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Introduction 

About 30 members of tumor necrosis factor receptor superfamily (TNFRSF) have been 

identified. They are transmembrane proteins with cysteine-rich motifs in their extracellular 

domains that bind to their cognate ligands [1]. They are categorized into three groups; death 

domain-containing receptors, decoy receptors, and TNF receptor-associated factor-binding 

receptors. Only eight TNFRSF members contain a death domain (TNFR1, DR3, DR4, DR5, 

DR6, Fas, NGFR, EDAR) of which TNFR1 and DR3 constitute the principle focus of this 

article. Interactions between tumor necrosis factor superfamily (TNFSF) ligands and TNFRSF 

receptors help maintain tissue homeostasis by controlling survival, proliferation, differentiation, 

and effector function of immune cells. Here the authors limit their review to recent advances and 

novel insights into the role of TNFR1 and DR3 in bone and joint biology.  

Bone cells (osteoblasts, osteoclasts and osteocytes), fibroblast-like synoviocytes, chondrocytes 

and immune cells that infiltrate the arthritic joint will at different times express a wide range of 

TNFRSF members and TNFSF ligands. An overview of the current status of our knowledge in 

this regard is provided in Table 1.  The impact of TNFR1 activation on bone and inflammatory 

joint diseases has been researched in great depth [2, 3], but other more recently discovered 

TNFRSF members such as TROY, EDAR and XEDAR have little or no published data in the 

field.  The unexpected interaction between Progranulin (PGRN) and both TNFR1 and TNFR2 is 

particularly interesting in the context of arthritis-associated bone pathology. PGRN levels are 

elevated in synovial fluid of patients with rheumatoid arthritis, osteoarthritis and other 

arthropathies [4-6], and it has been shown to inhibit TNFα-induced osteoclastogenesis and 

promotes osteoblast differentiation in mice [7]. However, PGRN has a higher binding affinity for 

TNFR2 (anti-inflammatory with osteoprotective function) than TNFR1 (predominantly pro-

Page 2 of 28

John Wiley & Sons

Arthritis & Rheumatology

This article is protected by copyright. All rights reserved.



3 

 

inflammatory with degenerative function) suggesting conflicting actions. The potential overall 

impact of these divergent PGRN signaling pathways upon the architecture of the arthritic joint 

are evaluated  [8].  

Death receptor (DR3) and its TNFSF ligand TL1A contribute to the pathogenesis of autoimmune 

and rheumatic diseases [9], however, research in this area is very much in its infancy. Inhibition 

of DR3 reduces osteoclastogenesis and protects bones against the development of erosive 

pathology in experimental models of arthritis [10]. A soluble form of DR3, produced by 

osteoblasts, regulates osteoblast apoptosis under tightly controlled conditions [11, 12]. TL1A 

levels are elevated in serum from patients with rheumatoid arthritis versus healthy controls. This 

review provides further insight to DR3’s role in bone remodeling and arthritis.  

 

PGRN/TNFR interactions in arthritis and bone remodeling 

PGRN, also known as granulin–epithelin precursor (GEP), proepithelin, acrogranin, and 

GP88/PC-cell derived growth factor (PCDGF), is a 593-amino-acid autocrine growth factor. 

PGRN contains seven-and-a-half repeats of a cysteine-rich motif (CX5–

6CX5CCX8CCX6CCXDX2HCCPX4CX5–6C) and forms a unique “beads-on-a-string” 

structure [13]. PGRN was first found to bind to TNFR in a yeast two-hybrid screening for 

PGRN-binding proteins[14]. The interaction was subsequently validated in human cells. Surface 

plasmon resonance (SPR) analysis revealed that PGRN bound to both TNFR1 and TNFR2 and 

with greater affinity than TNFα to TNFR2 [8, 14]. Three fragments of PGRN and their adjacent 

linkers enable the ligand to bind to TNF receptors [15]. Notably, PGRN showed therapeutic 

effects in several TNF-mediated inflammatory arthritis models, including collagen-induced 

Page 3 of 28

John Wiley & Sons

Arthritis & Rheumatology

This article is protected by copyright. All rights reserved.



