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Summary 

The work presented in this thesis is an investigation into the roles of p53, Nodal/ 

Activin and fibroblast growth factor (FGF) signalling in early heart development in the 

model organism Xenopus laevis. The first step of heart development is the 

specification of cardiac tissue. However, the timing of cardiac specification and the 

signals which control it are largely unknown. The Nodal/ Activin and FGF signalling 

pathways have been implicated in cardiac specification but there is little evidence 

demonstrating a direct role for these pathways. Using soluble molecular inhibitors of 

the Nodal/ Activin and FGF signalling pathways at different stages of development, 

the effects of time-controlled inhibition on cardiac progenitor cells and differentiated 

cardiac tissue were observed. Nodal/ Activin signalling was found to be required for 

cardiac specification during a 2-3 hour time window following midblastula transition. 

It was shown that FGF signalling is not required prior to gastrulation for cardiac 

specification, but is required later for normal heart development. It was 

hypothesised that p53 may be involved in cardiac specification by mediating crosstalk 

between the Nodal/ Activin and FGF signalling pathways, in a similar manner to its 

previously suggested role in mesoderm induction. Using a combination of p53 

antisense morpholino oligonucleotides and a dominant negative p53 protein, the 

effects of p53 downregulation on cardiac progenitor cells and differentiated cardiac 

tissue were examined. A novel role for p53 in early heart development was found. 

These findings contribute to an understanding of how p53, Nodal/ Activin and FGF 

signalling orchestrate numerous developmental events in the early embryo. This 

knowledge will be useful to advance our understanding of congenital heart diseases 

and for the development of improved directed differentiation protocols for cardiac 

regenerative medicine.  
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1.1 Overview 

The heart is a vital organ for the health and survival of an organism. Defects in heart 

development, or diseases which cause damage to the mature heart, can be life 

changing and potentially fatal (Bruneau, 2008; Roger, 2013). The human heart has 

limited potential to repair itself, and is therefore a target of ongoing medical research 

to devise new therapies for cardiac repair (Xin et al., 2013). Understanding the 

signalling pathways which regulate heart development is fundamental to 

comprehend the causes of heart diseases, and to develop new therapies to treat 

damaged cardiac tissue through the use of regenerative medicine. Although many 

factors which influence cardiogenesis have been uncovered, the signals which initiate 

the very first stages of heart development, the specification of cells into the cardiac 

lineage, are largely unresolved. Previous research highlights the potential 

involvement of the Nodal/ Activin and fibroblast growth factor (FGF) signalling 

pathways in the specification of cardiac cells (Noseda et al., 2011). However, previous 

analysis does not clearly separate the roles of these signalling pathways from their 

broader functions in embryonic development, questioning the specificity of their 

involvement in cardiac lineage specification. In addition, the time at which the Nodal/ 

Activin and FGF signalling pathways may be required for cardiac specification is 

largely unknown. Experiments contained within this thesis demonstrate the 

manipulation of the Nodal/ Activin and FGF signalling pathways in a spatiotemporal 

manner, primarily using a pharmacological approach, complimented with protein 

expression control, to specifically question the requirement and timing of Nodal/ 

Activin and FGF signalling in cardiac specification. The Nodal/ Activin and FGF 

signalling pathways have previously been demonstrated to integrate, with pathway 

crosstalk mediated by the tumour suppressor protein p53 (Cordenonsi et al., 2007, 

2003). New functions for p53 in embryonic development are continuously being 

discovered (Danilova et al., 2008; Molchadsky et al., 2010) and work presented in this 

thesis questions a novel role for p53 in cardiac development. 
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1.2 Embryonic development 

During embryonic development, a fertilised egg cell divides and begins to proliferate. 

Initially, cells are pluripotent, meaning that they can give rise to any cell type. In 

mammalian organisms such as mouse or human, only cells of the inner cell mass are 

pluripotent, with the outer cells contributing towards extra-embryonic tissues 

(Bedzhov et al., 2014; Paranjpe and Veenstra, 2015). Proliferating pluripotent cells 

are influenced by signals within the embryo, in strictly defined time windows, which 

instruct the cells to develop into a particular type of cell. This process is known as 

specification. Specified cells are capable of changing lineage, if exposed to the 

appropriate influences, before terminal differentiation from a progenitor cell into a 

mature cell (Graf and Enver, 2009; Slack, 1991). Specified groups of cells, known as 

fields, undergo morphological movements, patterning, differentiation and 

morphogenesis events to form a complexity of interconnected organs which 

constitutes a functioning organism (Gilbert, 2000; Heasman, 2006). Remarkably, 

these processes are controlled by a relatively small number of signalling molecules 

which work in pathways to oversee embryonic development and regulate cellular 

homeostasis (Perrimon et al., 2012). The heart is an organ which develops from 

pluripotent cells in the early embryo. Specified cardiac cells receive numerous 

inductive and inhibitory signalling inputs throughout cardiogenesis to ultimately 

form a correctly located and fully functioning heart (Brand, 2003). A key question for 

developmental biology is how a relatively small number of regulatory signalling 

pathways modulate a diverse array of processes (Gilbert, 2000). An understanding of 

the mechanisms which govern cardiogenesis will likely be translatable, enabling a 

better understanding of numerous aspects of development, ageing, homeostasis and 

cancer. Furthermore, this knowledge will be indispensable in the development of 

new technologies to combat cardiac damage and diseases.  

1.3 The vertebrate heart 

The heart is a muscular organ which pumps blood through the blood vessels of an 

organism. The heart, blood and blood vessels make up the circulatory system. All 
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organs within an organism rely on the circulatory system to supply them with vital 

nutrients and oxygen and to remove metabolic waste. The vertebrate heart is a 

chambered organ consisting of myocardium, enclosed by epicardium and 

endocardium connective tissue, complete with valves and a coronary circulatory and 

conductive system. The vertebrate heart is unique amongst metazoans and is more 

complex than the myoepithelial pumping tubes found in invertebrates (Pérez-

Pomares et al., 2009). The heart is the first organ to become fully functional during 

embryogenesis and is often required for further development of the organism 

(Brand, 2003). Cardiac damage and disease therefore can be fatal due to the limited 

ability of the heart to repair itself (Nadal-Ginard et al., 2003; Xin et al., 2013). During 

the past decades there has been a large amount of research focusing on both the 

anatomical and molecular aspects of heart development. The processes which lead 

to successful heart formation and functioning are gradually being uncovered 

(Moorman et al., 2003). However, a more comprehensive understanding of the 

molecular pathways which underlie heart development will aid the improvement of 

treatments for cardiac malfunctions.  

The formation of the vertebrate heart involves the coordination of precisely 

regulated molecular and morphogenetic processes, which are conserved across 

many species (Olson and Srivastava, 1996). The vertebrate heart has evolved from a 

primitive linear pump in ancestral metazoan through the addition of new structures, 

due to demands from organisms’ increasing size, activity and developing metabolic 

needs (Pérez-Pomares et al., 2009). This has transformed the vertebrate heart into a 

multichambered structure, complete with valves and a complex conductive and 

circulatory system (Fishman and Olson, 1997). Throughout evolution, although the 

morphology of the heart has been dramatically transformed, the gene regulatory 

networks directing development have been largely conserved (Olson, 2006; Pérez-

Pomares et al., 2009). This conservation between vast phylogenetic distances allows 

cardiac development to be investigated in a range of organisms including flies, fish, 

amphibians, chick and mammals (Zaffran and Frasch, 2002). 
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In all embryos, the first step in heart development is for cells to be specified to 

become cardiac cells. This process is known as cardiac specification. The early embryo 

contains three primary germ layers; endoderm, which forms the digestive and 

respiratory tracts; mesoderm, which forms connective tissues, cardiovascular system 

and muscle; and ectoderm, which gives rise to the nervous system and epidermis 

(Kiecker et al., 2015; Kimelman, 2006; Noseda et al., 2011). Cardiac cell precursors 

are thought to arise as bilaterally symmetrical clusters of mesoderm (Foley et al., 

2006; Jacobson and Sater, 1988). Cardiac precursors originate a significant distance 

from their final location within an organism; therefore they must migrate through 

the embryo during early development to relocate (Foley et al., 2006; Keller, 2002; 

Mohun et al., 2003; Parameswaran and Tam, 1995; Yang et al., 2002). The mass of 

migrating cardiac precursor cells are patterned into areas known as the primary and 

secondary heart fields. The primary heart field differentiates first and contributes to 

the majority of cardiac structures. The secondary heart field forms the outflow tract 

and, in organisms with a four chambered heart, the right ventricle (Dyer and Kirby, 

2009; Harvey, 2002). In addition, a subset of neural crest cells contribute to cardiac 

structures, such as the connective tissue separating the major cardiac vessels (Hutson 

and Kirby, 2007). Once migrating cardiac cells reach their final location within a 

developing organism a linear heart tube is formed, which subsequently loops and 

undergoes morphogenesis to form the cardiac chambers. The timing of cardiogenesis 

varies between different organisms in accordance with their rate of growth and 

development. In humans, the heart commences beating in the third week of 

gestation, with blood circulating by week four (Manner et al., 2010; Sissman, 1970). 

The primitive heart starts beating at Hamburger Hamilton (HH) stage 10 (33 hours) 

in chick, embryonic day 8 (E8) in mouse and stage 36 (50 hours) in the African clawed 

frog Xenopus laevis (Sissman, 1970). In addition, the number of cardiac chambers 

varies between organisms. For example, amphibians have a three chambered heart 

consisting of a single thick walled ventricle which receives blood from two smaller 

atria (Mohun et al., 2003), whereas amniotes have a four chambered heart (Harvey, 

2002). Despite differences in the rate of heart development and chamber number, 

the genetic programs and stages of development incorporating specification, 
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migration, heart tube looping, morphogenesis and chamber formation are highly 

conserved between organisms. This allows information gained in one model system 

to be compared with the developmentally relevant stage in another organisms.  

1.4 Model organisms for investigating heart development 

Information gained from different model organism has been used to develop an 

understanding of cardiogenesis. Each model system has advantages and 

disadvantages for uncovering the molecular mechanisms involved in heart 

development. The fruit fly, Drosophila melanogaster, has proved extremely useful 

for investigating the cardiac gene regulatory network, due to its relative lack of 

functional redundancy (Olson, 2006; Wolf and Rockman, 2008). The simplicity of the 

linear dorsal vessel does, however, limit the usefulness of this model in gaining a 

complete understanding of the compliment of mechanisms involved in mammalian 

heart development. Likewise zebrafish, Danio rerio, is a useful model to study basic 

genetics as well as the molecular and cellular mechanisms of early heart 

development, however, their more primitive two chambered hearts makes it harder 

to explore all aspects of higher vertebrate cardiogenesis (Liu and Stainier, 2012). 

Experimental techniques including transplantation experiments and gene expression 

manipulation in Xenopus have generated information about cell fates and molecular 

signalling in heart development (Samuel and Latinkić, 2009; Warkman and Krieg, 

2007). Until recently there has been a lack of comprehensive genetic tools for routine 

genetic manipulation Xenopus (Artmann et al., 2010). However, with advances in 

gene editing techniques, such as clustered regularly interspaced short palindromic 

repeats (CRISPR) and transcription activator-like effector nucleases (TALENs), gene 

editing technologies are becoming routine in Xenopus (Lei et al., 2012; Nakayama et 

al., 2013). The mouse provides an accessible mammalian model, and is often used to 

investigate genetic principles through the use of transgenic lines (Rossant, 1996). 

Nonetheless, mouse embryos require a beating heart for continued development 

rendering experimental manipulations which adversely affect heart function lethal, 

genetic manipulations are difficult to control in a spatiotemporal manner and studies 
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are often costly and time consuming (Artmann et al., 2010). Cell culture allows the 

investigation of human cardiomyocyte development (Burridge et al., 2014, 2012; 

Vliet et al., 2012). Unfortunately, technologies have not advanced to a stage where 

cultured cells can generate mature chambered hearts, thus cell culture has limited 

use in understanding the complete cardiac developmental processes. Xenopus laevis 

embryos provide an easily accessible, readily available, manipulatable, high-

throughput model for investigating early heart development and shall be used 

throughout the work encompassed in this thesis. 

1.5 Xenopus laevis as a model organism for studying heart development 

Xenopus is commonly known as the African clawed frog and there are two species 

which are frequently used to study vertebrate development; the tetraploid Xenopus 

laevis and the diploid Xenopus tropicalis (Amaya et al., 1998). Xenopus laevis were 

first used in a UK laboratory environment in the 1930s as a pregnancy test, and have 

been the favoured amphibian model system used throughout the last century to 

study various aspects of embryogenesis (Amaya et al., 1998; Lohr and Yost, 2000). 

More recently, Xenopus tropicalis are being used for studies involving genetic 

manipulations, as the species is better suited to the application than Xenopus laevis 

due to its simpler diploid genome (Amaya et al., 1998; Grainger, 2012). Humans and 

Xenopus share a remarkably large number of genetic and anatomical features, 

allowing molecular and cellular pathways uncovered in Xenopus laevis to be related 

to higher vertebrate development (Hellsten et al., 2010; Kaltenbrun et al., 2011). 

Xenopus laevis has numerous characteristics that makes it an excellent model for 

biomedical research. For example, adult Xenopus laevis can be induced to lay and 

fertilise eggs all year round, with typically 500-5000 rapidly developing embryos 

being produced per mating, allowing for high-throughput experiments (Warkman 

and Krieg, 2007). The eggs are laid, fertilised and then develop externally allowing 

non-invasive viewing using light or fluorescence microscopy (Kaltenbrun et al., 2011; 

Warkman and Krieg, 2007). Embryos are relatively large, 0.7-1.3 mm in diameter, and 

they are robust enough to withstand microinjections and microsurgery. 
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Microinjections can be used to introduce messenger ribonucleic acid (mRNA) or 

antisense morpholino oligonucleotides (MO) to regulate the expression of a protein 

of interest. Microinjections may also be used to introduce other nucleic acids, 

proteins, dyes or even whole nuclei (Kaltenbrun et al., 2011; Tandon et al., 2012). 

Soluble pharmacological inhibitors and activators added to Xenopus laevis embryo 

culture medium will readily diffuse to take effect throughout the embryo (Myers et 

al., 2014; Skirkanich et al., 2011). The manipulation of gene expression and signalling 

pathways can be controlled in a spatiotemporal and reversible manner by 

approaches including targeted microinjections and pharmacological reagents. Tissue 

explants excised during microsurgery can be cultured externally or grafted back into 

an alternate location within an embryo, and will continue developing. These and 

other reputable techniques allow defined regions, genes or signalling pathways to be 

dissected and manipulated, allowing insight into their roles during development. 

There are many resources available in research studies due to the popularity of 

Xenopus laevis as a model organism. For example, early embryonic cell fates have 

been mapped, allowing identification of particular blastomeres only 3 hours after 

fertilisation that will eventually give rise to the heart two days later (Kaltenbrun et 

al., 2011; Moody, 1987). Unlike in mammals such as mouse, early embryonic 

development in Xenopus laevis can proceed in the absence of a functioning 

circulatory system, allowing extensive analysis of cardiac defects in live embryos at 

later stages of development (Kaltenbrun et al., 2011). For these reasons, Xenopus 

laevis was the model organism chosen to work with in this study.  

1.6 An overview of Xenopus laevis development 

Following fertilisation, the Xenopus laevis embryo undergoes 12 rounds of 

synchronised cell divisions, at approximately 20-30 minute intervals, to form a 4,096 

cell sphere, enclosing a fluid-filled blastocoel cavity (Heasman, 2006). The majority 

of zygotic transcription begins, accompanied by maternal mRNA degradation, from 

the 4,096 cell stage at a time point known as midblastula transition (MBT), although 

a small subset of zygotic transcripts are activated earlier (Tadros and Lipshitz, 2009). 



 9  

Prior to midblastula transition, the embryo is largely patterned by localised maternal 

factors. For example, a component of the canonical Wnt signalling pathway, 

predicted to be Wnt 11, is relocated from a vegetal position by cortical rotation 

dictated by the sperm entry site, establishing the future dorsal side of the embryo 

(Figure 1:1 A) (Heasman, 2006). A signalling centre known as the Nieuwkoop centre 

is established in dorsal vegetal cells where dorsal Wnt and vegetally localised 

maternal VegT intersect (Figure 1:1 B) (De Robertis and Kuroda, 2004; Moon and 

Kimelman, 1998; Vincent and Gerhart, 1987; Zhang et al., 1998). The Nieuwkoop 

centre secretes Nodal related proteins in a gradient across the dorsal - ventral axis to 

establish and pattern the mesoderm and induce the Spemann’s Organiser (Figure 1:1 

C). The Spemann’s Organiser is an organising centre which secretes proteins, 

including Nodal-related proteins and BMP antagonists, and is vital for further 

patterning of the embryonic germ layers (De Robertis et al., 2000; De Robertis and 

Kuroda, 2004; Joubin and Stern, 2001). By midblastula transition, the three germ 

layers - ectoderm, mesoderm and endoderm - are established (Heasman et al., 1984). 

Following midblastula transition, the cell cycles lengthen and becomes asynchronous 

and the germ layers are patterned by numerous signalling inputs. At least four major 

signalling pathways are believed to be essential for development, including Nodal/ 

Activin, bone morphogenetic protein (BMP), Wnt and FGF. Early work suggests that 

ligand gradients pattern the animal-vegetal and dorsal-ventral axis in the blastula 

stage embryo. More recent work has shown that there are numerous intracellular 

and extracellular pathway regulators, which are themselves localised within the 

embryo (Heasman, 2006). The challenge is to comprehend the signalling context at 

each location in the embryo to understand how different cellular fates are specified. 

Localised combinations of active signalling pathways are likely integrated by pathway 

crosstalk to result in particular cellular outcomes, allowing a relatively small number 

of factors to pattern the embryo. At approximately 10 hours post-fertilisation, 

gastrulation begins, where morphogenetic movements relocate and reorganise cells 

to form a three-layered structure (Sharpe and Mason, 2009). The vegetal mass 

ingresses in the animal direction, causing an increase in the blastocoel floor area, 

which will eventually form the gut. This drives the involution of the mesoderm 
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(starting at the dorsal side) through the blastopore, followed by further active 

migration animally and positioning between the ectodermal and endodermal layers. 

The ectoderm undergoes epiboly, where cells spread vegetally to cover the 

embryonic exterior (Gilbert, 2000; Heasman, 2006; Shook et al., 2004). Following 

gastrulation, neurulation encompasses the formation of the neural tube along the 

anterior-posterior axis of the embryo, accompanied by continued development of 

specified tissues (Gilbert, 2000). Development continues throughout the tailbud and 

tadpole stages with organogenesis occurring during the late tadpole stages. 
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Figure 1:1 Characteristics of early Xenopus laevis embryonic development 

(A) Cortical rotation, dictated by the sperm entry site, drives the movement of vegetally 

localised dorsal determinants (red) to establish the future dorsal axis. (B) Gradients of beta-

catenin originating from the dorsal side of the embryo (green) and VegT originating vegetally 

(purple) converge to establish the Nieuwkoop centre. (C) The Nieuwkoop centre is involved 

in establishing the Spemann organiser, which contributes towards patterning the embryo. 
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1.7 The origin, migration and morphogenesis of cardiac tissue 

Cardiac progenitors arise as two bilaterally symmetrical patches of dorsal lateral 

plate mesoderm in the early embryo of model organisms studied, including mouse, 

chick, amphibians, zebrafish, Drosophila and Xenopus (Figure 1:2 A shows this in 

Xenopus) (Foley et al., 2006; Jacobson and Sater, 1988; Zaffran and Frasch, 2002). 

During gastrulation, as a result of convergent extension movements, cardiac 

mesoderm ingresses through the blastopore in Xenopus, also known as the primitive 

streak in birds, reptiles and mammals (Vliet et al., 2012). Cardiac mesoderm 

ingression occurs at the dorsal side of the blastopore in Xenopus and at the rostral 

end of the primitive streak in organisms such as chick (Martinsen, 2005; Schoenwolf 

et al., 1992). The cardiac mesoderm migrates towards the future dorsal-anterior side 

of the embryo by late gastrulation (Figure 1:2 B shows this in Xenopus) (Garcia-

Martinez and Schoenwolf, 1993; Keller et al., 2000; Parameswaran and Tam, 1995). 

The bilateral regions of cardiac mesoderm move ventrally to meet and fuse on the 

ventral midline during neurula stages in all organisms (Figure 1:2 C, D shows this in 

Xenopus) (Martinsen, 2005; Mohun et al., 2003). In mammals and birds, the anterior 

margins of the bilateral cardiac fields first merge to form the characteristic cardiac 

crescents in the anterior lateral region of the embryo (Harvey, 2002; Zaffran and 

Frasch, 2002). Cardiac tissue remains in an anterior-ventral position throughout the 

remainder of development and in adult life (Figure 1:2 E shows this in Xenopus), but 

undergoes morphological remodelling to form a functioning heart (Mohun et al., 

2003). Upon cardiac primordia fusion, a linear heart tube is formed, orientated along 

the anterior-posterior axis. The heart tube is a temporary structure consisting of a 

tubular inner endothelial layer surrounded by a myocardial layer (Buckingham et al., 

2005; Harvey, 2002; Mohun et al., 2003; Stalsberg and DeHaan, 1969). Heart tube 

elongation commences with the tube spiralling rightwards, in a process known as 

cardiac looping, with the posterior end moving in an anterior and dorsal direction (Al 

Naieb et al., 2013; Kolker et al., 2000; Latinkić et al., 2004; Martinsen, 2005; Mohun 

et al., 2000). Following this, ventricular and atrial myocardial regions become distinct, 

valve precursors are formed, and the heart remodels into a multi-chambered organ, 
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which can commence beating (Al Naieb et al., 2013; Buckingham et al., 2005; Harvey, 

2002; Martinsen, 2005). 
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Figure 1:2 Cardiac tissue migration during Xenopus laevis embryogenesis 

(A) A vegetal view of an early gastrula embryo. Cardiac tissue (red) is present as two 

bilaterally symmetrical fields of mesoderm at the dorsal side of the embryo. (B) During 

gastrulation, cardiac mesoderm migrates towards the dorsal-anterior end of the embryo. A 

posterior-dorsal view is shown. (C) During early neurula stages the two cardiac fields migrate 

ventrally to (D) meet on the ventral midline. A lateral view is shown. (E) Cardiomyocytes 

remain at this anterior ventral location, where they undergo morphological movements 

during tadpole stages to remodel as a three chambered beating heart. A lateral view is 

shown. (Foley et al., 2006; Mohun et al., 2003). Illustrations adapted from Nieuwkoop and 

Faber, 1994, via www.xenbase.org. hpf = hours post fertilisation. 
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1.8 Molecular signals of cardiac specification 

Cardiac mesoderm has been shown to arise due to inductive interactions with 

neighbouring tissues in the early embryo. However, the precise timing and nature of 

this inductive signalling is largely unknown. Four major signalling pathways have 

been implicated in the induction of cardiac tissue: Nodal/ Activin, FGFs, BMPs and 

Wnts (Noseda et al., 2011). However, these signalling pathways have multiple roles 

in the developing embryo around the time of cardiac specification, making their 

precise function in cardiac specification difficult to define.  

1.8.1 Nodal/ Activin  

1.8.1.1 Nodal/ Activin family 

Nodal and Activin belong to the transforming growth factor beta (TGF-beta) 

superfamily which comprises over 30 members. The TGF-beta family regulates a 

diverse range of processes, including cellular growth, migration, apoptosis, adhesion 

and differentiation (Roberts and Sporn, 1993; Wu and Hill, 2009). TGF-beta ligands 

include Nodals, Activins, TGF-betas, BMPs and growth differentiation factors (GDFs). 

These ligands and their downstream effectors are highly conserved across evolution 

(Wu and Hill, 2009). The TGF-beta ligands bind a range of receptors, activating 

different downstream effectors and eliciting a variety of cellular responses. There are 

two main branches of TGF-beta signalling. One branch primarily contains Nodal, 

Activin, Inhibin and TGF-beta ligands, and signals utilising Smad2/3 via Activin 

receptor-like kinases (ALK) 4, 5 and 7 (Shen, 2007; Shi and Massague, 2003). This 

signalling branch is often referred to as Nodal/ Activin or ALK4/5/7 signalling. The 

alternate branch transduces BMP, GDF and TGF-beta ligand signalling via ALK1, 2, 3 

and 6, and Smad1, 5 and 8 (Shi and Massague, 2003). In early embryonic 

development, the Xenopus Nodal related factors have been shown to have roles in 

mesoderm induction and patterning, including cardiac specification (Luxardi et al., 

2010; Osada and Wright, 1999; Reissmann et al., 2001; Samuel and Latinkić, 2009; 

Takahashi et al., 2000). 
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1.8.1.2 Nodal/ Activin signalling pathway 

Extracellular homodimeric Nodal/ Activin ligands bind to Type II TGF-beta 

transmembrane receptors. Subsequently, Type II receptors form heterotetrameric 

complexes with Type I TGF-beta transmembrane receptors, also termed  ALKs, with 

Nodal/ Activin signalling via ALK4/5/7 (Shen, 2007). Type II and Type I receptors have 

single pass transmembrane domains and are the only known family of serine-

threonine kinases transmembrane receptors in mammals (Schmierer and Hill, 2007). 

For Nodal signalling, an extracellular membrane bound cofactor EGF-CFC, called 

cripto or cryptic in mammals and Tdgf1.3 in Xenopus, is also required in the 

membrane signalling complex (Gritsman et al., 1999; Schier, 2003; Yeo and Whitman, 

2001). 

