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Summary 

Glaucoma is an optic neuropathy characterised by the loss of retinal ganglion cells (RGC).   

Dendritic atrophy occurs early in the disease, prior to soma and axonal degeneration. RGCs 

exhibit reduced branching density and dendritic field size. This thesis seeks to further 

characterise dendritic atrophy in glaucoma in the context of two external factors that may 

contribute to the disease pathology – immune system effects mediated via complement and 

the influence of the perineuronal net (PNN), a specialised extracellular matrix that surrounds 

RGCs. RGC morphology was investigated in a rat bead model of experimental glaucoma using 

ballistic labelling techniques; morphological changes were related to synaptic loss and PNN 

composition using immunohistochemistry. A model was derived for the classification of 

diseased RGCs in order to prevent labelling bias in subsequent investigations.  The immune 

system was modulated using a complement inhibitor (using a transgenic mouse and 

pharmacological agent in rats) and PNNs disrupted using the bacterial enzyme 

Chondroitinase ABC.  Experimental glaucoma caused significant dendritic loss, with partial 

protection conferred by both complement inhibition and PNN digestion.  Analysis of retinal 

sections also revealed partial protection of synapses. PNNs did not show any changes in their 

composition in the rat in experimental glaucoma but human glaucoma eyes showed 

increased glycosaminoglycan sulphation in the RGC layer which was correlated with visual 

deficit.  Manipulation of the RGC external environment therefore proved successful in 

protecting from dendritic atrophy.
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Chapter 1: Introduction 

1.1 The Neural Retina 

1.1.1 Retinal connectivity 

The vertebrae retina is organised into three cellular layers, intersected by two synaptic 

layers. Six distinct neural cell types occupy and form synapses in these separate layers (Kolb 

et al. 2001). The outermost layer, known as the outer nuclear layer (ONL), contains the light 

sensitive photoreceptors (Dowling 2012). Photoreceptors have well defined nuclear and 

outer segment portions, the latter where phototransduction is initiated. Vertebrae retinas 

contain two different types of photoreceptors (rods and cones) in varying ratios and spatial 

organisations (Curcio et al. 1987; Ahnelt 1998). The inner nuclear layer (INL) sits at the 

middle of the retina and contains the cell bodies of bipolar cells, horizontal cells, amacrine 

cells and interplexiform cells (Dowling 2012). Bipolar cells extend dendrites through the INL 

making synaptic contacts with invaginations of the photoreceptors in the outermost 

synaptic layer, the outer plexiform layer (OPL) (Kolb 1970), and in the inner plexiform layer 

(IPL) their axons synapse with retinal ganglion cells (RGC) dendrites (Famiglietti and Kolb 

1976). The RGC cell bodies occupy the most inner nuclear layer, known as the ganglion cell 

layer (GCL), the axons of which extend into a discrete nerve fibre layer (NFL) which then 

traverse and exit the retina at the optic nerve head (ONH), bundling to form the optic nerve 

(Dowling 2012). Visual information transfers vertically through the retinal layers in a 

centrifugal manner through photoreceptors, bipolar cells and RGCs as well as horizontally 

and in reverse, as feedback and modulation. Horizontal cells lie at the border of the INL and 

extend processes horizontally to synapse with photoreceptors (Stell 1967; Ahnelt and Kolb 

1994) and bipolar cells creating feedback interaction  (Werblin 2010; Dowling 2012). 

Interplexiform cells, as suggested by their name, ramify in both plexiform layers, their 

function is not well understood but they appear to receive input from amacrine cells and 

feed back to bipolar and horizontal cells (Kolb and West 1977). Amacrine cells represent a 
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very diverse class of neurone; they do not poses an axon, however their processes can both 

receive and make synapses, characteristics of both dendrites and axons respectively 

(Dowling and Boycott 1966). They ramify either diffusely or in discrete layers of the IPL (Kolb 

et al. 1981). Amacrine cells make synaptic contact with RGCs (Taylor 1999; Lin et al. 2000; 

Flores-Herr et al. 2001) and bipolar cells (McGillem et al. 2000); their contribution to the 

horizontal transfer of information can be seen in a type that extend processes laterally to 

over 3mm in distance (Dowling 2012).  

 

The displacement of cells from the layer in which they are normally found is common. 

Bipolar and horizontal cells are sometimes found in the ONL (Dowling 2012), while ganglion 

cells have also been observed in the INL (Buhl and Dann 1988; Jeon et al. 1998; Dowling 

2012). The occurrence of displaced amacrines is far greater; a substantial population can be 

found in the GCL in almost all vertebrae retinas with the degree of displacement greater in 

sub-primate species (Perry and Walker 1980; Mueller et al. 2007). 

 

1.1.2 Retinal laminae 

Synapses in the OPL occur on the invaginations of the photoreceptors and are thus planar in 

nature (Sjostrand 1958). Conversely, synaptic organisation in the IPL is widely varied due to 

numerous functionally different subtypes of bipolar cells, amacrine cells and RGCs (Kolb et 

al. 1981; Kolb et al. 1992). At its most basic, the centrifugal transfer of visual information in 

the retina can be divided into two pathways responding to the presence (ON) or absence 

(OFF) of light (Hartline 1938). The ON and OFF pathways are represented in separate laminae 

of the IPL based on the depth of synaptic contacts (Famiglietti and Kolb 1976). The axon 

terminals of ON-bipolar cells terminate proximally in IPL, forming the ON-sublamia 

(sublamina b) while OFF-bipolar cells terminate in the distal IPL forming the OFF-sublamina 

(sublamina a) (Famiglietti and Kolb 1976). RGCs also follow this pattern, their dendrites 
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ramifying in a planar nature in either the ON or OFF sublamiae (or both in bistratified types), 

and thus confer an ON or OFF nature to the RGC (Famiglietti and Kolb 1976; Miller and 

Dacheux 1976; Kolb and Nelson 1993). Planar amacrine cells also ramify in the ON or OFF 

sublaminae, while diffuse types spread through both (Kolb et al. 1981). This organisation is 

displayed in figure 1.1.



 

5 

 

 

 

 

Figure 1.1 Retinal laminae. The ON (red) and OFF (blue) parallel pathways are divided into distinct layers in the IPL.  Here bipolar cell axons terminate in the according layer 

where they synapse with the dendritic arbours of RGCs and confer ON or OFF response characteristics to that RGC. Bi-stratified RGCs (purple) receive input from both 

pathways. Amacrine cells will ramify in either starter or diffusely between the two.  
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1.2 The Non-Neural Retina 

1.2.1 Glial cells 

The retina contains three glial cell types that provide the neuronal cells with mechanical 

support, metabolic support and removal of cell/debris (Dowling 2012). Müller cells span the 

width of the retina, extending from the inner limiting membrane at the ONL/inner segment 

border to the inner limiting membrane/NFL border. They have numerous roles including 

providing metabolic support, maintaining potassium homeostasis, protecting from 

glutamate toxicity through reuptake and facilitating connections in the IPL (Reichenbach and 

Bringmann 2013). Microglia, which are found throughout the retina, monitor neuronal 

integrity (Nimmerjahn et al. 2005) providing phagocytosis of damaged neural cells. 

Astrocytes, the support cells of the brain, are found to a small extent in the retina. They are 

far more extensive in the ONH, migrating from the brain in development (Norton et al. 

1992). Here, they wrap around RGC axons providing metabolic and structural support, 

potassium homeostasis and form the basis of a blood-brain barrier in the optic nerve (Stone 

et al. 1995). The response and resolution of insult is also a role of glial cells, however their 

activation, pro-inflammatory cytokine release and cell recruitment can lead to aberrant 

damage, a feature of retinal disease that is now coming to the fore (Johnson et al. 2007; 

Tezel and Wax 2007). 

 

1.2.1 Perineuronal nets 

In 1898 Camillo Golgi presented his findings following investigation of neurons using his 

‘black reaction’. Here he described the organelle which now bears his name; however, his 

communication gave equal attention to the external surface of the neurons where he 

described “a delicate covering, mainly reticular in structure, but also in the form of tiny tiled 

scales or an interrupted envelope, which surrounds the cell body of all nerve cells and 

continues along their protoplasmic extensions” (Golgi 1898; Golgi 1989). Golgi had described 
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the perineuronal net (PNN), a specialised form of extracellular matrix (ECM) found in the 

CNS which surround the surface of neurons and extend out into the neuropil. PNNs 

surrounding RGCs in the retina are now evident (Aquino et al. 1984; Pastrana et al. 2006). 

Long believed to be a static structure, the PNN is now understood to be dynamic, displaying 

roles in synaptic formation, functioning and plasticity in the adult central nervous system 

(CNS) (Wang and Fawcett 2012; Berretta et al. 2015).  

 

1.2.1.1 PNN structure and chemistry 

PNNs are composed of proteoglycans (PG), glycosaminoglycans (GAG) and link proteins 

(summarised in figure 1.2). The GAG Hyaluronan forms the backbone of the PNN, to which 

PGs of the lectican family attach via link proteins (Caterson 2012); tenascin-R binds up to 

three lecticans together at their terminal domain (Galtrey and Fawcett 2007).  There are four 

lecticans found in PNNs – aggrecan, brevican, neurocan and versican, which vary in their 

overall length and the length of their GAG attachments (Yamaguchi 2000). Aggrecan is found 

on all PNN-positive neurons, while the presence of the other lecticans varies among 

neuronal types (Berretta et al. 2015). In the retina the presence of the CNS-only lecticans 

neurocan (Inatani et al. 1999) and brevican (Inatani and Tanihara 2002) as well as the more 

ubiquitous aggrecan and versican (Milev et al. 1998b) have also been detected. A dense 

surround of Chondroitin Sulphate (CS) PGs can be seen around RGCs when labelled 

immunohistochemically (Aquino et al. 1984) while Wisteria floribunda (WFA) which is 

immunoreactive to PNNs also labels RGCs (Pastrana et al. 2006). Serine residues on the core 

lectican allow for the attachment of GAG side chains via a ‘linkage region’ which comprises 

a 4 sugar sequence (xylose, galactose (Gal), Gal, glucuronic acid (GlcA) respectively). The 

GAG chains elongate from this linkage region as repeating disaccharide units consisting of a 

hexosamine (glucosamine or galactosamine) and either galactose or an uronic acid 

(glucuronic acid or iduronic acid). The disaccharide unit is native to one of 4 subgroups: 
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Chondroitin Sulphate (CS)/Dermatan Sulphate (DS), Hyaluronan, Heparan Sulphate (HS) and 

Keratan Sulphate (KS) (Caterson 2012). These are summarised in figure 1.2. There are 

numerous sulphotransferases involved in GAG synthesis which add sulphate residues to the 

2-, 4- and 6-hydroxyl groups of various sugars; for CS/DS, sulphate residues can be added to 

the 4-/and or 6-hydroxyl group of N-acetylgalactosamine producing C-4-S and C-6-S groups. 

Sugar modification by the addition of carboxyl groups and sulphation further increases the 

potential combinations within a GAG chain such that a CS/DS glycan of 10 units can produce 

1008 combinations (Cummings 2009). These units create varying spatial orientations of 

negatively charged groups which produce diverse binding sites for chemokines, growth 

factors and cell surface molecules.  
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Figure 1.2 PNN structure. PNNs are comprise of a hyaluronan backbone to which lecticans attach via link proteins. The lecticans exhibit different properties due to their 

varying number and length of GAG chain attachments. These chains are either Keratan Sulphate (KS), Chondroitin Sulphate (CS), Dermatan Sulphate (DS) or Heparan Sulphate 

(HS) which comprise distinct disaccharide units. The potential sulphation modifications (of 4- and/or 6-hydroxyl groups) are represented by the presence of 6S or 4S. 

Hyaluronan (HA) is the only GAG that is never sulphated and is also not attached to a lectican core, but rather forms the backbone of the PNN. Adapted from Caterson (2012).
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1.2.1.2 The developing CNS 

The components of the PNN play important roles in neuronal maturation, axon guidance 

and synaptogenesis in the developing CNS. The diversity and spatio-temporal expression of 

these molecules means that CSPGs have been shown to increase axon elongation (Lander et 

al. 1985) as well as inhibit neurite outgrowth (Cole and McCabe 1991; Grumet et al. 1993) 

while C-4-S has been demonstrated as a negative guidance cue in axonal outgrowth (Wang 

et al. 2008). In the retina CS expression recedes from the centre, coinciding with RGC 

differentiation, axon growth and fasciculation towards the optic fissure. This CS gradient 

may act as a guidance cue (Brittis et al. 1992). The importance of PNNs in synaptogenesis is 

demonstrated by dark rearing (which prolongs the critical period in the visual cortex); in 

rodents (Pizzorusso et al. 2002; Carulli et al. 2010) dark rearing has been shown to prevent 

PNN formation as well as downregulate expression of various synthases of PNN 

components. Sensory deprivation through whisker removal also reduces PNN formation 

(McRae et al. 2007; Nakamura et al. 2009). These findings demonstrate the importance of 

PNN formation in activity driven synaptogenesis.  

 

1.2.1.3 PPN role in the adult CNS 

The end of the critical period coincides with changes to the composition of PNNs. In the rat 

retina this maturation has been observed by the decrease of neurocan immunoreactivity to 

barely detectable levels in the inner retinal layers by postnatal day 42 (Inatani et al. 1999). 

The formation of PNNs in the brain coincides with the ending of synaptic refinement (Blue 

and Parnavelas 1983) and myelination (Ishiguro et al. 1991; Brauer et al. 2000)  in a number 

of CNS regions (Dityatev et al. 2007; McRae et al. 2007) and is thought to stabilise the 

favourable synaptic connections made during the critical period. CSPGs and tenascin have 

been shown to repel neuronal processes and are therefore thought to act as a barrier to 

further synaptogenesis in the adult CNS (Faissner et al. 1988; Morganti et al. 1990).  Removal 
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of PNNs by enzymatic digestion (Pizzorusso et al. 2002) or genetic deletion (Carulli et al. 

2010) extends the critical period and allows for increased synaptogenesis and enhanced 

developmental plasticity. In the former study, this plasticity was achieved in adult animals. 

The PNN components form perisynaptic condensations with the pre- and post-synaptic 

terminals of neurons. Here the PNN can regulate synapses through controlling synaptic 

trafficking of receptors and restrict the mobility of neurotransmitters (Frischknecht et al. 

2009). This is exemplified by the role of PNNs in memory plasticity. Enzymatic digestion 

(Bukalo et al. 2001), genetically induced deficiency (Saghatelyan et al. 2001) and antibody 

targeted inhibition (Brakebusch et al. 2002) of PNNs have been shown to reduce long-term 

potentiation (LTP) and long-term depression (LTD) in hippocampal neurons. Components of 

the PNN also influence voltage gated calcium channel activity;  their disruption has been 

shown to impair LTP (Evers et al. 2002). As such enzymatic digestion of PNNs can enhance 

object recognition in rodents through LTD (Romberg et al. 2013) and improve water maze 

performance (Lee et al. 2012). Conditioned fear memories, which are governed by LTP and 

LDP (Nabavi et al. 2014), are protected from extinction-induced erasure by PNNs; when 

PNNs are removed enzymatically the fear memories can be erased (Gogolla et al. 2009). 

These studies show that PNNs therefore influence both synaptic and structural plasticity. 

PNNs bind and aid in the sequestration of neurotrophins (e.g. Fibroblast growth factor and 

transforming growth factor-β (Milev et al. 1998c)) and transcription factors and so prevent 

further neuronal growth (Wang and Fawcett 2012). The highly negative charge generated 

by the numerous sulphated GAG chains also maintains ionic balances in the neurons local 

environment (Karetko and Skangiel-Kramska 2009) and so contributes to homeostatic 

support.  

 

 



 

12 

 

1.2.1.4 PPN and CNS disease 

Abnormalities in the CNS extracellular matrix and PNNs are associated with a number of CNS 

pathologies. Following traumatic brain or spinal cord injury there is an upregulation of CSPGs 

associated with the formation of glial scars (Soleman et al. 2013). Glial scars represent an 

attempt to contain the degenerative inflammatory response (Faulkner et al. 2004) but also 

form a barrier to axonal re-innervation (Bradbury and Carter 2011). They are rich in CSPGs 

(Soleman et al. 2013) and other PGs such as the neurite repellent semaphorins (Pasterkamp 

and Kolodkin 2003).  After ischemic stroke injury, the resultant peri-infarct region shows an 

upregulation of CSPGs, neurocan, phosphocan, brevican and versican (Fawcett and Asher 

1999; Asher et al. 2002; Katsman et al. 2003; Carmichael et al. 2005) and thus prevents re-

innervation.  However, outside of the infarct, a downregulation of CSPGs and loss of PNNs 

has been observed (Katsman et al. 2003; Hobohm et al. 2005; Karetko-Sysa et al. 2011) and 

may represent and effort to circumvent the infarct and increase compensatory 

synaptogenesis. Mutations in genes controlling expression of CNS ECM components are 

associated with epilepsy (Dityatev 2010). This may be due to the role of PNNs in regulating 

appropriate synaptogenesis; in epilepsy, seizures are the result of hyper-excitability and 

abnormal neuronal connectivity (Dityatev 2010). Following seizure, a reduction of PNN 

components hyaluronan, aggrecan, neurocan, phosphocan and Tenascin-R has been 

observed (Dityatev and Fellin 2008; McRae et al. 2012). This may increase aberrant 

synaptogenesis which contributes to the cyclical progression of epileptogenesis (McRae et 

al. 2012). These CNS pathologies demonstrate the inhibitory properties of PNNs and their 

PG components towards neuronal outgrowth and synaptogenesis and provide further 

evidence that PNN removal increases plasticity.    
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1.3 Mammalian vision, RGC homologues and classification 

The human visual system is often divided into two pathways – Parvocellular and 

Magnocellular, each with a distinct class of RGC (Polyak 1941). The former represents the 

output of midget RGCs. These cells have small soma and dendritic fields and make up 90% 

of RGCs in the fovea (Perry et al. 1984) where they can connect to a single photoreceptor 

(Boycott et al. 1969). These features afford high spatial sensitivity to the Parvocellular 

pathway. The Magnocellular pathway comprises the output of parasol RGCs whose dendritic 

fields span much larger areas (Perry et al. 1984). This gives the cells a greater number of 

photoreceptor connections and so a higher temporal and contrast sensitivity. Parasol RGCs 

represent only 10% of total RGCs and are found mostly in the periphery (Perry et al. 1984).  

 

In the study of the rabbit retina in particular, where high acuity is less of a concern than the 

detection of movement to this prey species, an interesting RGC type was discovered. These 

bi-stratified cells respond to the direction of movement (Barlow and Hill 1963) in low acuity 

peripheral vision. The rabbit’s high acuity vision, predominating in its visual streak, is 

theorised to come from a different RGC type than its morphological and functional 

homologue in the primate. Here the local edge detector RGCs signal fine spatial information, 

but through a different mechanism to that of midget type cells (van Wyk et al. 2006). 

Morphological homologues to these RGC types have been uncovered in the primate retina 

which now boasts 22 described types (Petrusca et al. 2007), one of which, the melanopsin 

RGC, is intrinsically photoreceptive and is involved in the circadian rhythm and pupillary light 

reflex rather than image forming vision (Berson 2003).  Together, Parasol, Midget and small 

bi-stratified cells make up 75% of RGCs in the primate peripheral retina (Yamada et al. 2005). 

The remaining RGC types therefore represent a small proportion of total cells; locating them 

in the first instance has therefore proved to be the greatest boundary to their 

electrophysiological study. The primary role of vision in various mammalian species and its 
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relationship to aspects of visual information and neuronal connectivity is portrayed in Table 

1.1 below. 
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Table 1.1 Aspects of mammalian vision 

Species Binocular 

field/Visual field 

Number of RGCs/ 

peak density 

Spatial frequency 

cut off* 

(cycles/degree) 

Ipsilateral 

projections (% of 

total projections) 

Displaced amacrine 

cells (% of total cells in 

CGL) 

Human 140°/200° 700,000-1,500,000/ 

150,000 mm2 

64 50% 3% fovea/ 

80%/periphery 

Non-human primate 

(NHP) 

140°/200° 900,000-1,500,000/ 

140,000 mm2 

46 50% 5-7% fovea/60-84% 

periphery 

Cat 120°/200° 190,000/ 

10,000 mm2 

6 17% 80% 

Rabbit 24°/360° 250,000A-400,000P/ 

5,000 mm2 

3.4 5% 35% 

Rat 80°/320° 90,000A-120,000P/ 

4,000 mm2 

1.2 
 

3%A 10%P   50% 

Mouse 60°/ 30,000A-90,000P/ 

4,000 mm2 

0.5 3%A 10%P  60% 

 

A=albino, P=pigmented, *as determined by behavioural acuity. References: Visual filed (Pettigrew and Sanderson 1986). RGC number (Pettigrew and Sanderson 

1986; Pettigrew et al. 1988; Wilks et al. 2013). RGC density: Human and NHP (Pereira Carneiro Muniz et al. 2014), other (Pettigrew and Sanderson 1986; Pettigrew 

et al. 1988). Spatial frequency cut off (Pettigrew and Sanderson 1986; Pettigrew et al. 1988). Ipsilateral projections (Wilks et al. 2013) . Displacement of amacrine 

cells: Human and NHP (Pereira Carneiro Muniz et al. 2014), cat (Wassle et al. 1987), rabbit (Hughes and Vaney 1980), rat (Perry 1981), mouse (Jeon et al. 1998).
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1.3.1 Structure function relationship 

The functioning of RGCs has partly been elucidated by the study of RGC receptive fields 

which has uncovered the relationship between dendritic structure and the functioning of 

the cell. The area in which a response is elicited from an RGC is termed its receptive field 

(Hartline 1938). The RGC receptive field is an elegant description of how retinal connectivity 

culminates in single RGC responses through the relationship of RGC function to retinal 

structure, cell morphology and synaptic organisation.  

 

1.3.1.1 Receptive field centre 

The receptive field centre (RFC) is derived from direct synaptic contact of bipolar cell axons 

onto RGC dendrites. As these synapses are always excitatory, the RFC response reflects that 

of the underlying bipolar cells and is therefore ON and/or OFF in nature. Stratification of the 

RGC dendrites into either sublamina a or b governs the connection to either OFF or ON 

bipolar cells respectively (Famiglietti and Kolb 1976). The RGCs dendritic field size is also 

close to the spatial extent of the RFC (Brown and Major 1966; Dowling and Boycott 1966; 

Amthor et al. 1989b; Yang and Masland 1992)  and reflects the area covered by the bipolar 

cell receptive fields. The sensitivity of the RFC is also a function of the dendritic field 

architecture. Labelling of post-synaptic density protein-95 (PSD95) in rabbit RGC showed 

that synaptic density peaked towards the centre of the dendritic field (Jakobs et al. 2008). 

This partially reflects the RFC Gaussian sensitivity profile, although sensitivity drops off at 

the centre. This is caused by the absence of synapses onto soma and primary dendrites as 

shown by serial reconstructions (Stevens et al. 1980; Kolb and Nelson 1993). This drop has 

been observed electrophysiologically over the soma centre (Brown et al. 2000). Since the 

density of synapses per length of dendrite does not vary (Jakobs et al. 2008) and bipolar cell 

coverage is uniform across the rabbit retina (MacNeil et al. 2004), sensitivity should change 
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with the density of the dendritic field and peak where the number of synapses per area is 

highest. This was shown computationally for cat α RGCs (Freed et al. 1992) and 

experimentally in rabbit RGCs; although some large cells showed that sensitivity was not 

predicted by dendritic architecture (Brown et al. 2000). 

 

1.3.1.2 Receptive field surround 

The mechanisms resulting in the receptive field surround response have proved more 

difficult to resolve. Three inhibitory effects are now evident, direct inhibitory input by 

amacrine cells onto RGC dendrites and lateral inhibition pre-synaptic to the RGC both at the 

level of the IPL and OPL. Direct inhibitory input reflects RGC dendritic structure to the 

greatest extent. Evidence for direct inhibition of RGCs comes from voltage-clamping studies 

which allow isolation of direct chloride ion (Cl-) mediated input. Here, increasing spot stimuli 

diameter elicited a greater reduction in the RGC response in the rabbit retina while blockade 

of gamma-aminobutyric acid (GABA)A receptors by bicuculline is suggestive of GABAergic 

amacrine mediated inhibition (Flores-Herr et al. 2001). Application of tetrodotoxin, which 

blocks action potentials by binding to voltage-gated sodium channels, to rabbit retina 

blocked the surround inhibition in some classes of RGC, implicating the action of spiking 

amacrines in the surround response (Taylor 1999). Amacrine cell inhibition of RGCs is 

dependent on the release rate of GABA or glycine, producing either sustained or transient 

inhibition through altering Cl- permeability. In primate RGCs glycine receptors are distributed 

such that their density is greater on distal dendrites compared to proximal dendrites 

indicating their role in the inhibitory surround (Lin et al. 2000). 
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1.3.2 Mammalian RGC homologues and classification 

Many mammalian species appear to share functional homologues of RGC types (summarised 

in Table 1.2). These RGCs respond to the same ‘trigger feature’ and with similar response 

properties. In the rodent and primate most of the functional RGC types have therefore been 

inferred to exist based on morphological similarities to cat and rabbit cells (Sanes and 

Masland 2015). Within the same species, some morphologically similar types which respond 

to the same ‘trigger feature’ will differ in their response latencies, producing either brisk or 

sluggish responses (DeVries 2000; Jackman et al. 2009). Midget and parasol cells are easily 

differentiated, as are their equivalents of other species. But in the rodent species the overlap 

among morphological types is extensive, such that the dendritic field diameter range of a 

given type encompasses sizes belonging to all other RGC types (Sun et al. 2002b, a).  In the 

mouse, morphological discrimination has yielded 22 RGC types – more than are currently 

functionally described (Voelgyi et al. 2009); in combination genetic, molecular, 

morphological and electrophysiological profiling suggests at least 25 types (Sanes and 

Masland 2015). This highlights a key dilemma in the identification of RGC types in that no 

one method can adequately describe the diversity and capture every cell type. 