4 

 

arthritis, collagen antibody induced arthritis, and spontaneous arthritis in the TNF-transgenic 

mouse model [14, 16, 17]. Furthermore a novel PGRN-mimetic called Atsttrin (Fig. 1) had a 

more pronounced beneficial effects than PGRN on inflammatory arthritis [14]. Currently 

marketed anti-TNF therapies bind to the TNFα ligand, in contrast, Atsttrin binds to TNFR and 

not to TNFα itself. Atsttrin was more efficacious than current anti-TNFα therapies, including 

etanercept, in several preclinical inflammatory arthritis models tested [14]. 

Accumulating evidence indicates that TNFα orchestrates osteoarthritis (OA) pathology [18]. 

Recent finding support the notion that PGRN could also modulate the aetiopathogenesis of OA. 

PGRN is an important regulator of cartilage development [19, 20], was identified as an OA-

associated growth factor in a genome-wide screen for differentially expressed genes in OA [21], 

and in aging mice PGRN deficiency led to spontaneous OA-like phenotype characterized by 

severe breakdown of cartilage structure[22]. The OA-like pathology was attenuated by the local 

delivery of a recombinant PGRN protein. Intra-articular transplantation of Atsttrin-transduced 

mesenchymal stem cells inhibited TNFα-mediated catabolic response, ameliorating OA 

development [23]. One chondro-protective mechanism has been proposed, namely that PGRN 

increased the levels of anabolic biomarkers and suppresses inflammatory action of TNFα in 

cartilage and chondrocytes via activation of the ERK1/2 signaling pathway[19].  

The direct impact of PGRN upon bone remodeling is yet to be determined, with current 

knowledge derived from a bone-healing model. In mice at least, PGRN deficiency delayed bone 

healing, while recombinant PGRN enhanced bone regeneration [24]. Furthermore, PGRN-

mediated bone formation was dependent upon TNFR2, but not TNFR1. In this same study, Zhao 

et al showed that PGRN blocked osteoclastogenesis in TNF-α transgenic mice. Taken together 

these findings imply that PGRN exerts dual action on bone during inflammatory arthritis namely; 
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inhibiting TNF-α induced bone erosion by osteoclasts and promoting osteoblast-dependent 

mineral apposition via a TNFR2.  A recent report using Atsttrin, incorporated into 3D-printed 

alginate/hydroxyapatite scaffolds, implies that PGRN stimulates bone regeneration by inhibiting 

TNF signaling [25]. 

TNFα's inflammatory and catabolic actions are largely mediated through its interaction with 

TNFR1. However, understanding of the impact of TNFR2-mediated signaling remains largely 

unclear. Recent studies indicate that TNFR2 signaling has a beneficial and protective role in joint 

destruction [26, 27]. Studies also reveal differential roles of TNFR1 and TNFR2 in PGRN-

mediated fracture healing and OA[22, 24, 28]. Although PGRN and TNFα exhibit comparable 

binding affinity to TNFR1, PGRN has an approximately 600-fold higher binding affinity for 

TNFR2 than TNFα[14]. Since PGRN and TNFα compete for binding to the same extracellular 

cysteine-rich domains (CRD) of TNFR, CRD2 and CRD3 [8], PGRN acts as a naturally-

occurring antagonist of TNFα and disturbs the binding of TNFα to TNFRs. More importantly, 

PGRN also acts as a ligand of TNFR2 and directly activates the PGRN/TNFR2 protective and 

anti-inflammatory pathway. TNFR2 has been shown to be critical for PGRN-mediated protection 

in OA and bone fracture healing [22, 24, 28]. Recent paper showing that local injection of 

soluble TNFR2 (sTNFR2, etanercept) resulted in more severe joint destruction in a mouse model 

of OA [29] also suggest the importance of PGRN-mediated protection in OA. Injection of 

sTNFR2 inhibits both TNFα and PGRN. Further, PGRN may be more inhibited than TNFα, as 

