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Abstract 

The medium frequency vibration of a built-up plate structure is studied by an energy 

flow analysis which extends the concept of statistical energy analysis. The propagative waves 

of the plates are considered as subsystems that carry and spread energy. Symplectic analytical 

solutions for mode count, modal density and group velocity of each wave subsystem are 

obtained based on accurate consideration of the plate geometry and boundary conditions, 

while the joint vibrational behavior is described by a finite element model. The input mobility 

and coupling factor associated with each wave subsystem are accurately obtained using a 

hybrid analytical wave and finite element formulation. Based on the power balance relation of 

each wave subsystem, the system energy equations are established. Numerical examples for 

built-up structures comprising rectangular plates demonstrate high accuracy and efficiency. In 

contrast with statistical energy analysis, the energy of each wave subsystem can be obtained, 

facilitating the understanding and control of structural vibration and local response. The 

computational time of the hybrid formulation decreases significantly with increasing 

length/width ratio of the plates. The wave scattering property of the joint can also be obtained 

and used to replace the finite element model in repetitive analysis. 

 

Keywords: coupled plate structures; mid-frequency vibration; energy flow; symplectic method; 

finite element method 
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1. Introduction 

In the design of engineering structures, the analysis of vibration and acoustic behavior is 

of great importance for the evaluation of energy consumption, noise, comfort, safety and 

fatigue life. In vibro-acoustics, the audio frequency range is conventionally divided into low, 

medium and high frequency regions. At low frequencies, the structural response shows 

obvious peak values, and the influence of geometric shape and boundary conditions on the 

results can be clearly observed. In this range, traditional deterministic methods such as the 

finite element method (FEM) [1] and the boundary element method (BEM) [2] are appropriate. 

At high frequencies, smooth response behavior due to modal overlap can be observed and is 

significantly affected by structural uncertainties. Statistical energy analysis (SEA) [3] is most 

frequently used in this range. For mid-frequency vibration analysis, the traditional 

deterministic methods suffer disadvantages of huge computational load and low accuracy, 

while the statistical methods suffer the limitation that the structural uncertainty is insufficient. 

At present, there are three main approaches to the analysis of medium frequency 

vibration [4]. The first approach is to develop methods with higher efficiency based on the 

standard FEM or BEM [5-10], or on wave theory [4, 11-17], i.e. extending the range of low 

frequency deterministic analysis. The second approach is to develop methods based on SEA 

with more relaxed assumptions [18-21], i.e. extending the range of high frequency statistical 

analysis. The third approach is to analyze structures by a hybrid framework that combines 

deterministic methods and statistical methods [22-26]. 

As an energy flow method, SEA has a great advantage of computational efficiency 

compared with the displacement based methods when calculating the energy response of 
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structures. SEA is said to be an ad hoc extension of the exact results which may be derived for 

two coupled single degree of freedom oscillators under broadband excitation [27], and also 

based on many assumptions of high frequency [28]. At medium frequencies, the geometric 

shape and boundary conditions significantly affect the dynamics of the structure, violating the 

basic assumption of SEA and the classical asymptotic formulae of its parameters, e.g. modal 

density, coupling loss factor and input power. Even at high frequencies, the classical formulae 

of SEA parameters are not appropriate for all structural forms. Therefore, much effort has 

been made to find more appropriate SEA parameters. Xie et al [29] investigated the effects of 

boundary conditions on the mode count and modal density of beams and plates using the 

wavenumber integration method. Seçgin [30] determined SEA parameters for point connected, 

directly coupled symmetrically laminated composite plates using a numerical modal based 

approach. Finnveden [31] calculated the modal density, group velocity and coupling loss 

factor of a waveguide structure using the waveguide FEM. Based on a dual modal formulation 

and the power injection method, respectively, Totaro et al [32], Bies and Hamid [33] 

calculated the coupling loss factor used in SEA. Langley and Heron [34] calculated the 

transmission coefficients and the associated coupling loss factors for a semi-infinite built-up 

plate structure using the wave dynamic stiffness method. Using FEM to calculate SEA 

parameters has advantages in handing complex geometry and boundary constraints [35-38]. 

In this paper, a new energy flow method is proposed for the analysis of mid-frequency 

vibration of built-up plate structures based on the power balance framework used in SEA. The 

established concept of using the parameters of input mobility, damping loss factor and 

coupling loss factor to describe the input, transmission and dissipation of the energy of each 
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subsystem in the classical SEA is adopted in the presented energy flow method. In contrast 

with classical SEA, in which the whole flexural or in-plane wave field of the plates is 

regarded as a subsystem, each pair of propagative waves of the plates is considered as a 

subsystem in this paper. Based on this wave subsystem description, the analytical expressions 

of the SEA parameters can be obtained. Similar ideas have been used in previous studies. For 

example, the wave intensity analysis proposed by Langley [18] considers the waves in each 

direction as subsystems based on which the system power balance equations can be 

established. Based on [39], Wester and Mace [40] adopted analytical waves as subsystems in 

the SEA of two directly coupled rectangular plates. However, the analytical wave components 

can only be obtained for plates with two opposite edges simply supported. To overcome this 

boundary condition limitation the wave FEM [13, 14] or the waveguide FEM [31] may be 

considered. However, because a finite element model is introduced, the advantages in 

accuracy, efficiency and parametric analysis of the analytical wave description are lost. In this 

paper, the boundary condition limitation of the traditional analytical wave description is 

avoided by using the symplectic method [41-45] to describe the vibration behavior of the 

plates. And then the parameters of input mobility, damping loss factor and coupling loss factor 

can be obtained using the symplectic analytical waves which exactly reflect the 

mid-frequency characteristic of the built-up structure. Based on the symplectic analytical 

wave modes (i.e. wave propagation parameters and wave shapes) of rectangular plates 

previously obtained by the authors [43, 44], the mode count, modal density and group 

velocity of each wave subsystem are obtained in symplectic analytical form. Like the 

coupling loss factor used in the classical SEA, the power transmission between the wave 
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subsystems is described by a coupling factor which is finally transferred into the solution of 

the scattering coefficients associated with the waves of each plate. A hybrid analytical wave 

and finite element formulation is established by combining the analytical wave description for 

the plate components and the finite element description for the joint to obtain the input 

mobility and the scattering property of each wave subsystem with high accuracy and 

efficiency. Hence, the parameters of the energy flow analysis can be obtained exactly and 

reflect the mid-frequency characteristics of the structure. Then by considering the power 

balance the system equations of the energy analysis of the built-up structure are established. 

Solving the system equations of energy equilibrium directly gives the energy of each wave 

subsystem. Therefore, compared with SEA, from which only the energy of the whole flexural 

or in-plane wave field of plates can be obtained, the energy flow analysis presented in this 

paper can provide more insight into the vibration transmission, and therefore more useful 

guidance for the control of vibration of the built-up structure. 

The paper is organized as follows. Following this introduction, a wave subsystem based 

description of the transmission of the structural vibration is presented. Then the parameters 

for the energy flow analysis are derived and the system equations of power balance of the 

built-up structure are established. Next, the hybrid analytical wave and finite element solution 

formulation is derived. Finally, the effectiveness of the methods presented is validated based 

on three kinds of structural forms including a single rectangular plate, two co-planar plates 

coupled via a structural joint and three angle coupled plates with a structural joint. 
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2. Wave subsystem based description of the vibration 

transmission 

In previous work [43, 44], the authors have investigated the dispersion relation and the 

harmonic forced vibration response of single plates and directly connected plate assemblies 

based on symplectical analytical waves. Here the built-up structure comprises rectangular 

plates connected via a structural joint, as shown in Fig. 1. The vibrational energy of each plate 

can be considered as being carried and transferred by waves. Hence, the vibration transmitted 

in the built-up structure can be regarded as the energy exchange between waves belonging to 

different plate components. The waves of each plate component can be obtained by the 

symplectic method, and the joint determines the scattering property between the waves. 