Electrophysiological characterisation and classification does not present a practical solution 

for most studies as the intricate nature of single cell recording does not yield sufficient cells 

to study in a time effective manner while multi-array electrodes do not fully capture the 

range of physiological responses available to RGC types, nor is it conducive to cell filling for 

subsequent morphological analysis (Sanes and Masland 2015).  
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Table 1.2 RGC homologues among mammalian species 

RGCs are depicted as ‘Physiologically described’/’Morphologically described’ where ‘?’ denotes 
detection by only one method and blank no detection. 1 Although not a physiological response, 

Melanopsin expressing RGCs best describes this RGC type. References: Cat (Berson et al. 1999a; 

Berson et al. 1999b; Isayama et al. 1999; O'Brien et al. 1999; Troy and Shou 2002), Rabbit (Amthor et 

al. 1989b, a; He and Masland 1997; Rockhill et al. 2002), Mouse (Sun et al. 2002b; Sun et al. 2006; 

Voelgyi et al. 2009; Sanes and Masland 2015), Rat (Sun et al. 2002a; Heine and Passaglia 2011), 

Macaque and Human (Demonasterio 1978; Dacey 1993; Yamada et al. 2005; Petrusca et al. 2007). 

 

Physiological 

response 

Cat 

 

Rabbit 

 

Mouse 

 

Rat Macaque 

 

Human 

On brisk- 

transient 

On α/Y 
cell 

α/G11 On Y/G2 Y/A2i Parasol P1b, P2b 

Off brisk- 

transient 

Off α/Y 
cell 

α/G11 Off Y/G3 Y/A2o υ/Large 

radiate 

cell 

P1a, P2a 

On brisk-

sustained 

On β/X 
cell 

β /G4 On X/? X/? Midget Mb 

Off brisk-

sustained  

Off β/X 
cell 

β /G4 Off X/G3 X/B2 Midget Ma 

On-direction 

selective 

On-δ On- δ/G10 On-DS/G9 ?/C1 ?/Large 

moderate 

G21 

Off-sluggish 

sustained 

Off- δ ?/G9    G19 

On sluggish-

transient  

 

ε On 

sluggish-

transient  

/? 

/G12 ?/C3 ?/Large 

very 

sparse 

G20 

Off sluggish-

transient  

 

η ?/G5? /G13 ?/C4 ?/Narrow 

thorny 

G8 G16 

On-Off 

phasic/ local 

edge 

detector 

ζ LED/G2 /G3 ?/C4 On-Off 

phasic/ma

ze cell 

G8 G16 

On-Off 

transient 

(Sivyer 2002) 

θ On-Off 

transient/

G1 

/G16  ?/Broad 

thorny? 

G5 

On-off 

direction 

selective 

ι ON-Off 

DS/G7 

ON-Off DS 

/G17 

ON-Off 

DS /D2 

?/Multi-

tufted 

 

On-off 

nondirection 

selective 

  /G16 ?/D1 ?/Type  VI 

wide field 

 

 

Melanopsin 

expressing 

RGC1 

  /G12 ?/Miss-

classified 

C3 

Giant 

sparse 

 

Blue-On 

Yellow-Off 

 ?/G3   /Large bi-

stratified 

G17 

Uniformity 

detector 

 ?/G6   /G6  
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1.3.2.1 Morphological classification 

Morphological classification is reliant on the measurement of the soma and dendritic field 

size, as well as the depth of stratification (Huxlin and Goodchild 1997; Sun et al. 2002b, a; 

Coombs et al. 2006; Voelgyi et al. 2009). However, as discussed, in the rodent there is 

considerable overlap among types such that classification becomes semi-quantitative as 

measurements are matched to the closest type and often include identification of qualitative 

features i.e. “Curvy, recursive dendrites” (Sun et al. 2002a),  “branches twist and turn” 

(Huxlin and Goodchild 1997). These criteria do however afford practical advantages over 

other techniques in that certain RGC types can be easily identified. ON-OFF directionally 

selective ganglion cells (DSGC) for example are clearly identified by their bi-stratified 

dendritic trees. These parameters are compromised in disease where the dendritic tree is 

subject to atrophy and so morphological classification may not be suitable.   

 

1.3.2.2 Immunohistochemical classification 

Antibodies directed against Thymocyte antigen 1 (Thy1) and Brn3 label all RGC types 

indiscriminately (Barnstable and Drager 1984; Nadal-Nicolas et al. 2009).  However, more 

recently a number of biomarkers and subtype specific gene expressions have been identified 

that can usefully classify RGCs. SIM-32, which labels neurofilament H in RGC somas, axons 

and dendrites stains group RGCA more intensely and has been used to differentiate this class 

(Sanes and Masland 2015). These cells are specifically labelled in a Kcng4-cre;Thy1-stop-YFP 

transgenic mouse where Kcng4 encodes a voltage-gated potassium channel subunit (Duan 

et al. 2015).  A number of other transgenic mouse lines have now been created which 

identify unique RGC types. Junctional adhesion molecule B (JAM-B) selectively identifies 

local edge detector RGCs in TYW3 transgene mice (JAM-B–CreER;Thy1-STOP–YFP). Green 

fluorescent protein (GFP) insertion into the SPARC-related protein-containing 

immunoglobulin domains 1 (SPIG1) gene (also referred to as Fstl-4) identifies ON DSGC 
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which respond preferentially to upwards motion (Yonehara et al. 2009) whereas in 

Homeobox d10-GFP transgenic mice all ON DSGCs are labelled - those responding to 

upwards, downward and forward motion (Dhande et al. 2013). Other RGC types can also be 

discriminated by immunohistochemistry. Anti-melanopsin labels the intrinsically 

photosensitive melanopsin RGC in addition to 4 other RGC types which contain trace 

amounts of melanopsin (Sanes and Masland 2015). ON-OFF DSGCs can be differentiated by 

antibodies directed against cocaine- and amphetamine-regulated transcript (CART) (Kay et 

al. 2011). Immuno-labelling of CART in Thy1-YFP-H mice showed that only bistrtified cells 

are labelled, while the number of CART positive cells (~15%) is roughly equal to the total 

number of bistratified cells as identified by morphological classification (Sun et al. 2002a, 

Voelgyi et al. 2009). The use of immunohistochemical and gene expression based 

classification in disease is also complicated by the expressional changes of Thy1 which occur 

as an early event in pathologies such as glaucoma (Schlamp et al. 2001; Huang et al. 2006), 

while the function of many of these novel genes and proteins are yet unknown, not least 

changes to their expression in disease states.  
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1.4 Glaucoma 

1.4.1 Clinical etiology and morbidity 

Glaucoma is a disease where retinal ganglion cell death results in a progressive loss of vision. 

Understanding of the pathophysiology is incomplete, but the disease is associated with a 

number of risk factors including ethnicity (Leske et al. 1995; Gordon et al. 2002), myopia 

(Suzuki et al. 2006; Chen et al. 2012), family history (Tielsch et al. 1994; Leske et al. 1995), 

age (Dielemans et al. 1994; Le et al. 2003; Peters et al. 2014)  and intraoccular pressure (IOP) 

(Dielemans et al. 1994; Stewart et al. 2000; Le et al. 2003). Clinical diagnosis is primarily 

achieved by fundus imaging and visual field testing (King et al. 2013). IOP is currently the 

only modifiable risk factor. High IOP can result from aqueous humour outflow restriction in 

the trabecular meshwork (TM) (as in open angle glaucoma) or structural obstruction (as in 

closed angle glaucoma), however, glaucoma often (in 30-40% of cases) presents without 

high IOP (Klein et al. 1992; Dielemans et al. 1994) in what is termed normal tension glaucoma 

(NTG). Disease onset is insidious with structural changes to the NFL (Alasil et al. 2014) and 

optic nerve head (Pederson and Anderson 1980) preceding perceptive visual deficits in some 

cases, but not in others (Malik et al. 2012). Visual loss is progressive and irreversible 

(Bengtsson et al. 2009), resulting in scotomas with central visual loss typically occurring later 

in the disease (Sihota et al. 2007). Treatment, commonly topical application of prostaglandin 

analogues, aims to lower IOP and so manage and slow disease progression (Agis 2000; 

Higginbotham et al. 2004; Kass et al. 2010). Glaucoma is the second leading cause of 

irreversible blindness worldwide and is set to become and increasing health burden due to 

an ageing population (Resnikoff et al. 2004) with 80 million sufferers estimated by 2020 

(Quigley and Broman 2006); more than 1 million glaucoma related visits are made to the UK 

NHS each year (King et al. 2013).  
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1.4.2 Animal models of Glaucoma 

1.4.2.1 Genetic models 

Animal models of glaucoma attempt to replicate RGC damage through the elevation of IOP. 

Spontaneous development of glaucoma has been noted in a number of species (Kolker et al. 

1963; Gelatt et al. 1977), the best characterised and defined being the DBA/2J mouse strain. 

Mutations in Gpnmb and tyrp1 genes  cause the dispersion of iris pigment (Chang et al. 1999; 

Anderson et al. 2002) which blocks TM outflow  resulting in a sustained IOP elevation at 

roughly 9 months of age (John et al. 1998). The model shares characteristics with human 

glaucoma, namely its age related and variable onset, chronic IOP elevation and chronic RGC 

death (Libby et al. 2005a). In combination with the ease of manipulation of mouse genetics, 

the model offers extensive flexibility and exploration of genetic interactions (Howell et al. 

2011). However, the model lacks control over IOP and incurs the expense of ageing animals, 

some of which will not develop the disease.  

 

1.4.2.2 Inducible models 

Finer control of IOP elevation onset and duration is afforded by inducible models of 

experimental glaucoma. These models are open to the criticism that they lack they lack 

associations with human glaucoma and therefore may involve distinct pathways (Libby et al. 

2005a) (although not to the extent of optic nerve crush models (Kalesnykas et al. 2012)). 

Inducible models involve the disruption of aqueous humour outflow mostly by the occlusion 

of the TM. Laser induced photocoagulation, the first of such models, produces robust IOP 

increases and offers the fine control of IOP lacking in the spontaneous models (Gaasterl.D 

and Kupfer 1974). However, the cost of necessary equipment has been largely unconducive 

to its widespread use. The injection of hypertonic saline into the episcleral vessels has 

proved the most robust model (Morrison et al. 1997), but again its use has been limited by 

its highly intricate nature. These issues have been overcome through the intracameral 
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injection of substances which directly block the TM; the techniques being quick and simple 

to perform. The first of these was devised by Quigley and Addicks (Quigley and Addicks 1980) 

who injected fixed autologous red blood cells into the anterior chamber in primates. The 

peak IOP was considerable and difficult to control, often resulting in corneal ectasia. 

Moreover the anterior chamber was nearly completely filled and so the retina was obscured 

from monitoring. The use of microbeads proved more effective (Weber and Zelenak 2001); 

partial filling of the anterior chamber allowed for fundus imaging and peak IOP was not so 

extreme.  However, repeat injections (sometimes weekly) were required to sustain IOP as 

the beads tended to escape from the TM. A number of variants of the microbead occlusion 

model have since been reported in rodents (Urcola et al. 2006; Sappington et al. 2010; Cone 

et al. 2012; Dai et al. 2012b; Foxton et al. 2013; Frankfort et al. 2013; Smedowski et al. 2014). 

These differ in microbead size and material, injected volume, injection technique and the 

inclusion of viscoelastic substances. All models show fairly robust IOP increases 

accompanied by axonal loss and RGC death (to varying degrees) however there appears to 

be little correlation between the volume of beads injected, the resultant IOP increase and 

RGC death (Morgan and Tribble 2015) making inference of glaucomatous processes difficult. 

The use of ferromagnetic microparticles by Samsel et al (2011) allowed for control of bead 

dispersion within the anterior chamber by use of a magnet. Beads could be manipulated into 

the iridocorneal angle leaving the visual axis clear and allowing for a reduced injection 

volume. This is particularly salient for in vivo imaging and electrophysiological assessment.  

 

1.4.2.3 Effect of species and strain 

The size of the mouse globe can be prohibitive to both the injection of large volumes and 

the ease of surgical manipulation. The mouse can also be intractable, particularly where IOP 

measurement is concerned, with the necessary anaesthesia a known confounder to 

measurement accuracy (Jia et al. 2000). Cone et al. (2012) showed that even the route of 
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anaesthesia can significantly affect the IOP reading with gas (Isoflurane) and intraperitoneal 

(ketamine/xylazine/acepromazine) anaesthesia producing a difference of 2.2mmHg on 

average. The rat offers the possibility of awake IOP measurement which prevent these 

effects. The same study investigated the effect of strain on IOP and found significantly 

greater peak IOP, but a lessor susceptibility to RGC death, in C57BL/6 than CD1 mice.  In the 

rat, magnetic microbead injections following the same protocol produced 30% cell death in 

the Brown Norway (Samsel et al. 2011) and 80% in the Swiss Albino (Dai et al. 2012). 
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1.4.3 Pathophysiology  

RGCs are an extremely vulnerable cell type. The cells have a high energy demand due to their 

highly active spiking (Zador 1998; Laughlin 2001) and unmyelinated region of axon (Barron 

et al. 2004). Any insult that restricts energy can therefore jeopardise the cell. Glaucoma is 

idiopathic with respect to current understanding, but appears to result from numerous 

homeostatic disruptions leading to RGC atrophy and apoptosis.  

 

1.4.3.1 ONH disruption 

The lamina cribrosa (a mesh like connective tissue structure in the ONH) is believed by many 

to be the region where initial insult to RGC axons occurs (Burgoyne et al. 2005; Downs et al. 

2011). Disk changes are manifest as an excavation of connective tissue and a compression 

of lamina sheets (Quigley et al. 1983) that may be induced by high IOP. This results in 

connective tissue remodelling (Hernandez et al. 1990; Fukuchi et al. 1992; Fukuchi et al. 

1994), astrocyte dysfunction (Hernandez et al. 1995; Varela and Hernandez 1997; Neufeld 

1999a) and altered blood flow and nutrient supply (Minckler et al. 1977). This is theorised 

to disrupt RGC structural and homeostatic support. RGC axonal transport has been shown 

to be impaired with high IOP (Anderson and Hendrick.A 1974; Quigley and Anderson 1976), 

cited as evidence of direct axonal insult through connective tissue compression. These 

lamina changes have been replicated in non-human primates (Yang et al. 2007a; Yang et al. 

2007b; Roberts et al. 2009), however human work require on post-mortem tissue, of which 

eyes in the early disease stages are rare (Downs et al. 2011). However, disk cupping is also a 

feature of NTG and so can occur in the absence of elevated IOP. In these instances, the 

dysregulation of blood flow in the ONH could lead to a similar pathophysiology that is 

triggered at a lower level of IOP (Anderson 2011). Alternatively, ischemia and re-perfusion 

injury could occur independently of IOP and produce the similar clinical presentation of NTG 

and primary open angle glaucoma (Anderson 2011).    
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Rodent and rabbit models have demonstrated similar ONH disruption despite the absence 

of a comparable lamina cribrosa in these species (Morrison et al. 1995; Morcos and Chan-

Ling 2000). ONH astrocyte proliferation, extracellular matrix remodelling (Johnson et al. 

2000) and axonal transport disruption (Martin et al. 2006; Salinas-Navarro et al. 2010; 

Chidlow et al. 2011) have been observed. However in other studies axonal transport 

disruption is minimal or absent (Bunt-Milam et al. 1987; Dai et al. 2012b; Abbott et al. 2014). 

In these animals direct mechanical injury to axons is unlikely, and so the removal of axon 

homeostatic support appears more culpable. This is supported by the partial protection to 

RGCs conferred by the transplantation of olfactory ensheathing cells into the ONH to 

provided glial-like support to RGCs where ONH astrocytic processes have retracted (Dai et 

al. 2012a).  

 

1.4.3.2 Lack of Neurotrophic support 

High IOP has been shown to disrupt axoplasmic transport (Anderson and Hendrick.A 1974; 

Quigley and Anderson 1976; Martin et al. 2006; Salinas-Navarro et al. 2010; Chidlow et al. 

2011), in particular that of brain derived neurotrophic factor (BDNF) (Pease et al. 2000; 

Quigley et al. 2000). BDNF is a neurotrophic factor which has been shown to promote RGC 

survival when exogenously applied in vitro (Johnson et al. 1986; Thanos et al. 1989) and in 

vivo (Mansourrobaey et al. 1992; Mey and Thanos 1993; Peinado-Ramon et al. 1996; Chen 

and Weber 2001). Axonal compression is thought to prevent retrograde transport of BDNF 

complexed with its receptor (Tyrosine receptor kinase B (TrkB)) from RGC innervation 

targets in the CNS. High IOP results in the accumulation of TrkB posterior to the ONH (Pease 

et al. 2000). Activation of TrkB leads to RGC survival through downstream signalling 

pathways involving PI3K/Akt and Erk1/2 (Chen and Weber 2004). Blockade of transport 

would therefore lead to RGC death through the attenuation of survival signalling.  
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However this is complicated by the findings of retinal and RGC TrkB expression (Jelsma et al. 

1993; Ugolini et al. 1995; Vecino et al. 1998), even following glaucomatous injury (Cui et al. 

2002), and evidence of endogenous BDNF produced locally in the retina (Herzog and von 

Bartheld 1998; Cui et al. 2002; Spalding et al. 2004; Harada et al. 2011) and by RGCs 

themselves (Vecino et al. 2002). This suggests a more complex role of neurotrophic support 

in glaucoma. Neurotrophic signalling also appears to have numerous and often opposing 

effects. TrkB mRNA variants have been found in the rat retina (Jelsma et al. 1993); short 

variants (which lack an intracellular tyrosine kinase domain) are involved in other signalling 

pathways (Baxter et al. 1997; Haapasalo et al. 2002) and can competitively inhibit long 

variants (Eide et al. 1996). In some instances TrkB signalling can initiate cell death (Hu and 

Kalb 2003) as can precursor forms of BDNF (Lee et al. 2001; Teng et al. 2005). 

 

1.4.3.3 Immune activation 

Microglia are recruited in response to CNS injury and have roles in neuronal protection and 

regeneration (Streit 2000). Aberrant microglial responses, in particular the release of 

cytotoxic substances (Colton and Gilbert 1987; Liu et al. 2002), are implicated in a number 

of neurodegenerative diseases such as Alzheimer’s disease (Meyer-Luehmann et al. 2008) 

and Parkinson’s disease (Teismann et al. 2003). Glial activation in chronic glaucoma has been 

detected in the ONH (as above 1.4.3.2) and retina in the human (Wang et al. 2002), non-

human primates (Tanihara et al. 1997), rat (Wang et al. 2000; Naskar et al. 2002; Lam et al. 

2003) and mouse (Inman and Horner 2007; Bosco et al. 2011; Rojas et al. 2014) mostly 

through glial fibrillary acidic protein (GFAP) immuno-labelling. The findings of 

autoantibodies in glaucoma patients (Bell et al. 2013), microglia associated loss of RGCs in 

un-operated contralateral eyes in experimental animal models (Kanamori et al. 2005; 

Ramirez et al. 2010; Gallego et al. 2012) and progressive RGC loss in animal models 
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immunised with heat shock proteins and other retinal antigens (Wax et al. 2008; Joachim et 

al. 2012) is suggestive of a systemic immune response in glaucoma.  Further to this, T-

lymphocytes taken from glaucomatous mice and transferred into tail veins of wildtype 

control animals cause the loss of RGCs. In these animals, retinas showed no signs of uveitis 

or other gross inflammatory change, and only a low frequency of activated microglia which 

were observed in contact with transferred lymphocytes that had migrated into the retia 

(Gramlich et al. 2015).  

 

Microarray analysis (Ahmed et al. 2004; Howell et al. 2011) and quantitative PCR (Agudo et 

al. 2008; Johnson et al. 2011) have implicated immune activation as an early pathogenic 

event in glaucoma. In the rat ONH, IL-6 family cytokines undergo a massive upregulation 

(>1500%) accompanied by increased microglia activation-associated genes and a 

downregulation of ciliary neurotrophic factor (a glial-proliferation repressor, (Fischer et al. 

2004)).  Astrocyte specific genes, including GFAP are not upregulated (Johnson et al. 2011). 

Together these data and others (Son et al. 2010), suggest that immune cell recruitment, 

rather than astrocyte reactivity contribute to early RGC damage. In the DBA2J upregulation 

of genes involved in the leukocyte transendothelial migration pathway was found to precede 

detectable RGC damage. Radiation treatment protected RGCs from damage in the targeted 

eye compared to control. L-selectin ligands were not activated in the treated eyes, 

preventing immune cell binding and translocation into the ONH (Howell et al. 2012). 

However, this was not replicated in an inducible model of glaucoma where radiation 

treatment did not significantly reduce axon loss nor alter the infiltration of immune cells into 

the ONH. This may reflect the differing nature of immune activation in acute and chronic 

models (Johnson et al. 2015).  

 

 



 

30 

 

1.4.4 The Complement system in glaucoma 

1.4.4.1 Complement activation 

The complement system is a series of circulating proteins that act to enhance immune 

system responses. The proteins act in a triggered enzyme cascade to produce 3 effects: 

chemotactic recruitment of immune cells, cell opsonisation and cell lysis (Janeway et al. 

2001). These effects can target both invading pathogens and native cells for clearance by 

the immune system. There are 3 branches of activation in the complement system, which 

all converge on the creation of a common convertase (Ricklin and Lambris 2007). These are 

the classical pathway, the mannan-binding lectin (MBL) pathway and the alternative 

pathway (Janeway et al. 2001). The complement system is depicted in figure 1.3. 

Complement proteins are numbered (C1, C2, C3 etc), however this is in order of their 

discovery not activation. The classical pathway is initiated by the binding of complement 

component 1 (C1) to antigen:antibody complexes or directly to cell surfaces. C1 is comprised 

of C1q (a lectin of 6 globular heads linked together by a collagen-like tail) and a (C1r:C1s)2 

complex. Binding of more than one of the tails to a cell surface induces a conformational 

change in the (C1r:C1s)2 complex which results in C1r activation and autocatalytic cleavage 

of C1s (Ricklin and Lambris 2007; Bally et al. 2009). Activated C1s is a serine protease that 

cleaves C4 and C2 into 2 fragments. The larger fragments C4b and C2b bind to the cell surface 

before combining to generate C4b.C2b, also known as C3 convertase (Janeway et al. 2001). 

The MBL pathway uses the MBL protein which is similar in structure to C1q and contains 2 

proteases, MASP-1 and MASP-2, which are homologous to C1r and C1s (Gal et al. 2007). It 

binds specifically to mannose residues which are accessible on pathogen surfaces but hidden 

by other sugar groups on vertebrate cells. Binding activates MASP-1 and MASP-2 to cleave 

C4 and C2, forming C3 convertase as in the classical pathway (Janeway et al. 2001). C3 

convertase cleaves C3 into fragments C3a and C3b, these are the most common effector 

proteins of the complement pathway, and their roles will be discussed later. C3b can also be 
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spontaneously generated as in the alternative pathway. Spontaneous hydrolysis of the 

thioester bond in C3 allows binding of factor B, which is in turn cleaved to fragments Ba and 

Bb. Bb remains bound to C3 forming the C3(H20)Bb complex, a C3 convertase, which can in 

turn generate C3b and C3a (Janeway et al. 2001; Dunkelberger and Song 2010). This 

amplification process is controlled by complement regulatory proteins decay-accelerating 

factor (DAF), factor I and factor H which prevent factor B binding to C3b (Dunkelberger and 

Song 2010). 

 

1.4.4.2 Complement effector proteins 

All 3 pathways converge on the formation of a C3 convertase and the subsequent formation 

of fragments C3a and C3b. As C3 convertases formation requires its components to be bound 

to cell surfaces, C3b is subsequently deposited onto the cell surface where it can bind 

covalently at up to 1000 molecules per convertase. C3 is the most abundant complement 

protein at a concentration of 1.2mg ml-1 (Janeway et al. 2001).  Complement activation 

therefore deposits large amounts of C3b onto cell surfaces where it acts as an effector 

molecule for the initiation of phagocytosis. Complement receptor 1 (CR1) expressed on 

macrophages, monocytes and leukocytes can trigger phagocytosis when bound by C3b on 

cellular surfaces (Woodruff et al. 2010). C3b also binds to C4b.C2b and C3(H20)Bb 

respectively to form C5 convertase. This cleaves C5 into C5a and C5b fragments. This is 

limited by the availability of free C3b to complex with C3 convertases and so C5 fragment 

formation is more restricted than that of C3 fragments (Janeway et al. 2001). C3a, C4a and 

C5a act as chemokines to enhance immune cell recruitment. These fragments increase 

vascular permeability and induce adhesion molecules in the vascular endothelium and can 

act directly on immune cells to enhance adherence to blood vessels, induce TNF-α release 

and increase expression of complement receptors to amplify phagocytosis (Janeway et al. 

2001; DiScipio and Schraufstatter 2007; Woodruff et al. 2010). C5b bound to cell surfaces 
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can initiate the formation of the membrane attack complex (MAC). C6, C7, C8 and 10-16 

molecules of C9 bind in turn to form a pore, 100Â in diameter, in the lipid bilayer (Podack et 

al. 1982). This causes the loss of cellular homeostasis as water, ions and other solutes pass 

freely by diffusion across the pore resulting in cell lysis. This terminal effect is only initiated 

in very few instances, again due to the limited formation of C5 fragments, and its importance 

is demonstrated by susceptibility to only a few bacterial infections in cases of C5-C9 

deficiencies (Janeway et al. 2001). 
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Figure 1.3 The Complement System. Complement proteins are cleaved (filled arrows) into protein 

fragments either enzymatically as in the classical and MBL pathways, or spontaneously in the 

alternative pathway. These fragments either form convertases with subsequent complement 

proteins, producing the compliment cascade, or act as effector molecules of the immune system 

(red).   Ca fragments have chemotactic properties, while C3b is an opsonin which tags pathogens and 

cellular debris for clearance.  The classical pathway is implicated in a number of neurodegenerative 

diseases.
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1.4.4.3 Complement in glaucoma 

While the majority of complement proteins are produced in the liver (Li et al. 2007) the 

blood-brain barrier does not render the CNS complement free as there is increasing evidence 

of compliment production by epithelial and endothelial cells, monoctytes, astrocytes, 

microglia and neurons (Woodruff et al. 2009). RGCs have been shown to produce C1q, C3, 

and a number of complement receptors (Stevens et al. 2007; Orsini et al. 2014). The 

synthesis of complement proteins increases in the CNS in injury (Woodruff et al. 2009) and 

early complement activation is a feature of a number of neurodegenerative diseases (Wang 

et al. 2011; Daborg et al. 2012). Early activation of the complement system in glaucoma has 

been identified in mice (Howell et al. 2011) and rats (Ahmed et al. 2004; Kim et al. 2005) by 

microarray analysis. C1q and C3 have been detected at significantly increased levels in the 

NFL, GCL and IPL but not in the ONH following experimental glaucoma in the rat and is 

associated with increased GFAP labelling (Kuehn et al. 2006) while C1q has also been shown 

to co-localised with synapses in the IPL in early DBA2J glaucoma (Stevens et al. 2007) 

suggesting a role in dendritic and synaptic pruning. In human glaucomatous samples 

complement proteins are detected at higher levels in the retina than in control eyes, 

including downregulation of complement factor H (Tezel et al. 2010), a complement 

regulator. In human retina, C1q and C3 staining is co-localised with GFAP in the NFL, GCL and 

IPL (Kuehn et al. 2006). C1qa (the gene encoding the alpha polypeptide of C1q) deficient 

DBA2J mice are protected from progression to the later stages of glaucoma compared to 

wild-type animals (Howell et al. 2011), while C5 sufficient DBA2Js (wild-type DBA2Js are 

naturally C5 deficient) suffer earlier onset of severe glaucoma, characterised by increased 

RGC loss and axonal damage (Howell et al. 2013).   
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1.4.5 RGC atrophy and apoptosis 

RGCs apoptosis has been demonstrated in both human (Kerrigan et al. 1997; Cordeiro et al. 