PGRN has a much higher binding affinity to TNFR2 than TNFα. Unlike etanercept, mouse 

TNFα monoclonal antibody (infliximab) and humanized TNFα monoclonal antibody 

(adalimumab) are specific for TNFα, and have been shown to be protective against OA in animal 

models [30]. The opposite effects of TNFα specific (i.e. infliximab and adalimumab) and non-
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specific (i.e. etanercept) inhibitors in OA indicate the critical protective role of other ligand(s) of 

TNFR, i.e. PGRN, in the pathogenesis of OA [31]. Thus, future studies are warranted to clarify 

the complex interplay between TNFα, PGRN and their receptors in the pathogenesis of arthritis 

and bone remodeling, which will not only better our understanding of TNFR signaling in the 

pathogenesis of these musculoskeletal disorders, but may lead to innovative therapies via 

selectively targeting distinct TNFR pathways.  

 

TL1A/DR3 interactions in arthritis and bone remodeling 

Death Receptor 3 (DR3, TNFRSF25, Apo3, LARD, TR3, TRAMP, WSL-1) was discovered 

simultaneously in the mid-to-late 1990s by multiple groups, when a combination of BLAST 

homology searches to Fas and TNFR1 [32, 33] and a yeast-two hybrid library screen using a 

TNFR1 death domain as bait [34], identified a closely related protein. Subsequently, DR3 

emerged as the closest structural homolog to TNFR1, containing an equivalent 4 CRDs as well 

as an intracellular death domain. Unlike TNFR1, however, whose cellular distribution is 

widespread and surface expression of which is controlled by the generation of soluble forms 

through cleavage, DR3 has a more restricted tissue distribution and is regulated by the 

expression of multiple activation-induced splice variants, including soluble and death-domain 

containing transmembrane forms with excision of the membrane proximal CRD [33, 35]. The 

exact function of these splice variants remain unclear.  

The identification of ligand(s) for DR3 has been complicated by the number of potential 

candidates and their altering nomenclature [36], but prior to the discovery of PGRN, one TNFSF 

member, TNF-like protein 1A (TL1A, TNFSF15) [37], had withstood stringent biochemical and 
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functional scrutiny for DR3 specificity [38, 39]. TL1A is the product of a longer alternative 

mRNA transcript to a protein initially named vascular endothelial growth inhibitor or VEGI 

(TL1), so named for its capacity to inhibit angiogenesis and induce apoptosis of endothelial cells 

[40]. As its name and nomenclature suggests, TL1A is closely related in structure to TNFα, 

encoding a type II transmembrane protein with a metalloprotease cleavage site allowing release 

of a soluble molecule, but also has distinct expression patterns as it is found in ng/ml 

concentrations in serum from healthy individuals [41] that suggests physiologically different 

levels of production and functional regulation. In this regard, there may also be significant 

differences between species as DcR3, the decoy ligand for TL1A, FasL and LIGHT (discussed 

above), is only found in man and not mouse. It is in this context that interpretations of DR3 

function and its potential for therapy should be taken. 

The generation of transgenic mice genetically deficient for DR3, TL1A or overexpressing TL1A  

or dominant negative forms of DR3 have given rise to many in vivo studies describing the 

essential requirement for the DR3/TL1A pathway in models of multiple autoimmune and 

inflammatory diseases. These have supported an ever-growing list of in vitro human functional 

and genetic studies that have associated DR3 and TL1A with human diseases ranging from 

inflammatory bowel disease and primary billiary cirrhosis to leprosy (comprehensively reviewed 

in [42]). Of significance for this review were findings that suggested alternate respective ligands 

for DR3 and TL1A. This included the apparent greater protection against experimental 

autoimmune encephalomyelitis afforded by DR3
-/-

 [38] compared to TL1A
-/-

 mice [43] in 

otherwise similar models of disease and the DR3-independent triggering of TNFR2 expression 

by TL1A in kidney organ cultures [44]. The underlying conclusion was that there were still 
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unknown interactions for this complex of proteins, which will have to be discovered and 

dissected in detail before their full potential as therapeutic targets can be understood. 

