (2.3) 

 

where the coefficients t  and c are weighting parameters that express the degree of 

compression and tension under different loading conditions. For instance, 0t   for 

pure hydrostatic compression, but 1t   for pure tension.  

Another good example of an isotropic damage model with two damage variables to 

distinguish between tensile and compressive damage was proposed by Comi and 

Perego (2001). Their model reduces the bulk modulus by factor )(1 tω if the 

volumetric strain is positive and by )(1 cω  if it is negative, while the shear 

modulus is always reduced by )(1)(1 ct ωω  . In this model the secant stiffness 

remains isotopic, but with a variable Poisson ratio. The stress-strain low is defined in 

terms of volumetric stress ( Vσ ) and deviatoric stress ( s ) quantities as follows:  

 

VVV εεσ  K31K31 ct )()(   (2.4) 

 

)(G 211 ct dεs )()(    (2.5) 

 

where Vε denotes the positive part of volumetric strain, Vε is its negative part 

and dε is the deviatoric strain. K  is the elastic bulk modulus and G  is the elastic 

shear modulus.  

Moreover, the isotropic damage model of Oliver et al. (1990) is also one of the most 

widely cited and most effective isotropic damage models for the simulation of 

concrete. The model uses a scalar to measure the stiffness degradation of the 

material. Oliver et al.’s (1990; 2002; 2006a) model was employed in the work 

reported in this thesis and a full description of the model is given in Chapter 3 of this 

thesis. 
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2.3    Localization of strain  

 

Failure of quasi-brittle materials is preceded by the development of nonlinear 

fracture process zones, which can be macroscopically described as zones of highly 

localized strains. The degradation of strength and stiffness due to the progressive 

growth of micro-cracks and their coalescence is conveniently described by models 

based on continuum damage mechanics, as discussed in the previous section, 

(Jirásek et al., 2004; Cervera et al., 2010). However, when conventional damage 

models are applied with the finite element method to describe strain softening 

behaviour, issues associated with mesh-dependent behaviour and zero energy 

dissipation are encountered (Bažant, 1976; Needleman, 1988; Jirásek and Bauer, 

2012).  

It was found that damage generally localises to a narrow band, e.g. a region of only 

one element width independent of the element size. Therefore, numerical results 

obtained with standard continuum constitutive laws suffer from lack of objectivity to 

spatial discretization (Jirásek and Patzák, 2002; Cervera and Chiumenti, 2006b; 

Murakami, 2012). Furthermore, when continuum models with fixed stress-strain 

evolution relationships are applied in finite elements, the energy dissipated per unit 

volume of material under analysis is constant; thus different damage zone widths 

result in different energy dissipations during the fracture process. Therefore, the total 

amount of energy dissipated during the failure process vanishes for infinitesimally 

small elements, which is physically unacceptable (Lin and Whu, 1992; Karihaloo, 

1995; Bažant and Planas, 1997).  

From the mathematical point of view, the above pathological features of using 

conventional continuum mechanics are caused by the fact that, beyond a certain level 

of accumulated damage, the governing differential equations lose their ellipticity. 

Thus, the boundary value problem becomes ill-posed. From the numerical 

standpoint, ill-posedness of the boundary value problem is manifested by 

pathological sensitivity of numerical results to the discretization (De Borst, 1997; De 

Borst, 2001; Jirásek, 2007; Jirásek, 2011).  

One remedy for the spurious mesh-size sensitivity is the crack band model of Bažant 

and Oh (1983). Indeed, the crack band model is the simplest remedy and the most 
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frequently used in practical applications to eliminate the pathological dependence of 

the solution on the finite element meshes and ensure that the global energy 

dissipation in fracture process is captured correctly (Jirásek and Bauer, 2012). In 

fact, the crack band model is inspirred by the fictitious crack model developed by 

Hillerborg et al. (1976), which ensured a mesh-independent energy release upon 

crack propagation. The advantage of the crack band model is that it can be easily 

implemented in finite element codes, since the formulation in this model remains 

local and the algorithmic structure of the FE code requires only minor adjustment 

relatively to the amount of code that needed to evaluate the stress and stiffness 

corresponding to a given increment of displacement (Bažant, 2002; Červenka et al., 

2005; Cervera and Chiumenti, 2006b; Slobbe et al., 2013).  

The crack band model of Bažant and Oh (1983) is based on the assumption that 

strains localize to a band one element in width, irrespective of the finite element size. 

The basic concept of this model is to modify the constitutive law in such a way that 

the energy dissipated over a completely fractured finite element can be equated to a 

given value that relates to the fracture energy of the material and on the element 

geometric dimension (Cervera and Chiumenti, 2006a; Cervera and Chiumenti, 

2006b). In other words, to make sure that the dissipated energy per unit volume ( fg ) 

is equal to the fracture energy ( fG ), which considered as a material property, the 

fracture energy fG  is smeared out over the width of area in which a crack localize, 

thus, chff Gg  . This means that the governing stress-strain evolution function is 

no longer unique, but is modified according to the width of the numerically resolved 

band of localized inelastic strain ( ch ), which in turn depends on the mesh 

refinement (Jirásek et al., 2004; Jirásek and Bauer, 2012). The fracture energy can be 

defined as the amount of energy required to create one unit of surface area of a crack 

(Hu and Wittmann, 1992).  

More refined remedies which can avoid not only mesh size sensitivity but also mesh 

orientation bias were developed and called localization limiting techniques. These 

methods prevent damage localizing into a zone of zero volume by introducing, either 

implicitly or explicitly, a length scale (material characteristic length) to the 

governing equations. Thus, the damage is forced to grow in an arbitrarily small zone 
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with a finite width that is independent of spatial finite element discretization (Sankar 

et al., 2013). As the enrichments of these methods enforce a certain minimum width 

of numerically resolved process zone, they are called localization limiters. These 

regularization techniques include, for instance, integral-type nonlocal models 

(Pijaudier‐Cabot and Bažant, 1987; Bažant and Pijaudier-Cabot, 1988; Bažant and 

Jirásek, 2002; Jirásek and Marfia, 2005) and nonlocal gradient models (Peerlings et 

al., 1996; Peerlings et al., 2001; Rodríguez-Ferran et al., 2011). In non-local models, 

the stress at a point depends not only on the strain at the same point but also on the 

strains in the neighbourhood of that point (Bažant and Planas, 1997). The 

localization limiters are beyond the scope of this study. It should be pointed out here 

that, these approaches can overcome the mesh-size and mesh bias issues, but they are 

unable to resolve all the stability and convergence problems associated with 

modelling quasi-brittle materials, as it will be discussed in the next section.  

 

2.4    Solution techniques for nonlinear finite element analysis  

  

Stability and convergence problems are frequently encountered in nonlinear finite 

element solutions when using material models that include strain softening 

behaviour, independent of the constitutive model adopted (Crisfield, 1984; De Borst, 

1987; Bažant and Cedolin, 2010).  As a consequence, the nonlinear finite element 

simulation of quasi-brittle structures is a truly numerical challenging undertaking in 

the computational mechanics community. In this section, the most well-known 

numerical solution techniques for nonlinear finite element analysis of structures with 

softening materials are discussed.    

The most commonly used solution technique in nonlinear finite element (FE) codes 

is the Newton-Raphson (NR) method  (Crisfield, 1997). In the NR procedure, the 

applied load is divided into small increments, and the displacement increment within 

each step is computed by using the tangent stiffness matrix. The resistant force can 

be calculated by accumulated displacement, and the out-of-balance force vector can 

be determined as the difference between the applied and the resistant forces. When 

both the out-of-balance force and the residual displacements errors, measured for 

instance by Euclidean norms (L2), are less than a specified tolerance, convergence is 
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assumed to be obtained. If convergence criteria are not satisfied, the residual force 

vector is re-evaluated (the stiffness matrix is updated) and thus a new solution is 

obtained. This iterative procedure continues until the problem converges, then next 

load increment is applied (Zienkiewicz and Taylor, 2000).  

However, if a full Newton solution procedure or even its modified form is used for a 

problem that involves strain softening, the tangent stiffness matrix becomes non-

positive definite and the solution process can diverge and break down or simply fail 

to converge (Crisfield and Wills, 1988; De Borst et al., 2012). Indeed, in the initial 

time-steps of a nonlinear analysis, before any cracking occurs, the tangent stiffness 

matrix is linear elastic and thus positive definite. In the subsequent steps, micro-

cracks initiate and form, therefore, the associated equilibrium solutions can become 

singular or non-unique, and thus the tangent stiffness matrix loses its positive 

definiteness. As a consequence, numerical instability and divergence may occur at 

these time-increments of the Newton-based incremental-iterative solution schemes 

(Crisfield, 1991; Nguyen, 2005; Oliver et al., 2006a; Graça-e-Costa et al., 2012; 

Graça-e-Costa et al., 2013; Pohl et al., 2014; Slobbe, 2015).  

Although the divergence of the solution process can be avoided if a secant stiffness 

matrix is employed in place of the true tangent stiffness matrix; however, with the 

secant approach, the number of iterations needed to satisfy a given convergence 

criterion can become very large and sometimes it proves impossible to obtain a 

converged solution (Bathe and Cimento, 1980; Crisfield, 1997). 

Many approaches have been made to improve the efficiency of these NR procedures 

and to improve their robustness (Dennis and Moré, 1977; Crisfield, 1982b; Ma and 

May, 1986; Crisfield, 1991; Crisfield, 1997; De Borst et al., 2012). These techniques 

include, for instance, line search algorithms, which are one of the most effective 

techniques for speeding up the convergence of Newton methods (Matthies and 

Strang, 1979; Crisfield, 1982b; Ma and May, 1986; Crisfield, 1991; De Borst et al., 

2012). Line search methods attempt to stabilize NR iterations by shrinking or 

expanding the current displacement increment to minimize the resulting out-of-

balance forces and/or residual displacements. The rationale behind the line search 

approach is that the direction (i.e. Uδ ) found by the NR method is to some extend a 

good direction, but the step size is not optimal. Thus, it is much cheaper to find the 



Chapter 2: Literature review 

 

 

23 

 

best point along the direction Uδ  by several computations of residual than to 

compute a new direction by using a new Jacobian matrix (Wriggers, 2008; 

Belytschko et al., 2013).  Therefore, before proceeding to the next direction, in the 

line search method, a measure of the residual is minimized along the line. The 

displacements are updated according to: 

 

 UUU δ  1-ii
 (2.6) 

 

where  
1-i

U  is the displacement vector at the last iteration,   is a scalar which 

controls the iterative step length and Uδ is the displacement increment. We find the 

parameter   so that UU δ 1-i  minimizes some measure of the residual along the 

line. However, in cases when the current search direction is poor and the out-of-

balance forces are non-smooth functions of displacements, line search techniques 

may be of limited use (Daichao et al., 2002). 

In addition, Quasi-Newton methods are also among the most widely used Newton-

type methods for improving the convergence properties with a modest computational 

effort. Essentially, quasi-brittle methods do not require explicit reformation of the 

tangent matrix at every single iteration, instead the stiffness matrix or its inverse are 

continuously updated as the iterations proceed. In fact, quasi-newton algorithms 

attempt to compromise between the standard NR and modified NR methods for 

computing the stiffness matrix (Crisfield, 1991). Since a detailed description of line 

search and quasi-brittle methods goes beyond the scope of this literature, only the 

basic ideas behind the line search and quasi-newton methods are given. A 

comprehensive review of all of the aforementioned incremental-iterative Newton-

based solution schemes can be found the following text books (Crisfield, 1991; 

Crisfield, 1997; Wriggers, 2008; De Borst et al., 2012).  

When the global response of a structure softens and exhibits ‘snap-back’ behaviour, 

arc-length procedures can allow the complete equilibrium path to be traced. The arc-

length method was originally introduced by Wempner (1971) and Riks (1979), with 

modifications being introduced by a number of researchers, i.e. (Crisfield, 1981; 

Crisfield, 1983; De Borst, 1987; Crisfield and Wills, 1988; May and Duan, 1997; 
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Hellweg and Crisfield, 1998; Ritto-Corrêa and Camotim, 2008; Verhoosel et al., 

2009), The central concept of the arc-length method is that the solution path is forced 

to remain within the vicinity of the last converged equilibrium point. This can be 

done by introducing an additional constraint equation for the incremental load 

multiplier, which plays the role of an extra degree of freedom in the global linearized 

equilibrium equations. Various constraint methods have been proposed such as direct 

or indirect displacement control methods. The indirect displacement method is used 

in situations when a structure exhibits snap-back behaviour (Jirásek and Bazant, 

2002). Indeed, the choice of an appropriate constraint equation in the arc-length 

method is crucial and affects the convergence properties decisively (Crisfield, 1997).  

Another approach for tracing global snap-back is Ladevese’s Large Time Increment 

method (LATIN) (Ladeveze, 1999). The method is a non-incremental-iterative 

approach and builds the solution using a local and global phase. A key characteristic 

of the LATIN method is that the whole loading process is iteratively calculated in a 

single time increment, and at each iteration the algorithm provides an approximation 

of the solution over the entire time domain (Dureisseix et al., 2003). The LATIN has 

undergone significant development in recent years (Kerfriden et al., 2009; Vandoren 

et al., 2013). Generally, it can be stated that the use of the LATIN method is not 

widespread in the computational mechanics community and its application in 

modelling softening materials is limited (Vandoren et al., 2013). It should be 

mentioned here that tracing snap-back behaviour is not in the focus of the present 

work, as a result, only brief introduction of most frequently used approaches to trace 

the snap-back response of strain softening materials were given.   

As a response to the stability and convergence difficulties of incremental-iterative 

solution methods, researchers have developed solution algorithms that avoid 

multiple iterations. These methods include the ‘Sequentially Linear Approach’ 

(SLA), which was introduced by Rots (2001).  In the SLA method, the softening 

stress-strain curve is approximated by a saw-tooth diagram of positive slopes, and 

the incremental-iterative process is replaced by a scaled sequence of linear analysis.  

In every analysis, the most critical element is traced, the stiffness and strength of that 

element are reduced according to the saw-tooth curve, and the process is repeated 

(Slobbe et al., 2013). The sequence of scaled critical steps provides the global load-
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displacement response (Invernizzi et al., 2011).  The global procedure is as follows, 

in which the following steps are subsequently carried out: 

 Add the external load as a unit load. 