2011) and experimental (Chaudhary et al. 1999; Kermer et al. 2000; Huang et al. 2005; Libby 

et al. 2005a; Calandrella et al. 2007) glaucoma. It is increasingly clear that apoptosis in other 

CNS neuropathies is compartmentalised with axon, soma and dendrites degenerating 

differentially through local pathways (Mattson and Duan 1999; Coleman and Perry 2002; 

Williams et al. 2006). This is true in glaucoma (Whitmore et al. 2005) with axonal, somatic 

and dendritic degeneration occurring at distinct times points in disease progression. 

 

1.4.5.1 Axonal degeneration 

Axon loss in human glaucoma is evident from axon counts in the optic nerve (Quigley et al. 

1982) and RNFL thinning (Bowd et al. 2000). Both features are reproduced in experimental 

glaucoma models in non-human primates (Cull et al. 2012), rat (Chauhan et al. 2002; Abbott 

et al. 2014) and mouse (Schlamp et al. 2006; Buckingham et al. 2008; Liu et al. 2014) while 

axon loss is also reported in other species (Brooks et al. 1995). Damage and loss of axons has 

been shown to precede soma loss (Buckingham et al. 2008; Soto et al. 2011) with the initial 

site of insult thought to be to the axon, as demonstrated in Bcl-2-associated X protein (BAX) 

deficient DBA2J mice (Howell et al. 2007a). In these animals RGCs are not lost through 

glaucoma induced apoptosis (Libby et al. 2005b). RGCs showed axonal degeneration only 

posterior to the glial-lamina, with the anterior axon segment left intact. These axons showed 

compartmentalised atrophy typical of Wallerian degeneration (Stoll et al. 2002); indeed 

DBA2Js with the Wlds gene were protected from axonal damage (Howell et al. 2007a) while 

in rats the gene has delayed ON degeneration following transection (Beirowski et al. 2008). 

Abnormal mitochondria, phagocytic vacuoles and neurofilament accumulation 

(characteristics of axonal degeneration) have been observed in EM sections in experimental 

glaucoma (Kitaoka et al. 2013).   
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1.4.5.2 Soma loss 

The loss of RGCs in animal glaucoma models is routinely demonstrated by cell counts in the 

GCL, a hallmark which is also identified in the human disease (Quigley et al. 1989; Lei et al. 

2009). RGC atrophy can be divided into pre- and post-BAX activation; the pre-BAX phase 

exhibiting soma and dendritic atrophy and the down-regulation of RGC specific gene 

expression (Nickells 2012). Following BAX activation the cell is consigned to a terminal fate 

through mitochondrial membrane instability, cytochrome c release and caspase activation 

(McKinnon et al., 2002). Soma atrophy, manifest as a reduction in size is observed in 

numerous species (Weber et al. 1998; Morgan et al. 2000; Shou et al. 2003; Urcola et al. 

2006). This soma shrinkage offers an explanation for the smaller RGC size observed in 

glaucoma as opposed to selective/type specific RGC loss (Morgan 2002).  

 

1.4.5.3 Dendritic atrophy  

The maintenance of the dendritic tree is also a high energy demand for RGCs. Dendrites 

represent up to 97% of the surface area of some neurons (Ulfhake and Kellerth 1981) and 

require the trafficking of sufficient mitochondria and synaptic proteins (Schwarz 2013). The 

paradigm for energy demand and homeostatic disruption in RGC axons therefore likely 

extends to dendrites as well (Crish and Calkins 2011). The atrophy of dendrites is a feature 

of glaucoma common to experimental models in the primate (Weber et al. 1998), cat (Shou 

et al. 2003), rat (Morgan et al. 2006; Urcola et al. 2006) and mouse (Leung et al. 2011; Feng 

et al. 2013; Williams et al. 2013). The overall dendritic field area is reduced, as is branching 

density. The reduction of dendrites has been shown to precede soma and axon loss. 

Dendritic atrophy has also been observed in human post-mortem retina with advanced 

glaucoma (Pavlidis et al. 2003) although here, early changes to dendritic and synaptic 

architecture have yet to be explored. Type specific susceptibility to dendritic atrophy has 

been reported by some authors (Weber et al. 1998; Shou et al. 2003; Leung et al. 2011; El-
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Danaf and Huberman 2015) but not others (Ahmed et al. 2001; Kalesnykas et al. 2012). The 

reduction of dendrites should result in decreased synaptic contact with bipolar cell axons. In 

a rat model of experimental glaucoma, synaptic loss was reported through reduction of c-

fos activation, a functional marker for synaptic activity (Fu et al. 2009). However, c-fos also 

appears to have roles in the activation of apoptosis (Oshitari et al. 2002) and so the results 

should be treated with caution. A reduction in RGC synaptic density, labelled through 

biolistic transfection with PSD95-CSP was reported following IOP elevation in a mouse bead 

model (Della Santina et al. 2013). Some RGCs with apparently unchanged dendritic 

architecture showed reduced synaptic density, indicating that synaptic loss precedes the loss 

of dendrites, rather than presenting as a consequence of dendritic loss. Interestingly, Park 

et al. (2014) have demonstrated increased expression of synaptophysin and PS9D-95 

following IOP elevation that persists for 4 weeks. This was accompanied by a decrease in 

synaptic ribbons between RGCs and bipolar cells; those synapses that persisted showed an 

enlarged morphology with increased vesicle accumulation. This may represent a corrective 

measure to the loss of synapses where immature synapses are formed in response (Park et 

al. 2014).  El-Danaf and Huberman (2015) have also shown that dendritic remodeling in M1 

photosensitive RGCs in the mouse occurs within the first week IOP elevation where 

dendrites are formed that extend to the OFF sublamina to compensate for preferential OFF 

RGC loss. The loss of dendrites and accompanying synapses has major implications for the 

functioning of RGC in light of the relationship between the dendritic and receptive fields.  
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1.4.6 RGC functional changes in glaucoma 

The first receptive field recordings made in experimental glaucoma were performed by 

(Weber and Harman 2005).  Primate retina were maintained in vitro and RGC properties 

recorded intracellularly before filling the cells with acridine orange. RGCs showed reduced 

dendritic field size and branching in the glaucomatous eyes and also demonstrated reduced 

spatial and temporal frequency sensitivity. The biophysical properties remained similar 

between groups suggesting that the functional deficits were the result of synaptic loss rather 

than the result of membrane disruption.  Subsequent electrophysiological study in a rat 

experimental model demonstrated conflicting results. Here receptive field expansion was 

shown in the glaucomatous eye (King et al. 2006), attributed to increased dendritic field size 

observed by the authors in previous work (Ahmed et al. 2001).  The increase in receptive 

field size was likely artefactual, based on their grouping for analysis; dendritic field size and 

subsequently RF size increase with retinal eccentricity which would confound the average 

RF size.  It is also possible that the IOP increase resulted in corneal ectasia which would alter 

the optics of the eye, increasing the point spread function of light and the resultant stimulus 

size on the retina of the glaucomatous eye.  More recent work in the mouse has shown type 

specific changes to RFs in experimental glaucoma. Off-transient RGCs suffered reduced RF 

size at an earlier time point compared to other cell types, occurring before detectable 

dendritic change (Della Santina et al. 2013). On-sustained, Off-sustained and Off-transient 

types showed reduced spike rates in glaucomatous eyes accompanied by reduced PSD-95 

labelling.   
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1.5 Aims and Hypothesis 

This thesis attempts to investigate the changes to dendritic structure that occur in 

experimental glaucoma. This will primarily be conducted in a rat magnetic bead model of 

glaucoma (Samsel et al. 2011) using ballistic labelling techniques, supplemented with 

immunohistochemistry (IHC), to identify RGC dendritic and synaptic loss. Various 

morphological analyses of the dendritic tree should provide a sensitive marker for the 

degree of glaucomatous damage. Dendritic loss in glaucoma appears to be the result of 

many extrinsic stressors affecting RGCs. Manipulations of the RGC extracellular 

environment, namely inhibition of the complement system and digestion of PNNs, will 

therefore be explored as potential therapies for the protection and/or re-growth of RGC 

dendrites following glaucomatous atrophy.  

 

This thesis will therefore address 4 key aims presented as separate experimental chapters.  

1. Given that morphological analysis of the dendritic tree will serve as the main marker 

for glaucomatous damage, these measurements must be free from confounding 

effects. The first aim is therefore to derive an RGC morphological classification 

system that is robust even following RGC dendritic atrophy in order to control for 

type specific bias in morphological analysis.  

 

2. Complement system activation is an early feature of glaucoma (Howell et al. 2011) 

and immune activated clearance of dendrites and synapses has been shown in other 

neurodegenerative diseases (Brown and Neher 2014). The second aim is to 

investigate whether the loss of RGC dendrites and accompanying synapses can be 

prevented through inhibition of the complement pathway.  
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3. PNNs are noted for their restriction of neuronal plasticity. The digestion of PNNs 

following experimental glaucoma induced damage may free surviving RGCs and 

allow for the recovery of dendritic field morphology. This chapter will explore the 

potential of PNN digestion as a therapy for glaucoma.  

 

4. The immediate extracellular environment of the RGC is influenced by PNNs. Changes 

to this environment as the result of glaucomatous disease processes could affect the 

functioning of the RGC. The final aim of this thesis is therefore to explore the extent 

to which the retinal GAG profile changes in both experimental and human glaucoma.  

 

 

The hypothesis of this thesis is that RGC dendritic atrophy can be lessened or prevented by 

manipulation of the RGC external environment, in particular the immune system and 

extracellular matrix.  
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Chapter 2: General Methods 

2.1 Animal Husbandry 

Experiments conducted in this thesis were in accordance with Home Office regulations and 

performed under licenses PPL 30/3084 and PIL IB6A7ED75.  Male retired breeder Brown 

Norway (BN) rats (inbred BN/RijHsd, Harlan) and male Wistar rats (outbred Hsd:WI, Harlan) 

were used. Rats were housed in 24 hour light, maintained at 40-60lux, in order to minimise 

diurnal variations in IOP (Moore et al. 1996). Food and water were available ad libitum. 

Animals were acclimatised for 2 weeks prior to any experiments. Animals were killed via 

raising concentration of CO2 (confirmed with cervical dislocation) or perfusion fixation. 
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2.2 Glaucoma induction and treatment 

Glaucoma was induced in the left eye following a modified method of Samsel et al. (2011) 

described below; the right eye served as an un-operated control. 

 

2.2.1 IOP measurement 

IOP was measured using a Tonolab rebound tonometer (Tiolat) calibrated for the Rat eye.  

Rats were awake and unrestrained, requiring only topical anaesthetic drops (0.4% 

Oxybuprocaine hydrochloride (Midoptic)) to inhibit the blink reflex. IOP was taken as the 

mean of 5 repeat readings where 6 readings were taken and the first discarded (Prashar et 

al. 2007). Prior to the induction of Glaucoma, baseline IOP for each eye was established, 

taken as the mean IOP from 3 separate days. Following induction of glaucoma, the IOP was 

measured every 3rd day until the animal was killed.  

 

2.2.2 Intracameral injection of paramagnetic beads 

Paramagnetic polystyrene beads of 5µm diameter (Kisker Biotech.) were suspended in 

balanced salt solution (BSS) to give a 30mg/ml paramagnetic bead solution. The preservative 

(Sodium Azide) in the solution was first removed by 4 successive washes (BSS) and 

centrifugations (1600g). The bead solution was then sterilised by γ-irradiation using a 

Gammacell 1000 Elite (Nordon International Inc. 22TBq Caesium Source) with a dose of 

~2000cGy. Animals were anaesthetised under Isoflurane and topical 0.4% Oxybuprocaine 

hydrochloride applied to the eye. Using a Hamilton syringe and tribevelled 33G needle (WPI 

Europe) 10µl of bead solution was injected into the anterior chamber of the left eye using a 

self-sealing incision (Fine 1991). A 0.45 Tesla magnet (Geomag) was then used to distribute 

the beads around the entirety of the iridocorneal angle in order to block aqueous humour 

outflow. This is demonstrated in figure 2.1. Topical 0.5% Chloramphenicol (Midoptic) was 

administered post injection. The right eye remained an un-operated control.  
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IOP was measured in both eyes (as in section 2.2.1) the following day and thereafter in 3 day 

intervals. The pressure increase was adjudged to be adequate provided an IOP increase of 

5mmHg over the contralateral eye sustained for 2 weeks; subsequent injections were 

undertaken if necessary. A total of 3 injections was permitted. If the IOP did not naturally 

fall to baseline following the 2 week period then Brinzolamide/Timolol maleate eye drops 

(Azarga®, Alcon) were administered daily until a return to baseline was achieved. 

 

2.2.3 Intravitreal injection of neuroprotective substances 

Intravitreal injection of neuroprotective substances were performed as a treatment for RGCs 

following experimental glaucoma. The animal was anaesthetised with isoflurane and topical 

0.4% Oxybuprocaine hydrochloride applied to left eye. In order to visualise the needle in the 

vitreous chamber the pupil was dilated by administration of topical 1% Tropicamide 

(Midoptic) and a glass cover slip (which neutralised the refraction of the lens) mounted on 

the cornea with a carbomer gel (Clinitas hydrate, Altacor). This ensured that the needle did 

not damage the retina (other than at the entry site) and allowed the checking of the return 

of retinal blood supply following the injection of fluid.  A Hamilton syringe and tribevelled 

33G needle were used. The contents were injected slowly over 5 seconds and the needle left 

in place for 30 seconds prior to removal to allow diffusion of the contents and improve the 

chance of retention. 0.5% Chloramphenicol drops were applied pre and post injection. 
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Figure 2.1 Magnetic bead model. Paramagnetic microspheres are injected into the anterior chamber 

of the rat eye using an intrastromal self-sealing incision (A). The microspheres are then drawn into 

the irridocorneal angle, as shown by the blue arrows (B), using a magnet with a machined head 

attached (C) which allows more precise distribution for a 360º occlusion of the trabecular meshwork 

(TM).  The microspheres are 4-5µm in diameter, as shown by a scanning electron micrograph (D) and 

so block the pores of the TM.  Scale bar=10µm.
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2.3 Diolistic labelling 

In order to visualise RGCs retina were labelled ‘DiOlistically’ following a modified protocol 

of (Gan et al. 2000) using a Helios® gene gun system (Bio-rad). The labelling process is 

depicted in figure 2.2.  

 

2.3.1 DiOlistic bullet preparation 

The Helios® gene gun uses 1cm bullets cut from Ethylene tetrafluoroethylene (ETFE) tubing. 

2mg of 1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate (DiI) (Life 

Technologies) was dissolved in 200µl of Methylene chloride (Sigma). The solution was 

pipetted onto 100mg of 0.7µm diameter tungsten particles (Biorad) on a glass slide. This was 

repeated with 4mg of 3,3'-Dioctadecyloxacarbocyanine Perchlorate (DiO) (Life 

Technologies). After drying the DiO and DiI coated tungsten was mixed and funnelled into a 

30cm length of ETFE tubing placed on a tubing prep station (Biorad).  The tubing was rotated 

overnight in darkness giving an even coating of tungsten particles throughout. Excess 

tungsten was removed before cutting the tubing into 1mm length bullets which were stored 

in foil at room temperature.  

 

2.3.2 Retinal dissection  

Animals were killed by CO2, confirmed by cervical dislocation. A cauteriser (low-temp 

adjustable fine tip, Bovie Medical Corporation) was used to mark the cornea nasally and thus 

maintain orientation. The eyes were enucleated and placed in Hank’s balanced salt solution 

(HBSS, Life Technologies) on ice. For dissection, a puncture was made at the limbus from 

which a cut through the sclera and retina was used to maintain orientation. The anterior 

chamber and lens were removed. The retina was gently manipulated from the sclera and 

removed through cutting the optic nerve. Retinae were transferred onto Millipore cell 

culture inserts (0.4µm pore, Fisher Scientific) and 3 smaller cuts were made in order to 
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flatten the retina into a 4 leafed flat mount, ganglion cell layer up. The vitreous was removed 

from the retinal surface to prevent obstruction to ballistic labelling.  

 

2.3.3 DiOlistic labelling  

DiO/DiI bullets were fired, one per retina, at a pressure of 828 kPa (120 psi) and a gun nozzle 

to retinal surface distance of 4cm. To prevent aggregated particles reaching the retina a cell 

culture insert (BD Falcon 3.0µm, BD Biosciences) was placed between the retina and gun. 

Retinas were then cultured on the Millipore cell culture inserts in Neurobasal-A medium (Life 

Technologies) supplemented with 1% N2, 1% 0.8mM Glutamine, 2% B-27 and 1% 0.8mM 

penicillin/streptomycin for 30 minutes at 37°C with 4% CO2 (Williams et al. 2010). Retinas 

were then flat mounted on Histobond coated slides (Fisher Scientific) by cutting out the 

insert mesh; this prevented folding of the retina when transferring to a slide. The retina was 

then fixed with 4% paraformaldehyde (PFA) in 0.5M phosphate buffer (PB, pH 7.4) for 30 

minutes and washed with phosphate buffered saline (PBS, pH 7.4). Nuclear stain (TO-PRO-3 

Iodide, Life Technologies) was applied for visualisation of ganglion cell and inner nuclear 

layers. After 10 minutes retinas were washed with PBS before application of anti-fade 

mounting media (ProLong Gold, Invitrogen), cover slipping and sealing. Retinas were imaged 

as described under confocal imaging in section 2.5.2.  
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Figure 2.2 Diolistic Labelling. Summary of Diolistic labelling process from retinal dissection to labelling and culture. 
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2.4 Histology  

2.4.1 Perfusion fixation 

Animals where tissue was needed for histology were killed via perfusion fixation. For perfusion, 

either a perfusion pump or hydrostatic pressure (reservoir ~1 meter above animal) was used. A 

barbiturate (Euthatal, Merial) overdose was administered via intraperitoneal injection. 

Anaesthesia was assessed via toe, tail and blink reflexes; when adequate the animal was 

positioned on its back and an incision made from the sternum to the diaphragm along the 

animals midline. The ribs were cut at the midline and the thoracic cavity held open with 

haemostatic clamps. The heart was freed from the surrounding connective tissue and the 

pericardium opened. PB (0.5M) with 10U/ml heparin sulphate (Wockhardt UK Ltd) was run 

through plastic tubing connected to a needle from a reservoir. The needle was inserted into the 

left ventricle of the heart and clamped in place. The right atrium was immediately cut to allow 

circulatory drainage. Following complete exsanguination the PB was replaced with ice cold 4% 

PFA and the animal was perfused until pallor of the liver was observed.  The relevant tissue was 

then removed and immersed in 4% PFA overnight at 4°C.  

 

2.4.2 Tissue preparation and sectioning 

The preparation and sectioning of whole eyes and retina is detailed in Table 2.1. Tissue was fixed 

in 4% PFA by immersion or perfusion fixation and cryo-protected in 30% sucrose. Tissue was 

embedded in optimal cutting temperature compound (OCT, Sigma), frozen in dry ice or liquid 

nitrogen cooled isopentane and kept at -80°C until sectioning. Sectioning was performed on a 

Leica CM3050S Cryostat. Sections were collected on superfrost plus slides (Fisher Scientific), air 

dried and kept at -20°C until needed.  
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Table 2.1 Cryo-sectioning details 

Tissue Fixation method Cryo-protection  Sectioning 

plane 

Section 

thickness 

(μm) 

Whole eye Perfusion fixation, 

4% PFA in 0.5M PB 

30% Sucrose Sagittal 10 

Retina Immersion 

fixation, 4% PFA in 

1M PBS 

30% Sucrose Transverse 10 

 

2.4.3 Immunohistochemistry  

Cryo-sections were air died for 30 minutes following removal from -20°C storage. Sections were 

rehydrated with PBS for 5 minutes before segregating with a hydrophobic marker pen (Vector 

laboratories). The primary antibodies including the corresponding blocks and secondary 

antibodies used are reported in the relevant chapter method sections. Details of the Primary 

antibodies used are summarised in Table 2.2. The function of primary antibodies 1B5, 2B6 and 

3B3 which detect CS/DS GAG chains following CSase ABC digestion is summarised in Figure 2.3. 

Sections were blocked for 1 hour before application of the primary antibody (substituted for PBS 

for secondary only controls). Primary antibody incubation was conducted at 4°C overnight. 

Sections were then washed 3 times in PBS and the relevant secondary antibody applied. The 

secondary antibody incubation was 2 hours at room temperature before 3 PBS washes. Nuclear 

stain (either Hoescht-33342 (10mg/ml at 1:1000, Life technologies) 1:1000 or TO-PRO-3 1:1000) 

was applied and washed with PBS 3 times after 10 minutes. Anti-fade mountant was applied and 

the slides cover slipped; once dry the slides were sealed. Slides were stored at 4°C before 

imaging once the mountant had cured. 
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Table 2.2 Antibody details 

Primary 

Antibody 

Target Dilution Species/Isoform Secondary 

Antibody 

Dilution 

Polyclonal   

Anti-PSD95  

(abcam) 

Cytoplasmic 

tail of NMDA 

receptor 

0.9mg/ml 

at 1:250 

Rabbit/IgG Goat anti-

rabbit IgG AF 

555 

(abcam) 

2 mg/ml 

at 1:500 

1B5(+)* 

(gift from 

Prof. 

Caterson) 

Unsaturated  

C-0-S ‘stub’  

2µg/ml at 

1:5 

 

Mouse/IgG Goat anti-

mouse IgG 

AF 488 

(abcam) 

2 mg/ml 

at 1:200 

2B6(+)* 

(gift from 

Prof. 

Caterson) 

Unsaturated 

C-4-S ‘stub’ 

2µg/ml at 

1:5 

 

Mouse/IgG Goat anti-

mouse IgG AF 

488 

(abcam) 

2 mg/ml 

at 1:200 

3B3(+)* 

(gift from 

Prof. 

Caterson) 

Unsaturated  

C-6-S ‘stub’  

2µg/ml at 

1:5 

 

Mouse/IgM Goat anti-

mouse IgM 

AF 488 

(abcam) 

2 mg/ml 

at 1:200 

*(+) refers to the presence of a digestion step using CSaseABC prior to antibody block. 
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Figure 2.3 Epitopes of “stub” antibodies. Chondroitin sulphate (CS) and dermatan sulphate (DS) GAG chains are attached to a lectican core protein via a linkage 

region. These chains consist of repeating Glucuronic/Iduronic acid and N-acetyl-Galactosamine disaccharides. These sugars can be non-sulphated (C-0-S), 4-

sulphated (C-4-S) or 6-sulphated (C-6-S). The enzyme CSase ABC remove CS/DS disaccharides leaving a terminal unsaturated residue “stub” that is either C-0-S, 

C-4-S or C-6-S. These epitopes can be recognised by antibodies 1B5, 2B6 and 3B3 respectively. The epitopes generated therefore reflect the sulphation pattern 

of the GAG chain.  Adapted from Caterson (2012).
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2.5 Imaging and Image Analysis 

All image analysis was conducted on masked images. Following image capture, a custom macro 

(developed by our group (Cross 2012)) in Image J was used to mask raw image files for 

processing and analysis. The macro replaced the image file name with a random 6 digit number, 

saving the file in a new masked folder.  

 

2.5.1 Imaging and quantification of fluorescent intensity 

Following IHC cryo-sections were imaged using a Leica DM6000B (with Leica DFC350FX camera) 

with an x20 air objective (NA 0.7). Multi-channel images were captured using the appropriate 

filter cubes for the secondary antibody fluorophores and nuclear stains (see Table 2.3). For 

fluorescent intensity measurements, firstly the background fluorescence level was set using 2° 

only control sections. Positive control sections were then used to set suitable imaging 

parameters in order to avoid saturation in subsequent imaging. These parameters were kept 

constant between sections of the various experimental groups. Quantification of the 

fluorescence intensity in regions of interest (ROI) was performed in FIJI on 8-bit images in the 

relevant colour channels. The nuclear layers were used to delineate the boundaries of the 

GCL/NFL complex, IPL and INL. In these ROIs the average pixel intensity was measured (Figure 

2.4) Data was analysed using microsoft excel and statistical analysis performed using SPSS 

(version 18.0-23.0 IBM).  
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Figure 2.4 Fluorescence quantification. The retinal layers (GCL/NFL complex, IPL, INL, OPL, INL, 

Photoreceptor segments) were isolated as discrete ROIs for the quantification of fluorescent intensity as 

seen in the example images of NFL/GCL and IPL isolation. The mean pixel intensity (fluorescent intensity) 

could then be related to antibody binding and the relative amount of antibody target present in the tissue. 

The ROIs excluded blood vessels from analysis.  
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2.5.2 Imaging flat mounted retina 

A Zeiss LSM 510 confocal microscope (Carl Zeiss AG) with an x20 air objective (NA 0.8) was 

used to image both RGCs labelled through Diolistics and nuclear layers for cell counts in flat 

mounted retinas.  

