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Abstract 

 

In the present paper we describe a number of new acceleration techniques to improve the 

convergence properties of the recently developed smooth unloading-reloading (SUR) method for the 

finite element simulation of quasi-brittle materials. The proposed techniques, which involve 

predicting or approximating a damage evolution parameter, simplify the implementation of the SUR 

algorithm and improve its efficiency in terms of solution time. The latter improvement is illustrated 

using a series of idealised examples of plain and reinforced concrete sections.  The paper also 

describes a convenient procedure for computing the characteristic length parameter for a range of 

2D and 3D finite elements.     
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1.    Introduction 

 

The progressive failure of quasi-brittle (QB) materials such as concrete under various loading 

conditions is mainly due to the development, growth and coalescence of micro-cracks, which induce 

degradation in both the strength and stiffness of the material. The degradation is reflected 

macroscopically as strain softening behaviour (Bažant, 1992; Karihaloo, 1995; van Mier, 2012) and it 

is well-known that this behaviour gives rise to numerical difficulties (Crisfield, 1984; Crisfield, 1991; 

Bažant and Cedolin, 2010; De Borst et al., 2012). Therefore it is necessary to use a robust solution 

algorithm when implementing a numerical model for QB materials. 

The most commonly used solution technique in nonlinear finite element (FE) codes is the Newton-

Raphson method (Zienkiewicz and Taylor, 2000; De Borst et al., 2012). However, if a full Newton 

solution procedure is used for a problem that involves strain softening, the tangent stiffness matrix 

becomes non-positive definite and the solution process can diverge and break down or simply fail to 

converge (Oliver et al., 2008a). Divergence of the solution process can be avoided if a secant 

stiffness matrix is employed in place of the true tangent stiffness matrix but this usually results in the 

process becoming highly inefficient and costly, with very large numbers of iterations often being 

required to achieve convergence (Bathe and Cimento, 1980; Crisfield, 1997). 

Stability and convergence difficulties of incremental-iterative solution methods have led to the 

development of non-iterative techniques. One of these, named ‘Sequentially Linear Analysis ’ (SLA), 

was introduced by Rots (2001). In the SLA approach, the softening stress-strain curve is 

approximated by a saw-tooth diagram of positive slopes, and the incremental-iterative process is 

replaced by a scaled sequence of linear analysis. The SLA method was later improved by Rots and 

Invernizzi (2004) and Rots et al. (2008) to achieve objectivity with respect to mesh dependency. An 

extension of the SLA concept towards the non-proportional loading was proposed in (DeJong et al., 

2008; Eliáš et al., 2010; Graça-e-Costa et al., 2013; Eliáš, 2015). An alternative approach, that also 

avoids multiple iterations, is the implicit-explicit (IMPEX) approach of Oliver et al (2006; 2008a). This 

method employs a projected state variable, e.g. a damage parameter, to determine a predicted 

consistent tangent matrix. More recently, Prazeres et al. (2015) proposed the so-called ‘modified 

IMPEX approach’ for elasto-plastic models. Both the SLA approach and the IMPEX or modified IMPEX 

are robust solution techniques, but these methods do require further development if they are to be 

applicable to problems that include multiple materials and several nonlinear processes.  

Another difficulty in applying standard local continuum damage mechanics models to QB materials 

in FE programs is the fact that results can suffer from spurious mesh dependency (Bažant, 1976; 



 

 

3 

 

Needleman, 1988; Karihaloo, 1995; Cervera and Chiumenti, 2006; Jirásek and Bauer, 2012). This 

dependency can relate to both the fineness of the mesh and to the orientation of the elements. This 

problem can be alleviated by relating the governing constitutive softening function to the element 

size and orientation. This is most readily accomplished using the crack-band theory (Bažant and Oh, 

1983), with an orientation dependent element ‘characteristic length’ (Oliver, 1989; Volokh, 2013).    

In the present study, the incremental-iterative SUR approached developed by Alnaas and Jefferson 

(2016)  is used with a slight modification in the target softening function. The modification makes 

the SUR solution algorithm more efficient in terms of solution time. Two specific acceleration 

approaches are proposed in this paper to improve the convergence characteristics of the method. 

The benefit of using these two acceleration techniques are discussed and compared with the 

previously described predictive-SUR acceleration technique (Alnaas and Jefferson, 2016). Also, the 

authors propose a convenient approach for the calculation of the element characteristic length, 

which is applicable to a range of two-dimensional (2D) and three-dimensional (3D) elements.      

The outline of the paper is as follows: in Section 2 we describe the continuum damage model used in 

this study. Then Section 3 gives a simple expression for calculating the element characteristic length 

parameter. The smooth unloading-reloading (SUR) approach is described in Section 4, after which 

Section 5 presents the proposed acceleration algorithms. Four selected numerical examples are 

used in Section 6 to assess the performance of the acceleration techniques. Finally, some 

conclusions from this study are given in Section 7. 