Because only the propagative wave components can effectively transmit energy, only the 

propagative waves are considered here. Taking the first flexural propagative wave pair of the 

left plate shown in Fig. 2 as an example to illustrate the power flow between the two plates, 

the positively travelling wave is 𝑎+, and the negatively travelling wave is 𝑎−. Since there is 

no energy exchange between the wave components of the same plate [42] and the uncoupled 

plate end is non-dissipative, all of the energy of 𝑎− is transmitted into 𝑎+ when 𝑎− injects 

on the left end of the left plate. When 𝑎+ injects on the right conservative coupling interface, 

part of the energy of 𝑎+ transmits into the first flexural positively travelling waves of other 

plates through the joint and the remainder reflects to 𝑎−. Meanwhile, 𝑎− also gets energy 

from the first flexural negatively travelling waves of other plates through the joint. Therefore, 

the propagative wave components of each plate can be considered as subsystems that carry 

and spread energy. The total energy of each plate can be obtained by summing the energy of 
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each wave subsystem. In contrast to the classical SEA, which divides the vibration of plate 

into flexural and in-plane subsystems, the energy flow analysis presented here subdivides 

these two kinds of vibration fields into propagative wave subsystems. 

 

 

Fig. 1.  Schematic of coupled plate structure and wave scattering at the joint, where 𝐚𝑖l
+, 𝐚𝑖l

−, 

𝐚𝑖r
+ , and 𝐚𝑖r

−  are positively and negatively travelling waves at the left and right ends of plate i, 

𝐪̅𝑖 and 𝐟𝒊̅ are nodal displacement and internal force vectors at the coupling interface of plate 

i (𝑖 = 1,… ,𝑁). 

 

 

Fig. 2. Schematic of energy transmission between two plates based on propagative wave 

subsystem description 
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3. Energy flow analysis parameters and system equations 

of energy balance 

It should be pointed out that, at low and medium frequencies, the in-plane waves are not 

yet propagative, and so only the energy flow between the flexural propagative waves is 

considered. For energy flow analysis at high frequencies, the contribution of the in-plane 

propagative wave subsystems can be easily considered in the system equations of energy 

balance. 

 

3.1. Symplectic analytical solution of the mode count 

The propagative wave pairs of rectangular plates are regarded as one-dimensional wave 

subsystems i (𝑖 = 1, … , 𝑁), for which the mode count can be expressed as [3] 

𝑁𝑖(𝑘𝑦𝑖) = (
𝑏

𝜋
𝑘𝑦𝑖 + 𝛿BC) (1) 

where 𝑘𝑦𝑖 is the wave propagation constant for subsystem i, 𝑏 is the physical length of the 

subsystem (i.e. the plate length) and 𝛿BC is the relevant boundary condition variable. For 

three types of simple boundary conditions [29] 

two ends simply supported 𝛿BC = 0 (2a) 

two ends free 𝛿BC =
3

2
 (2b) 

two ends clamped 𝛿BC = −
1

2
 (2c) 

Symplectic analytical solutions for the wave propagation parameters 𝜇𝑦𝑖 were given in 

[43]. The mode count 𝑁𝑖 of each subsystem is obtained from Eq. (1), using 𝑘𝑦𝑖 = 𝑖𝜇𝑦𝑖(𝜔) 



 10 / 52 

and the appropriate value of 𝛿BC from Eq. (2). The mode count of the whole flexural 

vibration field of the plate is then obtained by summing the mode counts of each wave 

subsystem, i.e. 

𝑁 =∑𝑁𝑖
𝑖

 (3) 

 

3.2. Symplectic analytical solution of the modal density 

Compared with the mode count, the modal density is used more often in the investigation 

of the dynamic properties of continuous systems. The equation of the flexural wave 

propagation parameters can be expressed as [43] 

𝑓(𝜇𝑦(𝜔), 𝑘b(𝜔)) = 0 (4) 

where 𝑘b(𝜔) is the flexural wavenumber and 𝜔 is the circular frequency. Differentiating 

Eq. (4) with respect to 𝜔 gives 
d𝜇𝑦

d𝜔
= 𝑓(𝜇𝑦(𝜔), 𝑘b(𝜔)), based on which the group velocity 

of the wave subsystem can be obtained as 

𝑐g =
d𝜔

d𝑘𝑦
=
d𝜔

id𝜇𝑦
 (5) 

Since 𝜇𝑦(𝜔) is a symplectic analytical solution [43], the group velocity obtained here is also 

symplectic analytical. 

The modal density of the 𝑖th flexural wave subsystem can be obtained as [3] 

𝑛𝑖(𝜔) =
d𝑁𝑖
d𝜔

=
𝑏

𝜋

d𝑘𝑦𝑖

d𝜔
=
𝑏

𝜋

1

𝑐g𝑖
 (6) 

The total modal density of the whole flexural vibration field is obtained by summing the 

modal density of each wave subsystem, i.e. 
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𝑛(𝜔) =∑𝑛𝑖(𝜔)

𝑖

 (7) 

The total modal density of the plate can also be calculated by integrating and averaging 

the mode count obtained in section 3.1 over the associated frequency range, i.e. 

𝑛(𝜔𝑗) =
1

Δ𝜔𝑗
∑∫ 𝑁𝑖(𝜔)d𝜔

Δ𝜔𝑗𝑖

 (8) 

where Δ𝜔𝑗 and 𝜔𝑗 are the bandwidth and the central frequency of the 𝑗th frequency range, 

respectively. 

As can be seen from Eq. (6), the modal density solution presented here is independent of 

the boundary conditions on the two ends of the plate. This is a consequence of the 

transformation of the modal density of a rectangular plate into that of a one-dimensional wave 

subsystem. 

 

3.3. Symplectic solution of the coupling factor 

A coupling factor is introduced here to describe the energy exchange between flexural 

wave subsystems. It is calculated according to the formulation of the coupling loss factor in 

classical SEA [3] as 

𝜂𝑖𝑗 =
𝜏𝑖𝑗𝑐g𝑖𝐿𝑖𝑗

𝜔𝜋𝐴𝑖
 (9) 

where 𝐿𝑖𝑗 is the length of the coupling interface, 𝐴𝑖 is the plate area and 𝜏𝑖𝑗 is the power 

transmission coefficient associated with each wave. For the parameters 𝜏𝑖𝑗 and 𝑐g𝑖 in Eq. 

(9), solutions which exactly satisfy the plate boundary conditions can be obtained, so the 

mid-frequency characteristics of the structure can be determined accurately. 𝜏𝑖𝑗 is obtained 
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by using the wave scattering coefficient 𝑆𝑖𝑗 , i.e., 𝜏𝑖𝑗 = |𝑆𝑖𝑗|
2
. The calculation of 𝑆𝑖𝑗  is 

described in section 4.4. 

In addition, combining Eq. (6), Eq. (9) and 𝐴𝑖 = 𝐿𝑖𝑗𝑏𝑖 gives 

𝑛𝑖𝜂𝑖𝑗 =
𝑏𝑖
𝜋𝑐g𝑖

𝜏𝑖𝑗𝑐g𝑖𝐿𝑖𝑗

𝜔𝜋𝐴𝑖
=

𝜏𝑖𝑗

𝜔𝜋2
 (10) 

and similarly 

𝑛𝑗𝜂𝑗𝑖 =
𝜏𝑗𝑖

𝜔𝜋2
 (11) 

The symmetry of the power transmission coefficient 𝜏𝑖𝑗  can be deduced from the 

symmetry of the wave scattering coefficient 𝑆𝑖𝑗 [42], so that Eqs. (10) and (11) give the 

reciprocity relation 𝑛𝑖𝜂𝑖𝑗 = 𝑛𝑗𝜂𝑗𝑖 . Therefore, once the coupling factor associated with a wave 

subsystem is obtained, the corresponding coupling factor of the other wave subsystem can be 

obtained directly from the reciprocity relationship instead of using Eq. (9). 

