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erirhinal  cortex  lesions  that  impair  object  recognition  memory  spare
andmark  discriminations
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Loss  of  perirhinal  cortex  spares  mirror-imaged  landmark  discriminations.
Perirhinal  cortex  lesions  do  not  disrupt  latent  spatial  learning.
Further  underlines  dissociation  between  perirhinal  and  hippocampal  function.
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a  b  s  t  r  a  c  t

Rats  with  lesions  in the  perirhinal  cortex  and  their  control  group  learnt  to  discriminate  between
mirror-imaged  visual  landmarks  to find  a  submerged  platform  in a  watermaze.  Rats  initially  learnt  this
discrimination  passively,  in that  they  were  repeatedly  placed  on the  platform  in  one corner  of  a  square
watermaze  with  walls  of  different  appearance,  prior  to  swimming  to  that same  location  for  the  first
eywords:
ippocampus
avigation
arahippocampal cortex

time  in  a subsequent  probe  trial.  Perirhinal  cortex  lesions  spared  this  passively  learnt  ability,  despite  the
common  visual  elements  shared  by  the  guiding landmarks.  These  results  challenge  models  of perirhinal
function  that  emphasise  its role  in solving  discriminations  between  stimuli  with  ambiguous  or  overlap-
ping  features,  while  underlining  how  this  cortical  region  is  often  not  required  for  spatial  processes  that
involve  the hippocampus.

©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
There is compelling evidence that perirhinal cortex damage dis-
upts tests of object recognition [1,2]. This region is also involved
n ‘object-in-place’ memory, which taxes the ability to remem-
er the location in which a particular object was  encountered
3,4]. Despite being heavily interconnected, the perirhinal cortex
nd hippocampus appear to play rather different roles in mem-
ry [5]. For example, perirhinal cortex lesions often spare spatial
asks that are highly sensitive to hippocampal damage. One influ-
ntial account of perirhinal cortex function holds that the perirhinal
ortex represents conjunctions of stimulus features and so aids
iscriminations between stimuli with overlapping features [6]. A
rediction that follows from this account is that perirhinal dam-
ge should increase sensitivity to interference from related stimuli

hat share common features. Evidence in support of this position
omes from studies showing that perirhinal cortex lesions can
mpair visual discriminations involving feature ambiguity [7–10].
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E-mail address: aggleton@cf.ac.uk (J.P. Aggleton).

1 Current address: Rowett Institute of Nutrition and Health, Foresterhill, Univer-
ity of Aberdeen, AB25 2Z, UK.

ttp://dx.doi.org/10.1016/j.bbr.2016.07.031
166-4328/© 2016 The Authors. Published by Elsevier B.V. This is an open access article u
(http://creativecommons.org/licenses/by/4.0/).

This account can also readily explain why  perirhinal lesions can
often spare performance on spatial memory tasks, as perirhinal
lesions might only be expected to disrupt those tests of spatial
memory that involve discriminations between stimuli with over-
lapping or ambiguous visual features.

The present study examined the impact of perirhinal cortex
lesions on the ability to discriminate mirror-imaged landmarks in
order to find a submerged platform in a square water-maze. Mirror-
imaged stimuli are of especial interest as they share the same
elements and, hence, should be prone to interference. Although a
previous study indicated that perirhinal lesions spare mirror-image
discriminations [11], the training protocol was very protracted. The
present study differed in two  key aspects. First, it used a more rapid
learning protocol [12,13]. Second, learning was ‘passive’ in that
there was no explicit reinforcement for learning the discrimination.
Accordingly, rats were repeatedly placed on a partially submerged
escape platform in the corner of a square water-maze where the
platform location was  signalled by the spatial arrangement of

mirror-imaged patterns on adjacent maze walls. The particular dis-
crimination involved those corners where striped walls and white
walls met, where their relative left/right position was critical (see