2.     Continuum damage mechanics model 

 

An isotropic damage model with a single damage variable, driven by the equivalent stress parameter 

is used in this study. The reason that we have chosen a relatively simple isotropic damage model for 

the present work is because the purpose of this study is not to evaluate the accuracy of isotropic 

damage models and their ability to simulate the behaviour of fracture problems in a FE context that 

have been established elsewhere (Oliver et al., 1990; Comi and Perego, 2001; Oliver et al., 2002; 

Oliver et al., 2006; Oliver et al., 2008b; Manzoli et al., 2008), but rather to illustrate the convergence 

characteristics of the proposed acceleration algorithms and to demonstrate their potential benefits. 
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2.1.     Isotropic damage model 

 

In the present study, the isotropic damage model of Oliver et al (Oliver et al., 1990; Oliver et al., 

2002; Oliver et al., 2006) is employed. This isotropic damage model is based on the simplifying 

assumption that stiffness degradation is isotropic and the loss of material stiffness is characterised 

by a scalar damage variable (ω ∈[0, 1]), in which ω =0 for undamaged material and ω =1 for fully 

damaged materials. The constitutive equation for the isotropic damage model is expressed as: 

 ( ) εDσ 0 :ω1−=  (1) 

 

where σ  and ε  are the stress and strain tensors respectively; 0D  donates the elastic stiffness of 

the undamaged material and the damage variableω is a function of a damage evolution parameter

pr .  

The effective stress is defined as follows: 

 εDσ 00 :=  (2) 

 

effr  is a scalar measure of the current ‘effective’ stress and is computed by: 

 
+−+

= 000 σDσ ::
1

effr  (3) 

 

where  
+

0σ  denotes the positive part of the effective stress tensor, and is given by the following 

form: 

∑
=

+
⊗=

3

1i

iii
pp σσ 00  (4) 

 

where 
i0σ  stands for the positive part of the ith principal effective stress 

i0σ , ip  represents the ith 

stress eigenvector. Symbol ⊗denotes the tensor product, and symbol x is the Macaulay bracket, in 

which 000 <=≥= xifxxifxx ,;, . The effective stress norm is only computed from the 
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positive part of the effective stress, as can be seen in equation 3. For this reason, the damage in this 

model is only associated with tensile stress states- these are appropriate mainly for modelling tensile 

failure in QB materials.  

The damage loading function is expressed in terms of the effective stress and the scalar damage 

evolution parameter ( pr ). The damage loading function is given by: 

 peffpeff rrr,rf −=)(  (5) 

 

pr  is a measure of the largest effective stress reached in the history of the material up to the current 

state. Initially, pr  is equal to kr , which is the damage evolution parameter at the peak of the uniaxial 

stress curve  and is related to the peak stress tf of the material in uniaxial tension. The expression 

used to compute kr  is described in Section 5.   

Damage evolution is controlled via the standard Kuhn-Tucker loading/unloading conditions, as 

follows: 

  ;0fr;0f;0r pp =≤≥ ɺɺ  (6) 

 

The constitutive tensor takes the form: 

 



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
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 (7) 

 

3.     Localization and crack band approach 

 

It has been shown that the method used to calculate the element characteristic length in the crack-

band model (Bažant and Oh, 1983) can have a significant influence on computed responses  (Oliver, 

1989; Jirásek and Grassl, 2008; Jirásek and Bauer, 2012; Volokh, 2013). The authors believe that it is 

essential for the characteristic length ( chℓ ) to vary with element orientation, for all but circular 

elements, and for this length to equal the full width of the fracture process zone that crosses an 
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element. The characteristic length is equal to the length of the longest straight line that could be 

drawn within a FE in the maximum principal strain direction. This allows for the fact that the 

effective inelastic relative displacement across a non-circular element varies with direction. The 

length computed by this method gives a length in between that computed by ‘Oliver’s 1st and 

2nd methods’, which are described in references (Oliver, 1989) and (Jirásek and Bauer, 2012). The 

authors have devised a convenient method for computing chℓ  that employs the element Jacobian 

matrix. This results in the maximum length, measured in convected coordinates, of a line 

perpendicular to a crack-band. In this work, the orientation of a crack-band is determined from the 

major principal strain axis.  

The proposed method for computing the characteristic length is as follows: 

i. Consider a unit normal vector to a crack r, which is related to the equivalent vector in the 

element local coordinate 
r
χ  by the Jacobian matrix ( J ), as follows: 
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(8) 

 

 

 

 

in which ξ, η and ζ  are the local parametric coordinates of an element.  

In order to work out how long a vector in the local direction 
r
χ  needs to be in an element, firstly a 

unit vector in the direction of 
r
χ  is created, which is denoted χ̂ . For quadrilateral and hexahedral 

elements, the local coordinates range from (-1 to +1) and the largest absolute component of χ̂  is 

scaled to 1 to give vector χ , see Figure 1. For triangular and tetrahedral elements, the local 

coordinates range between 0 and +1. Two cases in triangular and tetrahedral elements should be 

considered: 

• Case 1: if all local vector components have the same sign, the local vector has to be scaled in 

the boundary ( 1ξ η ζ+ + = ). 
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• Case 2: If the local vector points into the element from a corner such that the vector 

components have different signs, then the local vector is scaled to the boundary, i.e. the 

largest absolute component of χ̂  is scaled to 1 to give vectorχ .   

