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On superalgebras of matrices with symmetry properties
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ABSTRACT

It is known that constant sum matrices form a Z2-graded algebra or
superalgebra with the even and odd subspaces under centre-point
reflection symmetry as the two components. We show that other
symmetries which have been studied for square matrices give rise
to similar superalgebra structures, pointing to novel symmetry types
in their complementary parts. In particular, this provides a unifying
framework for the composite ‘most perfect square’ symmetry and the
related class of ‘reversible squares’; moreover, the algebra of constant
sum matrices is identified as part of a Z2-gradation of the general
square matrix algebra. We derive explicit representation formulae
for matrices of all symmetry types considered, which can be used
to construct all such matrices.
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1. Introduction

In this paper we present a novel approach to the classification of particular families of n×n
matrices, defined by their symmetry properties, in terms of Z2-graded algebras. The latter
type of algebra (also known as superalgebra) has a decomposition into an ‘even’ subalgebra
and an ‘odd’ complementary part which is a bimodule over the ‘even’ subalgebra and
squares into it. The families ofmatrices considered here are derived fromnine fundamental
symmetry properties that generate corresponding matrix symmetry vector spaces. Using
a block matrix representation introduced in [1], we find that these matrix spaces arrange
into four Z2-graded algebras and a single algebra (the space Rn defined below).

These algebraic structures enable us to analyse more specialized algebras of matrices,
defined by compositions of these symmetry properties. Such matrix families encompass
some well-known symmetry types such as the sets of constant sum matrices [2,3], the
associated constant sum matrices [4,5], most perfect square matrices, and the reversible
square matrices of [6]. Accompanying these matrix families in their respective Z2-graded
algebras, we find hitherto undocumented matrix symmetry types such as the symme-
tries (N), (Q) and (V) defined in this paper. The present findings build on recent work
[1,4,5,7] to provide insight into the deeper algebraic structures underpinning an area of
mathematics that has been of interest for many years. In the process, we derive matrix
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2 S. L. HILL ET AL.

algebraic characterisations of the symmetries and find representation formulae for the
matrices of each type, which can be used to construct them.

Our basic symmetries are distilled from the following known symmetry types.
Constant sum matrices are defined by the property that all rows and all columns add

up to the same constant [3]. In an associated constant sum matrix, opposite entries with
respect to the centre of the square also add up to the same number. A balanced constant
sum matrix has the complementary property that the opposite entries are equal, so the
matrix has a half-turn rotational symmetry.

Most perfect squares are constant sum matrices with the additional properties that all
2 × 2 blocks of numbers add up to the same constant and that the matrix has the strong
pandiagonal property, so all pairs of entries half the size of the square apart along a general
diagonal (i.e. any line parallel to either of the two main diagonals) add up to the same
constant. Clearly this definition only makes sense for square matrices of even dimension.

Reversible squares are square matrices with the properties that all pairs of entries on
a row or column which have the same distance from the centre of the row or column,
resp., add up to the same constant, and that for any rectangular submatrix, the two pairs
of diagonally opposite vertex entries add up to the same constant.

Itwas shown in [4] that, after the removal of a common two-sided ideal, the constant sum
matrices, considered as square matrices with the usual matrix addition and multiplication
operations, form an algebra which has the form of a Z2-graded algebra, with the balanced
constant sum matrices as ‘even’ subalgebra and the associated constant sum matrices
as ‘odd’ complementary direct summand. In Sections 3 and 4, we explore the algebraic
properties of the other types of matrices mentioned above, and of more general symmetry
types arising in their definitions. Along the way, we also establish representation formulae
for matrices of different symmetry types, which make their algebraic behaviour more
transparent and also provide a simple way of constructing matrices of a particular type. It
turns out that the Z2-graded algebra structure recurs in various guises.

In Section 5 we study the separate algebra of matrices with symmetry (R).
The set of most perfect square matrices and the set of reversible square matrices do

not themselves form subalgebras of the general algebra of square matrices. However, in
Sections 6 and 7 we identify suitable complementing subalgebras which extend these sets
toZ2-graded algebras. Again, we provide explicit construction formulae for all matrices of
these symmetry types.

2. Matrix symmetry type spaces

We consider the following symmetries of a square matrixM = (
Mi,j

)
i,j∈Zn

∈ R
n×n. Note

that the indices are considered to be elements of the cyclic ring Zn := Z/nZ, and all
calculations with indices are performed in this ring, i.e. modulo n. The top left corner of
the matrix will have indices (1, 1) ∈ Z

2
n.

(S) Constant sum property of weight w:
∑
j∈Zn

Mi,j =
∑
j∈Zn

Mj,i = nw (i ∈ Zn).

(A) Associated property of weight w :Mi,j + Mn+1−i,n+1−j = 2w (i, j ∈ Zn).
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LINEAR AND MULTILINEAR ALGEBRA 3

(B) Balanced property:Mi,j − Mn+1−i,n+1−j = 0 (i, j ∈ Zn).
(R) Row and column reverse property:

Mi,j + Mi,n+1−j = Mi,k + Mi,n+1−k,
Mi,j + Mn+1−i,j = Mk,j + Mn+1−k,j (i, j, k ∈ Zn).

(V) Vertex cross sum property:Mi,j + Mk,l = Mi,l + Mk,j (i, j, k, l ∈ Zn).

In the case where n = 2ν is even, we also consider the following symmetries.

(M) 2 × 2 array sum property of weight w: Mi,j + Mi,j+1 + Mi+1,j + Mi+1,j+1 = 4w
(i, j ∈ Zn)

and alternating sum property:
∑
i,j∈Zn

( − 1)i+jMi,j = 0.

(N) Consecutive row and column alternating sum property:
∑
i∈Zn

( − 1)i(Mi,j + Mi,j+1) =
∑
i∈Zn

( − 1)i(Mj,i + Mj+1,i) = 0 (j ∈ Zn).

(P) Strong pandiagonal property of weight w:Mi,j + Mi+ν,j+ν = 2w (i, j ∈ Zn).
(Q) Quartered sum property:Mi,j − Mi+ν,j+ν = 0 (i, j ∈ Zn).

Remarks:

(1) The following two further symmetries are often considered. The first is the property
that both main diagonals of a constant sum matrix of weight w add up to nw; this
is then called a diagonal constant sum matrix [1,3]. This property evidently follows
from (A) or (P). The second is the (weak) pandiagonal property, where all general
(cyclically broken) diagonals of the matrix add up to nw; this clearly follows from
(P). We do not consider these two symmetries in this paper, except where they
naturally follow from stronger properties.

(2) Property (M) does not at face value presuppose evenmatrix dimension n. However,
if n is odd, then only the null matrix

On = (0)ni,j=1 (1)

has this property; see Lemma 2.1 below. We note that there are odd-dimensional
non-trivial matrices with property (N), e.g.

M =
⎛
⎝1 2 1
1 0 −1
0 −2 −2

⎞
⎠ .

(3) A most perfect square matrix has properties (M), (P) and (S). Note that in the
original definition by Ollerenshaw (see [6] page 12), the alternating sum property
part of (M) was not stipulated, however it is already implied by (P) in the case of
even dimension n = 2ν; indeed, then
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4 S. L. HILL ET AL.

∑
i,j∈Zn

( − 1)i+jMi,j

=
ν∑

i,j=1

(
( − 1)i+jMi,j + ( − 1)i+j+2ν × Mi+ν,j+ν

+ ( − 1)i+j+ν(Mi+ν,j + Mi,j+ν)
)

=
ν∑

i,j=1

( − 1)i+j(2w + ( − 1)ν2w) = 0

both for even and odd ν. When property (M) is considered by itself, the additional
alternating sum property is essential to give a clear separation from property (N),
see Theorem 2.9.

(4) Reversible squares have properties (R) and (V). Moreover, as we shall see below in
Corollary 2.10 and Theorem 4.7, property (V) somewhat surprisingly also plays a
role as a complement to property (S). Reversible squares arose from Ollerenshaw’s
adaptation of a 1939 construction [8] of Rosser and Walker, which she used to
enumerate the number of doubly-even order most perfect square matrices [6].

(5) Properties (N) and (Q) have not previously been studied; we identify them here as
natural complements to properties (M) and (P), respectively. In the case of (Q) this
is easy to understand; a matrix with symmetry (Q) is of the form

(
A B
B A

)
(2)

withA,B ∈ R
ν×ν , resembling a quartered shield in heraldry, whereas matrices with

symmetry (P) have the structure
(

A B
−B −A

)
(3)

with A,B ∈ R
ν×ν , so obviously any n × n matrix can be written as a sum of type

(P) and type (Q) matrices. Symmetry (N), which means that the alternating sum of
each row is the negative of the alternating sum of a neighbouring row, and similarly
for the columns, is not very intuitive; it arises as a complementary property to (M)
shared by products of matrices which have property (M), see Corollary 2.10 and
Theorem 4.8.