 Perform a linear-elastic analysis 

 Extract the critical element from the results. The critical element is the 

element for which the principal tensile stress level divided by its current 

strength is the highest in the whole structure. 

 Calculate the ‘global load factor’ as the ratio between the current strength and 

the stress level in the critical element. The present solution step is obtained 

by scaling the unit load times the global load factor. 

 Increase the damage in the critical element by reducing its stiffness and 

strength according to a saw-tooth tensile softening stress strain curve. 

Different approaches for a saw-tooth approximation of the constitutive law 

can be found in (Rots et al., 2008).  

 Repeat the previous steps for the new configuration, i.e. re-run the linear 

analysis for structure in which the stiffness and strength of previous critical 

element are reduced. Repeat this process until the damage is spread into the 

structure. 

 Construct the overall stress-displacement curve by connecting all load-

displacement sets consecutively found in the above steps.  

The SLA method was later improved by  Rots and Invernizzi (2004) and Rots et al. 

(2008) to achieve objectivity with respect to mesh grading. However, the major 

drawbacks of the above mentioned approach is the inability to properly capture non-

proportional loading. An extension of the SLA concept towards the non-proportional 

loading was proposed in (DeJong et al., 2008; Eliáš et al., 2010; Graça-e-Costa et al., 

2013). This approach has been applied successfully to masonry structures, reinforced 

concrete beams and nonlinear behaviour in mortar and engineering cementations 

composites in flexure as well as concrete beams with shear failure (Graça-e-Costa et 

al., 2012; Slobbe et al., 2012; Hendriks and Rots, 2013; Vorel and Boshoff, 2015).  

However, it can be claimed that the main disadvantages of the SLA method are its 

problematic application to non-proportional loading and non-smoothness of the 

obtained load-displacement response (Eliáš, 2015; Slobbe, 2015). In addition, it 
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should be kept in mind that the advantages of the SLA approach are sometimes 

diminished by its relatively high computational cost (Vorel and Boshoff, 2015).  

Another approach which avoids using multiple iterations is the implicit-explicit 

“IMPL-EX” approach of Oliver et al (2006a; 2008a). The proposed implicit-explicit 

integration scheme is based on two stages per time step. The first stage consists of an 

explicit extrapolation of local variables (e.g. a damage evolution parameter) and the 

associated stresses according to the implicit quantities calculated at the previous time 

step. The extrapolated local quantities are used for the assembly of the total tangent 

matrix and the determination of the vector of internal forces. The balance equation, 

which is function of extrapolated values, is solved and thus the nodal displacements 

are obtained.  These nodal displacements are not subsequently modified in the 

current time step.  Following the first stage, the standard implicit integration of the 

constitutive model is performed at the same time step, based on the known nodal 

displacements from the first stage, thus the implicitly integrated stresses and local 

variables are obtained.  It should be borne in mind that the accuracy of the solution 

of the IMPL-EX strategy depends on the length of the time step (Oliver et al., 

2006b).  

More recently, Prazeres et al. (2015) proposed the so-called ‘modified implicit-

explicit approach’ for elasto-plastic models. In the modified method, the internal 

variables (i.e. plastic multiplier, total plastic strains and total stresses) are updated in 

terms of the explicit evaluation of the plastic strain tensor components instead of the 

explicit evaluation of the plastic multiplier. The main advantage of the modified 

IMPL-EX approach for elastoplasticity problems, in comparison to the standard 

IMPL-EX method, is that the tangent stiffness matrix becomes constant. However, 

the main drawbacks of the standard IMPL-EX approach is also inherited by the 

modified IMPL-EX method, in which the accuracy depends to a large extend on the 

step size. 
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2.5    Elements with embedded SD approach 

 

To the best knowledge of the author, the first attempt to incorporate discontinuities 

directly into individual finite elements was made by Ortiz et al. (1987). They 

enriched the approximation of the strain field to improve the resolution of shear 

bands. This method became known later as the weak discontinuity approach. The 

approach was further developed by Belytschko et al. (1988), who developed a  

formulation which could capture a band of localization strain bounded by two 

parallel weak discontinuity lines within an single element. Significant progress in the 

development of finite elements with embedded strong discontinuities was achieved  

by Simo et al. (1993) In this seminal paper, Simo et al. (1993) describe a method for 

approximating the failure kinematics of solids by means of discontinuous 

displacement fields locally embedded within elements. Their method allows 

incompatible displacement fields, that include displacements jumps, to be simulated. 

They applied the enhanced assumed strain concept, in which only the enhanced 

strains resulting from the discontinuous displacement field appear explicitly in the 

formulation. The variational basis of the enhanced strain and displacements fields 

was established by Simo and co-workers (Simo and Rifai, 1990; Simo and Armero, 

1992; Simo and Oliver, 1994). The embedded SD approach of Simo et al. (1993) 

was further elaborated by many authors in the last decade of the last century, see for 

example  (Lotfi and Shing, 1995; Armero and Garikipati, 1996; Oliver, 1996a; 

Oliver, 1996b; Oliver et al., 1999; Regueiro and Borja, 1999). A thorough review of 

all of these methods was provided by (Jirásek, 2000). 

Due to the huge number of papers that have been published on the SD approach; the 

author will focus the remainder of this review on what he considers to be the most 

important recent developments.  

 

2.5.1    Work of the Delft research group 

 

Wells and Sluys (2001a) and (Wells et al., 2002) developed a formulation for 

incorporating discontinuous displacements within finite elements based on the 

partition of unity concept (Melenk and Babuška, 1996). Unlike methods based on 
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enhanced assumed strain fields, their approach places no restrictions on allowable 

element types and allows displacement jumps to be continuous across element 

boundaries. The displacement jump across a crack was represented by extra degrees 

of freedom located at existing nodes. Considerable complexities are involved in the 

3D implementation, when the SD formulation is based on the partition of unity 

concept.  

In addition, Wells and Sluys (2001b) extended the SD approach developed by Simo 

et al. (1993) to  a three-dimensional embedded discontinuity model for simulating 

brittle materials. They included the effect of a discontinuity in the displacement field 

as an incompatible strain mode. In this method, the additional degrees of freedom 

associated with the discontinuous displacement mode are eliminated at the element 

level by static condensation, therefore the system of global degrees of freedom 

remain unchanged. Also, (Alfaiate et al., 2002) used the same principal for 

modelling mixed-mode fracture in quasi-brittle materials with triangular elements.  

Furthermore, Alfaiate et al. (2003) proposed a formulation for embedding interface 

elements into any parent element to capture linear jumps along a discontinuity. This 

formulation was developed within the framework of the discrete crack approach. The 

displacement jumps were approximated by global additional degrees of freedom 

which were evaluated at the discontinuity surface and introduced as a crack 

propagates.  

Moreover, In Dias-da-Costa et al. (2009a), a global formulation was introduced 

using a linear variation of the displacement jump along the discontinuity. This 

approach was named the discrete strong discontinuity approach (DSDA). In the 

DSDA, a rigid body motion, induced by the opening of the discontinuity, was 

transmitted to the parent element nodes. As a consequence, shear jumps are 

constrained such that they must remain constant along the discontinuity. This can be 

considered as a limitation from the kinematical point of view. A variationally 

consistent formulation with traction continuity, called generalized strong 

discontinuity approach (GSDA), was introduced by Dias-da-Costa et al. (2009b). 

The GSDA considers both rigid body motions and the relative expansion (or 

contraction) of the sub-domains either side of a discontinuity.  More recently, the 

DSDA and GSDA were improved by Dias-da-Costa et al. (2013), in such a way that 
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a new embedded formulation built upon the framework of the discrete crack 

approach were proposed to deal with strong discontinuities using conforming finite 

elements.  

 

2.5.2    Work of the research group at UPC 

 

The most well-known work by Oliver and co-workers, i.e. Oliver (2000), Oliver et 

al. (2002), Oliver et al. (2003a), Oliver et al. (2003b), Oliver and Huespe (2004)  and 

Oliver et al. (2008b) is the development of the so-called continuum strong 

discontinuity approach (CSDA) to model material failure. The CSDA provides a link 

between continuum stress-strain models and cohesive fracture models, such that a 

strong discontinuity (displacement jump) is obtained as the limit of a weak 

discontinuity band when the crack bandwidth tends to zero (Oliver et al., 2012). In 

other words, in the CSDA, instead of using an explicit fictitious crack model for 

modelling the constitutive behaviour at the embedded discontinuity interface, a 

continuum constitutive model (stress-strain relationship) is used. The strong 

discontinuity kinematics projects the continuum stress-strain model onto the 

interface as a traction-separation law.  

In the CSDA formulation the same continuum constitutive model can be used for 

modelling the bulk stress-strain relationship during the elastic or the unloading 

stages, and the traction-separation law at the fracture path in the inelastic-strain 

softening stages of the material (Oliver et al., 2012). It should be also mentioned that 

the CSDA requires the use of tracking algorithms that ensure continuity of the crack 

path when passing from one element to another (Oliver and Huespe, 2004; Oliver et 

al., 2004; Mosler and Meschke, 2004).  However, Gálvez et al. (2013) argued that 

whilst the CSDA is an elegant solution for simulating shear bands in soils and 

metals, but that it is simpler and more effective to use a discrete constitutive model 

that relates the tractions and displacements jumps at the discontinuity interface when 

modelling fracture in quasi-brittle materials. 
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2.5.3    Work of other research groups 

 

Mosler and Meschke (2003) presented a new algorithmic formulation for 3D 

quadrilateral elements with embedded discontinuities for plane problems using an 

elastoplastic model. The numerical formulations suggested were not based on the 

static condensation technique; rather, the parameters defining the displacement jump 

within the finite element are condensed out at the material point level. Thus, they 

claimed that the resulting constitutive equations are formally identical to those of 

standard continuum models (Mosler, 2005; Mosler, 2006). A similar approach was 

presented by (Borja, 2000), but his approach was restricted to constant strain triangle 

elements.  

In 2007, Linder and Armero presented new finite elements that incorporate strong 

discontinuities with linear interpolations of the displacement jumps for modelling 

failure in 2D solids. They used the concept of the strain-based approach. Linder and 

Armero (2007) focused on the improvement of higher-order plane continuum finite 

elements such as quadrilateral elements within the small-strain regime. Later on, 

they extended their method to model also cracking branching (Linder and Armero, 

2009) and dynamic failure (Armero and Linder, 2009). A thorough description of the 

contributions of Armero and co-workers to this field is available in the theses of 

Armero’s former PhD students Linder (2007) and  Kim (2013). 

Ibrahimbegovic and co-workers ( Dujc et al. (2010) and Dujc et al. (2013) ) 

presented a formulation to incorporate strong discontinuities within quadrilateral 

finite elements to model the failure in plane stress solids. The key feature of the 

derived embedded element with strong discontinuity is that it linearly interpolates 

the displacement jumps in both normal and tangential directions with respect to the 

discontinuity line. In fact, they proposed four kinematic parameters to model four 

modes of element separations along the discontinuity interface. Those kinematic 

parameters are condensed out on the element level to provide a standard form of 

element stiffness matrix.  

Embedding discontinuous displacements in the element formulation is not the only 

way to implement the SD approach in the finite element method. The major 

alternative is the so-called extended finite element method (X-FEM), which is based 
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on nodal enrichments and allows displacement discontinuities to be introduced into 

finite element meshes independently of its boundaries (Belytschko and Black, 1999; 

Moës et al., 1999; Belytschko et al., 2001; Belytschko et al., 2009). Indeed, this 

ability makes this method very appealing for capturing arbitrary crack propagation 

with fixed finite element meshes without loss of mesh objectivity (Oliver et al., 

2008b). It should be emphasised here again that the XEFM approach is beyond the 

scope of this thesis. A comparison between the EFEM (elements with embedded 

strong discontinuities) and the XFEM approach can be found in Jirásek and 

Belytschko (2002), Oliver et al. (2006b), Borja (2008) and (Dias-da-Costa et al., 

2010). According to these references, the nodal enrichment technique (XFEM) is 

computationally more expensive and requires a greater implementation effort 

compared with elements with embedded discontinuities.  
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Chapter 3  

 
An incremental-iterative method for numerical 

simulation of quasi-brittle materials 

 

 

3.1    Introduction 

  

The progressive failure of quasi-brittle materials such as concrete under various 

loading conditions is mainly due to the development, growth and coalescence of 

micro-cracks, which induce degradation in both the strength and stiffness of the 

material. The degradation is reflected macroscopically as strain softening behaviour 

(Bažant, 1992; Karihaloo, 1995; van Mier, 2012) and it is well-known that this 

behaviour gives rise to numerical difficulties (De Borst et al., 2012). Therefore it is 

necessary to use a robust solution algorithm when implementing a numerical model 

for QB materials.  

Incremental-iterative procedures are generally considered to be the most effective 

algorithms for the finite element analysis of nonlinear problems (Crisfield, 1991; 

Crisfield, 1997). However, it is known from previous work (see Section 2.4) that 

existing Newton-based incremental-iterative schemes often suffer from stability and 

convergence difficulties and thus can be inappropriate for the numerical simulation 

of many quasi-brittle materials problems. As a consequence, many methods that 

avoid using iterations, or minimise their use, have been proposed, as mentioned in 

Section 2.4.  

A novel incremental-iterative numerical approach for the nonlinear finite element 

analysis of quasi-brittle materials has been developed by the author. The new 

method, named smooth unloading-reloading (SUR) approach, improves the 

robustness and convergence properties of a finite element isotropic damage model 

when applied to fracture problems in quasi-brittle materials. The SUR approach uses 

a target function and a smooth unloading-reloading function to compute an



Chapter 3 

 

 

33 

 

 approximate tangent matrix with an incremental-iterative Newton type solution 

procedure.  

A number of idealised quasi-brittle fracture examples are used to evaluate the 

performance of the proposed SUR approach. These examples were mainly chosen 

for their numerical characteristics and, with one exception, were not based upon real 

experiments or structures. In all cases, the ‘reference solution’ was obtained using a 

model with secant unloading-reloading behaviour. 