The vector χ is computed as follows: 

 r

rr

r

1-

r
Jχ =  (9) 

 

 

r
r

1
ˆ χ

χ
χ =  

(10) 

 

 

( )χ
χ

χ
ˆmax

ˆ
=  

(11) 

 

 

Figure 1: Quadrilateral and triangular elements. 

 

ii. The Cartesian vector 
xyzr  corresponding to the vector χ  can be computed as: 

 

 T
xyz

 =r J χ  (12) 

 

iii. The characteristic length chℓ  is then give by the magnitude of 
xyzr , scaled by the range of 

the local coordinates: 
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 ch g xyz
 r *= rℓ  (13) 

 

in which the local coordinate range ( gr ) for quadrilateral and hexahedral elements is 2, and  equals 

to 1 for triangular elements.  

4.     Smooth unloading-reloading (SUR) method 

 

The SUR approach uses a target function )( ps rf  and a smooth unloading-reloading function

), effpp r(rσ , as illustrated in Figure 2. It may be seen that the SUR function has two parts; (i) when

ppeff rar < , for which linear unloading-reloading with a slope Eω- pf )(1  is assumed, and (ii) when

ppeff rar ≥ , for which nonlinear unloading-reloading is assumed, according to the function

),( effpp rrσ .  

The target and SUR functions depend on the damage evolution parameter ( pr ), which is updated for 

every iteration within each load/displacement increment from the value obtained at the last 

converged increment.  

 

Figure 2: Target and unloading-reloading damage evolution functions. 
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The target function gives the equivalent uniaxial stress and depends on the damage evolution 

parameter pr , which in 1D is directly proportional to the maximum strain experienced. The 

complete uniaxial curve, upon which the target curve is based, is given in equation (14). The value of 

the damage evolution parameter at the peak of the uniaxial stress curve is denoted kr . The initial 

value of pr is set to kr  (i.e. the value at the peak of the target softening function). 

It should be mentioned that the target softening function used in this paper differs from the one 

proposed in (Alnaas and Jefferson, 2016), in which the target softening function given in equation 14 

starts form the peak onward and does not have the m, � and ta   parameters. This makes the target 

softening function simpler to evaluate.  
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in which tf  is the tensile strength, Ε  is Young’s modulus, c1=5, Efε tt = , Eεr tt ⋅= ,  

ktk arr ⋅= , and 0 0r ε E= ⋅ . The following expression is for computing ka : 
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0ε is the strain at the effective end of the softening curve, and is computed using the characteristic 

length presented in Section 3 with the crack-Band approach of Bažant and Oh (1983). 

The SUR function is tangential to the secant curve with modulus [(1-ωpf) E], and is asymptotic to 

the stress  )( pk rσ in equation (16) and takes the following form: 
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in which the constants ν and pa  take default values of 0.70 and 0.75 respectively. As can be seen in 

equation (15), the SUR function depends upon the asymptotic stress function kσ , which is defined as 

follows: 

( ) kpspk aν)r(frσ ⋅⋅=  (16) 

 

The damage parameter that controls the linear part of the SUR function is computed from: 



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

>∀
⋅⋅

−

≤∀

=
kp

p

k

kp

ppf rr
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σ
1

rr0
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E

)(  (17) 

 

and the damage parameter for the SUR  function is given by: 

( )




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>∀
⋅

−
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=
ppeff

eff

effpp

ppeffpf

effpp
rar
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rarω
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E

)(  (18) 

 

The introduction of the SUR function results in changes to two of the model equations presented in 

equations (1) and (7): these being the overall constitutive equation (19) and the expression for the 

tangent D matrix (20), as follows: 

( ) εDσ 0 :r,rω1 effpp )(−=  (19) 
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The overall stress-strain relationship in equation (19) now depends on ωp, rather than ω, which in 

turn is governed by the value of SUR function σp. The matrix tanD  is always evaluated using the SUR 

function and therefore is always positive definite. 
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4.1.     Fracture energy for simplified softening curve 

 

The precise definition of the fracture energy has been a subject of debate, because it has been found 

to vary with the size and shape of the test specimen (Karihaloo et al., 2003; Jirásek et al., 2004). 

However, Jirásek et al. (2004) defined the fracture energy as the total work needed to completely 

beak a specimen per unit ligament area, in which  the area under the stress-strain curve represents 

the total work of fracture. Using this definition gives the following standard expression for the 

fracture energy: 

∫∫
∞∞

==
0

ch

0

f dεσduσG ℓ  (21) 

 

The integral in equation (21) is equal to the area under the governing uniaxial stress-strain curve, as 

illustrated in Figure 3; which mathematically is given by: 
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Figure 3: Stress-strain curve for quasi-brittle materials.   
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where kk εEσ ⋅= . Then the fracture energy can be given by: 

( )













⋅+













−−+= ∫∫

∞











−

−
⋅−

−

−−

k

k0

k
1

k

kp

kp

kp

ε

εε

εε
c

t

ε

εa

ε )a(ν

)εa(ε

p

k

2

kpchf dεefdε)e
ν

a
(11σεaE

2

1
G ℓ  (23) 

 

Equation 23 can be simplified to: 
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in which  tdad εaε = , and da  is defined as follows: 
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noting that 0ε is used to compute the parameter 0r  from 0 0r ε E= ⋅  

5.     Acceleration SUR approaches 

 

Alnaas and Jefferson (2016) developed an algorithm called the predictive-SUR approach to improve 

the overall convergence performance of the SUR method. In this paper, another two techniques are 

proposed to further accelerate the converge process of the SUR solution procedure for simulating 

QB structures. The advantages of these three techniques are discussed and compared with each 

other in the numerical implementation section.   