Lemma 2.1: Let n ∈ N be odd andM ∈ R
n×n amatrix with property (M). ThenM = On.

Proof: By the 2 × 2 array sum property, we have for each i ∈ Zn

Mi,1 + Mi+1,1 = 4w − Mi,2 − Mi+1,2 = Mi,3 + Mi+1,3 = 4w − Mi,4 − Mi+1,4

= · · · = Mi,n + Mi+1,n = 4w − Mi,1 − Mi+1,1,

soMi,j + Mi+1,j = 2w for all i, j ∈ Zn. Hence, for each j ∈ Zn,

M1,j = 2w − M2,j = M3,j = · · · = Mn,j = 2w − M1,j,
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LINEAR AND MULTILINEAR ALGEBRA 5

which implies Mi,j = w (i, j ∈ Zn). But then the alternating sum property requires
w = 0.

In [1,4] it was observed that the matrix

En = (1)ni,j=1 (4)

generates a two-sided ideal in the algebra ofmatrices having property (S), and that this ideal
is the intersection of the subspace of matrices with properties (A), (S) and the subalgebra
of matrices with properties (B), (S). Also, subtracting wEn from the matrices which have
(A) with weight w gives weight 0 matrices with the same symmetry.

In fact, the very simple matrix En shares all of the above symmetries.
Lemma 2.2: Let n ∈ N. The matrix En has properties (S), (A), (B), (R), (V), and, if n is
even, also (M), (N), (P) and (Q); where applicable, its weight is w = 1.

In consequence, we can often restrict our attention to the weightless case w = 0 by
subtracting a suitable multiple of En from the matrices under consideration; we shall do
this regularly with properties (A), (M) and (P).

Furthermore, all of the above symmetry properties are linear (with weight either fixed to
0 or left variable) and hence give rise to vector spaces of matrices as follows. The additional
requirement in the definition of Vn corresponds to the restriction to weight 0 in An, Mn
and Pn.
Definition 2.3: Let n ∈ N. We define the following matrix symmetry type spaces.

Sn = {M ∈ R
n×n | M has property (S) with some weight w},

An = {M ∈ R
n×n | M has property (A) with weight 0},

Bn = {M ∈ R
n×n | M has property (B)},

Rn = {M ∈ R
n×n | M has property (R)},

Vn = {M = (Mi,j)
n
i,j=1 ∈ R

n×n | M has property (V), and
∑n

i,j=1Mi,j = 0}.
For even n, we also define the symmetry type spaces

Mn = {M ∈ R
n×n | M has property (M) with weight 0},

Nn = {M ∈ R
n×n | M has property (N)},

Pn = {M ∈ R
n×n | M has property (P) with weight 0},

Qn = {M ∈ R
n×n | M has property (Q)}.

We shall extend the definitions ofMn and Nn to odd n below. Composite symmetry types
are captured in the following intersections of the above spaces,

RVn = Rn ∩ Vn, RSn = Rn ∩ Sn, AVn = An ∩ Vn,
ASn = An ∩ Sn, BSn = Bn ∩ Sn

and, for even n,

MPSn = Mn ∩ Pn ∩ Sn and NQSn = Nn ∩ Qn ∩ Sn.

The composite symmetry spaces will be studied in Sections 6 and 7.
We use the convention of calling a direct sum � ⊕ H, where �, H are vector subspaces

ofRn×n, a Z2-graded algebra if the first direct summand� is the ‘even’ subalgebra and the
second direct summand H is the ‘odd’ complement, i.e. if
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6 S. L. HILL ET AL.

�� ⊂ �, H� ⊂ H, �H ⊂ H, HH ⊂ �.

The following statements follow immediately from this definition.
Lemma 2.4: Let n ∈ N.

(a) If � ⊕ H ∈ R
n×n is a Z2-graded algebra and � ⊂ R

n×n is a matrix algebra, then
(� ∩ �) ⊕ (H ∩ �) is a Z2-graded algebra.

(b) If � ⊕ H,�′ ⊕ H′ ⊂ R
n×n are Z2-graded algebras, then (� ∩ �′) ⊕ (H ∩ H′) is a

Z2-graded algebra.

As one of the central results of the present paper, we shall obtain the following symmetry
superalgebras.
Theorem 2.5: Let n ∈ N.

(a) The following are Z2-graded algebras,

R
n×n = Bn ⊕ An = Sn ⊕ Vn = Nn ⊕ Mn;

if n is even, then also R
n×n = Qn ⊕ Pn.

(b) For even n, the space of most perfect square matrices is the odd component of the
Z2-graded algebra NQSn ⊕ MPSn.

(c) The space of reversible square matrices is the odd component in the two Z2-graded
algebras Rn = RSn ⊕ RVn and BSn ⊕ RVn.

The different symmetry properties were defined above by reference to the individual
matrix entries. This is descriptive and helps visualize each particular matrix symmetry, but
it is rather inconvenient for studying the algebraic properties of the symmetry type. We
now give an equivalent characterisation of the symmetries in terms of matrix algebra.

We use the following notation. We write 0n for the null vector in R
n, and 1n for the

vector in this space which has all entries equal to 1. Moreover, we define the alternating
vector §n which has ( − 1)j−1 for its jth entry, j ∈ {1, . . . , n}. These and other vectors in
R
n are considered as column vectors; we denote row vectors by the transpose of column

vectors, writing vT for a row vector, where v ∈ R
n. Thus for even n ∈ N, we have

§n = (1,−1, 1,−1, . . . , 1,−1)T ∈ R
n,

and this vector is orthogonal on 1n, but this is not the case if n is odd, since then §n will
have 1 as its last entry.

In addition to thematrices En andOn already defined in (4) and (1), respectively, we use
the special matrices Jn = (δi,n+1−j)

n
i,j=1 ∈ R

n×n, which has entries 1 on the antidiagonal
and 0 otherwise, and the n × n unit matrix In = (δi,j)

n
i,j=1, where δi,j is the Kronecker

symbol. As usual, we denote by X⊥ = {u ∈ R
n | uTv = 0 (v ∈ X)} the orthogonal

complement of a set X ⊂ R
n.

Theorem 2.6: Let M ∈ R
n×n, n ∈ N. Then

(a) M ∈ Sn if and only if 1TnMu = 0 = uTM1n (u ∈ {1n}⊥);
(b) M ∈ An if and only if M + JnMJn = On;
(c) M ∈ Bn if and only if M = JnMJn;
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LINEAR AND MULTILINEAR ALGEBRA 7

(d) M ∈ Rn if and only if (M+MJn)u = 0 and (MT +MTJn)u = 0 (u ∈ {1n}⊥); these
are equivalent to (MT +JnMT )Rn ⊂ R1n and (M +JnM)Rn ⊂ R1n, respectively;

(e) M ∈ Vn if and only if uTMv = 0 (u, v ∈ {1n}⊥) and 1TnM1n = 0;
(f) if n is even, then M ∈ Mn if and only if uTMv = 0 (u, v ∈ {§n}⊥) and §TnM§n = 0;
(g) if n is even, then M ∈ Nn if and only if §TnMu = 0 = uTM§n (u ∈ {§n}⊥).

Remark: The symmetry types (Q) and (weightless) (P) are conveniently described by
their block matrix structures (2) and (3). Note that Sn, Vn closely parallel Nn and Mn,
respectively, with the vector §n taking the role of 1n for the latter pair.

For later use, we also define symmetry spaces Mn and Nn for odd n in terms of the
properties in Theorem 2.6 (f), (g); this will be useful in Theorems 4.4 and 4.5. Note,
however, that the elements of these spaces will not in general have the symmetries (N)
or (M), respectively; in particular, Mn will contain non-trivial matrices notwithstanding
Lemma 2.1.
Definition: Let n ∈ N be odd. Then we define the symmetry type spaces

Mn = {M ∈ R
n×n | uTMv = 0 (u, v ∈ {§n}⊥), §TnM§n = 0},

Nn = {M ∈ R
n×n | §TnMu = 0 = uTM§n (u ∈ {§n}⊥)}.