 

3.4. System equations of energy flow balance 

According to the analysis framework of the classical SEA [3], by considering the power 

equilibrium between the wave subsystems, the system equations of energy balance 𝐸𝑖 of the 

whole structure can be expressed as 

[
 
 
 
 
 
 
 𝑛1𝜂1 + 𝑛1∑𝜂1𝑖

𝑖≠1

−𝑛2𝜂21 ⋯ −𝑛𝑁𝜂𝑁1

−𝑛1𝜂12 𝑛2𝜂2 + 𝑛2∑𝜂2𝑖
𝑖≠2

⋯ −𝑛𝑁𝜂𝑁2

⋮ ⋮ ⋱ ⋮

−𝑛1𝜂1𝑁 −𝑛2𝜂2𝑁 ⋯ 𝑛𝑁𝜂𝑁 + 𝑛𝑁∑𝜂𝑁𝑖
𝑖≠𝑁 ]

 
 
 
 
 
 
 

{
 
 
 

 
 
 
𝐸1
𝑛1
𝐸2
𝑛2
⋮
𝐸𝑁
𝑛𝑁}
 
 
 

 
 
 

=
1

𝜔
{

𝛱1
𝛱2
⋮
𝛱𝑁

} (12) 

or, in matrix form 
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𝐂𝐄 =
1

𝜔
𝚷 (13) 

So far symplectic analytical solutions of the modal density 𝑛𝑖 and the group velocity 

𝑐g𝑖 of each wave subsystem have been obtained. The damping loss factors 𝜂𝑖 are generally 

given. To obtain the coupling factors 𝜂𝑖𝑗 the associated power transmission parameters 𝜏𝑖𝑗 

are needed. Therefore, prior to solving Eq. (13), the input power 𝛱𝑖 from external forces and 

the wave scattering coefficients 𝑆𝑖𝑗 associated with each wave subsystem are needed. These 

two quantities will be obtained by using a hybrid solution formulation in section 4. 

 

4. Hybrid analytical wave and finite element solution 

formulation 

In order to find the input mobility and the power transmission coefficient associated with 

each wave subsystem, a hybrid analytical wave and finite element analysis is firstly 

introduced for the built-up structure shown in Fig. 1. The plate components are described by 

symplectic analytical waves. But, because structural joints in practical engineering 

applications usually have complex geometry, boundary conditions and material properties 

associated with specific performance requirements, the joint is described by the FEM. 

Also, as shown in Fig.1, the flexural waves associated with each plate component will 

couple with the in-plane waves at the structural joint. Hence, in order to fully illustrate the 

effectiveness of the proposed method, the symplectic analytical in-plane waves of the plate 

must be considered as well as the flexural waves. The authors have previously published the 

symplectic analysis of the flexural vibration of rectangular plates in detail [43]. Therefore, 
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for in-plane vibration, only the symplectic dual equations are given here and the subsequent 

steps that are exactly the same as for flexural vibration are given in [43]. 

The symplectic dual equations for the in-plane vibration of rectangular thin plates are 

𝜕𝑧

𝜕𝑦
= 𝐇𝐳 (14) 

where 𝐳 = {𝑢 𝑣 𝑇 𝑁}T  is the state vector; 𝑢 , 𝑣  are displacements and 𝑁 , 𝑇  are 

internal forces in the 𝑥 and 𝑦 directions, respectively; and the superscript T indicates the 

transpose of a vector or a matrix. 𝐇 is a Hamiltonian operator matrix with 

𝐇 =

[
 
 
 
 
 
 
 
 0 −

𝜕

𝜕𝑥
−
2(1 + 𝜈)

𝐸ℎ
0

−𝜈
𝜕

𝜕𝑥
0 0 −

1 − 𝜈2

𝐸ℎ

𝐸ℎ
𝜕2

𝜕𝑥2
+ 𝜌ℎ𝜔2 0 0 −𝜈

𝜕

𝜕𝑥

0 𝜌ℎ𝜔2 −
𝜕

𝜕𝑥
0 ]

 
 
 
 
 
 
 
 

 (15) 

where 𝐸 is Young’s modulus,  ℎ is thickness,  𝜌 is density and 𝜈 is Poisson’s ratio. 

Next, the displacement-force relations of the plate components and the structural joint at 

the coupling interfaces are given. Then, by considering the displacement continuity and the 

equilibrium of the internal forces, the hybrid solution formulation for the built-up structure is 

established. 

 

4.1. Displacement-force relation of the joint at the coupling interfaces 

Based on the FEM, the dynamic equilibrium equations of the joint in Fig. 1 can be 

expressed as 

[
𝐃ii 𝐃ic
𝐃ci 𝐃cc

] {
𝐪̅i
𝐪̅c
} = {

𝐟i̅
−𝐟c̅

} (16) 
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where 𝐪̅c = [𝐪̅1
T, 𝐪̅2

T, … , 𝐪̅𝑁
T ]T is the nodal displacement vector of the coupling interfaces of 

the joint; 𝐟c̅ = [𝐟1̅
T, 𝐟2̅

T, … , 𝐟𝑁̅
T]
T
 is the nodal force vector applied to the plates by the joint at 

the coupling interfaces; 𝐪̅i and 𝐟i̅ are the displacement and external force vectors of the 

internal degrees of freedom of the joint; and 𝐃 = [
𝐃ii 𝐃ic
𝐃ci 𝐃cc

] is the dynamic stiffness matrix 

of the joint. 

Condensing the internal degrees of freedom of the joint onto the interface degrees of 

freedom, Eq. (16) becomes 

𝛂𝐪̅c + 𝛃 = 𝐟c̅ (17) 

where 𝛂 = 𝐃ci𝐃ii
−1𝐃ic − 𝐃cc and 𝛃 = −𝐃ci𝐃ii

−1𝐟i̅. 

It is noted that 𝐃ii
−1 must be evaluated at each frequency, and when the finite element 

model of the joint is large this inverse operation will significantly increase the computational 

load. An approximate solution for the inverse operation 𝐃ii
−1 can be developed. Based on a 

modal expansion technique, Eq. (16) can also be expressed as 

[
𝐃ii 𝐃ic
𝐃ci 𝐃cc

] {
𝚿i𝐲
𝐪̅c
} = {

𝐟i̅
−𝐟c̅

} (18) 

where 𝚿i  is the portion of the modal shape matrix of the joint corresponding to the 

uncoupled degrees of freedom and 𝐲  is the associated generalized coordinate vector. 

Condensation onto the interface degrees of freedom gives 

(𝐃ci𝚿i(𝚿i
T𝐃ii𝚿i)

−1
𝚿i
T𝐃ic − 𝐃cc) 𝐪̅c − 𝐃ci𝚿i(𝚿i

T𝐃ii𝚿i)
−1
𝚿i
T𝐟i̅ = 𝐟c̅ (19) 

In contrast with Eq. (17), the inversion of 𝐃ii is transformed into the inversion of 𝚿i
T𝐃ii𝚿i 

by using the modal expansion technique, i.e. 
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𝐃ii
−1 = 𝚿i(𝚿i

T𝐃ii𝚿i)
−1
𝚿i
T (20) 

which significantly reduces the computational load. 

 

4.2. Displacement-force relation of the plates at the coupling interfaces 

The displacements and internal forces at the location (𝑥r, 𝑦r) of a plate can be expressed 

in terms of waves as [43] 

𝐳(𝑥r, 𝑦r) = 𝐀(𝑥r)𝐓̂(𝑦r)𝐚 + 𝐀(𝑥r)𝐓l(𝑦r)𝐞, 𝑦r ≤ 𝑦e (21a) 

𝐳(𝑥r, 𝑦r) = 𝐀(𝑥r)𝐓̂(𝑦r)𝐚 + 𝐀(𝑥r)𝐓r(𝑦r)𝐞, 𝑦r > 𝑦e (21b) 

where 𝐀 is the wave shape matrix; 𝐚 = {𝐚l
+T 𝐚r

−T}T; 𝐚l
+ and 𝐚r

− are the reflected waves 

at the left and right ends of the plate, respectively; 𝐞 is the directly excited wave; 𝑦e is the 

coordinate of the excitation in the 𝑦 direction; and 

𝐓̂(𝑦) = [
𝐓(𝑦) 𝟎
𝟎 𝐓(𝑏 − 𝑦)

],  𝐓l = [
𝟎 𝟎
𝟎 𝐓(𝑦e − 𝑦)

],  𝐓r = [
𝐓(𝑦 − 𝑦e) 𝟎

𝟎 𝟎
] (22) 

𝐓(𝑦) = [

e𝜇𝑦1𝑦 0 ⋯ 0
0 e𝜇𝑦2𝑦 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ e𝜇𝑦𝑚𝑦

] (23) 

where the sub-matrix 𝟎 has the same order as 𝐓 and 𝑚  is the number of positively 

travelling waves. More details are given in [43]. 