 

3.2    Constitutive model  

 

An isotropic damage model with a single damage variable, driven by the equivalent 

stress parameter, is used in this study. The reason that a relatively simple isotropic 

damage model has been chosen for the present work is because the purpose of this 

study is not to evaluate the accuracy of isotropic damage models and their ability to 

simulate the behaviour of fracture problems in a finite element context, which have 

been established elsewhere (Oliver et al., 1990; Comi and Perego, 2001; Oliver et al., 

2002; Oliver et al., 2006a; Oliver et al., 2008b; Manzoli et al., 2008), but rather to 

illustrate the convergence characteristics of the proposed SUR method and to 

demonstrate its potential benefits.  

Before describing the new smooth unloading-reloading (SUR) algorithm, the basic 

form of the damage model employed for the work will be described. 

 

3.2.1    Isotropic damage model 

 

The SUR algorithm developed is employed with the isotropic damage model of 

Oliver et al (1990; 2002; 2006a). This isotropic damage model is based on the 

simplifying assumption that stiffness degradation is isotropic and the loss of material 

stiffness is characterised by a scalar damage variable ( ω[0, 1]), in which ω = 0 for 

undamaged materials and ω = 1 for fully damaged materials. The constitutive 

equation for the isotropic damage model is expressed as:  
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   εDσ 0 :ω1  (3.1) 

 

where σ  and ε  are the stress and strain tensors respectively; 0D  donates the elastic 

stiffness tensor of the undamaged material and the damage variable ω  is a function 

of a damage evolution parameter pr . 

The standard form of constitutive equations for the isotropic damage model are 

summarised in the following Table 3.1. 

 

Table ‎3.1: Summary of isotropic damage model algorithm Oliver et al (1990; 2002; 

2006a). 
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Constitutive tangent operator 

  

The effective stress is defined as follows: 

 

 εDσ 00 :  (3.2) 

 

effr  is a scalar measure of the current ‘effective’ stress and is computed by: 
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 
 000 σDσ ::r

1

eff  (3.3) 

 

where  


0σ  denotes the positive part of the effective stress tensor, and is given by 

the following form: 

 







3

1i

iii
pp σσ 00  (3.4) 

 

where 
i0σ  stands for the positive part of the ith principal effective stress 

i0σ , ip  

represents the i
th

 stress eigenvector. Symbol   denotes the tensor product, and 

symbol x is the Macaulay bracket, in which 0xif0x0xifxx  ,;, . 

The effective stress norm is only computed from the positive part of the effective 

stress, as can be seen in equation 3.3. For this reason, the damage in this model is 

only associated with tensile stress states, which is mainly appropriate for modelling 

tensile failure in quasi-brittle materials.  

The damage loading function is expressed in terms of the effective stress and the 

scalar damage evolution parameter ( pr ). The damage loading function is given by: 

 

 peffpeff rrr,rf )(  (3.5) 

 

Physically, pr  is a scalar measure of the largest effective stress ever reached in the 

history of the material up to the current state. Initially, the damage evolution 

parameter value pr  is equal to kr , which is the damage evolution parameter at the 

peak of the uniaxial stress curve  and is related to the peak stress tf  of the material in 

uniaxial tension. The method used to compute kr  is explained in Section 3.2.   

When the damage loading function )( peff r,rf  equals 0, the stress state lies on the 

damage surface. )( peff r,rf < 0 means there is no growth of the damage, the material 

behaves elastically and stress remains within the damage surface.  The damage 

evolution parameter can only increase when the effective damage evolution 
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parameter effr  exceeds the current value of the damage evolution scalar pr , in the 

case of )( peff r,rf > 0. Theoretically, the damage is initiated when the effr  exceeds for 

the first time the value of pr . 

Quasi-brittle materials can be modelled by assuming that the stress state always 

remains on or within the loading surface )( peff r,rf  0, which means that the damage 

evolution parameter pr  must satisfy the Kuhn-Tucker condition: 

 

  ;0fr;0f;0r pp    (3.6) 

 

The first condition illustrates that pr  cannot decrease. The second condition means 

that pr  can never be smaller than effr . Finally, the third condition indicates that pr  

can only grow if the current values of effr  and pr  are equal (Peerlings et al., 2000).  

The derivation of the constitutive tangent tensor is given in Appendix B, and takes 

the form: 
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The tangent constitutive operator tanD  changes for unloading ( peff rr  ) and 

reloading ( peff rr  ) processes. 

In the standard form of the model, the damage parameter ( ω ) depends directly upon 

a softening function )r(f pss  according to the following relationship; 

 

p

pss

p
r

)(rf
1r ω )(  (3.8) 
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A standard exponential form for this softening function is as follows: 
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 (3.9) 

 

in which tf  is the tensile strength, E  is Young’s modulus, tε  defines the tensile 

strain measure, Eεr tt   is the damage strength parameters effective strength, 

c1=5, Efε tt  , Eεr 00   and 0ε  is the strain at the effective end of the softening 

curve. In other words, the strain at which the transmitted stress becomes negligible is 

denoted by 0ε .  

It should be noted that the above form of ssf is introduced only to provide a 

complete description of the standard model. This softening function is not used in 

the new model but is replaced by the target function sf  given in Section 3.2 of this 

chapter. 

 

3.2    Smooth unloading-reloading and target damage functions 

 

The proposed SUR approach uses a target function )(rf ps and a smooth unloading-

reloading function ), effpp r(r , as illustrated in Figure 3.1. It may be seen that the 

SUR function has two parts; (i) when ppeff rar  , for which linear unloading-

reloading with a slope Eω- pf )(1  is assumed, and (ii) when ppeff rar  , for which 

nonlinear unloading-reloading is a assumed, according to the function ),( effpp rr . 

Where pfω is the damage parameter that controls the linear part of the SUR function, 

and )( pk rσ  is stress to which the SUR function is asymptotic, as can be seen in 

Figure 3.1. 
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The SUR function depends on the damage evolution parameter ( pr ), which is 

updated for every iteration within each load/displacement increment from the value 

obtained at the last converged increment.  

 

Figure ‎3.1: Unloading-reloading and target damage evolution function. 

 

It should be noted that the unloading-reloading response shown in Figure 3.1 more 

accurately represents the response measured in tests than does a function based on 

secant unloading-reloading (Reinhardt, 1984). The true unloading-reloading 

response exhibits hysteresis behaviour that is not simulated here. Rather, the model 

employs a function that closely represents the real reloading curve. This is a 

simplification, but these hysteresis effects are considered to be of secondary 

importance in the simulation of most plain and reinforced concrete structures.        

The target function gives the equivalent uniaxial stress and depends on the damage 

evolution parameter pr , which in 1D, is directly proportional to the maximum strain 

experienced. The complete uniaxial curve, upon which the target curve is based, is 

given in equation (3.10).  
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where, ktk arr   and 0ε  is the strain at the effective end of the of the target softening 

curve. The parameter ka  is given after equation (3.12). It is noted that this function is 

the same as that given in equation (3.9) with the exception that kr  replaces tr  and pr  

replaces effr . 

Whilst the pre-peak and post-peak parts of the target function are given in equation 

(3.10) for completeness, the proposed algorithm only employs sf  from the peak 

onwards, as explained later in this section.  

The SUR function is tangential to the secant curve with modulus [(1-pf) E], and is 

asymptotic to the stress  )( pk rσ in equation (3.12) and takes the form as: 
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in which the constants ν  and pa  take default values of 0.70 and 0.75 respectively, 

although the effect on the numerical performance of the model of varying these 

parameters is explored in example 3.6.5. These default values provide a reasonable 

representation of the reloading response measured in cyclic uniaxial fracture tests 

(Reinhardt, 1984) and the values can be directly calibrated using data from such 

tests. However, it is emphasised that the aim of the present work is directed towards 

improving the stability and robustness of solutions to fracture problems and not 

towards improving the accuracy of existing damage models. The value of the 

damage evolution parameter at the peak of the uniaxial stress curve is denoted kr . 

The initial value of pr  is set to kr  (i.e. the value at the peak of the target softening 

function). 
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pσ  depends upon the asymptotic stress function kσ  , which is defined as follows; 
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noting that )r(f ks = tf . 

The above expressions for kσ  are obtained by equating pσ  from equation (3.11) to sf  

from equation (3.10), for a given value of pr  i.e. the curve coincides at effr = pr .  

Using equation (3.12) in (3.11) and again considering the condition )( ps rf = pσ  at 

effr = pr , leads to the following expression for ka : 
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The damage parameter that controls the linear part of the SUR function is computed 

as: 
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and the damage parameter for the SUR  function is given by: 
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In the above equations, it may be seen that the target function is used solely as a 

dependent function in pσ  via equation (3.12), and, since the value of the function pσ  

is fixed until pr  exceeds kr , only the post-peak part of the sf  function is actually 

used in the model.   

Overall, the introduction of the SUR function results in changes to two of the model 

equations presented in Table 3.1; these being the overall constitutive equation (3.15) 

and the expression for the tangent D matrix (equation 3.16), as follows:   

 

 

  εDσ 0 :r,rω1 effpp )(  (3.15) 
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The overall stress-strain relationship (3.15) now depends on pω , rather than ω , 

which in turn is governed by the value of SUR function pσ . 

The new form of the matrix tanD  is evaluated using the SUR function and therefore 

is always positive definite. However, this means that tanD  is not the exact tangent 

when there is loading with respect to the damage function. The implications of this 

are illustrated in the examples given in Section 3.6.   

 

3.3    Fracture energy for simplified softening curve 

 

The precise definition of the fracture energy has been a subject of debate, because it 

has been found to vary with the size and shape of the test specimen (Karihaloo et al., 

2003; Jirásek et al., 2004). However, Jirásek et al. (2004) defined the fracture energy 

as the total work needed to completely break a specimen per unit ligament area, in 
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which  the area under the stress-strain curve represents the total work of fracture. 

Using this definition gives the following standard expression for the fracture energy: 

 





0

ch

0

f dεσduσG   (3.17) 

 

In which  and  are the uniaxial stress and average uniaxial strain in a fracture 

process zone, and ch is the characteristic length. 

The integral in equation (3.17) is equal to the area under the governing uniaxial 

stress-strain curve, as illustrated in Figure 3.2, which mathematically is given by: 
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Figure ‎3.2: Stress-strain curve of quasi-brittle materials. 

 

where kk εEσ  . The fracture energy is then given by: 
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from which the following is obtained; 
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(3.20) 

 

Equation (3.20) can be simplified to: 
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in which  tdad εaε  . 
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The primary input parameters governing cracking behaviour are fG  and tf . In 

addition, the characteristic length (see next section) is obtained from the element 

geometry and the parameters ν  and pa  are fixed at chosen values, as explained in 

Section 3.2.   



Chapter 3 

 

 

44 

 

3.4    Element characteristic length calculation 

 

It has been shown that the method used to calculate the element characteristic length 

in the crack-band model (Bažant and Oh, 1983) can have a significant influence on 

computed responses (Oliver, 1989; Jirásek and Grassl, 2008; Jirásek and Bauer, 

2012; Volokh, 2013; Slobbe, 2015; Mosalam and Paulino, 1997). It is essential for 

the characteristic length ( ch ) to vary with element orientation, for all but circular 

elements, and for this length to equal the full width of the fracture process zone that 

crosses an element. The author has devised a convenient method for computing ch  

that employs the element Jacobian matrix. This results in the maximum length, 

measured in convected coordinates, of a line perpendicular to a crack-band. In this 

work, the orientation of a crack-band is determined from the major principal strain 

axis.  

The proposed method for computing the characteristic length is as follows: 

i. Consider a unit normal vector to a crack r, which is related to the equivalent 

vector in the element local coordinate 
r
χ  by the Jacobian matrix ( J ), as 

follows: 
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(3.24) 

 

 

 

in which ,  and   are the local parametric coordinates of an element.  

In order to work out the vector length in the local direction 
r
χ  in an element, firstly 

a unit vector in the direction of 
r
χ  is created, which is denoted χ̂ . For quadrilateral 

and hexahedral elements, the local coordinates range from (-1 to +1) and the largest 

absolute component of χ̂  is scaled to 1 to give vector χ , see Figure 3.3. For 



Chapter 3 

 

 

45 

 

triangular and tetrahedral elements, the local coordinates range between 0 and +1. 

Two cases in triangular and tetrahedral elements should be considered: 

 Case 1: If all local vector components have the same sign, the local vector 

has to be scaled to the boundary ( 1     ). 

 

 Case 2: If the local vector points into the element from a corner such that the 

vector components have different signs, then the local vector is scaled to the 

appropriate local axis boundary, i.e. the largest absolute component of χ̂  is 

scaled to 1 to give vector χ .   

 

 

 

 

Figure ‎3.3: Quadrilateral and triangular elements. 

 

The vector χ is computed as follows: 
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ii. The Cartesian vector xyzr  corresponding to the vector χ  can be computed as: 

 

 T
xyz  r J χ  (3.28) 

 

iii. The characteristic length ch  is then given by the magnitude of xyzr , scaled 

by the range of the local coordinates: 

 

 ch g xyz r * r  (3.29) 

 

 

in which the local coordinate range ( gr ) for quadrilateral and hexahedral elements is 

2, and  equals to 1 for triangular elements.  

This method for computing ch  was implemented in the finite element code 

developed for the present work and used for all of the examples presented in this 

thesis. 

 

3.5    Convergence criteria 

 

The termination of the iterations in nonlinear algorithms is determined by 

convergence criteria. Customarily, three types of convergence criteria are used to 

measure how well the obtained solution satisfies equilibrium (Belytschko et al., 

2013): 

o A criterion based on force  

o A criterion based on displacement 

o An energy error criterion 

L2 iterative displacement and out of balance force norms are used in this thesis. The 

L2-norm is known as a Euclidean norm, and can be defined as the square-root of the 

sum of the squared values of the vector elements. Sometimes, the norm of iterative 

displacement change can be very small while the residual force norm is very large. 
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Hence, it is recommended to adopt both displacement-based and out-of-balance-

force norm criteria (Crisfield, 1991).  

Convergence is achieved when the L2-norm reaches a certain convergence tolerance. 

Indeed, the convergence tolerance determines, in one sense, the accuracy of a 

calculation and also can affect the solution time. If the tolerance is too coarse, the 

solution may be quite inaccurate. On the other hand, using an excessively tight 

convergence tolerance can result in time consuming and unnecessary computations 

(Becker, 2004; Bathe, 2006). 