When an extracellular TGF-beta ligand binds the membrane signalling complex, the 

Type II receptor phosphorylates serine and threonine residues in the cytoplasmic 

domain of the Type I receptor, resulting in receptor activation. This in turn 

phosphorylates the receptor regulated Smads (R-Smads), Smad2 and Smad3 (Shen, 

2007). In the blastula staged Xenopus laevis embryo, Smad2 is the predominant Smad 

(van Boxtel et al., 2015). Smad proteins are phosphorylated by the Type I receptors 

on two serine residues at their extreme C terminus end, allowing release from the 

receptor (Schmierer and Hill, 2007). Phosphorylated Smad2/3 forms a trimeric 

complex with the common mediator Smad, Smad4, in the ratio of two R-Smads with 

one Smad4 (Shen, 2007). The Smad2/3-Smad4 complex then translocates into the 

nucleus where it regulates the expression of Nodal/ Activin dependent genes (Figure 

1:3) (Nicolás et al., 2004). Smad proteins interact with DNA and other proteins 

through conserved MH1 and MH2 domains which are responsible for DNA binding 

and protein-protein interactions respectively. Smads also bind cofactors such as 

transcription factors (TFs) and chromatin remodelling proteins to influence the 

transcription of target genes (Kimelman, 2006; Schmierer and Hill, 2007). The linker 

region of Smads can be phosphorylated by other kinases, for example extracellular 

signal-regulated kinases (ERK), thereby integrating different signalling pathways 

(Schmierer and Hill, 2007). nodal 5 and 6 transcripts are first expressed zygotically in 
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the dorsal-vegetal region of the early blastula embryo prior to midblastula transition 

and can induce mesoderm, endoderm other nodal transcripts (Takahashi et al., 

2000). The expression of nodal 1 and 2 is first detected in the vegetal region of the 

blastula stage embryo, with transcripts becoming localised to the dorsal marginal 

zone prior to decreasing during gastrulation (Jones et al., 1995). The expression of 

nodal 1 reappears during tailbud stages in two regions either side of the posterior 

notochord (Lustig et al., 1996). nodal 3 is expressed in the Spemann Organiser, 

however it lacks the mesoderm inducing capacity of other Nodal proteins (Smith et 

al., 1995). nodal 4 is first expressed at the gastrula stages in the Spemann Organiser 

with expression prevailing in the notochord and neural tube throughout neurula 

stages (Joseph and Melton, 1997). activin is first detected homogeneously after 

midblastula transition, with expression restricted to the dorso-anterior region during 

the neurula stages (Dohrmann et al., 1993; Thomsen et al., 1990). ALK4 is detected 

in the animal pole and marginal zone of the blastula staged Xenopus embryo, 

throughout the ectoderm, mesoderm and to a lesser extent endoderm during 

gastrulation with continued expression in multiple domains throughout neurula 

stages (Chen et al., 2005). ALK5 has been found to be expressed throughout 

development in a microarray study spanning 14 stages of development from the 

blastula to tail bud stages, although gene localisation information is not available 

using this method (Yanai et al., 2011). ALK7 has been found to be localised to the 

ectodermal and organiser regions in gastrula staged Xenopus (Reissmann et al., 

2001); however there is little data on other stages of development. Xenopus EGF-CFC 

(Cripto) family members XCR1 and XCR3 transcripts are expressed ubiquitously both 

maternally and zygotically until early neurula stages (Dorey and Hill, 2006).
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Figure 1:3 Schematic diagram illustrating Nodal/ Activin signalling 

Arrows indicate the direction of signal transduction from extracellular TGF-beta ligand 

binding resulting in altered gene transcription. TF =transcription factor. P =phosphorylation 

event.  Nodal requires the co-receptor Crypto to signal through the transmembrane 

receptors, whereas alternate TGF-beta ligands, such as Activin, do not. 
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1.8.1.3 Nodal/ Activin signalling regulation 

Nodal/ Activin signalling is highly regulated at multiple levels, including ligand 

processing, receptor availability, and in positive and negative feedback loops (Shen, 

2007). Nodal is secreted as a propeptide and is captured by co-receptor EGF-CFC to 

be processed by EGF-CFC bound subtilisin-like proprotein convertases (SPCs) 

(Blanchet et al., 2008; Schmierer and Hill, 2007). Nodal/ Activin signalling activates 

both positive and negative feedback loops within the cell, by inducing its own 

expression and the expression of repressors such as Lefty and Cerberus, whose 

expression can be detected originating from the dorsal side of the embryo from 

around midblastula transition (Shen, 2007; Yanai et al., 2011). Lefty proteins, 

divergent members of the TGF-beta superfamily, antagonise the EGF-CFC co-

receptor, preventing TGF-beta receptor complex formation. They have also been 

shown to interact with Nodal ligands, preventing receptor binding (Chen and Shen, 

2004). Cerberus, a member of the DAN family, is a multifunctional antagonist of 

Nodal, BMP and Wnts and works in the extracellular space by physically binding to 

the ligands to prevent ligand-receptor interactions (Piccolo et al., 1999).  Receptor 

availability also affects signalling. Nodal/ Activin signalling activates expression of 

Dapper2, which binds the Type I receptor; enhancing the internalisation and 

degradation through the late endosome, thus decreasing cell surface receptor 

availability for transmitting signalling (Schier, 2009). Signal transmission is also 

controlled downstream of receptor activation; transcriptional co-repressors Tgif1 

and Tgif2 competitively bind active Smad2, reducing the relative amount of available 

Smad2 in the nucleus (Powers et al., 2010).  In addition, active nuclear Smad2/3 is 

dephosphorylated, promoting nuclear export (Lin et al., 2006; Nicolás et al., 2004), in 

conjunction with ubiquitination and degradation by the proteasome (Lo and 

Massague, 1999; Shi and Massague, 2003). Conversely, nuclear transcription factors, 

such as Forkhead Activin Signal Transducer (Foxh1), aid signalling by targeting Smads 

to the developmentally relevant promoters (Chen et al., 1997; Yeo et al., 1999). The 

combination of Nodal/Activin signalling propagation and inhibition balance, thus 

achieving the precise location, concentration and duration of Nodal/ Activin 

signalling necessary for patterning the early embryo. 
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1.8.1.4 Nodal/ Activin signalling in embryogenesis 

Nodal/ Activin signalling has numerous roles throughout development. Initially, 

Nodal/ Activin signalling is required for establishing, and then subsequently 

patterning, the mesoderm and endoderm (Harland and Gerhart, 1997; Hill, 2001; 

Zorn and Wells, 2007). Furthermore, Nodal/ Activin is required for promoting 

gastrulation movements and for establishing the left-right axis (Hill, 2001; Schier, 

2003; Smith and Howard, 1992). Midblastula transition (MBT) is the time point where 

maternal mRNA is degraded and zygotic gene transcription activated. A small number 

of genes in many organisms including fly, frog, zebrafish, and mouse do become 

active, however, before large scale zygotic transcription (Tadros and Lipshitz, 2009). 

In Xenopus laevis, the transcription of nodal 5 and 6 is activated by maternal VegT 

before midblastula transition (Takahashi et al., 2000). Nodal 5 and 6 activate their 

own expression and Nodal/ Activin signalling is apparent by midblastula transition, 

evident by the accumulation of phosphorylated-Smad2 (p-Smad2) (Skirkanich et al., 

2011). This pre-midblastula transition nodal 5 and 6 transcription is essential for 

induction of mesendodermal genes, germ layer specification and induction of nodal 

1, 2 and 4, which are required for later processes such as gastrulation (Luxardi et al., 

2010; Skirkanich et al., 2011). Nodal/ Activin signalling is initially enriched dorsally, 

due to VegT and Beta-catenin cooperation, and extends in a gradient across the 

Xenopus laevis embryo (Lee et al., 2001). By the onset of gastrulation (stage 10), 

Nodal/ Activin signalling is more evenly distributed across the dorsal-ventral axis 

(Figure 1:4) (Faure et al., 2000; Lee et al., 2001; Schohl and Fagotto, 2002). Following 

mesoderm induction, Nodal/ Activin activity patterns the mesoderm in a dose-

dependent manner. In pluripotent Xenopus laevis explants, it has been demonstrated 

that low Activin concentrations are capable of inducing ventral mesoderm 

derivatives, and high Activin concentrations are capable of inducing dorsal 

mesoderm derivatives (Ariizumi et al., 1991; Kimelman, 2006; Okabayashi and 

Asashima, 2003). A dominant negative Activin receptor has been shown to block the 

ability of animal caps to respond to Activin treatments and in vivo for embryos to 

express the mesodermal marker brachyury (Hemmati-Brivanlou and Melton, 1992). 



 21  

There is ongoing work to determine the relative contributions of Nodal/ Activin 

signalling timing, dose and length of exposure in patterning the early embryo. 
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Figure 1:4 Active Nodal/ Activin signalling gradient in the early Xenopus laevis embryo 

Diagrammatic depiction of Nodal/ Activin signalling activated phosphorylated-Smad2 

localisation in the early Xenopus laevis embryo. 
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1.8.1.5 Nodal/ Activin signalling in cardiac specification 

Research conducted in several model systems has implicated Nodal/ Activin 

signalling in cardiac specification. In Xenopus laevis, overexpression of Nodal family 

members, or constitutively active (CA) ALKs, has been shown to induce ectopic 

cardiac tissue, both in vivo and in animal pole explants (Foley et al., 2007; Logan and 

Mohun, 1993; Reissmann et al., 2001; Takahashi et al., 2000). A dose-response can 

be demonstrated in Xenopus laevis animal pole explants, with high concentrations of 

Activin A, Nodal ligands or CA-ALKs inducing cardiac tissue, in contrast to lower 

concentrations which result in alternative mesoderm derivatives including skeletal 

muscle, notochord and lateral plate mesoderm (Logan and Mohun, 1993; Reissmann 

et al., 2001; Takahashi et al., 2000). Likewise, Activin A has been shown to induce 

cardiac myogenesis in a dose-dependent manner in quail posterior epiblast explants, 

with Activin inhibition resulting in reduced cardiac cell number in chick posterior 

explants (Yatskievych et al., 1997). Conversely, disruption of Nodal/ Activin signalling 

by dominant negative ALKs can reportedly reduce cardiac marker expression in 

Xenopus laevis (Reissmann et al., 2001). It has been demonstrated that mice lacking 

the cripto gene fail to elicit cardiac marker expression and subsequently die 

prenatally. In addition, nodal hypomorphic mutants display abnormal heart tissue 

(Lowe et al., 2001; Xu et al., 1999). Dominant negative ALK receptors, or loss of cripto, 

has been shown to block cardiomyogenesis in mouse embryonic stem cells (Cai et al., 

2012; Parisi et al., 2003; Xu et al., 1999). zebrafish one-eyed pinhead (oep; an EGF-

CFC family member) mutants exhibit severe defects in myocardial development 

(Griffin and Kimelman, 2002; Reiter et al., 2001). In a Xenopus laevis explant 

conjugate model, the Nodal/ Activin signalling pathway has been demonstrated to 

have an early transient requirement for cardiogenesis (Samuel and Latinkić, 2009). 

These results suggest a role for Nodal/ Activin signalling in cardiac induction. 

However, many of the aforementioned experiments were not designed to isolate the 

role of Nodal/ Activin signalling in cardiac specification from alternative Nodal/ 

Activin signalling roles in mesoderm formation and embryonic patterning, as 

experiments largely used continuous Nodal/ Activin signalling inhibition or 

overexpression. As mesoderm formation is a prerequisite for cardiac mesoderm 
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induction, it is debatable whether the observed cardiac affects are a direct or indirect 

consequence of altered Nodal/ Activin signalling. In addition, the temporal 

requirement for Nodal/ Activin signalling in cardiac specification in vivo remains 

unknown. Careful manipulation of Nodal/ Activin signalling during precise time 

windows of development would begin to address more specifically the requirement 

for Nodal/ Activing signalling in cardiac specification. Whether Nodal/ Activin 

signalling interacts with other signalling pathways to confer cardiac specificity or is 

independently sufficient for initiating cardiogenesis by activating downstream 

signalling pathways remains to be resolved. 

1.8.2 Fibroblast growth factors 

1.8.2.1 Fibroblast growth factor family 

The FGF family is a family of growth factors, conserved throughout metazoan 

evolution (Itoh and Ornitz, 2004). There are 22 identified FGF family members in 

mammals, with fewer in lower vertebrates, for example there are 17 known FGF 

family members in Xenopus tropicalis (Lea et al., 2009). The many Xenopus FGF 

ligands and receptors have dynamic expression patterns during development. The 

expression of fgf 1, 2, 4, 8, 13, 20 and 22 and fgfrs 1, 2 and 4 can be detected prior to 

mid-gastrula stages in a developmentally relevant time frame for cardiac 

specification. Whole mount in situ hybridisation analysis shows that fgfrs appear to 

be ubiquitously expressed with the aforementioned fgfs often expressed in the 

mesoderm or expressed ubiquitously with stronger expression in the mesoderm at 

gastrula stages (Lea et al., 2009). FGF signalling controls many biological processes 

including proliferation, survival, migration, differentiation and embryogenesis (Dorey 

and Amaya, 2010; Ornitz and Itoh, 2015; Thisse and Thisse, 2005). 

1.8.2.2 Fibroblast growth factor signalling pathway 

Two molecules of extracellular FGF ligands, connected by a heparan sulphate 

proteoglycan, signal through binding highly conserved FGF transmembrane 

receptors (FGFR), causing receptor dimerisation (Schlessinger et al., 2000; Turner and 
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Grose, 2010). Ligand dependent dimerization results in FGF receptors undergoing a 

conformational shift, leading to the transphosphorylation of the cytoplasmic tyrosine 

kinase domains. This allows the docking of adaptor proteins for multiple downstream 

signal transduction pathways. The two main FGF signalling transduction pathways 

involve Ras-mitogen-activated protein kinase (MAPK)/ ERK and phospholipase-C 

gamma (PLC-gamma), but signal propagation can also occur via phosphoinositide 3-

kinase (Pi3K) and signal transducer and activator of transcription (STAT) branches 

(Kimelman, 2006; Thisse and Thisse, 2005). FGF predominantly signals through Ras-

MAPK/ ERK during embryonic development (Corson et al., 2003; Thisse and Thisse, 

2005). The Ras-MAPK/ ERK branch of signalling is transmitted by activated 

(phosphorylated) FGF receptors inducing the activation of the G-protein Ras, via 

small adaptor proteins. Ras activates Raf, which phosphorylates to activate mitogen-

or-extracellular signal regulated protein kinase (MEK). MEK subsequently activates 

MAPK/ ERK by dual phosphorylation of the regulatory tyrosine or threonine residues, 

which are located only one residue apart at positions 202 and 204 respectively (Payne 

et al., 1991; Shaul and Seger, 2007). MAPK/ ERK enters the nucleus where it 

phosphorylates and activates transcription factors to regulate transcription of target 

genes (Figure 1:5) (Kimelman, 2006; Thisse and Thisse, 2005).  

http://www.sciencedirect.com/science/article/pii/S0012160605006184#200019101
http://www.sciencedirect.com/science/article/pii/S0012160605006184#200019101
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Figure 1:5 Schematic diagram illustrating FGF signalling 

Arrows indicate the direction of signal transduction from extracellular FGF ligand binding to 

influencing gene transcription. TF =transcription factor. P =phosphorylation event. 
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1.8.2.3 Fibroblast growth factor signalling regulation 

FGF signalling specificity is conferred by different ligand-receptor binding 

capabilities, and is tightly regulated at multiple levels by both positive and negative 

feedback loops (Thisse and Thisse, 2005). Secreted FGF proteins are sequestered in 

the extracellular matrix by Heparan Sulphate Proteoglycans and must be released by 

Heparanases. Conversely, cell surface Heparan Sulphate Proteoglycans stabilise the 

FGF ligand-receptor interaction (Harmer et al., 2004). FGF receptor activity can be 

modulated by receptor internalisation and ubiquitination following receptor 

activation. In addition, the negative regulator FGFRL1 lacks the tyrosine kinase 

domain for signal propagation but is still capable of binding FGF ligands (Wiedemann 

and Trueb, 2000). Intracellular proteins such as MAPK Phosphatases (Zhao and 

Zhang, 2001), Sprouty (Casci et al., 1999), Similar-expression-to-fgf-genes (Sef) 

(Furthauer et al., 2002) and Fibronectin leucine rich transmembrane protein 3 (Flrt3) 

(Böttcher et al., 2004) modulate the signal transduction cascade. MAPK Phosphatase 

negatively regulates MAPK by dephosphorylation, to deactivate signal transduction 

(Zhao and Zhang, 2001). Sprouty expression is induced by FGF signalling and the 

Sprouty protein inhibits FGF signalling upstream of MAPK/ ERK (Tsang and Dawid, 

2004). Sef binds and inhibits MEK-MAPK/ ERK dissociation and thus blocks the 

nuclear translocation of active MAPK/ ERK (Thisse and Thisse, 2005). In contrast, Flrt3 

interacts with FGF receptors to promote FGF signalling (Böttcher et al., 2004). These 

examples, and numerous other pathway enhancers or inhibitors, allow fine tuning at 

various levels for FGF signalling regulation.  

1.8.2.4 Fibroblast growth factor signalling in embryogenesis 

FGFs have numerous roles throughout many stages of embryogenesis, including 

induction, patterning, morphogenesis, axis formation, and differentiation (Coumoul 

and Deng, 2003; Thisse and Thisse, 2005). There is a large body of evidence 

suggesting that mesoderm induction and patterning is one of the earliest events 

requiring FGF signalling (Amaya et al., 1993; Fletcher et al., 2006; Isaacs et al., 1992; 

Kimelman and Kirschner, 1987; Slack et al., 1990). However, select mesoderm 

markers, for example eomesodermin, are unaffected by FGF signalling inhibition in 
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Xenopus laevis (Fletcher and Harland, 2008; Kumano et al., 2001), suggesting that 

FGF signalling is not required for all aspects of mesoderm induction. It is, however, 

apparent that FGF signalling is necessary for axial (notochord) and paraxial (somites 

and dermis) mesoderm formation (Amaya et al., 1993, 1991; Dorey and Amaya, 

2010). Concurrently, FGF signalling, originating and dispersing from the future dorsal 

side of the embryo, inhibits ventral BMP spreading to establish the dorsal-ventral axis 

in zebrafish (Fürthauer et al., 2004). FGF signalling has been associated with the 

specification and development of several mesodermal tissue derivatives including 

blood, skeletal muscle and cardiac tissue (Isaacs et al., 2007; Keren-Politansky et al., 

2009; Marques et al., 2008; Simões et al., 2011). It has been shown in Xenopus and 

mouse that FGF signalling is required for convergent extension cell movements 

during gastrulation, as FGF signalling inhibition results in aberrant cell movements 

and abnormal or incomplete gastrulation (Amaya et al., 1991; Ciruna and Rossant, 

2001; Harvey, 2002; Nutt et al., 2001). FGF has numerous roles throughout later 

development, for example in patterning the mid-hindbrain in chick (Aragon and 

Pujades, 2009) and in limb induction, maintenance and development in chick 

(Martin, 1998).  

1.8.2.5 Fibroblast growth factor signalling in cardiac specification 

During the blastula to gastrula stages of development, FGF expression is prominent 

in the anterior endoderm tissue underlying the cardiac field, inferring FGF as a 

candidate cardiac inducing signal (Alsan and Schultheiss, 2002; Deimling and 

Drysdale, 2011; Lea et al., 2009). Research in several model systems has implicated 

FGF signalling in cardiac specification. The Drosophila heartless (FGFR) mutant lacks 

the dorsal vessel, reasoned to be due to the requirement of FGF signalling in both 

cell migration and fate assignment (Beiman et al., 1996; Michelson et al., 1998). 

However, it is questionable whether a common role for FGF signalling in tissue 

migration and organisation may account for pleiotropic defects in heartless mutants 

(Beiman et al., 1996). Studies in chick provide evidence that FGF signalling 

contributes to cardiac induction. Specifically, ectopic FGF signalling was shown to be 

capable of expanding the heart field laterally; however FGF signalling alone was 
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insufficient to initiate cardiogenesis in non-precardiac mesoderm (Alsan and 

Schultheiss, 2002; Lough et al., 1996). Likewise, in Xenopus laevis animal pole 

explants, FGF signalling was incapable of inducing differentiated cardiac marker 

expression (Logan and Mohun, 1993). Removal of the cardiac inducing endoderm in 

chick has been shown to result in the downregulation of a subset of cardiac markers, 

which can be rescued by exogenous FGF8 in cooperation with low levels of BMP 

signalling (Alsan and Schultheiss, 2002). In zebrafish, fgf8 expression is thought to be 

necessary in heart precursors, and the acerebellar (fgf8) mutant has been shown to 

have reduced ventricular cardiomyocyte number (Marques et al., 2008; Reifers et al., 

2000). Increased FGF signalling was demonstrated to result in increased 

cardiomyocyte number in zebrafish, thus it was reasoned that FGF signalling 

regulates heart size and chamber proportions during cardiac specification (Marques 

et al., 2008). Research in Xenopus laevis has shown that FGF pathway inhibition 

results in reduced cardiac marker expression (Deimling and Drysdale, 2011; Keren-

Politansky et al., 2009) and that FGF signalling is required during the first hour of 

cardiac induction in an explant conjugate model for cardiogenesis (Samuel and 

Latinkić, 2009). Addressing the role of FGF in cardiac specification in mice has been 

problematic, as many FGF mutant mice die during gastrulation (Deng et al., 1994; Sun 

et al., 1999), although studies in mouse embryonic stem cells have implicated that 

FGFR1 is essential for cardiomyocyte development (Dell’Era et al., 2003). 

The temporal and spatial expression of FGF ligands highlights the potential 

involvement of FGF signalling in cardiac specification, with emerging experimental 

evidence supporting the concept. However, a demonstration of a direct role for FGF 

signalling in cardiac specification remains elusive as many previous studies have not 

been designed to isolate the role of FGF signalling in cardiac specification from its 

broader functions in embryonic development. The timing and mechanism of action 

that FGF signalling may have in cardiac specification remains unanswered. An 

understanding of whether, and how, FGF signalling cooperates with other signalling 

pathways to induce cardiac mesoderm, or whether FGF signalling required after 
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initial cardiac specification to regulate heart development, is an important area of 

further research which will broaden our understanding of cardiogenesis. 

1.8.3 Bone morphogenetic protein and Wnt 

In addition to Nodal/ Activin and FGF signalling, BMP and Wnt signalling has been 

implicated in cardiac specification. However, there is conflicting evidence concerning 

the involvement of BMP and Wnt signalling in cardiac specification as opposed to 

later stages of heart development. 

1.8.3.1 Bone morphogenetic protein 

BMPs are members of the TGF-beta family. There are at least 15 BMPs which have 

been identified in vertebrates (Wang et al., 2014). BMP’s have multiple roles 

throughout embryogenesis, for example in cell-type specification, dorsoventral axis 

determination, tissue patterning and organ development (Hogan, 1996; Wang et al., 

2014). BMPs have been implicated in cardiogenesis; however, whether BMP 

signalling is involved in specification, or later development, is a subject of debate. In 

the chick, it has been shown that BMP signalling can act upon dorsal mesoderm to 

induce cardiac tissue, and that BMP antagonists can restrict the domain of cardiac 

tissue (Schultheiss et al., 1997). However, experiments in chick explant culture 

indicates that BMP signalling inhibits early cardiogenesis (Ladd et al., 1998). In mice, 

bmp2 knockouts result in defects in cardiac development, however, cardiac tissue 

specification remains intact (Zhang and Bradley, 1996). In addition, in mouse, bmp5 

and bmp6 knockouts have no gross cardiac abnormalities (J. Wang et al., 2011). In 

mouse cell culture, BMP signalling has been found to supress early cardiogenesis 

(Harada et al., 2008). In zebrafish, Swirl (bmp2) mutants show early myocardial 

marker, gata5, expression, but expression is not maintained, suggesting that BMP 

signalling regulates cardiogenic factors but is not involved in cardiac tissue induction 

(Reiter et al., 2001). Work in a Xenopus laevis explant model for cardiogenesis shows 

that early cardiac marker expression was observed unaffected after BMP inhibition. 

However, later heart development was abnormal after BMP inhibition, suggesting 



 31  

that BMP is not required for cardiac specification per se, but for later stages of heart 

development, including heart field migration and/or fusion and differentiation 

(Samuel and Latinkić, 2009; Walters et al., 2001). These investigations show that 

there is conflicting evidence regarding the involvement of BMPs in cardiac 

specification and later heart development. However, in a number of model systems, 

including Xenopus laevis, the evidence suggests that BMP is not required for cardiac 

specification, hence BMP shall not be a focus for studies within this thesis. 

1.8.3.2 Wnt 

Wnts comprise a family of secreted glycoproteins which are conserved throughout 

metazoans (Komiya and Habas, 2008; MacDonald et al., 2009). In vertebrates, 19 Wnt 

proteins have been identified (Komiya and Habas, 2008). Wnts primarily signal via 

canonical (Wnt/ beta-catenin) or non-canonical (beta-catenin independent) 

branches of the Wnt signalling pathways (Komiya and Habas, 2008). Wnts control a 

variety of processes, including embryonic cell fate determination, cell polarity and 

migration, proliferation, differentiation and tissue homeostasis (Kikuchi et al., 2009; 

Logan and Nusse, 2004). There is conflicting data concerning the involvement of 

Wnt/ beta-catenin signalling in cardiac specification. In chick and Xenopus laevis, 

active canonical Wnt signalling in anterior mesoderm has been shown to supresses 

cardiac development, whereas Wnt antagonists Dickkopf and Frizzled stimulate 

cardiogenesis by establishing a zone of low Wnt activity (Marvin et al., 2001; 

Schneider and Mercola, 2001). In addition, endoderm specific knockout of beta-

catenin in mice has been demonstrated to lead to multiple ectopic heart formation 

(Lickert et al., 2002). Wnt signalling in mice is potentiated by nkx2.5, implicating Wnt 

in supporting continued cardiac development (Cambier et al., 2014). However, in 

mouse embryonic stem cells (ESC) and in zebrafish, there is evidence for a biphasic 

role for Wnt in cardiac specification, with canonical Wnt promoting cardiac 

specification in early developmental stages but inhibiting cardiomyogenesis in later 

development (Naito et al., 2006; Nakamura et al., 2003; Ueno et al., 2007). 

Conversely, more recent work in human and mouse stem cells has demonstrated a 

high yield of functional cardiomyocytes after Wnt inhibition (Lian et al., 2013; H. 
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Wang et al., 2011). This suggests that although Wnt signalling has been shown to 

have a biphasic role in cardiac development, in vivo Wnt is not required for the 

induction of cardiac cells but it is likely to be required for continued further cardiac 

development. Therefore, Wnt signalling shall not be the focus of research conducted 

for this thesis.  

1.8.4 p53 

p53 was discovered in 1979 as a protein which interacts with the oncogenic Simian 

Vacuilating virus 40 (SV40) T antigen in SV40 infected cells (Lane and Crawford, 1979; 

Murray-Zmijewski et al., 2006). p53 is well known as a tumour suppressor protein 

due to its ability to induce cell-cycle arrest, DNA repair and apoptosis (Molchadsky et 

al., 2010). Mutations in the p53 gene often lead to cancer, with p53 being one of the 

most commonly mutated genes in human cancers (Kandoth et al., 2013). New roles 

for p53 are continuously being discovered, including in the regulation and 

differentiation of developmental pathways during embryogenesis (Danilova et al., 

2008; Molchadsky et al., 2010).   

1.8.4.1 The p53 family of transcription factors 

The p53 family contains three known members: p53, p63 and p73. The transcripts 

are processed by alternative splicing, generating 12 isoforms (Khoury and Bourdon, 

2011; Murray-Zmijewski et al., 2006). p53 family members have similar structures, 

consisting of an N-terminal transactivation domain, a DNA binding domain, an 

oligomerisation domain and a C-terminal basic domain, which also has DNA-binding 

capabilities (Murray-Zmijewski et al., 2006). 

1.8.4.2 p53 signalling and regulation 

p53 is a transcription factor, whose activity can be modulated by post-translational 

modifications, including acetylation, methylation, ubiquitination and 

phosphorylation at one or more of its approximately 24 phosphorylation sites (Dai 

and Gu, 2010; Danilova et al., 2008; Lavin and Gueven, 2006). Different post-
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translational modifications influence p53 preferences for binding proteins and 

downstream targets, influencing diverse cellular events (Hill et al., 2008; Knights et 

al., 2006). During cellular homeostasis, Mdm2 and Mdm4 modulator proteins are 

required to moderate the levels of available p53, by targeting p53 for degradation or 

inhibiting transcription respectively (Ringshausen et al., 2006; Toledo and Wahl, 

2006). In the absence of the Mdm2 modulator protein, the post-translation p53 

protein is active (Ringshausen et al., 2006). Phosphorylation, by a range of kinases, 

including MAPK and checkpoint kinases, is an important method of modulating p53 

activity (Danilova et al., 2008). For example, phosphorylation at Ser33, Thr81 and 

Ser315 by cell-cycle dependent kinases leads to new p53 interactions with binding 

partners and conformational changes, which enhance DNA binding to regulatory 

regions of target genes, promoting apoptosis (Zacchi et al., 2002; Zheng et al., 2002). 