For a plate whose left end is uncoupled, the displacement-force relation at the coupling 

edge can be expressed as 

 

𝐪̅ = 𝐀̅𝐓̂(𝑏) {
𝐑l1
𝐈
} 𝐏𝐅 

+𝐀̅𝐓̂(𝑏) {
𝐑l1
𝐈
} 𝐏𝚯 (𝐓̂(𝑏) {

𝐑l2
𝟎
} + 𝐓r(𝑏)𝐞) + 𝐀̅𝐓̂(𝑏) {

𝐑l2
𝟎
} + 𝐀̅𝐓r(𝑏)𝐞 

(24) 
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For a plate whose right end is uncoupled, the displacement-force relation at the coupling edge 

can be expressed as 

𝐪̅ = 𝐀̅𝐓̂(0) {
𝐈
𝐑r1

} 𝐐𝐅 

−𝐀̅𝐓̂(0) {
𝐈
𝐑r1

} 𝐐𝚯 (𝐓̂(0) {
𝟎
𝐑r2

} + 𝐓l(0)𝐞) + 𝐀̅𝐓̂(0) {
𝟎
𝐑r2

} + 𝐀̅𝐓l(0)𝐞 

(25) 

The detailed derivations of Eqs. (24, 25) are omitted here for simplicity and can be found in 

Appendix A. 

 

4.3. System solution formulation for the whole structure 

Section 4.2 gives the displacement-force relations at the coupling edges of each plate 

component, i.e., Eqs. (24) and (25). The combination of these with Eq. (17) establishes the 

solution framework for the whole structure, subject to compatibility of the coupling forces at 

the coupling edges of the plates and the joint. Discretizing the coupling edges according to the 

finite element mesh of the joint shown in Fig. 3, the wave relevant force vector can be 

calculated approximately as 

 

 

Fig. 3. Interconnection between plates and joints 
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𝐅 = ∫ 𝐀𝐱(𝑥)𝐟(𝑥)d𝑥
𝑎

0

= 𝐀𝐱(𝑥1)∫ 𝐟(𝑥)d𝑥

𝛿1
2

0

 

+𝐀𝐱(𝑥𝑛) ∫ 𝐟(𝑥)d𝑥

𝑥𝑛

𝑥𝑛−
𝛿𝑛−1
2

+∑𝐀𝐱(𝑥𝑖) ∫ 𝐟(𝑥)d𝑥

𝑥𝑖+
𝛿𝑖
2

𝑥𝑖−
𝛿𝑖−1
2

𝑛−1

𝑖=2

 

(26) 

where 𝛿𝑖 = 𝑥𝑖+1 − 𝑥𝑖, and 𝑥𝑖  (𝑖 = 1,…𝑛) are the coordinates of the discrete nodes at the 

coupling edge of the joint. Additionally, the finite element relevant force vector can be 

calculated from 

∫ 𝐟(𝑥)d𝑥

𝛿1
2

0

= 𝐟1̅ ,    ∫ 𝐟(𝑥)d𝑥

𝑥𝑛

𝑥𝑛−
𝛿𝑛−1
2

= 𝐟𝑛̅, ∫ 𝐟(𝑥)d𝑥

𝑥𝑖+
𝛿𝑖
2

𝑥𝑖−
𝛿𝑖−1
2

= 𝐟𝑖̅, 𝑖 = 2,3, … , 𝑛 − 1 (27) 

Now Eq. (27) can be written as 

𝐅 = 𝐀̅𝐱𝐟 ̅ (28) 

where 𝐟̅ = [𝐟̅1
T

𝐟̅2
T

⋯ 𝐟̅𝑛
T]
T
. For flexural and in-plane vibration, 

𝐀̅𝐱 = [𝐀̅𝑤
+T(𝑥1) 𝐀̅𝜃

+T(𝑥1) 𝐀̅𝑤
+T(𝑥2) 𝐀̅𝜃

+T(𝑥2) ⋯ 𝐀̅𝑤
+T(𝑥𝑛) 𝐀̅𝜃

+T(𝑥𝑛)]
T and 

𝐀̅𝐱 = [𝐀̅𝑢
+T(𝑥1) 𝐀̅𝑣

+T(𝑥1) 𝐀̅𝑢
+T(𝑥2) 𝐀̅𝑣

+T(𝑥2) ⋯ 𝐀̅𝑢
+T(𝑥𝑛) 𝐀̅𝑣

+T(𝑥𝑛)]
T, respectively. 

Eqs. (24), (25) and (28) are all based on local coordinates. For convenience, the in-plane 

variables and flexural variables are put together, so that on the coupling interface of the 𝑖th 

plate 

𝐪̅𝑖 = {
𝐪̅𝑖,in
𝐪̅𝑖,out

},   𝐟𝑖̅ = {
𝐟𝑖̅,in

𝐟𝑖̅,out
} (29) 

By combining Eqs. (24), (25) and (28), assembling the equations of each plate gives 

𝐪̅c = 𝐇𝐟c̅ + 𝐆 (30) 

where 𝐇 = diag{𝐡1, 𝐡2, … , 𝐡𝑁}, 𝐆 = [𝐠1
T, 𝐠2

T, … , 𝐠𝑁
T ]T, and the detailed derivations are given 
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in Appendix B. 

Combining Eqs. (30) and (17) gives 

𝐟c̅ = (𝐈 − 𝛂𝐇)−1(𝛂𝐆 + 𝛃) (31) 

The wave amplitudes of each plate can be obtained by combining Eqs. (A.6) and (A.9) 

and the reflections at the uncoupled ends of each plate. The input mobility and the input 

power associated with each wave can also be obtained (the formulation of the input power is 

presented in Appendix C, and more details can be found in [44]), while the response of each 

plate can be evaluated from Eq. (21). 

 

4.4. Wave scattering at the joint 

The wave scattering matrix 𝐒 can be obtained for the hybrid solution formulation by 

applying plane wave excitation of each wave component in turn, assuming the length of each 

plate to be semi-infinite. This assumption is equivalent to setting the reflection coefficient at 

the uncoupled end of each plate to zero which gives 𝐑l1 = 𝟎, 𝐑r1 = 𝟎. Once 𝐒 is obtained, 

the finite element model of the structural joint can be replaced by 𝐒 in the hybrid solution in 

a new analysis. As shown in Fig. 1, the wave scattering relation provided by the joint has 

𝐚̂ = 𝐒𝐚̃ (32) 

where 𝐚̂ = [𝐚1r
−T 𝐚2l

+T … 𝐚𝑖l
+T … 𝐚𝑁l

+T]T , 𝐚̃ = [𝐚1r
+T 𝐚2l

−T … 𝐚𝑖l
−T … 𝐚𝑁l

−T]T. 

Combining Eqs. (A.3) and (A.8) gives 

𝐚̃ = 𝐑̃𝐚̂ + 𝐞̃ (33) 

where 𝐑̃ = diag{𝐓(𝑏)𝐑1,l1, 𝐓(𝑏)𝐑2,r1, ⋯ , 𝐓(𝑏)𝐑𝑖,r1, ⋯ , 𝐓(𝑏)𝐑𝑁,r1}, 
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𝐞̃ =

{
  
 

  
 
𝐓(𝑏 − 𝑦e)𝐞1

+ + 𝐓(𝑏)𝐑1,l1𝐓(𝑦e − 𝑏)𝐞1
−

𝐓(𝑏)𝐑2,r1𝐓(−𝑦e)𝐞2
+ + 𝐓(𝑦e)𝐞2

−

⋮
𝐓(𝑏)𝐑𝑖,r1𝐓(−𝑦e)𝐞𝑖

+ + 𝐓(𝑦e)𝐞𝑖
−

⋮
𝐓(𝑏)𝐑𝑁,r1𝐓(−𝑦e)𝐞𝑁

+ + 𝐓(𝑦e)𝐞𝑁
− }

  
 

  
 

 (34) 

The wave amplitudes can be obtained from Eqs. (32) and (33) as 

𝐚̂ = (𝐈 − 𝐒𝐑̃)
−1
 𝐒𝐞̃ (35) 

Similarly, the input power can be obtained from the amplitude associated with each wave, and 

meanwhile the response of each plate can be obtained from Eq. (21). 