In the proof of Theorem 2.6 (a) and later on we shall use the following observation that
the conditions in (a) and (g) are equivalent to an eigenvalue property ofM andMT .
Lemma 2.7: Let n ∈ N and y ∈ R

n \ {0n}. Then M ∈ R
n×n satisfies

yTMu = 0 = uTMy (u ∈ {y}⊥)

if and only if there is some λ ∈ R such that My = λy, MTy = λy.

Proof: Since 0 = uTMy for all u ∈ {y}⊥, we see thatMy ∈ {y}⊥⊥ = Ry, so there is some
λ ∈ R such that My = λy. Similarly, 0 = yTMu = (uTMTy)T shows that there is some
λ′ ∈ R such thatMTy = λ′y. Hence

λyTy = yTMy = (MTy)Ty = λ′yTy,

and as yTy �= 0, it follows that λ′ = λ. The converse statement is obvious.

Proof of Theorem 2.6: (a) Property (S) can be rewritten in the form M1n = MT1n =
nw1n, so the equivalence follows by Lemma2.7with y = 1n. (b) and (c) are straightforward,
noting that conjugation with Jn rotates the matrix by a half-turn.

For (d), note that (M + MJn)u = 0 (u ∈ {1n}⊥) means that M + MJn = (Mi,j +
Mi,n+1−j)i,j∈Zn has constant rows. Also, (M + JnM)Rn ⊂ R1n means that M + JnM =
(Mi,j + Mn+1−i,j)i,j∈Zn has constant columns. These statements are equivalent to (R). The
other equivalent equations follow by consideringMT .

For (e), first note that 1TnM1n = ∑n
i,j=1Mi,j. Now consider the vectors vj, j ∈ {1, n− 1},

defined such that vj has 1 in the jth and −1 in the (j + 1)st positions, and zeros otherwise.
These vectors form a basis of {1n}⊥; indeed, any vector u = (u1, u2, . . . , un)T such that∑n

k=1 uk = 0 can be rewritten as

u = u1v1 + (u1 + u2)v2 + (u1 + u2 + u3)v3 + · · · + (u1 + u2 + · · · + un−1)vn−1.
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8 S. L. HILL ET AL.

Now, for any j, k ∈ {1, . . . , n − 1},

vTj Mvk = Mj,k + Mj+1,k+1 − Mj,k+1 − Mj+1,k = 0

by property (V), and (e) follows by bilinearity. Conversely, if (e) holds and j, k, l,m ∈
{1, . . . , n}, let u be the vector such that uj = 1, ul = −1 and all other entries vanish, and let
v be the vector such that vk = 1, vm = −1 and all other entries vanish. Then u, v ∈ {1n}⊥,
so

0 = uTMv = Mj,k + Ml,m − Mj,m − Ml,k,

and henceM has property (V).
For (f), note first that §TnM§n = ∑n

i,j=1 ( − 1)i+jMi,j. Further, the 2 × 2 array sum
property with weight 0 can be expressed as

vTi Mvj = 0 (i, j ∈ {1, . . . , n}),

where vk ∈ R
n is the vector which has entries 1 in the kth and k+1st positions (in positions

n and 1 if k = n) and 0 otherwise. Obviously, §Tn vk = 0 (k ∈ {1, . . . , n}) and this holds
for all linear combinations of the vk, too. In fact, the vectors {v1, v2, . . . , vn−1} span the
subspace {§n}⊥: given u ∈ {§n}⊥, we can take α1 = u1, α2 = u2 − u1, α3 = u3 − u2 + u1,
etc. ending with αn = un − un−1 + un−2 − · · · + u2 − u1 = 0; then u = ∑n−1

j=1 αjvj.
Therefore, by bilinearity a square matrix with property (M) also satisfies (f). The converse
is straightforward.

To see that (g) is equivalent to the condition (N), consider the vectors vk defined in
the proof of part (f), which span the space {§n}⊥. As M§n and §TnM are the vectors of
alternating row and column sums ofM, respectively, (N) implies that

§TnMvk = 0 = vTk M§n (k ∈ {1, . . . , n − 1}),

and hence (g) by linearity; the converse is obvious.
We now observe that the conditions in Theorem 2.6 (a) and (e), as well as those in (f)

and (g), are essentially mutually exclusive.
Lemma 2.8: Let n ∈ N and y ∈ R

n \ {0n}. If M ∈ R
n×n satisfies

(i) yTMu = 0 = uTMy (u ∈ {y}⊥),
(ii) uTMv = 0 (u, v ∈ {y}⊥), and
(iii) yTMy = 0,

then M = On.

Proof: The matrix P = (yTy)−1 yyT is symmetric and idempotent, P2 = P; it follows that
In − P also has these properties. If u ∈ R

n, then Pu is a multiple of y and yTPu = yTu,
so (In − P)u ∈ {y}⊥. Hence, for u, v ∈ R

n, uTMv = (Pu)TMPv + ((In − P)u)TMPv +
(Pu)TM(In − P)v + ((In − P)u)TM(In − P)v = 0, where the first term vanishes by (iii),
the second and third by (i) and the fourth by (ii).

Theorem 2.9: Let n ∈ N. Then An ∩ Bn = {On}, Sn ∩ Vn = {On} and Mn ∩ Nn = {On}.
If n is even, then also Pn ∩ Qn = {On}.
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LINEAR AND MULTILINEAR ALGEBRA 9

Proof: The second and third identity follow from Lemma 2.8, taking y = 1n and y = §n,
respectively. The first and fourth identity are immediate from combining (A), (B) and (P),
(Q), respectively, with weight w = 0.

Hence we obtain the following four ways of splitting the vector space of n × n square
matrices into direct sums of symmetry subspaces.
Corollary 2.10: Let n ∈ N. Then R

n×n = Bn ⊕ An = Sn ⊕ Vn = Nn ⊕ Mn.
If n is even, then also R

n×n = Qn ⊕ Pn.

Proof: In view of Theorem 2.9, we only need to show that any n× nmatrix can be written
as a sum of matrices from each summand in all cases.

LetM ∈ R
n×n. Then

M = 1
2
(M + JnMJn) + 1

2
(M − JnMJn),

and using Theorem 2.6 (b), (c) and the fact that J 2
n = In, we see that the first term is in

Bn, the second in An.
Further, defining the projector P as in the proof of Lemma 2.8, we find

M = (PMP + (In − P)M(In − P)) + (PM(In − P) + (In − P)MP);

then for y = 1n, the first bracket is in Sn, the second in Vn by Theorem 2.6 (a), (e); for
y = §n, the first bracket is in Nn, the second inMn by Theorem 2.6 (g), (f).

Finally, if n = 2ν is even, then we can splitM into ν × ν blocks,

M =
(
A B
C D

)
= 1

2

(
A + D B + C
B + C A + D

)
+ 1

2

(
A − D B − C

−(B − C) −(A − D)

)
,

with the first matrix on the right-hand side, of form (2), in Qn, the second matrix, of form
(3), in Pn.

3. Representation formulae: the Bn ⊕ An andQn ⊕ Pn algebras

We now proceed to find representation formulae for the various symmetry types. These
will give a way of constructing matrices of a particular symmetry type by an expression
without or with much simpler constraints; in the cases of matrix spaces Sn, Vn, Nn and
Mn with even n, there will be a recursive element in that the construction formula requires
some lower-dimensional matrix of the same type (see Section 4 below). Furthermore,
these representation formulae will make the relationship between symmetry types and
their algebraic properties more transparent.

We start with the spaces An and Bn. As a template for this approach, consider the
characterisation and construction of the combined symmetry matrices in An ∩ Sn and in
Bn ∩ Sn considered in [1].

A crucial role is played by the matrix Xn, which is used to transform square matrices to
their block representation by conjugation; it takes the form
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10 S. L. HILL ET AL.

Xn = 1√
2

(Iν Jν

Jν −Iν

)
∈ R

n×n

if n = 2ν is even, and

Xn =
⎛
⎜⎝

1√
2
Iν 0ν

1√
2
Jν

0Tν 1 0Tν
1√
2
Jν 0ν − 1√

2
Iν

⎞
⎟⎠ ∈ R

n×n

ifn = 2ν+1 is odd [1]. ThematrixXn is an orthogonal symmetric involution, i.e.X T
n = Xn

and X 2
n = In. It follows that

(XnMXn)(XnM ′Xn) = Xn(MM ′)Xn (M,M ′ ∈ R
n×n), (5)

so conjugation with Xn (which is also linear) is a matrix algebra homomorphism.
Specifically for the weight matrix En, the block representation is

En = Xn

(
2Eν Oν

Oν Oν

)
Xn

if n = 2ν is even, and

En = Xn

⎛
⎝ 2Eν

√
2 1ν Oν√

2 1Tν 1 0Tν
Oν 0ν Oν

⎞
⎠Xn, (6)

if n = 2ν + 1 is odd.
Lemma 3.1: A matrix M ∈ R

n×n is an element of An if and only if

M = Xn

(O �

	 Oν

)
Xn, (7)

where 	,� ∈ R
ν×ν if n = 2ν is even, 	 ∈ R

ν×(ν+1), � ∈ R
(ν+1)×ν if n = 2ν + 1 is odd,

and the top left null matrix has matching size.