 

Table 2.3 Parameters for imaging retina 

Probe Target Microscope Peak 

excitation 

(nm) 

Peak 

emission 

(nm) 

Channel 

colour 

DiI Cell 

membrane 

Zeiss LSM 510, 

HeNe543 laser 

550 570 Red 

DiO Cell 

membrane 

Zeiss LSM 510, 

Argon/2 488 

laser 

490 505 Green 

TO-PRO-3 Nucleus Zeiss LSM 510, 

HeNe633 laser 

642 655 Blue 

Alexa 

Fluor 488 

Relevant 

primary Ab 

Leica DM6000B, 

GFP filter cube 

500 520 Green 

Alexa 

Fluor 555 

Relevant 

primary Ab 

Leica DM6000B, 

N2.1 filter cube 

555 568 Red 

Hoechst-

33342 

Nucleus Leica DM6000B, 

A4 filter cube 

350 454 Blue 

 

2.5.2.1 RGC imaging in flat mounted retina 

Z-stack 1024x1024 pixel images, at a scaling of 0.54µm/pixel on the x and y axes with a slice 

thickness of 0.5-1µm/pixel on the z axis were captured. This gave a 556µm2 surface area that 

was more than adequate to capture the entire dendritic arbour of any RGC imaged, while the 

depth could be varied according to sample thickness in order to include full dendritic 
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stratification. Multichannel images were captured of single RGCs where RGC labelling was 

captured in channel 1 and/or 2 (the excitation and emission wavelengths of the various RGC 

labels are displayed in Table 2.3) with TO-PRO-3 stained ganglion cell and inner nuclear layers 

captured in a third channel. The retinal layers allowed for the measurement of RGC stratification 

within the IPL. RGCs were identified based on the presence of an axon and residence within the 

GCL. The eccentricity of each imaged RGC, measured as the distance in µm from the optic nerve 

head in the x and y plane was recorded using a custom scanning stage with a stepper motor 

attached to the microscope.  

 

2.5.2.2 Cell counts  

TOPRO-3 stained cell nuclei in the GCL were imaged in flat mounted retina. A 556µm2 area 

(1024x1024 pixel) was captured using the at x20 objective. Images were taken superior-nasally, 

superior-temporally, inferior-nasally and inferior-temporally at 1000µm and 3000µm from the 

ONH giving 8 images per retina. Figure 2.5 shows the imaged areas in relation to their position 

in the retina. Images were cut to 500µm2 using Image J, this gave an overall area of 2% that of 

the total retina for central and peripheral retina from which to estimate cell loss. Images were 

masked using a custom macro and cell counts of the GCL were performed using the counter 

plugin for Image J. Data was analysed using microsoft excel and statistical analysis performed 

using SPSS.  
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2.5.3 RGC Image Analysis 

Changes to the morphology of the dendritic arbour are a sensitive marker for early degeneration 

and potential recovery. This morphology was quantified through a number of methods. Data 

was analysed using microsoft excel and statistical analysis performed using SPSS. 

 

2.5.3.1 Sholl analysis 

Sholl analysis is a measure of branching density and complexity performed through measuring 

the frequency of dendrite intersections of circles of increasing diameter, concentric with the cell 

soma. The concept is demonstrated in Figure 2.6 (Panel B). Sholl analysis was performed 

automatically using the simple neurite tracer plugin (Longair et al. 2011) for Fiji (Schindelin et 

al. 2012). RGCs were first traced in 3D before running Sholl analysis where distance between 

circles was set to 10µm and the number of rings set to 40 giving a total measurable distance of 

400µm from the soma centre. This was adequate to accommodate even the largest RGC. 

 

2.5.3.2 Mean and total dendritic length 

The simple neurite tracer plugin allowed for the collection of tracings as data of individual 

dendrite length (Figure 2.6 Panel A) organised in a hierarchial manner (i.e. dendrite ordering, 

branching lineage). This data was used to calculate total number of dendrites, total dendrite 

length and average dendrite length of the dendritic tree. Dendrites were then grouped 

according to the centrifugal method and the number, total length and mean length calculated 

for each dendrite order (i.e. primary dendrites, secondary dendrites and so forth). 
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Figure 2.5 Imaging nuclear layers for cell counts. A) Images were taken at eccentricities of 

1000µm and 3000µm from the ONH in all 4 retinal quadrants. The sampled area of each image 

was cut to 500µm2. This gave a total sampled area of 1000mm2 each for central and peripheral 

retina representing 2% of the total retinal area of 50,265mm2 (assuming 4000µm radius)
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Figure 2.6 RGC image analysis. A) Dendritic length measured using the simple neurite tracer plugin is stored in a hierarchical manner, allowing separation of data 

into, for example, primary (green) and secondary (purple) dendrites. B) Sholl analysis measures the number of dendrite intersections of concentric circles of 

increasing diameter. This is performed automatically by the simple neurite tracer plugin. C) Connecting the dendritic tips gives the dendritic field area. D) The 

depth of stratification is measured in re-sliced stacks where the depth of dendritic tips (yellow) is expressed as a percentage of IPL depth (green).  
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2.5.3.3 Dendritic field size 

Dendritic field size was measured using the polygon tool in FIJI where the outer dendritic 

terminals were connected and the area of the shape in pixels measured (Figure 2.6 Panel C). 

Area in pixels was then converted to µm2. The dendritic field diameter was also measured 

through assuming a circle of equal area and finding diameter through (√x/π)2 where x is area. 

Data was analysed using microsoft excel and statistical analysis performed using SPSS. 

 

2.5.3.4 Dendritic stratification depth 

The stratification of dendrites in the IPL into one of the 5 layers identifies a cell as either ON 

or OFF in nature (Dowling 2012). This metric is also used in the classification of RGCs into 

morphological types (Sun et al. 2002a). Dendritic stratification depth was measured in by re-

slicing the z-stack image to the x,z,y plane. The total thickness of the IPL was measured as 

the distance between GCL and INL nuclei (Figure 2.6 Panel D). The distance from the GCL to 

dendritic tips was then expressed as a percentage of the IPL thickness. RGCs whose dendrites 

stratified at >40% were classified as On RGCs. 
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Chapter 3: RGC classification in disease  

3.1 Introduction 

The study of RGC morphology is vital in the understanding of glaucoma and other inner 

retinal degenerative diseases. RGC morphology, concomitant with function, provides a 

correlate for the mechanism of visual decline. The morphological differences between 

functionally discrete RGC types are more subtle in the rodents than the well-defined primate 

RGCs. Therefore, classification has tended towards the grouping of cells based on the size, 

branching density and stratification of the dendritic tree in the mouse (Sun et al. 2002b; 

Coombs et al. 2006) and rat (Huxlin and Goodchild 1997; Sun et al. 2002a). RGC classification 

in retinal degenerative diseases, where the dendritic architecture (including dendritic field 

size and branching density) is altered (Weber et al. 1998; Shou et al. 2003; Leung et al. 2011; 

Kalesnykas et al. 2012; Feng et al. 2013), is thus problematic. Without classification, bias in 

the labelling of any given RGC type could show artifactual shrinkage or recovery of the 

dendritic tree in disease based on either the physiological difference in morphology or type 

susceptibility (Weber et al. 1998; Shou et al. 2003; Feng et al. 2013; El-Danaf and Huberman 

2015).  

 

RGCs can also be classified by immunohistochemical and genetic means.  The former, is 

limited in that only a few type specific labels are available. Thy1 and Brn3 label all RGC 

indiscriminately (Barnstable and Drager 1984; Nadal-Nicolas et al. 2009), whereas SIM-32 

labels a subset (RGCA) more intensely than other RGCs (Sanes and Masland 2015). Antibodies 

directed against melanopsin and CART can discriminate the group of 5 melanopsin 

containing RGCs and the bistratified ON-OFF DSGCs respectively. A number of genetic 

models now selectively label certain RGC types including RGCA in Kcng4-cre;Thy1-stop-YFP 

transgenic mice, local edge detector RGCs in TYW3 transgene mice (JAM-B–CreER;Thy1-

STOP–YFP) and ON DSGCs in Homeobox d10-GFP transgenic mice (Yonehara et al. 2009; 
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Dhande et al. 2013; Duan et al. 2015). However, these mostly rely on Thy1 promoters to 

selectively express fluorescent proteins in RGCs and Thy1 is known to be downregulated 

early in glaucoma (Schlamp et al. 2001; Huang et al. 2006). The discrepancy between the 

observed morphology of Thy1 driven fluorescent labelling and diolistic labelling in glaucoma 

was shown by Williams et al. (2013). RGCs showed significantly reduced branching densities 

when viewed by YFP compared to DiO demonstrating that Thy1.YFP expression was 

compromised and did not reveal the dendritic tree in its entirety. As the use of fluorescent 

dyes such as in diolistics is not contingent on cell health, morphological classification 

represents the best method to classify RGCs at present. The possibility that a robust RGC 

classification system can be derived from dendrite features that are relatively resistant to 

the effects of early disease was explored, based on the observation that early to moderate 

RGC damage consistently affects distal dendrites, leaving more proximal dendritic structures 

intact (Weber et al. 1998; Morgan et al. 2006; Williams et al. 2013). This concept is illustrated 

in Figure 3.1 based on modelling of typical Sholl profiles in normal and diseased retina.  The 

new classification system was based on the RGC types defined by Sun et al. (2002a) which 

represent the most complete classification of rat RGCs.  RGCs were classified into RGCA, 

RGCB, RGCC and RGCD groups. These types and subtypes are summarised in table 3.1. RGCA 

are typically large cells with large somas and dendritic fields. Their dendrites branch radially 

and at regular distances and give a moderate branching density. RGCB are typically small cells 

with small somas and small, densely branched dendritic fields which are often asymmetric. 

RGCC soma and dendritic fields are typically sized between RGCA and RGCB, they branch 

radially but at a greater density and with a more irregular branching pattern and more 

curved dendrites than RGCA. RGCD are also of moderate size and are easily identified by their 

bistratified dendritic tree.  
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Fig 3.1 Sholl plot model: normal and diseased cells. Graphical representation of a Sholl plot from 

healthy and degenerate RGCs as observed in Weber et al., (1998), Morgan et al., (2006) and Williams 

et al., (2013). Under moderate degeneration Sholl plots show significant deviation from healthy plots 

distal to the soma, with little deviation proximal to the soma. The difference between healthy and 

diseased sholl profiles is highlighted by the gray shaded area. Primary and secondary dendrites occur 

within this proximal region and are therefore more likely preserved. Measurements of primary and 

secondary dendrites may therefore provide robust and stable classification criteria. 
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Table 3.1 Sun et al. (2002a) classification parameters 

Type Subtype Soma size (µm) 

Mean ± SD  

Range  

DF diam. (µm) 

Mean ± SD  

Range  

Stratification (% 

of IPL depth) 

Mean ± SD  

 

RGCA A1 24±3 

18-32 

310±71 

142-430 

79±7 

A2i 23±5 

12-32 

294±55 

182-391 

35±14 

A2o 78±7 

RGCB B1 17±3 

11-23 

165±31 

120-224 

41±12 

B2 14±2 

11-18 

135±23 

66-178 

52±8 

B3i 16±3 

10-25 

181±41 

110-284 

41±14 

B3o 81±5 

B4 15±2 

10-20 

156±35 

72-219 

36±16 

RGCC C1 17±2 

12-21 

306±81 

168-467 

74±10 

C2i 16±2 

11-21 

239±46 

145-321 

46±13 

C2o 78±9 

C3 15±3 

10-21 

239±78 

127-455 

77±10 

C4i 15±3 

8-21 

224±47 

139-320 

49±12 

C4o 80±7 

RGCD D1 15±5 

8-25 

151±31 

93-203 

38±17/62±12* 

D2 15±3 

8-21 

224±47 

98-334 

38±12/64±9* 

RGCs labelled with Inner (i) and outer (o) represent cells that are morphologically similar other than 

the retinal lamina in which they stratify (i= sublamina b/ON; o= sublamia a/OFF). *RGCD are 

bistratified.  
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3.1.1 Hypothesis 

A new set of parameters based on primary and secondary dendrite features can be used to 

indicate the class composition of a population of labelled RGCs. 

 

3.1.2 Aims 

1. To find new parameters of primary and secondary dendrite features that can 

describe RGC types that would be resistant to the effects of early dendritic 

degeneration. 

2. To derive a classification model based on these variables that is validated against a 

current morphological classification (Sun et al. 2002a) based on the entire dendritic 

field. 
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3.2 Methods 

3.2.1 DiOlistics labelling and imaging 

DiOlistic labelling was conducted as described in section 2.3. Briefly, 15 BNs (5 months) were 

killed; their retinas dissected and labelled Diolistically with DiO and DiI. Following 30mins 

incubation at 37°C, 4% CO2, retinas were fixed in 4% PFA, and TOPRO-3 nuclear stain applied. 

Single RGCs were imaged on a Zeiss LSM 510 confocal microscope as described in section 

2.7.1. The eccentricity of each imaged RGC relative to the optic nerve head was recorded 

using the stepper stage on the confocal microscope which is accurate to 1μm. Only RGCs 

with a dendritic tree easily distinguishable from other cells and whose primary dendrite 

origins at the soma were not obscured were included for analysis.  

 

 3.2.2 New measurements 

All measurements were conducted on z-collapsed images using Image J unless otherwise 

stated. The following dendrite parameters were determined: 

 

3.2.2.1 Primary dendrite features 

The following primary dendrite features were measured: 

 The number of primary dendrites (PD) – dendrites originating directly from the 

soma. 

 Mean primary dendrite length (PDL) - the distance from the soma to the primary 

branch point was measured for each primary dendrite using the simple neurite 

tracer plugin (Longair et al. 2011) in Fiji (Schindelin et al. 2012) and a mean distance 

given for each cell. 

 Primary branch point field (PBPF) area - the primary branch points were connected 

and the area of the resultant field measured to give the PBPF area. 
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 PBPF centre of gravity offset (CGO) from the soma - as a measure of asymmetry in 

the dendritic tree the PBPF’s centre of gravity offset from the soma was measured. 

The PBPF centroid was found and its distance from the soma centre measured. This 

was expressed as a percentage of the diameter of the PBPF to account for RGC size 

variation. 

 PD distribution - as a further measure of asymmetry, the distribution of primary 

dendrites about 360° of the cell soma was measured using the oval profile plugin in 

Image J (NIH). A circle with a radius of 25µm from the soma centre was drawn, and 

the angle at which each primary dendrite intersected the circle measured. The angle 

formed between the primary dendrite immediately clockwise and counter clockwise 

of the axon was taken so that a larger angle would represent greater asymmetry in 

the PBPF. 

 PD cross-sectional area – as a measure of primary dendrite thickness at the origin 

from the soma, primary dendrite traces derived from the simple neurite tracer 

plugin were re-sliced (to either ZX or ZY) to give a cross-sectional view and the area 

at the origin measured.  

 PD Feret diameter – As a further measure of dendrite thickness, the minimum and 

maximum Feret diameters of the re-sliced dendrite were measured. 

 

3.2.2.2 Secondary dendrite features 

The following secondary dendrite features were measured: 

 Secondary branch point field (SBPF) area – measured as with PBPF area 

 SBPF centre of gravity offset (CGO) from the soma – measured as with PBPF CGO 

 Proximal branching density – as a measure of branching density in the proximal 

dendritic tree the PBPF area was expressed as a percentage of the SBPF area.  
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3.2.2.3 Other features 

To increase the likelihood of successful classification, other features that should remain 

resistant to early degeneration were measured. The following features were measured: 

 Soma diameter – calculated assuming that the measured soma area was circular 

 RGC eccentricity – the distance of the RGC soma (as recorded during imaging) from 

the ONH expressed as a vector length. 

 

3.2.3 Sun classification 

RGCs were classified according to (Sun et al. 2002a) on the basis of dendritic field diameter, 

dendrite stratification within the IPL, soma diameter and branching density as shown in table 

3.1. Sholl analysis using FastSholl (Gutierrez and Davies 2007) plug-in for MATLAB 

(MathWorks) was conducted on all cells. For each of the resulting groups, the mean and SD 

of each new variable was calculated (see appendix A).  
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3.2.4 Principal component analysis 

RGCs were first randomly assigned two one of either a training data sample or hold-out 

sample. Each RGC was assigned a random number from a chi-square distribution with 1 

degree of freedom using the random number generator function in SPSS (version 18.0, IBM). 

The numbers were then sorted in ascending order with the first 30 RGCs assigned to a hold-

out sample and the remaining 101 RGCs to the training sample. A principal component 

analysis (PCA) was performed in SPSS to reveal which variables were useful in discriminating 

RGC types. For PCA, no group variables are defined and variance between the whole 

population is analysed. In this way, variables that contribute highly to population variance 

are identified and those that do not can be discarded. PCA provides more meaningful results 

with correlation between variables. Therefore, Pearson’s correlation and Spearman’s rank 

tests (SPSS) were performed on normally and non-normally distributed variables 

respectively. New variables which showed a significant correlation (P<0.05) to at least ¾ of 

total variables were included. A PCA with extraction of Eigenvalues greater than 1 through 

an oblique (promax) rotation with Kaiser normalisation was performed on the training 

sample including only the remaining variables. 
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3.2.5 Discriminant analysis 

A discriminant analysis (SPSS) was performed in order to reveal if the new parameters could 

classify RGCs into the same groupings as Sun et al. (2002a). For the analysis, each RGC was 

assigned a group (according to (Sun et al. 2002a)). Prior probability for each of these groups 

was calculated based on group percentages of the training sample population to account for 

frequency of RGC types among a population. The analysis was run so that the RGC types 

were defined based on the new variables from the training sample (n=101) and then used 

to discern the RGC type of each cell in the hold-out sample (n=30). The ability of the new 

variables to discriminate RGC type was adjudged based on the percentage of correctly 

classified cells.  
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3.3 Results  

3.3.1 Classification according to Sun 

One-hundred and thirty one RGCs from 20 retinas imaged were included in the analysis based 

on the described exclusion criteria. Typical cells for each of the 4 classes are shown in Figure 3.2. 

The mean Sholl profile for each RGC type is plotted in Figure 3.3. Classification according to (Sun 

et al. 2002a) criteria gave comparable percentages of cell types in the overall population, 

summarised in Table 3.2. Our sample therefore provides a similar breakdown of the RGC 

population for the derivation of classification parameters.  

 

Table 3.2 Percentage of RGC types in sample 

 RGC type (% of total number of RGCs) 

RGCA RGCB RGCC RGCD 

Present study 24 29 32 15 

Sun et al. 

(2002a) 

18 29 35 18 
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Fig 3.2 RGC types. Z-compressed confocal images and tracings of RGCs of each type demonstrating typical morphology. Bistratified RGCD is depicted as inner (i) 

and outer (o) IPL stratifications. Arrows denote axon. Scale bar = 100µm
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Figure 3.3 Variation of Sholl plots between RGC types.  Sholl plots of RGCs grouped according to type 

reveals the variation within the pooled population when compared to the mean Sholl plot. These 

highlight how analysis of an unclassified population of RGCs could suffer from intrinsic bias through 

disproportionate numbers of cell types; the leftward shift observed in degeneration (see figure 3.1) is 

also seen here when comparing healthy types. Error bars show SEM. 

 

 

Figure 3.4 Distribution of recorded RGCs. Retinal eccentricity of 114 RGCs shown as distance (mm) from 

the ONH.  No one RGC type appears localised to a particular retinal quadrant or eccentricity 

demonstrating minimal regional labelling biases in DiOlistic labelling. 
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3.3.2 Retinal eccentricity does not affect classification 

The retinal locations of 114 RGCs are shown in Figure 3.4 (the locations of 26 cells were not 

measured). One-way ANOVA with post-hoc Bonferroni showed no significant difference 

between RGC types with respect to retinal eccentricity when expressed as vector length 

(P>0.05). This confirmed that labelling was not regionally biased. RGC distance from the ONH 

centre expressed as distance in x, y plane and vector distance all showed no correlation (P>0.05) 

to any new variables or to dendritic field diameter and soma diameter demonstrating that 

retinal eccentricity had no effect on variable measurements and no effect on classification 

according to (Sun et al. 2002a)
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3.3.3 RGCs differ in size and asymmetry of the proximal dendritic tree 

RGC distance from the ONH in the x and y plane and as vector length were all discarded as 

variables for PCA due to the lack of correlation (as discussed in section 3.2.4). Primary dendrite 

length and proximal branching density showed a significant correlation with fewer than half of 

the total variables (P>0.05) and so were excluded from PCA. The remaining variables all showed 

a significant correlation (P<0.05) to at least ¾ of total variables and so were included. A Kayser 

Myer Olkin measure of sampling adequacy (0.844) indicated a sufficiently large sample size 

while Bartlett’s test of sphericity (P=0.0001) allowed rejection of the null hypothesis that the 

correlation matrix was an identity matrix. PCA produced a 3 component solution that accounted 

for 77.1% of the variance within the data. The rotated pattern matrix showing the variables 

contributions to the components is shown in Table 3.3. The first component comprised soma 

diameter, primary dendrite cross-sectional area and min and max Feret and accounted for 45.5% 

of the variance in the data. This component represents the size of the RGC soma and primary 

dendrite thickness. The second component comprised the number of primary dendrites and 

PBPF and SBPF areas representing proximal dendritic tree size (accounting for 21.2% of the 

variance). The third component comprised both PBPF and SBPF CGO and PD range (accounting 

for 10.4% of the variance) thus representing asymmetry in the proximal dendritic tree. The 

contribution of the individual variables to the 3 dimensional separation of the RGC population 

is shown in Figure 3.5. 
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Table 3.3 PCA rotated pattern matrix  

Variable Rotated pattern matrix 

Component 1 Component 2 Component 3 

Soma diameter 0.713 0.296 -0.31 

PD max feret 0.991 -0.047 -0.009 

PD min feret 0.974 -0.027 -0.045 

PD cross-sectional 

area 

0.989 -0.024 0.007 

PBPF area 0.042 0.852 0.103 

SBPF area 0.097 0.864 0.176 

PDN -0.118 0.715 -0.199 

PD asymmetry 0.074 -0.495 0.520 

PBPF CGO -0.080 0.064 0.871 

SBPF CGO -0.013 0.110 0.928 

Bold text denotes component to which each variable gives its greatest contribution
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Figure 3.5 Principle component analysis of RGCs. Figure legend overleaf. 
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Figure 3.5 Principle component analysis of RGCs. The component scores of each RGC (n=131) for the 3 

components are plotted in X, Y and Z dimensions (A, C, D and E). When labelled according to type 

(RGCA=blue, RGCB=green, RGCC=orange, RGCD=purple), separation of the population into RGC types along 

the components can be observed. The contribution of the individual variables to this separation can be 

seen when the variable’s weightings towards each component are plotted in the same rotated space (B, 

F, G and H). The components represent condensed variables derived from correlated/co-varying variables 

(those encompassed by broken lines). Plots C, D and E are projected to only X and Y planes in order to 

demonstrate the distribution of the groups along individual components. The contribution of the variables 

to this distribution is shown by the weightings plotted underneath (F, G and H); the component that sits 

at 0,0 (as shown by the red broken lines) shows little contribution from its constituent variables to the 

separation. RGC soma and proximal dendritic field size, where RGCA>RGCC>RGCD>RGCB, can be seen in 

the population distribution across Components 1 and 2 (C and F). Here RGC groups are partially separated. 

Further separation of RGCB and RGCD from RGCA and RGCC is achieved along the 3rd component through 

higher asymmetry in the proximal dendritic field (D and G, E and H). 
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3.3.3 Discriminant analysis 

RGC groups were separated by 3 discriminant functions.  The loadings of the individual variables 

onto the discriminant functions are shown in table 3.4. The first discriminant function accounted 

for 71.7% of between group variance within the data and describes RGC proximal dendritic tree 

size and symmetry and, soma size and dendrite thickness. It correlated positively with soma 

diameter, primary dendrite cross-sectional area, min and max Feret, SBPF area and number of 

PDs. The first discriminant function also showed a negative correlation with PD range. The 

second discriminant function (which accounted for 22.2% of the remaining between group 

variance) correlated positively with PBPF CGO, describing asymmetry in the proximal dendritic 

field, with a contribution from soma and dendrite thickness. The third discriminant function 

accounting for the remaining 6.2% of between group variance; the function showed a negative 

correlation to SBPF CGO and a positive correlation to PBPF area. The largest determinant of RGC 

classification is therefore primary dendrite thickness and soma and proximal dendritic tree size, 

with a smaller contribution of asymmetry of the proximal dendritic tree. This is evident in the 

clear separation of the group centroids (table 3.5) where the first discriminant function 

separates all RGC types in order of size (where RGCA>RGCC>RGCD>RGCB). The separation was 

achieved due to the significant difference of the centroids between RGC groups (P=<0.001). A 

Chi-square statistical test of the discriminant functions showed that function 3 gave no 

additional discriminating ability (P=0.176) and so does not contribute to the separation of RGC 

groups. 
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Figure 3.6 Discriminant analysis of RGCs. The discriminant scores of each RGC (n=131) are plotted in X, Y dimensions corresponding to the first two discriminant 

functions. Here variance between groups is maximised so that group centroids (black pentagons) are at maximal distance from each other. Individual RGCs are 

classified into the group whose centroid is closest (the black lines define the approximate boundaries for each group). When labelled according to type it can be 

seen that the majority of RGCs are correctly classified to their group by the discriminant functions.  
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Table 3.4 Correlations between variables and discriminant functions 

Variable Structure matrix 

Function 1 Function 2 Function 3 

Soma diameter 0.619 0.361 0.183 

PD max feret 0.525 0.378 0.107 

PD min feret 0.543 0.467 0.199 

PD cross-

sectional area 

0.566 0.416 -0.028 

PBPF area 0.300 -0.353 0.560 

SBPF area 0.487 -0.131 0.088 

PDN 0.481 -0.268 0.067 

PD asymmetry -0.552 0.483 -0.233 

PBPF CGO -0.326 0.450 -0.302 

SBPF CGO -0.328 0.119 -0.605 

Bold text denotes function to which each variable gives its greatest contribution 

 

Table 3.5 RGC group Centroid 

Group Group Centroids 

Function 1 Function 2 Function 3 

RGCA 1.912 0.189 -0.284 

RGCB -1.306 -0.373 -0.379 

RGCC 0.126 -0.048 0.427 

RGCD -0.908 1.488 0.194 



 

81 

 

3.3.4 RGC types are discriminated by proximal dendritic morphology  

The discriminant functions generated through discriminant analysis correctly classified 73.3% 

(n=74) of RGCs from the training sample and 63.3% (n=19) from the hold out sample. This was 

greater than the correct by-chance classification of 25%. The predicted group percentages for 

each RGC type are summarised in table 3.6. These data show that RGC groups can usefully be 

discriminated by primary and secondary dendrite variables. Misclassification followed a similar 

trend with roughly 25% misclassified to the RGC type closest in morphology to the correct group. 

All misclassified RGCs had at least 1 variable (average 3 variables) that was greater than 1 

standard deviation from the mean of its correct type. 

 

3.3.5 Population variance in new parameters does not adequately define groups  

The relationship between population wide variance and between group variance was explored.  

The component scores generated through PCA were used as variables for discriminant analysis. 

The components alone achieved only a correct classification in 62.6% of the training sample and 

60% of the hold out sample. This indicates that population variance in morphology does not 

adequately describe the difference between groups.  