 

 

13 

 

5.1.     Predictive SUR approach  

 

In the predictive-SUR approach, a function was developed for calculating a converged value of a 

damage evolution parameter based on an extrapolation in semi-log space. This predictive function 

was based on the following main principles:   

i. The relationship between the number of iterations (it) within an increment and the iterative 

change of the damage evolution parameter (
1-ititi ppp rr∆r −= ) decays linearly in semi-log 

space, once stable convergence has been achieved. 

 

ii. When the slope of the it vs ���( p∆r )	 curve starts decreasing, a trial prediction of the 

damage evolution parameter ( ppr ) can be computed using equation (27). Once the 

normalised difference between two consecutive predictions is less than a certain tolerance 

(typically 5%), pr is set to the most recently computed trial value, i.e. pr = ppr . 

 

iii. The predictive function is given by:  

i1-i

i

pp

2

p

itppp
∆r∆r

∆r
rr

−
+=  (27) 

 

Alnaas and Jefferson (2016) demonstrated that the predictive-SUR approach improved the 

convergence characteristics of the SUR method significantly in many cases. 

 

5.2.     Fixing algorithm 

 

We now describe an alternative acceleration technique, named ‘the fixing approach’, in which a two-

stage algorithm is employed with the standard SUR approach. The philosophy behind this 

acceleration approach is that, since the majority of cracks will occur during the first few iterations of 

any load increment, the damage evolution parameter ( pr ) is allowed to be updated in early ‘ Stage-1 

iterations ’, and then it is fixed for the subsequent ‘ Stage-2 iterations ’, within each increment. itfix is 



 

 

14 

 

used to denote the limit number of iterations in Stage-1. It should be mentioned that quadratic 

convergence is achieved once it>itfix. 

Two different values of itfix were considered in the study, with a comparison being made between 

solutions with itfix=3 and itfix=5. 

 

5.3.     Slack tolerance technique  

 

In the incremental-iterative solution procedure, the total load/displacement is divided into small 

increments and each increment is applied individually. In order to satisfy the equilibrium state, 

iterations should be performed within each load/displacement increment. This is usually done by 

computing the norm of the out-of-balance or residual force within a structure at the end of each 

iteration. The residual force vector is the difference between the applied external load/displacement 

increment and the resisting internal force. The norm of the vector is defined as the sum of the 

square roots of the nodal values  (Becker, 2004).  

Convergence is achieved, if both of iterative displacement and out-o-balance force norms are 

smaller than a specified tolerance. When convergence is not achieved, a correction to the 

displacement vector is required, in which the residual force is used to obtain a correction to the 

displacement. We repeat the correction procedure until the both norms became below a certain 

tolerance. The user of the FE code normally sets the convergence tolerance but it is not generally 

recommended to be less than 0.01 (Bathe, 2006). The standard tolerance 0.1% employed with the 

SUR technique to-date is considerably smaller than this recommended value and therefore a third 

SUR option was devised that involves switching to slacker tolerance of 1% when ‘difficult 

increments’ are encountered. These are defined as increments in which the number of iterations 

exceeds 5 iterations (it>5) with the standard SUR solution. The tolerance reverts to the standard 

tolerance (i.e. 0.1%) for subsequent increments. 

6.     Numerical implementation 

 

Four examples are used in this section to investigate the benefit of implementing the proposed 

acceleration algorithms for improving the convergence properties of the standard SUR method when 

analysing QB structures. The majority of these examples are based on those used in the previous 
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paper (Alnaas and Jefferson, 2016), the reason for which is that this allows the new SUR strategies to 

be compared directly with those employed in the previous study.  

Table 1 provides a summary of the material properties of these examples. The four examples were 

analysed using the following four approaches: 

• Smooth unloading reloading (SUR) approach. 

• Predictive-SUR approach. 

• Fixing approach with itfix=3 and 5 in Stage-1 iterations. 

• Slack tolerance technique. 

The solution characteristics of the examples are presented by showing the number of iterations 

required to achieve convergence for selected ‘difficult increments’. Indeed, the most difficult 

increments frequently coincided with the crack initiation or started in the initial stages of crack 

propagation (Hellweg and Crisfield, 1998). Furthermore, the total number of iterations required for 

each solution for all examples are presented. 

In the first example, the convergence history for SUR, predictive-SUR and fixing solutions is plotted. 