Proof: In the case of even n, it follows from Theorem 2.6 (b) and

Jn =
(Oν Jν

Jν Oν

)
(8)

that we can write the weight zero generally associated matrix in the form

M =
(
A −JνBJν

B −JνAJν

)

with some A,B ∈ R
ν×ν ; then its block representation is

Xn

(
A −JνBJν

B −JνAJν

)
Xn =

( Oν AJν + JνBJν

JνA − B Oν

)
.
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LINEAR AND MULTILINEAR ALGEBRA 11

Conversely,

Xn

(Oν �

	 Oν

)
Xn = 1

2

(
�Jν + Jν	 −(�Jν − Jν	)Jν

Jν(�Jν − Jν	) −Jν(�Jν + Jν	)Jν

)
,

which evidently satisfies Theorem 2.6 (b).
In the case of odd n, we have

Jn =
⎛
⎝Oν 0ν Jν

0Tn 1 0Tn
Jν 0ν Oν

⎞
⎠ , (9)

and the matrix is of the form

M =
⎛
⎝ A v −JνBJν

wT 0 −wTJν

B −Jνv −JνAJν

⎞
⎠ ,

where A,B ∈ R
ν×ν and v,w ∈ R

ν . Then its block representation is

Xn

⎛
⎝ A v −JνBJν

wT 0 −wTJν

B −Jνv −JνAJν

⎞
⎠ Xn =

⎛
⎝ Oν 0ν AJν + JνBJn

0Tν 0
√
2wTJν

JνA − B
√
2Jνvν Oν

⎞
⎠ .

For the converse, the relationship between A, B and the first ν columns of 	 and rows of
� is as in the even-dimensional case.

Lemma 3.2: A matrix M ∈ R
n×n is an element of Bn if and only if

M = Xn

(
ϒ O
O �

)
Xn (10)

with matrices ϒ ,� ∈ R
ν×ν if n = 2ν is even, ϒ ∈ R

(ν+1)×(ν+1), � ∈ R
ν×ν if n = 2ν + 1

is odd, and null matrices of matching size.

Proof: In the case of even n, it follows from Theorem 2.6 (c) and (8) that we can write the
matrix in the form

M =
(
A JνBJν

B JνAJν

)

with A,B ∈ R
ν×ν ; then its block representation is

Xn

(
A JνBJν

B JνAJν

)
Xn =

(
A + JνB Oν

Oν JνAJν − BJν

)
.

Conversely,

Xn

(
ϒ Oν

Oν �

)
Xn = 1

2

(
ϒ + Jν�Jν Jν(Jνϒ − �Jν)Jν

Jνϒ − �Jν JνϒJν + �

)
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12 S. L. HILL ET AL.

clearly gives a balanced matrix.
In the case of odd n, the matrix is of the form

M =
⎛
⎝ A v JνBJν

wT x wTJν

B Jνv JνAJν

⎞
⎠ ,

with A,B ∈ R
ν×ν and v,w ∈ R

ν , x ∈ R. Then its block representation is

Xn

⎛
⎝ A v JνBJν

wT x wTJν

B Jνv JνAJν

⎞
⎠ Xn =

⎛
⎝A + JνB

√
2v Oν√

2wT x 0Tn
Oν 0n JνAJν − BJν

⎞
⎠ .

For the converse, the relationship between A, B on the one hand and the top ν × ν

submatrix ofϒ and the matrix� is as in the even-dimensional case; v,w and x can be read
off directly.

The block representations of Lemma 3.1 and 3.2 make the splitting of a general matrix
into its associated and balanced components very transparent. Moreover, it becomes
obvious that this splitting givesR

n×n = Bn⊕An the structure of aZ2-graded algebra, with
‘even’ subalgebra Bn and ‘odd’ complement An.
Theorem 3.3: Let n ∈ N. Then

BnBn ⊂ Bn, AnAn ⊂ Bn, AnBn ⊂ An, BnAn ⊂ An.

The same structure can be seen in the Qn and Pn symmetry types; indeed, a straightfor-
ward calculation using directly the structures (2) and (3) shows that R

n×n = Qn ⊕ Pn also
is a Z2-graded algebra, with ‘even’ subalgebra Qn.
Theorem 3.4: Let n ∈ N. Then

QnQn ⊂ Qn, PnPn ⊂ Qn, PnQn ⊂ Pn, QnPn ⊂ Pn.

4. Representation formulae: the Sn ⊕ Vn and Nm ⊕ Mn algebras

Although the block representation by conjugation with the matrix Xn was originally
devised to capture the structure of matrices with (A) or (B) symmetry, it also proves
useful in the study of other symmetry types.
Theorem 4.1: If n = 2ν is even, M ∈ R

n×n is an element of Sn if and only if

M = Xn

(
Y VT

W Z

)
Xn (11)

with Y ∈ Sν , V ,W ∈ R
ν×ν with row sums 0, and Z ∈ R

ν×ν .
If n = 2ν + 1 is odd, M ∈ R

n×n is an element of Sn if and only if

M = Xn

⎛
⎝ Y + 2wEν

√
2(w1ν − Y1ν) VT√

2(w1ν − YT1ν)
T w + 2 1Tν Y1ν −√

2(V1ν)
T

W −√
2W1ν Z

⎞
⎠Xn (12)
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LINEAR AND MULTILINEAR ALGEBRA 13

with arbitrary V ,W ,Y ,Z ∈ R
ν×ν ; w ∈ R is the weight.

Proof: First, consider the case of even n. Then

Xn1n =
(√

2 1ν

0ν

)
, (13)

and hence u ∈ {1n}⊥ if and only if Xnu =
(

ξ

η

)
with ξ ∈ {1ν}⊥ and arbitrary η ∈ R

ν .

Writing the block representation of M in the form (11), we find that the conditions of
Theorem 2.6 (a) take the form

0 =
(

ξ

η

)T (
Y VT

W Z

)(
1ν

0ν

)
= ξTY1ν + ηTW1ν ,

0 =
(
1ν

0ν

)T (
Y VT

W Z

) (
ξ

η

)
= 1TYξ + (V1ν)

Tη

for all ξ ∈ {1ν} and for any η ∈ R
ν . This is equivalent to V1ν = 0ν ,W1ν = 0ν and (again

by Theorem 2.6 (a)) Y ∈ Sν .
The case of odd n is a bit more tricky. By Lemma 2.7, M ∈ Sn is equivalent to 1n

being an eigenvector, for eigenvalue w, of bothM andMT . Hence, considering the matrix
M0 := M − w

n En, we findM01n = 0n,MT
0 1n = 0n. Now observing that

Xn1n =
⎛
⎝

√
2 1ν

1
0ν

⎞
⎠ (14)

and writing the block representation ofM0 in the form

M0 = Xn

⎛
⎝Y v VT

yT α zT

W x Z

⎞
⎠ Xn (15)

with V ,W ,Y ,Z ∈ R
ν×ν , x, y, v, z ∈ R

ν and α ∈ R, we see that these conditions onM0 are
equivalent to

⎛
⎝0ν

0
0ν

⎞
⎠ =

⎛
⎝

√
2Y1ν + v√
2 yT1ν + α√
2W1ν + x

⎞
⎠ ,

⎛
⎝0ν

0
0ν

⎞
⎠ =

⎛
⎝

√
2YT1ν + y√
2 vT1ν + α√
2V1ν + z

⎞
⎠ .

Thusx = −√
2W1ν , y = −√

2YT1ν , v = −√
2Y1ν , z = −√

2V1ν andα = −√
2 1Tν v =

2 1Tν Y1ν = −√
2 yT1ν , giving (12) in view of the block representation of En, Equation

(6).

Theorem 4.2: If n = 2ν is even, then M ∈ R
n×n is an element of Vn if and only if

M = Xn

(
Y 1νaT

b1Tν Oν

)
Xn (16)
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14 S. L. HILL ET AL.

with Y ∈ Vν and a, b ∈ R
ν .