In this section, the input power and the scattering coefficient associated with each wave 

subsystem are obtained through a hybrid analytical wave and finite element analysis. The 

energy distribution of the built-up structure can now be evaluated by solving Eq. (13).  

 

5. Numerical examples 

5.1. Validation of the hybrid solution formulation 

5.1.1. Three angle coupled plates with a joint 

The effectiveness of the hybrid analytical wave and finite element formulation is now 

validated. Consider a built-up structure composed of three rectangular plates coupled through 

a structural joint, with angles of 120° between adjacent plates, as shown in Fig. 4. The three 

plates have the same geometry and material properties, namely length 𝑏 =0.2 m, width 

𝑎 =0.1 m, thickness ℎ =0.001 m, Young’s modulus 𝐸 =200 GPa,  density 𝜌 =7800 kg/m
3
 

and Poisson’s ratio 𝜈 =0.3. All plates are simply supported along 𝑥 = 0, 𝑎, the in-plane 

boundary condition is SS1-SS2 [46], and all the uncoupled ends of the plates are free. The 
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material properties of the joint are the same as those of the plate components. The width and 

thickness of the joint are 0.005 m and 0.002 m, respectively, and the two ends of the joint are 

clamped. An external unit force 𝑓ext is applied normally at the location (0.4𝑎, 0.6𝑏) of the 

first plate. 

 

Fig. 4. Three angle coupled plates with a joint 

In the hybrid formulation, the finite element model of the joint is constructed using the 

commercial software ABAQUS [47] with shell element S4R and element size 0.0025 m 

according to which the joint is divided into 240 elements. The complete finite analysis which 

is used to validate the presented hybrid solution formulation is also performed using 

ABAQUS. Four types of complete finite element analysis are given, with element sizes 0.001 

m and 0.0025 m (discretizing the structure into 61500 and 9840 elements, respectively), and 

truncated at 1000 and 500 modes for each element size. The complete finite element result 

with element size 0.001 m and 1000 modes is considered as the reference result. Fig. 5 gives 
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𝑓ext 
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Plate 1 



 22 / 52 

the absolute value of the relative error in the magnitude of the input mobilities calculated by 

the hybrid formulation and the other three complete finite element analyses with respect to the 

reference result. The result has 60 waves for each plate, and is truncated at 40 modes for the 

joint using the modal expansion technique. It can be seen from Fig. 5 that the accuracy of the 

present method is better than that of the complete finite analysis with element size 0.0025 m 

over a large range, especially at higher frequencies, and is comparable to that of complete 

finite element analysis with element size 0.001 m and 500 modes. The corresponding input 

mobilities are given in Fig. 6. The CPU time of the presented hybrid analysis and the 

complete finite element analysis are 448 s and 1178 s, respectively. Hence the hybrid 

formulation has high accuracy and efficiency. 

 

Fig. 5. Absolute value of relative error of the magnitude of the input mobilities calculated by 

the hybrid formulation and complete finite element analysis with respect to the reference 

result 
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Fig. 6. Magnitude of the input mobilities calculated by the hybrid formulation and complete 

finite element analysis 

 

A feature of the hybrid formulation is that the computational time decreases significantly 

with increasing length of the plates. The contribution of the near field waves of high order 

attenuates rapidly with the propagation distance, and so fewer waves are needed to obtain an 

accurate result as the plate length/width ratio increases. In contrast, the complete finite 

element analysis needs more elements to ensure the accuracy of the result, increasing its 

computational time significantly. Fig. 7 gives the results of the same analysis as that of Fig. 5, 

with the length of each plate increased from 0.2 m to 0.6 m. 181500 and 29040 elements are 

now needed for the complete finite element models with element size 0.001 m and 0.0025 m, 

respectively. The hybrid solution is based on 40 waves for each plate component, and the 

error level is significantly less than that of the other three complete finite element analyses 
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over a great part of the frequency range, especially at high frequencies. Fig. 8 gives the 

magnitude of the input mobilities from the hybrid solution formulation and the complete finite 

element analysis with element size 0.001 m and 500 modes, and the corresponding CPU times 

are 333 s and 2761 s, respectively. Thus, with increasing plate length, the computational time 

of the hybrid solution reduces significantly, while that of the complete finite element analysis 

increases significantly. 

 

 

Fig. 7. Absolute value of relative error of the magnitude of the input mobilities calculated by 

the hybrid formulation and complete finite element analysis with respect to the reference 

result 
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Fig. 8. Magnitude of the input mobilities from the hybrid formulation, complete finite element 

analysis and the model based on scattering coefficient  

 

In addition, the wave scattering property of the joint obtained by the hybrid formulation 

further significantly enhances the computational efficiency. In a new analysis the finite 

element model of the joint in a hybrid solution can be replaced by the scattering coefficient, 

saving much computational time especially when the response of the built-up structure needs 

to be investigated under various forms of external excitation or for different plate lengths. The 

input mobility calculated based on this concept is also given in Fig. 8 and shows good 

agreement with the results from the complete hybrid solution and the complete finite element 

analysis, with a CPU time of just 25 s which reflects the significant advantage of this 

approach. 
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5.1.2. Efficiency of the modal expansion for the joint 

As shown in the previous example, the computational time of the hybrid formulation 

reduces significantly with increasing length/width ratio of the plates. When the joint is more 

rigid than the plates and the fundamental natural frequency of the joint is much larger than the 

upper limit of the analysis frequency range, a rather coarse finite element mesh for the joint is 

sufficient to give results of high accuracy. Consider the two plate structure shown in Fig. 9, 

where each plate has length 𝑏 = 0.295 m and width 𝑎 = 0.1 m. An external unit force 𝑓ext 

is applied normally at the location (0.4𝑎, 0.4𝑏) of the first plate. The length of the joint is 0.1 

m and the cross section of the joint is a square of side 0.01 m. Both ends of the joint are 

clamped. The material properties of all the components are the same as those of the previous 

example. For the complete finite element analysis, element size is 0.001 m (so 69000 

elements are required), and 500 modes are used. For the hybrid formulation, two finite 

element meshes with 20 and 80 elements for the joint are adopted and the ABAQUS solid 

element C3D8R is used.  

 

Fig. 9. Two co-planar coupled plates with a joint 

 

Fig. 10 gives the absolute value of the relative error in the magnitude of the input 

mobilities from the hybrid solution with different numbers of modes for the joint, with respect 

to the hybrid solution without modal expansion, with 40 waves for each plate and 20 elements 
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for the joint. It is seen that the relative error of the hybrid solution with 20 modes for the joint 

is very small. The CPU time is 16 s, whereas that of the hybrid solution without modal 

expansion is 21 s. Fig. 11 gives the same analysis, but with 80 elements for the joint. Again 

the result with 20 modes for the joint has very good accuracy and the CPU time is 19 s, 

compared with 50 s for the hybrid solution without modal expansion. The computational 

advantage of the modal expansion technique is obvious and increases with the number of 

elements in the joint. Fig. 12 gives the magnitudes of the input mobilities from the hybrid 

solution and the complete finite element analysis, where the hybrid solution is based on two 

meshes with 40 waves for each plate and 20 modes for the joint. The CPU time of the 

complete finite analysis is 2105 s. As can be seen, the three results are in good agreement, and 

the effectiveness of the hybrid formulation and the modal expansion technique are validated. 

 

Fig. 10. Absolute value of relative error of magnitude of the input mobilities from the hybrid 

solution with different numbers of modes for the joint, with respect to the hybrid solution 

without modal expansion, with 40 waves for each plate and 20 elements for the joint. 
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Fig. 11. Absolute value of relative error of magnitude of the input mobilities from the hybrid 

solution with different numbers of modes for the joint, with respect to the hybrid solution 

without modal expansion, with 40 waves for each plate and 80 elements for the joint. 