With specific regard to disorders of the bone, initial genetic studies suggested DR3 gene 

duplication [45] and a mutation predicted to destabilize DR3 [46] were linked to development of 

rheumatoid arthritis (RA), while synovial cells from RA patients exhibited a hypermethylated 

DR3 gene suggestive of activation [47], however, genome wide association studies (GWAS) 

have had less success with supporting this connection. Two early investigations associated 

genetic variation around the DR3 (TNFRSF25) locus with RA [48, 49], but more recent ones 

have not. In contrast, genetic variation at the TL1A (TNFSF15) locus has not been associated 

with RA, but has been linked to another bone disorder, ankylosing spondylitis [50]. Irrespective, 

increased levels of TL1A have been reported in the serum of patients suffering from both of 

these arthritides [41, 51, 52], as well as the synovial tissue and synovial exudates of rheumatoid 

factor positive RA patients [53, 54]. 

The functional consequences of raised TL1A levels in these disorders have generally been 

associated with a range of outcomes dependent on the type and differentiation state of the DR3-

expressing cell to which TL1A is binding and signaling. Here, we will cover those cell types 

specifically associated with bone physiology irrespective of the inflammatory context, although 

it should be noted that there may also be secondary effects as TL1A can induce TNFα [55], 

thereby having the capacity to trigger a broad range of secondary effects associated with other 

pro-inflammatory cytokines. The DR3/TL1A axis was first described as a T cell co-stimulator 

[37], but its effects on Th17 cells, drivers of osteoclastogenesis and therefore inflammatory bone 

resorption [56], highlighted the complexity in the outcome of TL1A signaling. Initial reports in 

TL1A
-/-

 mice suggested that TL1A regulated Th17 differentiation [43], but more extensive in 
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vitro studies in both DR3
-/-

 mice [57] and healthy human subjects indicated that Th17 

differentiation from naïve CD4
+
 T cells was impaired, while maintenance of the response once T 

cells were Th17 committed was enhanced, by TL1A [58]. Intriguingly, recent reports have 

shown that TL1A-driven Th17 differentiation from naïve CD4
+
 T cells occurs in samples from 

RA patients [52, 59]. Why these differences have been observed remain an area of debate, 

though the underlying theme is that TL1A promotes the Th17 response in RA. 

The development of the main effectors of bone resorption, osteoclasts, are also regulated by the 

DR3/TL1A axis, at least in an inflammatory setting. While osteoclastogenesis driven by M-CSF 

and RANK-L was unaffected in DR3
-/-

 mice, these animals exhibited resistance to cartilage 

destruction and bone erosions in a model of antigen-induced arthritis (AIA) [39, 60]. 

Furthermore, DR3
-/-

 mice were resistant to exacerbation induced by exogenous addition of 

TL1A, while antagonism of the pathway with anti-TL1A mAb ameliorated disease in collagen-

induced arthritis (CIA) [39]. Addition of exogenous TL1A also exacerbated CIA [54]. The direct 

nature of this signaling in myeloid cells has been demonstrated, with DR3 expression being 

induced during the process of macrophage differentiation and TL1A signaling resulting in the 

DR3-dependent production of the gelatinase MMP-9 [61]. The DR3/TL1A pathway may also 

control other aspects of macrophage differentiation that promote the arthritic process. Thus, DR3 

regulates the expression of scavenger receptors on macrophages [62], which have been 

implicated in AIA-induced cartilage destruction [63].  