The force criterion is given by; 
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and the displacements criterion by; 
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where ‘it’ denotes the iteration number, Fnorm is max 
2externalFΔ  and  Dnorm is 

2
U . Also, fΨ , dΨ and eΨ   are prescribed force, displacement and energy 

tolerances, respectively, where the energy criterion is given by: 
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3.6    Numerical examples 

 

Five numerical examples are used to illustrate the performance of the proposed SUR 

approach for the non-linear FE analysis of QB structures. The purpose of the study is 

not to examine the accuracy of the isotropic damage model, but rather to illustrate 

the convergence characteristics of the new SUR approach and illustrate its potential 

benefits. Therefore, the examples were chosen for their numerical characteristics 

and, with one exception, are not based upon real experiments or structures.  

The first example considers a 1D bar problem, fixed at one end and loaded by 

prescribed displacement at the other end (see Figure 3.4). The second example is a 

2D notched fracture specimen, loaded by prescribed displacement along its upper 

boundary, as shown in Figure 3.11. The third example is based on the reinforced 

concrete prism tested by Elfgren and Noghabai (2001) (see Figure 3.26). The forth 

example is a 2D double notched specimen subject to mixed mode loading by 

prescribed displacement, as illustrated in Figure 3.33. The final example adopts the 

same configuration as used in example 3.6.2 but with larger dimensions (see Figure 

3.40). However, this example is only used to explore the effect of varying the two 

main parameters of SUR function ( ν  and pa ) on the convergence performance of the 

solution. The material parameters used for all examples are given in Table 3.2. All 

2D meshes comprised bilinear isoparametric elements. 

Examples 3.6.1 to 3.6.4 are considered with the proposed SUR approach and 

reference solution ‘secant’ method. 

In all examples, the loading was monotonic and consistent convergence parameters 

were used for all analyses within an example. Thus, the form of the unloading-

reloading curve would not be expected to have a major influence on the overall 

predicted response but predominantly affect the convergence characteristics. The 

former was indeed the case, as may be seen from the load-displacement responses 

given below. It should be mentioned that the true unloading-reloading response 

exhibits hysteresis behaviour that is not simulated here, thus the unloading path is 

assumed to follow the smooth unloading-reloading curve shown in Figure 3.1. 
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Table 3.2: Material properties and convergence tolerances.  

Example 

No. 

Ec 

(GPa) 

Es 

(GPa) 

 ft 

(MPa) 

Gf 

(N/mm) 

f d 

3.4.1 20 - 0.20 2.5 0.10 10
-3

 & 10
-6 

10
-3

 & 10
-6 

3.4.2 20 - 0.20 2.5 0.10 10
-3

 & 10
-6

 10
-3

 & 10
-6

 

3.4.3 42 200 0.20 2.5 0.10 10
-3

 10
-3

 

3.4.4 20 - 0.20 2.5 0.10 10
-3

 10
-3

 

3.4.5 30 - 0.20 2.5 0.10 10
-3

 10
-3

 

 

 

Convergence of the incremental-iterative solutions was based on the decay of both 

the L2 iterative displacement and out of balance force norms, i.e. the convergence of 

both of these norms was achieved for all steps of every solution. Two levels of 

convergence tolerance have been used in the examples:  the first being a tolerance of 

0.1%, which is considered adequate for all practical analyses. The second tolerance 

of 0.0001% is used in the first two examples to explore the convergence 

characteristics beyond the first limit.  The latter was not used in all examples 

because, (i) the results show that there is no appreciable difference in the results 

from a solution with a 0.1% limit compared with those obtained using 0.0001% 

tolerance, and (ii) the very high number of iterations required by the reference 

‘secant’ solution made full comparisons difficult to obtain for the later examples. 

In these examples, the solution characteristics are illustrated by showing the number 

of iterations required to achieve convergence for selected increments. In all cases, 

the increments chosen are those which required the most iterations to achieve 

convergence thus are termed ‘difficult increments’. 

 

Example 3.6.1: One-dimensional tensile test 

 

The 1D bar problem considered in this example, as can be seen in Figure 3.4, was 

fixed at one end and loaded by prescribed displacement of 0.2 mm at the other end. 

The 1D bar was divided into 3 linear elements of equal length, with the middle 
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element being assigned a small amount of initial damage such that damage only 

occurred in this central element.   

 

 
            

Figure ‎3.4: 1D bar subjected to 0.2 mm prescribed displacement. 

 

Two sets of analyses were undertaken, one in which the 0.2mm displacement was 

applied over 40 increments and the other set with 100 increments. In addition, both 

sets of analyses were carried out with 0.1% and 0.0001% convergence tolerances. 

 

 

Figure ‎3.5: Displacement-stress relationship for the 1D bar with 40 and 100 increments 

(convergence tolerance =0.1%). 
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Figure ‎3.6: Displacement-stress relationship for the 1D bar using SUR approach with 10
-3

 and 

10
-6

 convergence tolerances. 

 

 

The resulting stress-displacement responses from the two sets of analyses are shown 

in Figure 3.5 and, as expected, the results from the various analyses are 

indistinguishable from each other. This is also the case for the results obtained using 

the different convergence tolerances of 10
-3

 and 10
-6

, as can be seen in Figure 3.6.  

Figures 3.7 to 3.10 present the number of iterations required to achieve convergence 

at the most difficult steps.  In all sets of analyses, the developed SUR approach 

achieved converged solutions with far fewer iterations than the secant method.  
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Figure ‎3.7: Number of iterations to achieve convergence for the most difficult increments of the 

1D bar with 40 increments (convergence tolerance =10
-6

). 

 

 

Figure ‎3.8: Number of iterations to achieve convergence for the most difficult increments of the 

1D bar with 40 increments (convergence tolerance=10
-3

). 
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Figure ‎3.9: Number of iterations to achieve convergence for the most difficult increments of the 

1D bar with 100 increments (convergence tolerance=10
-6

). 

 

 

 

Figure ‎3.10: Number of iterations to achieve convergence for the most difficult increments of the 

1D bar with 100 increments (convergence tolerance=10
-3

). 
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Example 3.6.2: Two-dimensional plane stress specimen  

 

The idealised 2D structure, shown in Figure 3.11, considered in this example is 

discretised with the coarse and fine meshes, as can be seen in Figure 3.12. The 

analysis was undertaken using 2 different prescribed displacement increments, one 

using 50 steps and the other 100 steps. Also, two convergence tolerances 10
-3 

and  

10
-6

 were used for the analysis. In addition, Figure 3.14 shows damage contour plots 

at different displacement increments for Mesh1 with 50 increments.  

 

 

 

Figure ‎3.11: Dimension of the 2D notched plane stress example. 

 

Exaggerated deformed mesh plots are given in Figure 3.13. The numerical load 

displacement responses from the analyses using the two approaches with Mesh1 and 

Mesh2 using 50 and 100 steps are shown in Figures 3.15 and 3.16. Also, the stress-

displacement responses for Mesh1 using the SUR approach for two convergence 

tolerances 10
-3

 and 10
-6

 are presented in Figure 3.17. In addition, a comparison 

between the number of iterations needed for the two solutions to converge at the 

most difficult steps can be seen in Figures 3.18 to 3.25. The increments requiring the 

most iterations are those associated with crack initiation and early crack propagation. 
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These normally coincide with the peak and early post-peak sections of the overall 

response curve (Hellweg and Crisfield, 1998).    

 

                     Mesh1  Mesh2 
 

Figure ‎3.12: Finite element mesh. 

 

Mesh1 Mesh2 

 

Figure ‎3.13: Exaggerated deformed mesh plots at final increment for Mesh1 and Mesh2. 
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ω

 
Increment 1 Increment 2 Increment 3  

 

Figure ‎3.14: Damage contour plots for different displacement increment (2D plane stress 

example). 

 

 

 

Figure ‎3.15: Displacement-Stress relationship for 2D plane stress example with 50 steps. 
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Figure ‎3.16: Displacement-Stress relationship for 2D plane stress example with 100 steps. 

 

 

 

Figure ‎3.17: Displacement-Stress relationship for Mesh1 using SUR approach with convergence 

tolerances 10
-3  

and 10
-6
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As in example 3.6.1, the stress-displacement results obtained with both convergence 

tolerances (10
-3

 and 10
-6

) are indistinguishable from each other, as can be seen in 

Figure 3.17. Also, as with example 3.6.1, the savings gained by using the SUR 

approach are considerable.  

 

 

Figure ‎3.18: Number of iterations to achieve convergence for the most difficult increments of 

Mesh1 with 50 increments (convergence tolerance=10
-3

). 

 

 

Figure ‎3.19: Number of iterations to achieve convergence for the most difficult increments of 

Mesh1 with 50 increments (convergence tolerance=10
-6

). 
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Figure ‎3.20: Number of iterations to achieve convergence for the most difficult increments of 

Mesh2 with 50 increments (convergence tolerance=10
-3

). 

 

 

Figure ‎3.21: Number of iterations to achieve convergence for the most difficult increments of 

Mesh2 with 50 increments (convergence tolerance=10
-6

). 
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Figure ‎3.22: Number of iterations to achieve convergence for the most difficult increments of 

Mesh1 with 100 increments (convergence tolerance=10
-3

). 

 

 

Figure ‎3.23: Number of iterations to achieve convergence for the most difficult increments of 

Mesh1 with 100 increments (convergence tolerance=10
-6

). 
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Figure ‎3.24: Number of iterations to achieve convergence for the most difficult increments of 

Mesh2 with 100 increments (convergence tolerance=10
-3

). 

 

 

Figure ‎3.25: Number of iterations to achieve convergence for the most difficult increments of 

Mesh2 with 100 increments (convergence tolerance=10
-6

). 
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Example 3.6.3: Reinforced concrete prism 

 

The RC specimen considered in this example was reinforced with a single central 

reinforcement bar, as illustrated in Figure 3.26.  The specimen is modelled in 2D 

with plane stress elements. As illustrated in Figure 3.26, the bar is assumed to be 

square and the concrete at this level is ignored. It is recognised that this represents a 

considerable simplification of the true 3D specimen. The analyses were carried out 

with 50 and 100 prescribed displacement increments to reach a displacement of 1mm 

at the load position. The finite element mesh, which represents ¼ of the specimen, is 

shown in Figure 3.27. The exaggerated deformed mesh plot of the ¼ of the RC prism 

at the final increment (0.01 mm) is given in Figure 3.28. Furthermore, Figure 3.29 

shows a contour plot of the damage parameter at the final increment.  

 

Figure ‎3.26: Dimension details of the RC prism. 

 

 

 

 

Figure ‎3.27: Finite element mesh of RC prism. 
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Figure ‎3.28: Exaggerated deformed mesh plot at final increment. 

 

 

 

Figure ‎3.29: Damage value contour plot at final displacement increment. 

 

Numerical stress-displacement responses from all of the analyses of this specimen 

are shown in Figure 3.30, in which the average stress is that in the elastic reinforcing 

bar.  

The number of iterations required, for both the 50 and 100 step solutions, are 

presented in Figures 3.31 and 3.32, respectively. The efficiency of the SUR 

approach, relative to the secant approach, is again evident.  
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Figure ‎3.30: Load-displacement responses of reinforced bar. 

 

 

 

Figure ‎3.31: Number of iterations to achieve convergence for the most difficult increments of the 

RC prism with 50 increments. 
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Figure ‎3.32: Number of iterations to achieve convergence for the most difficult increments of the 

RC prism with 100 increments. 

 

 

Example 3.6.4:  2D double notched example 

 

Figure 3.33 shows the 2D double notched specimen used for this example. This is 

subjected to a combination of shear and tensile loading via prescribed vertical and 

horizontal displacements. The analyses were undertaken using 40 and 100 prescribed 

displacement increments. The exaggerated deformed mesh plot of the 2D specimen 

using 100 steps at the final displacement increment is depicted in Figure 3.34. Also, 

contour plots of the damage parameter and principal stresses are shown in Figures 

3.35 and 3.37, respectively.  
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Figure ‎3.33: dimensional details of the double notched specimen. 

 

 

 

Figure ‎3.34: Exaggerated deformed mesh plot. 
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The results in Figure 3.36 give a graph of displacement versus average vertical stress 

for both the 40 and 100 step solutions. The average vertical stress in these plots is the 

sum of the vertical forces (reactions) on the upper surface divided by the un-notched 

cross-sectional area (i.e. the area at the top of the specimen). It can be noted that the 

average vertical stress becomes compressive in the latter stages of the analysis. This 

is consistent with the formation of a diagonal compression zone across the centre of 

the specimen (see Figure 3.37).  

As with all other examples, the SUR solution is far more efficient than the reference 

Secant solution. Indeed, the SUR approach is robust and results in significant 

savings in terms of the total number of iterations required for a complete solution as 

illustrated in Figures 3.38 and 3.39. 
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Figure ‎3.35: Damage indicator contour plots at different displacement increments. 
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Figure ‎3.36: Numerical displacement and vertical stress responses with 40 and 100 prescribed 

displacement increments. 

 

 

                    a                  b 

 

Figure ‎3.37: (a) Minimum principal stress contour plot, (b) Maximum principal stress contour 

plot, both at final displacement increment. 
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Figure ‎3.38: Number of iterations to achieve convergence for the most difficult increments with 

40 increments. 

 

 

Figure ‎3.39: Number of iterations to achieve convergence for the most difficult increments with 

100 increments. 
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Example 3.6.5: Two-dimensional specimen  

 

The purpose of this example is to illustrate the effect of varying the SUR parameters 

on the nonlinear solution characteristics. Therefore, unlike all of the previous 

examples, only the standard SUR approach is used for the analyses. The cases 

considered are; Case 1 ( ν =0.75 and pa =0.70) and Case 2 ( ν =1.0 and pa =0.8). 

The analyses were carried out using a total prescribed displacement of 0.2 mm, 

applied evenly over 50 steps.  

 

 

Figure ‎3.40: Dimensional details for 2D specimen. 

 

The stress-displacement responses for both cases are given in Figure 3.41. The 

iteration history in Figure 3.41 shows that the Case 1 solution, with the standard 

SUR parameters, uses far fewer iterations than the Case 2 solution. The better 

performance of the former is attributed to the fact that the Case 1 SUR curve has a 

much smaller gradient at the intersection with the target curve than does the Case 2 

SUR curve. This means that the ‘tangent matrix’ used in the Case 1 solution was 

closer to the true (negative) tangent and therefore resulted in less drift from the target 

solution in each iteration than in the Case 2 solution.   
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Figure ‎3.41: Displacement-Stress relationship for varying the two main parameters of SUR 

function. 