The information provided includes the out of balance force norm at the end of each load increment. 

The out of balance force norm history for a selected increment is also given. 

   Table 1: Material properties and convergence tolerances  

Example No Ec (GPa) Es (GPa) υ ft (MPa) Gf (N/mm) Ψd (%) Ψf (%) 

1 20 - 0.20 2.5 0.10 0.10  0.10 

2 20 - 0.20 2.5 0.10 0.10 0.10 

3 42 200 0.20 2.5 0.10 0.10 0.10 

4 20 - 0.20 2.5 0.10 0.10 0.10 

 

Example 6.1: One-dimensional tensile test  

 

The one dimensional problem shown in Figure 4 was fixed at one end and loaded by prescribed 

displacement at the other end. A prescribed displacement ux of 0.2 mm was applied evenly over 40 

and 100 increments in the analysis. The bar was divided into 3 linear elements of equal length, with 

the middle element being assigned a small amount of initial damage such that damage only occurred 

in this central element.  
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The equilibrium paths for the SUR and acceleration approaches are shown in Figure 5. Figures 6 and 

7 present the number of iterations to achieve convergence for the most difficult increments. Also, 

the total number of iterations required for completing the analysis for each approach is given in 

Figure 8.  

 

 

Figure 4: 1D bar problem. 

 

 

Figure 5: Numerical displacement-stress responses for 1D example. 

The resulting stress-displacement responses from the various analyses are indistinguishable from 

each other, as can be seen in Figure 5. 
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In all sets of analyses, results showed that the three acceleration techniques achieved converged 

solutions in fewer iterations than the standard SUR solution, see Figures 6 and 7. Furthermore, the 

‘fixing algorithm’, with 3 iterations in Stage-1, was on average a little more efficient than the others, 

as can be noticed in Figure 8.     

 

Figure 6: Number of iterations to achieve convergence for the most difficult increments for analyses 

with 40 steps.  

 

Figure 7: Number of iterations to achieve convergence for the most difficult increments for analyses 

with 100 steps. 
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Figure 8: Total number of iterations that needed for each solution in the 1D example. 

 

The convergence history for the analysis with 40 steps is shown in Figure 9. Figures 10 and 11 show 

how the convergence progress of the SUR, predictive-SUR and fixing approaches for steps which had 

relatively the biggest reduction of iterations that required to achieve convergence, in which  step 

number 3 was in the analysis with 40 steps, and step number for the analysis with 100 increments.  

The convergence curves, shown in Figures 10 and 11, indicate that the convergence rate of the 

standard SUR method is improved by using the acceleration algorithms.   

158 152 148
132

153

350 344 340
308

342

0

100

200

300

400

T
o

ta
l 

n
u

m
b

e
r 

o
f 

it
e

ra
ti

o
n

s

Solution method

40 Steps 100 Steps



 

 

19 

 

  

 

Figure 9: Out of balance force norm at the end of each increment for the analysis with 40 steps.  

 

 

Figure 10: Out of balance force norm history for increment number 3 with 40 steps.  
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Figure 11: Out of balance force norm history for increment number 9 with 100 steps.  

 

Example 6.2: 2D plane stress specimen 

 

An idealised 2-D structure, shown in Figure 12a, was analysed using various acceleration techniques.  

The analyses were carried out using two different prescribed displacement increments comprising 

50 or 100 even steps.  

The stress-displacement responses from analyses using the standard SUR approach and acceleration 

techniques are shown in Figure 13. Damage contour plots at different displacement increments are 

given in Figure 14. Also, the number of iterations needed to achieve convergence at the most 

difficult increments for all solutions are shown in Figures 15 and 16. 
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                             a b 

                                                  

Figure 12: (a) 2D notched plane stress specimen, (b) finite element mesh. 

 

 

 

Figure 13: Displacement-Stress relationship for 2D plane stress specimen. 

 

 

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25

S
tr

e
ss

Displacement

50 Steps: SUR approach
50 Steps: Predictive-SUR approach
50 Steps: Fixing approach (itfix=3)
50 Steps: Fixing approach (itfix=5)
50 Steps: Slack tolerance approach
100 Steps: SUR approach
100 Steps: Predictive-SUR approach
100 Steps: Fixing approach (itfix=3)
100 Steps: Fixing approach (itfix=5)
100 Steps: Slack tolerance approach

2.5 

Displacement control loading= 0.2 mm 

25 mm 

50 mm 

Thickness= 10 mm 

1  



 

 

22 

 

   

ω  

 Increment 1 Increment 2 Increment 3 

 

Figure 14: Damage contour plot for the 2D plane stress example at different displacement 

increments. 

 

The complete stress-displacement responses obtained by predictive-SUR, fixing (itfix=5) and slack 

tolerance techniques are almost identical with the standard SUR response for both 50 and 100 steps, 

as illustrated in Figure 13. However, results obtained from the fixing approach in which itfix=3 show a 

small drift from the standard SUR response curve, but the discrepancy is relatively insignificant for 

both cases.  