The C-terminal domain of p53 is thought to weakly interact with DNA, allow sliding 

of the p53 protein along the DNA backbone in a one-dimensional manner (Tafvizi et 

al., 2008). It is thought that the C-terminal domain has an inhibitory function, as an 

alternatively spliced p53 variant, lacking the 26 C-terminus most amino acids, was 

found to have elevated capabilities for inducing mesoderm and endoderm marker 

gene expression in Xenopus laevis (Cordenonsi et al., 2003; Takebayashi-Suzuki et al., 

2003). p53 can be regulated via its C-terminal domain, for example by the binding of 

the ectodermal protein zinc finger protein 585B (Znf585b), which prevents p53 

induced activation of mesodermal genes in the ectoderm during Xenopus laevis 

development (Sasai et al., 2008). p53 interacts with proteins from different signalling 

pathways to integrate signalling branches and modulate cellular processes. For 

instance, during Xenopus laevis development, MAPK has been shown to 

phosphorylate the N-terminal region of p53, enabling p53 to interact with Smad2 to 

modulate Nodal/ Activin target genes for mesoderm induction (Cordenonsi et al., 

2007, 2003; Piccolo, 2008).  These signals and mechanisms highlight some of the 

strategies, which finely balance to tightly modulate p53 activity. 
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1.8.4.3 p53 in embryogenesis, homeostasis and cancer  

New roles for p53 in embryogenesis are continuously being discovered. p53 is 

expressed during early development in organisms including mouse and Xenopus 

laevis (Schmid et al., 1991; Tchang et al., 1993).  p53 downregulation in the early 

Xenopus laevis embryo has been shown to affect mesoderm induction, which 

impinges upon later development (Cordenonsi et al., 2003). However, p53 null 

mutant mouse embryos have been reported to develop normally until birth, albeit 

with a high portion presenting abnormalities including craniofacial malformations, 

neural tube closure defects and spontaneous tumour formation (Armstrong et al., 

1995; Donehower et al., 1992; Sah et al., 1995). This difference is likely due to 

functional redundancy between the p53 family members in mouse. Indeed, in mouse 

p53, p63 and p73 expression is detected in the early embryo, and the family members 

have been shown to have overlapping functions in multiple processes (Hernández-

Acosta et al., 2011; Levrero et al., 2000). Xenopus laevis expresses only p53 during 

early development, with p63 activated much later during organogenesis, and p73 not 

found in lower vertebrates (Cordenonsi et al., 2003; Lu et al., 2001). This lack of 

redundancy makes Xenopus laevis a good model to study the developmental 

requirements for p53.  

p53 is believed to be required for normal cellular homeostasis, by regulating 

metabolic processes to reflect the proliferation and energy status of a cell (Olovnikov 

et al., 2009). In addition, p53 has a well-established role responding to cellular stress 

to activate appropriate repair mechanisms or initiate apoptosis (Lane, 1992; 

Olovnikov et al., 2009). The regulation, repair and apoptotic functions of p53 are 

crucial for cancer prevention and p53 misregulation or genetic mutations often result 

in cancer formation (Kandoth et al., 2013). A diverse range of mutations affect p53. 

Most mutations are single-base substitutions, which can occur across numerous 

positions throughout the coding region (Olivier et al., 2010). Genetic mutations often 

lead to p53 inactivation; however, mutated p53 proteins can also gain additional 

oncogenic functions, conferring proliferation and survival traits to cancerous cells 

(Rivlin et al., 2011). Although cancerous mutations can be found throughout the p53 
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gene, they are often located in conserved regions, with particular nucleotide changes 

prevailing in a high number of human cancers. For example, a single G to C point 

mutation at codon 280 results in an arginine to threonine change in human p53 (Sun 

et al., 1992). Arginine 280 is a fundamental component of the DNA binding domain, 

thus this mutation renders p53 inactive by disrupting interactions with the phosphate 

and base groups of DNA (Wright and Lim, 2007). An understanding of specific p53 

tumorigenic mutations, and how they function, not only allows the mechanisms of 

cancers to be unravelled for the development of therapeutic treatments, but also 

allows specific p53 mutants to be utilised in embryological research. The importance 

of p53 in normal Xenopus laevis development has been investigated using inactivated 

p53 mutated at codon 280, from arginine to threonine, as a tool to downregulate p53 

activity (Wallingford et al., 1997). 

1.8.4.4 p53 as a signalling pathway integrator 

How a comparatively small number of signalling pathways regulate a vast number of 

developmental processes is still the focus of ongoing research. Many genes are 

known to be regulated by the influence of multiple signalling pathways. It has been 

shown that p53 can integrate signalling pathways and influence a subset of target 

genes, conferring particular developmental decisions (Danilova et al., 2008). There 

are many examples of p53 being both positively and negatively regulated to integrate 

signalling pathways (Danilova et al., 2008). During mesoderm formation in Xenopus 

laevis, it has been suggested that p53 is required to integrate the FGF and Nodal/ 

Activin signalling pathways (Cordenonsi et al., 2007, 2003). It was demonstrated that 

FGF signalling results in the phosphorylation of p53, on serine 6 and 9 by Casein 

Kinase 1, allowing p53 to interact with Nodal/ Activin activated Smad2/3 and 

influence a subset of Nodal/ Activin target genes (Cordenonsi et al., 2007, 2003; 

Dupont et al., 2004). In human cells, MAPK has been demonstrated to be required 

for p53 phosphorylation, at serine 6 and 9, for Smad2 interactions integrating the 

MAPK and Nodal/ Activin pathways (Danilova et al., 2008; Wang et al., 2007). As both 

FGF and Nodal/ Activin signalling have been strongly implicated in cardiac 

specification, it is plausible that pathway crosstalk may be mediated by p53, initiating 
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successful cardiogenesis. Establishing whether p53 is required for cardiogenesis, and 

whether that potential requirement is to facilitate signalling pathway specificity or 

mediate pathway crosstalk is yet to be addressed. 

1.9 The genetic control of cardiogenesis 

Once specified, cardiac cells begin to express specific cardiac genes which modulate 

further cardiac development. These cardiac specific transcripts can act as markers for 

experimental analysis, allowing cells of a particular lineage to be identified. However, 

there is a lack of known cardiac markers that would allow presumptive cardiac cells 

to be traced from their time of specification throughout development (Scott, 2012). 

Several regulatory transcription factors have been investigated which act after initial 

specification for cardiac development, although none is exclusive to the cardiac 

lineage (Zaffran and Frasch, 2002). In Xenopus, cardiac cells initially comprise a small 

subset of mespa-positive cells (Kriegmair et al., 2013). mespa-positive cells are 

heterogeneous and are also fated to form anterior skeletal muscle and paraxial 

mesoderm derivatives (Saga et al., 1999). During late gastrula to early neurula stages, 

mespa expression is switched off and the expression of cardiogenic transcription 

factors nkx2.5 and gata factors are up-regulated. In addition, tbx5 and isl1 expression 

is initiated, marking the primary and secondary heart fields respectively (Pandur et 

al., 2013). Many cardiomyocyte specific genes are expressed only in differentiated 

cardiac tissue, for example myosin heavy chain 6 (myh6), myosin light chain 7 (myl7) 

and cardiac troponin (tnni3) (Sell, 2013). These serve as useful markers in 

investigating the size, location and morphology of differentiated tissue. 

In mouse, the domains and expression patterns of mesp1 and mesp2 were found to 

be overlapping in posterior mesoderm at the onset of gastrulation (Saga et al., 1997, 

1996). mesp1 and mesp2 double knockouts in mouse proved lethal; mesoderm 

migration during gastrulation was found to be unsuccessful and structures such as 

the heart, somites and gut were not observed, suggesting that mesp1 and mesp2 are 

important for the development of mesoderm derivatives (Kitajima et al., 2000). 

However, only mesp1 null-mice displayed abnormal heart development (Saga et al., 
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1999), with mesp2-null mice displaying normal heart development but defective 

somitogenesis (Saga et al., 1997). In Xenopus, the mesp1 homologue mespa occupies 

an expression domain during gastrulation which precedes the prospective heart field 

and is non-overlapping with mesp1 homologues mespb or mespo. Knockdown of 

Mespa protein has been shown to result in the loss of cardiac markers, which can be 

rescued by mespa or human mesp1, but not mespb or mespo (Kriegmair et al., 2013). 

In addition, mespa has been show capable of inducing cardiac markers in vivo and in 

vitro (Kriegmair et al., 2013).  

nkx2.5 is a member of the NK homeodomain family of transcription factors and is 

considered to be one of the earliest markers identifying cardiac precursor cells 

(Benson et al., 1999; Brand, 2003). nkx2.5 is expressed from late gastrula stages in 

both the primary and secondary heart fields, and continues to be expressed in the 

mature heart throughout the left ventricle and atrial chambers (Kasahara et al., 1998; 

Komuro and Izumo, 1993; Lints et al., 1993; Tonissen et al., 1994). nkx2.5 

overexpression in Xenopus laevis and zebrafish can increase the size of the heart, and 

high concentrations can induce ectopic cardiac tissue (Chen and Fishman, 1996; 

Cleaver et al., 1996). nkx2.5 promotes and maintains the expression of cardiac-

specific genes, including the transcription factors hand, mef2, myl7 and gatas, which 

are required for further development, differentiation and morphogenesis (Akazawa 

and Komuro, 2005; Brand, 2003; Evans, 1999; Mohun and Sparrow, 1997). nkx2.5 

functions to regulate the maturation of ventricular cardiomyocytes and the 

development of the conductive system (Thomas et al., 2001; Yamagishi et al., 2001). 

Gata factors have multiple roles in embryonic development. Gata 4, 5 and 6 are 

expressed throughout cardiac mesoderm, in a similar time and spatial manner to the 

expression of nkx2.5 (Laverriere et al., 1994; Patient and McGhee, 2002; Zaffran and 

Frasch, 2002). Gata 4 has been shown to induce cardiac tissue and beating foci in 

pluripotent Xenopus laevis cells (Latinkić et al., 2003). In Drosophila, co-expression of 

gata and nkx2.5 homologues can induce ectopic cardiac cells (Gajewski et al., 1999). 

Cardiogenic gata factors have been found important for the regulation of cardiac 

specific genes, such as nkx2.5, and the promotion of genes for differentiated cardiac 
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tissue, for example myh6 (Lien et al., 1999; Mohun and Sparrow, 1997; Reiter et al., 

1999). In addition, cardiogenic gata factors are required for the migration and fusion 

of bilateral heart primordia and for ventral morphogenesis (Kuo et al., 1997; 

Molkentin et al., 1997).  

T-box transcription factors encoded by tbx5 and 20 are expressed in the primary 

heart fields of bilateral cardiac primordia from early neurula stages in Xenopus laevis, 

mouse, chick and fish embryos. At later stages in development, expression is 

restricted to the posterior of the atria and sinus venosus, and within the left ventricle 

(Brown et al., 2003; Bruneau et al., 1999; Chapman et al., 1996; Horb and Thomsen, 

1999). Tbx5 has a suggested role in promoting ventricular versus atrial fates and 

conferring identity along the anterior-posterior extent of the heart (Zaffran and 

Frasch, 2002). The proteins encoded by tbx5 and nkx2.5 have been shown to 

physically interact, suggesting functional cooperation (Hiroi et al., 2001). Tbx5 

downregulation in mouse or Xenopus laevis disrupts cardiac development and 

decreases in cardiac gene expression, including nkx2.5, myl7 and gata4, are 

observed, suggesting a regulatory role (Bruneau et al., 2001).  

isl1 is a LIM homeodomain protein which is first detected at the end of gastrulation 

in many organisms including Xenopus laevis (Brade et al., 2007; Gessert and Kühl, 

2009). isl1 is predominantly expressed in the secondary heart field, overlapping the 

more anterior domain of nkx2.5 expression, with positive cells contributing to the 

outflow tract, portions of the atria and, where applicable, the right ventricle (Cai et 

al., 2003; Gessert and Kühl, 2009). isl1 has roles in regulating early cardiac genes, 

morphogenesis and vasculogenesis (Brade et al., 2007).  

1.10 Timing of cardiac specification 

The time at which cells are specified into the cardiac lineage has not been precisely 

defined. At the neurula stages, presumptive cardiac cells excised from the Xenopus 

laevis embryo continue to develop and differentiate (Sater and Jacobson, 1989) and 

anterior endoderm explants are limited to mid-gastrulation for their ability to induce 
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cardiogenesis in responding tissue (Samuel and Latinkić, 2009). Cardiac gene 

transcripts, for example mespa and nkx2.5, are first detected during the late gastrula 

stages (Evans et al., 1995; Kriegmair et al., 2013; Tonissen et al., 1994). 

Transplantation of pre-gastrula presumptive cardiogenic mouse tissues into chick 

embryos at different locations results in the persistence of cardiac markers nkx2.5 

and gata4 (Auda-Boucher et al., 2000). Evidence suggests that cardiac tissue has 

been specified by the end of gastrulation, but further research needs to be conducted 

to better understand the precise timing in which cells acquire a cardiac fate. 

1.11 Cardiac disease and regenerative medicine 

The heart is a vital organ, therefore any condition that negatively affects normal 

cardiovascular function can be life changing or fatal. Congenital heart disease (CHD) 

describes a range of birth defects which affect normal heart function, for example 

septal defects, aorta and pulmonary valve restrictions and artery transposition 

(Bruneau, 2008). Congenital heart diseases affect nearly 1% of new-borns and are 

the leading non-infectious cause of infant mortality in the western world (Bruneau, 

2008; Roos-Hesselink et al., 2005). In addition, congenital heart diseases have an 

increased occurrence when assisted reproductive technologies have been employed 

(Tararbit et al., 2013), rendering congenital heart diseases an area which warrants 

further research. Defects in early cell signalling and fate decisions often cause 

congenital heart diseases, therefore an understanding of the complex mechanisms 

regulating cardiogenesis will aid in the development of therapies to reduce and treat 

congenital heart diseases cases (Harvey, 2002; Mohun et al., 2003).  

The mature heart can be affected by diseases, such as coronary heart disease, where 

the coronary arteries become blocked by a build-up of fatty materials (Libby and 

Theroux, 2005). This can lead to cardiac infarction, where a lack of oxygen results in 

the death of cardiac-specific cells and replacement with non-cardiac scar tissue 

(Batalov and Feinberg, 2015). The vertebrate heart has limited potential to 

functionally repair itself and continued loss of contractile cardiomyocytes will result 

in cardiac failure, causing major mortality worldwide (Laflamme and Murry, 2005; 
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Roger, 2013; Xin et al., 2013). Therefore, the human heart is a target for developing 

regenerative medicine therapies. There are several approaches to therapeutic 

cardiac regenerative medicine, including transplanting cardiomyocytes derived from 

the directed differentiation of embryonic stem cells (ESC) or induced pluripotent 

stem cells (iPSC); converting heart fibroblasts into cardiomyocytes; or ideally by 

inducing self-repair in situ by stimulating a latent pool of cardiac progenitor cells.  

ESCs and iPSCs can be directed to form cardiomyocytes, although reports describe 

them as resembling immature embryonic/ fetal cardiomyocytes (Batalov and 

Feinberg, 2015; Vidarsson et al., 2010). Therapeutic strategies aim to transplant 

these cardiomyocytes into damaged hearts to remuscularise and improve contractile 

function (Pawani and Bhartiya, 2013). Initial experiments have demonstrated that 

repair was apparent, but not sustainable, and problems such as arrhythmias arise 

(Pawani and Bhartiya, 2013; Wu et al., 2000). Human ESC and iPSC-derived 

cardiomyocytes are additionally utilised as platforms by the pharmaceutical industry 

to evaluate the efficacy and safety of new drugs (Vidarsson et al., 2010). 

The activation of select cardiac-specific transcription factors in cardiac-residing 

fibroblasts can lead to the direct induction of cardiomyocyte-like cells, without the 

requirement for fibroblast to first be reprogrammed into the pluripotent state. With 

current techniques, the derived and native cardiomyocytes present some 

differences, including structural differences which can lead to arrhythmia (Efe et al., 

2011; Fu et al., 2015; Ieda et al., 2010; Qian et al., 2012; Xin et al., 2013). However, 

with further research, the direct reprogramming of cardiac fibroblasts may provide a 

useful approach to cardiac regenerative medicine. 

Until recently, the heart was considered to be a terminally differentiated organ. 

However, there is evidence that a latent myocardial progenitor cell population exists, 

which gradually renews cardiomyocytes at a turnover of less than 1% per year 

(Beltrami et al., 2003; Bergmann et al., 2009; Hierlihy et al., 2002). It is still debated 

whether new cardiomyocytes are formed from a latent pool of stem cells, or from 

the proliferation of existing cardiomyocytes (Bulatovic et al., 2015). A cardiac 
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progenitor population, which can be therapeutically stimulated to produce 

cardiomyocytes for repair, is an attractive target for further research. Furthermore, 

it abrogates the potential downfalls of alternative approaches, such as delivery 

strategy, integration or rejection success and the tumorigenicity of ESC and iPSC 

therapies (Mercola et al., 2011).  

These studies provide strategies for improving treatments for cardiac damage using 

regenerative medicine. A comprehensive understanding of the mechanisms that 

govern the specification and development of cardiac cells throughout embryogenesis 

is imperative for developing superior protocols for the directed differentiation of 

cardiomyocytes for regenerative medicine. 

1.12 Thesis aims 

The aim of this thesis was to investigate the requirement and timing of Nodal/ Activin 

and FGF signalling in cardiac specification, and to identify whether p53 has a novel 

role in heart development, in vivo using Xenopus laevis embryos. Previous 

investigations have strongly implicated the Nodal/ Activin and FGF signalling 

pathways in cardiac specification (Sections 1.8.1.5 and 1.8.2.5). However, previous 

research has not clearly separated the role of Nodal/ Activin and FGF signalling from 

their preceding requirement in mesoderm induction and broader functions in 

embryonic development. Furthermore, the timing during which cardiac specification 

occurs is largely unknown (Section 1.10). Utilising a variety of techniques, including 

small soluble molecular inhibitors, morpholino oligonucleotide and dominant 

negative constructs, the Nodal/ Activin, FGF and p53 signalling pathways were 

manipulated, and the effects on cardiac tissue specification and later heart 

development examined. 
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2 Materials and Methods 
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2.1 Xenopus Laevis embryo manipulations 

2.1.1 Obtaining embryos 

Wild type adult Xenopus laevis were obtained from Nasco, US and grown in-house at 

Cardiff University. Transgenic cardiac actin –green fluorescent protein (CA-GFP) adult 

Xenopus laevis were grown in-house at Cardiff University.  Adult Xenopus laevis were 

housed at 18OC. Adults were injected into the dorsal lymph sac with an appropriate 

amount of human chorionic gonadotropin (HCG, Sigma), typically 600 units for 

females and 200 units for males depending on an individual’s size. Natural mating 

was preferential so a male frog and female frog were left in water in a mating tank 

overnight at 18OC to mate and embryos were collected the following day. For in vitro 

fertilisation (IVF), females were induced as described above and left overnight at 

18OC. Eggs were collected onto a petri dish by gently squeezing the female. Male 

frogs were sacrificed using procedures in home office Schedule 1 and testes were 

surgically removed and stored in Lebovitz’s L15 medium (Sigma). Segments of testes 

were macerated and spread over the eggs, then left for 5 minutes to allow 

fertilisation. The dish of fertilised embryos was flooded with 10% Normal Amphibian 

Medium (1X NAM: 110 mM sodium chloride (NaCl, Fisher), 2 mM potassium chloride 

(KCl, Fisher), 1 mM calcium nitrate (Ca(NO3)2, Fisher), 1 mM magnesium sulphate 

(MgSO4, Fisher), 0.1 mM ethylenediaminetetraacetic acid (EDTA, Fisher), 1 mM  

sodium bicarbonate (NaHCO3, Sigma), 2 mM sodium phosphate (Na3PO4, Sigma) pH 

7.4) (Sive et al., 2000; Slack and Forman, 1980) and left for 20 minutes to allow egg 

rotation. All embryos, fertilised naturally or using IVF, were de-jellied in 2% cysteine-

hydrochloride (Sigma), pH 7.8, for 5-10 minutes as required and washed thoroughly 

in 10% NAM. 

2.1.2 Maintaining embryos 

Embryos were cultured in 10% NAM at 21OC in plastic petri dishes (Fisher) during 

experiments, unless otherwise stated. Prior to microinjections, embryos were kept 
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at lower temperatures of 14-20OC to reduce the speed of development, thus allowing 

more time for injecting. 

2.1.3 Staging embryos  

Xenopus laevis embryos undergo regular changes that are specific to particular 

developmental stages. Embryonic stage was assessed by comparison to Nieuwkoop 

and Faber normal table of Xenopus laevis development (Nieuwkoop and Faber, 

1994).  

2.1.4 Microinjection 

Embryos were transferred into 3% Ficoll 400 (Sigma) in 75% NAM for injection and 

remained in this solution before being transferred to fresh 10% NAM prior to 

gastrulation. The 3% Ficoll in 75% NAM solution helps prevent the cytoplasm and 

injected material leaking from the embryo once the injection needle has been 

removed and helps cell healing. Fine glass needles were prepared from capillary 

tubing using a Kopf 720 Needle Puller (Kopf Instruments). Needles were connected 

to an IM 300 Micro-injector (Narishige Scientific) and injection samples were filled. 

Needles were calibrated to inject 10 nl in 4 bursts using a 10 mm graticule with 100 

divisions of 0.1 mm (Graticule Limited). Embryos injected at the one, two or four cell 

stage received 10 nl, 5 nl or 2.5 nl per blastomere respectively (equivalent to 10 nl 

per embryo). Blastomeres of an 8 cell embryo received 2.5 nl each. Injections into 

the blastocoel of stage 8 or older embryos received 5 nl. Injections are often 

described either as uniform or targeted. Uniform injection refers to injections where 

an embryo has received the same injected material, equally, into all of its cells, 

regardless of which stage it was injected at. Targeted injections refer to an embryo 

which has been injected into a select portion of blastomeres, for example two cells 

of an eight cell embryo. Injection samples routinely incorporated a 10% mix of 

rhodamine-dextran (20 mg/ml, Invitrogen) and dextran-biotin (25 mg/ml, 

Invitrogen), allowing cells which received injected material to be traced by either 

fluorescence microscopy or colour stain development. Rhodamine-dextran emits red 
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fluorescence when excited at 570 nm, thus injected material was traced in live 

embryos using a Leica MZ16 Fluorescence microscope (Leica). Biotin lineage trace 

was detected following whole mount in situ hybridisation procedures, Section 2.7.  

2.1.5 Soluble inhibitor media treatment 

Stock solutions of inhibitors were made by dissolving in dimethyl sulfoxide (DMSO, 

Fisher) to the concentrations displayed in Table 2:1. Stock solutions were aliquoted 

into single-use volumes and stored at -80OC. When new batches of inhibitor were 

purchased, each was titrated and tested for effectiveness to ensure that the new 

batch of inhibitor was used at a concentration that resulted in the same phenotype 

as the original batch. It was found that there was variation in efficacy of inhibitors 

between batches. In addition, there were variations in the response of batches of 

embryos to inhibitor treatment under identical treatment conditions. Therefore each 

experiment included a positive control consisting of embryos that were treated from 

the 2 cell stage. 

Inhibitor treatments were carried out in plastic 12 well plates (Fisher) with a total 

volume of 1 ml, maximum 50 embryos per well. The inhibitor stock solution was 

diluted to a working concentration (Table 2:1) in 800 µl of 10% NAM immediately 

prior to Xenopus laevis embryos being transferred to treatment wells, allowing 200 

µl of 10% NAM to be transferred with the embryos.  Embryos were lightly rocked on 

a mechanical rocker for 5 minutes to allow inhibitor penetration. All treatments were 

kept at 21OC in the dark, due to inhibitor light sensitivity. The embryos were treated 

with the inhibitors for different lengths of time. For ‘continuous’ incubation, embryos 

were incubated until at least stage 25. For inhibitor incubations not classified as 

continuous, the embryos were washed by two 5 minute washes, gently rocking in 30 

ml of fresh 10% NAM and then the embryos were incubated in 10% NAM for further 

development. Control samples were treated with DMSO matching the largest volume 

of inhibitor solution used. Optimum inhibitor working concentrations were 

determined by selecting the concentration which consistently resulted in embryos 

lacking discernible axis and embryonic features upon treatment at the 2 cell stage, 
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without causing embryonic death. In each subsequent experiment involving 

inhibitors, inhibitor action was validated by confirming the expected phenotype, at 

tadpole stage, of embryos treated with inhibitor at the 2 cell stage, in addition to 

molecular analysis. 
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Name Inhibits Stock Formula IC50 Mr Source Reference 

SB505124 ALK 4/5/7 100 mM C20H21N3O2 4/5: 129/47 nM 335.4 Tocris 
(DaCosta Byfield et al., 2004; Luxardi et 

al., 2010; Vogt et al., 2011) 

A-83-01 ALK 4/5/7 50 mM C25H19N5S 4/5/7: 45/12/7.5 nM 421.52 Tocris 
(Samuel and Latinkić, 2009; Tojo et al., 

2005; Vogt et al., 2011) 

SB431542 ALK 4/5/7 75 mM C22H16N4O3 5: 94 nM 384.39 Sigma (Ho et al., 2006; Inman et al., 2002) 

SU5402 FGFR1 50 mM C17H16N2O3 30 µM 296.3 
Calbiochem/ 

Sigma 

(Deimling and Drysdale, 2011; Delaune et 

al., 2005; Samuel and Latinkić, 2009; 

Shifley et al., 2012) 

PD0325901 MEK 10 mM C16H14F3IN2O4 5- 1500 nM 482.19 Selleckchem 
(Anastasaki et al., 2012; Sebolt-Leopold 

and Herrera, 2004) 

U0126 MEK 1/2 35 mM C18H16N6S2 1/2: 72/28 nM 426.56 Sigma 
(Favata et al., 1998; Samuel and Latinkić, 

2009) 

AZD4547 FGFR1-3 100 mM C26H33N5O3 1/2/3: 0.2/2.5/1.8 nM 463.57 Selleckchem (Gavine et al., 2012) 

PD173074 FGFR1-3 100 mM C28H41N7O3 1/3: 21.5/5 nM 523.67 Selleckchem (Rankin et al., 2012) 

SB203580 MAPK 2.65 mM C21H16FN3OS 3-5 µM 377.43 Calbiochem (Hasegawa and Cahill, 2004) 

Table 2:1. Molecular inhibitors 
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2.1.6 Dexamethasone treatment 

To induce hormone-activated protein function of proteins fused to the glucocorticoid 

receptor (GR), dexamethasone (DEX), stored at –20OC as a 2 mM stock in ethanol, 

was mixed directly with embryonic media to a final concentration of 2 µM. For 

removal of DEX, two 5 minute washes, gently rocking the embryos in 30 ml of fresh 

10% NAM was carried out, allowing further development in 10% NAM. 

2.1.7 Removing the vitelline membrane 

The vitelline membrane is a thin transparent membrane close to the embryo’s 

surface that is not removed during de-jellying by 2% cysteine-hydrochloride. 

Developing embryos naturally shed the vitelline membrane during the early tadpole 

stages of development. The vitelline membrane must be removed to allow 

embryonic manipulations, such as animal cap cutting, or before fixing embryos for 

whole mount in situ hybridisation to allow probe penetration. Vitelline membranes 

are removed manually using two pairs of sharp forceps; one pair holds the vitelline 

membrane whilst the other pair tears the vitelline membrane open to release the 

embryo. 

