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Summary 

 

The direct synthesis of hydrogen peroxide from hydrogen and oxygen has been studied using an Au-Pd/TiO2 catalyst. The 

aim of this work is to understand the balance of synthesis and sequential degradation reactions using an aqueous, stabiliser-

free solvent at ambient temperature.  The effects of the reaction conditions on the productivity of hydrogen peroxide 

formation and the undesirable hydrogenation and decomposition reactions are investigated. Reaction temperature, solvent 

composition and reaction time have been studied and indicate that when using water as the solvent the hydrogen peroxide 

decomposition reaction is the predominant degradation pathway, which provides new challenges for catalyst design which 

has previously focused on minimising the subsequent hydrogenation reaction. This is of importance for the application of 

this catalytic approach for water purification. 

 

Introduction 

 

Hydrogen peroxide (H2O2) is a significant commodity chemical with an annual usage now exceeding 3 million tonnes per 

annum and increasing(1). H2O2 is used in a number of selective oxidation processes, such as the synthesis of propene oxide 

from propene and H2O2(2), and also non-synthetic applications which make use of its oxidative properties such as cleaning 

and bleaching.  The existing indirect anthraquinone process for producing H2O2 is highly optimised to give high H2 

selectivity towards H2O2, however, it only proves to be economically viable when operated at a large scale, typically 105 

tons/annum, and hence production currently has to be centralised. Due to this, H2O2 is transported to the point of use in a 

high concentration aqueous solution with added stabilisers, necessitating dilution and potentially removal of stabilisers for 

it to be effective for many uses, particularly bleaching applications when it is used in very dilute form (3-8 vol%)(3). 

The ability to produce H2O2 at a desired concentration at the point of use could prove to be a green and economical process. 

This could potentially be achieved via the direct synthesis of H2O2 from oxygen and hydrogen to localise the supply of 

H2O2. Whilst a conceptual simple reaction unfortunately the formation of water is thermodynamically preferred and so the 

design of the catalyst for the synthesis reaction is of prime importance. Monometallic Pd catalysts have been extensively 

studied for this reaction(3-5), however, these catalysts can hydrogenate H2O2 if no acid or halide stabilisers are present. 

Hutchings and co-workers found that Au–Pd catalysts are selective and productive, even in the absence of promoters such 

as acid and halides(6). 
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Various solvents, generally consisting of water and/or alcohols, in combination with acid and/or halide promoters, have 

been used for the heterogeneously catalysed direct synthesis of H2O2. We have extensively reported experiments using a 

methanol and water mixture in an approximate 2:1 ratio, generally in the absence of acid or halides(1, 6, 7). Lunsford and 

co-workers utilised a water or ethanol solvent with the addition of chloride, bromide, hydrochloric acid and sulphuric acid 

promoters(8-11). Choudhary and co-workers utilise an acidic aqueous medium (sulphuric or phosphoric acid), in most cases 

with one or more halide promoter(12-21). Park and co-workers use a solution of methanol with dissolved NaBr(22-32). 

Biasi and co-workers generally use methanol in the absence of promoters(33-39), but have also used acidified, bromide-

promoted aqueous solutions(40). There are, however, limited studies on the aqueous direct synthesis of H2O2 in the absence 

of promoters. 

If the generation of H2O2 in aqueous solution without additives becomes viable, it would negate the necessity for the 

extraction of synthesised H2O2 from the anthraquinone process solvents. Furthermore, the removal of stabilisers (as with 

anthraquinone process produced H2O2) or promoters (as may be necessary for H2O2 produced by acid or halide promoted 

direct synthesis) would not be required. The ability to efficiently generate H2O2 in a water stream also presents opportunities 

for water cleaning technologies to be developed. It is this latter application for which there is considerable current interest 

as H2O2 could then have the potential to replace chlorine as a disinfectant for water which would only be possible if 

stabiliser-free H2O2 can be produced in water. 

In this work, we examine the effect on the productivity and hydrogenation/decomposition rates of a 2.5% Au 2.5% Pd / 

TiO2 catalyst when reaction conditions are moved towards the use of water as a solvent and room temperature reactions. 