 

 

Figure ‎3.42: Number of iterations to achieve convergence for the most difficult increments of the 

SUR solution with Cases 1 and 2. 
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3.7    General discussion and conclusions 

 

The conclusion from this study, and from the experience gained by using the SUR 

algorithm for all of the analyses presented as well as for other unreported examples, 

is that the suggested default parameters of 0.75 and 0.70, for ν  and pa respectively, 

are suitable for a wide range of problems and provide the best overall balance 

between robustness and efficiency. These parameters may not result in the absolute 

minimum number of iterations in every case, but they did always result in very 

substantial reductions in iteration numbers relative to the reference secant solution. 

Overall, it has been found that the proposed SUR approach was robust and never 

resulted in a breakdown of the nonlinear solution procedure.  

It can be observed that examples 3.6.3 and 3.6.4 have more than one ‘difficult 

increment’ which differs from the other examples.  This can be attributed to the fact 

that the crack pattern evolves throughout the analysis and is not established in one 

defined step, which is in contrast to the behaviour in the other three examples.  

A convergence tolerance of 0.1%, based on L2 norms of iterative displacements and 

out of balance forces, is sufficient for practical analyses. Using a tighter tolerance 

results in no appreciable change in results, as judged from damage patterns and 

response graphs. Using a tighter tolerance (e.g. 10
-6

) results in more iterations than 

obtained with the slacker tolerance (e.g. 10
-3

), but the conclusion that the SUR 

algorithm always uses far fewer iterations than the reference secant solution remains 

unchanged.      

Solutions were attempted using a standard Newton solution with a consistent tangent 

matrix i.e. using a form of Dtan based on the negative tangent of the target curve. The 

author found that frequent numerical breakdown occurred when such solutions were 

attempted, which is in agreement with the findings reported in much of the literature 

reviewed in Chapter 2 in Section 2.4. 

The proposed SUR approach, which applies a smooth unloading-reloading function 

in a damage model and then uses this function as a basis for computing an 

approximate positive-definite finite element tangent matrix, is robust and results in 

considerable savings relative to a model that uses a secant unloading-reloading 
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function. Furthermore, results proved that numerical breakdown of the nonlinear 

solution procedure never arose when SUR approach was carried out. 

 The form of the SUR function greatly affects the convergence characteristics of the 

model, with functions that have small gradients at the intersection with the target 

softening curve performing best.  

The method proposed for calculating the characteristic length parameter from an 

element Jacobian matrix is both accurate and efficient. 
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Chapter 4  

  

Acceleration techniques for the smooth 
unloading-reloading method 

 

 

4.1    Introduction 

 

In this chapter, three acceleration techniques to improve the convergence properties 

of the recently developed smooth unloading-reloading (SUR) method, which was 

presented in Chapter 3, are proposed. The aim in developing these three acceleration 

algorithms was to enhance the efficiency of the SUR method. The effectiveness of 

these three approaches is examined using the same examples as those used in 

Chapter 3. The reason for this choice is that this allows the new SUR strategies to be 

compared directly with the standard SUR method described in the previous chapter.  

 

4.2    Acceleration techniques 

 

In this section three acceleration techniques are proposed for improving the 

convergence performance of the SUR solution procedure. These acceleration 

approaches are described below: 

 

4.2.1    Predictive-SUR approach  

 

The one dimensional problem shown in Figure 4.1 is used to explain the theory of 

the proposed predictive-SUR approach.  This problem comprises a one-dimensional 

bar, fixed at one end and loaded by prescribed displacement at the other end. A 

prescribed displacement (ux) of 0.2 mm is applied evenly over 40 increments. The 

bar is divided into 3 linear elements of equal length, with the middle element being
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 assigned a small amount of initial damage such that damage only occurs in this 

central element.   

The material properties used for the analysis are: Young’s modulus ( E =20000 

MPa), Poisson’s ratio ( =0.2), tensile strength ( tf =2.5 MPa) and the fracture energy 

( fG = 0.1 N/mm). 

 

Figure ‎4.1: 1D bar subjected to 0.2 mm prescribed displacement. 

 

Figure 4.2 shows the number of iterations required to achieve convergence to a 

tolerance of 10
-6

, based on an L2 out of balance force norm ( f ).  This shows that 

the ‘most difficult’ increment was number 3, i.e. the increment that required the 

greatest number of iterations to achieve convergence. 

 

 

Figure ‎4.2: Number of iterations to achieve convergence for the most difficult increments of the 

1D bar. 
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In Figure 4.3, the iterative change in the damage evolution parameter (
pΔr ) is 

plotted against the iteration number in semi-log space. It can be seen from this graph 

that, after a certain point, 
pΔr  exhibits a linear decay in semi-log space.   

The observation that ‘
pΔr log ’ reaches a linear decay line led to the development of 

an algorithm for the prediction of 
pr , which was subsequently tested using the 

examples described Section 4.3.  

 

 

Figure ‎4.3: Relationship between number of iterations at the most difficult step (step No. 3) and 

the differences between damage evolution parameters for the 1D bar. 

 

The predictive function is based on two main principles: 

 

1.  The relationship between the number of iterations (it) within an increment 

and the iterative change of the damage evolution parameter (
1-ititi ppp rrΔr  ) 

decays linearly in semi-log space, once stable convergence has been 

achieved, as shown in Figure 4.3.  
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2. When the slope of the it vs (
pΔr log ) curve starts decreasing (see Figure 4.3), 

a trial prediction of the damage evolution parameter (
ppr ) can be computed 

using equation (4.4). Once the normalised difference between two 

consecutive predictions is less than 5%, 
pr  is set to the most recently 

computed trial value, i.e. 
pr =

ppr .  

 

Figure ‎4.4: Relation between number of iterations and differences between damage evolution 

parameters within a time step. 

 

Based on Figure 4.4, the following extrapolation can be obtained: 

 

       
itk

ΔrlogΔrlog

1

ΔrlogΔrlog
i1ii ppppp







  (4.1) 

 

Equation (4.1) can be simplified to: 

 

)rlog(Δ)]rlog(Δ)r[log(Δit)(k)rlog(Δ
i1-ii ppppp   

 
)rlog(Δ)]rlog(Δ)r[log(Δit)(k)rlog(Δ

pp
ip1-ipippp 1010rΔ


  

Then the equation (4.1) becomes 

        rp
i-1 

rp
i 

rpp 

𝑙𝑜𝑔(rp)  

iterations 

 it-1      it                                            k 

0 
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ppΔr abj10   (4.2) 

 

in which tikj  ,    i i 1p pb log Δr log Δr


   and  ipa log Δr . 

It follows that the predicted damage evolution parameter is; 

 







1j

ppppp jit
Δrrr  (4.3) 

 

The summation in equation (4.3) may also be written as; 

 

b

bba

1j

pp
10-1

)10(1010
Δr

j






  

 

The prediction is only considered when 
pΔr  is reducing and this means that b 

always satisfies b < 0, and therefore 10
b

 =0. The predictive damage evolution 

parameter 
ppr  can now be written: 

 

i1-i

i

pp

2

p

itppp
ΔrΔr

Δr
rr


  (4.4) 

  

Table 4.1 summarises the steps involved in computing the 
pr  prediction. 

 

Table ‎4.1: Predictive function algorithm. 

ippr                    if 
ipΔr 

1-ipΔr  Compute 1
st
 pr  prediction at it 

1ippr


                 if 
i1i pp ΔrΔr 


 Compute 2

nd
 pr  prediction at it+1 

1ipp p rr


          if  5%  
r

rr

1i

i1i

pp

pppp






                          
Set pr   value to

1ippr


, if the second principal 

is satisfied   
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The predictive algorithm has been derived from the response of a 1D three element 

example and relies on the iterative solution reaching a point at which the change in 

the damage evolution parameter exhibits the semi-log decay shown in Figure 4.3 for 

all active damage zones. The point at which this semi-log decay occurs will be 

problem dependent and may be expected to be reached in fewer iterations in small 

1D problems than in larger multi-element 2D and 3D cases.  This issue is explored in 

the numerical implementation section of this chapter which assesses the performance 

of the predictive algorithm for range of multi-element 1D and 2D problems.  

 

4.2.2    Fixing algorithm   

 

An alternative acceleration technique, named the ‘fixing approach’, in which a two-

stage algorithm is employed with the standard SUR approach, is now described. The 

philosophy behind this acceleration approach is that, since the majority of cracks will 

occur during the first few iterations of any load increment, the damage evolution 

parameter (
pr ) is allowed to be updated from the last converged increment in early ‘ 

Stage-1 iterations’ and then it is fixed for the subsequent ‘Stage-2 iterations’, within 

each increment. However, in Stage-2 iterations, the effective damage evolution 

parameter 
effr  is only updated when the value of 

effr exceeds the frozen scalar of 
pr .  

itfix is used to denote the limit number of iterations in Stage-1.  It should be 

mentioned that quadratic convergence is achieved once it > itfix. 

Two different values of itfix were considered in the study, with a comparison being 

made between solutions with itfix=3 and itfix=5. 

 

4.2.3    Slack tolerance technique  

 

 In the incremental-iterative solution procedure, the total load/displacement is 

divided into small increments and each increment is applied individually. In order to 

achieve the equilibrium at the end of each step, iterations are performed within each 

load/displacement increment. Convergence is assessed using the L2 norms of the 

out-of-balance force vector and the iterative displacement vector (Becker, 2004).  
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Convergence is achieved, if both of iterative displacement and out-of-balance force 

norms are smaller than a specified tolerance. When convergence is not achieved, a 

correction to the displacement vector is required, in which the residual force is used 

to obtain a correction to the displacement. The correction procedure is repeated until 

the both norms became below a certain tolerance. The user of the FE code normally 

sets the convergence tolerance, but it is not generally recommended to be less than 

1% (Bathe, 2006). The standard tolerance of ‘0.1% or 0.0001%’ employed with the 

SUR technique to-date is considerably smaller than this recommended value and 

therefore a third SUR option was devised that involves switching to slacker tolerance 

of 1% when ‘difficult increments’ are encountered. These are defined as increments 

in which the number of iterations exceeds 5 iterations (it > 5) with the standard SUR 

solution. The tolerance reverts to ‘0.1% or 0.0001%’ for subsequent increments. 

 

4.3    Numerical implementation  

 

Four examples are used in this section to investigate the benefit of implementing the 

proposed acceleration algorithms for improving the convergence properties of the 

standard SUR method when analysing quasi-brittle structures. The examples are the 

same as those used in the previous chapter to enable a direct comparison.  

Table 4.2 provides a summary of the material properties used in these examples. The 

four examples were analysed using the following four approaches: 

 Smooth unloading reloading (SUR) approach. 

 Predictive-SUR approach. 

 Fixing approach with itfix=3 and 5 in Stage-1 iterations. 

 Slack tolerance technique. 

The solution characteristics of the examples are presented by showing the number of 

iterations required to achieve convergence for selected ‘difficult increments’. Indeed, 

the most difficult increments frequently coincided with the crack initiation or started 

in the initial stages of crack propagation (Hellweg and Crisfield, 1998). Furthermore, 

the total number of iterations required for each solution for all examples is presented. 
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In the first two examples, the convergence history for SUR, predictive-SUR and 

fixing solutions is plotted. The information provided includes the out of balance 

force norm at the end of each load increment. The out of balance force norm history 

for a selected increment is also given. 

 

Table ‎4.2: Material properties and convergence tolerances.  

Example 

No. 

Ec 

(GPa) 

Es 

(GPa) 

 ft 

(MPa) 

Gf 

(N/mm) 

f d 

1 20 - 0.20 2.5 0.10 10
-3

 & 10
-6 

10
-3

 & 10
-6 

2 20 - 0.20 2.5 0.10 10
-3

 & 10
-6

 10
-3

 & 10
-6

 

3 42 200 0.20 2.5 0.10 10
-3

 10
-3

 

4 20 - 0.20 2.5 0.10 10
-3

 10
-3

 

 
 

Example 4.3.1: One-dimensional tensile test  

 

The first example is the 1D tensile test specimen shown in Figure 4.1, which was 

used to explain the theory of the proposed predictive-SUR approach. In this example, 

40 and 100 increments were used in the analyses with convergence tolerances equal 

to 10
-3

 and 10
-6

. 

 The equilibrium paths for the standard SUR and SUR with acceleration approaches 

are shown in Figures 4.5 and 4.6. Moreover, Figures 4.7 to 4.10 present the number 

of iterations to achieve convergence for the most difficult increments. Also, the total 

number of iterations required for completing the analysis for each approach is given 

in Figures 4.11 and 4.12.  
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Figure ‎4.5: Numerical displacement-stress responses for 1D example with 10
-3

 convergence 

tolerance. 

 

 

Figure ‎4.6: Numerical displacement-stress responses for 1D example with 10
-6

 convergence 

tolerance. 
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The resulting stress-displacement responses from the various analyses are 

indistinguishable from each other, as can be seen in Figures 4.5 and 4.6.  

In all sets of analyses, results showed that the three acceleration techniques achieved 

converged solutions in fewer iterations than the standard SUR solution (Figures 4.7 

to 4.10). Furthermore, the ‘fixing algorithm’, with 3 iterations in Stage-1, was on 

average a little more efficient than the others, as can be seen in Figures 4.11 and 

4.12.     

 

 

Figure ‎4.7: Number of iterations to achieve convergence for the most difficult increments for the 

analysis with 40 steps (convergence tolerance = 10
-3

). 
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Figure ‎4.8: Number of iterations to achieve convergence for the most difficult increments for the 

analysis with 40 steps (convergence tolerance = 10
-6

). 

 

 

Figure ‎4.9: Number of iterations to achieve convergence for the most difficult increments for the 

analysis with 100 steps (convergence tolerance = 10
-3

). 
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Figure ‎4.10: Number of iterations to achieve convergence for the most difficult increments for 

the analysis with 100 steps (convergence tolerance=10
-6

). 

 

 

Figure ‎4.11: Total number of iterations that needed for each solution in the 1D example using 

convergence tolerance 10
-3

. 
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Figure ‎4.12: Total number of iterations that needed for each solution in the 1D example with 

convergence tolerance of 10
-6

. 