2.1.8 Animal cap isolation and dissociation  

Animal cap (AC) isolation and dissociation was as described in Sive et al. (Sive et al., 

2000). Briefly, embryos were placed in 75% NAM and the vitelline membrane was 

removed. A pair of sharp forceps were used to remove the centre-most 50% of the 

AC, ensuring homogeneity and that no marginal zone cells are collected. For 

dissociation, ACs were gently pipetted until separation into single cells occurred, in a 

calcium magnesium free medium (CMFM: 88 mM NaCl, 1 mM KCl, 2.4 mM NaHCO3, 

5.7 mM Tris pH 7.6) to slow the process of cell aggregation. ACs and dissociated AC 

cells were cultured on 1% agarose (Bioline). 
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2.1.9 Activin treatment 

Soluble Activin (Smith et al., 1990) was used to activate ALK4/5/7 signalling in 

dissociated animal cap cells. A solution of 75% NAM 0.1% bovine serum albumin 

(BSA, Sigma) was prepared, then Activin was added to a final working concentration 

of 16 U/ml from an 8 U/µl stock. Dissociated animal cap cells were transferred 

directly into this solution. 

2.1.10  Imaging 

Live embryos were anesthetised in 10% NAM containing 500 mg/L Ethyl 3-

aminobenzoate methanesulfonate (MS222, Sigma). All samples, both live and those 

that had been processed for whole mount in situ hybridisation and 

immunohistochemistry, were imaged on 1% agarose in a plastic dish. Embryos which 

were made to appear transparent (clearing, Section 2.10.2) were imaged in a glass 

dish (Sigma). Images were obtained on a Leica MZ16 Fluorescence microscope using 

a Leica DFC300 FX camera (Leica).  

2.1.11 Bimolecular fluorescence complementation 

Bimolecular fluorescence complementation (BiFC) was used to visualise the Smad2-

Smad4 complex using an enhanced yellow fluorescent protein called Venus. The N 

terminal of Venus is coupled to Smad4 (VNS4), whereas the C terminal portion is 

associated with Smad2 (VCS2) (Nagai et al., 2002; Saka et al., 2008, 2007). VCS2, VNS4 

and mCherry (Shaner et al., 2004) mRNAs were injected uniformly into the animal 

hemisphere, and various inhibitor and Activin treatments were carried out. 

Dissociated animal cap cells were imaged for green Smad2-Smad4-Venus positive 

nuclei, bright-field and red mCherry, to positively identify cells containing injected 

material. The number of positive nuclei (green) to positively identified injected cells 

(red) was calculated, omitting cells that did not express mCherry. An unpaired 2-

tailed t-test of equal variances was used to test whether the samples were 

significantly different at the 0.05 significance level.  
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2.2 Xenopus tropicalis embryo manipulations 

2.2.1 Obtaining embryos 

Adult Xenopus tropicalis were sourced from the European Xenopus Resource Centre 

(EXRC), Portsmouth and maintained at 24OC. Adults were primed by injecting 20 units 

of HCG into the dorsal lymph sac. The following morning, adults received a booster 

with a further injection of approximately 100 units for males, or 200 units for females, 

depending on an individual’s size. Individuals were left at 24OC for 4-6 hours, then 

IVF was performed. Eggs were collected onto a petri dish by gently squeezing 

females. Male frogs were sacrificed using home office Schedule 1 and testes 

surgically removed and stored in Lebovitz’s L15 medium. Segments of testes were 

macerated and spread over the eggs then left for 5 minutes to allow fertilisation. The 

dish of fertilised embryos was flooded with 0.1 X Marc’s Modified Ringers (1X MMR; 

100 mM NaCl, 2 mM KCl, 1 mM MgSO4, 2 mM calcium chloride (CaCl2, Fisher), 5 mM 

HEPES (Sigma), pH 7.5) for 10 minutes. Embryos were de-jellied in 2% cysteine-

hydrochloride in MMR, pH 7.8, for 5-10 minutes as required and washed thoroughly 

in MMR. 

2.2.2 Maintaining embryos 

Embryos were cultured in 0.1X MMR, or 3% Ficoll in 0.1X MMR prior to gastrulation 

if injected, and incubated at 21-24OC in plastic petri dishes. 

2.2.3 Staging embryos 

Embryonic stage was assessed by comparison to Nieuwkoop and Faber normal table 

of Xenopus laevis development (Nieuwkoop and Faber, 1994).  
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2.2.4 Microinjection 

Embryos were transferred into a 3% Ficoll in 0.1X MMR solution for injection, and 

remained in this solution before being transferred to fresh 0.1X MMR prior to 

gastrulation. Fine glass needles were prepared from capillary tubing using a Kopf 720 

Needle Puller. Needles were connected to an IM 300 Micro-injector and injection 

samples back-loaded. Needles were calibrated to inject 4 nl in 2 bursts using an 

eyepiece graticule. Injections were carried out at the one cell stage, with each 

embryo receiving a total injection volume of 4 nl. 

2.3 Preparation of reagents for microinjection 

2.3.1 RNA 

2.3.1.1 Template preparation and purification 

Circular plasmids were linearised using an appropriate restriction enzyme (Table 2:2). 

1 µg circular plasmid, 1X enzyme specific buffer (NEB), 1X BSA (Promega) if required 

by enzyme, 10 units restriction enzyme (NEB) and ddH2O to a final volume of 30 µl 

were mixed and incubated at the optimum temperature, specified by the restriction 

enzyme, for 1 hour. Linearised plasmids were purified using QIAquick PCR 

purification kit (Section 2.4.1). 

2.3.1.2 RNA synthesis 

SP6 polymerase synthesis was carried out using mMessage mMachine Kit (Ambion) 

according to the manufacturer’s instructions - 1 µg linear template, 10 µl 2X 

NTP/CAP, 2 µl 10X Reaction Buffer, 2 µl enzyme mix and ddH2O to 20 µl were mixed 

and incubated at 37OC for 2 hour. This was followed by the addition of 2 units TURBO 

DNase for 15 minutes at 37OC to degrade the DNA template.  
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2.3.1.3 RNA purification 

mRNA was purified using a Zymo RNA Clean and Concentrator kit (Zymo Research) 

according to the manufacturer’s instructions. The Zymo RNA Clean and Concentrator 

kit protocol is based on nucleic acid purification by silica adsorption (Boom et al., 

1990). RNA was bound to the Zymo-Spin column silica membrane under high salt 

conditions with ethanol to aid RNA binding. The RNA-bound column was washed with 

a high salt and ethanol solution to remove enzymes, nucleotides and other 

impurities. mRNA was eluted under low salt conditions. The mRNA concentrations 

were determined by measuring the absorption at 260 nm on a SmartSpecPlus 

spectrophotometer (Bio-Rad). Quality control was carried out by visually assessing 

the presence of RNA by agarose gel electrophoresis (Section 2.4.2). RNA was stored 

at –20OC. Information regarding injections and doses are listed throughout the 

results chapters. 
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Construct Description Species 
Accession 

number 
Vector 

Restriction 

enzyme for 

linearisation 

Polymerase  

for mRNA 

synthesis 

Source  Reference 

DN-FGFR1 
Dominant negative 

FGF receptor 1 
Xenopus laevis BC170136 pSP64T EcoRI SP6 Amaya Lab 

(Amaya et al., 

1991) 

GR-Smad2 

Glucocorticoid 

receptor inducible 

Smad2 

Homo sapiens AF027964 pCS107 Asc1 SP6 Chang Lab 

(Chang and 

Harland, 2007; 

M. Howell and 

Hill, 1997) 

GR-tSmad2 

Glucocorticoid 

receptor inducible 

truncated Smad2 

Homo sapiens AF027964 pCS107 Asc1 SP6 Chang Lab 

(Chang and 

Harland, 2007; 

M. Howell and 

Hill, 1997) 

Hp53 Human p53 Homo sapiens AF307851 pSP64TS Sac1 SP6 Vize lab 
(Wallingford et 

al., 1997) 

Hp53thr280 

Human p53 

containing Arginine 

280 to Threonine 

mutation 

Homo sapiens 
Based on 

AF307851 
pSP64TS Sac1 SP6 

Created by site 

directed 

mutagenesis 

(Wallingford et 

al., 1997) 
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mCherry 
His6-NLL-EcMetRS-

mCherry fusion 

Synthetic 

construct 
KC608723 pCS2+ Not1 SP6 Mayor lab 

(Shaner et al., 

2004) 

p53-ATG-

HA 

Xenopus laevis p53 

starting from ATG, 

containing HA tag 

Xenopus laevis BC084064 pCS2+ Not1 SP6 

Modified from 

Source 

Bioscience 

(Cordenonsi et 

al., 2007) 

p53-5’U92-

HA 

Xenopus laevis p53 

including 92 bases 

of 5’UTR, containing 

HA tag 

Xenopus laevis BC084064 pCS2+ Not1 SP6 

Modified from 

Source 

Bioscience 

(Cordenonsi et 

al., 2007) 

VCS2 

C-terminal half of 

Venus conjugated to 

Smad2  

Venus originates 

from Aequorea 

victoria, Smad2 

is Xenopus laevis 

Smad4 

AB385155 

Venus 

AB512479 

pCS2+ Not1 SP6 Smith Lab 

(Nagai et al., 

2002; Saka et al., 

2008, 2007) 

VNS4 

C-terminal half of 

Venus conjugated to 

Smad4 

Venus originates 

from Aequorea 

victoria, Smad4 

is Homo sapiens 

Smad4 

AB385155 

Venus 

AB512479 

pCS2+ Not1 SP6 Smith Lab 

(Nagai et al., 

2002; Saka et al., 

2008, 2007) 

Table 2:2. Templates for mRNA synthesis 



 55  

2.3.2 Morpholino Oligonucleotides 

Antisense Morpholino Oligonucleotides (MOs), see Table 2:3, were obtained from 

Gene Tools and were used to downregulate gene expression (Dash et al., 1987; 

Heasman, 2002). MOs were reconstituted in  5 mM HEPES, pH 7.6 (Sigma) to 12.5 

µg/µl, except for the control MO to 40 µg/µl. Working stocks were prepared 

incorporating a 10% mix of rhodamine-dextran and dextran-biotin. Information 

regarding injections and doses are listed throughout the results chapters. All MO 

stocks were stored at -20OC.  

Name Action Sequence Reference 

Control 

MO 
Control GTAACGATTTGAGTTTGGTGTTCAT 

(Haworth et 

al., 2008) 

p53 

MO1 

Translation blocking. 

Binds at ATG site.  
GAACCTTCCTCTGAGACCGGCATGG 

(Cordenonsi 

et al., 2003) 

p53 

MO2 

Translation blocking. 

Binds at ATG site. 
GCCGGTCTCAGAGGAAGGTTCCATT 

(Takebayashi-

Suzuki et al., 

2003) 

p53 

MO3 

Translation blocking. 

Binds 65-40bp 

upstream of ATG 

TTCTATCCTCTCTGCTTCCTCGTGC New design 

p53 MO 

E2I 
Splice blocking AAAGCACAAGAGGGACTCACCGTGC New design 

p53 MO 

E3I 
Splice blocking ATAAGAATGAAAGCACTCACCCTCC New design 

Table 2:3. Morpholino Oligonucleotides 
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2.3.3 Lefty Protein 

Recombinant human Lefty A protein (R&D Systems) was reconstituted at 500 µg/ml 

in 0.2 µM cellulose filter sterilised (Anachem) phosphate buffered saline (PBS; 137 

mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate (Na2HPO4, Fisher)), 1.8 mM 

potassium phosphate (KH2PO4 pH 7, Fisher), pH 7.4, containing 0.1% BSA as a carrier 

protein and immediately aliquoted and stored at -20OC. Working stocks were 

prepared incorporating a 10% mix of rhodamine-dextran and dextran-biotin.  

2.4 Molecular biology techniques 

2.4.1 DNA and RNA purification 

DNA and RNA was purified using a QIAquick PCR purification kit (Qiagen) according 

to the manufacturer’s instructions. The QIAquick PCR purification kit protocol is 

based on nucleic acid purification by silica adsorption (Boom et al., 1990; Cady et al., 

2003). DNA samples were bound to the silica QIAquick membrane under high salt 

conditions. The silica membrane was washed with a high salt and ethanol solution to 

remove enzymes, primers, nucleotides, salts, and other impurities. DNA was eluted 

in a small volume of low salt solution.  

2.4.2 Agarose gel electrophoresis 

A 1% agarose in tris-borate-EDTA (TBE: 89 mM tris, 89 mM Boric acid (Fisher), 2 mM 

EDTA, pH 8.3) gel containing 0.5 µg/ml ethidium bromide (Fluka) was cast in a 

horizontal EM100 Mini Submarine Gel Unit (Electrophoresis). Once set, the cast was 

flooded with TBE. Samples were mixed with 5X DNA loading dye (Fermentas) and 

loaded one sample per well alongside a GeneRuler 1kb plus DNA ladder (Fermentas). 

70V was applied across the gel for 30 minutes using a PowerPac (Bio-Rad) to separate 

the DNA or RNA fragments by size. 
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2.4.3 Bacteria transformation, selection and growth 

Competent cells (silver efficiency ≥108 cfu/ μg, Bioline) were thawed on ice and 0.5 µg 

of circular plasmid DNA (see Table 2:2 and Table 2:4 for specific plasmids) was added 

at a volume of ≤10% plasmid. The competent cell-plasmid mix was incubated on ice 

for 30 minutes then subjected to heat shock at 42OC for 30 seconds before being 

replaced on ice for a further 5 minutes. The solution was made up to 10X the volume 

using room temperature (RT) super optimal broth with catabolite repression (SOC) 

medium (2% bacto-tryptone (BD Bioscience), 0.5% yeast extract (Formedium), 10 

mM NaCl, 2.5 mM KCL, 10 mM MgSO4, 20 mM glucose (Sigma)) then shaken 

vigorously for 60 minutes at 37OC. 100 µl of the transformation mix was spread onto 

a pre-warmed Luria broth agar plate (1% bacto-tryptone, 0.5% yeast extract, 171 mM 

NaCl, 1.5% bacto-agar (BD Bioscience)) supplemented with 1 µg/ml ampicillin (Sigma) 

and incubated at 37OC until visible colonies formed. Colonies were picked using a 

sterile pipette tip and transferred into Luria broth (1% tryptone, 0.5% yeast extract, 

171 mM NaCl) supplemented with 1 µg/ml ampicillin and vigorously shaken 

overnight at 37OC. Luria broth and Luria broth agar were autoclaved at 121OC for 20 

minutes prior to the addition of the ampicillin. 

2.4.4 Plasmid extraction 

Plasmids were extracted using a QIAprep miniprep kit (Qiagen), according to the 

manufacturer’s instructions. The QIAprep miniprep kit procedure was based on 

alkaline lysis of bacterial culture and selective alkaline denaturation of chromosomal 

DNA (Birnboim and Doly, 1979). Upon lysate neutralisation, chromosomal DNA forms 

insoluble aggregates (Birnboim and Doly, 1979). Soluble DNA was bound to the silica 

QIAprep membrane under high salt conditions. The DNA-bound QIAprep membrane 

was washed to remove proteins, salts and other impruities, then plasmid DNA was 

eluted in a low salt buffer. Plasmid concentrations were determined by UV 

spectrophotometry on a SmartSpecPlus (Bio-Rad) by measuring the absorption at 

260 nm. Plasmids were sequenced (Eurofins) to verify the presence and identity of 

the gene of interest. 
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2.5 Site-directed mutagenesis of human p53 

To create a dominant negative (DN) p53 construct (hp53thr280), previously reported 

by Wallingford et al. (Wallingford et al., 1997), a polymerase chain reaction (PCR)-

based technique was utilised to create a single nucleotide modification. Codon 280 

was altered from AGA to ACA, resulting in amino acid 280 Arginine (Arg, R) to 

Threonine (Thr, T) change. Arg280 forms the most important major grove contact 

with DNA, thus hp53thr280 has compromised DNA binding (Wright et al., 2002). p53 

forms a tetramer (Friedman et al., 1993; Stenger et al., 1992) so theoretically one 

hp53thr280 protein can associate with up to three wild type p53 protein molecules, 

compromising the function of the tetramer, thus acting in a dominant negative 

manner.  

Human p53 (hp53) (GenBank: AF307851) in pSP64TS was a gift from the Vize Lab. 

The following reagents were  mixed: 1 µg hp53-pSP64TS, 1X Phusion high fidelity 

Buffer (Thermo Scientific), 1 mM deoxynucleotides (dNTP’s, Invitrogen), 0.5 µM 

forward primer 5’- 

GTGTTTGTGCCTGTCCTGGGACAGACCGGCGCACAGAGGAAGAGAATCTCCGC -3’ 

(Invitrogen), 0.5 µM reverse primer  5’- 

GCGGAGATTCTCTTCCTCTGTGCGCCGGTCTGTCCCAGGACAGGCACAAACAC -3’ 

(Invitrogen), 1 unit Phusion High Fidelity DNA Polymerase (Thermo Scientific) and 

double distilled water (ddH2O) to 25 µl. Using a MJ Mini Thermal Cycler PCR machine 

(Bio-Rad) the reaction was subject to the following cycling conditions: 

98OC for 1 minute 

 98OC for 1 minute 

 62OC for 1 minute  30 cycles 

 72Oc for 5½ minutes 

72Oc for 10 minutes  

Following PCR, 20 units of the restriction enzyme Dpn1 (NEB) was added to digest 

the original template DNA, as Dpn1 only cleaves at methylated sites. The reaction 
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was incubated at 37OC for 2 hours, followed by incubation at 80OC for 15 minutes to 

inactivate Dpn1. The product of the PCR reaction was transformed and expanded 

(Section 2.4.3). Plasmid clones were sequenced to ensure that the plasmid selected 

for further use was correct. A verified purified plasmid was then used as a template 

to produce hp53thr280 mRNA for embryonic microinjection (Section 2.4.4 and 2.3.1). 

2.6 Preparing Xenopus laevis p53 constructs 

Xenopus laevis p53 (p53) was PCR amplified in two separate reactions to produce 

two different constructs (p53-ATG-HA and p53-92UTR-HA) from pCMVSport6-xp53 

(Source Bioscience, accession number BC084064). A common 3’ primer 

GCGGAATTCTCAAGCGTAATCTGGCACATCGTATGGGTATTCCGAGTCGGGCTGTT was 

used to introduce a human influenza hemagglutinin (HA) tag sequence at the 

carboxy-terminus. One 5’ primer, sequence 

CGCGGATCCATGGAACCTTCCTCTGAGACC, began at the p53 ATG start site, whereas 

the other, sequence CGCGGATCCACACGAGGAAGCAGAGAGGA, incorporated 92 

bases from the 5’ untranslated region (5′ UTR). Primers were purchased from 

Invitrogen. The following reagents were mixed: 1X Q5 high fidelity master mix (NEB), 

0.5 µM 3’ primer, 0.5 µM 5’ primer, 1 µg pCMVSport6-xp53 and ddH20 to 50 µl and 

subjected to the following cycling conditions using a PeqStar Thermocycler (Peqlab): 

98OC for 30 minutes 

 98OC for 30 seconds 

 40OC for 30 seconds  2 cycles 

 72Oc for 80 seconds 

98OC for 30 seconds 

  58OC for 30 seconds  33 cycles 

  72Oc for 80 seconds 

72Oc for 10 minutes  
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PCR products were purified using a QIAquick PCR purification kit (Section 2.4.1). 

Purified p53 amplicons were cleaved with BamHI (NEB) and EcoRI (NEB) restriction 

enzymes, whose restriction sites were incorporated into the amplification primers. 1 

µg DNA, 1X buffer 4 (NEB), 40 units BamHI, 40 units EcoRI and ddH2O to 30 µl were 

mixed and incubated for 3 hours at 37OC. pCS2+ vector was also subject to the same 

restriction enzyme digestion, followed by the addition of 1X Antarctic Phosphatase 

reaction buffer (NEB) and 5 units of Antarctic Phosphatase (NEB) to remove the 5’ 

phosphate from the DNA to facilitate the subsequent ligation reaction. DNA 

fragments were separated by size using agarose gel electrophoresis (Section 2.4.2). 

DNA fragments were visualised using an UVIpure transilluminator (UVItech) and the 

desired fragment (~1.2kb for p53 products, ~4kb for pCS2+), measured by size against 

the DNA ladder, was excised and purified using QIAquick gel extraction kit according 

to the manufacturer’s instructions. The QIAquick gel extraction kit protocol is based 

on silica membrane bound nucleic acid purification (Boom et al., 1990; Cady et al., 

2003). Excised gel slices were dissolved in high salt solution by incubating at 50OC, 

aided by vortexing. DNA was adsorbed onto the silica QIAquick membrane under high 

salt conditions. The membrane was washed using an ethanol containing buffer to 

remove enzymes, salts, ethidium bromide, agarose, dyes and other impurities. DNA 

was eluted in a small volume of low salt solution. 

p53 DNA fragments were ligated into pCS2+ using the Quick Ligation kit (NEB) 

according to manufacturer’s instructions - 50 ng pCS2+, 45 ng p53 products, 1X Quick 

Ligation Buffer, 200 units Quick T4 DNA Ligase and ddH2O to 10 µl  were mixed and 

incubated at RT for 5 minutes, then chilled on ice. Circular plasmid numbers were 

amplified using bacterial culture then used as templates for the production of mRNA 

for embryonic microinjections (Section 2.4.3, 2.4.4 and 2.3.1). 

2.7 Whole mount in situ hybridisation 

Whole mount in situ hybridisation (WMISH) was used to detect the expression and 

localisation of specific mRNAs within an embryo. WMISH was adapted from 

procedures outlined in Sive et al. (Sive et al., 2000). 
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2.7.1 Riboprobe template preparation 

The following reagents were mixed and incubated at 37OC for one hour to linearise 

DNA: 1 µg circular plasmid DNA, 10 units restriction enzyme (various manufacturers), 

1X restriction enzyme specific buffer (NEB), and ddH2O to 20μl. An appropriate 

restriction enzyme (Table 2:4) was used to cut each plasmid approximately 500-

1000bp from the reverse promoter in the plasmid. Purification of linearised DNA was 

carried out using QIAquick PCR purification kit (Section 2.4.1). 

2.7.2 Riboprobe synthesis and purification 

Riboprobes were labelled with either digoxigenin labelling mix (Roche) or fluorescein 

labelling mix (Roche) and transcribed using an appropriate polymerase (Table 2:4), 

either T7 (Roche) or SP6 (NEB). 200ng linearised DNA, 1X digoxigenin or fluorescein 

labelling mix (Roche), 1x transcription buffer containing DTT (Invitrogen), 2 U/μl RNA 

polymerase, 1 U/μl Ribolock RNase inhibitor (Thermo Scientific) and ddH2O to 20μl 

were mixed and incubated at 37OC for 2 hours. Riboprobes were purified using 

ProbeQuantTM G-50 micro columns (GE healthcare) according to the manufacturer’s 

instructions. ProbeQuantTM G-50 micro columns contain Sephadex, which is a 

trademarked cross-linked dextran gel, and works by filtration chromatography 

(Porath and Flodin, 1959). Riboprobe samples were loaded into the centre of a G-50 

spin column and centrifugation was used to purify the riboprobes. Quality control of 

riboprobe production and an estimation of the quantity riboprobe was carried out 

by visually assessing the riboprobe by agarose gel electrophoresis (Section2.4.2). 

Riboprobes were stored at –20OC. 
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Gene 

symbol 
Gene name Used to visualise Species Vector 

Restriction 

enzyme  
Polymerase   Reference 

hba3 hemoglobin alpha 3 subunit Blood island 
Xenopus 

tropicalis 
pCS107 Pst1 T7 

(Gilchrist et al., 

2004) 

isl1 ISL LIM homeobox 1 Cardiac progenitors 
Xenopus 

laevis 
pCS2 EcoRI T7 

(Brade et al., 

2007) 

myl7 myosin light chain kinase 7 
Differentiated cardiac 

tissue 

Xenopus 

laevis 
pGemTeasy Sal1 T7 

(Chambers et 

al., 1994) 

atp1a1 
ATPase, Na+/K+ transporting, 

alpha 1 polypeptide 
Pronephros (kidney) 

Xenopus 

laevis 

pCMV-

Sport6 
EcoRI T7 

(Uochi et al., 

1997) 

nkx2.5 NK2 homeobox 5 Cardiac progenitors 
Xenopus 

laevis 
GEM3Z PvuII T7 

(Tonissen et al., 

1994) 

mpo myeloperoxidase 
Myeloid cells, anterior 

blood island 

Xenopus 

laevis 
pSport1 PvuII SP6 

(Smith et al., 

2002) 

tal1 
T-cell acute lymphocytic 

leukemia 1 

Blood island, 

hemangioblast 

Xenopus 

laevis 
pGEM7 Xmn1 SP6 

(Ciau-Uitz et al., 

2000) 

Table 2:4. Templates for riboprobe synthesis  
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2.7.3 Collecting and fixing embryos  

Embryos at the desired stage of development were fixed in MEMFA (0.1M Mops 

(Fisher) pH 7.4, 2 mM EDTA, 1 mM MgSO4, 3.7% formaldehyde (Sigma)) by rolling for 

1 hour at RT in 5 ml Wheaton glass vials (Sigma). The embryos were gradually 

dehydrated by a dilution series into 100% ethanol (Sigma) and stored at -20oC. For 

sample collected prior to hatching, vitelline membrane were manually peeled prior 

to fixation.  

2.7.4 Riboprobe hybridisation and washing 

Embryos were rehydrated using 5 minute washes in an ethanol dilution series to 1X 

Tris buffered saline with Tween 20 (TBSTw: 5 mM Tris-Base (Fisher) pH 7.4, 20 mM 

NaCl, 0.1% Tween 20 (Sigma P1379)). Embryos were permeabilised using 10 μg/ml 

Proteinase K (Roche) in TBSTw for 15 minutes, rocking, followed by several TBSTw 

washes. Samples were refixed in MEMFA for 20 minutes then washed several times 

in TBSTw. Embryos were incubated in hybridisation buffer (50% formamide, 

redistilled (Sigma), 5X SSC (saline-sodium citrate buffer 1X: 15 mM NaCl, 150 mM 

sodium citrate (Fisher), pH 7), 1 mg/ml Torula RNA (Type IX, Sigma), 100 μg/ml 

heparin (Sigma), 1X Denharts solution (0.02% BSA, 0.02% Polyvinylpyrrolidone 

(Sigma), 0.02% Ficoll 400), 0.1% Tween 20 (Sigma), 0.1% CHAPS (Sigma)) for 10 

minutes at 60OC, moving, for prehybridisation. Hybridisation buffer was replaced and 

embryos incubated at 60OC for 4-6 hours subsequent to replacing with fresh 

hybridisation buffer containing 0.5 μg/ml of labelled riboprobe and hybridised 

overnight at 60OC. For fluorescein-labelled riboprobes, embryos were kept in the 

dark until the completion of the staining stage of the WMISH protocol. 

Following overnight riboprobe hybridisation, the hybridisation mix containing the 

riboprobe was removed and kept for future use, and embryos were incubated in pre-

warmed 75% formamide, 25% 2X SSC 0.1% CHAPS (Fisher) for 10 minutes at 60OC. 

Embryos were washed three times in warm 2X SSC 0.1% CHAPS for 20 minutes, 

moving at 60OC followed by two washes in pre-warmed 0.2X SSC with 0.1% CHAPS 
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for 30 minutes per wash moving at 60OC. 0.2X SSC 0.1% CHAPS was gradually diluted 

to MABT (100 mM maleic acid (Sigma), 150 mM NaCl, 0.1% Triton (Fisher), pH 7.5) 

and embryos were rinsed in MABT for 10 minutes at RT. 