These conditions present a more environmentally friendly and economical reaction compared to previously used 

conditions(6) as there are no energy demands for heating or cooling and the H2O2 requires no further extraction/purification. 

Using this study to help understand the effect of changing reaction parameters on all processes associated with the direct 

synthesis of H2O2 and identify challenges therein will allow for rational design of catalysts for optimal function in an 

aqueous / ambient temperature reaction condition. 

 

Experimental 

Catalyst preparation 

 

The 2.5 wt% Au-2.5 wt% Pd/TiO2 catalyst was prepared by wet impregnation of TiO2 (Degussa, Aeroxide P25).  A solution 

of HAuCl4·3H2O (1.25 ml, 10g Au/ml, Johnson Matthey), solid PdCl2 (0.0208 g, Johnson Matthey) and de-ionised water 

(1 ml) were combined and stirred at 80 °C until the PdCl2 was completely dissolved. At this point TiO2 (0.475 g) was added 

and the mixture continuously stirred and heated until a thick paste was formed. The paste was dried in an oven (110 °C, 16 

h), ground to a fine powder and calcined under static air (400 °C, 3 h, 20 °C min-1). 

 

H2O2 synthesis, decomposition and hydrogenation 

 

H2O2 synthesis, hydrogenation and decomposition experiments were evaluated using a Parr Instruments stainless steel 

autoclave with a volume of either 100 ml or 50 ml and a maximum working pressure of 14 MPa. To evaluate H2O2 synthesis 

the following reaction conditions were used. The autoclave was charged with catalyst (0.010 g) and solvent (8.5 g HPLC 

grade H2O and/or HPLC grade methanol, Fischer Scientific) and sealed. The autoclave was then purged three times with 

5% H2/CO2 before filling with 5% H2/CO2 to a pressure of 2.9 MPa (420 psi) followed by the addition of a further 1.1MPa 

(160 psi) 25% O2/CO2 (both BOC speciality gasses). The reaction mixture was stirred at 1200 rpm at systematically varied 

reaction times and temperatures. H2O2 yield was determined by titrating aliquots of the filtered post-reaction solution with 

acidified Ce(SO4)2 solution (c.a. 0.01 M, Sigma Aldrich) in the presence of Ferroin indicator (c.a. 0.1 ml, Sigma Aldrich). 

H2O2 hydrogenation and decomposition experiments were carried out with a similar procedure to that of H2O2 synthesis 

experiments but only 420 psi (2.9 MPa) 5% H2/CO2 or 420 psi (2.9 MPa) 25% O2/CO2 were added to the reactor, 

respectively. Furthermore, a reaction solvent containing 4 wt% H2O2, prepared by the addition of H2O2 solution (50 wt%, 

0.68 g, Sigma Aldrich) to H2O (7.82 g), was used. The concentration of H2O2 in the reaction solution was accurately 
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determined before and after the reaction by titrating aliquots of the reaction solution with acidified Ce(SO4)2 in the presence 

of Ferroin indicator. When a hydrogenation experiment is performed, the measured degree of H2O2 degradation represents 

the sum of both hydrogenation and decomposition processes; thus net hydrogenation can be determined by subtracting the 

measured decomposition value from the measured total hydrogenation/degradation value, assuming that the reactions 

happen independently of each other. Aside from the noted differences, reaction parameters are identical to those used for 

synthesis reactions. 

 

Results and Discussion 

In our previous studies on the direct synthesis of H2O2,(4, 6, 41) reaction conditions have been standardised to allow 

differences in H2O2 yield to solely reflect differences in catalyst performance. The reaction parameters in these experiments 

were a 2.9 g H2O/5.6 g methanol solvent mixture, temperature of 2 °C and a reaction duration of 30 min (gas compositions 

and pressures identical to those reported in the experimental procedure).(6) In this work, conditions for the direct synthesis 

of H2O2 are investigated at a range of temperatures and solvent compositions with the aim of understanding how the reaction 

system affects the balance of H2O2 synthesis versus the sequential degradation pathways.  