If n = 2ν + 1 is odd, then M ∈ R
n×n is an element of Vn if and only if

M = Xn

⎛
⎜⎝

√
2(v1Tν + 1νyT) − 2

√
2

2ν−1 (1Tν (v + y))Eν v
√
2 1νzT

yT
√
2

2ν−1 1
T
ν (v + y) zT√

2 x1Tν x Oν

⎞
⎟⎠Xn (17)

with arbitrary v, x, y, z ∈ R
ν .

We note that although the formula for matrices in Sn or Vn with even n looks simpler,
it has a recursive condition on Y , whereas the formula for odd n has no restrictions. We
also note that if n is odd, then the dimension of Vn is 4ν = 2n − 2. If n is even, then the
dimension of Vn is the dimension of Vn/2 plus n; as V2 has dimension 2, this also works
out as 2n− 2, which correctly implies that the dimension of Sn is given by n2 − 2n+ 2 (see
also [4]).

Proof: For even n, the first condition in Theorem 2.6 (e) translates, in analogy to the
beginning of the proof of Theorem 4.1, into

0 =
(

ξ

η

)T (
Y VT

W Z

)(
ξ ′
η′

)
= ξTYξ ′ + ξTVTη′ + ηTWξ ′ + ηTZη′,

for any ξ , ξ ′ ∈ {1ν}⊥ and η, η′ ∈ R
ν , in the block representation. When we take ξ =

ξ ′ = 0ν , this implies Z = Oν . Taking one or both of η, η′ to be 0ν , we find Vξ = 0,
Wξ = 0 (ξ ∈ {1ν}⊥) and ξTYξ ′ = 0 (ξ , ξ ′ ∈ {1ν}⊥). Similarly, the second condition
in Theorem 2.6 (e) gives 1Tν Y1ν = 0. Hence Y ∈ Vν , and as the rows of V ,W must be
elements of {1ν}⊥⊥ = {1ν}, these matrices are of the stated form.

For odd n, the first condition of Theorem 2.6 (e) takes the block form

0 =
⎛
⎝ ξ

−√
2 1Tν ξ

η

⎞
⎠

⎛
⎝Y v VT

yT α zT

W x Z

⎞
⎠

⎛
⎝ ξ ′

−√
2 1Tν ξ ′
η′

⎞
⎠

= ξTYξ ′ − √
2

(
ξTv

) (
1Tν ξ ′) + ξVTη′

− √
2

(
ξT1ν

) (
yTξ ′) + 2

(
ξT1ν

) (
1_νTξ ′)α

− √
2

(
ξT1ν

) (
zTη′) + ηTWξ ′ − √

2
(
ηTx

) (
1Tν ξ ′) + ηTZη′, (18)

for all ξ , ξ ′, η, η′ ∈ R
ν .

Taking ξ = ξ ′ = 0ν , we conclude that Z = Oν . Then, taking ξ = 0ν , we see that
ηTWξ ′ = √

2 ηTx1Tν ξ ′ for all η, ξ ′ ∈ R
ν , which implies W = √

2 x1T . Similarly, taking
ξ ′ = 0ν gives V = √

2 z1T . This leaves (18) in the form

0 = ξTYξ ′ − ξT
(√

2 v1Tν + √
2 1νyT − 2α1ν1Tν

)
ξ ′

for all ξ , ξ ′ ∈ R
ν , so Y = √

2
(
v1Tν + 1νyT

) − 2αEν .
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LINEAR AND MULTILINEAR ALGEBRA 15

Furthermore, the second condition in Theorem 2.6 (e) takes the block representation
form

0 =
⎛
⎝

√
2 1ν

1
0ν

⎞
⎠

⎛
⎝Y v VT

yT α zT

W x Z

⎞
⎠

⎛
⎝

√
2 1ν

1
0ν

⎞
⎠ = 2 1Tν Y1ν + √

2 1Tν v + √
2 yT1ν + α,

which together with the previous identity for Y gives α =
√
2

2ν−1
(
1Tν v + yT1

)
, and hence

(17).
It is a straightforward calculation to check that, conversely, (17) satisfies Theorem 2.6

(e).

Corollary 4.3: If M ∈ Vn, n = 2k (2l + 1) with k, l ∈ N0, then rankM ≤ 4 + k.

Proof: If k = 0, so n is odd, then in the block representation (17) the range of the top ν

rows is spanned by the vectors 1ν and v, the range of the bottom ν rows is spanned by the
vector x, so taking into account the middle row, we see that the rank of this matrix does
not exceed 4.

If k > 0, then it follows from (16) that the rank of M is no greater than the rank of
Y ∈ Vν plus 1, where ν = n/2, and the estimate rankM ≤ 4+ k follows by induction.

Theorem 4.4: If n = 2ν is even, then M ∈ R
n×n is an element of Nn if and only if

M = Xn

(
Y VT

W Z

)
Xn (19)

with Y ∈ R
ν×ν , V ,W ∈ R

ν×ν such that VT§ν = WT§ν = 0ν , and Z ∈ Nν .
If n = 2ν + 1 is odd, then M ∈ R

n×n is an element of Nn if and only if

M = Xn

⎛
⎝ Y + 2λ§ν§Tν ±√

2 (λ§ν − Y§ν) VT

±√
2 (λ§ν − YT§ν)

T λ + 2 §Tν Y§ν ∓√
2 (V§ν)

T

W ∓√
2W§ν Z

⎞
⎠ Xn (20)

with arbitrary V ,W ,Y ,Z ∈ R
ν×ν and λ ∈ R; here the upper signs apply if ν is even, the

lower signs if ν is odd.

Proof: The proof of Theorem 4.4 is largely analogous to the proof of Theorem 4.1, with
the vector §n taking the role of the vector 1n, so we just detail the differences.

In the case of even n, we note that Jν§ν = ∓§ν (where the upper sign applies if ν is even,
the lower sign if ν is odd), so

Xn§n = 1√
2

(Iν Jν

Jν −Iν

)(
§ν

±§ν

)
= ∓√

2
(
0ν

§ν

)
. (21)

Thus u ∈ {§n}⊥ if and only if Xnu =
(

ξ

η

)
with arbitrary ξ ∈ R

ν and η ∈ {§ν}⊥. The
conditions of Theorem 2.6 (g) take the form

0 = ξTVT§ν + ηTZ§ν , 0 = §Tν Wξ + §Tν Zη,
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16 S. L. HILL ET AL.

and give the conditions on V ,W ,Z stated in the theorem.
In the case of odd n, we apply Lemma 2.7 with y = §n to find that §n is an eigenvector,

for eigenvalue λ ∈ R, of both M and MT , and consider the matrix M0 := M − λ
n §n§

T
n .

ThenM0§n = 0n,M0§n = 0n. Now

Xn§n = Xn

⎛
⎝ §ν

±1
∓§ν

⎞
⎠ =

⎛
⎝

√
2 §ν

±1
0n

⎞
⎠ , (22)

and writing the block representation ofM0 as in (15), we see that the conditions onM0 are
equivalent to

⎛
⎝0ν

0
0ν

⎞
⎠ =

⎛
⎝

√
2Y§ν ± v√
2 yT§ν ± α√
2W§ν ± x

⎞
⎠ ,

⎛
⎝0ν

0
0ν

⎞
⎠ =

⎛
⎝

√
2YT§ν ± y√
2 vT§ν ± α√
2V§ν ± z

⎞
⎠ ,

fromwhich v, x, y, z and α can be expressed in terms ofV ,W and Y . Equation (20) follows
by observing that

Xn§n§TnXn = Xn§n(Xn§n)T =
⎛
⎝ 2 §ν§Tν ±√

2 §ν 0ν

±√
2 §Tν 1 0Tν

Oν 0ν Oν

⎞
⎠ .

Theorem 4.5: If n = 2ν is even, then M ∈ R
n×n is an element of Mn if and only if

M = Xn

( Oν a§Tν
§νbT Z

)
Xn (23)

with Z ∈ Mν and a, b ∈ R
ν .

If n = 2ν + 1 is odd, then M ∈ R
n×n is an element of Mn if and only if

M = Xn

⎛
⎜⎝

±√
2 (v§Tν + §νyT) ∓ 2

√
2

2ν−1 (§Tν (v + y))§ν§Tν v ±√
2 §νzT

yT ±√
2

2ν−1 §
T
ν (v + y) zT

±√
2 x§Tν x Oν

⎞
⎟⎠ Xn

(24)
with arbitrary v, x, y, z ∈ R

ν ; the upper sign applies if ν is even, the lower sign if ν is odd.