 

Fig. 12. Magnitudes of input mobilities from the hybrid solution and complete finite element 

analysis, where the hybrid solution is based on two meshes with 40 waves for each plate and 

20 modes for the joint. 
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5.2. Mode count and modal density 

In this section, the symplectic solutions of the mode count and the modal density are 

validated for a single rectangular plate of width 𝑏 =0.8 m and length 𝑎 =0.1 m. The material 

properties of the plate are the same as those of the previous examples. The edges 𝑥 = 0, 𝑎 

are simply supported and clamped respectively, i.e. SC. The present symplectic results are 

compared with FEM results and the classical asymptotic solution, where the FEM results are 

obtained using ABAQUS with S4R shell elements of size 0.002 m. The classical asymptotic 

solution of the mode count is 

𝑁(𝑘) =
𝐴𝑘2

4𝜋
 (50) 

Fig. 13 gives the mode counts calculated by the three methods for a rectangular plate 

with two ends simply supported. The present result is in good agreement with the FEM result, 

especially below 1219 Hz. At this point the slope of the curve has a sudden dramatic jump 

because the second flexural wave becomes propagative. Fig. 14 gives the mode counts 

associated with three other boundary conditions, i.e., the two ends of the plate are both simply 

supported (SCSS), clamped (SCCC) and free (SCFF). The relationship between the results 

confirms Eq. (2). It can be seen from both these figures that the asymptotic solution is very 

different from the symplectic and FEM results. This is because the asymptotic solution is 

based on the assumption of high frequency vibration, whereas the structure studied here 

behaves with obvious mid-frequency characteristics, i.e. the modal information is 

significantly affected by the boundary conditions. 
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Fig. 13. Mode count from the present method, FEM and the asymptotic solution 

 

Fig. 14. Mode count from the present method with three different boundary conditions at the 

plate ends, and from the asymptotic solution 
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Fig. 15. Modal density from the present method and the asymptotic solution 

 

Fig. 15 gives the modal densities of the plate flexural vibration from Eq. (6) and from the 

asymptotic solution 𝑛(𝜔) =
𝐴𝜔

2𝜋𝑐𝜙𝑐g
 [3], where 𝑐𝜙 and 𝑐g are the phase velocity and group 

velocity of the plate flexural wave field, respectively. As can be seen, the present result has 

obvious peak values at 377 Hz and 1219 Hz. This is because the first and the second flexural 

waves respectively become propagative at these two frequencies, and the sudden jump from a 

zero mode count gives a significant peak value of the modal density. The peaks can be 

eliminated by averaging the results in the associated frequency bands. Fig. 16 presents modal 

densities averaged over one-third octave frequency bands, including the asymptotic solution, 

the present solution and the solution from Eq. (8) with the mode count calculated by the 

present method and FEM. The FEM result is an average of the three results for simply 

supported, clamped and free boundary conditions at the plate ends. Good agreement between 
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the present result and the FEM result can be observed, and these results fluctuate strongly 

around the asymptotic solution. Fig. 17 gives the modal densities of the plate from the 

asymptotic solution and the present solution with three boundary conditions along the two 

opposite edges, i.e. simply supported and clamped (SC), simply supported (SS) and clamped 

(CC). It is seen that the boundary condition has a great influence on the modal density of the 

plate. 

 

5.3. Effectiveness of the presented energy flow analysis 

5.3.1. Two co-planar plates coupled with a joint 

Consider a built-up structure comprising two co-planar plates coupled through a joint. 

For simplicity, the geometry and material properties of the two plates are the same as those of 

the example in section 5.2. The two opposite edges 𝑥 = 0, 𝑎 of each plate are both simply 

supported, and the uncoupled plate ends are free. The joint has width 0.02 m, length 0.1 m 

and thickness 0.002m, and the same material properties as those of the plates. The two ends of 

the joint are both simply supported. Vertical deformation of the joint is prevented along the 

line joining the points with coordinates (0.05 m, 0.005 m) and (0.05 m, 0.01 m) with respect 

to the top left corner of the joint. An external unit force is applied normally at the location 

(0.4𝑎, 0.4𝑏) of the first plate and the in-plane vibration of the plates is not considered. The 

mesh size of the joint in the present solution is 0.0025 m. The complete finite element 

analysis is given by ABAQUS using S4R shell elements of size 0.0025m and truncated at 500 

modes. 
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Fig. 16. Modal densities averaged over one-third octave frequency bands, including the 

asymptotic solution, the present solution and the solution from Eq. (8) with the mode count 

calculated by the present method and FEM. 

 

Fig. 17. Modal densities of the plate from the asymptotic solution and the present solution 

with three boundary conditions along the two opposite edges 
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Fig. 18. Energy response from the ABAQUS reference result and the wave component 

solution of [44] with only propagative wave components considered. 

The energy flow analysis presented in this paper makes the conservative assumption that 

the joint is undamped. This requirement is not easily satisfied with ABAQUS software. Here, 

the complete finite element analysis of the energy response is first used to validate the 

accuracy of an alternative wave component solution [44] which can consider the damping 

effect of the joint. The damping loss factor for all structural components is chosen as 0.01. 

Then the wave component solution is used to validate the presented energy flow analysis. The 

wave component solution of energy response is briefly given in Appendix C, where the wave 

amplitudes needed in this solution are obtained by using the hybrid analytical wave and finite 

element formulation. Fig. 18 gives the energy response from the ABAQUS reference result 

and the wave component solution with only propagative wave components considered. The 

comparison shows good agreement and it can be concluded that the propagative wave 
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components carry the total energy of the structure. 

The waves can spread energy and can be considered as subsystems only when they 

become propagative. Hence, analysis of the dispersion relation is necessary for the presented 

energy flow analysis. For the plate considered here, the authors have investigated the 

dispersion relation in [43], and found that the first and the second flexural waves become 

propagative at 241 Hz and 963 Hz, respectively. Figs. 19 and 20 present the energy response 

of each plate from the presented method and the wave component solution. For plate 1, which 

is excited directly by the external force, good agreement is observed between the results of the 

two methods. For plate 2, which has no direct excitation from the external force, good 

agreement can be observed at all the peak values, but at the non-peak locations the present 

results are significantly larger than those from the wave component solution. 

 

Fig. 19. Energy response of the first flexural wave from the presented method and the wave 

component solution. 
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Fig. 20. Energy response of the second flexural wave from the presented method and the wave 

component solution. 

 

The effectiveness of Eq. (9) for evaluation of the coupling factor is validated next. Based 

on the concept of the power injection method (PIM) [33], an external force is applied on the 

two plates in turn, and the energy balance equations are expressed as 

𝐂𝐄𝑖 =
1

𝜔
𝚷𝑖 (51) 

where 𝐄𝑖  and 𝚷𝑖  (𝑖 = 1, 2) are the energy and input power of each wave subsystem 

calculated using the wave component solution. Thus 

𝐂[𝐄1 𝐄2] =
1

𝜔
[𝚷1 𝚷2] (52) 

from which 𝐂 and subsequently the coupling factor can be obtained.  
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Fig. 21. Coupling factors associated with the first flexural wave subsystem from Eqs. (9) and 

(52); the blue heavy solid line is the result from Eq. (9), the gray thin solid lines are results 

from Eq. (52) considering various locations of the external force, and the heavy dashed line 

and the heavy dotted line are their averages respectively. 

 

Fig. 22. Coupling factors associated with the second wave subsystem from Eqs. (9) and (52). 
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Fig. 21 gives the coupling factors associated with the first flexural wave subsystem from 

Eqs. (9) and (52). The blue heavy solid line is the result from Eq. (9), the gray thin solid lines 

are results from Eq. (52) considering various locations of the external force, and the heavy 

dashed line and the heavy dotted line are their averages, respectively. Good agreement can be 

observed for all the results at the peak values. But at non-peak locations, the results from Eq. 

(9) are significantly larger than the results from Eq. (52). This is because the form of Eq. (9) 

used in this paper is based on the resonant modes description used in classical SEA. Fig. 21 

also matches the comparison in Fig. 19 that the two results agree well at peak values and 

clearly disagree at non-resonant locations. As can be seen from Fig. 21, the coupling factor 

associated with the first wave subsystem is much smaller than the damping loss factor (which 

has the value 0.01), indicating that the two plates are weakly coupled. Therefore, the 

significant disagreement of the coupling factor at the non-peak frequencies has little influence 

on the energy of the plate excited directly by the external force, as confirmed by Fig. 19 

where its energy responses calculated by the two methods agree very well. It is also seen from 

Fig. 19 that the energy level at the peak values is significantly larger than that at other 

frequencies, and hence the disagreement of the energy levels calculated by the two methods at 

non-resonant locations will not reduce the practicability of the presented method. 