Finally, DR3 also modulates osteoblast function. Human osteoblast cell lines were first reported 

to express DR3 in 2003 [64], which were then used to demonstrate differential regulation 

dependent on cell culture conditions. Crosslinking induced apoptosis at low density, but 

differentiation at high density [11]. The subsequent reported association between TL1A and 
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ankylosing spondylitis [50] and breeding of the DR3
-/-

 genotype on a DBA/1 background, which 

spontaneous develops ankylosing enthesopathy [65], led to a recent study on the role of DR3 in 

osteoblast function in vitro and in vivo. Indeed, DBA/1 DR3
-/-

 mice showed significantly lower 

thoracic spine-specific bone formation in vivo, while DR3
-/-

 osteoblast cultures exhibited reduced 

levels of alkaline phosphatase, osteopontin and mineral apposition [12]. Thus, the DR3/TL1A 

axis is involved in the direct regulation of every major cell type involved in bone physiology, 

recent data suggesting it has an important homeostatic role in this tissue as well as its more 

established function in inflammatory disease.  

 

PGRN/DR3 Interactions in arthritis and bone remodeling 

Screening the associations of Atsttrin with all members of the TNFR subfamily led to the 

discovery that in addition to TNFR, PGRN/Atsttrin also directly binds to DR3 and inhibits TL1A 

activity [66]. Structural modeling of DR3 predicts a similar structure to TNFR1 in which primary 

contacts with TL1A are in the 2
nd

 and 3
rd

 CRD [46]. In addition, a mutation linked to rheumatoid 

arthritis at the end of CRD3 is in a region critical for structural integrity of ligand–receptor 

complexes [46]. The first three CRD domains of the extracellular potion of DR3, i.e. CRD1, 

CRD2 and CRD3, are all required for interacting with Atsttrin. PGRN was also found to directly 

bind to DR3 in an in vitro binding assay, as it did to TNFRs [66]. Atsttrin dose-dependently 

inhibited TL1A-stimulated expressions of TL1A-target genes C1qTNF3 and βigH3. In addition, 

Atsttrin effectively neutralized TL1A-promoted osteoclastogenesis in vitro[66].  

The associations of PGRN with TNFR and DR3 also led to investigations on the immunological 

mechanisms underlying PGRN mediated anti-inflammatory and protective activities in 
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autoimmune diseases[67-69]. Since both animal and human studies have demonstrated that 

regulatory T cells (Tregs) play a critical role in the prevention of autoimmunity and other 

pathological immune responses, the effects of PGRN on Treg differentiation and function were 

first determined. PGRN protects Tregs from a negative regulation by TNFα and these protective 

effects are primarily mediated by TNFR2[68, 69]. In contrast, PGRN-antibodies, opposite to 

recombinant PGRN, led to an increase of TNFα-induced down-regulation of FOXP3 in 

CD4
+
CD25

hi
 Tregs [70]. In addition, PGRN was able to stimulate the conversion of CD4+CD25-

T cells into induced Tregs (iTregs) in a dose-dependent manner in vitro. Further, PGRN showed 

synergistic effects with TGF-β1 on the induction of iTreg[69]. PGRN was required for the 

immunosuppressive function of Tregs, since PGRN-deficient Tregs have a significant decreased 

ability to suppress the proliferation of effector T cells. PGRN deficiency caused a marked 

reduction in Tregs number in the course of inflammatory arthritis [69]. In a bone marrow 

chimera and CD4+CD45Rb
hi

 T cell transfer model, lack of PGRN signaling in CD4+ T cells also 

exacerbated experimental colitis. In addition, PGRN-mediated protective effect was 

compromised in the absence of IL-10 or TNFR2 signaling[68]. It is noted that PGRN mediated 

regulation of Tregs appears to be inflammation-dependent, because PGRN deficiency does not 

alter the numbers of CD4+CD25+Foxp3+ Treg cells in vivo under physiological conditions [69]. 