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Schematic diagram of the square maze with different patterned walls. The
inner square shape depicts the pool, the surrounding circle is the larger pool within
which the square pool is placed, and the rippled circle represents the curtain used
to  block distal cues. The broken lines represent striped walls. The small circle repre-
sents the platform on which the rat was placed (passive trials). In Probes 1 & 3 (left
column), the maze had one striped wall, as was the case in all active and passive
training days. In Probes 2 & 4 (right column), the maze had two adjacent striped
walls. ‘Passive’ refers to training days when the rat was placed on the escape plat-
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Fig. 2. Diagrammatic reconstructions of the perirhinal cortex lesions, showing the
individual cases with the largest (grey) and smallest (black) lesions. The most rostral
orm (no swimming). ‘Active’ refers to training days when the rat was placed in the
ater-maze and swam to find the escape platform.

ig. 1). Normal rats then swim to the escape location when first
eleased into the water after passive training, so demonstrating
heir discrimination between these visual landmarks. As the ani-

als have no experience of swimming to find the escape platform
n this location prior to the probe test, this problem can only be
olved by learning the correct configuration of spatial cues, rather
han by simpler mediating strategies involving individual stimuli
e.g. swim to the striped wall and turn right, see Fig. 1) that could be
cquired during active training [12]. The key question was whether
erirhinal cortex damage would disrupts rats’ ability to identify
he correct configuration given the presence of common cues with
hared features.

Twenty-nine male Lister-Hooded rats (Harlan, Bicester, UK)
ere used. All experiments were in accordance with the UK Ani-
als (Scientific Procedures) Act (1986) as well as EU directive

010/63/EU. Surgical procedures and care proceeded as described
reviously [23]). Injections of 0.09 M N-methyl-d-aspartic acid
NMDA; Sigma, Poole, U.K.) dissolved in phosphate-buffered saline
pH 7.4) were made in three sites using a 26 gauge, 1-�l  Hamilton
yringe (Bonaduz, Switzerland). The injection coordinates relative
o bregma and volume of NDMA infused were (1) AP −1.8, ML
5.9, DV −9.3 (0.22 �l); (2) AP −3.4, ML  ±6.2, DV −9.5 (0.20 �l);

3) AP −5.0, ML  ±6.3, DV −8.9 (0.20 �l). Injections were at a rate
f 0.10 ml  per min, with the needle left in place for four minutes
fter each injection. The lesions, consistently centred on the rhi-

al sulcus, caused extensive bilateral damage to areas 35 and 36
Fig. 2). One case was rejected because of bilateral sparing, leaving
6 perirhinal and 12 sham animals. The lesions involved almost

coronal section is at the top. The sections are ∼1 mm apart in the AP plane.
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Probe 2 - Two striped wall (Passive)
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Probe 3 - One striped wall (Ac�ve)
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Probe 4 - Two striped wall (Ac�ve)
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ig. 3. Passive learning of a corner location in the square water-maze. Each graph
orner was  the mirror-image of the training corner (‘Incorrect’). 13. In Probes 1 and
ontained two  adjacent white walls and two  adjacent striped walls. Probes 1 and 2

he full anterior-posterior extent of areas 35 and 36. The mean per-
entage of perirhinal cortex loss was 76.0% (range 53.7–95.0%). A
requent feature was some cell loss in the adjacent part of the piri-
orm cortex and lateral entorhinal cortex. There was often limited
amage to that part of CA1 immediately adjacent of the fundus of
he rhinal sulcus (7 unilateral, 7 bilateral) but was typically very
estricted to the level of the most caudal rhinal sulcus.

The apparatus and procedure matched those used to analyse
ippocampal lesions [14]. Briefly, rats began with four days of pre-
raining (four trials a day) during which rats swam in a circular
ool (2 m diameter) to find a submerged platform. Pre-training took
lace in a different maze and room to subsequent training. By pre-
raining day 4, there was no group difference in latency to reach
he platform (t < 1, means Perirhinal = 59.3, Sham = 56.5 s).