The SUR method is very robust and efficient method, so in this example since the crack was 

established in just one step, which was increment 2 with 50 steps and increment 4 with 100 steps, 

the overall saved number of iterations using the acceleration approaches is insignificant, as can be 

seen in Figure 17. 
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Figure 15: Number of iterations to achieve convergence for the most difficult increments for 

analyses with 50 increments. 

 

 

Figure 16: Number of iterations to achieve convergence for the most difficult increments for 

analyses with 100 increments. 
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Figure 17: Total number of iterations that needed for each solution in the 2D plane stress specimen. 

 

Example 6.3: 2D double notched example.   

 

The third example is a 2D double notched specimen loaded by a combination of shear and vertical 

tensile loads, as illustrated in Figure 18. The analyses were undertaken using 40 and 100 prescribed 

displacement increments.  

The displacement verses vertical stress responses from the analyses using the standard SUR 

approach and the predictive-SUR, as well as the fixing and slack tolerance approaches are almost 

identical and indistinguishable from each other, as can be seen in Figure 19. The damage contour 

plots for different displacement increments are depicted in Figure 20. 
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Figure 18: Geometry of the 2D double notched specimen. 

 

 

 

Figure 19: Numerical displacement and vertical stress responses 2D double notched specimen. 
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Figure 20: Damage indicator contour plot at different displacement increments for the 2D doubled 

notched example.  
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Without doubt, using the proposed acceleration algorithms can give a noticeable reduction in the 

total number of iterations relative to those required by the basic SUR solution, as illustrated in 

Figure 23. Indeed, in some cases, implementing acceleration approaches can reduce the required 

number of iterations by more than 50 % at most difficult increments e.g. see step number 5 and 6 in 

Figure 21. As in example 1, the fixing approach with itfix=3 gave the best reduction among the other 

acceleration techniques.  

 

 

Figure 21: Number of iterations to achieve convergence for the most difficult steps with 40 

increments. 

 

Figure 22: Number of iterations to achieve convergence for the most difficult increments with 100 

increments. 
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Figure 23: Total number of iterations that needed for each solution in the 2D double notched 

problem. 

 

Example 6.4: Reinforced concrete prism  

 

The concrete prism shown in Figure 24 was reinforced with a single central reinforcement bar. The 

analysis was carried out with 50 and 100 steps to reach a displacement of 1 mm at the load position. 

 

Figure 24: RC prism dimensions. 
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Figure 25 presents stress-displacement responses for both sets of the analyses. Again, the results of 

the standard SUR solution and the three acceleration techniques solutions are indistinguishable from 

each other. A damage contour plot at final displacement increment is depicted in Figure 26. It is 

well-known that cracks occur in RC elements at intervals which lie between two well defined limits 

(Elfgren and Noghabai, 2001; Elfgren and Noghabai, 2002; Beeby and Scott, 2005; Vollum et al., 

2008; Pedziwiatr, 2009). Structural engineers provide an explanation for this in terms of bar bond 

characteristics, based on the assumption that the crack spacing is governed by the length required 

for the (axial) stress to build up from a zero stress level (at a macro crack) to the tensile strength of 

the concrete, at which point a subsequent crack is about to form. This behaviour is captured in this 

numerical simulation as can be seen in Figure 26. 

 

 

Figure25: Load-displacement responses of RC prism. 
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Figure 26: Damage value contour plot at final displacement increment. 

 

As with other examples, it can be clearly seen from the bar charts in Figures 27 and 28 that there 

was a dramatic decrease in the number of iterations required to achieve convergence for the SUR 

solution when any of the proposed acceleration techniques was employed. Thus, the efficiency of 

the proposed acceleration approaches is again evident.  

The other main observation from these results is that, overall, the SUR predictive, fixing and slack 

tolerance solutions use fewest iterations. However, there are single increments for which the basic 

SUR solution uses fewer iterations than the acceleration solutions. This is most evident in steps 

which follow-on from a previous step in which the predictive/fixing/slack tolerance algorithms gave 

a very significant reduction in iterations (e.g. see steps 6 and 7 in Figure 27). This occurred because 

the cracking was more distributed than in the plain concrete examples. It is believed that 

temporarily freezing pr  , whether at a predicted value in the predictive-SUR approach or at the 

fixing value in the fixing approach, causes the evolution of some local damage to be spread over 2 or 

3 steps, rather over a single step. 
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Figure 27: Number of iterations to achieve convergence for the most difficult increments of RC prism 

with 50 increments. 

 

 

 

 

Figure 28: Number of iterations to achieve convergence for the most difficult increments of RC prism 

with 100 increments. 
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Figure 29: Total number of iterations that needed for each solution in the RC prism. 

7.     Conclusions 

 

• The method proposed for calculating the characteristic length parameter from an element 

Jacobian matrix is both accurate and efficient.   

• The two SUR acceleration algorithms described in this paper are effective, reliable and result 

in substantial savings in terms of the total number iterations required for a complete 

solution, relative to the standard SUR approach.   

• The SUR ‘fixing’ approach, with itfix=3, is the most efficient algorithm amongst those 

presented, but in some instances it can lead to a noticeable drift in the equilibrium path, 

particularly when a substantial crack is established in a single solution step, as in example 

6.2.  