Fig. 22 shows the coupling factors associated with the second wave subsystem from Eqs. 

(9) and (52), with the latter based on one group of excitation locations. As can be seen, the 

results from the two methods disagree with each other above 1300 Hz. Also, at some 

frequencies the results from Eq. (52) are negative which is incorrect. Comparing with Fig. 20, 

it can be concluded that the reason for this is that the energies of the second wave subsystems 
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of the two plates are comparable at these frequencies. Hence when using Eq. (52) to evaluate 

the coupling factor, the inverse operation frequently suffers numerical ill-conditioning. As can 

be seen from Fig. 20, the second wave subsystems are strongly coupled above 1300 Hz, 

which makes Eq. (52) no longer appropriate for evaluating the coupling factor. However, the 

energy of the second wave subsystem can still be evaluated accurately from Eq. (13), which 

means that the energy flow analysis presented in this paper is suitable not only for weakly 

coupled systems but also for strongly coupled systems. 

It is noticed that with increasing frequency the second wave subsystems of the two plates 

become strongly coupled while the first wave subsystem remains weakly coupled. This is 

attributed to the inherent characteristics of the example structure used here. The line at which 

the vertical deformation is prevented is placed exactly at the peak location of the first flexural 

wave shape, and this seriously hinders the energy transmission between the first wave 

subsystems of the two plates. Moreover, the energy transmission between the second wave 

subsystems of the two plates is not limited which makes them strongly coupled. Therefore, 

the fact that the energy of each wave subsystem can be directly obtained by the present 

analysis provides useful guidance for the control of structural vibration. 

 

5.3.2. Three angle coupled plates with a joint 

Based on the two plate structure in the previous example, a third plate is added along the 

line region with end points (0 m, 0.015 m) and (0.1 m, 0.015 m). The angle between the 

second and third plates is 45°. The geometry and material properties of the third plate are the 

same as those of the other two plates. Unlike the two plate structure, the contribution of the 
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in-plane vibration of each plate must now be considered. The boundary conditions for flexural 

vibration are the same as those of the two plate structure. The in-plane boundary condition of 

each plate is SS1-SS2 [46]. The uncoupled end of each plate is free. The finite element model 

of the joint is the same as that used previously, except that the two ends are clamped. 

Figs. 23 and 24 present the energy responses of the first and second wave subsystems of 

the three plates from the presented energy flow analysis and the wave component solution. 

For plate 1, which is directly excited by the external force, the results from the two methods 

agree with each other very well. But for plates 2 and 3, which have no direct excitation, only 

the results at peak values agree with each other and at the non-peak locations the results from 

the presented method are larger than those from the wave component solution. These 

conclusions are exactly the same as were observed for the two plate structure. It can also be 

found that, due to the addition of the third plate, unlike the strongly coupled relation in the 

two plate structure, the second wave subsystems of the first and second plates are always 

weakly coupled. 
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Fig. 23. Energy response of the first flexural wave from the presented method and the 

wave component solution. 

 

 

Fig. 24. Energy response of the second flexural wave from the presented method and the wave 

component solution. 
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6. Conclusions 

Based on the balance relation between the input, transmission and dissipation of the 

energy of each subsystem, an energy flow analysis method with high accuracy and high 

efficiency is proposed in this paper for the mid-frequency vibration of built-up plate structures. 

The analysis parameters of mode count, modal density, damping and coupling loss factors and 

input mobility used in the classical SEA are well considered here, and the method presented 

can be regarded to some extent as an extension of the classical SEA into the mid-frequency 

region. Unlike the classical SEA, the propagative waves of each plate component are regarded 

as subsystems. Considering the power balance of each wave subsystem, the system matrix 

equation is established. The numerical examples show that the solution framework of energy 

flow balance of SEA can be successfully extended to the analysis of mid-frequency structural 

vibration. The highlights of the paper are summarized as follows. 

1) The wave components are obtained by using the symplectic method, and hence 

arbitrary boundary conditions and therefore the mid-frequency characteristic of the plates can 

be exactly considered. The solutions for the mode count, modal density and group velocity of 

the plates can be transformed into solutions for these parameters of a one-dimensional wave 

subsystem, and symplectic analytical results can be obtained. The solution for the coupling 

factor is validated by comparison with results from the power injection method. Also, for 

strongly coupled systems where the power injection method fails to evaluate the coupling 

factor, however, the presented method can still provide coupling factors which reflect the 

mid-frequency characteristic of the structure. 

2) Compared to FEM, the advantages of high accuracy and efficiency of the presented 
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hybrid analytical wave and finite element formulation can be observed in evaluating the local 

response of the structure. The high efficiency of the hybrid formulation increases significantly 

with increasing plate length/width ratio. For analysis where the finite element model of the 

joint is relatively large, the modal expansion technique presented in this paper can 

significantly reduce the computational load of the inverse operation. In addition, the wave 

scattering property of the joint structure can be obtained from the hybrid formulation and can 

then replace the finite element model of the joint in the hybrid formulation when performing a 

repetition of the analysis. This practice will save much computational time, especially when 

investigating the dependency of the response on the form of the external force or the plate 

length. 

3) In contrast with traditional displacement based methods for energy analysis, such as 

FEM and the wave component solution, the energy flow analysis presented in this paper uses 

the energy of each subsystem as degrees of freedom, and hence is of great computational 

efficiency. In contrast with SEA, since the energy of each wave subsystem is obtained directly, 

the vibrational transmission characteristics of the built-up structure can be understood more 

deeply to provide useful guidance for controlling the transmission of structural vibration. 
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Appendix A. Derivations for the displacement-force 

relation at the plates’ coupling interfaces 

For a plate whose left end is uncoupled, the boundary condition can be expressed as 

𝐄 (𝐀𝐓̂(0) {
𝐚l
+

𝐚r
−} + 𝐀𝐓l(0)𝐞) = 𝟎 (A.1) 

where 𝐄 is the index matrix of the boundary condition. Without loss of generality, taking the 

free boundary condition as an example, 𝐄 = diag{0,0,1,1}. From Eq. (A.1) 

𝚯𝐓̂(0) {
𝐚l
+

𝐚r
−} + 𝚯𝐓l(0)𝐞 = 𝟎 (A.2) 

where 𝚯 = ∫ 𝐀𝐱
T(𝑥)𝐀𝐟(𝑥)

𝑎

0
d𝑥 and 𝑎 is the plate width. For in-plane vibration, 

𝐀𝐱 = [𝐀𝑢
+T 𝐀𝑣

+T]T,  𝐀𝐟 = [𝐀𝑇
+T 𝐀𝑁

+T]T; while for flexural vibration 𝐀𝐱 = [𝐀𝑤
+T 𝐀𝜃

+T]T, 

 𝐀𝐟 = [𝐀𝐹
+T 𝐀𝑀

+T]T. The subscripts 𝑢, 𝑣, 𝑤, 𝜃, 𝑇, 𝑁, 𝐹 and 𝑀 are used to indicate the 

displacement and force elements of the wave shape matrix. 

Let 𝐔 = [𝐔1 𝐔2] = 𝚯𝐓̂(0) , 𝐕 = 𝚯𝐓l(0)𝐞 , 𝐑l1 = −(𝐔1)
−1𝐔2 ,  𝐑l2 = −(𝐔1)

−1𝐕 . 