Progranulin inhibits expression and release of chemokines CXCL9 and CXCL10 in a TNFR1 

dependent manner CD4+ T cells [67]. The DR3 pathway may also contribute to PGRN-mediated 

protective effect in inflammatory diseases, since a recent report showed that agonistic antibody 

to DR3 expanded CD4(+)FoxP3(+) Tregs in vivo, which in turn suppressed immune responses. 

In addition, a neuropathology develops with age in both DR3-/- [71] and PGRN deficient 

mice[72].  Intriguingly, transgenic overexpression of TL1A in both the myeloid and T cell 

Page 11 of 28

John Wiley & Sons

Arthritis & Rheumatology

This article is protected by copyright. All rights reserved.



12 

 

lineage results in in vivo expansion of Tregs, though these eventually become dysregulated and 

intestinal inflammation develops [10]. 

 

In contrast to Tregs, Th17 cell frequency was decreased significantly in the spleens of mice 

treated with recombinant PGRN in a collagen-induced arthritis model[68, 69]. In addition, the 

serum level of IL-17 was also decreased significantly in PGRN-treated mice. Further, both 

TNFR1 and DR3 pathways were found to be involved in the PGRN inhibition of IL-17 cells. 

Taken together, PGRN and its derived Atsttrin appear to exert their anti-inflammatory activities 

through multiple pathways: 1) by activation of PGRN/TNFR2 protective pathway, and 2) by 

inhibition of TNF/TNFR1 and TL-1A/DR3 inflammatory signaling (Fig. 2).  

  

Clinical perspective 

Because TNFα is one of the key main inflammatory mediators, it is no surprise that alterations of 

its physiologic antagonist PGRN have a direct impact on the initiation and progression of 

arthritis.  The effect of TNFα antagonism should be at least comparable to conventional TNFα-

blockers [14]. The additional specific inhibition of the TL1A/DR3 interaction and activation of 

TNFR2 anti-inflammatory pathway by PGRN or its derivate [66] is a unique characteristic and 

might represent a significant advantage over conventional TNFα inhibitors particularly for 

patients with refractory or relapsing disease under conventional TNFα-blockers. Blocking the 

TL1A/DR3 interaction probably offers additional positive effects by the reduction of 

proinflammatory cytokines, reduction of autoantibody formation and by the reduction of 

osteoclastogenesis [10, 54]. 
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A potential disadvantage of PGRN or Atsttrin compared to anti-TNFα antibodies might be, that 

anti-TNFα antibodies can trigger apoptosis of proinflammatory T-lymphocytes by binding to 

membranous TNFα. This effect, which is also missing for TNFR/Fc fusion proteins, appears to 

play a particular role in inflammatory bowel diseases (IBD) and less in arthritis [73]. The 

question is whether the administration of PGRN or a derivative thereof has a higher risk of 

iatrogenic induced neoplasms than conventional TNFα blockers. Usage of conventional TNFα-

blockers results in an elevated risk for reactivation of latent infections such as mycobacteria, 

viral hepatitis, or for the development of opportunistic infections [74]. The effects of 

administered recombinant PGRN or its derivative on the risk for opportunistic infections remain 

speculative and are not further discussed in this review. 

Another question arises through the discovery of progranulin-autoantibodies: Can recombinant 

PGRN or Atsttrin be administered to patients with preexisting PGRN-antibodies?  Frequently 

occurring PGRN antibodies have been identified in a wide spectrum of autoimmune diseases 

including rheumatoid arthritis and surprisingly psoriatic arthritis, which had been regarded as a 

seronegative disease [5, 75]. PGRN-antibodies occur in relevant titres, belong predominantly to 

IgG1 subclass (in IBD also IgA), have a neutralizing effect on PGRN plasma levels and thus are 

likely to act in a proinflammatory fashion. 