2.7.5 Antibody incubation and washing 

MABT was replaced with blocking reagent (MABT containing 1% blocking reagent 

(Roche), 10% heat-inactivated new-born calf serum (Sigma)) and rocked for one hour 

at RT before being replaced with blocking reagent containing a 1:2500 dilution of 

anti-digoxigenin (Roche) or 1:10000 anti-fluorescein antibody conjugated to Alkaline 

Phosphatase (Roche). Samples were left moving overnight at 4OC. Following antibody 

incubation, embryos were rinsed in MABT prior to five 1 hour washes in MABT, with 

constant movement, at RT.   

2.7.6 Stain development 

Embryos were rinsed in Alkaline Phosphatase Buffer (APB: 100 mM Tris pH 9.5, 50 

mM magnesium chloride (MgCl2, Sigma), 100 mM NaCl, 0.1% Tween 20 (Sigma), 2 

mM lavamisol (Sigma)) then washed in APB for two times 5 minutes, rocking. APB 

was replaced with an appropriate alkaline phosphatase substrate, either neat 

BMPurple (Roche), BCIP (5-bromo-4-chloro-3-indolyl phosphate, Promega) at 1:300 

in APB or Magenta phosphate (Sigma) at 1:150 in APB and left at RT. Staining was 

monitored and when complete stopped by a dilution series to 100% ethanol.  

2.7.7 Double whole mount in situ hybridisation 

Multiple mRNAs can be detected in the same embryo using WMISH. When mRNA 

expression domains were non-overlapping, numerous riboprobes were hybridised 

and developed using one colour reaction. When mRNA expression domains were 

overlapping or adjacent then two differently labelled riboprobes, fluorescein and 

digoxigenin, were co-hybridised (Section 2.7.4). Subsequently, an anti-fluorescence 

or an anti-digoxigenin antibody was incubated (Section 2.7.5) and the WMISH 
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protocol followed until conclusion of stain development (Section 2.7.6). Embryos 

were then treated for 10 minutes at 65OC in MAB containing 10 mM EDTA to 

inactivate Alkaline Phosphatase, dehydrated to 100% ethanol and then rehydrated 

to MABT, re-fixed in MEMFA for 20 minutes, then washed with MABT.  The 

alternative antibody was then incubated (Section 2.7.5) and the WMISH protocol 

followed until the conclusion of stain development with a different Alkaline 

Phosphatase substrate (Section 2.7.6). The order of antibody incubation and Alkaline 

Phosphatase substrate was determined depending upon individual riboprobe 

strength. 

2.8 Immunohistochemistry 

Immunohistochemistry (IHC) utilises conjugated antibodies specifically binding to a 

biological antigen and in the work presented in this thesis, it was used to provide 

spatial information about gene expression in embryos.  The antibodies used are 

peroxidase conjugated, therefore were visualised by a colour-producing reaction. 

2.8.1 Collecting and fixing embryos  

Embryos at the desired stage were fixed in MEMFA by rolling for 1 hour at RT in 5 ml 

Wheaton glass vials, and then dehydrated in an ethanol dilution series to 100% 

ethanol for storage at -20oC.  

2.8.2 Primary antibody incubation 

Embryos were gradually re-hydrated to MABT then blocked for 1 hour in 10% NCS in 

MABT, moving at RT. Subsequently, embryos were incubated overnight at 4OC with 

the appropriate primary antibody diluted to 1:100 in MABT: skeletal muscle marker 

12/101 or notochord marker MZ15. Skeletal muscle marker was deposited to the 

DSHB by Jeremy  Brockes (DSHB product 12/101, (Kintner and Brockes, 1984)). Anti-

Keratin sulphate antibody was deposited to the DSHB by F.M. Watt (DSHB product 

MZ15 (Smith and Watt, 1985)).  
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2.8.3 Secondary antibody incubation 

Embryos were washed five times for 1 hour in MABT and then incubated overnight 

at 4OC with 1:500 Goat anti-Mouse IgG HRP (Merck-Millipore) in MABT, followed by 

five 1 hour MABT washes. 

2.8.4 Stain development 

1 mg/ml of 3β-Diaminobenzidine tetrahydrachloride (DAB, Sigma) in MABT solution 

was prepared by filtering through a 0.2 µM cellulose syringe filter (Anachem) and 

added to embryos for 10 minutes at 4OC before addition of a small volume of 1:1 30% 

hydrogen peroxide (Sigma):MABT and moved at 4OC until stained. Embryos were 

washed with MABT and dehydrated to 100% ethanol.  

2.9 Whole mount in situ hybridisation combined with 

immunohistochemistry 

Following on from the complete WMISH protocol (Section 2.7), embryos can be 

further stained by IHC, starting from primary antibody incubation to completion of 

stain development (Section 2.8.2-2.8.4). 

2.10 Preparing whole mount in situ hybridisation and 

immunohistochemistry processed embryos for analysis and imaging 

2.10.1  Bleaching embryos 

Embryos were rehydrated by a dilution series to MABT.  MABT was replaced with 

bleaching solution (1% hydrogen peroxide 5% Formamide (Fisher), 0.5X SSC) and vials 

were placed on aluminium foil close to a light source until sufficiently bleached (1-2 

hours). Bleached embryos were washed with MABT for 30 minutes and kept at 4OC 

prior to analysis and imaging. 
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2.10.2  Clearing embryos 

After bleaching, where necessary, embryos were made to appear transparent 

(cleared) by gradually diluting to 100% ethanol, then to Murrays Clear (2 volumes 

benzyl benzoate (Sigma): 1 volume benzyl alcohol (Sigma)) for analysis and imaging 

(Sive et al., 2000). 

2.10.3  Visualising lineage trace 

Samples were incubated overnight at 4OC with MABT containing a 1:7000 dilution of 

extraviden AP (Sigma), then rinsed in MABT prior to five 1 hour washes in MABT at 

RT. Fast Red table(s) (Roche) were dissolved in 0.1 M Tris-HCL, pH 8.2, passed through 

a 0.4 µM cellulose syringe filter, and added to embryos to allow colour development. 

Embryos were washed, stored, analysed and imaged in MABT. 

2.11 Reverse transcription polymerase chain reaction (RT-PCR) 

2.11.1  Sample collection 

Embryos at the desired stage were collected into an RNase-free 1.5ml eppendorf 

(Fisher) and excess liquid was removed. For each sample, between 5 and 15 embryos 

were collected by lysing in Solution D ((Chomczynski and Sacchi, 1987); 4M 

Guanidinium thiocyanate (Sigma), 25 mM sodium citrate, 0.1% sarcosyl (Sigma), 

0.1M β-Mercaptoethanol (Sigma), pH 7) and storing at -20OC. 

2.11.2  RNA extraction 

Total cellular RNA extraction was done according to Chomczynski and Sacchi, 1987 

(Chomczynski and Sacchi, 1987). Solution D, 0.1M β-Mercaptoethanol (Sigma), pH 7),  

2 M sodium acetate pH 4 (Sigma), water saturated phenol (Fluka) and chloroform 

(Fisher) were added sequentially and mixed in the ratio 1:0.1:1:0.2. Samples were 

incubated on ice for 20 minutes then centrifuged at 10000xg for 20 minutes. The 
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aqueous phase containing RNA was transferred to a fresh eppendorf and an equal 

volume of chilled isopropanol was added. Samples were incubated at -20OC for one 

hour then centrifuged at 10000xg for 20 minutes to pellet the RNA. The supernatant 

was removed and the RNA pellet washed with 70% ethanol then air-dried before 

being re-suspended in 25 µl ddH2O. The RNA concentration was determined by 

spectrophotometry by measuring the absorption at 260nm. RNA was stored at -20OC. 

2.11.3  cDNA synthesis 

1 µg RNA, 0.1 µg/µl random primers (Invitrogen), 0.5 mM dNTP and ddH2O to 12 µl 

were mixed and heated to 65OC for 5 minutes then immediately chilled on ice. 1X 

first strand buffer (Invitrogen), 100 mM dithiothreitol (DTT, Invitrogen) and 20 units 

Ribolock were subsequently added and incubated at 37OC for 2 minutes. Following 

this, 200 units of RevertAid RT (Thermo scientific) were added to all samples except 

for the negative control and incubated at RT for 10 minutes, 37OC for 1 hour, then 

70OC for 15 minutes. 

2.11.4  Polymerase chain reaction 

Primers were designed using Primer3Plus software (www.primer3plus.com) and 

span intron-exon boundaries, thus ensuring no false positive signal arises due to 

genomic DNA contamination. Primers were sourced from Invitrogen and re-

suspended in ddH2O to 0.1 mM. Primer sequence and cycling conditions are 

described in Table 2:5 and were optimised allowing for each product amplification to 

fall within the linear range. To each PCR reaction, complementary DNA, 0.4 µM 

forward primer, 0.4 µM reverse primer, 1X MyTaq red reaction buffer (containing 5 

mM dNTPs, 15 mM MgCL2, (Bioline)), 0.5 units KAPA polymerase (KAPA biosystems) 

and ddH2O to 25 µl were mixed. PCR was carried out on PeqStar Thermocycler 

(Peqlab) using the following cycling conditions (see Table 2:5 for specific ‘n’ and ‘x’ 

values): 

95OC for 3 minutes 
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 95OC for 30 seconds 

 nOC for 30 seconds  x cycles 

 72Oc for 30 seconds 

72Oc for 10 minutes 

PCR products were analysed by agarose gel electrophoresis (Section 2.4.2) 

Gene 

symbol 
Gene name PCR primer sequence 
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gsc goosecoid GGATTTTATAACCGGACTGTGG 

TGTAAGGGAGCATCTGGTGAG 

240 28 34 30 

odc1 ornithine 

decarboxylase 1 

GCCATTGTGAAGACTCTCTCCATT 

TTCGGGTGATTCCTTGCCAC 

220 58 26 30 

t brachyury CTGGGATGTTGCCAATGAGT 

GATGAAAGCCTGGAATGTGC 

283 58 32 30 

Table 2:5 PCR primers 
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2.12 Western Blot 

2.12.1  Sample collection  

Five whole embryos per experimental condition were collected into pre-labelled 1.5 

ml eppendorf tubes. Excess media was removed and embryos were snap frozen on 

dry ice and stored at -20OC. 

2.12.2  Sample preparation 

Embryos were thawed on ice then homogenised by pipetting in 10 µl per embryo of 

1X RIPA buffer (5X stock kept at 4OC: 150 mM NaCl, 1% NP40 (Sigma), 0.5% sodium 

deoxycholate (Sigma), 0.1% sodium dodecyl sulfate (SDS, Sigma), 50 mM Tris-HCL pH 

8) containing 1% protease inhibitor cocktail (P8340 Sigma; 104 mM AEBSF, 80 μM 

Aprotinin, 4 mM Bestatin, 1.4 mM E-64, 2 mM Leupeptin and 1.5 mM Pepstatin A) 

and 1% phosphatase inhibitor cocktail 3 (P0044 Sigma; Cantharidin, p-

Bromolevamisole oxalate and Calyculin A). The protease inhibitor cocktail inhibits 

serine, cysteine and acid proteases as well as aminopeptidases and was used to 

prevent protein degradation by endogenous proteolytic enzymes released from 

subcellular compartments after cell lysis. The phosphatase inhibitor cocktail has been 

optimised to prevent alkaline and serine-threonine phosphatases from modifying 

proteins, thus was important for the detection of phosphorylated proteins. Samples 

were centrifuged at 18000xg for 20 minutes then the supernatant was collected. An 

equal volume of 2X blue gel loading buffer (National Diagnostics) was added to the 

supernatant and mixed before incubating at 100OC for 10 minutes to denature the 

proteins. Samples were centrifuged at 18000xg for 5 minutes before loading 10 µl 

per sample per well onto a SDS-polyacrylamide gel. 
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2.12.3  SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-polyacrylamide gels were prepared fresh and were 0.75 mm thick consisting of 

5 cm of resolving gel (375 mM Tris pH 8.8, 10% Acrylamide (National diagnostics), 

0.1% sodium dodecyl sulphate (SDS, 0.05% ammonium persulfate (APS, Fisher), 0.5% 

Tetramethylethylenediamine (TEMED, Bio-Rad) with 2 cm of stacking gel (125 mM 

Tris pH 6.8, 5% Acrylamide, 0.1% SDS, 0.1% TEMED) indented with loading wells 

created by Teflon combs (Bio-Rad). 10 µl of each sample, or 15 µl of Spectra 

Multicolor Broad Range Protein Ladder (Ladder, Fermentas), were loaded per lane 

and 5 µl of 2X blue gel loading buffer was loaded into any unused lanes. Gel 

electrophoresis was carried out at 100V for 10 minutes followed by 200V for 60-120 

minutes in tris-glycine running buffer (25 mM Tris base, 192 mM Glycine, 0.1% SDS, 

pH 8.3) using a PowerPac. 

2.12.4  Protein transfer 

Following SDS-PAGE, gels were soaked in tris-glycine transfer buffer (48 mM Tris-

base, 39 mM Glycine, pH 8.8) for 15 minutes to equilibrate them. Polyvinylidene 

fluoride (PVDF) membranes (Immobilon-P, Merck-Millipore) were prepared by 

soaking in pure methanol (Sigma) for 15 seconds then equilibrating in tris-glycine 

transfer buffer. Gel and membrane were held in close contact between filter paper 

(Fisher) and sponge pads (Bio-Rad) by a cassette (Bio-Rad) in a Mini Trans-Blot cell 

(Bio-Rad) containing tris-glycine transfer buffer and a cooling source.  Transfer of 

proteins from gel to membrane was carried out at 350 mA for 80 minutes using a Bio-

Rad PowerPac. 

2.12.5  Antibody incubation 

Membranes were washed three times in TBSTw and blocked for 1 hour in TBSTw 

containing 5% milk powder (Sigma) or 5% BSA (Sigma), rolling at RT. The desired 

primary antibody was incubated in TBSTw containing 5% milk powder or BSA 

overnight at 4OC, rolling (Table 2:6). Following several washes in TBSTw, consisting of 
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3x5 minutes and 3x15 minutes, rolling at RT, membranes were incubated with the 

appropriate secondary antibody (Table 2:6) in TBSTw containing 5% milk or BSA, 

rolling at RT for 2 hours. Membranes were then washed for 3x5 minutes and 3x15 

minutes in TBSTw, rolling at RT. 



 73  

Antibody name Type Dilution Block Host Size (kDa) Storage Supplier Product 

ERK Primary 1:10000 Milk Rabbit 41, 42 4OC Santa Cruz SC-154 

p-ERK 

(Thr202/Tyr204) 
Primary 1:5000 BSA Rabbit 44, 42 -20OC Cell Signalling 4370S 

Smad2/3 Primary 1:3000 Milk Mouse 58 -20OC BD Bioscience 610843 

p-Smad2 

(ser465/467) 
Primary 1:750 Milk Rabbit  60 -20OC Cell Signalling 3101 

p53  Primary 1:500 Milk Mouse  53 -20OC Abcam Ab16465 [X77] 

HA Primary 1:2000 Milk Rat - -20OC  Roche 
11867423001 

(clone 3F10) 

Rabbit Secondary 1:50000 As primary Goat - 4OC Santa Cruz SC-2004 

Mouse Secondary 1:10000 As primary Goat - 4OC Merck-Millipore AP124P 

Rat Secondary 1:100000 As primary Goat - 4OC Merck-Millipore AP136P 

Table 2:6. Antibodies for Western Blotting 
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2.12.6  Signal detection 

Membranes were coated in SuperSignal West Pico Chemiluminescent Substrate 

(Thermo Scientific) and left for 5 minutes in the light at RT before excess solution was 

removed and membranes were placed between plastic slips. In darkness, 

membranes were exposed to Amersham Hyperfilm ECL (GE Healthcare) for varying 

lengths of time required for visualisation of proteins, often between 1 second to 30 

minutes, and films were developed using a Compact X4 Xograph (Xograph). Protein 

size was determined by reference to the ladder.  

2.12.7  Stripping and re-probing membranes 

Membranes were routinely stripped and re-probed with an antibody to a control 

protein, as a loading control. Membranes were briefly washed in TBSTw then 

incubated in Restore Western Blot Stripping Buffer (Thermo Scientific) for 15 minutes 

at RT, rolling, before further thorough washing in TBSTw. Antibody incubation and 

protein detection steps (Sections 2.12.5 and 2.12.6) were then repeated for the 

alternative antibody of choice. 

2.13 CRISPR/ Cas9 mediated gene editing 

Clustered regularly interspaced short palindromic repeat (CRISPR) technology is a 

recently discovered, powerful tool for genome editing. CRISPR technology adapts and 

exploits a bacterial immune system, aimed against invading viruses and plasmids, 

resulting in site specific DNA cleavage for genome editing (Jinek et al., 2012). Short 

guide RNAs (sgRNA), designed to complement a sequence within a target gene, guide 

Cas9 nuclease to DNA to induce site-specific cleavage. This DNA damage is repaired 

by error-prone non-homologous end joining, often resulting in insertions and 

deletions, disrupting gene function. 
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2.13.1  sgRNA template preparation 

Two techniques were utilised for sgRNA template preparation. For p53 sgRNAs, a 

PCR-based method was used. A 5’ oligonucleotide, containing the p53 target 

sequence, was used in a thermo cycling reaction with a common 3’ oligonucleotide 

creating a double stranded template. Alternatively, for a Tyrosinase control, the 

pDR274 plasmid containing tyrosinase sgRNA was used.  

p53 short guide RNAs were kindly designed by Dr Richard White (The Welcome Trust 

- Sanger Institute). 8 sgRNAs (Table 2:7) were selected for production based on their 

proximity to the start site of the p53 coding region, and their low off-target predicted 

score. The 5’ sgRNA T7-fill-in-oligonucleotides listed in Table 2:7, along with a 

common 3’ oligonucleotide, sequence 

AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGC

TATTTCTAGCTCTAAAAC (Eurofins), were reconstituted to 100 µM in ddH2O.  

The following reagents were mixed to a final volume of 100 µl with ddH20 (Nakayama 

et al., 2014): 1X High Fidelity Buffer (Thermo Scientific), 0.3 mM dNTP, 1  mM Mg2SO4 

(Thermo Scientific), 2 µM 5’ primer, 2 µM 3’ primer, 2 U Phusion High-Fidelity DNA 

Polymerase (Thermo Scientific). The reaction was mixed and subjected to the 

following thermo-cycling conditions using a PeqStar Thermocycler (Peqlab): 

98OC for 5 minutes 

 98OC for 20 seconds 

 58OC for 20 seconds  20 cycles 

 72Oc for 15 seconds 

72Oc for 5 minutes  

Tyrosinase in plasmid pDR274 (pDR274tyr) was from Ira Blitz (Blitz et al 2013). 

pDR274tyr was linearised using Dra1 in the following reaction; 1 µg pDR274tyr, 1X 

Buffer 4 (NEB), 40 units Dra1 (NEB) and ddH2O to 30 µl, incubated at 37OC for 1 hour. 

sgRNA templates were purified using QIAquick PCR purification kit (Section 2.4.1). 
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sgRNA Target sequence Target 

strand 

Exon T7-fill-in-oligonucleotide sequence 

Xt tp53 

sgRNA 1 

AGGAGACCTTCGAGGATTTGTGG + 1 TAATACGACTCACTATAGGGAGACCTTCGAGGATTTGGTTTTAGAGCTAGAAATAGCAAG 

Xt tp53 

sgRNA 2 

GACCCCCTACAGACCGGGACAGG + 2 TAATACGACTCACTATAGGCCCCCTACAGACCGGGACGTTTTAGAGCTAGAAATAGCAAG 

Xt tp53 

sgRNA 3 

GACCTGTCCCGGTCTGTAGGGGG - 2 TAATACGACTCACTATAGGCCTGTCCCGGTCTGTAGGGTTTTAGAGCTAGAAATAGCAAG 

Xt tp53 

sgRNA 4 

AGGTCAGATGGAAAACTTTGCGG + 2 TAATACGACTCACTATAGGGTCAGATGGAAAACTTTGGTTTTAGAGCTAGAAATAGCAAG 

Xt tp53 

sgRNA 5 

GGAGTTTTCAGAGTACCCCCTGG + 3 TAATACGACTCACTATAGGAGTTTTCAGAGTACCCCCGTTTTAGAGCTAGAAATAGCAAG 

Xt tp53 

sgRNA 6 

GAACCGTCATGTCTGGCGCCAGG - 3 TAATACGACTCACTATAGGACCGTCATGTCTGGCGCCGTTTTAGAGCTAATAGCAAG 

Xt tp53 

sgRNA 7 

GACATGACGGTTCTGCAGGAAGG + 3 TAATACGACTCACTATAGGCATGACGGTTCTGCAGGAGTTTTAGAGCTAGAAATAGCAAG 

Xt tp53 

sgRNA 8 

AGACGAAGTCACGGTGGGCACGG - 3 TAATACGACTCACTATAGGACGAAGTCACGGTGGGCAGTTTTAGAGCTAGAAATAGCAAG 

Table 2:7. CRISPR sgRNAs targeted to Xenopus tropicalis p53 
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2.13.2  In vitro transcription of sgRNA 

sgRNA synthesis was performed using MAXIscript T7 kit (Ambion) according to the 

manufacturer’s instructions. 0.5 µg/µl of PCR based template or 1 µg/µl of plasmid 

based template, 1X transcription buffer, 0.5 mM ATP, 0.5 mM CTP, 0.5 mM GTP, 0.5 

mM UTP, 30 units T7 RNA polymerase and ddH2O to 20 µl were mixed and incubated 

at 37OC for 1 hour, followed by the addition of 2 units TURBO DNase for a further 15 

minutes. 

sgRNA was purified by phenol-chloroform extraction and isopropanol precipitation. 

ddH20 was added to increase the total volume to 180 µl, followed by the sequential 

addition and mixing of 3 M sodium acetate pH 5.2, phenol and chloroform in the ratio 

0.2:0.5:0.5. Samples were incubated on ice for 15 minutes then centrifuged at 

10000xg for 20 minutes. The aqueous phase, containing RNA, was transferred to a 

fresh eppendorf and an equal volume of chilled isopropanol added. Samples were 

incubated at -20OC for one hour, then centrifuged at 10000xg for 20 minutes to pellet 

the RNA. The supernatant was removed and the RNA pellet was washed with 70% 

ethanol, then air-dried before being re-suspended in 20 µl ddH2O. The concentration 

was determined using spectrophotometry by measuring the absorption at 260 nm. 

sgRNAs were stored at -20OC. 

2.13.3  Cas9 protein preparation 

Cas9 protein (PNA Bio) was reconstituted in 50 µl ddH2O containing 20% glycerol 

(PNA bio), to a concentration of 1 mg/ml. Cas9 solution was aliquoted into 5 µl 

measures, for storage at -20OC. 

2.13.4  Genomic DNA PCR amplification 

Genomic DNA was prepared from a single embryo, by homogenising in 50 µl of 50 

mM Tris-HC: pH 8.8, 1 mM EDTA, 0.5% Tween-20, 200 µg/ml proteinase K (Blitz et al., 

2013). The homogenisation reaction was incubated overnight at 56OC, followed by 
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10 minutes at 95OC to inactivate proteinase K. 1 µl was added directly to the following 

PCR amplification: 1X Phusion high fidelity buffer, 0.2 mM dNTP’s, 0.4 µM forward 

primer (as appropriate, see below), 0.4 µM reverse primer (as appropriate, see 

below), 1 unit Phusion High Fidelity DNA Polymerase and ddH2O to 25 µl. The reaction 

was subject to the following multistep thermo-cycling conditions using a PeqStar 

Thermocycler: 

98OC for 5 minutes 

 98OC for 20 seconds 

 65OC for 20 seconds  13 cycles 

 72Oc for 30 seconds 

  98OC for 20 seconds 

  XOC for 20 seconds    

  72Oc for 30 seconds 

   98OC for 20 seconds 

   65OC for 20 seconds  25 cycles 

   72Oc for 30 seconds 

72Oc for 5 minutes  

PCR products were purified using QIAquick PCR purification kit (Section 2.4.1).  

2.13.5  In vitro screen for sgRNA 

An in vitro assay was used to assess the efficiency with which Cas9 is guided to, and 

cuts, a template DNA target. This screening allowed selection of working and efficient 

sgRNAs for in vivo experiments. Genomic DNA was amplified using PCR (Section 

2.13.4) using the forward primer F1; GGGCACAAGCAGTAGCCTAA and reverse primer 

R5; CCAAACACACACAGGTGAGG. The following reagents were mixed and incubated 

at 37OC for 1 hour; 300 ng Cas9, 150 ng sgRNA, 80 ng target DNA, 1X buffer 3 (NEB), 

X = 64OC, 63OC, 62OC, 61OC, 60OC, 

59OC, for one cycle per temperature 
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1X BSA (NEB), ddH2O to 10 µl. 2 units of RNase H (Invitrogen) were added and the 

reaction was incubated at 37OC for a further 15 minutes. 1 µl of stop solution (30% 

glycerol, 1.2% SDS, 250 mM EDTA pH8) was added and incubated at 37OC for 15 

minutes. Cleavage products were separated by agarose gel electrophoreses (Section 

2.4.2).  

2.13.6  In vivo CRISPR application and analysis 

Stocks were mixed to a final concentration of 200-300 pg sgRNA and 1 ng Cas9 and 

were injected into a 1 cell staged, newly fertilised, embryo.   After at least 5 hours of 

development, individual embryos were collected and genomic p53 DNA was 

amplified (Section 2.13.4) using the primers F3; GTCTCCCTGTTGGGTGTTGT, and R5; 

CCAAACACACACAGGTGAGG. PCR products were sent for sequencing (Eurofins) to 

check for successful CRISPR-Cas9 mediated gene disruption. 
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3 Nodal/ Activin signalling is required for 

cardiac specification
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3.1 Introduction 

The Nodal/ Activin subclass of TGF-beta ligands signal via ALK4/5/7 transmembrane 

receptors and intracellular signalling mediators Smad2/3 (Shen, 2007; Shi and 

Massague, 2003). Nodal/Activin –ALK4/5/7 signalling is required for multiple aspects 

of embryogenesis, including mesendoderm induction and patterning, gastrulation 

movements and left-right axis asymmetry (Hill, 2001). Furthermore, Nodal/ Activin 

signalling has been implicated in cardiac specification through numerous whole 

embryo, explant and stem cell models (Cai et al., 2012; Lowe et al., 2001; Parisi et al., 

2003; Reissmann et al., 2001; Reiter et al., 2001; Samuel and Latinkić, 2009; 

Takahashi et al., 2000; Xu et al., 1999, 1998; Yatskievych et al., 1997). See Section 

1.8.1.5 for more detail. Previous experiments have not been designed to distinguish 

the role of Nodal/Activin –ALK4/5/7 signalling in cardiac specification form its 

broader functions in embryonic development, questioning the specificity of the 

Nodal/ Activin signalling requirement in the induction of cardiac cells. In addition, the 

time at which Nodal/Activin –ALK4/5/7 signalling may be required for cardiac 

specification in vivo is largely unknown. Work presented in this chapter investigates 

the requirement and timing for Nodal/Activin –ALK4/5/7 signalling in cardiac 

specification in vivo in Xenopus laevis. 