 

The convergence history for the analysis with 40 and 100 steps is shown in Figures 

4.13 and 4.15, respectively. Figures 4.14 and 4.16 show how the convergence 

progress of the SUR, predictive-SUR and fixing approaches for steps which had 

relatively the biggest reduction of iterations that required to achieve convergence, in 

which  step number 3 was in the analysis with 40 steps, and step number 9 for the 

analysis with 100 increments 

The convergence curves shown in Figures 4.14 and 4.16 indicate that the 

convergence rate of the standard SUR method is improved by using the accelerating 

algorithms.   
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Figure ‎4.13: Out of balance force norm at the end of each increment for the analysis with 40 

steps and convergence tolerance = 10
-3

. 

 

 

Figure ‎4.14: Out of balance force norm history for increment number 3 with 40 steps and 

convergence tolerance = 10
-3
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Figure ‎4.15: Out of balance force norm at the end of each increment for the analysis with 100 

steps and convergence tolerance = 10
-6

. 

 

 

Figure ‎4.16: Out of balance force norm history for increment number 9 with 100 steps and 

convergence tolerance=10
-6
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Example 4.3.2: Two-dimensional plane stress specimen  

 

An idealised 2D structure, shown in Figure 4.17a, was analysed using the damage 

model with various acceleration techniques.  The analyses were carried out using 

two different prescribed displacement increments comprising 50 or 100 even steps. 

Also, two convergence tolerances of 10
-3 

and 10
-6

 were used for the analysis. 

The stress-displacement responses from analyses using the standard SUR approach 

and acceleration techniques are shown in Figures 4.18 and 4.19. A damage contour 

plot at last displacement increment is given in Figure 4.20. Furthermore, the number 

of iterations needed to achieve convergence at the most difficult increments for all 

solutions are shown in Figures 4.21 to 4.24. 

 

 

 

 

Mesh1 

                         a b 

                                                                                                                                         

Figure ‎4.17: (a) 2D notched plane stress, (b) finite element Mesh1. 
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Figure ‎4.18: Displacement-Stress relationship for 2D plane stress specimen (convergence 

tolerance =10
-3

). 

 

 

Figure ‎4.19: Displacement-Stress relationship for 2D plane stress specimen (convergence 

tolerance =10
-6

). 
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   ω  

 
       

 

Figure ‎4.20: Damage contour plot at last displacement increment. 

 

The complete stress-displacement responses obtained by predictive-SUR, fixing 

(itfix=5) and slack tolerance techniques are almost identical with the standard SUR 

response with both 50 and 100 steps, as illustrated in Figures 4.18 and 4.19. 

However, results obtained from the fixing approach in which itfix=3 show a small 

drift from the standard SUR response curve, but the discrepancy is relatively 

insignificant for both cases.  

In this example, the crack was established in a single step or increment, i.e. 

increment 2 for the 50 step solution and increment 4 for the 100 step solution.  When 

this occurs, overall number of iterations saved by using the acceleration approaches 

is insignificant when using f/d=10
-3

, but is noticeable with using f/d = 10
-6

, as can 

be seen in Figures 4.25 and 4.26. 
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Figure ‎4.21: Number of iterations to achieve convergence for the most difficult increments for 

the analysis with 50 increments and convergence tolerance=10
-3

. 

 

 

Figure ‎4.22: Number of iterations to achieve convergence for the most difficult increments for 

the analysis with 50 increments and convergence tolerance=10
-6 
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Figure ‎4.23: Number of iterations to achieve convergence for the most difficult increments for 

the analysis with 100 increments and convergence tolerance=10
-3

. 

 

 

Figure ‎4.24: Number of iterations to achieve convergence for the most difficult increments for 

the analysis with 100 increments and convergence tolerance=10
-6
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Figure ‎4.25: Total number of iterations that needed for each solution using convergence 

tolerance =10
-3

. 

 

 

Figure ‎4.26: Total number of iterations that needed for each solution using convergence 

tolerance =10
-6
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Example 4.3.3: Reinforced concrete prism  

 

The concrete prism shown in Figure 4.27 was reinforced with a single central 

reinforcement bar. The analysis was carried out with 50 and 100 steps to reach a 

displacement of 1mm at the load position. 

 

 

Figure ‎4.27: RC prism dimensions. 

 

Figure 4.28 presents stress-displacement responses for both sets of the analyses. 

Again, the results of the standard SUR solution and the three acceleration techniques 

solutions are indistinguishable from each other.  

As with other examples, it can be seen from the bar charts in Figures 4.29 and 4.30 

that there was a dramatic decrease in the number of iterations required to achieve 

convergence for the SUR solution when any of the proposed acceleration techniques 

was employed. Thus, the efficiency of the proposed acceleration approaches is again 

evident. 
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Figure ‎4.28: Load-displacement responses of RC prism. 

 

The other main observation from these results is that, overall, the SUR predictive, 

fixing and slack tolerance solutions all require fewer iterations than the standard 

SUR method. However, there are single increments for which the basic SUR 

solution uses fewer iterations than the acceleration solutions. This is most evident in 

steps which follow-on from a previous step in which the predictive/fixing/slack 

tolerance algorithms gave a very significant reduction in iterations (e.g. see steps 6 

and 7 in Figure 4.29). This occurred because the cracking was more distributed than 

in the plain concrete examples. It is believed that temporarily freezing pr , whether at 

a predicted value in the predictive-SUR approach or at the fixed value in the fixing 

approach, causes the evolution of some local damage to be spread over 2 or 3 steps, 

rather over a single step.  
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Figure ‎4.29: Number of iterations to achieve convergence for the most difficult increments of RC 

prism with 50 increments. 

 

 

Figure ‎4.30: Number of iterations to achieve convergence for the most difficult increments of RC 

prism with 100 increments. 
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Figure ‎4.31: Total number of iterations that needed for each solution in the RC prism example. 

 

 

Example 4.3.4: 2D double notched example.   

 

The last example is a 2D double notched specimen loaded by a combination of shear 

and vertical tensile loads, as illustrated in Figure 4.32. The analyses were undertaken 

using 40 and 100 prescribed displacement increments.  

The displacement verses vertical stress responses from the analyses using the 

standard SUR approach and the predictive-SUR, as well as the fixing and slack 

tolerance approaches are almost identical as shown in Figure 4.33. Moreover, the 

damage contour plot at the final displacement increment is depicted in Figure 4.34. 
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Figure ‎4.32: Geometry of the 2D double notched specimen. 

 

Without doubt, using the proposed acceleration algorithms can give a noticeable 

reduction in the total number of iterations relative to those required by the basic SUR 

solution, as illustrated in Figure 4.37. Indeed, in some cases, implementing 

acceleration approaches can reduce the required number of iterations by more than 

50 % at most difficult increments e.g. see step number 5 and 6 in Figure 4.35. As in 

example 1, the fixing approach with itfix=3  gave the greatest reduction in iterations 

among the other acceleration techniques.  
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Figure ‎4.33: Numerical displacement and vertical stress responses 2D double notched specimen. 

 

 

 

Figure ‎4.34: Damage indicator contour plot at last displacement increment. 
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Figure ‎4.35: Number of iterations to achieve convergence for the most difficult increments with 

40 increments. 

 

 

Figure ‎4.36: Number of iterations to achieve convergence for the most difficult increments with 

100 increments. 
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Figure ‎4.37: Total number of iterations that needed for each solution in the 2D double notched 

problem. 
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proposed approach two different number of iterations (itfix= 3 and 5) in Stage-1 were 

investigated.  

The third approach which has also been investigated is called slack tolerance 

technique. When the number of iterations within an increment exceeds 5 iterations in 

the SUR method, a switch to a slacker tolerance ‘1%’ is employed for this specific 

difficult step. After that, the convergence tolerance reverts to the given specific 

tolerance in subsequent increments. 

In all cases, the proposed acceleration algorithms resulted in fewer overall iterations 

than the standard SUR method. However, in the reinforced concrete example 4.3.3 

there are particular increments for which acceleration algorithms used more 

iterations than the standard SUR algorithm. This is most evident in steps which 

follow-on from a previous step in which the predictive algorithm gave a very 

significant reduction in iterations (e.g. see steps 12 and 13 in Figure 30). This 

occurred mainly in the reinforced concrete example in which the cracking was more 

distributed than in the plain concrete examples. It is believed that temporarily 

freezing 
pr  , i.e. at a predicted/fixed value, causes the evolution of some local 

damage to be spread over 2 or 3 steps, rather over a single step. However, an 

important observation is that no appreciable difference in overall response, damage 

pattern, or stresses and strains was discernible between the solutions (i.e. standard 

SUR, predictive-SUR, fixing with itfix=3 or 5 and slack tolerance approaches), as 

judged from graphs and plots of these entities.  

Overall, the three SUR acceleration algorithms described in this chapter are 

effective, reliable and result in substantial savings in terms of the total number 

iterations required for a complete solution, relative to the standard SUR approach, in 

some examples these savings were enormous. 

The SUR ‘fixing’ approach, with itfix=3, is the most efficient algorithm amongst 

those presented, but in some instances it can lead to a noticeable drift in the 

equilibrium path particularly when a substantial crack is established in a single 

solution step, as in example 4.3.2.  



Chapter 4 

 

 

105 

 

The ‘predictive-SUR’ ‘fixing’ -with itfix=4 or 5- and ‘slack tolerance’ approaches are 

all more reliable than the ‘fixing with itfix=3 option’ and always give the same 

responses as the standard SUR solution.  
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Chapter 5  

 
A new formulation for elements with embedded 

strong discontinuities 
 

 

5.1    Introduction 

 

The numerical analysis of quasi-brittle structures requires careful consideration to 

obtain objective results with regard to mesh refinement due to the highly localized 

deformations that occur when these materials fail, i.e. the formation of cracks in 

concrete or shear bands in soils. Different approaches, such as the crack band model 

or models that employ localization limiters (e.g. nonlocal models, gradient-enhanced 

models and Cosserat continua) can be used to partially alleviate these problems, as 

mentioned in Section 2.4. However, these models require a sufficiently fine 

resolution of the localization zone to guarantee mesh objectivity and thus can be 

computationally very expensive when used to model large structures. Moreover, 

even with using advanced localization limiter techniques, which aim to properly 

simulate energy dissipation processes during softening, some undesirable side effects 

such as stress-locking and mesh bias problems cannot be completely overcome 

(Jirásek, 2000; Wells and Sluys, 2001a; Mosler, 2004; Mosler and Meschke, 2004; 

Foster et al., 2007; Mosler et al., 2011; Oliver et al., 2012).  

In recent years, an alternative method called the Strong Discontinuity (SD) approach 

has been developed for the efficient modelling of strain localization in brittle and 

quasi-brittle materials.  In this approach, cracks or fracture zones are represented as 

lines or surfaces of discontinuous displacements within individual finite elements. A 

discontinuity in the SD approach is permitted to arbitrarily propagate through the 

finite element mesh (Oliver et al., 2004). An important advantage of the SD 

approach, compared to other established techniques for the analysis of strain 

localization problems, is that it allows relatively large finite elements to be used.
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This means that far fewer finite elements are required for the simulation of large 

scale structures (Oliver et al., 2003a; Mosler, 2005; Mosler, 2006; Radulovic et al., 

2011; Parvaneh and Foster, 2016).  

 

A number EFEM formulations result in element stiffness matrices that are 

unsymmetric (Simo et al., 1993; Armero and Garikipati, 1996; Oliver, 1996a; Oliver, 

1996b; Wells and Sluys, 2001b; Oliver et al., 2002; Alfaiate et al., 2002; Oliver et 

al., 2003a) , which is undesirable from a computational point of view.  Other 

formulations introduce extra degrees of freedom on element boundaries, which are 

either retained or eliminated using static condensation (Alfaiate et al., 2003; Linder 

and Armero, 2007; Dias-da-Costa et al., 2009a; Dias-da-Costa et al., 2010; Dias-da-

Costa et al., 2013). The forms of the element stiffness matrices and associated strain 

displacement relationships in some of these formulations are somewhat cumbersome.  

In the proposed formulation, the only extra degrees of freedom introduced (in a 2D 

element) are two translations and a rotation at the midpoint of the discontinuity. 

These are eliminated using an equilibrium condition along the discontinuity. The 

resulting element has a symmetric tangent (and secant) stiffness matrix and a 

compact convenient form.  The stiffness matrix is derived, using variational 

principles, from a total potential energy functional. Unlike the formulations of 

Linder and Armero (2007)  and Dujc et al. (2013), the element does not include 

relative stretching along the discontinuity because the author believes this to be 

incompatible with the order of the element. It is noted that this type of stretching 

behaviour is readily modelled with multiple elements.  

A new formulation for elements with embedded strong discontinuities is described in 

this chapter for simulating failure in 2D quasi-brittle materials. The proposed method 

can simulate a discontinuity and associated rigid body motions (normal and 

tangential separation) in a simple and effective way. A number of numerical 

examples are presented, which evaluate the performance of the new formulation as 

implemented in a 4-noded bilinear element. The results are compared with those 

obtained using interface elements and the smeared crack approach.  

It should be also mentioned that the development of the new formulation is the 

primary stage of developing a strong discontinuity method that takes into account 
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diffuse micro-cracking which often occurs when a specimen is subject to 

compression, as explained in Section 6.2.     

 

5.2    Kinematic of strong discontinuity 

 

Consider a solid defined in the domain (Ω ), as shown in Figure 5.1. The domain is 

divided by a discontinuity ( dΓ ) into two sub-regions ( Ω ) and ( Ω ), such that 

  ΩΩΩ .  

For each material point (x) in Ω , the total displacement field (u) is the sum of the 

continuous displacement field u  and the enhanced displacement field u~  due to the 

discontinuity . 