Epitope mapping identified a binding region within the N-terminal 112 amino acids of PGRN as 

a target of progranulin antibodies in all patients. This means that PGRN-autoantibodies target the 

anti-inflammatory progranulin and possibly co-target only mature granulin G, the most N-

terminal granulin motif. Despite the structural similarity of granulin G with the other six 

granulins, no binding against granulin motifs other than granulin G was detected [75]. With 

regard to Atsttrin, no antibodies were detected so far directed against those parts of progranulin 
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which are constitutive of Atsttrin, i.e. granulin F, granulin A, granulin C and the appropriate 

linker regions [14]. Nevertheless, epitope spreading and immunogenicity should be monitored 

closely in preclinical and clinical trials addressing the therapeutic effects of Atsttrin 

administration. A potential binding of patient derived, preexisting PGRN-antibodies against 

Atsttrin itself has not yet been tested to our knowledge and should be excluded.  

As a reason for the breakdown of self-tolerance against PGRN, a second immunogenic PGRN 

isoform, hyperphosphorylated at Ser81 was exclusively identified in a PGRN-antibody-positive 

patients [76]. This hyperphosphorylated PGRN is caused by inactivated PP1. Interestingly, the 

phosphorylation of Ser81 PGRN prevents interaction with TNFR1 & 2 and DR3, so 

hyperphosphorylated PGRN has lost its anti-inflammatory function. Considering these facts, it 

seems a reasonable therapeutic strategy would be to compensate the imbalance of pro- and anti-

inflammatory molecules due to either lack of functional PGRN, caused by neutralizing PGRN-

antibodies, Ser81 hyperphosphorylation of PGRN, and/or excessive secretion of TNFα and 

TL1A, by the administration of a PGRN derivate, which cannot be neutralized by pre-existing 

PGRN-autoantibodies (Fig. 3). 

In conclusion it can be stated that PGRN and its interaction with TNFα/TNFR1&2 and 

TL1A/DR3 represent an attractive new therapeutic target (Table 2). Looking at the underlying 

theory and the known preclinical data, Atsttrin could be a therapeutic alternative in cases of 

refractory or recurrent arthritis. 
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Table 1 Cellular expression of death domain containing TNFRSF members 

and their association with arthritis 
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Table 2 Summary of key points about Progranulin and TNFR and DR3 pathways in 

rheumatoid arthritis, osteoarthitis,  spondyloarthritis and other arthropathies 

# Key points References 

1. Progranulin (PGRN) 

• also known as granulin–epithelin precursor (GEP), proepithelin, 

acrogranin, and GP88/PC-cell derived growth factor (PCDGF) 

• 593-amino-acid autocrine growth factor 

• seven-and-a-half repeats of a cysteine-rich motif  

• Involved in: embryogenesis, wound healing antiinflammatory, host 

defense, neurotrophic factor  

• High PGRN levels associated with several human cancers  

 

[14, 16, 17] 

2. PGRN ligand of TNFR1, TNFR2 and DR3 

• PGRN ligand of TNFR1, TNFR2 and DR3 and physiologic antagonist of 

TNF-α, LTα and TL1a 

• Inhibition of TNFR1 and DR3 pathways, but activation of TNFR2 

pathway by PGRN 

• 600 times higher affinity towards TNFR2 by PGRN compared to TNF-α 

• PGRNs affinity to TNFR1, TNFR2 and DR3 originates from granulins F, 

A and C with linker regions 

• Atsttrin: smallest recombinant derivate of PGRN synthesized of 

granulins F, A, C and linker regions P3, P4 and P5 of PGRN with 

preserved antiinflammatory effect 

• PGRN attenuates TNF-α induced downmodulation of CD4
+
CD25

hi 

FOXP3
+ 

Tregs  

• PGRN stimulates conversion of CD4
+
CD25

- 
T cells into induced Tregs 

(iTregs) 

 

[14, 66, 69] 