3.2 Experimental approach 

The desired approach for investigating the role of Nodal/ Activin -ALK4/5/7 signalling 

in cardiac specification was to inhibit the ALK4/5/7 pathway and assess the effects 

on cardiac tissue. Commonly used techniques for investigating the role of signalling 

pathways in Xenopus laevis include antisense morpholino oligonucleotides (MO) and 

injecting the mRNA of signalling components, sometimes genetically manipulated, 

which can be used to alter protein levels and activity. However, these techniques are 

not the most appropriate for this investigation. MOs and mRNAs have to be injected 

into an early cleavage stage embryo, with the effects on protein activity and 

abundance most often acting directly and continuously throughout development. 
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Nodal/ Activin signalling has multiple functions throughout embryogenesis, including 

in mesoderm induction, which precedes and is required for cardiac cell induction 

(Smith et al., 1990; Vliet et al., 2012; Wu and Hill, 2009). Reagents which are injected 

into the early embryo to inhibit ALK4/5/7 signalling have been shown to result in 

aberrant mesoderm development, thus can indirectly affect cardiac specification 

(Luxardi et al., 2010). Therefore, a technique which allowed the time and duration of 

Nodal/ Activin -ALK4/5/7 signalling inhibition to be controlled was required. 

Pharmacological small soluble molecular inhibitors can be added directly to the 

media used for culturing Xenopus laevis embryos at any time point of development, 

to inhibit a particular pathway. Subsequently, the embryos can be removed from the 

inhibitor media, washed, and allowed to continue developing in fresh media, free 

from the inhibitor (Myers et al., 2014). These features allow time-dependent 

inhibition control of Nodal/ Activin -ALK4/5/7 signalling in Xenopus laevis to be 

carried out. Molecular inhibitors of the ALK4/5/7 pathway were therefore selected 

to be used in the work presented here.  

3.3 Small molecular drugs SB505124 and A-83-01 as suitable ALK4/5/7 

inhibitors 

A selection of ALK4/5/7 inhibitors, added to Xenopus laevis embryos shortly after 

fertilisation and incubated continuously throughout development, were tested for 

their ability to reproduce phenotypes consistent with previously reported ALK4/5/7 

signalling pathway inhibition (Table 3:1). Previous reports describe embryos 

presenting a truncated anterior-posterior axis accompanied by loss of identifiable 

landmark features, such as the cement gland (an anterior-dorsal mucus-secreting 

structure which attaches newly hatched embryos to a support before proficient 

swimming and feeding is achieved) and eyes, upon ALK4/5/7 signalling inhibition 

using soluble inhibitors or a dominant negative Activin receptor (Hemmati-Brivanlou 

and Melton, 1992; Luxardi et al., 2010; Skirkanich et al., 2011). This is consistent with 

what is expected of ALK4/5/7-Smad2 pathway inhibition, due to its documented role 

in mesoderm induction (reviewed in Kimelman, 2006). The selection of ALK4/5/7 
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inhibitors were tested at a range of concentrations from 20 to 300 µM. The range of 

concentrations was in part guided by previous studies utilising ALK4/5/7 inhibitors in 

Xenopus laevis (Luxardi et al., 2010; Samuel and Latinkić, 2009; Skirkanich et al., 

2011) and zebrafish (Hagos et al., 2007; Hagos and Dougan, 2007; Lenhart et al., 

2013). Concentrations of 75 – 200 µM of SB505124, A-83-01 and SB431542 have 

been used previously in Xenopus laevis work (Ho et al., 2006; Luxardi et al., 2010; 

Samuel and Latinkić, 2009; Skirkanich et al., 2011), with concentrations of 0.1 – 100 

µM reportedly used in mouse and human cell culture (DaCosta Byfield et al., 2004; 

Inman et al., 2002; Tojo et al., 2005). For comparison, 30-75 µM of SB505124 has 

reportedly been used for ALK4/5/7 inhibition in zebrafish (Hagos et al., 2007; Hagos 

and Dougan, 2007; Lenhart et al., 2013).  

Two structurally distinct inhibitors, SB505124 (SB) and A-83-01 (A83) (Figure 3:1), 

were selected for further testing and use from the range of ALK4/5/7 inhibitors 

tested. This was due to their ability to consistently reproduce phenotypes 

comparable with previously documented cases of ALK4/5/7 signalling inhibition. 

When optimum concentrations of SB505124 and A-83-01 were added to Xenopus 

laevis embryos shortly after fertilisation, no axis elongation or identifiable landmark 

embryonic features were observed by the tadpole stage. SB505124 and A-83-01 bind 

to, and inhibit, the intracellular serine-threonine kinase domain of the TGF-beta type 

1 receptors ALK4/5/7. SB505124 and A-83-01 therefore prevent the phosphorylation 

of Smad2, thus inhibiting further signal transduction. SB505124 and A-83-01 have 

been reported to only weakly affect ALK1/2/3/6 and Mitogen-activated protein 

kinases pathways (DaCosta Byfield et al., 2004; Tojo et al., 2005; Vogt et al., 2011). 

The IC50 for SB505124 has been previously determined as 129 nM for ALK4, and 47 

nM for ALK5, in an in vitro cell culture system (DaCosta Byfield et al., 2004). The IC50 

for A-83-01 has been reported as 45 nM, 12 nM and 7.5 nM for ALK4, 5 and 7 

respectively (Tojo et al., 2005). Although these IC50 values are up to 3 orders of 

magnitude lower than the chosen inhibitor concentrations used throughout the work 

presented here, they were determined in vitro in cell culture and therefore they may 
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not be directly applicable to in vivo settings and in particular to the Xenopus laevis 

embryo, which contains fatty yolk potentially capable of sequestering the inhibitors.  



 85  

Inhibitor Concentrations 

tested (µM) 

Phenotype observations at stage 32-36 

 

SB505124 20-300 Truncated anterior-posterior axis in a dose-dependent 

manner accompanied by loss of identifiable landmark 

features, such as the cement gland and eyes, at higher 

concentrations. 

A-83-01 20-400 Truncated anterior-posterior axis in a dose-dependent 

manner accompanied by loss of identifiable landmark 

features, such as the cement gland and eyes, at higher 

concentrations. 

SB431542 150-300 Truncated anterior-posterior axis in a dose-dependent 

manner but only at the highest concentrations tested. 

Table 3:1. ALK4/5/7 inhibitors tested 

 

 

 

Figure 3:1. Chemical structures ALK4/5/7 inhibitors SB505124 and A-83-01 

(A) Chemical structure of SB505124. (B) Chemical structure of A-83-01. (www.tocris.com). 

 

http://www.tocris.com/
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3.4 SB505124 and A-83-01 adversely affect normal embryonic 

development in a dose-dependent manner 

The optimum working concentration of the ALK4/5/7 inhibitors SB505124 and A-83-

01 was determined by testing the effectiveness of the inhibitors at a range of 

concentrations from 20 µM to 300 µM. The ALK4/5/7 inhibitors were added to the 

Xenopus laevis embryos at the 2 cell stage and incubated continuously until the 

tadpole stage. Embryos were staged by untreated sibling controls, which presented 

a normal phenotype (Figure 3:2 A, B, M, N). The results show that 20 µM of ALK4/5/7 

inhibitor treatment had a mild or no effect on the overall embryonic phenotype 

(Figure 3:2 C, D, O, P). When treated with inhibitor concentrations of 50 µM and 100 

µM, a change in embryonic phenotype was observed, compared to the controls. A 

truncated anterior-posterior axis and a dose-dependent loss in distinguishable 

embryonic features, such as the cement gland and eyes, was evident at the tadpole 

stage (Figure 3:2 E-H, Q-T). These results show that A-83-01 appears to be more 

potent than SB505124 at lower concentrations, but there is little difference in the 

effects of these inhibitors on the whole embryo phenotype at concentrations above 

100 µM. At higher concentrations of 200 µM and 300 µM, tadpoles lacked axial and 

landmark embryonic features, with little difference observed between the two 

concentrations (Figure 3:2 I-L, U-X). Throughout all experiments at all concentrations 

tested, scarce embryonic death was observed, suggesting that toxic levels of the 

ALK4/5/7 inhibitors were not reached. An optimum concentration of 200 µM of 

ALK4/5/7 inhibitors SB505124 and A-83-01 was selected for use in further 

investigations. This was due to the ability of a concentration of 200 µM to 

consistently result in tadpoles displaying a truncated anterior-posterior axis lacking 

identifiable tail, cement gland and eyes, thus indicating robust inhibition of the 

ALK4/5/7 signalling pathway. The concentration of 200 µM of ALK4/5/7 inhibitors is 

similar to concentrations of SB505124 and A-83-01 previously used in published 

Xenopus laevis research (Ho et al., 2006; Luxardi et al., 2010; Samuel and Latinkić, 

2009; Skirkanich et al., 2011), but slightly higher than concentrations of 30-75 µM 

used in zebrafish work (Hagos et al., 2007; Hagos and Dougan, 2007; Lenhart et al., 
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2013), presumably due to differences in Xenopus laevis and zebrafish embryos. The 

concentration of 200 µM of ALK4/5/7 inhibitors selected is higher than 

concentrations of 0.1 – 100 µM used in mouse and human cell culture (DaCosta 

Byfield et al., 2004; Inman et al., 2002; Tojo et al., 2005), but as previously discussed, 

an in vitro situation does not necessarily accurately reflect the in vivo scenario in 

Xenopus laevis, due to factors such as potential sequestering of inhibitors.  

Comparison between repeated experiments throughout all investigations for this 

work allowed the observation that there was a difference in the potency of the 

ALK4/5/7 inhibitors on different batches of embryos, and even between embryos 

within the same batch. Additionally, differences were observed between different 

batches of inhibitors. Treated embryos presented the same phenotypic features, but 

the efficacy of a given drug treatment varied. For example, within a treatment regime 

causing a truncated anterior-posterior axis, some embryos presented a shorter axis 

compared with others subjected to the same treatment. The range of different 

phenotypes observed was narrow, and was within an acceptable limit for these 

investigations. In order to control for the variation in the efficacy of the drugs, each 

experiment included a positive control consisting of embryos that were treated from 

the 2 cell stage continuously with the ALK4/5/7 inhibitors. In addition, experiments 

were typically performed using both inhibitors independently to ensure consistent 

results. Throughout this results chapter the most representative images of ALK4/5/7 

inhibition treatments are shown, although more and less severely affected 

embryonic phenotypes can be observed in the group images, permitting the range of 

phenotypes to be appreciated.  
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Figure 3:2. ALK4/5/7 inhibitors adversely affect normal embryonic development in a dose-

dependent manner 

Embryos were treated continuously from the 2 cell stage until the tadpole stage with (A, B, 

M, N) DMSO or increasing concentrations of the ALK4/5/7 inhibitors (C-L) SB505124 or (O-X) 

A-83-01, as displayed on the left. Representative images from at least 4 biological replicas 

per inhibitor. All individual embryo images are a lateral view orientated anterior left, dorsal 

up. Scale bar represents 1 mm. SB505124 column – DMSO n=81, 20 µM n=62, 50 µM n=52, 

100 µM n=112, 200 µM n=116, 300 µM n=63. A-83-01 column – DMSO n=84, 20 µM n=59, 

50 µM n=80, 100 µM n=113, 200 µM n=107, 300 µM n=58. 
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3.5 Activation and nuclear localisation of the ALK4/5/7 downstream signal 

transducer Smad2 is inhibited by SB505124 and A-83-01 

To confirm that the ALK4/5/7 inhibitors SB505124 and A-83-01 were inhibiting 

Smad2 activation and thus preventing Nodal/ Activin signal transduction, the 

phosphorylation state of Smad2 was examined. Smad2 is phosphorylated by 

ALK4/5/7 in response to external ligand stimulation and is required for Nodal/ Activin 

signal propagation (Shi and Massague, 2003). Previously, it has been shown by 

immunoprecipitation of protein samples from approximately 100 embryos followed 

by western blot analysis, that phosphorylated-Smad2 (p-Smad2) can been detected 

as early as the 2000 and 4000 cell stages (stages 7.5 and 8 respectively) in untreated 

Xenopus laevis embryos (Skirkanich et al., 2011). Figure 3:3 A shows a western blot 

analysis of protein samples from five whole, pooled, Xenopus laevis embryos. Using 

this analysis, p-Smad2 was be detected by stage 9.5, levels increase to peak at the 

onset of gastrulation at stage 10 and then decrease. This is consistent with previously 

published work (Lee et al., 2001). When embryos were treated with SB505124 or A-

83-01 at stage 8, the levels of p-Smad2 were strongly reduced by stage 10, in 

comparison to DMSO treated controls (Figure 3:3 B). This suggests that the inhibition 

of the Nodal/ Activin -ALK4/5/7 signalling pathway has been successfully achieved 

using both of the inhibitors tested here. 

Once activated by ALK4/5/7, p-Smad2 forms a trimeric complex with Smad4 and 

another p-Smad2 molecule, leading to the nuclear accumulation of the trimeric 

complex to influence the expression of Nodal/ Activin dependent genes (Shen, 2007). 

The effects of Nodal/ Activin -ALK4/5/7 signalling inhibition on the nuclear 

localisation of the p-Smad2-Smad4 complex was examined using bimolecular 

fluorescence complementation (BiFC) in Activin treated dissociated Xenopus laevis 

animal cap cells (Heldin et al., 1997; Kerppola, 2008a, 2008b; Massagué, 1998). This 

method was employed as detection of endogenous p-Smad2 by 

immunohistochemistry in dissected Xenopus laevis embryos proved difficult, due to 

low sensitivity and high background. BiFC was used as an additional, complementary, 
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method to western blotting and allowed not only the presence of p-Smad2 to be 

interrogated, but also the visualisation of whether complex formation and nuclear 

translocation was inhibited after addition of soluble ALK4/5/7 inhibitors. 

Embryos were co-injected uniformly into the animal hemisphere at the 2 cell stage 

with mRNA encoding N- and C- terminal portions of the enhanced yellow fluorescent 

protein Venus, fused to Smad4 (VNS4) and Smad2 (VNS2) respectively (Nagai et al., 

2002; Saka et al., 2008, 2007). In addition, mRNA encoding the red fluorescent 

protein mCherry was co-injected, allowing all injected cells to be traced (Shaner et 

al., 2004). In response to Activin treatment in blastula stage dissociated animal cap 

cells, Smad2 is phosphorylated, associates with Smad4, and translocates into the 

nucleus. This brings together the two halves of Venus to complete the functional 

green fluorescence protein and nuclear fluorescence is observed (Figure 3:3 C-E). 

Addition of SB505124 significantly reduced the amount of nuclear Smad2-Venus-

Smad4, suggesting that SB505124 is preventing the nuclear accumulation of p-Smad2 

(Figure 3:3 F-H). The relative number of Smad2-venus-Smad4 (green) positive nuclei 

was calculated by working out the ratio of Smad2-venus-Smad4 nuclei to injected,  

mCherry positive (red), cells per sample, normalised to the control (DMSO) sample 

(Figure 3:3 I). Using an unpaired 2-tailed t-test of equal variances, a p-value of 0.026 

was calculated. This is lower than the significance level of 0.05, indicating that there 

is a significant difference between DMSO and SB505124 treated samples. These 

findings suggest that the ALK4/5/7 inhibitor SB505124 prevents nuclear p-Smad2-

Smad4 accumulation. This is in agreement with previous work in zebrafish, using p-

Smad2 fluorescent immunostaining to demonstrates that nuclear p-Smad2 is absent 

after treatment with SB505124 (van Boxtel et al., 2015). Figure 3:3 J-M is a positive 

control in sibling embryos to those used in Figure 3:3 C-H, demonstrating that 

SB505124 and DMSO treatments acted as previously documented in Figure 3:2. 

SB505124 treatment resulted in truncated tadpoles, lacking a discernible axis and 

tail, head and cement gland features, whereas DMSO treated tadpoles were normal. 

Figure 3:3 N shows a western blot analysis of protein extracts from stage 10 embryos. 

This figure demonstrates that the treatment of Xenopus laevis embryos with 
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SB505124 and A-83-01 resulted in a reduction of p-Smad2 levels and that there was 

a small decrease in phosphorylated extracellular-signal-regulated kinase (ERK), which 

was used as a specificity control. In conclusion, the preceding work demonstrates 

that SB505124 and A-83-01 dose-dependently and specifically inhibit the ALK4/5/7 

pathway and are suitable reagents for further use investigating the role of ALK4/5/7 

signalling in cardiac specification. 

Smad2-Venus-Smad4 BiFC has been a useful technique for this study in assessing the 

ability of SB505124 to inhibit nuclear p-Smad2 localisation and complex formation, 

and thus Nodal/ Activin signalling transduction. BiFC and western blot experiments 

presented here give a high level of confidence that the ALK4/5/7 inhibitors SB505124 

and A-83-01 are successfully inhibiting the Nodal/ Activin –ALK4/5/7 signalling 

pathway. Further information concerning the reversibility of these inhibitors would 

also be beneficial. However, due to the unknown stability of the Venus complex, it is 

likely that endogenous Smad2-Smad4 complex dissociation and degradation 

dynamics may be changed, rendering BiFC an unsuitable tool for further 

investigations into inhibitor dynamics. A GFP-Smad2 fusion, which would be a 

suitable tool for investigating inhibitor dynamics, proved of insufficient sensitivity in 

repeated experiments (not shown). 
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Figure 3:3. ALK4/5/7 signalling inhibition reduces Smad2 activation and nuclear 

accumulation  

Embryos were treated with DMSO or 200 µM of SB505124 (SB) or A-83-01 (A83). (A) Embryos 

were treated with DMSO at stage 8 then analysed by western blot at the stage indicated.  

Smad2 is a loading control. (B) Embryos were treated at stage 8 and analysed by western 

blot analysis at stage 10. Smad2 is a loading control. Embryos were injected with 400 pg 

VCS2, 400 pg VNS4 and 400 pg mCherry mRNA uniformly into the animal hemisphere at the 

2 cell stage and treated with (C-E) DMSO or (F-H) SB505124. Animal caps were harvested at 

stage 8, dissociated and additionally treated with 16 U/ ml Activin, continuously, for imaging 
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and analysis at between stage 8.5-9.5. C and F show Venus, D and G show mCherry and E 

and H are brightfield. C-E and F-H show the same field of view. Scale bar in C-H represents 

100 µm. (I) The relative number of p-Smad2-Venus-Smad4 positive nuclei in all lineage traced 

injected cells of a sample, normalised to the control (DMSO) sample, from images analysed 

and represented in C-H. A p-value of 0.026 was calculated using an unpaired 2-tailed t-test 

of equal variances, indicating that there is a significant difference between DMSO and 

SB505124 treated samples. Activin n=167/430 (38%), Activin +SB n=39/499 (8%) of Venus/ 

mCherry positive cells. Sibling embryos, at tadpole stage, to those used in C-H were treated 

at the 2 cell stage and acted as a positive control for (J, K) DMSO and (L, M) SB505124 

treatments. Individual images are a lateral view orientated anterior left, dorsal side up. Scale 

bar in J-M represents 1 mm. (N) Embryos were treated at stage 8 for western blot analysis at 

stage 10. ERK is a loading control.  
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3.6 ALK4/5/7 signalling is required for cardiogenesis 

To address the requirement for ALK4/5/7 signalling in cardiac specification, 

molecular ALK4/5/7 inhibitors were utilised to impede signalling and the effect on 

cardiac tissue was examined. Initially, differentiated cardiac tissue was examined. 

There is a lack of known cardiac specific markers allowing cardiac cells to be traced 

from initial specification until terminal differentiated (Scott, 2012). Although there 

are known genes which are expressed by the cardiac progenitor cell population, such 

as nkx2.5 and isl1, these genes are not unique to the cardiac lineage (Scott, 2012). 

Differentiated cardiac cells express genes, such as myosin light chain 7 (myl7), which 

are specific to the cardiac lineage. Therefore, the staining of differentiated cardiac 

tissue was examined after ALK4/5/7 inhibition, with the intention of analysing cardiac 

progenitor cell populations should an effect on differentiated cardiac tissue be 

observed. The presence of cardiac tissue was initially analysed as a read-out of 

cardiac specification events, rather than the location and morphology of cardiac 

tissue which may reflect a requirement for ALK4/5/7 signalling in later cardiogenesis.  

Embryos were treated with ALK4/5/7 inhibitors, starting from midblastula transition, 

proceeding to progressively later stages in development, continuously until the 

tadpole stage. Whole mount in situ hybridisation (WMISH) using the differentiated 

cardiac tissue myl7 analysis was performed. Figure 3:4 A-F shows that inhibitor 

treatment commencing between stages 8-9 resulted in the loss or reduction of the 

heart field. However, additional phenotypes are observed including a truncated 

anterior-posterior axis, ventral pigmented folds in the epidermis, and at the earliest 

administered treatments, retarded anterior development. Inhibitor treatments 

commencing after stage 9 had a minimal overall phenotypic or specific cardiac effect 

(Figure 3:4 G-R), compared with the controls (Figure 3:4 S, T).
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Figure 3:4. ALK4/5/7 signalling is required for cardiogenesis 

(A- R) Embryos were treated with 100 µM of SB505124, starting at the stage (St) indicated.  

(S, T) Controls were treated with DMSO at stage 8. Tadpoles were analysed by whole mount 

in situ hybridisation using the cardiac marker myl7 (white arrows). Due to overstaining, 
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colour stain developed in the somites, probably due to staining of the closely related skeletal 

muscle transcript myosin light chain 1. All individual images are a lateral view orientated 

anterior left, dorsal up. Scale bar represents 1 mm. DMSO n=151, Stage 8 n=144, 8.5 n=105, 

9 n=123, 9.5 n=49, 10 n=65 10.5 n=50, 11 n=59, 11.5 n=22 12 n=20. 
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To further characterise the cardiac phenotypes, the extent of cardiac tissue, as 

assayed by myl7 whole mount in situ hybridisation staining, was categorised relative 

to the control samples as either normal, reduced, severely reduced or absent and 

examples of the classifications are shown in Figure 3:5 B-E. These categories were 

used in subsequent experiments for a range of whole mount in situ hybridisation 

markers. As studies throughout this chapter are concerned with the first step in 

cardiogenesis, the induction of cardiac tissue, the extent of cardiac tissue staining 

present in an embryo was used as an indication of early specification events. The 

cardiac phenotypes of embryos treated with ALK4/5/7 inhibitors in Figure 3:4 were 

counted, categorised, and displayed in Figure 3:5 A. Inhibitor treatments 

commencing at stages 8 or 8.5 resulted in absent or reduced heart tissue in a time-

dependent manner, with the earlier in development that the inhibitor was added, 

the more severe the reduction in cardiac tissue. Inhibitor treatment commencing 

after stage 9.5 had minimal effect on cardiac tissue.  
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Figure 3:5. The extent of cardiac tissue staining observed in tadpoles subjected to 

ALK4/5/7 inhibition can be used as a measure of successful cardiac development 

 (A) Graph quantifying results from Figure 3:4. Embryos were treated continuously with 

DMSO or 100 µM of SB505124 from the stage indicated along the horizontal axis. Tadpoles 

were analysed by whole mount in situ hybridisation, and the extent of the marker staining 

indicating the extent of cardiac tissue was classified, illustrated here using myl7 cardiac tissue 

staining. (B) Normal: the average staining pattern observed in a given control sample. (C) 

Reduced: between 50-90% of staining area and intensity observed in controls. (D) Severely 

reduced: between 1-50% of staining area and intensity observed in controls. (E) Absent: no 

staining observed. Images are a lateral view orientated anterior left, dorsal up. Scale bar 

represents 1mm. These categories of staining were subsequently utilised for alternate 

markers in tadpoles. DMSO n=151, Stage 8 n=144, 8.5 n=105, 9 n=123, 9.5 n=49, 10 n=65 

10.5 n=50, 11 n=59, 11.5 n=22 12 n=20. 
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3.7 Phenotypic, but not p-Smad2, recovery occurs after ALK4/5/7 

inhibitor removal 

Nodal/ Activin –ALK4/5/7 signalling has multiple roles in the developing Xenopus 

laevis embryo (Hill, 2001). The addition of the soluble ALK4/5/7 inhibitors during the 

late blastula stages, in investigations reported above, likely allows the early Nodal/ 

Activin –ALK4/5/7 signalling requirement for mesoderm induction to be fulfilled, as 

an extended anterior-posterior axis and tail is observed. The presence of mesodermal 

markers and differentiated derivatives are examined in more detail below. Although 

the above experiments suggest a role for ALK4/5/7 signalling in heart development, 

they do not distinguish the requirement for ALK4/5/7 signalling in the specification 

of cardiac cells from further cardiac development, as the ALK4/5/7 inhibition 

employed was continuous. The above work has identified a time window of interest 

between stages 8 and 9.5 in which to conduct further studies into the precise timing 

and requirement for ALK4/5/7 signalling in cardiac specification. An experimental 

advantage of using the soluble inhibitors is their ability to be removed from the 

embryos, thus allowing reversible inhibition. Therefore, SB505124 and A-83-01 were 

tested for their ability to be removed from Xenopus laevis embryos to allow the 

restoration of Nodal/ Activin –ALK4/5/7 signalling and normal embryonic 

development. To this end, p-Smad2 levels and phenotypic analysis were conducted 

on siblings treated for one hour with ALK4/5/7 inhibitors, compared with continuous 

treatment.  

Embryos were treated with ALK4/5/7 inhibitors SB505124 and A-83-01 starting from 

stage 8, from stage 8 +1 hour or stage 8 +2 hours (Figure 3:6 R). Inhibitor incubations 

were for either one hour, or continuous. Although shorter inhibitor incubation 

periods of 20 and 30 minutes were tested, it was found that, due to the variation 

between embryo batches and inhibitor effectiveness, the practical resolution 

afforded by this approach is approximately one hour. Figure 3:6 A shows that upon 

one hour, or continuous, ALK4/5/7 inhibition, the levels of p-Smad2 were decreased, 

in comparison to DMSO treated controls. Even when several hours had elapsed 
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before western blot analysis at stage 10 (5 hours after stage 8), there was no recovery 

in p-Smad2 levels observed. This suggests that the inhibitors might have acted 

irreversibly. However, Figure 3:6 B-Q shows that the phenotypes of embryos treated 

continuously with the ALK4/5/7 inhibitors were affected to a greater extent than the 

phenotypes of siblings treated for one hour, suggesting that some level of recovery 

did occur after inhibitor removal. Specifically, embryos treated with ALK4/5/7 

inhibitor at stage 8, upon continuous inhibition, were severely truncated along the 

anterior-posterior axis and landmark embryonic features, such as the tail and head, 

were less defined (Figure 3:6 D, E). Conversely, embryos treated with ALK4/5/7 

inhibitor for one hour had an elongated anterior-posterior axis with identifiable 

landmark features (Figure 3:6 F, G). A similar picture, albeit with a milder phenotype, 

was observed for treatments commencing at stage 8 +1 hour (Figure 3:6 F, G, N, O). 

Interestingly, in inhibitor treatments at stage 8 +2 hours (approximately stage 9), 

embryos presented a relatively normal phenotype upon one hour, or continuous, 

ALK4/5/7 inhibition (Figure 3:6 H, I, P, Q). However, inhibition resulted in the loss of 

detectable p-Smad2 by stage 10 (Figure 3:6 A). This suggests that ALK4/5/7 signalling 

has a minimal requirement beyond stage 9, as embryos developed normally, despite 

successful ALK4/5/7 inhibition. An alternative explanation is that, once the inhibitors 

were removed after one hour of incubation, a small amount of p-Smad2 may have 

been restored. This small quantity of p-Smad2 may have been sufficient to permit 

some level of normal embryonic development, resulting in the less severe 

phenotypes observed after one hour of treatment compared to continuous 

inhibition, but not enough to enter the detectable range of western blotting.  