 

3.3.6 RGC subgroups cannot be differentiated 

The difference in population variance and between group variance could be driven by the 

division of RGCs in subgroups. Discriminant analysis was performed as described initially but 

where RGCs were grouped according to the subgroups described by Sun et al. (2002a). The 

original hold-out sample did not contain two of the subgroups and so the sample size was 

increased to 40 RGCs following the same random assignment method (section 3.2.4). Again, 

prior probability was calculated based on subgroup frequency.  Correctly classification was 
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achieved in 53.8% (n=49) of RGCs from the training sample and 35% (n=14) from the hold out 

sample. This was greater than the correct by chance classification (8.3%) but did not give an 

adequate classification indicating that the ability to resolve subgroups is beyond the new 

variables. 

 

Table 3.6 Summary of classification 

 A priori 

RGC type 

Predicted RGC type (% correct) Number of A 

priori RGC  RGCA RGCB RGCC RGCD 

Training 

sample 

(n=101) 

RGCA 75% 0% 25% 0% 24 

RGCB 0% 64% 25% 11% 28 

RGCC 6% 12% 77% 6% 34 

RGCD 7% 13% 0% 80% 15 

Number of 

predicted 

RGC  

21 24 39 17  

Hold-out 

sample 

(n=30) 

RGCA 71% 0% 29% 0% 7 

RGCB 0% 70% 20% 10% 10 

RGCC 25% 0% 63% 12.5% 8 

RGCD 0% 0% 60% 40% 5 

Number of 

predicted 

RGC 

7 7 12 4  
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3.4 Discussion  

These data show that RGCs can be discriminated on the basis of soma and proximal dendritic 

field size. This is in agreement with (Sun et al. 2002a) and other classifications based on RGC 

morphology (Sun et al. 2002b; Coombs et al. 2006) where larger RGCA and RGCC are 

separated from the smaller RGCB and RGCD based on soma and dendritic field size. Dendrite 

thickness is also an effective parameter for classifying RGC types due to its strong 

relationship with other features of dendritic tree morphology. Primary dendrite thickness 

has been found to correlate with soma size, dendritic field size, total dendritic length and 

branching density in rat triceps surae motoneurons (Chen and Wolpaw 1994) and cat spinal 

α-and γ-motoneurons (Ulfhake and Cullheim 1981; Ulfhake and Kellerth 1981), all 

parameters used in the classification of RGC types. Secondary dendrite thickness, at the 

origin of the primary branch point, was also shown to correlate to dendritic field size in 

mouse RGCs (Loopuijt et al. 2007). However, its subsequent use in a classification model 

including total number of branch points, stratification and eccentricity yielded only 9 

different types of RGC, none of which the authors cared to compare to previously reported 

types (Loopuijt et al. 2007). Asymmetry in the proximal dendritic tree has a small 

discriminatory effect on RGC types; a parameter that is often overlooked in morphological 

analysis. 

 

Given the large variability in RGC morphology and overlap between groups for any single 

morphological criterion, complete neuronal classification would prove challenging. 

Consistent with this, all misclassified RGCs exhibited one or more variable measurement 

greater than 1SD from the mean of its type. Interestingly, the same problem was reported 

by (Jelinek and Fernandez 1998) when classifying cat RGCs based on fractal dimension where 

discriminant analysis returned 62.3% correct classification. The inclusion of dendritic 

stratification depth within the IPL could enhance the correct classification of RGC types, in 
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particular the classification of RGCD due to their bistratified dendritic tree. Population wide 

variance does not describe between group variance. This was attributed to the subdivision 

of the groups into further discrete RGC types.  However, the new parameters only achieved 

a correct classification of 35% based on the subgroups described by (Sun et al. 2002a). This 

would likely increase given a larger population from which to construct a more 

representative model. It is also possible that the misclassified atypical cells represent 

previously unidentified cell types given that the number of RGC types currently defined in 

the closely related mouse is 22 (Voelgyi et al. 2009). 

 

Robust discrimination between cell types is important in the study of degeneration, both in 

terms of reducing pseudo-degenerative effects owing to inter-type differences in dendritic 

morphology and also in investigating inter-type susceptibility to disease. Type specific 

degeneration has been noted in the primate (Weber et al. 1998), cat (Shou et al. 2003), 

mouse (Leung et al. 2011; Feng et al. 2013; El-Danaf and Huberman 2015) and rat (Thanos 

1988) but not in DBA/2J (Jakobs et al. 2005) or thy1-YFP-H transgenic mice with experimental 

glaucoma (Kalesnykas et al. 2012). The Sholl plots in Figure 3.3 demonstrate the differences 

in branching pattern and density between RGC types and illustrate effectively how disparity 

in cell types between populations could be confused for atrophy in studies of degeneration. 

Given that significant reduction in branching occurs only in the distal region of the dendritic 

tree, as illustrated in Figure 3.1, and that the soma only undergoes substantial change with 

advanced/chronic glaucoma (Weber et al. 1998) the new parameters should remain 

relatively robust. However, the ability of the system to classify cell types will likely diminish 

under substantial degeneration.  
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The use of DiOlistic labelling resulted in a number of cells being excluded from analysis as 

the soma and proximal dendrites were obscured. However DiOlistic labelling is not 

contingent on cell health (Honig and Hume 1986). This is vital given that the classifications 

purpose is for use in degeneration where Biolistics is affected by the viability of 

transcriptional pathways necessary for the expression of fluorescent markers (Williams et 

al. 2013). Ballistic labelling techniques are open to the criticism that they bias for larger cell 

types since the likelihood of a hitting a cell increases with its size. This bias was not observed 

suggesting that the difference in cell soma size is insufficient to have a large effect on 

labelling probability.  A higher proportion of RGCA (at 24%) was found in comparisons to the 

18% reported by (Sun et al. 2002a); however this was much smaller than the 60% previously 

reported (Huxlin and Goodchild 1997). If soma size were the largest determinant of a given 

cell being labelled one would expect a higher proportion of RGCA than RGCB; almost twice as 

many RGCB to RGCA were labelled in this study. 

 

The reproducibility of this model and its applicability to disease requires testing on a range 

of degenerated RGC populations, the scope of which was beyond the current study. 

However, applying the model to a degenerated population of RGCs would not serve to 

validate the model given that the correct type of an RGC cannot be determined from it post-

degenerative morphology. This would instead require following the degeneration of single 

RGCs over time while accounting for reporter expression changes in degeneration.  

 

The main role of this classification procedure is therefore not the definitive classification of 

all RGC types but to provide a degree of confidence regarding RGC proportions in a sample 

population where traditional methods of classification are vulnerable to bias. The model 

provides a framework to check for labelling bias in the analysis of RGCs in retinal disease. 
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Chapter 4: Synaptic loss in experimental glaucoma 

4.1 Introduction 

Synaptic loss has been detected in a number of experimental glaucoma models (Fu et al. 

2009; Della Santina et al. 2013). As dendrites are atrophied the RGC will lose synaptic contact 

with underlying bipolar cells. Whether synaptic loss precedes, and is a driver for, or is a 

consequence of dendritic loss is unknown (Lee et al. 2011). In other neurodegenerative 

diseases mitochondrial dysfunction leads to synaptic and dendritic loss (Williams et al. 2010; 

Reddy et al. 2012; Williams et al. 2012). C1q has been shown to be important in RGC synapse 

elimination during the period of synaptic refinement. C1q is localised to synapses in 

development and C1qKO mice show impaired synaptic refinement within the Lateral 

geniculate nucleus (dLGN). At P5, C1qKO mice showed normal dLGN projections but 

significantly higher numbers of contralateral projections at P10 and persisting to P30 when 

segregation is normally complete and the mouse dLGN is dominantly ipsilateral. There was 

no increase in the number of cells, while the normal phenotype at P5 suggested no 

disruption to axon-pathfinding, which are indicative of a failure in synaptic refinement. At 

P40, 80% of dLGN neurons remained multiply innervated (compared to 0% in WT) as 

detected by patch-clamping, again indicating a failure to eliminate synapses. (Stevens et al. 

2007). These data show the relationship between the classical complement pathway and 

synapse elimination. C1q is also though to tag synapses for clearance in disease in a similar 

way to development (Stevens et al. 2007).  

 

C1q can directly bind to cell surfaces and initiate the classical pathway of the complement 

cascade, generating the effector molecule C3b that opsonises cells for immune clearance by 

phagocytosis. Early complement upregulation, in particular of C1q, has been shown in both 

genetic (Howell et al. 2011) and inducible models of experimental glaucoma (Ahmed et al. 

2004; Kim et al. 2005). The increased expression of various complement proteins, in 



 

87 

 

particular C1q and C3 is also evident in human glaucoma (Kuehn et al. 2006; Tezel et al. 

2010). Generation of C3a, C4a and C5a is known to enhance immune cell recruitment 

(Janeway et al. 2001), a feature of early glaucoma (Agudo et al. 2008; Johnson et al. 2011; 

Howell et al. 2012), and enhance secretion of inflammatory and neurotoxic compounds from 

infiltrating immune cells (Janeway et al. 2001; DiScipio and Schraufstatter 2007; Woodruff 

et al. 2010). Inhibition of components of the complement cascade has shown promise in 

reducing RGC death in glaucoma. C1q deficient DBA2J mice show reduced RGC death 

compared to age matched DBA2Js (Howell et al. 2011), while restoring normal C5 levels to 

the naturally C5 deficient DBA2J exacerbates glaucomatous cell loss (Howell et al. 2013). 

Given the role of C1q in synapse elimination in development, this chapter sought to 

investigate whether inhibition of C1q could protect against aberrant immune mediated 

synaptic clearance directed by the compliment system.  

 

Two experimental models of glaucoma were used to investigate whether C1q inhibition 

could preserve RGC dendrites and synapses. The first model used the DBA2J mouse model; 

in these mice mutations in the gpnmb+ and tyrp1 genes cause and iris dispersion at 

~9months of age (John et al. 1998; Anderson et al. 2002). This results in a sustained IOP 

increase and RGC loss. The DBA/2J-gpnmb+ mouse, which has a functional gpnmb gene, does 

not develop iris dispersion, nor a raised IOP and so provides a control against which RGC 

damage can be assessed (Howell et al. 2007b). The DBA/2J-C1qa+/- transgenic mouse is 

deficient in C1q and is generated by backcrossing C57BL6.C1qaKO mice with DBA2J mice. 

The DBA/2J-C1qa+/- retains >99% of the DBA2J genetic background, and does not generate 

significantly different IOP profiles to the DBA2J (Howell et al. 2011) and so the effects of 

compliment deficiency on RGC dendritic and synaptic loss could be investigated using this 

mouse.  Given the role of C1q in synaptic refinement, it was important to preclude the 

possibility that any difference in dendritic and synaptic measurements were not the result 



 

88 

 

of an a priori greater number of dendrites/synapses in the DBA/2J-C1qa+/-. For this, all 3 

genotypes were compared prior to the age of increased IOP onset and associated dendritic 

and synaptic loss. The second experimental glaucoma model used was the magnetic bead 

model (Samsel et al. 2011). In this model BN rats with an IOP increase were treated with 

exogenous C1 esterase inhibitor (C1inh) or vehicle only and the effects of subsequent 

complement inhibition on RGCs investigated. C1inh is found naturally in the plasma and 

inhibits initiation of the classical complement pathway by binding C1r:C1s causing it to 

dissociate from C1q (Janeway e al. 2001).   
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4.1.1 Hypothesis 

It is hypothesise that C1 targets synapses on RGCs for immune clearance in experimental 

glaucoma. Inhibition of C1 via genetic modification or pharmaceutical administration could 

therefore protect RGCs from synaptic and dendritic loss.  

 

4.1.2 Aims 

 To determine whether C1 inhibition confers a protective effect against synaptic loss 

in experimental glaucoma  

 To determine whether this translates to a protection of dendrites where synaptic 

clearance may drive dendritic loss.  
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4.2 Methods  

4.2.1 Animal husbandry and Mouse strain and breeding 

Mice were bred and housed at the Jackson Laboratories, Maine in accordance with their 

Institutional Biosafety Committee (IBC) and the Animal Care and Use Committee (ACUC). 

Mice were housed in a 14hr light/10hr dark cycle and had access to food and water ad 

libitum. DBA/2J (D2; n=24), DBA/2J-Gpnmb+ (D2-Gpnmb+; n=22), and DBA/2J-C1qa+/- 

(D2.C1qa; n=18) strains were used. The generation of these strains is described in detail 

elsewhere (Howell et al. 2007b; Howell et al. 2011). Two groups of mice at either 3-5months 

(n=34) or 9-11months (n=30) were used. BN rat husbandry is described in section 2.1 with 

the exception that animals were housed in 12hr light/dark cycle. Rats were aged 5-6 month 

(n=27).  

 

4.2.2   Induction of glaucoma, IOP monitoring and C1 inhibitor injection 

Glaucoma was induced in the left eye of 20 animals as described in section 2.2.2. The right 

eye was a normotensive, un-operated control. IOPs were measured by rebound tonometry 

(section 2.2.1) for 3 days prior to glaucoma induction and every 3 days thereafter. One day 

prior to glaucoma induction rats received an intravitreal injection of either 5µl (100 Units/ml 

in PBS) of C1 esterase inhibitor (human, CINRYZE, Shire) or vehicle only (PBS) to the left eye. 

The injection procedure was as described in section 2.2.3. Injections were repeated every 4 

days for the duration of the experiment.  Rat groups are hereafter referred to as OHT (ocular 

hypertensive; bead injection and vehicle only intravitreal injection; n=10), OHT.C1inh (bead 

injection and C1inhibitor intravitreal injection, n=10) and NT.C1inh (normotensive; 

C1inhibitor intravitreal injection, n=7).  
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4.2.3   Diolistic labelling and confocal imaging of RGCs 

RGCs were labelled DiOlistically to visualise dendritic morphology 2 weeks after glaucoma 

induction in 11 rats.  Mice (n=15 D2, n=8 D2.Gpnmb+, n=10 D2.C1qa) followed the same 

protocol (section 2.3) as rats with the exception that death was via cervical dislocation and 

the gene gun firing pressure was reduced to 100psi. For mice, the head was removed during 

the retina incubation period and placed in Smith Rudt’s solution (SR; 0.8% PFA, 1.2% 

Glutaraldehyde in 0.1M Phosphate Buffer) for 48hrs before dissecting the ONs. For rats, only 

the brain and attached ONs were placed in Smith Rudt’s solution. The nerves were cut distal 

to the optic chiasm with a 45° cut in order to maintain orientation and stored in 0.4% PFA 

(in 0.1M PB) until grading. The nerves were graded as described in section 5.2.4 below. RGCs 

in the rat were imaged as described in section 2.5.2. For the mouse, imaging followed the 

same protocol with the exception of the use of a Leica TCS SP8 with a white light laser. RGC 

morphology was measured as described in section 2.5.3 using Sholl analysis and dendritic 

length and field area measurements.  

 

4.2.4 Optic nerve grading 

ON were processed for grading as described by (Smith et al. 2001). The tissue was prepared 

by immersing sequentially in 2% osmium tetroxide (in 0.1M PB), 0.1M sodium acetate and 

2% uranyl acetate (in 0.1M sodium acetate). The tissue was dehydrated in graded ethanol, 

before embedding in resin. Sections were cut (1µm thick), dried and stained in 1% 

paraphenylenediamine (PPD) in isopropanol:methanol (1:1) (Smith et al. 2001). The myelin 

stain PPD differentially stains the axoplasma of damaged axons, which appear darker, 

compared to healthy axons. The ratio of damaged to healthy axons was qualitatively judged 

to categorise ONs into ‘no or early’ (NOE), ‘moderate’ (MOD) and ‘severe’ (SEV) gradings 

(Anderson et al. 2005). NOE ONs are indistinguishable from ONs of strains that do not 

develop glaucoma. MOD ONs have significant numbers of damaged and degenerated axons, 
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but the remaining axons appear healthy. With comparison to ON counts these ONs have 

approximately 90-50% of axons remaining (typically 60%). In SEV ONs, the number of 

damaged axons is greater than the number of healthy axons (Anderson et al. 2005). ONs 

were scored by two masked investigators (John Lab), and in cases where their gradings did 

not agree, a third investigator adjudicated with the majority grade assigned to that ON.  

 

4.2.4   IHC for synaptic loss 

In 31 mice and 9 rats, whole eyes were fixed in 4% PFA in place of DiOlistic labelling. The 

eyes were fixed overnight before cryo-ptotecting in 30% sucrose as described in section 

2.4.2. Sections were processed IHC conducted as described in section 2.4.3. Briefly, sections 

were blocked in 5% serum following rehydration, before applying rabbit anti-PSD95 for 8 

hours at 4°C. Alexaflour 488 was applied followed by Hoescht, interjected by wash steps. 

Slides were mounted and imaged as described in section 2.5.1 with the exception that 

sections in the mouse eye were imaged on a Leica TCS SP8. The mouse sections were cut to 

cut to 14µm and so were imaged as z-stacks with a slice thickness of 1µm. Z-compressed 

images were created for fluorescent intensity analysis which was conducted for both species 

as described in section 2.5.1.  
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4.3 Results 

4.3.1 C1 inhibition protects against dendritic atrophy in the mouse in early glaucoma 

Early loss of dendrites in the D2 mice, as shown previously (Williams et al. 2013), was confirmed. 

All animals were categorised as NOE and thus represent the early stage of the disease. Dendritic 

field area was significantly reduced in 9-11month D2 animals (n=58 RGCs, 8 animals) compared 

to age matched D2.Gpmnb+ (n=37 RGCs, 5 animals) (P=0.01, One-way ANOVA with post-hoc 

Bonferroni correction following Log10 transform) but total dendritic length (P=0.802, statistical 

test as before) and Sholl area under the curve (AUC) remained unchanged (P=0.208, as before). 

D2.C1qa animals were protected from this dendritic atrophy. No significant difference in total 

dendritic length, dendritic field area or Sholl AUC was found between 9-11month D2.C1qa 

animals (n=52 RGCs, 6 animals) compared to D2.Gpmnb+ (total dendritic length P=1, dendritic 

field area P=1, Sholl AUC P=1; as before). D2.C1qa animals showed significantly higher total 

dendritic length, dendritic field area and Sholl AUC compared to age matched D2 animals 

(P=0.005, P=0.001, P=0.001; as before).   

 

Next I sought to establish whether this was the result of a protective effect, or a greater number 

of synapses a priori in the D2.C1qa animals before the onset of glaucoma, given that the 

dendritic atrophy in the D2 animals was mild, resulting in only partial morphological change in 

RGCs compared to D2.Gpnmb+. C1 plays an important role in synaptic refinement during 

development (Stevens et al. 2007) and so a deficiency in C1 could leave more adult synapses in 

the IPL in D2.C1qa animals compared to wild type. This could also result in a denser dendritic 

tree following a failure to clear synapses. 3-5 month D2 animals (n=63 RGCs, 7 animals) showed 

no significant difference in dendrite morphology to 3-5 month D2.C1qa (n=30 RGCs, 4 animals). 

Total dendritic length, dendritic field area and Sholl AUC showed no significant difference (P=1, 
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P=1, P=1 respectively, as before). The dendritic morphology in 9-11month animals was 

compared to that of 3-5month animals which are pre-glaucomatous. D2.C1qa animals showed 

no significant difference in dendritic morphology between 3-5month (n=30 RGCs, 4 animals) and 

9-11month animals D2s (n=52 RGCs, 6 animals). Total dendritic length, dendritic field area and 

Sholl AUC showed no significant difference (P=1, P=0.111, P=0.714 respectively, as before). C1 

inhibition therefore offers a mild protective effect against dendritic atrophy in the mouse.  
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Figure 4.1 RGC morphological changes in the D2.C1 mouse. In early glaucomatous animals (9-11months) total dendritic length (A), dendritic field area (B) and 

Sholl AUC (C) were significantly higher in D2.C1qa than D2 animals. At 9-11 months D2.C1qa animals were not significantly different from other genotypes at 3-

5 months in all dendritic morphology variables. These data suggest a moderate protective effect of C1q knockout to RGC dendrites in glaucoma. Sholl analysis 

shows similar profiles for pre-glaucomatous D2 animals (D) and a leftward shift for D2 animals in the early stages of glaucoma (E). For 3-5month Gpnmb+ n=27 

RGCs (3 animals), D2 n=63 RGCs (7 animals), D2.C1qa n=30 RGCs (4 animals). For 9-11month Gpnmb+ n=37 RGCs (5 animals), D2 n=58 RGCs (8 animals), D2.C1qa 

n=52 RGCs (6 animals). Error bars show SD for A, B and C and SEM for D and E. *P<0.05, **P<0.01, ***P<0.00
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Figure 4.2 Typical morphology of mouse RGCs belonging to different genotypes. Dendritic field size was 

markedly reduced in DBA/2J eyes at 9-11months compared to D2.Gpnmb+; C1q deficiency was protective 

against this effect as RGCs showed larger and more complex dendritic fields. Images are shown as z-

compressed, DiOlistically labelled RGCs (where the arrows denote the axon) and the trace the RGCs 

dendrites below. Scale bar shows 100µm. 
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4.3.2 Protection by C1 inhibition is repeated in the rat 

Next I sought to establish whether the protective effect of C1 inhibition could be extended to a 

rat bead model of glaucoma where the increase in IOP and associated RGC loss was more acute. 

Ocular hypertension was induced in 20 animals of which 10 were given an intravitreal injection 

of C1inh and 10 vehicle only. The pressure increase achieved, and its duration, was comparable 

in both OHT groups (Figure 4.3). No significant difference was found between the mean IOP, 

AUC and peak IOP in the control (right) eyes between all groups, therefore, these were 

subsequently pooled to form the NT group. Comparable Mean IOP, AUC and peak IOP were 

achieved for the bead injected eye in OHT group and in the OHT.C1inh group; these showed no 

significant difference (Mean IOP P=0.751, AUC P=0.718 One-way ANOVA with post-hoc 

Bonferroni correction; Peak IOP P=1.0 (adjusted significance) Kruskal-Wallis test). The Mean IOP, 

AUC and peak IOP was significantly higher than in NT eyes for both OHT (P=0.001, P=0.001, 

P=0.012 respectively; statistical tests as before) and OHT.C1inh (P=0.001, P=0.001, P=0.011 

respectively; statistical tests as before). Mean IOP, AUC and peak IOP in NT.C1inh eyes was also 

significantly different from both OHT (P=0.001, P=0.001, P=0.009 respectively; as before) and 

ONH.C1inh eyes (P=0.001, P=0.001, P=0.008 respectively; as before). OHT and OHT.C1inh groups 

showed increases of Mean IOP, peak IOP and IOP AUC of 50% and 70%, 66% and 87% and 117% 

and 116% respectively over NT control eyes. Additionally, the intravitreal injection of C1inh had 

no significant effect on IOP as shown by the similarity of NT.C1inh eyes compared to NT control 

eyes of all groups (P=0.899, P=0.054, P=1 respectively; as before).  
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Figure 4.3 Comparison of IOPs between treatment groups. A) The average IOP profiles show an acute 

IOP increase lasting roughly 2 weeks in bead injected eyes of both OHT groups compared to NT controls. 

The mean IOP (B), peak IOP (C) and AUC (D) was significantly higher in OHT compared to NT groups over 

the duration of the experiment but was not significantly different among OHT and NT groups. Control 

right eyes are pooled from all 3 groups to form the NT group. Error bars show SD; *P<0.05, **P<0.01, 

***P<0.001. 
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Typical RGC morphologies belonging to the different groups are displayed in Figure 4.4. ON 

grading demonstrated that both OHT and OHT.C1inh groups suffered axonal loss in bead 

injected eyes as the result of IOP increase with the ONs categorised on average to MOD in both 

groups (Figure 4.5 Panel A). C1inh alone had no observable adverse effect on RGC axons as 

indicated by the categorisation of NT.C1inh ONs as NOE. RGC morphological analysis revealed 

that C1 inhibition was again protective to dendrites. Sholl AUC, dendritic field area and total 

dendritic length were all reduced in RGCs from OHT.PBS eyes (n=38 RGCs, 7 animals) compared 

to NT eyes (n=43 RGCs, 18 animals) (P=0.001, P=0.001, P=0.001 respectively, (adjusted 

significance) Kruskal-Wallis test). C1inh injection into OHT eyes did not completely prevent 

dendropathy (n=36 RGCs, 7 animals) as Sholl AUC, dendritic field area and total dendritic length 

were all reduced compared to NT eyes (P=0.021, P=0.005, P=0.012 respectively, as before), 

although to a lesser extent than in OHT eyes treated with PBS only. RGCs from OHT.C1inh eyes 

were not significantly larger (dendritic field area, P=0.383, (adjusted significance) Kruskal-Wallis 

test) but were denser (Sholl AUC, P=0.01; total dendritic length, P=0.006, as before) than those 

from OHT eyes. They also showed no significant difference to NT.C1inh eyes (n=49 RGCs, 4 

animals) for all 3 morphological analyses (P=0.079, P=0.062, P=0.233 respectively, as before). 

C1inh injection into NT eyes showed no detrimental changes to RGC morphology compared to 

NT controls (P=1, P=1, P=1 respectively, as before). Sholl analysis showed a reduced branching 

complexity in both groups of OHT eyes compared to NT control with reduced dendrite 

intersections at distances of 50-230µm and 70-180µm for OHT and OHT.C1inh respectively. 