 

 )()()( xuxuxu ~
dΓH  (5.1) 

 

where 
dΓH is the Heaviside jump function across the discontinuity. Here, the jump is 

considered to be fully transmitted to nodes in the positive sub-domain Ω by means 

of the Heaviside function.  
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Figure ‎5.1: A Domain crossed by a strong discontinuity surface. 
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Assuming small displacements and strains, the total strain field is given by: 

 

 
  

  
unbonded

s

bonded

)()( nuuuuε
sss 

dd ΓΓH ~  
(5.3) 

 

Where  s
 refers to the symmetric part of   ,  denotes the dyadic product,   u  is 

the displacement jump vector and n is the normal jump vector to dΓ . 
dΓ  is the 

Dirac delta function along the surface of the discontinuity ( dΓ ) and can be written 

as: 

 

 











d

d

Γif

ΩΩΓ\Ωif0

x

x
dΓ  (5.4) 

 

Since the displacement discontinuity takes place in a very narrow bandwidth, both 

the displacement and the strain fields are bounded by material that remains 

continuous in the regions of Ω  and Ω , thus the unbounded term in equation (5.4) 

vanishes in   ΩΩΓ\Ω d .  

 

5.3    A new formulation for an element with an embedded SD 

 

In this section, the derivation of a new finite element with an embedded strong 

discontinuity is presented. Let us consider a quadrilateral finite element as illustrated 

in Figure 5.2, in which a discontinuity of displacement field occurs along a straight 

line dΓ  crossing the element at an arbitrary direction (θ ) and identified by unit 

vectors ( r̂ , ŝ , t̂ ). The centre of the discontinuity line (within the element) is defined 

by the Cartesian coordinate vector xc. The relative rotation to the two crack phases (

 ) is assumed to be small. i.e. ( =sin =tan ; in radians).  
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Figure ‎5.2: A four node element with an embedded strong discontinuity. 

 

We assume an additional node ( W
~

) with three degrees of freedom (opening, sliding 

and rotation) located at the centre of the embedded strong discontinuity, in which

 Tαuu srW
~

. Thus, the displacement of the nodes in the positive region ( Ω ) 

associated with W
~

 can be computed.  

The rotational displacement of a point i.e. x in the element is given by:  

 

 









2

1

R

R
ˆα )()( cxxtxR  (5.5) 

 

Where x = ),(   is the global position of any material point inside the finite 

element,  t̂  is out of plane unit vector  T100t̂ and   is the cross product.  

 The displacement )(xu is given by: 
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222

111
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Equation (5.6) is now written as: 

 

 WxTxu w

~
)()(   (5.7) 

 

where ir and is are components of unit vectors r̂ and ŝ  which are perpendicular and 

along the strong discontinuity respectively. For example, for the discontinuity shown 

in the Figure 5.2,  θ-sinr1  ,  θcosr2  ,  θ-coss1   and  θ-sins2  .  

The fracture strain )(xεfr
 is the equivalent strain across the element due to the 

relative displacements (i.e. displacement jump) across the discontinuity.  )(xεfr
 is 

computed from the resulting additional displacement of the nodes in the region of 

Ω , i.e. nodes number 3 and 4 in Figure 5.2, as follows; 
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Hence, the fracture strain can be re-written as:  
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where B is the conventional strain-displacement matrix. B at node i.e. i  is: 
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where Ni denotes the shape function for node i .  

The strain at any position in an element due to the strong discontinuity is given by: 

  

 W)(xTBxε iwiifr

~








 



 ),()),((  (5.11) 

 

Equation (5.11) can be simplified to:  

 

   WMxεfr

~
),()),((    (5.12) 

 

in which wT BM    

The total stiffness matrix for the embedded discontinuity is composed of the sum of 

regular stiffness matrix and the strong discontinuity element matrix. The stiffness 

matrix of the discontinuity can be computed as follows: 
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Where 
rK , sK  and θK  are the sliding, opening and rotational stiffnesses, which are 

defined as: 
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 



2

L

2

L

θ

d

d

dK rK  (5.16) 

 

The relationship between the force vector for the discontinuity and the discontinuity 

displacement vector is given by: 

 

   WKF ΓΓ

~
  (5.17) 

 

Where ( ckE ) is the Young’s modulus of the discontinuity, (t) is the out of plane 

thickness of the element, ( dL ) is the length of the discontinuity with the finite 

element and chh  is the assumed thickness of the embedded discontinuity element.  

The assumption of the ckh  should be incredibly small, in this study ckh  was set to 

1/100. 

The total potential energy ( ) for the element with embedded discontinuity is given 

by: 
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       WKWεε Dεε Γ

T

frfr

~~

2

1
dΩ

2

1
T

Ω

   (5.18) 

 

It should be borne in mind that the fracture strain 
frε  changes only with respect of 

W
~

, if ε  is fixed. Hence, the variation of the total potential energy with respect of 

W
~

 can be calculated as: 
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(5.19) 

 

Equation (5.19) can be simplified to: 
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~~~
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Ω

TT  (5.20) 

 

Using equation (5.12) and uBε  , equation (5.20) may be written as: 
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    


uBDMW MDMWKΓ dΩdΩ TT ~~
 (5.22) 

then 
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Equations (5.12) and (5.23) can also be simplified to the following forms: 

 

   uCuABW ΓΓ
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 (5.24) 
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   uCMε Γfr   (5.25) 

 

Now the total potential energy ( ) becomes: 
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Also equation (5.26) can be simplified further to:   
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Thus, the stiffness matrix for an element with embedded strong discontinuity is 

given by: 

 

 

   
    ΓΓΓΓΓΩ C KCMCBDMCBK

TT

Ω

TTT  dΩ    (5.28) 

 
 

5.4    Interface element formulation  

 

Interface or contact elements are very useful for modelling material interfaces and 

for simulating discontinuities in bodies, such as cracks, shear bands or faults 

(Vignollet et al., 2015). Interface elements can be used for a wide range of 

applications, for instance, to model the intermediate layer between rocks and 

concrete, the interface between concrete and reinforcement, concrete fracture, 

aggregate interlock, soil-structure interactions and delamination in composite 

structures, etc. (Zubelewicz and Bažant, 1987; Rots, 1988; Jefferson, 1989; Rots, 

1991; Schellekens and De Borst, 1993a; Schellekens and De Borst, 1993b; Alfaiate 

et al., 1997; Alfano and Crisfield, 2001; De Borst, 2006; Nazir and Dhanasekar, 

2014; Truster, 2016). 

Interface elements approach are particularly well suited to describing stationary 

discontinuities, or in other words, to describing situations in which the evolution of a 
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discontinuity is known a priori (Irzal et al., 2014; Vignollet et al., 2015). This 

method was used as a reference method in the first example of this chapter (see 

Section 5.7). In the interface element approach, a zero-thickness interface finite 

element is inserted along inter-element boundaries to represent the surfaces of 

potential discontinuities (Truster, 2016). A fundamental difference between the 

interface element and most other elements used in solid mechanics is that the 

constitutive relationship is between relative displacements and stresses as opposed to 

strains and stresses (Jefferson, 1989; Schellekens and De Borst, 1993b). From the 

numerical point of view, interface elements represent the standard method for 

simulating cohesive cracks in the finite element method (De Borst, 2006; Paggi and 

Wriggers, 2016).   

This section reviews the formulation of 2D interface elements. Let us consider an 

interface element between two layers of a two-dimensional continuum, as shown in 

Figure 5.3. Assuming the thickness of the interface element is thin enough to be 

considered negligible with respect to the overall geometrical dimensions of the 

problem (Alfano and Crisfield, 2001). The interface element is also assumed to be 

composed by n pairs of nodes sharing the same coordinates and each node has two 

degrees of freedom. Indeed, nodal interface elements can be regarded as elements 

formed from smeared springs.  

 

 

 

Figure ‎5.3: An interface element with n pairs of nodes in local coordinates. 
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The interface element geometry ΓX  and the element displacement field 
ΓU  are 

interpolated as: 

 

 ixNX ΓΓ  (5.29) 

 
 

iuNU ΓΓ  

 

(5.30) 

 

where ix is the nodal geometry vector in global coordinates, iu  is the nodal 

displacement vector in the global coordinates and 
ΓN contains the nodal 

interpolation functions of the interface element which are expressed in terms of the 

in-plane local coordinates )( of the interface surface, see Table 5.1. The same 

interpolations are adopted for top and bottom sides of the interface element, which 

implies that nodes should be overlapped.  

For the case shown in Figure 5.3, 
ΓN  can be written as: 

 











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



n1n 1

n1n 1

N0...N0N0...N0

0N...0N0N...0N
ΓN  (5.31) 

 

 

Table ‎5.1: Shape functions for the interface element shown in Figure 5.3. 

Node No Shape function  Node No. Shape function 
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The relative displacement 
ΓΔU  is computed by taking the difference between the 

displacement at the upper (
Ω ) and lower (

Ω ) sides of the interface element. The 

relative displacement at any point is therefore can be given by the following 

relationship: 

 

 Γ

Γ uNΔU Γ  (5.32) 

 

in which Γ
u a vector that contains the interface element nodal displacements. 

The stiffness matrix for the two dimensional interface element is given by (Rots, 

1988; Schellekens and De Borst, 1993b; De Borst, 2006): 

 

 Γ

Γ

TT
d ΓccΓ NTCTNK int

 (5.33) 

 

in which cT is the transformation matrix, C  is the elastic interface stiffness matrix 

and the superscript T(.)  denotes the matrix transpose. cT and C  for the two-

dimensional interface element are given by: 

 









)cos()sin(-

)sin()cos(




cT  (5.34) 

 

 









si

ri

K0

0K
C  (5.35) 

 

where riK  and siK  are the normal and shear stiffnesses per unit area to the interface 

layer. These stiffnesses are defined as:  

 

    ck

2

ck
ri

h )υ(1

E
K


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(5.36) 
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ck

ck
si

h υ)2(1

E
K


  (5.37) 

 

The undesired elastic deformation can be suppressed by using a sufficiently high 

values of the dummy stiffness for the interface element, in which Eck is taken as 10E 

unless noted otherwise (Schellekens and De Borst, 1993b; De Borst, 2006; Ciancio 

et al., 2007; Vignollet et al., 2015). 

It should be mentioned here that a linear 4-noded interface element was used in this 

study, with two nodes in each face.  

 

5.5    Damage function 

 

In this chapter, the isotropic damage model presented in Section 3.2.1 was used. The 

scalar damage variable ( ω ) is governed by the effective strain damage evolution 

parameter ( effζ ) and is based on the damage parameter for the SUR function given in 

equation (3.14), considering that ( E.r effeff  ). 

The effective strain damage parameter can be computed as follows (Jefferson and 

Mihai, 2015): 
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The material constants ζr and εμ are the relative shear strain intercept and the 

asymptotic shear friction factor, respectively, of the damage surface in strain space. 

These constants can be computed from the relative shear stress ( r ) and residual 

friction factor (  ), in which:  )GE(.rr σζ   and )G.(Eμμε  .  Where r  and   

are set to 1.25 and 0.8, respectively. ε~  is crack-plane total strain vector, E  is 

Young’s modulus and G  is the shear modulus.  Noting that υ)E/2(1G  . 

 

 

 

 



Chapter 5 

 

 

120 

 

 

5.6    Numerical examples 

 

In this section, the performance of the proposed interface embedded strong 

discontinuity approach, termed the ‘IESD approach’, is explored with several 

examples, which include linear and nonlinear interface behaviour.  It well-known 

that the interface elements approach (IEA) is the most suitable approach to simulate 

a predefined strong discontinuity (Vignollet et al., 2015).  Therefore, the IEA is used 

in the first example as a reference method to assess the performance of the proposed 

IESD method. In the other examples, results obtained from the proposed IESD 

method were compared with those obtained using the smeared crack approach.  

In this study, a strong discontinuity is assumed to be embedded within a finite 

element when the maximum principal stress measured at the additional central node 

(see Figure 5.2) exceeds the tensile strength of the material. The crack is assumed to 

cross the centre of the finite element with an orientation perpendicular to the 

maximum principal stress direction. This orientation is updated at each iteration 

within the crack formation step, but is kept constant thereafter. In the examples 

(5.7.2 and 5.7.3) cracks were prescribed based on the nonlinear FE analysis of using 

smeared crack approach.  

Plane-stress 4-noded bilinear isoparametric elements were used in all of the 

examples. Both bulk and discontinuity constitutive relationships were assumed to be 

linear elastic in the first example (5.7.1), whereas the damage model presented in 

Sections 3.2.1 and 5.6 was adopted for the other examples. Convergence tolerances 

for the nonlinear incremental-iterative analyses were equal to 0.001 for both 

incremental displacement L2 norm and incremental residual force vector L2 norm.   

Linear elastic analyses on a single 2D square finite element using interface elements 

method and the proposed IESD approach were carried out in the first example 

(5.7.1). A linear interface element (4-node interface element) was used in this study. 

Four different loading cases were investigated and comparisons made between 

results obtained from both methods. 
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In the second numerical example (5.7.2), a series of nonlinear finite element analyses 

were conducted on a two-dimensional specimen with two notches in order to assess 

the performance of the proposed IESD method in mode-1 fracture. A coarse and a 

fine mesh with 100 and 2500 bilinear finite elements were studied in this example. In 

the third example (5.7.3), a nonlinear FE analysis was also performed under 

displacement control by imposing vertical and horizontal displacements on a double 

notched specimen in order to induce mixed mode fracture. Comparisons between 

results obtained from the proposed embedded strong discontinuity approach and the 

smeared approach were performed in these examples.     

 

5.6.1    One-element examples. 

 

A linear elastic analysis was carried out on a quadrilateral element (10×10×1 mm
3
) 

crossed by either a horizontal (=0) or an inclined (0) strong discontinuity for a 

range of loading scenarios. The geometry of the square element is given in Figure 

5.4. The material properties used in this example are assumed as follows: Young’s 

modulus ( E =20,000 MPa), Young’s modulus of the strong discontinuity ( ckE

=0.0001 MPa), Poisson’s ratio ( =0.20). 

Four different load cases were considered, which all involved combinations of unit 

loads (F =1 N) being applied to the top edge nodes, as illustrated in Figure 5.4. These 

cases represent mode-I, mode-II and mixed mode fracture conditions. Deformed 

element plots for every case are also given in Figure 5.4. The results obtained from 

the proposed interface element strong discontinuity IESD approach are compared 

with those obtained by the interface elements approach (IEA) in Table 5.2.  
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Table ‎5.2: Horizontal and vertical displacements at the top nodes for 4 studied cases. 

 

 

Case 

No. 