Proof: In the case of even n, we use the formal block representation (19), and by (21), the
conditions of Theorem 2.6 (f) become

0 = ξTYξ ′ + ξTVTη′ + ηTWξ ′ + ηTZη′,
0 = §Tν Z§ν ,

for all ξ , ξ ′ ∈ R
ν and η, η′ ∈ {§ν}⊥, so the stated properties of V ,W ,Y ,Z follow as in the

proof of Theorem 4.2.
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LINEAR AND MULTILINEAR ALGEBRA 17

For odd n, the reasoning is very similar to the proof of Theorem 4.2. However, in view
of (22) we now have u ∈ {§n}⊥ if and only if

Xnu =
⎛
⎝ ξ

∓√
2 §Tν ξ

η

⎞
⎠ , (ξ , η ∈ R

ν),

so the analogue of (18) takes the form

0 = ξTYξ ′ ± √
2

(
ξTv

) (
§Tν ξ ′) + ξVTη′

± √
2

(
ξT§ν

) (
yTξ ′) + 2

(
ξT§ν

) (
§_νTξ ′) α

± √
2

(
ξT§ν

) (
zTη′) + ηTWξ ′ ± √

2
(
ηTx

) (
§Tν ξ ′) + ηTZη′

for all ξ , η ∈ R
ν ; the remaining calculations are as before.

The splittings R
n×n = Sn ⊕ Vn and R

n×n = Nn ⊕ Mn again have the structure of a
Z2-graded algebra, with subalgebra Sn and Nn, respectively. This follows from the next,
more general, observation, which uses the symmetry properties in their matrix algebra
form (Theorem 2.6) directly, rather than the block representations of Theorems 4.1 and
4.2.
Lemma 4.6: Let n ∈ N and y ∈ R

N \ {0n}. Let (i), (ii), (iii) denote the conditions listed in
Lemma 2.8.

(a) If M,M ′ ∈ R
n×n either both satisfy condition (i) or both satisfy conditions (ii) and

(iii), then MM ′ satisfies condition (i).
(b) If M ∈ R

n×n satisfies condition (i) and M ′ ∈ R
n×n satisfies conditions (ii) and (iii),

then MM ′ and M ′M satisfy conditions (ii) and (iii).

Proof: Let P be the projector defined in the proof of Lemma 2.8, and u, v ∈ {y}⊥. Then,
for (a) we observe

yTMM ′u = yTMPM ′u + yTM(In − P)M ′u = 0,

as in each of the two situations one half of each term vanishes; and similarly uMM ′yT = 0.
For (b), we note that

uTMM ′v = uTMPM ′v + uTM(In − P)M ′v = 0,

since uTMP = 0n and (In − P)M ′v = 0n; and

yTMM ′y = yTMPM ′y + yTM(In − P)M ′y = 0,

since PM ′y = 0n and yTM(In − P) = 0n.

In view of Theorem 2.6 (a) and (e), the choice y = 1n immediately gives the following
result.
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18 S. L. HILL ET AL.

Theorem 4.7: Let n ∈ N. Then

SnSn ⊂ Sn, VnVn ⊂ Sn, VnSn ⊂ Vn, SnVn ⊂ Vn.

Similarly, by Theorem 2.6 (f) and (g), the choice y = §n gives the following statement.
Theorem 4.8: Let n ∈ N. Then

NnNn ⊂ Nn, MnMn ⊂ Nn, MnNn ⊂ Mn, NnMn ⊂ Mn.

5. Representation formulae: the algebra Rn

We now turn to symmetry type (R). This does not directly fit into the scheme of pairings
we observed in the other symmetry types; nevertheless, the block representation turns
out to be a valuable tool for constructing the matrices in Rn and for understanding their
properties.
Theorem 5.1: If n = 2ν is even, then M ∈ R

n×n is an element of Rn if and only if

M = Xn

(
γ Eν 1νzT

x1Tν Z

)
Xn (25)

with Z ∈ R
ν×ν , x, z ∈ R

ν and γ ∈ R.
If n = 2ν + 1 is odd, then M ∈ R

n×n is an element of Rn if and only if

M = Xn

⎛
⎜⎝

√
2 γ Eν γ 1ν

√
2 1νzT

γ 1Tν
γ√
2

zT√
2 x1Tν x Z

⎞
⎟⎠Xn (26)

with Z ∈ R
ν×ν , x, z ∈ R

ν and γ ∈ R.

Proof: By Theorem 2.6 (d), M ∈ Rn if and only if (M + JnM)Rn ⊂ R1n and (MT +
JnMT )Rn ⊂ R1n.

In the case of even n, this means, using the formal block representation (11), Equation
(13) and

XnJnXn =
(Iν Oν

Oν −Iν

)
, (27)

that

2
(
Y VT

Oν Oν

)
R
n =

((
Y VT

W Z

)
+

(Iν Oν

Oν −Iν

)(
Y VT

W Z

))
R
n ⊂ R

(
1ν

0ν

)
,

2
(
YT WT

Oν Oν

)
R
n =

((
YT WT

V ZT

)
+

(Iν Oν

Oν −Iν

) (
YT WT

V ZT

))
R
n ⊂ R

(
1ν

0ν

)
,

equivalent to all columns of Y ,YT ,VT andWT being multiples of 1ν .
Similarly, in the case of odd n, we use (14) and the formal block representation (15)

along with

XnJnXj =
⎛
⎝Iν 0ν Oν

0Tν 1 0Tν
Oν 0ν −Iν

⎞
⎠
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LINEAR AND MULTILINEAR ALGEBRA 19

to rewrite the above conditions as

2

⎛
⎝ Y v VT

yT α zT

Oν 0ν Oν

⎞
⎠ R ⊂ R

⎛
⎝

√
2 1ν

1
0ν

⎞
⎠ , 2

⎛
⎝YT y WT

vT α xT

Oν 0ν Oν

⎞
⎠ R ⊂ R

⎛
⎝

√
2 1ν

1
0ν

⎞
⎠ .

Hence we conclude that Y = √
2 γ 1ν1Tν for some γ ∈ R, v = y = γ 1ν and α = γ√

2
.

Moreover, VT = √
2 1νzT andWT = √

2 1νxT .

From the block representations of Theorem 5.1, it is apparent that the space Rn is a
subalgebra of the matrix algebra R

n×n.
Theorem 5.2: Let n ∈ N. Then RnRn ⊂ Rn.

Proof: It is sufficient to show that the product of block representations of type R matrices
is the block representation of a type R matrix.

Let γ , γ ′ ∈ R, x, z, x′, z′ ∈ R
ν and Z,Z′ ∈ R

ν×ν . Then, for even n = 2ν,
(

γ Eν 1νzT

b1Tν Z

)(
γ ′Eν 1νz′T
x′1Tν Z′

)
=

(
(γ γ ′ν + zTx′)Eν 1ν(γ νz′T + zTZ′)
(γ ′νx + Zx′)1Tν νxz′T + ZZ′

)
,

which is of the form (25). For odd n = 2ν + 1,
⎛
⎜⎝

√
2 γ Eν γ 1ν

√
2 1νzT

γ 1Tν
γ√
2

zT√
2 x1Tν x Z

⎞
⎟⎠

⎛
⎜⎝

√
2 γ ′Eν γ ′1ν

√
2 1νz′T

γ ′1Tν
γ ′√
2

z′T
√
2 x′1Tν x′ Z′

⎞
⎟⎠

=

⎛
⎜⎜⎜⎝

(nγ γ ′ + 2zTx′)Eν
nγ γ ′+2zTx′√

2
1ν 1ν(nγ z′T + √

2 zZ′)
nγ γ ′+2zTx′√

2
1Tν

nγ γ ′+2zTx′
2

nγ z′T+√
2 zZ′√

2

(nγ ′x + √
2Zx′)1Tν

nγ ′x+√
2Zx′√

2
nxz′T + ZZ′

⎞
⎟⎟⎟⎠ ,

which is of the form (26).

Remark: In view of the Z2-graded algebras Bn ⊕ An, Nn ⊕ Mn, Sn ⊕ Vn and Qn ⊕ Pn,
it seems a natural question to look for a complementary space to Rn, hoping to establish
anotherZ2-graded algebra. The complement to the (even-dimension) block representation
(25) would be (

Y VT

W Oν

)

with V1ν = W1ν = 0ν , 1Tν Y1ν = 0. As Xn

(
1ν

u

)
= 1n +

(Jνu
−u

)
, this is equivalent to

the matrix M having the property that (1n + u)TM(1n + v) = 0 for all u, v ∈ R
n such

that Jnu = −u,Jnv = −v. This defines another space which directly sums with Rn to the
whole matrix space; however, on first appearance it does not seem to form a Z2-graded
algebra with Rn, although their relationship may well merit further examination.
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20 S. L. HILL ET AL.