Taken together these data indicate a partial protection of dendrites conferred by C1inh injection 

in OHT eyes. The protective effect of C1 inhibition to dendrites therefore extends to more acute 

damage induced by a bead model of glaucoma.
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Figure 4.4 Typical morphology of rat RGCs belonging to the experimental groups. Branching density and dendritic field size was markedly reduced in OHT eyes 

compared to NT eyes, with C1inh treatment partially mitigating this effect. Images are shown as z-compressed DiOlistically labelled RGCs (where the arrows 

denote the axon) and the trace the RGCs dendrites below. Scale bar shows 100µm. 
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Figure 4.5 RGC morphological changes following C1inh treatment. ON grading (A) showed comparable moderate damage to the ONs of both OHT groups, 

indicating that ON death was comparable. C1inh injection had no negative effects on ONs. The total dendritic length (B), dendritic field area (C) and Sholl AUC 

(D) showed that RGC size and branching were reduced in both OHT groups from NT eyes. C1inh injection offered partial protection against dendropathy in OHT 

eyes as shown by the significantly greater total dendritic length (B), dendritic field area (C) and Sholl AUC (D). C1inh injection into NT eyes had no significant 

effects on dendritic morphology. Error bars show SD. Sholl analysis (E) showed the typical ‘leftward shift’ in OHT RGCs compared to NT controls. Again, C1inh 
injection into OHT eyes offered a degree of protection with significant decreases in dendrite intersections compared to NT controls reduced from a distance of 

50-230µm in OHT eyes to 70-180 µm in OHT.C1inh eyes. NT n= 43 RGCs (18 animals), NT.C1 n= 49 RGCs (4 animals), OHT n=38 RGCs (7 animals), OHT.C1 n=36 

RGCs (7 animals). Error bars show SEM. *P<0.05, **P<0.01, ***P<0.001.
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4.3.3 Synapse protection differs in the mouse and rat 

Given that C1 has roles in synaptic phagocytosis (Stevens et al. 2007), I sought to investigate 

whether the protection to dendrites was the result of the maintenance of synapses that would 

otherwise be lost.  IHC of PSD95 labelling (see Figure 4.6 for typical images) in the IPL revealed 

a significant reduction in pixel intensity in 9-11 month D2s (n=25 sections, 3 animals) compared 

to aged matched D2-Gpnmb+ (n=28 sections, 5 animals) (P=0.001 (adjusted significance), 

Kruskal-Wallis test) and pre-glaucomatous (3-5 month) D2s  (n=34 sections, 6 animals) (P=0.001, 

statistical test as before) as expected.  However, C1q deficiency was not protective for synapses 

as 9 month D2.C1qa animals (n=30 sections, 3 animals) also showed significantly reduced IPL 

pixel intensity compared to aged matched D2-Gpnmb+ (P=0.001, as before) but showed no 

significant difference when compared to pre-glaucomatous (3-5 month) D2.C1q animals (n=29 

sections, 5 animals) (P=1.0, as before). The loss of synapses was equivalent in both D2 and 

D2.C1qa animals aged 9-11 months (P=1.0, as before). These data suggest that synaptic loss 

occurred in RGCs in both D2 and D2.C1qa animals but that the relative loss was lower for 

D2.C1qa. 

 

In the rat, experimentally induced glaucoma resulted in synaptic loss as expected with reduced 

PSD95 labelling in the IPL (Figure 4.7) in OHT.PBS retinal sections (n=16 sections, 3 animals) 

compared to NT (n=18 sections, 9 animals) (P=0.026, One-way ANOVA with post-hoc 

Bonferroni). Inhibition of C1 prevented this loss in OHT.C1inh animals (n=14 sections, 3 animals) 

where PSD95 labelling in the IPL was significantly higher than OHT.PBS animals (P=0.01, 

statistical test as before) but not different from NT (P=0.147, as before). These results are 

summarised in Figure 5.8. C1 inhibition is therefore protective to both dendrites and synapses 

in the rat bead model of glaucoma.  
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Figure 4.6 Typical PSD95 staining amongst different genotypes. PSD95 labelling (red) of synapses in the 

IPL was quantified as pixel intensity. Both D2 and D2.C1qa animals showed a reduction in synapses in the 

IPL as a result of glaucomatous damage at 9-11 months compared to age matched non-glaucomatous 

retina (D2.Gpnmb+) and pre-glaucomatous mice of the same genotype. Nuclei are labelled with Hoescht-

33342 (blue). Scale bar shows 100µm. For 3-5month Gpnmb+ n=36 sections (9 animals), D2 n=34 sections 

(6 animals), D2.C1qa n=29 sections (5 animals). For 9-11month Gpnmb+ n=28 sections (5 animals), D2 

n=25 sections (3 animals), D2.C1qa n=30 sections (3 animals). 

 

 

Figure 4.7 Typical PSD95 staining amongst different rat experimental groups. PSD95 labelling (red) of 

synapses in the IPL was quantified as pixel intensity. Glaucomatous damage resulted in synapses reduction 

in the IPL in OHT.PBS but not OHT.C1inh when compared to NT retina. Nuclei are labelled with Hoescht-

33342 (blue). Scale bar shows 100µm. NT n= 18 sections (9 animals), OHT n=16 sections (3 animals), 

OHT.C1 n=14 sections (3 animals). 
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Figure 4.8 C1 inhibition protects from synaptic loss in the rat but not the mouse. The average pixel 

intensity was significantly reduced in the IPL in both D2 and D2.C1qa compared to D2.Gpnmb+. However, 

when compared to pre-glaucomatous animals of the same genotype D2 showed a significant reduction in 

pixel intensity while D2.C1qa did not. In the rat the loss of dendrites in glaucoma was repeated with 

OHT.PBS showing significantly reduced average pixel intensity in the IPL compared to NT. This loss was 

not observed in OHT.C1inh animals, which were statistically unchanged from NT. *P<0.05, **P<0.01, 

***P<0.001. For 3-5month Gpnmb+ n=36 sections (9 animals), D2 n=34 sections (6 animals), D2.C1qa 

n=29 sections (5 animals). For 9-11month Gpnmb+ n=28 sections (5 animals), D2 n=25 sections (3 

animals), D2.C1qa n=30 sections (3 animals). For rats, NT n= 18 sections (9 animals), OHT n=16 sections 

(3 animals), OHT.C1 n=14 sections (3 animals).
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4.4 Discussion 

These data show that C1q deficient mice and rats exhibit reduced RGC dendritic atrophy from 

experimental glaucoma. It is possible that this protective effect is the result of reduced 

phagocytosis of stressed RGCs. Phagocytosis is initiated following the detection of ‘eat-me’ 

signals such as phosphatidylserine (PS), calreticulin and DNA on cell surfaces (Paidassi et al. 

2011). Blocking of PS reduced neuronal death via apoptosis by 90% in vitro (Neher et al. 2011), 

demonstrating that phagocytosis of stressed, pre-apoptotic cells is common (Brown and Neher 

2012). C1q bound to glycoproteins on the stressed neuronal surfaces is recognised directly by 

microglia or can convert complement protein 3 (C3) to C3b for opsonisation. C1q in association 

with calreticulin is recognised by low-density lipoprotein receptor-related protein (LRP) on 

microglia (Fricker et al. 2012). LRP activates PI3k (Misra and Pizzo 1998) which has a well-

established role in phagocytosis (Tamura et al. 2009); calreticulin activation of LPR has been 

shown as a mechanism for the initiation of phagocytosis of apoptotic cells (Gardai et al. 2005). 

The opsonin C3b can activate complement receptor 3 (CR3) on microglia (Linnartz et al. 2012).  

CR3 has been shown to act through the DAP12-ITAM-syk signalling cascade which results in 

cytoskeletal rearrangement and engulfment (Shi et al. 2006; Linnartz et al. 2012). C1q inhibition 

could reduce C1q binding to RGCs and the production of C3b and thus present fewer ‘eat me’ 

signals presented to microglia. C1q inhibitor is also known to directly bind LRP (Lillis et al. 2005) 

and so could also have prevented phagocytic signalling through competitive inhibition. 

Elimination of RGCs through the end stage MAC of the complement system is unlikely as neurons 

in the CNS express high levels of CD95 which inhibit the formation of this complex (Wang et al. 

2007). 
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C1q inhibition could also have produced indirect effects on the immune system. C1q is known 

to alter the phenotype of glial cells, in particular through increasing chemokine production 

(mostly to recruit cells for debris clearance) (Fraser et al. 2006; Paidassi et al. 2011). Deficiency 

in C3 was shown to change the activation profile of macrophages/microglia in a mouse model 

of Alzheimer’s disease where levels of CD68, F4/80, iNOS and tumour necrosis factor (TNF) were 

reduced (Maier et al. 2008). In glaucoma models iNOS (Neufeld 1999b; Neufeld et al. 2002) and 

TNF-α (Tezel and Wax 2000; Kitaoka et al. 2006) have shown toxic effects towards RGCs. It is 

possible that C1q deficiency, and subsequent downstream inactivation of the classical 

complement cascade, may therefore have altered the macrophage/microglia phenotype, 

creating a less neurotoxic environment and protecting RGC dendrites. CD68 (a phagocytic 

marker) and F4/80 appear to aid in macrophage/microglia binding to target cells, the latter 

through CSPGs (Stacey et al. 2003), and so their reduction may also limit direct phagocytosis by 

macrophage/microglia.  

 

Interestingly, this protection did not extend to synapses as shown by reduced PSD95 labelling in 

the IPL in both D2 and D2.C1qa mice. However, in the rat C1 inhibition proved effective in 

preventing the synaptic loss suffered by OHT.PBS animals. C1q is known to tag RGC synapses for 

clearance by immune cells in development (Stevens et al. 2007) and so could have functioned 

in a similar manner here. The differences in synaptic protection between rats and mice may 

reflect different mechanisms of damage among the two models, in particular the chronic versus 

acute nature of IOP increase. Alternatively, IHC detection may have been too crude a method 

to detect subtle differences in the loss of synapses between D2 and D2.C1qa strains. The loss of 

synapses may be a response to, or consequence of, reduced mitochondrial capacity in stressed 

RGCs. Dendritic mitochondria are known to be more vulnerable than those in the soma due to 
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their increase exposure to local Ca2+ changes, in particular at synapses (Brown et al. 2006), 

increased oxidative stress (Martinez et al. 1996) and distance from the soma where DNA damage 

can be corrected (Stauch et al. 2014). These culminate in reduced energy output (Battino et al. 

1995) and lead to synaptic and dendritic loss as demonstrated in other neurodegenerative 

diseases (Williams et al. 2010; Reddy et al. 2012; Williams et al. 2012). C1q inhibition may 

protect these stressed dendrites for a longer period or prevent clearance of functionless 

dendrites which would be indistinguishable from healthy dendrites when labelled DiOlistically 

since the die propagates through passive Brownian motion (Honig and Hume 1986) and is 

therefore not dependant on functioning physiology. The discrepancy between these results in 

the mouse and rat for PSD95 IHC may reflect the age difference of the animals since 

mitochondrial capacity has been shown to decrease with age (Battino et al. 1995). It may also 

be necessary to increase the sample size in the rat as well as introducing an older group in order 

to preclude IHC variability and age as the causes of the discrepancy.   

 

The long term consequences of disrupting C1q have not been explored here and could prove 

detrimental. The removal of cellular debris following apoptosis is thought to be an important 

part of CNS pathological resolution, preventing excitotoxicity and a pro-inflammatory 

environment (Fu et al. 2014); in Parkinson’s disease microglia were found performing this role 

through phagocytosing C1q opsinised debris (Depboylu et al. 2011). C1q deficiency may 

therefore only provide short term protection. Preventing phagocytosis of stressed RGCs via C1q 

may therefore expand the therapeutic window in which additional interventions can be used to 

ensure RGCs survival or recovery. 
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Chapter 5: The role of PNNs in RGC degeneration and remodelling 

5.1 Introduction 

PNNs stabilise the favourable synaptic connections made during the critical period and prevent 

further growth and synaptogenesis. CSPGs (Perris and Johansson 1987; Oohira et al. 1991; Snow 

and Letourneau 1992) and other GAGs (Carri et al. 1988; Dou and Levine 1995) have been shown 

to be inhibitory to neurite outgrowth of cultured neurons when used as a plating substrate and 

these effects have been replicated in vivo in areas of glial scarring (Gates et al. 1996; Davies et 

al. 1997; Jones et al. 2003; Imagama et al. 2011). Digestion of PNNs with the bacterial enzyme 

CSase ABC removes the inhibitory effects of CSPGs in vitro (McKeon et al. 1991; Canning et al. 

1996; Perris et al. 1996) and ex vivo in spinal cord (Dow et al. 1994) and brain slices (McKeon et 

al. 1995) allowing neuronal outgrowth. When given in vivo, CSase ABC has demonstrated an 

ability to recover function in conjunction with supporting neuron regrowth. CSase ABC 

treatment has supported the re-innervation of the striatum following nigrostriatal axotomy 

(Moon et al. 2001),  provided sufficient plasticity to shift optical dominance in mature rats 

(Pizzorusso et al. 2002) and restore locomotion following spinal cord injury in mice (Bradbury et 

al. 2002) and partially in cats (Tester and Howland 2008). This physical barrier and associated 

negative growth cues may be prohibitive to the regrowth of the RGC dendritic tree following 

glaucomatous insult. Digestion of PNNs by CSase ABC may therefore allow for a regrowth of RGC 

dendrites following glaucoma. PNNs may also create a physical barrier to synaptogenesis on the 

neurite surface, preventing the translocation and trafficking of receptors (Frischknecht et al. 

2009). Disruption of PNNs has shown to enhance synaptic plasticity in cortical neurons (Bukalo 

et al. 2001; Saghatelyan et al. 2001; Brakebusch et al. 2002), although these synapses are onto 

dendrite spines which RGCs lack. In epilepsy, seizures result in a reduction of PNN (Dityatev and 

Fellin 2008; McRae et al. 2012) which increases synaptogenesis (McRae et al. 2012) while in 
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stoke, downregulation of PNN components is associated with increased outgrowth and 

synaptogenesis outside of the infarct (Katsman et al. 2003; Hobohm et al. 2005; Karetko-Sysa et 

al. 2011). Numerous studies have demonstrated the plastic abilities of RGCs to recover their 

dendritic tree following the application of exogenous neurotrophins (Peinado-Ramon et al. 

1996; Weber and Harman 2008). GAG chains contain binding regions for a number of growth 

factors and are thought to sequester growth factors in the neurons local environment. CSase 

ABC digestion may allow RGCs to  access the endogenous retinal neurotrophic pool (Cui et al. 

2002) by preventing sequestration and may contribute to dendritic recovery. The experimental 

paradigm (summarised in figure 5.1) was therefore to induce experimental glaucoma using the 

magnetic bead model, and administer CSase ABC intravitreally following the return and 

stabilisation of IOP to normal levels. After 2 weeks, the effects of CSase ABC on RGCs were 

assessed. The effect of CSase ABC administration on healthy retina was also assessed; the 

nuclear layers of the retina were imaged and cell density quantified.  
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Figure 5.1 Experimental plan for the role of PNNs in RGC degeneration and remodelling. Baseline IOP 

was established in both eyes (A) before inducing glaucoma through the injection of microspheres into the 

anterior chamber of the left eye (B). The resultant IOP increase typically lasted 2-3 weeks. After the return 

of IOP to the level of the contralateral control eye a week was left (C) before injecting CSase ABC or PBS 

only (vehicle) intravitreally. The animal was then killed following a two week period for any remodelling 

effects to occur (D).  For NT CSase ABC control animals no beads were injected so that pressure in the left 

eye did not increase, however the animals were maintained for the same duration as period B and C 

before injecting CSase ABC.  
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5.1.1 Hypothesis 

Digestion of RGC PNNs and extracellular matrix in the inner retinal layers will allow for an 

expansion of surviving RGC dendrites.  

 

5.1.2 Aims 

 To determine the effects of ECM remodelling on retinal neurons following CSase ABC 

administration, in particular whether it produces a toxic effect.  

 To determine whether CSase ABC digestion is protective against RGC dendritic atrophy 

induced by experimental glaucoma 
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5.2 Methods  

5.2.1 Assessment of CSase ABC toxicity 

CSase ABC retinal toxicity was assessed in 8 Wistar rats (3 months). The animal’s left eye was 

subject to an injection of 3μl CSase ABC (10U/ml, from Proteus vulgaris, AMSBIO) as 

described in section 2.2.3. Similar concentrations have achieved GAG digestion in the CNS in 

other studies (Bruckner et al. 1998; Pizzorusso et al. 2002; Massey et al. 2006). Following a 

single injection the GAG remodelling takes >4 weeks to return to normal (Bruckner et al. 

1998) .The right eye remained as an un-operated control. The animals were killed 2 weeks 

(n=4) and 6 weeks (n=4) after injection. The retinas were dissected before labelling 

DiOlistically (section 2.3). TOPRO-3 Iodide was applied (1:1000) in order to visualise all 

nuclear layers. Retina were flat mounted and RGCs imaged by confocal microscopy (section 

2.5.3). RGC dendritic morphology was measured using Sholl and dendrite analysis (section 

2.5.3) in order to determine the effect of CSase ABC on RGC dendritic architecture. Cell 

counts were performed as described in section 2.5.2.2 with the exception that images were 

also taken of the INL and ONL in the same locations as the GCL so that toxicity to all neuronal 

cells could be assessed. INL and ONL integrity were assessed using fractal analysis which 

measures space filling capacity. Images of the INL and OPL were firstly processed in FIJI by 

converting to binary images and applying noise reduction (despeckle) before running the 

fractal box count tool (Smith et al. 1996). A fractal dimension score was produced on a scale 

where 1 represents no space filling, and 2 complete space filling capacity.  In 1 animal from 

each time point, whole eyes were instead fixed in 4% PFA before sectioning (2.4.2). These 

eyes were subject to IHC using stub-antibodies 1B5, 2B6 and 3B3 as detailed below in section 

5.2.1.1 in order to confirm activity of CSase ABC in vivo.  
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5.2.1.1 GAG IHC 

Primary antibodies 1B5 and 2B6 that recognise CS-stub epitopes C-0-S and C-4-S respectively 

were used. The primary antibodies were applied at a 1:5 dilution (PBS) following blocking with 

5% goat serum (Sigma). For secondary antibody only controls, a number of sections were 

incubated with only PBS. Goat anti-mouse alexafluor-488 secondary antibody (Life 

Technologies; IgG, 1:200) was then applied before nuclear staining, mounting and imaging 

(2.5.1).  

 

5.2.2 Induction of Glaucoma and treatment with CSase ABC 

In 27 BN rats, glaucoma (OHT) was induced in the left eyes of 20 animals (as described in section 

2.2.2) with the right eye serving as a normotensive control (NT). IOP was measured by rebound 

tonometry for 3 days preceding glaucoma induction and every 3 days following (se section 

2.2.1).  In 10 animals (OHT.ABC) from the OHT cohort and the 7 un-injected animals (NT.ABC), 

an intravitreal injection of 3μl CSase ABC (10U/ml) was performed in the left eye 1 week after 

IOP returning to baseline (or at the equivalent time point for the second cohort). In the 

remaining 10 animals (OHT.PBS) from the first cohort a vehicle only injection of PBS was 

performed.  

 

5.2.3 Effect of Glaucoma and CSase ABC treatment on RGC morphology 

Seventeen animals were killed 2-3 weeks following intravitreal injection (OHT.PBS n=7, OHT.ABC 

n=5, NT.ABC n=4). For the assessment of RGC morphology retinas were dissected and subject to 

DiOlistic labelling before they were fixed, nuclear stained and flat mounted (see section 2.3). 

Images of the GCL were collected and cell counts performed (2.5.2.2). RGCs were imaged in the 

flat mounted retina (2.5.2.1) and morphology assessed (2.5.3). The RGC class composition of 



 

114 

 

each experimental group was determined using the classification model derived in Chapter 3. 

Briefly, the 10 variables that contributed to the model were measured for each RGC as described 

in section 3.2.2 and a discriminant analysis performed (see 3.2.5) where the training sample was 

that used in the model (n=101) and where the hold-out sample was comprised of the 

experimental group that was to be classified.  
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5.3 Results 

5.3.1 Chondroitinase ABC is not toxic to RGCs and other retinal neurons. 

CSase ABC activity in the retina was confirmed (Figure 5.2) by labelling with ‘stub’ antibody 2B6 

which recognises C-4-S on CS/DS sidechains. Digestion of GAGs appeared to be limited to the 

inner retinal layers in particular around RGCs. This digestion did not appear to induce any retinal 

cell death. As shown in Figure 5.3 the nuclear layers all appeared to be intact with no visible 

disruption to integrity. Cell counts in the GCL showed similar numbers of nuclei between control 

(699±48/ 393µm2) and CSase ABC (698±69/ 393µm2) injected eyes (P=0.977; T-test). Fractal 

analysis of the INL and OPL showed no significant difference in space filling between groups 

(P=0.61, P=0.21 respectively; T-test).  
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Figure 5.2 CSase ABC action in vivo following intravitreal injection. The digestion of GAGs in the retina 

from intravitreally injected CSase ABC was confirmed by the increase of C-4-S in the inner retina in injected 

eyes compared to control. This was detected by antibody 2B6 through anti-mouse Alexaflour 488 labelling 

(green). Nuclear layers were stained with Hoescht-33342 (blue). Scale bar=100µm.  
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Figure 5.3 CSase ABC non-toxic to retinal neurons. Intravitreal injection of CSase ABC did not affect 

nuclear layer integrity (A) in the GCL, INL or ONL. Cell nuclei were stained with TOPRO-3 (blue). Cell counts 

of the GCL (B) showed no significant difference in cell number. Fractal analysis of the INL and ONL (C) 

showed no significant difference in space filling. Scale bar = 10µm.Error bars show SD. 
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The dendritic tree was also unaffected by CSase ABC action. RGC morphology in CSase ABC 

injected (n=16 RGCs 2 weeks, 3 animals; n=24 RGCs 6 weeks, 3 animals) eyes was also unchanged 

from control (n=28 RGCs) as shown in Figure 5.4. In CSase ABC injected eyes the number of 

dendrites, total dendritic length and dendritic field area were not significantly different from 

control at 2 weeks (P=0.667, P=1.0, P=1.0 respectively; One-way ANOVA with post-hoc 

Bonferroni correction on Log10 transformed data) or 6 weeks (P=1.0, P=1.0, P=1.0; statistical 

analysis as before;) or from each other (P=0.238, P=0.782, P=1.0; as before). Sholl analysis 

revealed similar branching density with Sholl AUC showing no significant difference from control 

at 2 weeks (P=0.732; One-way ANOVA with post-hoc Bonferroni correction following Log10 

transform) and 6 weeks (P=1.0; as before) while no difference was observed between 2 and 6 

week (P=0.623; as before). At 2 weeks following injection CSaseABC injected eyes exhibited 

fewer branches than control at distances of 30-70µm from the soma (P=0.006, P=0.033, 

P=0.045, P=0.039, P=0.04 for respective distance; all adjusted significance, Kruskal-Wallis test) 

and from 6 week eyes at distances of 60-100µm from the soma (P=0.001, P=0.005, P=0.005, 

P=0.001, P=0.005 for respective distance; statistical test as before). This is likely due to the small 

sample number as the cells appeared unchanged in all other morphological analyses, but could 

indicate subtle changes to the dendritic structure. CSase ABC therefore does not appear to be 

toxic to retinal neurons nor alter the morphology of RGCs in normotensive eye
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Figure 5.4 CSase ABC effects on RGC morphological analysis in normal eyes. Intravitreal injection of CSase ABC in Wistar eyes resulted in no significant changes 

to RGC morphology. The mean number of dendrites (A), total dendritic length (B), dendritic field area (C) and Sholl AUC (D) showed that RGC size and branching 

are unaffected by CSase ABC at both 2 weeks (n=16 RGCs, 3 animals) and 6 weeks (n=24 RGCs, 3 animals) following injection when compared to control (n=14 

RGCs 3 animals, n=14 RGCs 3 animals at equivalent time points). Sholl analysis (E) shows a small decrease in branching density of RGCs at 2 weeks following 

CSase ABC injection compared to control and 6 week RGCs. Control groups were pooled. Error bars show SD for A, B, C, D and SEM for E.
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5.3.3 IOP changes in experimental glaucoma 

A sufficing pressure increase was not achieved in one animal despite re-injection and so it was 

not included in the analysis. Analysis of IOP showed no significant difference between baseline, 

mean and peak IOP nor IOP AUC in right (NT) eyes of all experimental groups and so these were 

pooled for further analysis (n=26). No significant difference was found between the IOP of right 

and left eyes prior to microbead injection (P=0.658; T-test); this trend remained between NT 

control eyes and normotensive left eyes injected with CSase ABC (NT.ABC; n=7) throughout the 

duration of the experiment. Here mean IOP, peak IOP and IOP AUC did not vary significantly 

from the NT eyes (P=1.0, P=1.0, P=1.0 respectively; One-way ANOVA with post-hoc Bonferroni). 

This indicated that the injection procedure alone did not significantly alter IOP. A second 

microbead injection was required in 32% of animals to obtain a sustained IOP increase over the 

contralateral NT eye. Compared to NT eyes, microbead injected eyes exhibited a significant 

increase in IOP as demonstrated by a higher mean IOP, peak IOP and IOP AUC in both OHT.PBS 

(22% increase P=0.001, 74% increase P=0.001, 48% increase P=0.001 respectively; One-way 

ANOVA with post-hoc Bonferroni) and OHT.ABC eyes (18% increase P=0.003, 59% increase 

P=0.001, 48% increase P=0.001; as before). IOP in these eyes was also significantly higher than 

in NT.ABC eyes (For OHT.PBS, Mean IOP P=0.012, Peak IOP P=0.001, IOP AUC P=0.008; For 

OHT.ABC, Mean IOP P=0.041, Peak IOP P=0.001, IOP AUC P=0.009; One-way ANOVA with post-

hoc Bonferroni). The average duration of IOP increase was similar in OHT.PBS (n=10) and 

OHT.ABC (n=9) at 20±5 days and 18±4 days respectively (P=0.099; T-test). The IOP increase in 

injected eyes was comparable between both OHT.PBS and OHT.ABC groups (Mean IOP P=1.0, 

Peak IOP P=0.592, IOP AUC P=1.0; One-way ANOVA with post-hoc Bonferroni) indicating that 

any differences to RGC morphology between these two groups would likely occur independent 

of IOP.  
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Figure 5.5 IOP changes induced by microbead injection. Intracameral injection of paramagnetic beads 

into the left eye of 18 animals resulted in an increased IOP (A) sustained for an average of 20±5 days 

(OHT.PBS) and 19±4 days (OHT.ABC) before returning to baseline. IOP then remained stable for 3 weeks 

before animals were killed. The mean IOP (B), peak IOP (C) and IOP AUC (D) were comparable in OHT.PBS 

(n=10) and OHT.ABC (n=9) eyes while significantly increased compared to NT (n=26) and NT.ABC (n=7) 

eyes. Injection of CSase ABC alone did not significantly alter IOP from NT levels. Error bars show SEM in A 

and SD in B, C, and D. *P<0.05, **P<0.01, ***P<0.001. 
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5.3.4 RGC atrophy and apoptosis following experimental glaucoma  

Diolistic labelling gave 87 NT RGCs (17 animals), 43 OHT.PBS RGCs (7 animals), 38 OHT.ABC RGCs 

(6 animals) and 27 NT.ABC RGCs (4 animals) for analysis. Representative cells are shown in Figure 

5.6. Cell counts (summarised in Figure 5.7) of the RGC layer revealed only moderate loss of cells 

through experimental glaucoma where OHT.PBS (7 animals) eyes showed a 13% reduction from 

contralateral control eyes (7 animals) (631±85/ 393µm2 and 744±64/ 393µm2 respectively, 

P=0.002, T-test). Early dendritic loss was evident with total dendritic length and Sholl AUC 

significantly reduced in OHT.PBS from NT control (P=0.007 and P=0.016 respectively; One-way 

ANOVA with post-hoc Bonferroni on log10-transformed data). Analysis of the Sholl profile 

revealed a significant reduction in dendrite intersections at distances of 100 to 160µm from the 

soma centre (P=0.009, P=0.001, P=0.001, P=0.002, P=0.011, P=0.037 for respective distance; all 

adjusted significance, Kruskal-Wallis test). Dendritic field area was not significantly reduced 

(P=0.101; One-way ANOVA with post-hoc Bonferroni on log10-transformed data); taken 

together these data suggest a loss of branching density and complexity. To further investigate 

this dendrites were categorised according to the centrifugal method and the total dendritic 

length measured. This ordinal analysis (Fig 5.8, panel E) of dendrites revealed that primary, 

secondary and tertiary dendritic length was not altered in OHT.PBS RGCs compared to NT (P=1.0, 

P=1.0, P=1.0 respectively; One-way ANOVA with post-hoc Bonferroni on log10-transformed 

data). Subtracting the total length of these from the total length of the dendritic tree gave the 

total length of the higher order dendrites. The total length of the higher order dendrites was 

significantly reduced in OHT.PBS RGCs compared to NT (P=0.001, adjusted significance; Kruskal-

Wallis test). These data again suggest a pruning of dendrites in glaucoma.  
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On average the distance of NT RGCs from the ONH was 2912±1115µm compared to 

2322±1017µm in OHT.PBS retinas, this was statistically significant (P=0.002; Kruskal-Wallis test). 