Then from Eq. (A.2) 

𝐚l
+ = 𝐑l1𝐚r

− + 𝐑l2 (A.3) 

The displacement and force at the right coupling end of the plate region can be expressed as 

𝐀̅𝐓̂(𝑏) ({
𝐑l1
𝐈
} 𝐚r

− + {
𝐑l2
𝟎
}) + 𝐀̅𝐓r(𝑏)𝐞 = 𝐪̅ (A.4) 

𝚯𝐓̂(𝑏) ({
𝐑l1
𝐈
} 𝐚r

− + {
𝐑l2
𝟎
}) + 𝚯𝐓r(𝑏)𝐞 = −𝐅 (A.5) 

where 𝐀̅  is the discrete displacement waveform matrix, 𝐈  is a unit matrix, 

𝐅 = ∫ 𝐀𝐱(𝑥)𝐟(𝑥)d𝑥
𝑎

0
 and  𝐟(𝑥) is the force applied by the joint to the right coupling edge of 

the plate. From Eq. (A.5) 
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𝐚r
− = 𝐏𝐅 + 𝐏𝚯(𝐓̂(𝑏) {

𝐑l2
𝟎
} + 𝐓r(𝑏)𝐞) (A.6) 

where 𝐏 = −(𝚯𝐓̂(𝑏) {
𝐑l1
𝐈
})
−1

. Substituting Eq. (A.6) into Eq. (A.4) gives 

 

𝐪̅ = 𝐀̅𝐓̂(𝑏) {
𝐑l1
𝐈
} 𝐏𝐅 

+𝐀̅𝐓̂(𝑏) {
𝐑l1
𝐈
} 𝐏𝚯 (𝐓̂(𝑏) {

𝐑l2
𝟎
} + 𝐓r(𝑏)𝐞) + 𝐀̅𝐓̂(𝑏) {

𝐑l2
𝟎
} + 𝐀̅𝐓r(𝑏)𝐞 

(A.7) 

Eq. (A.7) is the displacement-force relation at the coupling edge of a plate whose left end is 

uncoupled. 

A similar derivation can be applied to a plate whose right end is uncoupled. The wave 

reflection relation at the right end can be obtained as 

𝐚r
− = 𝐑r1𝐚l

+ + 𝐑r2 (A.8) 

and then the reflected waves and the displacement-force relation at the coupling edge are 

obtained as, respectively 

𝐚l
+ = 𝐐𝐅 − 𝐐𝚯(𝐓̂(0) {

𝟎
𝐑r2

} + 𝐓l(0)𝐞) (A.9) 

𝐪̅ = 𝐀̅𝐓̂(0) {
𝐈
𝐑r1

}𝐐𝐅 

−𝐀̅𝐓̂(0) {
𝐈
𝐑r1

} 𝐐𝚯 (𝐓̂(0) {
𝟎
𝐑r2

} + 𝐓l(0)𝐞) + 𝐀̅𝐓̂(0) {
𝟎
𝐑r2

} + 𝐀̅𝐓l(0)𝐞 

(A.10) 

where 𝐐 = (𝚯𝐓̂(0) {
𝐈
𝐑r1

})
−1

. 

 

Appendix B. The assembling of the displacement-force 

relation of each plate 

For convenience, the in-plane variables and flexural variables are put together, so that on 

the coupling interface of the 𝑖th plate 
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𝐪̅𝑖 = {
𝐪̅𝑖,in
𝐪̅𝑖,out

},   𝐟𝑖̅ = {
𝐟𝑖̅,in

𝐟𝑖̅,out
} (B.1) 

By combining Eqs. (24), (25) and (28), the displacement-force relation of each plate 

component can be expressed in global coordinates as 

𝐪̅𝑖,glob = 𝐡𝑖𝐟𝑖̅,glob + 𝐠𝑖 (B.2) 

where 𝐡𝑖 = 𝚪𝑖
−1𝐑[

𝐡̃𝑖,in 𝟎

𝟎 𝐡̃𝑖,out
]𝐑−1𝚪𝑖 , 𝐠𝑖 = 𝚪𝑖

−1𝐑{
𝐠̃𝑖,in
𝐠̃𝑖,out

} , 𝐑  is a position transform 

matrix of the degrees of freedom, 𝚪𝑖 = diag{𝚪̃𝑖,𝑛} is the matrix of coordinate transformation, 

and 

𝚪̃𝑖,𝑛 = [

1 0 0 0
0 cos (𝜑𝑖) sin (𝜑𝑖) 0
0 −sin (𝜑𝑖) cos (𝜑𝑖) 0
0 0 0 1

] (B.3) 

where 𝜑𝑖 is the counterclockwise rotation angle of the local coordinate of each plate relative 

to the global coordinate. For plates whose left end is uncoupled, 

𝐡̃ = 𝐀̅𝐓̂(𝑏) {
𝐑l1
𝐈
} 𝐏𝐀̅𝐱 (B.4) 

𝐠̃ = 𝐀̅𝐓̂(𝑏) {
𝐑l1
𝐈
} 𝐏𝚯 (𝐓̂(𝑏) {

𝐑l2
𝟎
} + 𝐓r(𝑏)𝐞) + 𝐀̅𝐓̂(𝑏) {

𝐑l2
𝟎
} + 𝐀̅𝐓r(𝑏)𝐞 (B.5) 

For plates whose right end is uncoupled 

𝐡̃ = 𝐀̅𝐓̂(0) {
𝐈
𝐑r1

}𝐐𝐀̅𝐱 (B.6) 

𝐠̃ = −𝐀̅𝐓̂(0) {
𝐈
𝐑r1

} 𝐐𝚯(𝐓̂(0) {
𝟎
𝐑r2

} + 𝐓l(0)𝐞) + 𝐀̅𝐓̂(0) {
𝟎
𝐑r2

} + 𝐀̅𝐓l(0)𝐞 (B.7) 

Assembling the equations of each plate according to Eq. (B.2) gives 

𝐪̅c = 𝐇𝐟c̅ + 𝐆 (B.8) 

where 𝐇 = diag{𝐡1, 𝐡2, … , 𝐡𝑁}, 𝐆 = [𝐠1
T, 𝐠2

T, … , 𝐠𝑁
T ]T. 
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Appendix C. Wave component solution for the energy and 

power flow 

The wave component solution for the amplitudes of energy and the power can be 

obtained using the hybrid formulation presented in this paper, together with results from [44]. 

The time average kinetic and strain energy stored in the plates are 

〈𝐸k〉 =
𝜌ℎ𝜔2

4
Re (𝐚H∫ 𝐓̂H𝛀k𝐓̂d𝑦

𝑏

0

𝐚) +
𝜌ℎ𝜔2𝜉k

4
 (C.1) 

〈𝐸s〉 =
ℎ

4
Re(𝐚H∫ 𝐓̂H𝛀s𝐓̂d𝑦𝐚

𝑏

0

) +
ℎ𝜉s

4
 (C.2) 

respectively, where ( )H denotes the Hermitian transpose of a matrix; 𝛀k = ∫ 𝐀𝑤
H𝐀𝑤d𝑥

𝑎

0
; 

𝛀s = ∫ 𝐀̃H𝚵𝐀̃d𝑥
𝑎

0
; 𝜉k and 𝜉sare force relevant terms expressed as 

𝜉i = Re([𝐚l
+H 𝐚r

−H] (∫ 𝐓̂H𝛀i𝐓ld𝑦
𝑦e 

0

+∫ 𝐓̂H𝛀i𝐓rd𝑦
𝑏

𝑦e

) [𝐞+T 𝐞−T]T 

 +[𝐞+H 𝐞−H] (∫ 𝐓l
H𝛀i𝐓̂d𝑦

𝑦e 

0
+ ∫ 𝐓r

H𝛀i𝐓̂d𝑦
𝑏

𝑦e 
) [𝐚l

+T 𝐚r
−T]T 

 +[𝐞+H 𝐞−H] (∫ 𝐓l
H𝛀i𝐓ld𝑦

𝑦e 

0
+ ∫ 𝐓r

H𝛀i𝐓rd𝑦
𝑏

𝑦e 
) [𝐞+T 𝐞−T]T) (i = k, s) 

(C.3) 

Details of 𝐀̃ and 𝚵 are given in [44]. 

The input power is expressed as 

〈𝛱〉 = −
𝜔

2
Im(𝐚H𝛀Π𝐚) (C.4) 

where 𝛀Π = ∫ {𝐀𝐹
H(𝑥)𝐀𝑤(𝑥) + 𝐀𝑀

H (𝑥)𝐀𝜃(𝑥)}
𝑎

0
d𝑥. 
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