6. Composite symmetry: most perfect squares

After studying the basic symmetry types defined in Section 2, we now proceed to the
more complicated symmetries of most perfect square matrices and, in the next section,
reversible square matrices. As these matrix spaces arise as intersections of some basic
symmetry spaces, their algebraic properties as well as construction formulae can be readily
deduced from the results in the preceding sections by means of Lemma 2.4.

We recall thatMPSn = Mn ∩ Pn ∩ Sn is indeed the space of all weightless most perfect
square matrices, although the second part of property (M), corresponding to the last
condition in Theorem 2.6 (f), was not stipulated in the original definition of most perfect

squares; indeed it is implied by condition (P) as follows. Using the fact that §n =
(

§ν

±§ν

)
,

where the upper sign always refers to the case of even ν, the lower to the case of odd ν,
Equation (3) gives

§TnM§n =
(

§ν

±§ν

)T (
A B

−B −A

) (
§ν

±§ν

)
= 0.

Since En is a most perfect square matrix, the general most perfect square matrices form the
spaceMSPn ⊕ REn.

The elements ofMSPn have the following block representation.
Theorem 6.1: Let M ∈ R

n×n, n = 2ν even. Then M ∈ MPSn if and only if there are
vectors a, b ∈ {1ν}⊥ with Jνa = ∓a, Jνb = ∓b, where the upper sign applies if ν is even,
the lower sign if ν is odd, and a matrix Z ∈ Aν ∩ Mν , such that

M = Xn

( Oν a§Tν
§νbT Z

)
Xn.

Proof: LetM ∈ MPSn. Combining the block representations of Theorems 4.1 and 4.5, we
find that

M = Xn

( Oν a§Tν
§νbT Z

)
Xn,

where aT1ν = 0 = bT1ν and Z ∈ Mν . From (3), we see that

XnMXn = 1
2

(
A + BJν − JνB − JνAJν AJν − B − JνBJν + JνA
JνA + JνBJν + B + AJν JνAJν − JνB + BJν − A

)
,

and the calculation

Jν(JνA ± B ± JνBJν + AJν)Jν = AJν ± JνBJν ± B + JνA

shows that §νaT , §νbT ∈ Bν . Thus, by Theorem 2.6 (c), §νaT = Jν§νaTJν = ∓§νaTJν ,
and hence a = ∓Jνa; and similarly for b. Also,

JνZJν = 1
2

Jν(JνAJν − JνB + BJν − A)Jν = 1
2
A − BJν + JνB − JνAJν = −Z,

so Z ∈ Aν by Theorem 2.6 (b).
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LINEAR AND MULTILINEAR ALGEBRA 21

Conversely, let

M = Xn

( Oν a§Tν
§νbT Z

)
Xn,

where a, b,Z have the properties stated in the theorem. ThenM ∈ Mn ∩ Sn by Theorems
4.1 and 4.5, and

M = 1
2

(
a§Tν Jν + Jν§νbT + JνZJν −a§Tν + Jν§νbTJν − JνZ
Jνa§Tν Jν − §νbT − ZJν −Jνa§Tν − §νbTJν + Z

)

is of the form (3), as can be checked by a straightforward calculation.

The block representation of Theorem6.1 can be used as a simplemethod of constructing
most perfect squares, as illustrated in the example

2X6

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 −1 1
0 0 0 −2 2 −2
0 0 0 1 −1 1

−2 4 −2 1 0 −1
2 −4 2 −1 0 1

−2 4 −2 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

X6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 3 0 −4 5 −2
1 −2 −1 5 −6 3

−2 3 0 −4 5 −2
4 −5 2 2 −3 0

−5 6 −3 −1 2 1
4 −5 2 2 −3 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

However, it turns out that the structure and construction of most perfect square matrices
is even more simple. Indeed, they can be conveniently characterized, even without the use
of the block representation, in the following way.
Theorem 6.2: A matrix M ∈ R

n×n, n = 2ν even, is an element of MPSn if and only if

M = γ §Tn + §nδT , (28)

where

(a) in case ν is even, γ =
(

γ̃

−γ̃

)
, δ =

(
δ̃

−δ̃

)
, γ̃ , δ̃ ∈ R

ν ,

(b) in case ν is odd, γ =
(

γ̃

γ̃

)
, δ =

(
δ̃

δ̃

)
, γ̃ , δ̃ ∈ {1ν}T ⊂ R

ν.

The vectors γ , δ can be obtained from M as γ = 1
nM§n, δ = 1

nM
T§n.

Proof: If M ∈ MPSn, then it follows from the second equation in Theorem 2.6 (f) that
γ := 1

nM§n ∈ {§n}⊥.
Let v ∈ {§n}⊥; then, by the first equation in Theorem 2.6 (f), Mv ∈ {§n}⊥⊥ = R§n.

Hence Mv = f (v)§n (v ∈ {§n}⊥), where f is a linear form on {§n}⊥. By the Riesz
representation theorem, there is a vector δ ∈ {§n}⊥ such that f (v) = δTv, soMv = §nδTv
(v ∈ {§n}⊥).

Now any x ∈ R
n can be written in the form x = α§n + v, with α ∈ R and v ∈ {§n}⊥;

then

Mx = αM§n + Mv = αnγ + §nδTv = (γ §Tn + §nδT)(α§n + v)
= (γ §Tn + §nδT )x,
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22 S. L. HILL ET AL.

showing thatM is of the form (28).

Writing γ =
(

γ1
γ2

)
, δ =

(
δ1
δ2

)
, with γ1, γ2, δ1, δ2 ∈ R

ν , we find

M =
(

γ1
γ2

)(
§ν

±§ν

)T
+

(
§ν

±§ν

)(
δ1
δ2

)T
=

(
γ1§Tν + §νδ

T
1 ±γ1§Tν + §νδ

T
2

γ2§Tν ± §νδ
T
1 ±γ2§Tν ± §νδ

T
2

)
.

Viewed in conjunction with (3), this implies (γ1 ± γ2)§Tν + §ν(δ1 ± δ2)
T = Oν . As

0 = §Tn γ =
(

§ν

±§ν

)T (
γ1
γ2

)
= §Tν (γ1 ± γ2),

it follows that

0ν = §Tν (γ1 ± γ2)§Tν + §Tν §ν(δ1 ± δ2)
T = 0ν + ν(δ1 ± δ2)

T ,

so δ2 = ∓δ1. An analogous calculation gives γ2 = ∓γ1.
By Lemma 2.7 and Theorem 2.6 (a), (f) (with u = v = 1n), 1n is an eigenvector with

eigenvalue 0 for bothM andMT . Since §Tn 1n = 0, it follows that γ , δ ∈ {1n}⊥. If ν is even,
this will be satisfied for any γ1, δ1 in view of the above structure; if ν is odd, it gives the
further condition that γ1, δ1 are orthogonal to 1ν .

For the converse, a straightforward calculation shows that anyM of the form (28), with
γ , δ satisfying the hypotheses, has the properties listed in Theorem 2.6 (a), (f) and (3).

The two terms in the representation (28) are obviously rank 1 matrices (if non-null), so
we can immediately draw the following conclusion.
Corollary 6.3: A most perfect square matrix has at most rank 2 if its weight is 0, at most
rank 3 in general.

As a further consequence, we find an equivalent criterion for parasymmetry of a most
perfect (and in particular magic) square matrixM, defined in [1] as symmetry of its square
M2. Indeed, as §Tn γ = δT§n = 0 and thereforeM2 = 2nγ δT + (δTγ )§n§Tn , the following
is evident.
Corollary 6.4: A weight 0most perfect square

M = γ §Tn + §nδT ∈ MPSn

is parasymmetric if and only if γ , δ are linearly dependent.
By Lemma 2.4, MPSn is the complement to a product symmetry type NQSn := Nn ∩

Qn ∩ Sn, so that NQSn ⊕ MPSn is again a Z2-graded algebra.
NQS-type matrices have the following block representation.