However, no significant correlation between distance from the ONH and dendritic field area, 

total dendritic length, higher order dendritic length and Sholl AUC was found (rs -0.018, rs -0.141, 

rs 0.141, rs -0.079 respectively; Spearman’s rank order correlation). The difference in 

morphology was therefore likely the result of glaucomatous atrophy on the OHT.PBS RGCs 

rather than larger dendritic fields of the more peripheral NT cells.
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Figure 5.6 Representative RGC morphology. Representative images of Diolistically labelled RGCs (and skeletonised images) showing reduced branching density 

in glaucomatous RGCs (OHT.PBS) which is recovered or protected against following CSase ABC treatment (OHT.ABC). Arrows denote axon. Scale bar= 100µm.
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Figure 5.7 Cell counts reveal RGC loss. Representative images of TOPRO-3 (blue) stained nuclei in the GCL 

from NT (A), OHT.PBS (B) and OHT.ABC (C) retina show mild RGC loss. Both glaucoma groups showed a 

similar level of cell loss (D) with a significant reduction in cell number compared to contralateral control 

(CC).  Scale bar =100µm. Error bars show SD. **P<0.01.
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5.3.5 CSase ABC treatment protects RGC dendrites from glaucomatous damage  

The NT.ABC group (n=27 RGCs, 4 animals) confirmed the initial findings of the toxicity study. 

Dendritic analysis revealed no significant difference in morphology to NT control RGCs (n=87 

RGCs, 17 animals) in terms of total dendritic length, dendritic field area and Sholl AUC (P=1.0 

P=1.0, P=1.0 respectively; One-way ANOVA with post-hoc Bonferroni on log10-transformed 

data). The Sholl profile was largely similar, with no significant reduction in dendritic intersections 

at any distance from the soma. Ordinal dendritic analysis showed no significant difference in 

primary, secondary, tertiary (P=1.0 P=1.0, P=1.0 respectively; statistical analysis as before) and 

higher order dendritic length (P=0.168, adjusted significance; Kruskal-Wallis test).   

 

In contrast to the PBS treated eyes, treatment of glaucoma with CSase ABC injection was 

protective against RGC dendritic atrophy. No significant difference between OHT.ABC (n=38 

RGCs, 6 animals) and NT RGCs was detected in total dendritic length, dendritic field area and 

Sholl AUC (P=0.63 P=0.699, P=1.0 respectively; One-way ANOVA with post-hoc Bonferroni on 

log10-transformed data). Again the leftward shift in the Sholl profile observed in OHT.PBS eyes 

was not present in OHT.ABC eyes, with no significant difference in dendritic intersections at any 

distance from the soma when compared to NT RGCs. Further, ordinal dendritic analysis showed 

no significant difference in higher order dendritic length (P=0.235, adjusted significance; 

Kruskal-Wallis test) suggesting that dendritic pruning was reduced. The dendritic protection was 

in effect despite the presence of cell death, with cell counts revealing on average an 11% loss of 

RGCs in OHT.ABC eyes (n=6 6 animals) compared to contralateral control (570±76/ 393µm2 and 

636±41/ 393µm2 respectively P=0.001, T-test). Comparison of cell counts between OHT.ABC and 

OHT.PBS showed 10% fewer cells present in the former (P=0.013, T-test), however the losses 

compared to contralateral eyes were similar at 11% and 13% respectively. OHT.ABC RGCs were 
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not found at significantly greater distances from the ONH than in NT, NT.ABC nor OHT.PBS 

retinas (P=0.126, P=0.892, P=1.0; Kruskal-Wallis test) again suggesting that eccentricity had no 

effect on morphological characteristics. 
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Figure 5.8 CSase ABC protects from RGC dendritic atrophy. Following induction of glaucoma in OHT.PBS eyes dendritic atrophy occurs as shown by reduced total 

dendritic length (A) when compared to NT control; however dendritic field area is not altered significantly (B). This represents a loss in branching density as 

shown by the reduced Sholl AUC (C) and leftward shift in the Sholl profile (D). Sholl analysis shows fewer branches at distances of 110-160µm from the soma 

centre (denoted with appropriate P values). Ordinal dendrite analysis revealed that the branches lost were higher order dendrites (E) .In OHT eyes treated with 

CSase ABC this atrophy was not present indicating either a protective effect or recovery of dendrites. For NT n=87 RGCs (17 animals), NT.ABC n=27 RGCs (4 

animals), OHT.PBS n=43 RGCs (7 animals) and OHT.ABC n=38 RGCs (6 animals). Error bars show SD in A, B, C and SEM in D. *P<0.05, **P<0.01, **P<0.001
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5.3.6 No class bias detected in analysis  

The classification model derived in Chapter 3 allowed for the estimation of the class composition 

of the experimental groups. All groups displayed a similar class composition as shown in Table 

5.1. RGCC was the most abundant cell type in all experimental groups, however all cell types 

were present in a similar ratio to the population collected in Chapter 3.  The differences in 

dendritic morphology are therefore unlikely to have arisen from a disparity of cell types between 

the experimental groups.  

 

Table 5.1 RGC class distribution among experimental groups 

 RGC type (% of total number of RGCs) 

RGCA RGCB RGCC RGCD 

NT 24 27 39 10 

NT.ABC 22 26 37 15 

OHT.PBS 23 28 41 9 

OHT.ABC 19 30 40 11 

     

Training data 

(Chapter 3) 

24 29 32 15 
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5.4 Discussion 

The findings of this chapter have confirmed the dendritic atrophy associated with glaucoma 

that have been demonstrated in other experimental models (Weber et al. 1998; Shou et al. 

2003; Leung et al. 2011; Li et al. 2011; Williams et al. 2013). The overall cell death (~10%) 

was lower than is usually achieved by similar microbead models (~30%) (Morgan and Tribble 

2015), however this allowed for the interesting observation that dendritic complexity was 

reduced without a loss of overall dendritic field size. It is reasonable to conclude that one of 

the earliest events in dendritic atrophy is therefore the loss of small higher order dendrites 

(as evidenced by ordinal analysis), which precedes cell shrinkage (of both the soma and 

dendritic tree) observed in other models (Weber et al. 1998; Shou et al. 2003). The use of 

CSase ABC as a treatment for the recovery of dendrites proved successful, with RGC dendritic 

atrophy seen in vehicle only (OHT.PBS) treated eyes not present in OHT.ABC eyes. The similar 

overall loss of cells and the magnitude and duration of IOP increase suggest that the CSase 

ABC treated eyes suffered comparable glaucomatous damage, however it is unclear whether 

the CSase ABC provided a protective or regenerative effect. This is the first instance, to our 

knowledge, of treatment with CSase ABC proving effective on dendrites rather than axons.  

 

Digestion of PNNs may have removed the inhibitory effects on neuronal growth. The core 

protein which is exposed following CSase ABC digestion of the sidechains demonstrate some 

inhibitory affect independent of those from those of the overall GAG (Inatani et al. 2001).  

PNNs are known to sequestrate growth molecules (Milev et al. 1998a; Milev et al. 1998c) 

and so their digestion could have freed a larger proportion of the endogenous neurotrophic 

pool to promote dendritic re-growth. CSPG binding to Protein-tyrosine phosphatase σ has 

been shown to dephosphorylate TrkB and inhibit BDNF signalling (Kurihara and Yamashita 

2012). BDNF has proved efficacious in recovering dendritic trees from glaucoma induced 

damage (Mansourrobaey et al. 1992; Mey and Thanos 1993; Peinado-Ramon et al. 1996; 
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Chen and Weber 2001) and could have contributed to the protection observed here. PNNs 

have also been shown to bind proteins such as semaphorin 3A which are known to restrict 

plasticity in the adult CNS (Kantor et al. 2004). The proteins act as guidance cues during 

development but also form components of glial scars following injury. Expression of the 

protein and its receptor continues into adulthood in the retina (de Winter et al. 2004). 

Semaphorin 3A has demonstrated chemoattractant properties for cortical dendrites (Polleux 

et al. 2000). Interestingly, Schulz et al. (1990) demonstrated that cultured RGCs could be 

maintained by the addition of CSPGs derived from the neonatal superior colliculus. It is 

possible that the CSPG side-chains, once freed from the PNN core proteins could have 

produced a similar protective effect.  

 

The application of the RGC classification model derived in Chapter 3 showed that a similar 

class composition was captured in each of the experimental groups here.  This gave a degree 

of confidence that the differences in RGC morphology observed between groups were not 

the result of sample bias. The groups displayed a higher proportion of RGCC than expected 

from the initial population collected in Chapter 3 and those found by others Sun et al. 

(2002a). This likely reflects the propensity of the model to overestimate the number of RGCC. 

However, the ratios of misclassification to RGCC are similar among types and so it is unlikely 

that the misclassified RGCC represent distinct types in the different experimental groups.  

 

The findings of this chapter demonstrate that CSase ABC could form a viable treatment for 

the protection or re-generation of RGC dendritic trees. The assessment of toxicity 

pdemonstrated minimal disruption to the nuclear layers suggesting that the injection would 

be well tolerated and would not affect visual function. Normal RGCs were not altered 

morphologically apart from reductions in the number of intersections in Sholl analysis at 30-

70µm and 60-100µm from the soma, 2 and 6 weeks after CSase ABC injection in Wistar rats. 
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These were the only morphological changes detected and were likely due to the small 

sample size of RGCs in these groups given that the CSase ABC injected BN rats showed no 

changes to RGC morphology.  
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Chapter 6: GAG pattern changes in glaucoma 

6.1 Introduction 

Clark et al. (2011) demonstrated that within the human retina GAGs are differentially 

distributed and that sulphation patterns change amongst the retinal layers. Evidence from 

other neurodegenerative diseases and CNS pathologies suggests that GAG composition in 

the ECM changes as a result of the pathology.  In Alzheimer’s disease and other dementia 

like diseases, DS and HS accumulate in plaques (Snow et al. 1988; van Horssen et al. 2002) 

while sulphation patterns change to include a greater proportion of C-4-S (Dewitt et al. 

1993). The glial scars formed in traumatic brain injury, spinal cord injury and following stroke 

also contain high proportions of CSPGs (Fawcett and Asher 1999; Asher et al. 2002; Katsman 

et al. 2003; Soleman et al. 2013) which are likely to be formed as a response of reactive glial 

cells (Silver and Miller 2004; Properzi et al. 2005) to contain the spread of inflammation and 

neurodegeneration (Faulkner et al. 2004). Glial activation results in the upregulation and 

secretion of CSPGs in vitro (Johnsongreen et al. 1992; Koops et al. 1996; McKeon and 

Nophachi 1998) and in vivo (McKeon et al. 1991; Jones et al. 2002). In glaucoma, where the 

presence of reactive glial cells has been well documented, it is possible that the composition 

of GAGs may be altered. In development GSPGs repulse axons from non-target areas 

(Bandtlow and Zimmermann 2000). If areas of RGC loss are populated by activated glia then 

one may also expect increased CSPG secretion and deposition. This may cause a barrier to 

re-growth and expansion of RGCs into damaged areas, limiting the potential for RGC 

recovery.  Glial scars in CNS injury represent a major barrier to re-innervation (Bradbury and 

Carter 2010). Over-sulphation of GAGs in these retinal areas could also prove a boundary to 

the re-growth of RGC dendrites as sulphated GAGs are known to be more inhibitory to 

neurite outgrowth than non-sulphated GAGs (Snow et al. 1990; Properzi et al. 2005).   
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In this chapter, GAG composition and sulphation patterns were explored in glaucomatous 

rat and human eyes and compared to control. CSase ABC cleaves CS/DS GAG chains leaving 

specific residues, known as ‘stub epitopes’, which reflect the sulphation pattern of the chain. 

These can be detected by antibodies 1B5, 2B6 and 3B3 which recognise C-0-S, C-4-S and C-

6-S respectively (Caterson 2012). The donor glaucoma eyes used were complete with visual 

field tests performed <24 months before death which will allow for investigation of areas 

with known visual deficits. This allowed for the exploration of the relationship between 

visual deficits (and by extension disease severity) and the GAG profile of the retina, with 

particular attention on CSPGs of the GCL and IPL.  
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6.1.1 Hypothesis 

In glaucomatous eyes the distribution and composition of GAGs is altered from the normal 

state.  

 

6.1.2 Aims 

 To determine whether experimental glaucoma induces changes in the GAG pattern in 

the rat retina.   

 To determine whether glaucomatous human donor eyes exhibit changes in the retinal 

GAG pattern. 

 To determine to what extent any changes relate to disease severity as assessed by visual 

function.  
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6.2 Methods 

6.2.1 Glaucoma induction and intravitreal injection of CSase ABC in BN rats 

Of the 27 BN rats described in Chapter 5 (5.2.2), 6 animals with experimental glaucoma (n=3 for 

OHT.PBS and n=3 for OHT.ABC) and 3 without (NT.ABC) were designated for IHC analysis 

presented in this chapter. Animals were killed 2 weeks following intravitreal injection (as per the 

experimental paradigm described in Figure 5.1) via perfusion fixation (see section 2.4.1). 

Following fixation the eyes were cryo-protected in 30% sucrose and 10µm thick sections cut on 

a cryostat as described in section 2.4.2. Sections were subject to Alcian blue staining and IHC as 

described below.  

 

6.2.2 Human tissue preparation 

Human donor eyes were obtained from the Mayo Clinic (MN, USA) and all work was carried out 

in accordance with the Human Tissue Act (2004) and US HIPAA regulations. Details of the donor 

eyes are displayed in Table 6.1 showing glaucoma and age matched controls. Eyes were age 

matched as closely as possible; glaucoma donors were 74.5±3.5 years compared to 75.5±15.5 

years for control. Eyes were fixed (4% PFA) within 24 hrs of death. In all instances the cause of 

death was not deemed to have a direct pathological effect on the retina (e.g. from trauma), nor 

did the control eyes have any history of retinal pathology. Donor glaucoma eyes (n=4) were 

accompanied with visual field test information from 1 to 2 years before death taken at the Mayo 

Clinic. The retina was dissected free from the sclera and cut to leave a 2mm region surrounding 

the ONH. Four areas of retina corresponding to the anatomical position of 4 visual field test 

locations (Humphrey 24-2, Threshold test SITA standard strategy, Goldman III target) were 

chosen from regions of high (n=9) and low visual deficit (n=7). The level of deficit was 

determined according to the visual field threshold and total deviation. Retinotopically matching 
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areas were dissected in control retina. Locations were measured relative to the fovea using the 

conversion of visual degrees to mm distance (Drasdo and Fowler 1974) as conducted by Lei et 

al. (2009). The areas were cryo-protected in 30% sucrose before freezing in OCT (see section 

2.4.2). Sections were cut at a thickness of 10µm before conducting Alcian blue staining and IHC 

analysis. 

 

Table 6.1 Donor eye details 

Donor ID Group Sex 
Age 

(years) 

Time to fixation 

following death 

(hrs) 

Length of 

fixation 

before IHC 

(years) 

Time 

between 

visual field 

test and 

death 

(months) 

GL239 Glaucoma M 77 3.8 3.5 23 

GL277 Glaucoma F 72 <24 1.16 18 

14-0865R Control M 66 10.5 1.16 NA 

14-0899L Control M 85 6.5 1.16 NA 

 

 

6.2.3 Alcian blue staining 

CS, DS, HS and hyaluronic acid are ionised at pH2.5 and attract the cationic dye Alcian blue 

through electrostatic linkage (Bancroft et al. 1996). The major components of the ECM/PNN can 

therefore be examined as a whole. 1g of Alcian blue 8GX (Sigma-Aldrich) was dissolved in 0.5M 

Acetic acid (pH2.5) and cryo-sections were stained in series. Sections were separated using a 

hydrophobic barrier pen and the stain applied for 8 hours. The sections were then briefly washed 

with 0.5M Acetic acid (pH2.5) only, before being rinsed with ddH20. The nuclei were counter-

stained with Celestine blue (Celestine Blue 0.5g, ammonium iron(III) sulphate 5g, glycerol 14ml, 
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100ml ddH20; all Sigma-Aldrich) for 5 minutes before washing with ddH20 (Maynard et al. 2014). 

The slides were dried, and a coverslip applied over hydromount (National diagnostics). Images 

were captured using a Leica DMRA2 with a Leica MC170HD camera attached.  

 

6.2.4 GAG IHC 

IHC followed the protocol described in section 2.4.3. Primary antibodies 1B5, 2B6 and 3B3 that 

recognise CS-stub epitopes (C-0-S, C-4-S and C-6-S stubs respectively) were used. The primary 

antibodies were applied at a 1:5 dilution (PBS) following blocking with 5% Goat serum (Sigma). 

For secondary antibody only controls, a number of sections were incubated with only PBS. After 

rehydrating section and before the application of the block sections were incubated with 

0.5U/ml CSase ABC (Sigma) in 1M Tris acetate (pH 8 at 37°C). The samples were placed in a 

humidity chamber and incubated for 8 hours in an orbital incubator at 37°C. Following 

incubation the samples were washed with PBS for 5 minutes (3 repeats). Primary antibodies 

were then applied as normal. As a control to this pre-IHC digestion step a number of sections 

underwent the same protocol but with only Tris acetate applied. Goat anti-mouse alexafluor-

488 secondary antibody (Life Technologies; either IgG for 1B5, 2B6 or IgM for 3B3) was applied 

(1:200). Sections were imaged using a Leica DM6000B as described in section 2.5.1 and 

fluorescent intensity was quantified. 
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Figure 6.1 Visual field tests corresponding to donor eyes. Visual field thresholds (dB) and corresponding total deviation % grouping for donor eyes 

GL239 and GL277 conducted 1 to 2 years before death. The field tests were Humphrey 24-2, Threshold test- SITA standard strategy, Goldman 

III target. Areas of the retina corresponding to the test locations (9 areas of visual deficit and 7 areas of no detectable visual deficit) highlighted in red 

were dissected and analysed using GAG IHC.  The black triangle denotes the position of the ONH.
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6.3 Results 

6.3.1 The GAG profile in the rat retina is unaltered in experimental glaucoma  

Alcian Blue staining in the rat retina showed that GAGs are distributed throughout the retinal 

layers, but are mostly concentrated within the GCL, ONL and inner segments (IS) of the 

photoreceptors. This pattern was consistent for experimental glaucoma animals and those 

treated with CSase ABC. A more detailed and quantifiable assessment of the GAG pattern was 

investigated using stub antibodies 1B5, 2B6 and 3B3 that recognise C-0-S, C-4-S and C-6-S 

respectively. Application of CSase ABC directly onto sections revealed the GAG sulphation 

pattern of the retina. There was no 1B5 labelling present in the rat retina in all experimental 

groups, with fluorescent intensity not significantly different with respect to secondary only 

controls.  C-4-S was found in all retinal layers in a similar proportion. Experimental glaucoma did 

not alter the sulphation pattern of the retina as there was no significant difference in the 

average pixel intensity corresponding to 2B6 labelling between NT and OHT.PBS (P=1.0 for all 

retinal layers; One-way ANOVA with post-hoc Bonferroni). Treatment with CSase ABC also had 

no effect on C-4-S distribution or intensity compared to NT (P=1.0 for all retinal layers; statistical 

test as before) or OHT.PBS (P=1.0; as before). Administration of CSase ABC alone also had no 

effect with no significant difference between NT.ABC and NT, OHT.PBS and OHT.ABC (P=1.0, 

P=1.0, P=1.0 respectively; values for all retinal layers; statistical test as before). Weak 3B3 

labelling corresponding to C-6-S sulphation was found diffusely throughout the retina, but was 

concentrated at the photoreceptor inner and outer segments (IS, OS respectively). Again, no 

significant difference in C-6-S was found between any experimental groups for any of the retinal 

layers indicating that glaucoma and CSase ABC treatment had no effect on the overall sulphation 

pattern of the retina.  
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Figure 6.2 GAG labelling in the rat retina. GAG distribution was similar amongst experimental groups. 

Alcian blue staining revealed that GAGs are located within all retinal layers but are most highly 

concentrated in the GCL/NFL complex, ONL and photoreceptor IS. Labelling with stub andtibodies 1B5, 

2B6 and 3B3 (that recognise C-0-S, C-4-S and C-6-S respectively) after CSase ABC digestion of sections 

showed that the sulphation pattern of GAGs differed in the retinal layers. Only C-4-S sulphation occurred 

in the inner retinal layers in high levels. C-6-S was mostly localised within the IS and OS. C-0-S was not 

found in any retinal layers. Pixel intensity analysis revealed that there was no difference in sulphation 

pattern between any of the experimental groups. Scale bar = 100μm. 
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6.3.3 The retinal GAG sulphation pattern changes in human glaucoma  

The overall distribution of GAGs within the human retina was similar to that seen in the rat. 

Again, GAGs were stained in all retinal layers and were more highly concentrated in the NFL/GCL, 

ONL and IS. There did not appear to be any difference in this pattern in glaucomatous eyes in 

regions of visual deficit (glaucoma) or regions of no visual deficit (Normal Glaucoma, NG). 

Labelling with stub antibodies following CSase ABC digestion of the sections revealed the 

sulphation pattern of GAGs in the human retina. In the controls, strong labelling of C-4-S (with 

antibody 2B6) was present throughout the retina, and was particularly intense in the NFL, 

nuclear layers and photoreceptor segments. C-6-S labelling (with antibody 3B3) was detected 

very weekly throughout the retina, but was concentrated at the photoreceptor segments. C-0-

S (labelled with antibody 1B5) was not detected in the retina, the fluorescent intensity was not 

significantly different to secondary only controls in any of the retinal layers. In glaucoma, the 

average pixel intensity for C-4-S labelling was significantly increased over normal control retina 

in the NFL/GCL complex (70±22 against 44±16; P=0.004, One-way ANOVA with post-hoc 

Bonferroni) and IPL (55.6±16 against 38±13; P=0.013, statistical test as before). For all other 

retinal layers there was no significant difference. C-6-S labelling was also altered with the 

average pixel intensity significantly higher in glaucoma than control in the NFL/GCL complex 

(11±7 against 4±3; P=0.042, statistical test as before), but was not significantly changed in all 

other retinal layers. The GAG sulphation pattern therefore appears to change in glaucomatous 

eyes in the inner retina with the outer retina unaffected.  
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Figure 6.3 Alcian Blue staining of human retina. GAG were again distributed amongst all retinal layers, 

and were highly concentrated in the IS. There was no clear difference in Alcian blue (blue) staining 

between control, and glaucomatous retinas. Regions of no visual deficit in glaucomatous eyes (Normal 

Glaucoma) were similar in their GAG distribution to both control and Glaucoma eyes. Nuclear layers are 

stained with Celestine blue (purple).  
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Figure 6.4 Sulphation pattern changes in the human retina in glaucoma. In the human retina, the sulphation pattern was similar to that in the rat 

with C-4-S sulphation the most abundant and distributed through all retinal layers. C-6-S was found weakly in all layers but was particularly strong in 

the photoreceptor IS and OS. Again, there was no detectable 1B5 labelling suggesting that there is no C-0-S sulphation in the human retina.  Areas of 

visual deficit in glaucomatous eyes exhibited increased 2B6 labelling in the NFL/GCL and IPL, indicating an increase in C-4-S in these areas.  This increase 

was not seen in areas of no visual deficit (Normal Glaucoma) suggesting that the increase in C-4-S is localised to regions of damage. Scale bar=100µm.
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6.3.5 The GAG pattern differs in areas of high visual deficit  

In order to relate the changes in GAG patterns to visual deficit the areas were grouped according 

to visual field total deviation.  The total deviation describes how the threshold achieved at each 

test area differs from a normal control population. Areas that showed significant deviation were 

grouped as glaucoma, areas that showed no significant deviation were grouped as normal 

glaucoma (NG) and areas from control retina were grouped as control. C-4-S was unchanged in 

NG areas compared to control, showing no significant difference in average pixel intensity in the 

NFL/GCL complex (29±2 against 44±16; P=0.564, One-way ANOVA with post-hoc Bonferroni) or 

IPL (22±3 against 38±13; P=0.157, statistical test as before). Glaucoma areas showed 

significantly greater C-4-S labelling than NG area in both the NFL/GCL complex (70±22 against 

29±2; P=0.001, as before) and IPL (56±16 against 22±3; P=0.001, as before). Labelling of   C-6-S 

in NG areas showed no significant difference to control in the NFL/GCL complex (12±7 against 

4±3; P=0.070, as before) but was similar to that in glaucoma areas (11±7 against 12±7; P=1.0, as 

before). These data show that the GAG sulphation pattern changes significantly only in the areas 

of visual deficit.  
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6.3.6 The magnitude of GAG pattern change in the IPL shows relationship to visual deficit  

The magnitude of total deviation (dB) was found to correlate inversely with the intensity of C-4-

S labelling in the NFL/GCL complex (r=-0.566; P=0.008, Spearman’s rank order correlation) and 

IPL (r=-0.737; P=0.001; statistical test as before) suggesting an increase of C-4-S sulphated GAGs 

with disease severity (deviation is a negative value). The intensity of C-6-S labelling in the 

NFL/GCL complex did not correlate significantly with the total deviation, showing no relationship 

(r=0. 314; P=0.204; statistical test as before). The statistical chance that the total deviation 

recorded at each test location is not significantly different from a normal control population is 

also given in the field analysis. These chances are given as <5%, <2%, <1% and <0.5%. For 3 of 

the chosen deficit areas this was a <5% chance and was a <0.5% chance for the other 6. When 

the areas were grouped according to this chance, the average total deviation was -22.1±6 dB for 

the <0.5% chance group, -7.6±5 dB for the <5% chance group, and -2.2±2.2 dB for those areas 

that are not significantly different from a normal control population. The total deviation was 

significantly greater in the 0.5% group than normal group (P=0.001; Kruskal-Wallis test) and the 

5% group (P=0.021; statistical test as before) but the 0.5% group was not significantly different 

from control normal group (P=0.303; as before). Grouping according to the % chance therefore 

reflects the severity of visual deficit.  In the GCL/NFL average pixel intensity of C-4-S labelling did 

not significantly differ when comparing the 0.5% and 5% group (75±22 and 73±21, P=1.0; One-

way ANOVA with post-hoc Bonferroni) but was more highly significant in the 0.5% than 5% group 

when compared to control (P=0.003 compared to P=0.013; statistical test as before). However 

in the IPL, average pixel intensity corresponding to C-4-S labelling was significantly greater than 

control in the 0.5% (57±17 against 31±13, P=0.006; statistical test as before) but not in the 5% 

group (52±17 and 31±13, P=0.160; as before). The magnitude of GAG pattern change therefore 

appears to relate to the degree of visual deficit in the IPL but not the GCL. Again, labelling of C-
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6-S showed no significant difference to control in the NFL/GCL complex in either the 0.5% or 5% 

group nor between the two latter groups (P=0.263, P=1.0, P=1.0 respectively; statistical test as 

before). 
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Figure 6.5 The degree of sulphation pattern change varies according to visual deficit. In NFL/GCL 

complex and IPL C-4-S (labelled through 2B6) was significantly increased in glaucomatous eyes in areas of 

visual deficit (Glaucoma) compared to areas of no visual deficit (NG) and control eyes (A).  C-6-S sulphation 

(labelled through 3B3) was also increase in the NFL/GCL complex in glaucoma compared to control, but 

not in NG areas (C). Grouping the glaucoma areas according to the total deviation (into groups 5% and 

0.5%, which reflect the severity of the visual deficit) showed that increases in C-4-S sulphation in the 

NFL/GCL occurs in areas of both moderate and severe visual deficit (B). In the IPL, C-4-S sulphation only 

increases in areas of severe visual deficit (B), while the increase of C-6-S became non-significant (C). 