The whole embryonic phenotype, and in particular the presence of a tail and a fully 

elongated anterior-posterior axis, are good indications that mesoderm induction has 

been successful before the addition of the ALK4/5/7 inhibitors after midblastula 

transition. However, examination of known markers brachyury (t) and goosecoid 

(gsc) allows further confidence that ALK4/5/7 inhibition initiated from midblastula 

transition is having minimal effect on mesoderm induction. brachyury is expressed in 

presumptive mesodermal cells around the blastopore, and is required for mesoderm 
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formation (Cunliffe and Smith, 1992; Smith et al., 1991). goosecoid is expressed on 

the dorsal side of the late blastula staged embryo and cells are fated to contribute to 

endoderm and mesoderm, including the Spemann’s Organiser (De Roberts et al., 

1992). Embryos were treated with ALK4/5/7 inhibitors SB505124 and A-83-01 for one 

hour starting from stage 8, from stage 8 +1 hour or stage 8 +2 hours. Figure 3:7 shows 

a small reduction in the expression of brachyury and goosecoid upon ALK4/5/7 

inhibition, compared with controls. These results are in general agreement with 

previously published work in Xenopus laevis, illustrating a slight reduction in 

brachyury and goosecoid expression upon SB505124 treatment from stage 8, but not 

upon treatment at stage 9 (Luxardi et al., 2010). This suggests that the requirement 

for Nodal/ Activin-ALK4/5/7 signalling activity in mesoderm induction has occurred 

before the addition of the ALK4/5/7 inhibitors. Therefore, the observed effects on 

cardiac tissue where ALK4/5/7 inhibition had been initiated after midblastula 

transition can be reasoned to be specific to the role of Nodal/ Activin –ALK4/5/7 

signalling in cardiogenesis and not due to deficient mesodermal tissue. These finding 

are consistent with the known Nodal/ Activin –ALK4/5/7 signalling requirement, and 

p-Smad2 activity, for inducing mesendoderm before midblastula transition 

(Skirkanich et al., 2011). 
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Figure 3:6. Phenotypic, but not p-Smad2, recovery occurs after ALK4/5/7 inhibitor removal 

Embryos were treated with DMSO, or 200 µM of SB505124 or A-83-01 at stage 8, stage 8 +1 

hour or stage 8 +2 hours. Treatments were either continuous, or for one hour, where 

inhibitor media was then removed by two 5 minute washes in 30 ml of fresh 10% NAM. (A) 
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Western blot analysis on stage 10 embryos. Smad2 is a loading control. Tadpole phenotypes 

after (B-I) continuous treatment, compared with (J-Q) one hour treatment. Individual images 

show a lateral view orientated anterior left, dorsal up. Scale bar represents 1 mm. Embryos 

have been stained by whole mount in situ hybridisation to better visualise mesoderm 

derivatives using riboprobes myosin light chain 7, hemoglobin alpha 3 subunit and ATPase, 

Na+/K+ transporting, alpha 1 polypeptide to detect cardiac, blood and pronephros tissue 

respectively; more information below in Section 3.11. Continuous treatment DMSO n=38, 

stage 8 n=53, stage 8+ 1 hour n=52, stage 8 +2 hours n=54. 1 hour treatments DMSO n=44, 

stage 8 n=56, stage 8+ 1 hour n=67, stage 8 +2 hours n=60. (R) Time line illustrating how 

stages of Xenopus laevis development correspond to time (in hours) after midblastula 

transition (MBT). Time windows for 1 hour treatments used in experiments are highlighted: 

stage 8 in red, stage 8 +1 hour in orange and stage 8 +2 hours in yellow.  
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Figure 3:7 ALK4/5/7 inhibition initiated from midblastula transition has a minimal effect 

on mesodermal gene expression  

Embryos were treated with DMSO or 200 µM of SB505124 (SB) or A-83-01 (A83), at stage 8, 

stage 8 +1 hour or stage 8 +2 hours. Treatments were for one hour, then embryos developed 

free of treatments until collection at stage 10.5 for RT-PCR analysis of mesodermal genes 

brachyury (t) and goosecoid (gsc). –RT is a negative control and ornithine decarboxylase 1 

(odc1) is a loading control. 
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3.8 Optimising inhibitor removal 

Previous investigations reported here have utilised continuous ALK4/5/7 inhibition 

to surmise that Nodal/ Activin -ALK4/5/7 signalling is required for cardiogenesis. To 

further question the precise timing and requirement of Nodal/ Activin -ALK4/5/7 

signalling in cardiac specification, an appropriate method for the optimum removal 

of the ALK4/5/7 inhibitors from the Xenopus laevis embryos was sought. An 

advantage of using small soluble molecular inhibitors in Xenopus laevis is the ability 

to change the embryonic media, removing the inhibitor solution, thus allowing time-

dependent control of inhibition. It has been demonstrated in the work presented 

above that phenotypic recovery, but not molecular recovery of p-Smad2, can be 

detected and observed upon inhibitor removal. To ascertain the most appropriate 

method of inhibitor removal, several wash out regimes were tested after ALK4/5/7 

inhibitor incubation. Inconsequential phenotypic differences were observed in 

embryos subjected to a range of wash-out techniques which are displayed in Figure 

3:8, including 30 ml washes at 21OC, 30 ml washes at 23OC, 500 ml washes at 21OC 

and chorion removal. Two five minute washes, gently agitated, each in 30 ml of 10% 

NAM at 21OC was chosen as a standard technique to adopt in all future experiments 

where inhibitors were removed before the neurula stage. This technique was 

selected due to its ease to perform, as all techniques presented similar attributes. 

Interestingly, SB505124 appears to wash away from embryos more effectively than 

A-83-01, as the phenotypes at tadpole stage are less severe after SB505124 

treatment for any given wash out technique (Figure 3:8).  

Uncertainty remains regarding the effectiveness of inhibitor reversibility after media 

change. Upon three 30 ml media changes, the working concentration of SB505124 

and A-83-01 would likely have been decreased from 200 µM to less than the lowest 

concentration of 20 µM tested in the dose response in Figure 3:2. As 20 µM of 

ALK4/5/7 inhibitors had minimal effect on the embryonic phenotype, it can be 

reasoned that any remaining inhibitor would be at such a low concentration as to 

have insignificant effect. However, the inhibitors may remain trapped in cells and 
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may not be released in a concentration-dependent manner. Consequentially, this 

may delay the end-point of inhibition until future release or receptor degradation 

and replacement. In an attempt to gain a better understanding of the dynamics of 

inhibitor removal and Nodal/ Activin –ALK4/5/7 signalling restoration, the 

phosphorylation and localisation of Smad2 following inhibitor removal was 

unsuccessfully examined by fluorescence in live cells and by nuclear fractionation 

(not shown). Alternatively, mass spectroscopy could have been utilised to examine 

the levels of inhibitors remaining within an embryo after removal of the inhibitor-

containing media; however, mass spectroscopy was not practically feasible in this 

project. Comparison of siblings treated with the ALK4/5/7 inhibitors SB505124 and 

A-83-01, for one hour or continuously, in Figure 3:6 B-P, does reveal a difference in 

the whole embryonic phenotype between treatments. This gives confidence that the 

removal of the inhibitors has occurred and that some level of Nodal/ Activin –

ALK4/5/7 signalling and normal embryonic development has been restored. 

Although these investigations have not provided direct evidence on a molecular level 

that the action of the inhibitors is reversible, phenotypic analysis suggests inhibitor 

reversibility. Therefore, SB505124 and A-83-01 inhibitors remain as appropriate 

reagents to use for time-dependent control of Nodal/ Activin-ALK4/5/7 signalling 

inhibition for further investigations in Xenopus laevis.  
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Figure 3:8. Optimising ALK4/5/7 inhibitor wash out 

Embryos at the 4 cell stage were treated with DMSO or 200 µM of SB505124 or A-83-01, until 

stage 6.5, where inhibitor-containing media was washed away, testing a variety of methods. 

(A-B) Two 5 minute washes, gently agitated, in 30 ml 10% NAM at 21OC. (C-D) Two 5 minute 

washes, gently agitated, in 30 ml 10% NAM at 23OC. (E-F) Two 5 minute washes in 500 ml tap 

water at 21OC. (G-H) chorion removal and (I) control. Images are of stage 32 embryos 

showing a lateral view orientated anterior left, dorsal up. Scale bar represents 1 mm.
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3.9 A low level of ALK4/5/7 signalling is required from midblastula 

transition for cardiac specification 

The time when pre-cardiac cells are given a specific fate to develop into the cardiac 

lineage has not been precisely defined. It is known from explant experiments that 

cardiac specification has occurred by the end of gastrulation, and that anterior 

endoderm tissue taken before mid-gastrulation can induce cardiac tissue in 

pluripotent responder cells (Samuel and Latinkić, 2009; Sater and Jacobson, 1989). 

Therefore, it is widely assumed that cardiac specification occurs during gastrulation. 

However, the data presented here demonstrates that ALK4/5/7 and p-Smad2 

signalling can be inhibited during gastrulation and that embryos can develop normal 

cardiac tissue staining patterns. The work in this section focuses on a more precise 

investigation of the timing and requirement for ALK4/5/7 in cardiac specification, 

concentrating on the time window from midblastula transition (stage 8), but before 

the onset of gastrulation (stage 10). 

Embryos were treated with ALK4/5/7 inhibitors SB505124 or A-83-01 for one hour, 

starting from stage 8, stage 8 +1 hour or stage 8 +2 hours. Once at the tadpole stage, 

whole mount in situ hybridisation analysis using the differentiated cardiac tissue 

marker myl7 was performed. Embryos treated with ALK4/5/7 inhibitors for one hour 

from stage 8 developed no, or very little, cardiac tissue (Figure 3:9 A-D, O). Embryos 

treated from stage 8 +1 hour presented severely reduced cardiac tissue (Figure 3:9 

E-H, O), whereas embryos treated from stage 8 +2 hours generally displayed a 

reduced level of cardiac tissue (Figure 3:9 I-J, O), bearing greater similarity to the 

levels observed in the controls (Figure 3:9 M, N, O). Embryos appeared to gastrulate, 

although the formation of the blastopore lip was delayed and often less pronounced 

in samples treated with the ALK4/5/7 inhibitors. The reduction in the size of the head 

could be partially due to compromised gastrulation, although the phenotype and 

elongation of the embryo does suggest that gastrulation has taken place. 

Western blot analysis on protein extracts from stage 10 embryos revealed that p-

Smad2 levels were reduced in ALK4/5/7 inhibitor-treated samples compared with 
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controls. Additionally, there did not appear to be a delay in p-Smad2 activation upon 

inhibitor removal after one hour of incubation (Figure 3:9 P). Using stage 8 +1 hour 

embryos subjected to one hour of ALK4/5/7 inhibition as an example, no recovery of 

p-Smad2 was observed. However, the natural decrease in p-Smad2 during 

gastrulation resulted in more comparable p-Smad2 levels between control and 

inhibited samples by +8 hours after midblastula transition (Figure 3:9 Q). See Figure 

3:6 R for time comparison with developmental stage. Therefore, these results 

suggest that the peak of p-Smad2 observed at the onset of gastrulation (stage 10) is 

not required for cardiac tissue specification, as ALK4/5/7 signalling can be inhibited, 

p-Smad2 levels decrease, and embryos still developed cardiac tissue. In conclusion, 

these results suggest that a low level of ALK4/5/7 signalling which occurs around 

midblastula transition (stage 8) is required for cardiac specification, with the 

requirement being practically fulfilled by the end of stage 9, well before the onset of 

gastrulation. This is a novel time window identified for the involvement of 

Nodal/Activin –ALK4/5/7 signalling in cardiac specification, and is earlier than 

previously thought. 
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Figure 3:9. Active ALK4/5/7 signalling is required for 2-3 hours from midblastula transition 

for cardiac specification 
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Embryos were treated with DMSO or 200 µM of SB505124 (SB) or A-83-01 (A83), at stage 8, 

stage 8 +1 hour or stage 8 +2 hours. Treatments were either continuous (C), or for one hour 

(1). Tadpoles, treated for one hour, were analysed by whole mount in situ hybridisation using 

the cardiac marker myl7 (white arrows). ALK4/5/7 inhibition for one hour from: (A-D) stage 

8, (E-H) stage 8 +1 hour and (I-L) stage 8 +2 hours. (M, N) DMSO controls. All individual images 

are a lateral view orientated anterior left, dorsal up. Scale bar represents 1 mm. (O) Graph 

displaying results of A-N; DMSO n=153, St8 SB n=145, St8 A83 n=120, St8 +1 SB n=150, St8 

+1 A83 n=90, St8 +2 SB n=52, St8 +2 A83 n=118. (P) Western blot analysis on a time series of 

continuous or one hour treated embryos prior to, and during, gastrulation. (Q) Western blot 

analysis on a time series during gastrulation of embryos treated for one hour at stage 8 +1 

hour. Smad2 is a loading control. 
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3.10 The migration, fusion and remodelling of cardiac tissue is largely 

unaffected by ALK4/5/7 signalling inhibition 

Additional information about cardiac development can be inferred from the 

morphology of the developing heart. Experimental samples that were scored for the 

relative staining of cardiac tissue in Figure 3:9 were examined for cardiac 

morphology. Briefly, embryos were treated with ALK4/5/7 inhibitors, or DMSO, 

continuously from stage 8, followed by analysis by whole mount in situ hybridisation 

using the differentiated cardiac tissue marker myl7 and immunohistochemistry using 

the skeletal muscle marker 12/101. The morphology of the heart was observed at 

stage 36. DMSO treated control embryos displayed a heart of normal size, with the 

future atria, ventricle and outflow tract forming (Figure 3:10 A, B). By stage 35, the 

recently formed linear heart tube, which is originally orientated along the anterior-

posterior axis, forms an anticlockwise spiral, bending towards the right hand side of 

the embryo. An s-shaped bulging cardiac tube is formed, aided by the anterior and 

dorsal movement of the future atrial region (Figure 3:10 K)  (Kolker et al., 2000; 

Latinkić et al., 2004; Mohun et al., 2000). No cardiac tissue or cardiac morphology 

features were observed in embryos classified as having absent cardiac tissue (Figure 

3:10 C, D). Tadpoles with severely reduced cardiac tissue frequently presented a 

small tube or cardiac cavity, often bulging slightly (Figure 3:10 E, F). Smaller areas of 

cardiac tissue staining than in controls, but with evidence of morphological 

movements and bulging, were observed in embryos with reduced cardiac tissue 

(Figure 3:10 G, H). Most often the cardiac fields fused on the ventral midline resulting 

in severely reduced or reduced cardiac tissue phenotypes. Occasionally cardia bifida 

was observed, where two independent chambers formed (Figure 3:10 I, J). Linear 

heart tubes were rarely observed. Landmark features, such as the presence of the 

eyes, head and cement gland were of the correct and comparable size between 

samples. Skeletal muscle development is complete and extends fully into the anterior 

region (Figure 3:10 A, C, E, G, I), suggesting normal anterior development with a 

specific cardiac effect in ALK4/5/7 inhibited embryos. These results indicate that 

ALK4/5/7 signalling is required for the specification of cardiac tissue, and once 
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specified the cardiac tissue is able to migrate, fuse and undergo morphological 

events. 
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Figure 3:10. The migration, fusion and remodelling of cardiac tissue is largely unaffected 

by ALK4/5/7 signalling inhibition 

Tadpoles subjected to treatments in Figure 3:9 were analysed by whole mount in situ 

hybridisation using the cardiac tissue marker myl7 (blue stain), followed by 

immunohistochemistry using the skeletal muscle marker 12/101 (brown stain).  (A, B) DMSO 

treated controls with future atrium (a), ventricle (v) and outflow tract (oft) highlighted 

(arrows). (C, D) Absent cardiac tissue. (E, F) Severely reduced cardiac tissue. (G, H) Reduced 

cardiac tissue. (I, J) Cardia bifida. C-J example embryos have been treated with 200 µM of A-

83-01, and developed until the tadpole stage. Scale bar represents 1 mm. A, C, E, G and I 

show a lateral view, orientated anterior left. B, D, F, H and J show a ventral view, anterior 

upwards. These are example cardiac phenotypes from the experiments presented and 

quantified in Figure 3:9. (K) Schematic diagram of the linear heart tube bending rightwards, 

creating an anticlockwise spiral and bulging, aided by the anterior-dorsal movement of the 

posterior (atrial) region, to form the heart. 
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3.11 Skeletal muscle, notochord and pronephros are largely unaffected by 

ALK4/5/7 signalling inhibition from midblastula transition onwards 

Mesoderm induction and cardiac specification occur sequentially and early in 

embryonic development, and both require Nodal/ Activin signalling. To test whether 

the addition of ALK4/5/7 inhibitors from midblastula transition stage onwards could 

be affecting mesoderm development, thus indirectly affecting cardiac specification, 

a range of differentiated mesoderm derivatives were examined.  

Embryos were treated with ALK4/5/7 inhibitors SB505124 or A-83-01, for one hour, 

starting from stage 8, stage 8 +1 hour or stage 8 +2 hours. Once at the tadpole stage, 

triple whole mount in situ hybridisation to detect differentiated markers for cardiac 

tissue using myl7 riboprobe, blood using hemoglobin alpha 3 subunit (hba3) 

riboprobe and pronephros using ATPase, Na+/K+ transporting, alpha 1 polypeptide 

(atp1a1) riboprobe was performed. Skeletal muscle, using 12/101 antibody, and 

notochord, using MZ15 antibody, were detected by immunohistochemistry. 

No obvious difference in the extent of staining was observed in pronephros, skeletal 

muscle and notochord tissue in tadpoles in all ALK4/5/7 inhibitor-treated samples 

and in controls (Figure 3:11 A-P and R-T). Frequently, in ALK4/5/7 inhibitor treated 

samples, particularly where inhibition began earlier, the notochord was of a greater 

girth than in the control samples (compare Figure 3:11 D with H for example). This is 

most likely due to the reduced anterior-posterior axis length, as Nodal/ Activin has a 

known role in convergent extension movements for axis elongation (Luxardi et al., 

2010). The full complement of notochord tissue appears to have formed, but 

elongation was compromised. This suggests that changes in notochord appearance 

between ALK4/5/7 inhibitor treated sample and controls was not due to deficient 

tissue specification. There were up to 10% fewer somites in ALK4/5/7 inhibitor-

treated samples. Somites were fully sized and extended the full length along the 

anterior-posterior axis. Again, this reduction in somite number is likely due to the 

reduced length of the anterior-posterior axis, rather than the failure of mesoderm 

and skeletal muscle induction. Interestingly, the ventral blood island was affected in 
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a similar manner to cardiac tissue. ALK4/5/7 inhibition during the earliest time-

window of treatment, starting from stage 8, resulted in tadpoles with no or very little 

blood. A severely reduced blood island is observed with ALK4/5/7 inhibition from 

stage 8 +1 hour, and a reduced area of staining for blood is seen when ALK4/5/7 

inhibition commenced at stage 8 +2 hours (Figure 3:11 B, F, J, N, Q).  The anterior, 

rather than posterior, blood island was most severely affected. This is not surprising 

as the anterior blood and heart primordia are adjacent in the early embryo, and have 

overlapping regulation (Sakata and Maeno, 2014). 

In conclusion, the work presented here suggests that the Nodal/ Activin requirement 

in mesoderm induction has been fulfilled before the addition of ALK4/5/7 inhibitors 

from midblastula transition, as the staining pattern of mesoderm derivatives 

notochord, pronephros and skeletal muscle was largely unaffected. Effects observed 

on differentiated cardiac tissue upon ALK4/5/7 inhibition for 2-3 hours after 

midblastula transition were likely not caused by an effect on general mesoderm 

formation.  
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Figure 3:11. Skeletal muscle, pronephros and notochord are largely unaffected by 

ALK4/5/7 inhibition form midblastula transition onwards 

Embryos were treated for one hour with DMSO or 200 µM of A-83-01, at stage 8, stage 8 +1 

hour or stage 8 +2 hours. (A-P) Tadpoles were analysed by whole mount in situ hybridisation 

using the cardiac marker myl7 (white arrows), the blood marker hba3 (red arrows) and the 
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pronephros marker atp1a1 (purple arrows). Tadpoles were subsequently processed by 

immunohistochemistry for (C, G, K, O) skeletal muscle marker 12/101 (yellow arrows) or (D, 

H, L, P) notochord marker MZ15 (orange arrows). Images show a lateral view orientated 

anterior left, dorsal up, except B, F, J and M which display a ventral view with anterior left. 

Scale bar represents 1 mm. Graphs displaying results of A-P; (Q) blood DMSO n=68, St8 n=88, 

St8 +1 n=101, St8 +2 n=81; (R) pronephros DMSO n=68, St8 n=88, St8 +1 n=101, St8 +2 n=81; 

(S) skeletal muscle DMSO n=69, St8 n=54, St8 +1 n=32, St8 +2 n=21; (T) notochord DMSO 

n=20, St8 n=30, St8 +1 n=39, St8 +2 n=28. 
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3.12 ALK4/5/7 signalling is required for cardiac progenitor cell specification 

To gain a better understanding of the requirement for Nodal/ Activin in the initial 

stage of heart development, earlier cardiac lineage markers were analysed. The 

expression of transcription factors nkx2.5 and isl1 marks the earliest recognisable 

cardiac progenitor fields. nkx2.5 is expressed in both the primary and secondary 

heart fields, and continues to be expressed in the mature heart throughout the left 

ventricle and atrial chambers (Kasahara et al., 1998; Komuro and Izumo, 1993; Lints 

et al., 1993; Tonissen et al., 1994). isl1 is predominantly expressed in the secondary 

heart field, overlapping the more anterior domain of nkx2.5 expression (Cai et al., 

2003; Gessert and Kühl, 2009). The expression of nkx2.5 and isl1 is upregulated 

during the late gastrula stages (Brade et al., 2007; Tonissen et al., 1994). 

Myeloperoxidase (mpo) and T-cell acute lymphocytic leukemia 1 (tal1) are early 

markers of the myeloid cells and ventral blood island respectively (Ciau-Uitz et al., 

2000; Kallianpur et al., 1994; Tashiro et al., 2006). Mpo expression is upregulated 

from late gastrula stages and is expressed in myeloid cells of the anterior ventral 

mesoderm (Tashiro et al., 2006). Tal1 is expressed from late gastrula stages in 

developing hematopoietic cells of the ventral blood island that give rise to all blood 

cell types (Kallianpur et al., 1994; Mead et al., 1998). Using ALK4/5/7 inhibitors in a 

time controlled manner, the timing and requirement for ALK4/5/7 signalling in 

specifying cardiac and hematopoietic progenitor cells was investigated. 

Embryos were treated with ALK4/5/7 inhibitors SB505124 or A-83-01 for one hour, 

starting from stage 8, stage 8 +1 hour or stage 8 +2 hours. Once at stage 20 (neurula 

stage), double whole mount in situ hybridisation using nkx2.5 and mpo or isl1 and 

tal1 was performed. The extent of staining was classified as either absent, severely 

reduced, reduced or normal and examples of each staining category are shown in 

Figure 3:12 Q-T. These results show that treating embryos with ALK4/5/7 inhibitors 

from midblastula transition resulted in the loss or reduction of the early cardiac 

(nkx2.5, isl1) and hematopoietic (mpo, tal1) fields in a time-dependent manner. This 

is in excellent agreement with results gained from differentiated tissue analysis 
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shown in Figure 3:11. Earlier ALK4/5/7 inhibitor treatments, starting at stage 8, 

resulted in embryos with absent or severely reduced cardiac and hematopoietic 

progenitor markers (Figure 3:12 C, D, K, L, U-X). Embryos treated with ALK4/5/7 

inhibitors from stage 8 +1 hour displayed severely reduced or reduced cardiac and 

hematopoietic progenitor markers (Figure 3:12 E, F, M, N, U-X). Conversely, upon 

ALK4/5/7 inhibitor treatments commencing at stage 8 +2 hours, embryos displayed 

a reduced-to-normal levels of cardiac and hematopoietic progenitor markers (Figure 

3:12 G, H, O, P, U-X), bearing more similarities to the controls (Figure 3:12 A, B, I, J, 

U-X) than earlier time points of inhibition. Therefore, these results suggest that there 

is a requirement for ALK4/5/7 signalling in the specification of the early cardiac and 

hematogenic progenitor pools.  
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Figure 3:12. ALK4/5/7 signalling is required for cardiac progenitor cells 

Embryos were treated for one hour with DMSO or 200 µM of SB505124, at stage 8, stage 8 

+1 hour or stage 8 +2 hours. Stage 20 (neurula) embryos were analysed by whole mount in 
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situ hybridisation using (A-H) cardiac progenitor marker nkx2.5 (blue stain, white arrows) and 

myeloid cell marker mpo (pink stain, red arrows), or (I-P) cardiac progenitor marker isl1 (pink 

stain, purple arrows) and hematopoietic marker tal1 (blue stain, orange arrows). The extent 

of marker staining was classified, illustrated here using nkx2.5 cardiac tissue staining (blue 

stain, white arrows). (Q) Absent: no staining observed. (R) Severely reduced: between 1-50% 

of staining area and intensity observed in controls. (S) Reduced: between 50-90% of staining 

area and intensity observed in controls. (T) Normal: the average staining pattern observed in 

a given control sample. Graphs displaying results of A-P; (U) nkx2.5 DMSO n=137, St8 n=50, 

St8 +1 n=87, St8 +2 n=53; (V) Pox2 DMSO n=22, St8 n=19, St8 +1 n=26, St8 +2 n=35; (W) isl1 

DMSO n=25, St8 n=22, St8 +1 n=25, St8 +2 n=24; (X) tal1 DMSO n=25, St8 n=22, St8 +1 n=25, 

St8 +2 n=24. All individual images are a ventral view orientated anterior left. Scale bar 

represents 1 mm.  



 123  

3.13 ALK4/5/7 signals via Smad2 for cardiac specification 

To ascertain whether Smad2 is a key mediator of ALK4/5/7 signalling, to further 

confirm the specificity of ALK4/5/7 inhibition and in addition to address the nature 

of the requirement for ALK4/5/7 signalling in cardiac specification, a rescue 

experiment was be performed. ALK4/5/7 signalling was inhibited using SB505124 or 

A-83-01, then Smad2 was supplied and allowed to take effect to rescue the inhibition 

at the receptor level.  

The mRNAs of two different Smad2 constructs, injected into the Xenopus laevis 

embryos, were tested for their suitability in the rescue experiment. The constructs 

included a glucocorticoid receptor (GR) binding domain, making them inducible by 

the addition of dexamethasone (DEX) (Sive et al., 2000). One construct contained the 

full length version of the Smad2 gene (GR-Smad2), and the other contained a 

truncated Smad2 gene (GR-tSmad2). The truncated Smad2 lacked the N-terminal 197 

amino acids which comprise the DNA binding domain (Chang and Harland, 2007; M 

Howell and Hill, 1997; Shi et al., 1998). Nevertheless, it has previously been show that 

the truncated Smad2 protein can partially compensate for absent p-Smad2 (Das et 

al., 2009; M Howell and Hill, 1997; Skirkanich et al., 2011). The exact mechanism 

through which GR-Smad2 and GR-tSmad2 work is unknown, but presumably the 

overexpression of the inducible Smad2 protein overrides the phosphorylation 

requirement, enabling Smad2 to associate with Smad4 and activate gene 

transcription (Shimizu and Gurdon, 1999).  