• The ‘predictive-SUR’ ‘fixing’ -with itfix=4 or 5- and ‘slack tolerance’ approaches are all more 

reliable than the ‘fixing with itfix=3 option’ and always give the same responses as the 

standard SUR solution. 

 

Acknowledgements 

The finite element company LUSAS (www.lusas.com) is gratefully acknowledged for their support.  

 

227 219 210 215 207

369
350 350

334
350

0

100

200

300

400

T
o

ta
l 

n
u

m
b

e
r 

o
f 

it
e

ra
ti

o
n

s 

Solution method

50 Steps 100 Steps



 

 

33 

 

References 

 

1 Alnaas, W. F. & Jefferson, A. D. (2016). A smooth unloading-reloading approach for the 

nonlinear finite element analysis of quasi-brittle materials. Engineering Fracture Mechanics, 

152, 105-125. 

 

2 Bathe, K. J. (2006). Finite Element Procedures, Prentice Hall. 

 

3 Bathe, K. J. & Cimento, A. P. (1980). Some practical procedures for the solution of nonlinear 

finite element equations. Computer Methods in Applied Mechanics and Engineering, 22, 59-85. 

 

4 Bažant, Z. P. (1976). Instability, Ductility, and Size Effect in Strain-Softening Concrete. Journal 

of the Engineering Mechanics Division, 102, 331-344. 

 

5 Bažant, Z. P. (1992). Fracture Mechanics of Concrete Structures: Proceedings of the First 

International Conference on Fracture Mechanics of Concrete Structures (FraMCoS1), held at 

Beaver Run Resort, Breckenridge, Colorado, USA, 1-5 June 1992, Taylor & Francis. 

 

6 Bažant, Z. P. & Cedolin, L. (2010). Stability of Structures: Elastic, Inelastic, Fracture and Damage 

Theories, World Scientific. 

 

7 Bažant, Z. P. & Oh, B. H. (1983). Crack band theory for fracture of concrete. Material and 

Construction, 16, 155-177. 

 

8 Becker, A. (2004). An introduction Guide to Finite Element Analysis, London, Uk, Professional 

Engineering Publishing. 

 

9 Beeby, A. W. & Scott, R. H. (2005). Cracking and deformation of axially reinforced members 

subjected to pure tension. Magazine of concrete research., 57, 611-621. 

 

10 Cervera, M. & Chiumenti, M. (2006). Mesh objective tensile cracking via a local continuum 

damage model and a crack tracking technique. Computer Methods in Applied Mechanics and 

Engineering, 196, 304-320. 

 

11 Comi, C. & Perego, U. (2001). Fracture energy based bi-dissipative damage model for concrete. 

International Journal of Solids and Structures, 38, 6427-6454. 

 

12 Crisfield, M. A. (1984). Difficulties with current numerical models for reinforced concrete and 

some tentative solutions. International Conference on Computer-aided Analysis and Design of 

Concrete Structures, Damjanic F, Hinton E, Owen DRJ, Bicanic N, Simovic V (eds). Pineridge 

Press: Swansea, Pineridge Press, 331–358. 

 

13 Crisfield, M. A. (1991). Non-linear Finite Element Analysis of Solids and Structures, Chichester, 

UK., John Wiley & Sons. 

 

14 Crisfield, M. A. (1997). Non-linear Finite Element Analysis of Solids and Structures, Chichester, 

UK., John Wiley & Sons. 

 

 



 

 

34 

 

15 De Borst, R., Crisfield, M. A., Remmers, J. J. C. & Verhoosel, C. V. (2012). Nonlinear Finite 

Element Analysis of Solids and Structures, Wiley. 

 

16 DeJong, M. J., Hendriks, M. A. N. & Rots, J. G. (2008). Sequentially linear analysis of fracture 

under non-proportional loading. Engineering Fracture Mechanics, 75, 5042-5056. 

 

17 Elfgren, L. & Noghabai, K. (2001). Tension of reinforced concrete prisms. Round robin analysis 

and tests on bond: . A report from an investigation arranged by RILEM Technical Committee 

147-FMB Fracture Mechanics to Anchorage and Bond Research Report. Luleå University of 

Technology, Division of Structural Engineering. 

 

18 Elfgren, L. & Noghabai, K. (2002). Tension of reinforced concrete prisms. Bond properties of 

reinforcement bars embedded in concrete tie elements. Summary of a RILEM round-robin 

investigation arranged by TC 147-FMB ‘Fracture Mechanics to Anchorage and Bond’. Materials 

and Structures, 35, 318-325. 

 

19 Eliáš, J. (2015). Generalization of load–unload and force-release sequentially linear methods. 

International Journal of Damage Mechanics, 24, 279-293. 

 

20 Eliáš, J., Frantík, P. & Vořechovský, M. (2010). Improved sequentially linear solution procedure. 

Engineering Fracture Mechanics, 77, 2263-2276. 