Theorem 6.5: Let M ∈ R
n×n, n = 2ν even. Then M ∈ NQSn if and only if

M = Xn

(
Y VT

W Z

)
Xn, (29)
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LINEAR AND MULTILINEAR ALGEBRA 23

where Y ∈ Bν ∩ Sν , Z ∈ Bν ∩ Nν , and V ,W ∈ Aν have the properties

V1ν = W1ν = 0ν , VT§ν = WT§ν = 0ν. (30)

The conditions on V and W in Theorem 6.5 mean that these matrices have symmetry
(A) with weight 0, and all their row sums and all alternating column sums vanish.

Proof: If M ∈ NQSn, then by combining the block representations of Theorems 4.1 and
4.4, we find that (29) holds with Y ∈ Sn, Z ∈ Nn and with V ,W satisfying (30). AsM also
has property (Q), we find from (2) that

XnMXn =
(
A + BJν + JνB + JνAJν AJν − B + JνBJν − JνA
JνA + JνBJν − B − AJν JνAJν − JνB − BJν + A

)

and can read off, upon multiplication with Jν on both sides, that VT ,W ∈ Aν and
Y ,Z ∈ Bν .

Conversely, assume M is given by (29), where V ,W ,Y ,Z have the stated properties.
ThenM is semimagic by Theorems 4.1 and 4.4, and

M = 1
2

(
Y + VTJν + JνW + JνZJν YJν − VT + JνWJν − JνZ
JνY + JνVTJν − W − ZJν JνYJν − JνVT − WJν + Z

)

has property (Q).

Note that the Z2-graded algebra NQSn ⊕ MPSn is a subalgebra of Sn, but not all of Sn.
As the ‘odd’ part of aZ2-graded algebra,MPSn is not itself a subalgebra of the full matrix

algebra; however, it has the property that the product of any three elements of MPSn is
again an element of MPSn. If, taking the formula (28) as a motivation, we introduce the
notation (γ ; δ) := γ §Tn + §nδT for most perfect square matrices, then the triple product
can be expressed as

(γ1; δ1)(γ2; δ2)(γ3; δ3) = n ((δT2 γ3)γ1; (δT1 γ2)δ3).

7. Composite symmetry: reversible squares

We now turn to reversible square matrices, defined as those which have symmetry prop-
erties (R) and (V). Although the definition of these properties does not refer to a weightw,
it turns out that reversible squares always have the associated symmetry property (A) and
hence a hidden weight.
Lemma 7.1: Any reversible square matrix has property (A) with some weight w ∈ R.

Proof: Let M ∈ R
n×n be a reversible matrix, so M ∈ Rn and M has property (V), which,

following the proof of Theorem 2.6 (e), can be seen to be equivalent to

uTMvT = 0 (u, v ∈ {1n}⊥). (31)

By Theorem 2.6 (b), we only need to show that there is w ∈ R such that M + JnMJn =
2wEn.
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24 S. L. HILL ET AL.

Consider the two orthogonal projectors (symmetric idempotent matrices) P = 1
2 (In +

Jn), Q = 1
2 (In − Jn); clearly PT = P,QT = Q and P + Q = In. Moreover, JnP = P =

PJn and JnQ = −Q = QJn. Also, P1n = 1n and Q1n = 0n. Using these properties, we
deduce

M + JnMJn = (P + Q)T(M + JnMJn)(P + Q)

= PMP + PJnMJnP + PMQ + PJnMJnQ
+ QMP + QJnMJnP + QMQ + QJnMJnQ

= 2PMP + 2QMQ = 2PMP,

observing in the last step that, by (31), uQMQv = 0 for all u, v ∈ R
n, since 1TnQu =

(Q1n)Tu = 0 and similarly for v. By analogous reasoning, if u ∈ {1n}⊥, then also Pu ∈
{1n}⊥, so

(M + JnMJn)u = 2PMPu = PMPu + PM(JnP)u = P(M + MJn)Pu = On

by Theorem 2.6 (d). Thus the dimension of the kernel of M + JMJ is at least n − 1, so
this matrix has at most rank 1. If it has rank 0, thenM ∈ An by Theorem 2.6 (b).

Assuming rank 1 in the following, we can rewrite M + JnMJn = P(M + JnM)P as
above; by Theorem 2.6 (d), the range of M + JnM is R1n, which is invariant under the
action of P. Thus, the range of the rank 1 matrixM + JnMJn is R1n.

In summary, both the kernel and the range of the rank 1 matrix M + JnMJn are
equal to the kernel and range of En, respectively. As a rank 1 matrix is determined up to a
multiplicative constant by its kernel and range, it follows that M + JnMJn = 2wEn for
some w ∈ R.

The set Vn has, in addition to (V), the defining requirement that the sum of all matrix
entries vanish. For a matrix with property (A) this is the case if and only if the weight w
vanishes. Hence we can see that any reversible square matrix is a sum of an element of
Rn ∩ Vn and a multiple of En (this decomposition being unique since En /∈ Vn).

Therefore it makes sense to focus on the space of weightless reversible squares RVn :=
Rn ∩ Vn. Its elements have the following block representation.
Theorem 7.2: Let M ∈ R

n×n. ThenM is an element of RVn if and only if there are vectors
a, b ∈ R

ν such that

M = Xn

(Oν 1νaT

b1Tν Oν

)
Xn (32)

if n = 2ν is even,

M = Xn

⎛
⎝ Oν 0ν

√
2 1νaT

0Tν 0 aT√
2 b1Tν b Oν

⎞
⎠Xn

if n = 2ν + 1 is odd.

Proof: In the even-dimensional case, the result follows from comparison of the block
representations in Theorems 5.1 and 4.2, noting that Eν /∈ Vν and therefore γ = 0 in
(25). Similarly, in the odd-dimensional case, comparison of (26) with (17) shows that
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LINEAR AND MULTILINEAR ALGEBRA 25

v = y = γ 1ν , and hence, in the central matrix entry, 4ν
2ν−1 γ = γ , which forces γ = 0 (as

does the identity of the top left ν × ν blocks).

Remark: From the formulae in Theorem 7.2, the block representation of a general
reversible square can be obtained by adding a suitable multiple of the block representation
of En; this gives

M = Xn

(
2wEν 1νaT

b1Tν Oν

)
Xn

if n = 2ν is even,

M = Xn

⎛
⎝ 2wEν

√
2w 1ν

√
2 1νaT√

2w 1Tν w aT√
2 b1Tν b Oν

⎞
⎠ Xn

if n = 2ν + 1 is odd.
Comparison of the block structures in Theorem 7.2 and Lemma 3.1 shows that matrices

inRVn are elements ofAn with rank 1 blocks with constant rows and columns, respectively.
This gives the following rank estimate.
Corollary 7.3: If M ∈ RVn, n ∈ N, then rankM ≤ 2.

The block representation of Theorem 7.2 reveals a further connection of the space RVn
with the space ASn := An ∩ Sn of (weightless) associated constant sum matrices.
Corollary 7.4: Let n ∈ N. Then RVn = AVn. Consequently, An = RVn ⊕ ASn.

Proof: From the block representations in Lemma3.1 andTheorem4.2, we see thatmatrices
in AVn have the same block representation as those in RVn. The second statement follows
from Sn ⊕ Vn = R

n×n.

Corollary 7.4 shows that reversible squarematrices can equivalently be defined as square
matrices with the properties (A) and (V); as En has both of these properties, this includes
general weighted reversible square matrices.

The space RVn does not form a matrix algebra by itself; however, as we know that
Sn ⊕ Vn is a Z2-graded algebra by Theorem 4.7, and Rn is an algebra by Theorem 5.2, it
follows by Lemma 2.4 (a) that Rn = RSn ⊕ RVn (where RSn := Rn ∩ Sn) is a Z2-graded
algebra.

From Theorems 4.1 and 5.1 it is apparent that the elements of RSn have the block
representation

M = Xn

(
γ Eν Oν

Oν Z

)
Xn

in the even-dimensional case and

M = Xn

⎛
⎝ 2γ Eν

√
2 γ 1ν Oν√

2 γ 1Tν γ 0Tν
Oν 0ν Z

⎞
⎠ Xn

in the odd-dimensional case; equivalently, they are the sum of a multiple of En and of a
matrix of form

Xn

(On−ν O
O Z

)
Xn ∈ Bn ∩ Sn

with arbitrary Z ∈ R
ν×ν .
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While this shows thatRSn is only a proper subspace of BSn := Bn∩Sn, we note, applying
Lemma 2.4 (b) to Bn ⊕ An and Sn ⊕ Vn, that BSn ⊕ RVn is another Z2-graded algebra; in
particular, the product of a weightless reversible square and a balanced semimagic square
matrix is a weightless reversible square matrix. The latter statement clearly extends to
general, weighted reversible square matrices.
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