3. PGRN, TNFR1 and TNFR2 in Osteoarthritis  

• low PGRN levels -> spontaneous OA 

• high PGRN levels -> anabolic function 

• catabolic effect of TNF-α mainly mediated via TNFR1 

• TNFR2 pathway anti-inflammatory & osteoprotective 

• administration of sTNFR2/Fc fusion protein neutralizes TNF-α and 

PGRN and leads to exageration of OA 

• administration of Anti-TNF-α Mabs neutralizes TNF-α specifically and 

ameliorates OA 

• PGRN account for the opposite effects of sTNFR2/Fc fusion protein and 

Anti-TNF-α Mabs 

[30, 31] 

 

4. TL1a/DR3 

• High levels of TL1A induce TH17 response in RA 

• DR3
-/- 

mice resistant of cartilage destruction in AIA 

• CIA exaggeration by TL1a, amelioration by Anti-TL1a Mab 

• TL1a/DR3 activation induces MMP9 and CCL3 

 

[52, 59] 

[60] 

[39] 
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• DcR3 decoy ligand for TL1A, FasL and LIGHT not in mice -> results 

from mouse models difficult to translate 

 

5. pSer81 PGRN and PGRN antibodies 

• Neutralizing PGRN antibodies directed against the N-terminal 112AA 

occur frequently in various autoimmune diseases 

• PGRN antibodies are induced by a second, transiently occuring 

hyperphosphorylated PGRN isoform (pSer81 PGRN) 

• pSer81 PGRN lacks affinity for TNFR1, TNFR2 and DR3 and thus 

antagonism of TNF-α  and TL1a 

• -> dysbalance of proinflammatory TNF-α & TL1A and antiinflammatory 

functional PGRN in various inflammatory disesases  

 

[5] [75, 76] 

6. Clinical Perspective 

• Targeting of TNFR/TNF superfamily common therapeutic strategy 

• Possible advantages of rec. PGRN/Atsttrin compared to conventional 

TNF-blockers due to additional inhibition of DR3 and activation of 

TNFR2 

• PGRN-autoantibodies regularly target the N-terminal 112 AA  and thus 

not the parts constitutive for Atstrrin; however affinity has not been 

excluded 

• Risk of side effects concerning susceptibility to infectious diseases, 

emergence of new autoimmune phenomena or cancer remain unclear 

 

[79] 
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Figure Legend 

 

 
Fig. 1. A) Domain Structure and Organization of PGRN and Atsttrin. PGRN consists of 7½ 

repeats of a cysteine-rich granulin motif in the order of P-G-F-B-A-C-D-E, where A to G are full 

repeats, and P is the half motif. Atsttrin, derived from PGRN, consists of three half units of 

granulins A, C and F, and their accompanying linker regions. B) A proposed models for 

explaining the independent action of three TNFR-binding domains of PGRN. TNFα trimmers 

binds to receptors in a heterohexameric 3:3 complex[88]. The three fragments of Atsttrin act 

independently for interacting with TNFR, and changing the order of these fragments does not 

affect the ability to binding to TNFR[15]. It is proposed that each TNFR-binding domain may 

function as a single TNFα molecule, and the intact Atsttrin might resemble a TNF trimer through 

internal folding at their linker regions. 

Fig. 2. A proposed model illustrating the multiple signaling pathways by which PGRN (and its 

derivative Atsttrin) exerts its protective actions in autoimmunity. PGRN (Atsttrin) binds to TNF 

receptor 2 (TNFR2) and stimulates the formation and function of Tregs, but may antagonize 

TL1A/DR3 signaling in these cells. PGRN (Atsttrin) also antagonizes TNF/TNFR1 and 

TL1A/DR3 signaling and inhibits their inflammatory activities.  

Fig. 3. A) Balance of TNF-α & TL1A and their antagonist progranulin in a healthy control. B) 

Dysbalance of proinflammatory TNF-α & TL1A and antiinflammatory PGRN due to 

overexpression of proinflammatory TNF-α & TL1A and diminished antagonistic effects of 

PGRN due to hyperphosphorylation of Ser81 of PGRN and induction of neutralizing PGRN-

antibodies. 
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