 

21 Graça-e-Costa, R., Alfaiate, J., Dias-da-Costa, D., Neto, P. & Sluys, L. J. (2013). Generalisation of 

non-iterative methods for the modelling of structures under non-proportional loading. 

International Journal of Fracture, 182, 21-38. 

 

22 Hellweg, H. B. & Crisfield, M. A. (1998). A new arc-length method for handling sharp snap-

backs. Computers & Structures, 66, 704-709. 

 

23 Jirásek, M. & Bauer, M. (2012). Numerical aspects of the crack band approach. Computers & 

Structures, 110–111, 60-78. 

 

24 Jirásek, M. & Grassl, P. (2008). Evaluation of directional mesh bias in concrete fracture 

simulations using continuum damage models. Engineering Fracture Mechanics, 75, 1921-1943. 

 

25 Jirásek, M., Rolshoven, S. & Grassl, P. (2004). Size effect on fracture energy induced by non-

locality. International Journal for Numerical and Analytical Methods in Geomechanics, 28, 653-

670. 

 

26 Karihaloo, B. L. (1995). Fracture Mechanics and Structural Concrete, Longman Scientific & 

Technical. 

 

27 Karihaloo, B. L., Abdalla, H. M. & Imjai, T. (2003). A simple method for determining the true 

specific fracture energy of concrete. Magazine of Concrete Research, 55, 471-481. 

 

28 Manzoli, O., Oliver, J., Diaz, G. & Huespe, A. (2008). Three-dimensional analysis of reinforced 

concrete members via embedded discontinuity finite elements. Revista IBRACON de Estruturas 

e Materiais, 58-83. 

 

29 Needleman, A. (1988). Material rate dependence and mesh sensitivity in localization problems. 

Computer Methods in Applied Mechanics and Engineering, 67, 69-85. 



 

 

35 

 

30 Oliver, J. (1989). A consistent characteristic length for smeared cracking models. International 

Journal for Numerical Methods in Engineering, 28, 461-474. 

 

31 Oliver, J., Cervera, M., Oller, S. & Lublineer, J. (1990). Isotropic Damage Models and Smeared 

Crack Analysis of Concrete. Computer Aided Analysis and design of Concrete Structures, 

Proceedings of SCI-C 1990, II. International Conference, Austria, 945-957. 

 

32 Oliver, J., Huespe, A. E., Blanco, S. & Linero, D. L. (2006). Stability and robustness issues in 

numerical modeling of material failure with the strong discontinuity approach. Computer 

Methods in Applied Mechanics and Engineering, 195, 7093-7114. 

 

33 Oliver, J., Huespe, A. E. & Cante, J. C. (2008a). An implicit/explicit integration scheme to 

increase computability of non-linear material and contact/friction problems. Computer 

Methods in Applied Mechanics and Engineering, 197, 1865-1889. 

 

34 Oliver, J., Huespe, A. E., Pulido, M. D. G. & Chaves, E. (2002). From continuum mechanics to 

fracture mechanics: the strong discontinuity approach. Engineering Fracture Mechanics, 69, 

113-136. 

 

35 Oliver, J., Linero, D. L., Huespe, A. E. & Manzoli, O. L. (2008b). Two-dimensional modeling of 

material failure in reinforced concrete by means of a continuum strong discontinuity 

approach. Computer Methods in Applied Mechanics and Engineering, 197, 332-348. 

 

36 Pedziwiatr, J. (2009). The influence of the bond between concrete and reinforcement on 

tension stiffening effect. Magazine of Concrete Research, 61, 437-443. 

 

37 Prazeres, P. C., Bitencourt, L. G., Jr., Bittencourt, T. & Manzoli, O. (2015). A modified implicit–

explicit integration scheme: an application to elastoplasticity problems. Journal of the Brazilian 

Society of Mechanical Sciences and Engineering, 1-11. 

 

38 Rots, J. (2001). Sequentially linear continuum model for concrete fracture. In: Fracture 

mechanics of concrete structures, De Borst R, Mazars J, Pijaudier-Cabot G, van Mier JGM, 

Balkema AA, editors. , The Netherlands: Liss, 831–839. 

 

39 Rots, J. G., Belletti, B. & Invernizzi, S. (2008). Robust modeling of RC structures with an “event-

by-event” strategy. Engineering Fracture Mechanics, 75, 590-614. 

 

40 Rots, J. G. & Invernizzi, S. (2004). Regularized sequentially linear saw-tooth softening model. 

International Journal for Numerical and Analytical Methods in Geomechanics, 28, 821-856. 

 

41 van Mier, J. G. M. (2012). Concrete Fracture: A Multiscale Approach, Taylor & Francis. 

 

42 Vollum, R. L., Afshar, N. & Izzuddin, B. A. 2008. Modelling short-term tension stiffening in 

tension members. Magazine of Concrete Research, 60, 291-300. 

 

43 Volokh, K. Y. (2013). Characteristic length of damage localization in concrete. Mechanics 

Research Communications, 51, 29-31. 

 

44 Zienkiewicz, O. C. & Taylor, R. L. (2000). The Finite Element Method: Solid mechanics, 

Butterworth-Heinemann. 

 