Next, the rats were trained passively in the square pool with
he platform in a fixed position with respect to the corners. The
ool (140 cm × 140 cm)  was set within a larger white, circular tank,
easuring 2.0 m in diameter and 60 cm deep (Fig. 1). The walls
f the square-shaped pool were formed by one black and white
triped and three white Perspex boards (140 cm long, 50 cm high,
nd 2 mm  thick). The vertical black stripes were 10 cm wide with
s the proportion of time spent in the trained (‘Correct’) corner of the maze. One
maze contained three white walls and one striped wall. In Probes 2 and 4 the maze
ed ‘passive’ training while Probes 3 and 4 followed ‘active’ training.

10 cm white intervals. The black stripes began 5 cm from the side
edge of the board. The maze configuration created three sets of cor-
ners: (1) black and white striped wall to the left of the white wall, (2)
black and white striped wall to the right of the white wall, and (3)
white wall meeting white wall (two corners; see Fig. 1). An escape
platform (10 cm in diameter) was submerged 2 cm below the water
surface. To occlude room cues, a curtain was drawn around the pool.

The rats were placed on the platform for eight days (four tri-
als a day). The platform was  positioned 25 cm from a corner on an
imaginary line that bisected the corner. This position was  coun-
terbalanced, so that half of the rats had the platform placed in a
corner where the striped wall was to the right of a white wall. For
the other half, the platform was in the corner where the striped
wall was to the left of the white wall. To nullify any extraneous
cues and ensure that the task could only be solved by discriminat-
ing between the mirror-imaged landmarks, the square pool was
randomly rotated 90◦, 180◦, or 270◦ clockwise between each trial.
Rats were placed individually on the escape platform for 30 s on

four separate trials (inter-trial interval approximately four min-
utes). On day eight, the rats received three training trials followed
by a test trial (Probe 1, ‘One striped wall’). For Probe 1, the plat-
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Fig. 4. Active learning of the location of an escape platform in a corner of the water-
58 A.J.D. Nelson et al. / Behavioura

orm was removed, the rats placed in the centre of the square pool,
nd allowed 60 s to swim in the water for the first time. The laten-
ies to reach the escape location did not differ between the two
roups (t < 1; means, Perirhinal = 20.9s, Sham = 24.7 s). There were
o group difference when the times in the correct corner (t < 1),

ncorrect corner (t < 1), or white:white corner (t26 = 1,17, P = 0.099)
ere separately compared between the two groups (Fig. 3).

Next, the rats were placed on the escape platform for an addi-
ional session (four passive trials) with one striped pool wall. The
ollowing day, the first three trials involved standard passive train-
ng. The fourth trial was Probe 2, ‘Two striped walls’. Now the pool
ad two black and white striped walls arranged next to each other

or the first time (Fig. 2). On this second probe trial, the rat was  again
ut into the water in the centre of the pool and allowed to swim for
0 s (platform absent). The ‘correct’ and ‘incorrect’ corners, along
ith the white:white corner, remained, but a new incorrect corner

‘novel’) composed of the meeting of two striped walls was  created
Fig. 1). There was no group difference (t < 1) in the time to first
each the escape location (means, Perirhinal = 38.7 s, Sham = 29.8 s).

hile there were no group differences for the times spent in the
orrect, incorrect, or white:white corners (all t < 1), the Perirhinal
roup showed a greater preference for the novel striped:striped
orner than the Sham group (t26 = 2.40, P = 0.024; Fig. 3).

The animals then received four sessions (four trials per session)
f active training in the square pool with one striped wall (Fig. 1). On
ach trial, rats were required to escape from the pool by swimming
o the submerged platform located in the same corner as during
assive training. The rat was placed in the centre of the pool facing
he middle of one of the walls. Rats were allowed 60 s to locate
he submerged platform. Rats remained on the platform for 30s.
etween each trial, the square pool was rotated either clockwise
r anticlockwise 90◦. The mean escape latency (Fig. 4) decreased
ith training (F3,78 = 27.7, P < 0.001), with no group effect (F < 1)
or interaction (F < 1).