Increased C-4-S sulphation therefore correlates with visual deficit and may reflect pathological changes 

to the retina. Error bars show SEM. *P<0.05, **P<0.01, ***P<0.001. 
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6.4 Discussion 

The findings of this chapter show a differential distribution of GAGs within the retinal layers in 

both rats and humans. C-4-S, and to a lesser extent C-6-S, were found throughout the retinal 

layers, with the former particularly strong in the NFL and GCL. These results are in agreement 

with Clark et al. (2011) who also showed C-4-S and C-6-S labelling in the human retina. However, 

they showed that C-0-S was present throughout the retina whereas no labelling of C-0-S was 

identified here in rat or human retina, as the average pixel intensity was not significantly 

different to secondary antibody only controls. Strong C-6-S labelling, and weaker C-4-S labelling, 

in both the Brown Norway rat and human inner segments has been previously shown Hollyfield 

et al. (1999), consistent with the results presented here. C-4-S demonstrated a localisation 

around the RGC somas in the GCL in both rats and humans. CSPGs have previously been shown 

to form a dense surround to RGCs (Aquino et al. 1984) as is seen in other PNN bearing neurons.  

 

Human retinas showed an increase in both C-4-S and C-6-S in the NFL/GCL in glaucoma eyes (in 

regions of visual deficit) with the former also increased in the IPL. Increased CSPG expression, in 

particular altered sulphation patterns which are a feature of CNS neurodegenerative diseases 

(Dewitt et al. 1993), have been shown in lesions of the optic nerve following crush (Selles-

Navarro et al. 2001) and in the ONH in glaucoma at the site of the lamina cribrosa in primate 

eyes (Fukuchi et al. 1994) and the optic nerve in Brown Norway rats (Johnson et al. 1996). 

Increased expression of the core proteins to which the CS/DS GAGs attach have also been shown 

as a response to a number of CNS insults (Jones et al. 2002; Matsui et al. 2002). Neurocan, which 

has very few CS/DS GAG sidechains increases after retinal ischemic injury (Inatani et al. 2000). 

Further investigation with antibodies specific to other components of the CNS ECM may 

therefore uncover even greater changes in the GAG profile of the retina following glaucoma. 
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The increase in sulphated CS/DS GAGs in glaucoma may be the result of increased synthesis and 

secretion from reactive glial cells.  Glial cells secrete CSPGs in response to CNS (McKeon et al. 

1991; Haas et al. 1999; McKeon et al. 1999) and retinal injury (Inatani et al. 2000) and CSPG 

labelling is often associated with that of GFAP (McKeon et al. 1991; Dewitt et al. 1993). It would 

be interesting to explore whether in regions of glaucomatous retinas the increased sulphated 

CS/DS GAGs were co-localised with GFAP labelling. Given that CS/DS sulphation increased in 

human glaucoma, and that experimental glaucoma models have shown a similar pattern in the 

ONH (Fukuchi et al. 1994; Johnson et al. 1996), the lack of change in the rat retina is unexpected. 

It is possible that a) this reflects the differing nature of experimental and human glaucoma, b) 

that the experimental glaucoma was too moderate to induce any GAG changes as cell death was 

only ~10%, c) that the relatively young age of these rats was not conducive to GAG changes or 

d) that the 6 week period was not long enough for sufficient changes if any to occur.  

 

In the cases of glaucoma described previously (Fukuchi et al. 1994; Johnson et al. 1996), C-4-S 

and C-6-S increases were related to the severity of glaucoma. Using the total deviation of visual 

deficit from the visual field test as a measure of disease severity, the increase of C-4-S seen here 

in human retina was correlated to the disease severity.  Although some prominent studies 

predict a linear relationship between visual field sensitivity and RGC loss (Quigley et al. 1982; 

Harwerth et al. 1999), the relationship is curvilinear and shows a two stage linear relationship 

when plotted on a logarithmic scale (Garway-Heath et al. 2002; Swanson et al. 2004). The 

relation of sensitivity to disease severity is therefore justified, however caution is necessary in 

interpreting these GAG pattern changes in relation to actual RGC loss. The largest confounder 

to the validity of these results is the high test-retest variability of visual field analysis (Artes et 
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al. 2002) and the time between the field analysis and death and therefore more retinal areas 

should be analysed in order to mitigate the effects of any erroneous sensitivity measurements. 
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Chapter 7: General Discussion 

This chapter provides and overview of the results obtained in the experimental chapters, with 

particular focus on the consequences and potential mechanisms behind the observations of 

RGC dendritic atrophy, dendritic protection and GAG changes. 

 

7.1 RGC dendritic and synaptic atrophy 

This thesis presents further evidence for the loss of dendrites as an early event in experimental 

glaucoma and concurs with the findings of reduced dendritic branching and field size in other 

models (Weber et al. 1998; Shou et al. 2003; Morgan et al. 2006; Li et al. 2011; Feng et al. 2013; 

Williams et al. 2013). In both chapters 4 and 5, OHT eyes suffered significant RGC dendritic 

atrophy. Interestingly, this loss was milder in the injected eyes in chapter 5 than chapter 4 and 

likely reflects the impact of differing IOP profiles. The increase over control was, roughly, 50% 

greater in mean and peak IOP and 25% greater in IOP AUC for the OHT eyes in chapter 4 

compared to chapter 5.  The extent of dendritic loss mirrored this difference in IOP, with the 

more acute pressure increase producing greater dendritic atrophy including dendritic field 

shrinkage. The latter was not observed with the more moderate pressure increase achieved in 

chapter 5. Further investigation revealed that dendritic loss here was confined to the higher 

order dendrites. The acute nature of IOP increase has been shown to correlate to the degree of 

RGC apoptosis (Guo et al. 2005) and dendritic atrophy (Li et al. 2011) and so reflects the severity 

of glaucoma. These results therefore allow for potential insight into the process of dendritic 

atrophy and are suggestive of an initial loss of higher order dendrites with a maintenance of 

overall shape in the early disease process. Investigation of the RGC morphology in the human 

retinas used in chapter 6 would be of particular interest, especially in the areas where no visual 

deficit was detected as these may be in the stages of early dendritic loss.  
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To understand why dendritic loss should occur as a consequence of glaucoma it is important to 

consider the unique nature of RGCs among other neurons. The axons of the RGC must traverse 

the retinal surface and exit the eye to innervate CNS targets. As such the axons cannot be 

myelinated without disrupting vision and so must carry action potentials without saltatory 

conduction for the distance of a few millimetres to centimetres (Crish and Calkins 2011). 

Mitochondria are therefore concentrated at the axon hillock of the RGC to provide the necessary 

energy (Barron et al. 2004). Given that one study has estimated the total ATP consumption of a 

resting cortical neuron at 4.7 billion molecules per second (Zhu et al. 2012), it is clear that the 

highly active RGCs demand considerable energy. The mitochondria of a neuron must also cater 

for the local demand in dendrites as well as axons - restoring ion gradients through ion channels 

and maintaining Ca2+ buffering (Brown et al. 2006; Schwarz 2013). Live imaging of mitochondria 

has shown their movement and distribution to be highly dynamic (Jakobs 2006). These 

organelles are continually turned over, removing those that are old and damaged, with some 

10-40% moving at any given time (Ligon and Steward 2000; Wang and Schwarz 2009). Given the 

evidence of hypoperfusion, oxidative stress and homeostatic disruption in glaucoma (Minckler 

et al. 1977; Tezel et al. 2010), RGCs would be placed under considerable strain to meet the 

energy requirements of the cell. Mitochondria in dendrites have shown to be more susceptible 

to damage than those in the soma due to their relative isolation. These mitochondria have a 

longer lifespan , exhibit slower movement, and greater exposure and vulnerability to Ca2+ flux 

(Brown et al. 2006) and oxidative stress (Martinez et al. 1996).  It is reasonable therefore to 

suggest that the dendrites bear the brunt of the pressures on energy demand in stressed RGCs, 

with the most distal tips effected first. Dendritic mitochondria have shown greater age related 

changes in their energy output (Battino et al. 1995), increased DNA deletion and impaired fission 

compared to those in the soma (Stauch et al. 2014). Associations between defects in 
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mitochondrial fission genes and glaucoma have also been found (Abu-Amero et al. 2006; Wolf 

et al. 2009; Sundaresan et al. 2015), while RGC dendritic atrophy is also a feature in diseases of 

mitochondrial dysfunction (Williams et al. 2010; Williams et al. 2012). These findings suggest 

that failure to maintain a sufficient dendritic pool of mitochondria could contribute to dendritic 

loss in glaucoma. OHT eyes showed decreased PSD95 labelling in chapter 4, indicting a loss of 

RGC synapses which may have been associated with stressed dendritic mitochondria. Synaptic 

loss in Alzheimer’s is associated with abnormal mitochondrial function induced by the disease 

pathology (Reddy et al. 2012).  
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7.2 The influence of the RGC external environment on dendritic atrophy 

7.2.1 The immune system 

 Activation of the immune system is thought to be an early response in glaucoma, with the 

upregulation of various ligands and cytokines (Ahmed et al. 2004; Agudo et al. 2008; Howell et 

al. 2011; Johnson et al. 2011) encouraging immune cell infiltration and recruitment to the ONH 

and retina (Son et al. 2010). Work in this thesis has built upon a growing body of evidence for 

the involvement of the complement system in glaucoma (Stasi et al. 2006; Stevens et al. 2007; 

Tezel et al. 2010; Howell et al. 2013) showing that RGCs can be partially protected from dendritic 

atrophy through inhibition of C1q in both rats and mice. C1q binding to cell surface markers of 

stress has been implicated in the initiation of phagocytosis by immune cells (Gardai et al. 2005; 

Shi et al. 2006; Fricker et al. 2012). In the data presented in chapter 4 both rats and mice showed 

a reduction of synapses in the IPL with glaucoma in agreement with others (Della Santina et al. 

2013), but this was prevented in rats through C1q inhibition. Given the role of C1q in synapse 

elimination during development (Bialas and Stevens 2013) it is plausible that similar mechanisms 

contribute to the dendritic, and by extension, synaptic loss in RGCs (Stevens et al. 2007). Further 

investigation aimed at identifying co-localisation of C1q, PSD95 and markers of phagocytosis 

such as IBA1 would provide evidence of direct tagging of synapses for clearance. The 

upregulation of complement is also a feature of other neurodegenerative diseases where the 

antigenic profile of glial cells has been noted to resemble that of immature cells (Dangond et al. 

2004; Fonseca et al. 2004) and so could aberrantly function in a manner similar to that during 

the period of synaptic refinement. During this period synapses are eliminated in an activity 

dependant manner, where stronger synapses impose both protective and punishment signals, 

with the latter contributing to the elimination of weaker, neighbouring synapses (Jennings 

1994). C1q and C3 have been suggested as one method of punishment signalling (Stevens et al. 
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2007). Perhaps the weaker synapses in stressed RGCs are preferentially cleared in this manner 

in neurodegenerative diseases such as glaucoma.  

 

7.2.2 The retinal ECM 

During the period of synaptic refinement, and in the preceding stage of retinal synaptogenesis, 

the GAG ECM environment is heavily involved (Inatani and Tanihara 2002). Dynamic changes in 

GAG expression act as guidance cues for dendrites and axons but then stabilise to maintain 

favourable connections (Blue and Parnavelas 1983; Dityatev et al. 2007). The GAG profile then 

remains unchanged (Inatani and Tanihara 2002). In glaucomatous rats, those treated with CSase 

ABC did not show significant signs of dendritic atrophy, however the experiment performed 

cannot distinguish whether this was a protective or regenerative effect. In the case of the latter, 

application of CSase ABC has allowed for regeneration of axons through GAG rich glial scars 

(Bradbury et al. 2002) or removed the constrictive PNN allowing a shift in optical dominance 

(Pizzorusso et al. 2002). Discerning the mechanisms by which these effects would culminate in 

RGC dendritic survival is complicated by the vast and often conflicting nature of GAG functions. 

For instance, GAGs have been shown to inhibit neurite outgrowth (McKeon et al. 1991; Inatani 

et al. 2001) but also promote it through neurotrophic effect (Schulz et al. 1990; Nichol et al. 

1994). GAGs have also been shown to bind numerous growth factors (Milev et al. 1998a; Milev 

et al. 1998c) although this is likely for sequestration rather than presentation to the cell; CSPGs 

for instance have been shown to inhibit BDNF binding to its receptor (Kurihara and Yamashita 

2012). If, as hypothesised, digestion of GAGs in the retina removed the inhibition to RGCs from 

PNNs then the cells could have been free to receive neurotrophic stimuli found endogenously 

in the retina (Cui et al. 2002). However, the core proteins left following GAG sidechain digestion 

have themselves shown inhibitory effects on neuronal growth (McKeon et al. 1999). The ECM 
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environment is clearly multifaceted with respect to neuronal interaction. What impact would 

the digestion of the ECM have on the neurons that it is tasked with supporting? Investigation of 

the toxicity of CSase ABC when injected into the vitreous showed no significant neuronal loss in 

the retina nor changes to RGC morphology in normal eyes. These data suggest that GAG 

digestion is safe, but digestion could change the hydrodynamic properties, charge density and 

diffusion parameters of the extracellular space (Bruckner et al. 1998). In Schizophrenia, where 

impaired synaptic connectivity and pruning are features of the disease pathology (McGlashan 

and Hoffman 2000), association with polymorphisms in genes encoding PNN components have 

been found (Muhleisen et al. 2012) while post-mortem human tissue has shown a decrease in 

PNNs (Mauney et al. 2013; Pantazopoulos et al. 2013). In particular, fast-spiking parvalbumin-

positive GABAergic interneurons, which are PNN positive, are known to be functionally impaired 

in the disease leading to cognitive and perceptual defects (Bitanihirwe et al. 2009). Disruption 

to PNNs in schizophrenia may not only effect synapse stability but also alter ion balances and 

thus disrupt the firing properties of these neurons (Bitanihirwe and Woo 2014). These suggest 

that GAG digestion by CSase ABC could have consequences for the electrophysiological 

properties of the RGCs that would need to be investigated further before CSase ABC treatment 

could be considered efficacious in treating glaucoma. 

 

7.2.2 Association of the Immune system with the ECM 

In human glaucomatous retina, regions of high visual deficit corresponded with increased levels 

of sulphated GAGs. This was in agreement with other areas of the eye in glaucoma (Fukuchi et 

al. 1994; Johnson et al. 1996) and in other neurodegenerative disorders (Haas et al. 1999; 

McKeon et al. 1999). It appears that GAG deposition is a response of activated glial cells. The 

increase in GAGs observed could therefore be an indication of increased glial infiltration and 
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activation in the glaucomatous retina. The sheer diversity of GAGs results in more and more 

functions and interactions of the ECM being uncovered (Caterson 2012). In particular, it seems 

that GAGs and the immune system are closely associated. CS/DS sidechains not only bind 

numerous growth facts but also chemokines and L- and P- selectins (Kawashima et al. 2002) 

which are upregulated in numerous inflammatory diseases including glaucoma (Johnson et al. 

2011; Howell et al. 2012). Certain chemokines in particular are bound with higher affinity in 

oversulphated GAGs (Kawashima et al. 2002), and the authors suggest that this may be an 

attempt at sequestration. Increased GAG sulphation has also been shown to improve the 

binding and activity of certain growth factors (Taylor et al. 2005). HS and DS have also 

demonstrated an ability to bind complement factor H (a regulator of the complement system) 

and deactivate C3b depositions on the cells surface in the retina (Clark et al. 2010). The increased 

sulphation seen in human eyes could therefore be both a consequence of, and attempt to 

mitigate, glial activation. Further investigation of the effects of GAG digestion by CSase ABC 

should therefore focus on the impact on immune recruitment and activation in these damaged 

areas.  
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7.3 Functional consequences of RGC structure change 

The relationship of RGC morphology to the receptive field suggests that even subtle dendritic 

loss may impact the function at the single cell level. Webber et al. (1998) showed reduced spatial 

and temporal resolution in glaucomatous RGC receptive fields, accompanied by a reduced 

branching density and dendritic field size.  Dendritic atrophy results in the reduced density of 

bipolar cell synapses and thus would cause a loss of resolution. The loss of dendrites and 

accompanying synapses would also affect the ability of the RGC to reach firing threshold as 

fewer inputs would be summated. This would manifest as a reduced spike rate; as observed by 

Della Santina et al. (2013).  RGC to RGC gap junctions, which facilitate synchronised firing (Dacey 

and Brace 1992), are located on the peripheral dendrite tips (Hidaka et al. 2004), and may be 

lost as a result of decreased dendritic branching and field size. A reduction or loss of these gap 

junctions would impede the RGC in reaching threshold and thus also reduce its spike rate.  

 

The preferential loss of higher order dendrites, as observed in chapter 5, would be favourable 

for the maintenance of visual function. As bipolar cell synapses are distributed evenly along RGC 

dendrites (Jakobs et al. 2008) this pattern of dendrite loss would preserve the receptive field in 

the same general shape through minimising the disruption of the loss of bipolar cell synapses. A 

random or asymmetric loss would drastically alter the shape of the receptive field by eliminating 

areas of the underlying uniform bipolar cell mosaic (MacNeil et al. 2004), rather than reducing 

the density of connections. Dendritic loss that allows the closest approximation to complete 

bipolar cell tiling would allow for the greatest retention of function. The receptive fields 

recorded by Della Santina et al. (2013) are suggestive of this as the receptive field size was 

maintained despite a reduction in synapses, with only the spike rate of the cell altered. The 

distribution of mitochondria within dendrites may result in this pattern of dendritic loss.  
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The functional deficits induced by dendritic loss at the level of the receptive filed may be masked 

perceptually in the early disease stages. RGC tiling of the retina and the extensive overlap of 

dendritic fields (DeVries and Baylor 1997) may allow for the maintenance of overall visual 

resolution. Visual redundancy is high when viewing natural scenes as opposed to traditional 

stimuli, with one study suggesting it reaches ~10-fold (Puchalla et al. 2005). The summation of 

RGC inputs may therefore compensate for the reduced spatial resolution and smooth out the 

effects at the perceptual level. In early glaucoma in humans, standard automated perimetry has 

revealed that both spatial (Redmond et al. 2010) and temporal (Mulholland et al. 2015) 

summation are increased in order to preserve detection thresholds. 
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7.4 Conclusions and future direction 

This thesis presents data supporting the loss of dendrites as an early feature in experimental 

glaucoma.  Given the varying morphology of the RGC types, classification of RGCs is important 

in avoiding type-specific bias when quantifying dendrite morphological change in disease.  The 

successful derivation of a classification method based on proximal dendrite features (which are 

spared in early disease), as presented in chapter 3, could therefore prove a useful tool for 

dendrite analyses. Given a larger sample size this method could be expanded to include RGC 

subtypes which could reduce misclassification. A feasible short term goal would be to package 

the morphological analysis of the primary dendrite features as a software application, ideally an 

image analysis plugin distributable through a GNU general public license for applications such 

as FIJI. Is would allow an easily accessible classification bias check for researchers. Although only 

applicable to researchers using BN rats, this statistical approach could also be applied to RGCs 

of other commonly used species and strains.  

The impact of the RGCs extracellular environment on dendrite loss and recovery in glaucoma 

was investigated in chapters 4 and 5, focusing on the compliment system and PNNs respectively.   

Inhibition of the compliment system was effective in two experimental glaucoma models in 

reducing dendritic atrophy and accompanies a growing body of work suggesting the 

complement system (Howell et al. 2011; Howell et al. 2013) and wider immune system 

contributes to RGC loss (Gramlich et al. 2015). The administration of CSaseABC to digest the 

restrictive PNNs surrounding RGCs was also effective in reducing dendritic atrophy in 

experimental glaucoma. These manipulation require further research to investigate whether 

dendritic recovery is accompanied by a functional benefit. Analysis of synapses with PSD95 was 

inconclusive and a more sensitive method would be a necessary step. Biolistic labelling of RGCs 

with a PSD95-XFP plasmid could reveal whether these treatments gave synaptic protection. A 
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CMV or equivalent driver would be necessary as ganglion cell specific promoters such as Thy.1 

are known to be downregulated in glaucoma (Schlamp et al. 2001; Huang et al. 2006).  

Functional assessment of vision would also be key. Comparison of pattern ERG recordings before 

and after treatment could give an indication of gross RGC recovery (Ben-Shlomo et al. 2005) 

while single cell receptive field recordings would offer greater insight into the relationship of 

dendrite loss and recovery and the resultant single cell function (Della Santina et al. 2013).  

If a visual benefit were detected, C1inh and CSase ABC could become potential therapies for 

glaucoma. However, C1 inhibition would likely be an unfavourable option. The C1inh Cinryza® 

(as used in chapter 4) is FDA approved for use in hereditary angioedema (U.S. Food and Drug 

Administration 2008) although only via intravenous administration. Therefore a large dose is 

needed (1000U), which causes frequent adverse reactions (headaches 1:2, nauseas 1:3, rash 

1:3) and carries a risk of hypersensitivity reactions and thromboembolic events  (New York: Lev 

Pharmaceuticals Inc. 2009); the latter would not represent a good cost/benefit ratio given the 

elderly demographic of glaucoma patients. Intravitreal administration would allow a dose 2 

magnitudes of order lower (as used in chapter 4) and so would mitigate these adverse reactions. 

However, as is also the case with CSase ABC injection, that route would not be favourable for 

patients. A Study of patient adherence to anti-VEGF therapy showed that fear of intravitreal 

injections is common (~50%) and adherence was largely based on the patient’s belief of an 

ascribed benefit to vision (Droege et al. 2013). Without sizable improvement to vision, these 

would not represent viable therapies in their current form. However, they do offer insights into 

mechanisms influencing RGC dendritic loss and are therefore worth further study. Increased 

sulphation of GAGs was detected in post-mortem glaucomatous tissue from donors in chapter 

6. Over-sulphation is known to be inhibitory to neuron regrowth and so CSaseABC injections 

could act to digest the sulphated GAG content of the retina in these patients and would 
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represent a viable strategy to prime the retina prior to the use of more robust and tractable 

neuro-regenerative therapies of the future.  CSase ABC has been used to enhance stem cell 

integration into the retina in animal models of disease (Suzuki et al. 2007; Ma et al. 2011). This 

thesis shows that a single CSase ABC injection has no detected adverse effects on retinal neurons 

and so could be used in either of these ways as part of a viable glaucoma therapy in the future.  
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Appendix 

Appendix A 

Table A RGC morphology measurements 

Measurement RGCA RGCB RGCC RGCD 

Soma Diameter (µm) 22.7 ± 3.5 15.6 ± 2.3 18.8 ± 3.0 18.7 ± 2.5 

PDL (µm) 25.8 ± 13.6 22.5 ± 14.8 22.2 ± 9.0 20.1 ± 8.2 

PDN 4.3 ± 1.1 3.2± 0.8 3.9 ± 0.8 3.1 ± 0.7 

PBPF area (µm2) 1664 ± 1081 758 ± 791 1716 ± 1052 724 ± 486 

SBPF area (µm2) 12352 ± 

8383 

3391 ± 3291 7830 ± 5893 3981 ± 2184 

COG PBPF (%) 22.9 ± 12.3 56.8 ± 55.3 23.4 ± 28.3 68.3 ± 43.0 

COG SBPF (%) 17.6 ± 7.1 37.6 ± 35.7 19.4 ± 9.7 32.2 ± 18.8 

PD asymmetry (°) 78.8 ± 38.6 166.0 ± 74.8 111.4 ± 62.4 182.5 ± 55.5 

Proximal branching Density 8.4 ± 5.4 8.3 ± 11.0 7.3 ± 13.2 6.9 ± 4.4 

PD cross-sectional area (µm2) 27.6 ± 10.3 11.7 ± 5.9 18.4 ± 6.2 20.0 ± 7.9 

PD max Feret diameter (µm) 7.0 ± 1.2 4.7 ± 1.2 5.8 ± 1.1 6.0 ± 1.2 

PD min Feret diameter (µm) 5.1 ± 1.0 3.2 ± 1.0 4.2 ± 0.8 4.5 ± 1.0 

Vector distance from ONH (µm) 3150 ± 1241 3076 ± 1042 3067 ± 946 3148 ± 803 

Values are mean ± SD. 
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