Time on line studies were carried out in the previously utilised H2O/methanol solvent mixture in addition to H2O and 

methanol solvents. Productivity values are reported in figure 1a and show that in each system the productivity is highest at 

short reaction times as expected when the H2 concentration will be highest and also the rates of H2O2 degradation will be 

minimal due to the low concentrations of H2O2 in the reaction mixtures. Comparing the solvent compositions it is clear to 

see that the productivity is highest when methanol is used and lowest when H2O is used across the reaction times 

investigated. Using Henry’s law to compare the solubility of hydrogen in the three solvent compositions shows that 

hydrogen solubility is around an order of magnitude higher in methanol compared to H2O, with Henry’s constant (Hcp) 

values at 20°C of 9.34 × 10−3 mol atm−1 L−1 and 8.04 × 10−4 mol atm−1 L−1  respectively. The amount in ppm of H2O2 present 

in each reaction is shown in figure 1b. We observed that almost all of the H2O2 synthesised in the methanol solvent is 

produced in the first 5 min, whereas in H2O the maximum H2O2 concentration is only attained after 40 min reaction. These 

observations indicate that the performance of the catalyst in the different solvent compositions is likely to be governed by 

gas solubility and mass transport effects. The effect of gas solubility can also control the balance of the synthesis / 

hydrogenation / decomposition pathways in the direct synthesis process shown in scheme 1.  

The hydrogenation and decomposition reactions of the different solvent compositions were also studied in an analogous 

manner using the same catalyst. For the decomposition reaction, figure 2a, it was observed that the relationship between 

the amounts of H2O2 decomposed and time is close to linear for all solvent compositions. It was observed that the least 

decomposition occurs in the methanol solvent, followed by the H2O/methanol solvent and the greatest decomposition 

occurring in the H2O solvent. These reactions were conducted without the presence of H2 in the autoclave which indicates 

the low decomposition rate observed in the methanol solvent is not a result of competitive hydrogenation reactions and in 

fact H2O2 is stabilised in the methanol solvent with respect to the water solvent.  

For sequential hydrogenation, figure 2b, we see an inverse of the trend seen for decomposition, with the lowest extent of 

hydrogenation with respect to time in a H2O solvent where H2 solubility will be limited compared to alcohol containing 

solvent compositions. Methanol and H2O/methanol solvents appear to have very similar initial rates of hydrogenation, 

indicating that the addition of 66% methanol to H2O reduces the mass transport limitations and the catalyst is likely 

operating in the kinetic regime. The plots for hydrogenation activity tend to plateau at long reaction times; this indicates 

that after an extended reaction the extent of hydrogenation becomes limited by the availability of hydrogen in solution. 

These observations indicate that when changing the reaction conditions for the direct synthesis, additional considerations 

need to be made in terms of catalyst design. If direct synthesis of H2O2 is to be successfully achieved in water as solvent, 

supressing the decomposition reaction becomes an important factor in catalyst design, not only the suppression of the 

sequential hydrogenation, as has been the focus of all previous research.  

Figure 3 shows an extended study of the solvent effects on the three competing reactions.  We observe a maximum measured 

productivity of H2O2 during a 30 min reaction in the 34% H2O solvent, this is the solvent ratio which has previously been 

found to be optimal for the Au-Pd / TiO2 catalyst when tested at 2 °C. Increasing the methanol content of the solvent past 

this point has little effect on the observed productivity, however it increases the rate of H2O2 hydrogenation due to the 

increased H2 solubility. The observation that the net H2O2 produced remains somewhat constant suggests the fact that the 

synthesis reaction also increases in proportion to the increased H2 solubility. These results again highlight the need to design 

catalysts with reaction conditions in mind. In H2O rich solvent compositions where H2 availability is low compared to 

methanol rich solvent compositions, the hydrogenation and decomposition reactions occur with similar rate (600 mol kgcat
-
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1 h-1 net hydrogenation vs 450 mol kgcat
-1 h-1 decomposition in an aqueous system) so catalyst design should focus on 

minimising both reactions equally. In methanol rich solvent compositions the synthesis activity is increased due to the 

higher H2 availability but as a consequence so is the H2O2 hydrogenation reaction. At this condition the rates of 

hydrogenation are much higher than the rates of decomposition (790 mol kgcat
-1 h-1 net hydrogenation vs 110 mol kgcat

-1 h-

1 decomposition in a methanol system) suggesting that when working at conditions with high hydrogen availability, de-

convoluting the selective and unselective hydrogen activation is most important. 