The last trial of Session four involved a further probe test in
he square pool (Probe 3–One striped wall). The first three trials
roceeded as above. The platform was then removed and the rat
eleased in the centre of the pool. Each rat was allowed to swim for
0 s in the square maze containing one striped wall (Fig. 3). There
as no group difference in the times to reach the escape location

t26 = 1.32, P = 0.20; means, Perirhinal = 15.2 s, Sham = 10.0 s). There
ere no group differences in the time spent in the correct (t < 1),

ncorrect (t26 = 1.18, P = 0.25), or white:white (t26 = 1.16, P = 0.26)
orners.

In Session five, the rats completed four more swim trials with the
ne striped wall. In Session six, the platform was removed for the
nal trial. On this fourth trial, the single striped wall was  replaced
ith two, adjacent striped walls (Probe 4, ‘Two striped walls’). The

at was allowed to swim for 60 s after being released from the
entre of the pool. There was no group difference in the latency
o reach the escape location (t26 = 1.16, P = 0.26; means Perirhi-
al = 9.0 s, Sham = 6.6 s). There were no group differences in the
imes spent in each of the four different corners (largest t26 = 1.05,

 = 0.31). Thus, unlike the previous probe with two striped walls,
here was no indication that the perirhinal lesion group had an
xcessive preference for the novel corner formed by the meeting of
he two striped walls (Fig. 3).

The present study examined passive landmark learning after
erirhinal cortex lesions. The procedure required the rat to nav-

gate according to the spatial disposition of a prescribed set of
aze cues [12,13]. In contrast to rats with hippocampal lesions

14], the rats with perirhinal lesions learnt a specific location that

equired discriminating two mirror-imaged corners (Fig. 1). This
nding is consistent with previous evidence that the perirhinal
ortex is not essential for spatial discriminations involving ambigu-
us cues with overlapping features [11,15]. That perirhinal damage
maze. The graphs show the latency to reach the platform when released in the centre
of  the pool.

spared latent spatial learning also accords with evidence that the
lateral entorhinal, which connects the perirhinal cortex with the
hippocampus, is similarly not required for latent spatial learning
[16]. More broadly, this sparing accords with the wider finding that
perirhinal cortex lesions often spare spatial tasks that are highly
sensitive to hippocampal damage [5,17–22]. Despite this spared
ability to discriminate mirror imaged visual stimuli, these same
perirhinal lesion animals were severely impaired on tests of spon-
taneous object recognition [23]. Subsequent probe tests varied the
numbers of striped walls to help determine if the rats had just learnt
local features of the maze or were sensitive to the global layout of
the square swim-maze, i.e., treated it as though it were a new maze
when an additional striped wall was added [11][see 11]. In one of
the two  probe tests the perirhinal lesions appeared to accentuate
the attraction found in normal rats to the novel conjunction of two
striped walls [13]. At the same time, the preserved ability to dis-
tinguish the correct from the incorrect (mirror-imaged) corners in
the various probe tests suggests that both the Perirhinal and Sham
rats had learnt local features of the pool [11][see also 11]. Finally,
the perirhinal cortex lesions appeared to be without effect when
the rats were reinforced for swimming to the platform location
to escape, i.e., with active training. Overall, these null results differ
from those of hippocampal, retrosplenial cortex, and anterior thala-
mic  nuclei lesions, all of which disrupt the learning of preference for
the correct corner of the pool after passive training [14,24,25]. This
dissociation further highlights differences between the perirhinal
cortex and the extended hippocampal system [26].

The finding that rats with perirhinal cortex lesions could dis-
criminate mirror-imaged stimuli suggests that only particular
kinds of visual stimuli with common elements are sensitive to
perirhinal damage. One explanation, consistent with the hierarchi-
cal model [6], would be that the water-maze task involved only
simple features (striped vs. white), so sparing the need for the
perirhinal cortex. Such stimuli are likely to be processed early in
the visual system and so may  reach the extended hippocampal

system via structures other than the perirhinal cortex. One pos-
sible route for this information to reach the hippocampus is via
the retrosplenial cortex, damage to which is known to disrupt the
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