 

Method type 

Displacement at top nodes for IESD and IEA 

methods (mm) 

Node number 3 Node number 4 

ux uy ux uy 

    

Case 

1 

Proposed IESD 

approach 

1.3*10
-5

 19.2 -1.3*10
-5

 19.2 

IEA 1*10
-5

 19.2 -1*10
-5

 19.2 

 

Case 

2 

Proposed IESD 

approach 

105.6 57.6 105.6 -57.6 

IEA 105.6 57.6 105.60 -57.6 

  

Case 

3 

 

Proposed IESD 

approach 

10.30 22.32 10.30 22.32 

IEA 10.30 22.32 10.30 22.32 

 

Case 

4 

Proposed IESD 

approach 

49.80 48.08 49.80 6.87 

IEA 49.80 48.08 49.80 6.87 

 

From the comparison shown in Table 5.2 between nodal displacement results for the 

two methods, it can be concluded that there are negligible differences between the 

results obtained using the different idealisations.     
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Case 1 (a):  Loading condition Case 1 (b):  Deformed shape 

 

 

 

 

 

 

 

Case 2 (a):  Loading condition Case 2 (b):  Deformed shape 
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Case 3 (a): Loading condition  Case 3 (b): Deformed shape 

 

 

 

 

 

Case 4 (a): Loading condition Case 4 (b): Deformed shape   

 

Figure ‎5.4: Loading conditions and deformed meshes using linear elastic analysis for the 

proposed IESD approach and IEA. 
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5.6.2    Two-dimensional tensile example 

 

A non-linear analysis of a plain concrete specimen with two notches located at the 

centre of the specimen was undertaken using the smeared approach and the proposed 

IESD approach. The specimen dimensions are shown in Figure 5.5. Two meshes 

were studied, a coarse and a fine mesh with 100 and 2500 bilinear isoperimetric 

elements respectively. A 0.2 mm prescribed displacement was applied at the top 

nodes of the specimen to induce mode-I fracture (see Figure 5.6). It should be 

emphasised here again that the complete crack path was predefined in the proposed 

IESD approach by allowing the row of elements between the two notches to be only 

damaged. 

The mechanical material properties of this specimen are: E =20,000 MPa, the 

Young’s modulus of the strong discontinuity is ten times stiffer than the Young’s 

modulus ( ckE =10* E  MPa), Poisson’s ratio ( =0.20), fracture energy (Gf =0.10 

N/mm), tensile strength (ft =2.5 MPa),   

The deformed configurations for both coarse and fine meshes are represented in 

Figure 5.6. Figure 5.7 shows the vertical stress vs the applied prescribed 

displacement curves obtained with both the proposed IESD and the smeared 

approach using the two meshes. Contour plot of the displacement in the specimen 

with a fine mesh at the last displacement increment of the analysis (step No. 40) is 

given in Figure 5.8. 

 

Figure ‎5.5: 2D plane stress specimen dimensions. 
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Figure ‎5.6: Coarse and fine meshes with their deformed shapes (magnified 30 times). 

 

 

Figure ‎5.7: Stress-displacement responses with different methods. 
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Figure ‎5.8: Vertical displacement contour plot for the fine mesh. 

 

In this pure mode-I fracture example, the stress-displacement responses from the 

smeared approach and the proposed IESD approach are almost identical. In addition, 

deformed meshes as well as displacements contour plots obtained from the two 

methods were coincident, therefore only plots from the IESD analyses are depicted 

in Figures 5.6 and 5.8.  It should be mentioned that there is no appreciable 

differences in the overall stress-displacement response or the crack pattern obtained 

using the coarse and fine mesh solutions; thus, in this case, accurate results can be 

achieved with a relatively coarse mesh.  

This conclusion agrees with Mosler and Meschke (2004) who showed that in many 

situations, fracture energy-based smeared crack models give essentially the same 

response as elements with embedded strong discontinuities.    
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5.6.3    Double-notched example.  

 

The third example simulates a two-dimensional notched plane stress specimen, 

loaded by prescribed displacements at the top edge nodes from two directions to 

induce mixed mode fracture behaviour, as shown in Figure 5.9. The analyses were 

carried out using 40 prescribed displacement increments and a mesh with 1250 

elements.  

The mechanical material properties of this example are: E =20,000 MPa, the 

Young’s modulus of the strong discontinuity is ten times stiffer than the undamaged 

Young’s modulus (i.e. ckE =10* E ), Poisson’s ratio ( =0.20), fracture energy (Gf 

=0.10 N/mm) and tensile strength (ft =2.5 MPa). 

Exaggerated deformed mesh plots for both the smeared crack and IESD analyses at 

the final displacement increment are given in Figure 5.10.  

 

 

Figure ‎5.9: Double notched plane stress example. 
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                            a 

 

 

b 

 
Figure ‎5.10: Exaggerated deformed mesh: (a) smeared approach and (b) proposed interface 

embedded strong discontinuity (IESD) approach. 

 

 

Figure ‎5.11: Vertical stress and displacement response. 
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As can be observed from Figure 5.11, there is a small difference between the peak 

stresses obtained with smeared approach and the IESD approach. The overall stress-

displacement responses from the two approaches are similar. The differences can be 

attributed to the following:  

o In the proposed IESD approach a discontinuity is assumed to cross the centre 

of a finite element, while in the smeared crack approach the strong 

discontinuity is modelled by reducing the stiffness and strength of the 

element at its Gauss points.   

 

o The effective crack directions from the two analyses may not be the same 

because, in the IESD approach, a crack can change during the first step but is 

fixed thereafter, whereas the smeared damage model does not directly 

simulate directional cracks. In the latter case, the crack plane is assumed, a 

posteriori, to be normal to the maximum principal strain direction and this 

plane can change throughout the analysis. 

 

 

5.7    Discussion and conclusions 

 

A new formulation for an element with an embedded strong discontinuity is 

presented in this chapter to model failure of quasi-brittle materials and this is named 

the interface embedded strong discontinuity (IESD) approach. The key feature of the 

proposed IESD approach is that an additional dummy node is assumed at the centre 

of the discontinuity to measure the opening, sliding and rotational displacements.  

When an initial damage criterion is met at the SD reference node, an embedded 

discontinuity is added to the continuum part of the element. In the present 

implementation, this discontinuity is assumed to occur at the finite element centre 

with an orientation normal to the maximum principal stress direction. This 

orientation is updated in the damage initiation step, but is kept constant in the 

remaining steps.  
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It is noted that the formulation allows the reference node to be located anywhere 

within the continuum element even though it is placed centrally in the examples 

described in this chapter. 

Several 2D elements examples were used to assess the performance of the proposed 

SD approach for modelling mode-1, mode-2 and mixed mode fracture. In all 

examples, 4-noded bilinear isoparamteric elements were used and plane stress 

conditions were assumed. Moreover, in all of these examples, the complete strong 

discontinuity path was predefined, and interface elements and the smeared crack 

approach were used as reference methods for comparison purposes.  

In the linear analysis of the example (5.7.1), the results showed that the proposed 

IESD approach gives almost identical results to those obtained using interface 

elements. Furthermore, the nonlinear finite element analysis of the mode-1 fracture 

example (5.7.2) showed that the stress-displacement responses from the smeared 

approach and the proposed IESD approach were almost identical for both coarse and 

fine meshes. In the mixed mode fracture example (5.7.3), the stress-displacement 

curve obtained from the IESD approach was close to the stress-displacement curve 

obtained using the smeared crack approach.     

In summary, results obtained from all examples showed without a doubt that the 

proposed IESD method is enable to model the failure of structural elements formed 

from quasi-brittle materials. Moreover, the new element formulation has certain 

advantages over many other SD approaches, e.g. the element shape functions do not 

have to be modified nor is static condensation (in the conventional form) needed. An 

additional positive feature of the IESD approach is that it leads to a symmetric 

stiffness matrix. Furthermore, the proposed approach is easy to implement in finite 

element codes and computationally efficient. 
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Chapter 6  

 
Conclusions and future work 

 

 

6.1    Conclusions 

 

The main aims of the work presented in this thesis were to (i) to develop a robust 

incremental iterative numerical method for the nonlinear finite element analysis of 

quasi-brittle materials and, (ii) to develop a new formulation for elements with 

embedded strong discontinuities. The first aim was addressed in Chapters 3 and 4, 

whilst work undertaken on the second aim was presented in Chapter 5.  

In Chapter 3, a new method for improving the robustness and convergence 

characteristics of a damage model when applied to the nonlinear finite element 

analysis of fracture problems in quasi-brittle materials was described. This method, 

named the smooth unloading-reloading (SUR) approach, employs a smooth 

unloading-reloading function as a basis for computing an approximate positive-

definite finite element tangent matrix in an incremental iterative Newton type 

solution procedure. Also, in this chapter a new convenient approach for computing 

the characteristic length parameter for a range of 2D and 3D finite elements was 

presented.  

The SUR was developed to work with an incremental iterative nonlinear finite 

element solution scheme and thus it is compatible with other FE materials models 

developed for this standard type of solution algorithm.  

A range of idealised quasi-brittle specimens were used to assess the performance of 

the new SUR method. From the results of these examples, it is concluded that the 

SUR method is numerically robust, accurate and results in considerable savings, in 

terms of the number of iterations used in a complete solution, relative to a model that
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 uses a secant unloading-reloading function. A further conclusion is that the SUR 

approach rarely (if ever) results in numerical breakdown. 

In order to further improve the convergence properties of the new SUR method, 

three accelerations techniques were proposed in Chapter 4. These acceleration 

techniques were introduced into the SUR solution algorithm. These techniques were 

designated ‘predictive-SUR’, ‘fixing’ and ‘slack tolerance’ approaches: 

I. The concept of the predictive-SUR algorithm relies on two parameters, 

namely the damage evolution parameter and the number of iterations. In this 

proposed approach, a function is employed to predict a converged value of a 

damage evolution parameter based on an extrapolation in semi-log space.  

 

II. In the ‘fixing’ technique, two stages of iteration within each load step are 

introduced in the SUR approach. In Stage-1 iterations, a damage evolution 

parameter is updated from the last converged increment, and then is fixed in 

the Stage-2 iterations. The effect of using three or five iterations in Stage-1 

was investigated.    

 

III. The third proposed approach uses a slightly slacker convergence tolerance at 

key stages in a computation. The slacker tolerance (1% for the L2 norm of 

out of balance residual forces) is temporarily triggered when the number of 

iterations within an increment exceeds a certain limit (e.g. 5 iterations). 

Subsequently, the convergence tolerance reverts to the standard tighter 

tolerance of (0.001or 0.000001). 

The results from all of the examples presented in Chapter 4 proved that the three 

proposed acceleration techniques are effective, reliable and result in substantial 

savings in terms of the total number iterations required to achieve convergence for 

the SUR solution. In some examples, these savings were substantial. Thus, it is 

concluded that the proposed acceleration techniques achieve solutions in less 

computer time than the standard SUR solution, with no appreciable effect on the 

accuracy of simulations. 
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In Chapter 5, the formulation of a new element with an embedded strong 

discontinuity was presented. This formulation was applied to a 4-noded quadrilateral 

element. This method was named the interface embedded strong discontinuity 

(IESD) approach. The IESD approach employs a single internal node at a reference 

point within the element. This node has sufficient translational and rotational degrees 

of freedom to fully describe the kinematics of the strong discontinuity, and these 

degrees of freedom are eliminated at the element level.   

The applicability of the proposed IESD approach for modelling mode-1, mode-2 and 

mixed mode fracture were investigated by a number of numerical 2D-examples 

using linear and nonlinear finite element analyses. In all numerical examples 4-node 

bilinear elements were used in the work of this thesis. Results obtained from the 

IESD approach were compared with those obtained from using the interface element 

approach and the smeared crack approach.   

The conclusions from this work are that the IESD approach captures the rigid body 

motion in a simple and effective way, the proposed element has symmetric matrices 

and that it is easy to implement in finite element codes.  

It is also concluded that the proposed embedded strong discontinuity approach is 

able to model fracture in quasi-brittle materials effectively with a good accuracy 

relative to the interface element method and the smeared approach.  

At the end of the work of this thesis, the author would like to mention that the 

smooth unloading-reloading method, with one of the acceleration techniques has 

been implemented in the commercial finite element program LUSAS and is currently 

in use by a number of their clients. This software is one of the most widely used 

finite element packages for civil engineering applications in the UK.   
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6.2    Recommendations for future work 

 

The following suggestions for future work are made. 

 The available methods for the nonlinear finite element analysis of quasi-

brittle materials that can overcome stability and convergence difficulties are 

the ‘sequentially linear approach’, the ‘implicit-explicit approach’ and the 

newly developed ‘smooth-unloading-reloading approach’. It would be 

useful, if a comparison between these three methods is made.   

 

 The SUR method should be linked to an arc-length approach so that snap-

back behaviour can be captured.   

 

 The application of the new formulation, for an element with an embedded 

strong discontinuity, to three dimensional elements would be a valuable piece 

of further work. 

 

 The proposed embedded strong discontinuity approach should be applied to a 

variety of fracture mechanics problems using different finite elements types. 

  

 The method used for simulating the transition from diffuse damage to a 

strong discontinuity should be refined and extended to account for 

compressive micro-cracking. Currently, the method employed involves 

abruptly switching off damage and transferring the associated inelastic 

relative-displacements to the embedded strong discontinuity when the 

damage parameter at a particular point reaches a chosen threshold value. 

However, this method does not account for the type of diffuse micro-cracking 

that often occurs when a specimen is subject to compression. The formulation 

should be extended to provide a seamless transition from micro to macro 

cracking and to simulate the simultaneous evolution of both micro and macro 

cracks within a single element.  
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Appendices 

 

Appendix A: Direct tensor notation 

 
Table A.1 shows notations for the direct tensor operations that employed in this 

thesis, in which   denotes a scalar, a and b represent first order tensors (i.e. 

vectors). A, B and C are second-order tensors and P , Q and R denote fourth-order 

tensors.  

 
Table A.1: Direct tensor notation (Voyiadjis and Kattan, 2006). 

Direct tensor notation  Summation convention 

ba    iiba  

baA    jiijA ba  

BA :   ijijα BA  

BAC    jkijikC BA  

BAP    klijijkl BAP   

APC :   klijklij APC   

PAB :   ijklijkl PAB   

QPR    klmnijklijmn QPR   
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Appendix B: Derivation of the constitutive tangent stiffness 

 

 

Constitutive equation 

  εDσ 0 :ω 1         (B.1) 

 

Constitutive tangent equation 
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