H2O2 synthesis productivity and the activity of the two degradation processes, decomposition and hydrogenation, at 

increasing temperatures are shown in figure 4. Net H2O2 productivity was found to decrease significantly with increasing 

temperature; this is tied to the fact that we see an increase in both degradation processes with increasing temperature.  At a 

temperature of 50 °C we observe for the first time the decomposition rate to be higher than the hydrogenation rate which 

could be a result of increased thermal decomposition rates of H2O2.  

 

Conclusions 

Changing the reaction conditions for the direct synthesis of H2O2 from the ‘standard’ conditions using methanol/water at 2 

°C to ‘aqueous / ambient’ conditions we observe a marked decrease in H2O2 yield. This is due in part to increased H2O2 

degradation that occurs with both an increase in reaction temperature and an increased amount of H2O in the solvent. The 

decreased yield is also due to a reduced rate of H2O2 synthesis due the reduced H2 solubility that again occurs with both an 

increase in temperature and an increased amount of H2O in the solvent. The concomitant positive effect of reduced H2 

solubility in the ‘aqueous / ambient’ conditions is that the hydrogenation of H2O2 is relatively less of a concern than under 

‘standard’ conditions. This means that catalysts that are highly active but somewhat unselective due to over hydrogenation 

under ‘standard’ conditions may prove productive under the ‘aqueous / ambient’ conditions that will be required in water 

purification applications. It is therefore clear that an improved catalyst design is required to synthesise hydrogen peroxide 

from H2 and O2 in water as solvent at ambient temperature. The main concern to be addressed is the catalyst activity as the 

catalyst needs to operate with much lower levels of dissolved H2. To achieve this we consider that catalysts with smaller 

active nanoparticles could provide the improvement required. In addition, changes in the catalyst formulation should be 

explored using compositions in which gold, which is not particularly active for the direct synthesis of hydrogen peroxide, 

is substituted for other components such as tin oxide. (42) 
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Figure and table captions 

Figure 1 – Time on line H2O2 productivity (a) and yield (b) in water, 34% water / 66% methanol and methanol solvent 

systems. 

■ – Methanol, ● – 34% Water / 66% Methanol, ▲- Water. 

Conditions: Reaction time as indicated, 8.5g solvent, 100 ml autoclave, ambient temperature (20-25°C), 1200rpm, 10mg 

catalyst, 420 psi H2/CO2 + 160 psi O2/CO2. 

 

Figure 2 – Time on line H2O2 decomposition (a) and net hydrogenation (b) in water, 34% water / 66% methanol and 

methanol solvent systems. 

■ – Methanol, ● – 34% Water / 66% Methanol, ▲- Water. 

Conditions: Reaction time as indicated, 8.5g solvent, 100 ml autoclave, ambient temperature (20-25°C), 1200rpm, 10mg 

catalyst, 420 psi H2/CO2 (a) or 420 psi O2/CO2 (b). 

Figure 3 – H2O2 productivity, decomposition and net hydrogenation as a function of solvent composition. 

■ – Productivity, ● – Net Hydrogenation, ▲- Decomposition. 

Conditions: 30 min reaction time, 8.5g solvent as indicated, 50 ml autoclave, 20°C, 1200rpm, 10mg catalyst, 420 psi 

H2/CO2 + 160 psi O2/CO2 (productivity), 420 psi H2/CO2 (hydrogenation) or 420 psi O2/CO2 (decomposition). 

Figure 4 – H2O2 productivity, decomposition and net hydrogenation in water as a function of temperature in aqueous 

solvent. 

■ – Productivity, ● – Net Hydrogenation, ▲- Decomposition. 

Conditions: 30 min reaction time, 8.5g H2O solvent, 50 ml autoclave, temperature as indicated, 1200rpm, 10mg catalyst, 

420 psi H2/CO2 + 160 psi O2/CO2 (productivity), 420 psi H2/CO2 (hydrogenation) or 420 psi O2/CO2 (decomposition). 

Scheme 1 

Reaction scheme for the direct synthesis of hydrogen peroxide. 
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Scheme 1 
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