GR-Smad2 or GR-tSmad2 mRNA was injected uniformly into embryos at the 2 cell 

stage and DEX treatment implemented, until the tadpole stage. The results of these 

experiments show that qualitatively both mRNA species produced comparative 

results, with lower doses of mRNA inducing a partial secondary axis or outgrowths 

and higher doses resulting in a truncated anterior-posterior axis (Figure 3:13 A-L). Of 

note is that 200 pg of truncated Smad2 mRNA gave rise to the same phenotype as 

the full length Smad2 mRNA at the higher concentration of 500 pg (Figure 3:13 A, B, 

G, H). GR-tSmad2 appears to be more potent at lower doses thus was selected to be 
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used for further investigations. Nodal signalling induces the Spemann’s Organiser, an 

embryonic signalling centre with a well-established ability to induce a secondary axis 

when transplanted to the ventral side of a host embryo (Gritsman et al., 2000; 

Spemann and Mangold, 1924). Smad2 mRNA has been shown to induce ectopic 

trunk-tail structures, commonly characterised as a posterior-type secondary axis, or 

an incomplete secondary axis lacking a head structure (Baker and Harland, 1996). 

Therefore, by introducing ectopic Smad2 expression, axial mesoderm and hence a 

secondary axis is induced. This can be used as a marker for the inducible activity of 

the Smad2 protein.   

After treating GR-tSmad2 mRNA injected embryos with DEX for varying time periods, 

it became apparent that the DEX incubation time impacted upon the level of 

construct activity. In tadpoles, no external phenotypic effect was observed after 5 

minutes of DEX incubation (Figure 3:13 Q, R). Small outgrowths occurred after one 

hour of DEX treatment (Figure 3:13 S, T). Tadpoles were truncated and develop 

abnormally when treated with DEX continuously (Figure 3:13 U, V). GR-tSmad2 

mRNA injected embryos not treated with DEX had no external phenotypic effects 

(Figure 3:13 O, P) and were comparable to controls (Figure 3:13 M, N), demonstrating 

that the construct is not leaky at the phenotypic level of analysis. The activity of the 

GR-tSmad2 protein can be modulated by varying the length of the DEX incubation 

periods to give time-dependent control over induced Smad2 signalling.  
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Figure 3:13. Assessing the activity of GR-Smad2 and GR-tSmad2 by phenotypic analysis 

Embryos were injected uniformly with (A, B) 200 pg GR-tSmad2 mRNA (n=11), (C, D) 400 pg 

GR-tSmad2 mRNA (n=7) or (E, F) uninjected (n=12), and treated with 2 µM DEX at stage 7 

until the tadpole stage. Embryos were injected uniformly with (G, H) 500 pg GR-Smad2 mRNA 

(n=9), (I, J) 1 ng GR-Smad2 mRNA (n=19) or (K, L) uninjected (n=22), and treated with 2 µM 

DEX at stage 3 until the tadpole stage. Embryos were either (M, N) uninjected (n=9) or 

injected uniformly with 200 pg GR-tSmad2 mRNA and were (O, P) untreated (n=9) or were 

treated with DEX from stage 8 (Q, R) for 5 minutes (n=9), (S, T) for one hour (n=18) or (U, V) 

continuously (n=8). All individual images are a lateral view orientated anterior left, dorsal up. 

Scale bars represent 1 mm. Secondary axis and outgrowths have been outlined. 
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To investigate whether cardiac specification is mediated by Smad2 downstream of 

Nodal/ Activin –ALK4/5/7, molecular ALK4/5/7 inhibitors were used to inhibit the 

ALK4/5/7 pathway, then Smad2 protein from the injected GR-tSmad2 mRNA was 

tested for its ability to rescue the embryonic phenotype from the effect of the 

inhibitors, in a time controlled manner. Embryos were injected with 50 pg per 

blastomere of GR-tSmad2 mRNA at the 8 cell stage, into two dorsal vegetal (DV) or 

two ventral vegetal (VV) blastomeres. Targeted injections were used instead of 

uniform injections, as the whole embryo phenotypes by the tadpole stage were more 

subtle and specific and therefore produced more robust data. At stage 8 +1 hour, 

embryos were treated for one hour with ALK4/5/7 inhibitors or DMSO, either alone 

or with DEX. Neurula and tadpole-stage embryos were analysed by whole mount in 

situ hybridisation using the cardiac progenitor marker nkx2.5 and differentiated 

cardiac tissue marker myl7. The results show that embryos treated with ALK4/5/7 

inhibitors at stage 8 +1 hour displayed severely reduced cardiac tissue and a slightly 

truncated anterior-posterior axis (Figure 3:14 I-L, U, V) , as observed in previous 

experiments presented above. Embryos subjected to ALK4/5/7 inhibition with 

enhanced Smad2 in VV cells, which are distant from the heart-forming region, 

presented severely reduced cardiac tissue and a truncated anterior-posterior axis 

(Figure 3:14 M-O, U, V). In contrast, ALK4/5/7 inhibitor-treated embryos with 

enhanced Smad2 in DV cells, fated to contribute to the heart, exhibited an increased 

area of cardiac tissue staining and had a more extended anterior-posterior axis 

(Figure 3:14 Q-T, U, V). Embryos that were treated with DEX alone presented the 

same phenotype as uninjected controls, and outgrowths were observed, but rarely 

(Figure 3:14 A-H, U, V). This one-hour DEX treatment-window was later in 

development than during the window used in the DEX time-optimisation 

experiments. Therefore, it is possible that cells may have had a reduced ability to 

respond to enhanced Smad2 and form a secondary axis or outgrowths. Excellent 

agreement was seen in the extent of cardiac tissue staining observed between the 

earlier and the later-staged embryos analysed. These results suggest that it is 

possible to partially rescue the cardiac and whole embryo phenotypes induced by the 

inhibition of the ALK4/5/7 pathway, by providing active Smad2. Interestingly, the 
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partial rescue of the anterior-posterior axis phenotype in DV injected samples is 

indicative of a non-cell autonomous effect. This is in keeping with the idea that 

Nodal/ Activin signalling is required for establishing the Spemann’s Organiser on the 

dorsal side of the embryo, which acts as an inducer, releasing signals which can act 

distally (Gritsman et al., 2000; Niehrs, 2004). Developing the colour stain for the 

injected lineage tracer dextran-biotin allows cells which received injected material to 

be traced. Figure 3:14 W-D1 confirms that the correct targeted injections were 

achieved, and supports the observation that the anterior-posterior axis in DV injected 

embryos is partially rescued by a non-cell autonomous effect. It would appear that 

the expression of cardiac markers was not rescued by a non-cell autonomous effect 

when Smad2 was activated in VV cells. This perhaps suggests that Smad2 is required 

in future cardiac cells, or that higher concentrations of Smad2 are required for 

cardiac specification than can be achieved by a distal signal from the VV region. 

Similar rescue experiments to those accomplished at stage 8 +1 hour were attempted 

with treatments at stage 8, but no rescue in cardiac marker expression or whole 

embryonic phenotype, in comparison to controls, was observed. This suggests that 

there is a greater requirement for Smad2 signalling from stage 8, which GR-tSmad2 

is not rescuing. By stage 8 +1 hour it is possible that partial specification of cardiac 

tissue has occurred during the elapsed time from midblastula transition, thus the 

level of Smad2 signalling required from stage 8 +1 can be partially rescued by GR-

tSmad2. GR-tSmad2 dose and DEX incubation time were altered in an attempt to 

achieve a successful rescue at stage 8, but did not produce informative results. 

Rescue experiments are a fine balance between opposing activities of different 

reagents and are more likely to work if the induced phenotypes are moderate. 

In summary, the cardiac tissue and whole embryo phenotype observed after 

ALK4/5/7 inhibition can be rescued, at least in part, by time-dependent activation of 

Smad2. Smad2 appears to be the primary mediator for the ALK4/5/7 signalling 

requirement in cardiogenesis. The Smad2 requirement is absolute from midblastula 

transition, with a decreasing dependency on Smad2 towards the end of stage 9, for 

cardiac tissue specification. In addition, this work confirms the specificity of action of 
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the ALK4/5/7 inhibitors. It would be interesting to investigate the effects of a longer 

DEX incubation period, in conjunction with 1 hour of ALK4/5/7 inhibition, in addition 

to testing an increased dose of GR-tSmad2 mRNA for the rescue experiment. 
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Figure 3:14. Timed activation of Smad2 rescues the effect of ALK4/5/7 inhibition on cardiac 

tissue 

Embryos were injected at the 8 cell stage with 50 pg per blastomere of GR-tSmad2 mRNA, 

targeted to either two dorsal vegetal (DV) or two ventral vegetal (VV) cells. At stage 8 +1 

hour embryos were treated for one hour with DMSO or 200 µM of SB505124 (SB), and/ or 2 

µM dexamethasone (DEX). Embryos were analysed by whole mount in situ hybridisation 

using the cardiac marker myl7 (white arrows) at tadpole stages, or cardiac progenitor marker 
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nkx2.5 (orange arrows) at neurula stages. (A-D) Uninjected controls. (E-H) DV injected 

treated with DMSO and DEX. (I-L) DV injected treated with SB. (M-P) VV injected treated with 

SB and DEX. (Q-T) DV injected treated with SB and DEX. Individual images A, B, E, F, I, J, M, 

N, Q and R are at the tadpole stage, displaying a lateral view orientated anterior left, dorsal 

up. C, D, G, H, K, L, O, S and T are at the neurula stage, displaying a ventral view with anterior 

left. Scale bar represents 1 mm. Graphs displaying results of A-T. (U) Myl7 expression: control 

n=71, DV +DEX n=53, DV +SB n=66, VV +DEX +SB n=38, DV +DEX +SB n=57. (V) nkx2.5 

expression: control n=35, DV +DEX n=29, DV +SB n=31, VV +DEX +SB n=32, DV +DEX +SB 

n=26. (W-D1) Lineage tracing (outlined) highlights all cells containing injected material. 

Images are representative and show a lateral view orientated anterior left, dorsal up. Scale 

bars represent 1 mm. 
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3.14 Nodal is a likely TGF-beta ligand for cardiac specification  

Nodal, Activin, TGF-betas and growth differentiation factors (GDFs) are TGF-beta 

ligands which all signal through ALK4/5/7 receptors (de Caestecker, 2004; Vilar et al., 

2006). Nodal plays a fundamental role in patterning the early embryo (Shen 2007) 

and is present in the dorsal, future cardiac-forming region, of the blastula stage 

Xenopus laevis embryo (Faure et al., 2000; Gritsman et al., 2000; Lee et al., 2001). 

Therefore, Nodal is a key candidate for cardiac specification (Cai et al., 2012; Parisi et 

al., 2003; Reissmann et al., 2001; Samuel and Latinkić, 2009; Xu et al., 1999). Nodal 

requires the EGF-CFC co-receptor Cripto to propagate TGF-beta signalling, which can 

be specifically inhibited by the extracellular antagonist Lefty (Gritsman et al., 1999; 

Yeo and Whitman, 2001). Recombinant Lefty protein has previously been used in 

Xenopus laevis to explore the role of Nodal in mesoderm induction (Luxardi et al., 

2010). The work presented here investigates whether Nodal is a likely TGF-beta 

ligand acting through ALK4/5/7 for cardiac specification in Xenopus laevis. Nodal 

signalling was inhibited and the effects on cardiac tissue were examined.  

Initially, the suitability of Lefty protein for investigating the role of Nodal in cardiac 

specification was assessed and optimised. When Lefty protein was injected into the 

blastocoel of stage 8 embryos, normal embryonic development was affected in a 

dose-dependent manner. At low concentrations of 100 µg/ml, equivalent to 0.5 ng 

of Lefty protein per embryo, tadpole phenotypes were comparable to those of the 

controls (Figure 3:15 A-D, I, J). However, at higher concentrations of 250 µg/ml (1.25 

ng of Lefty per embryo) and 450 µg/ml (2.25 ng of Lefty per embryo), tadpole 

phenotypes showed the presence of an increasingly truncated anterior-posterior axis 

(Figure 3:15 E-H) and presented similar phenotypes to those observed after small 

molecule-mediated ALK4/5/7 inhibition at stage 8 (Figure 3:9 and Figure 3:11). 

Western blot analysis of protein extracts from stage 10 embryos revealed that Lefty 

protein caused a reduction in the levels of p-Smad2 in a similar manner to that shown 

after treatment with the ALK4/5/7 inhibitors SB505124 and A-83-01, when all 

treatments began at stage 8 (Figure 3:15 K). Therefore, these results suggests that 
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Lefty protein injected into the blastocoel can diffuse within the embryo and can 

inhibit Nodal signalling, resulting in a reduction of activated Smad2. Additionally, by 

varying the stage of development in which embryos receive the Lefty protein 

injection, Lefty can be used to time-dependently control the commencement of 

Nodal inhibition for further investigations. 450 µg/ml was chosen as the optimum 

dose for further use. This is the highest dose achievable using the purchased reagents 

and additionally is the most appropriate dose which can produce the observed 

comparable phenotypic and molecular outcome as the soluble ALK4/5/7 inhibitors 

SB505124 and A-83-01. 
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Figure 3:15. Lefty protein inhibits Smad2 activation and affects embryonic development in 

a dose-dependent manner 

At stage 8 embryos were injected into the blastocoel with (A, B) PBS containing 0.1% BSA 

(PBS-BSA) (n=24) or (C, D) 100 µg/ml (n=30), (E, F) 250 µg/ml (n=27) or (G, H) 450 µg/ml 

(n=29) of Lefty protein, or (I, J) were untreated (n=31). All individual images are a lateral view 

orientated anterior left, dorsal up. Scale bar represents 1 mm. (K) Western blot analysis on 

stage 10 embryos after DMSO, 200 µM of SB505124 (SB) or A-83-01 (A83), or 450 µg/ml Lefty 

protein injection at stage 8. Smad2 is a loading control. 
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To investigate whether Nodal is a candidate TGF-beta ligand acting for cardiac 

specification, embryos were injected with 450 µg/ml of Lefty protein into the 

blastocoel at stage 8, stage 8 +1 hour or stage 8 +2 hours, and allowed to develop 

until the tadpole stage. Tadpoles were analysed by whole mount in situ hybridisation 

using the cardiac marker myl7 and the blood marker hba3. Figure 3:16 E, F, K, L 

demonstrates that Nodal inhibition by Lefty protein at stage 8 resulted in tadpoles 

with absent or severely reduced cardiac and blood tissue, which also presented a 

truncated anterior-posterior axis. A similar, but milder, phenotype was observed 

upon Nodal inhibition by Lefty protein at stage 8 +1 hour (Figure 3:16 G, H, K, L). 

Nodal inhibition by Left protein at stage 8 +2 hours resulted in tadpoles with reduced 

cardiac and blood tissue (Figure 3:16 I, J, K, L), with the whole embryonic phenotype 

more comparable to that of the controls (Figure 3:16 A-D, K, L). Western blot analysis 

of protein extracts from stage 10 embryos illustrates that there was a reduction in p-

Smad2 levels as a result of Lefty protein injections (Figure 3:16 M). These results bear 

remarkable similarity to those observed after ALK4/5/7 inhibition using molecular 

inhibitors in Figure 3:9. These results suggest that Nodal is a key ligand acting via 

ALK4/5/7 and Smad2 for cardiac specification.  
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Figure 3:16. Nodal is a likely TGF-beta ligand for cardiac specification 

Embryos were either (A, B) untreated controls or injected into the blastocoel with (C, D) PBS 

containing 0.1% BSA (PBS-BSA) at stage 8 or 450 µg/ml Lefty protein at (E, F) stage 8, (G, H) 

stage 8 +1 hour or (I, J) stage 8 +2 hours. Tadpoles were analysed by whole mount in situ 

hybridisation using the cardiac marker myl7 (white arrows) and the blood marker hba3 (red 

arrows). All individual images are a lateral view orientated anterior left, dorsal up. Scale bar 

represents 1 mm. Graphs display results of A-J showing (K) myl7: control n=96, PBS-BSA n=62, 

Lefty stage 8 n=81, Lefty stage 8 +1 n=85, Lefty stage 8 +2 n=80 and (L) hba3: control n=68, 

PBS-BSA n=43, Lefty stage 8 n=56, Lefty stage 8 +1 n=55, Lefty stage 8 +2 n=51. (M) Western 

blot analysis on stage 10 embryos. Smad2 is a loading control.  
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3.15 Discussion 

3.15.1 There is an absolute requirement for ALK4/5/7 signalling in cardiac 

specification 

Results presented here show that ALK4/5/7 signalling is required for the specification 

of cardiac progenitor cells, and thus for differentiated cardiac tissue in vivo in 

Xenopus laevis. This is in agreement with work in Xenopus laevis explants (Samuel 

and Latinkić, 2009), murine stem cell culture (Cai et al., 2012; Parisi et al., 2003; 

Sonntag et al., 2005; Xu et al., 1999, 1998), avian tissue interactions (Yatskievych et 

al., 1997) and ex vivo in zebrafish (Griffin and Kimelman, 2002; Reiter et al., 2001). 

Using various mutants, dominant negative (DN) constructs or molecular inhibitor 

techniques, the aforementioned investigations argue that there is a requirement for 

Nodal/ Activin signalling in cardiac specification. Additionally, the work in this chapter 

complements in vivo and in vitro work in Xenopus laevis that has shown that ectopic 

Nodal/ Activin signalling induces ectopic cardiac markers (Foley et al., 2007; Logan 

and Mohun, 1993; Reissmann et al., 2001) by illustrating the opposite - that time-

dependent inhibition of ALK4/5/7 inhibits cardiogenesis. This is the first in vivo study 

in Xenopus laevis utilising soluble molecular inhibitors to directly examine the effects 

of ALK4/5/7 inhibition on cardiac specification. This has allowed the specific role of 

Nodal/ Activin signalling in cardiac induction to be examined, with minimal effect on 

alternative developmental processes which required Nodal/ Activin signalling during 

embryogenesis. Additionally, the molecular inhibitors have allowed the time at which 

Nodal/ Activin signalling is required for cardiac specification to be explored, 

increasing our knowledge as to the time frame of induction events in the early 

embryo. 
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3.15.2  ALK4/5/7 signalling is required for cardiac specification, separate to 

its role in general mesoderm induction 

Cardiac primordia arise from within the mesoderm, with mesoderm induction and 

cardiac specification occurring temporally in rapid succession. The role of ALK4/5/7 

signalling in these processes has not been fully uncoupled. Recent evidence 

illustrates the requirement for ALK4/5/7 signalling before midblastula transition for 

mesoderm formation (Skirkanich et al., 2011), and between midblastula transition 

and gastrulation for specifying various mesodermal cell types (Hagos and Dougan, 

2007). A major concern during the early work of this chapter was that the inhibition 

of ALK4/5/7 was affecting mesoderm, thus indirectly affecting cardiac tissue. Data 

presented in this chapter demonstrated that the specification of mesoderm 

derivatives skeletal muscle, pronephros and notochord was largely unaffected by 

ALK4/5/7 inhibition after stage 8. This implied that ALK4/5/7 signalling had fulfilled 

its role in general mesoderm induction, and inhibition was specifically interfering 

with the initiation of cardiac tissue. Previous work demonstrates that Nodal/ Activin 

signalling is required in temporal succession for specifying somites, notochord and 

then heart tissue (Hagos and Dougan, 2007). Work within this thesis has identified a 

narrow time window that allows the specific interference of cardiac mesoderm, with 

minimal effect on alternate mesoderm derivatives, suggesting that the role of 

ALK4/5/7 in mesoderm induction and cardiac specification can be uncoupled.  

Interestingly, blood was affected by ALK4/5/7 inhibition after midblastula transition. 

The heart and blood forming regions arise from adjacent mesoderm. The cardiac 

marker nkx2.5 and myeloid marker mpo partially overlap at the neurula stage and 

the cardiac and blood lineage share common features in development (Tashiro et al., 

2006). In zebrafish, gata4, 5 and 6 are required for both myeloid and cardiac 

development (Peterkin et al., 2009). Knockdown of blood factors spib or slurp1l 
results in abnormal myeloid and heart development (Smith and Mohun, 2011) and 

cardiogenic nkx2.5 has been shown necessary for heart and myeloid cell 

differentiation (Sakata and Maeno, 2014). However, these cardiogenic and 

hematopoietic factors, and additional influences, also compete to promote one 
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lineage whilst suppressing the alternative. FGF signalling is involved in the balance 

between cardiomyocytes and hemangioblasts, with FGF signalling inhibition resulting 

in enhanced hemangioblasts and diminished cardiomyocytes in Xenopus laevis and 

zebrafish (Simões et al., 2011; Walmsley et al., 2008). nkx2.5 has been shown to 

repress hemangioblast development (Simões et al., 2011). The blood factor tal1 

binds to cardiogenic and hematopoietic enhancers, preventing cardiac factors from 

binding, thus preventing cardiogenesis (Org et al., 2015). Tal1 utilises a pre-

established epigenetic landscape (Org et al., 2015), perhaps established by earlier 

ALK4/5/7, or more precisely Nodal, signalling. Therefore, it would appear that both 

the heart and blood lineages require common early inputs, which is not surprising 

given their close spatial proximity. It is likely that Nodal/ Activin primes or specifies 

the cardiac and blood lineages, which diverge due to the action of opposing factors 

throughout further development. 

3.15.3 ALK4/5/7 signalling is required for 2-3 hours from midblastula 

transition for cardiac specification 

Work presented here demonstrates that ALK4/5/7 signalling is required for cardiac 

specification from midblastula transition for approximately 2-3 hours. The ALK4/5/7 

requirement initially is absolute, gradually diminishing with the requirement fulfilled 

during stage 9. This is a more precise novel time window identified for cardiac 

specification that is earlier than previously thought (see below). Perhaps Nodal/ 

Activin signalling is required during this time window to activate cardiac specific 

genes. Alternatively, Nodal/ Activin signalling may be required to prime cells for 

receiving further cardiac inducing signals, distinguishing them from other mesoderm 

derivatives.  

Previously, the timing of cardiac tissue specification was not precisely defined. 

Previous experimental evidence concluded that cardiac specification has occurred by 

the end of gastrulation, thus it was assumed that cardiac specification takes place 

during gastrulation (see Section 1.10) (Samuel and Latinkić, 2009; Sater and 

Jacobson, 1989). Nodal/ Activin signalling is additionally understood to be required 
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for gastrulation events, although whether that role is direct or indirect is unclear 

(Jones et al., 1995; Luxardi et al., 2010; Shen, 2007). The results of the initial 

experiments presented within this chapter, that showed that not only was the heart 

normal, but global embryonic development also appeared normal upon ALK4/5/7 

inhibition from as early as stage 9, were surprising. The global embryonic phenotypes 

observed upon ALK4/5/7 inhibition treatments are in agreement with previous work 

demonstrating that tadpoles treated with SB505124 at stage 9 are largely normal 

(Skirkanich et al., 2011). However, results differ from other work which reports that 

SB505124 treatment at stage 9 disrupts gastrulation and the overall phenotype 

(Luxardi et al., 2010). It is likely that the latter result presents an extreme example, 

especially considering the conjunctive presentation of data demonstrating that early 

gastrula stage mesendodermal markers Sox17-alpha, brachyury and goosecoid were 

barely affected upon the same stage 9 SB505124 treatments (Luxardi et al., 2010). 

Taken together, the results presented here support the idea that pre-gastrulation 

ALK4/5/7 signalling is required for cardiac specification. 

3.15.4  Phenotypic, but not detectable p-Smad2 recovery, occurs after 

ALK4/5/7 inhibitor removal 

In experiments presented here involving timed ALK4/5/7 inhibitor incubation 

periods, it was observed that axial elongation phenotypes, but not p-Smad2 levels, 

recovered after ALK4/5/7 inhibitor removal. A possible explanation for this is that a 

small amount of p-Smad2 may be restored after inhibitor removal, sufficient to 

partially recover the phenotypes observed for stage 8 and stage 8 +1 inhibition, but 

not enough to enter the detectable range of western blotting. Nodal/ Activin 

signalling undergoes positive and negative auto-regulation. Conceivably, as a result 

of additional inhibition, the window of competency to fully activate the feedforward 

mechanism might be lost. For example, the TGF-beta ligand Nodal activates its own 

repressor Lefty, which diffuses at a faster rate than Nodal, thus limiting signalling 

(Sakuma et al., 2002). By adding the soluble ALK4/5/7 inhibitors for a brief time-

period, the endogenous inhibitors may be prevailing, thus p-Smad2 signalling cannot 
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recover sufficiently after soluble inhibitor removal.  Indeed, in a study demonstrating 

that the size of the Nodal signalling domain is determined by temporal Nodal 

signalling activation, it was predicted that once Lefty protein reaches a threshold 

level, Nodal signalling is no longer able to propagate (van Boxtel et al., 2015). Testing 

and confirming this hypothesis would include utilising mass spectroscopy to measure 

any remaining drugs, and analysing the levels and localisation of Lefty protein and 

active ALK4/5/7 signalling.  

3.15.5  Active ALK4/5/7 signalling is required during a defined 2-3 hour time 

window after midblastula transition, for cardiac specification 

Active ALK4/5/7 signalling appears to be required over 2-3 hours from midblastula 

transition, for cardiac specification. During this time window, very little p-Smad2 can 

be readily detected by conventional western blotting. One explanation for this is that 

although whole embryonic p-Smad2 levels are low, p-Smad2 may be present in only 

a small subset of cells at a high concentration. In agreement with this, p-Smad2 has 

been shown to be initiated from the dorsal side of the blastula embryo, with 

expression localised to the dorsal and ventral marginal zone and endoderm by 

gastrula stages (Faure et al., 2000; Lee et al., 2001). Alternatively, a low level of p-

Smad2 may be sufficient for cardiac specification, with cells receiving Nodal/ Activin 

signals over an extended time window. It is debatable whether cell fate is determined 

by concentration or length of exposure to ALK4/5/7 ligands. In one model, known as 

the snapshot model, cells respond to the concentration of ALK4/5/7 ligands, 

regardless of the length of exposure, with the only role of time being to allow the 

ALK4/5/7 ligand gradient to expand (Harvey and Smith, 2009; Rogers and Schier, 

2011). The ratchet model suggests that cells monitor ligand levels and respond to 

certain thresholds to stepwise induce different cell fates (Dyson and Gurdon, 1998; 

Gurdon et al., 1995). Alternatively, the cumulative dose model proposes that cells 

acquire certain fates depending on the length of time of ALK4/5/7 ligand exposure 

(Gritsman et al., 2000; Hagos and Dougan, 2007; Tian et al., 2003; van Boxtel et al., 

2015). For cardiac specification, it appears that cells have a defined time window in 
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which they must be exposed to ALK4/5/7 signalling. However, within that time 

window it can be questioned whether the length of exposure, or total cumulative 

dose is important. Preliminary experiments demonstrate that tadpoles treated with 

50 µM of SB505124 at stage 8 present comparable phenotypes to those subjected to 

100 µM of SB505124 at stage 8+ 1 hour. This would argue against a strict duration of 

exposure model and in favour of exposure to a critical threshold, or cumulative dose, 

of Nodal/ Activin signalling. It would appear that duration and dose are inter-

convertible, to an extent, with a greater ALK4/5/7 signalling exposure time required 

if signalling efficacy is compromised. Endogenous Nodal/ Activin inhibitors are likely 

regulating this temporal ALK4/5/7 signalling activity. Micro RNAs (miRNA) have been 

linked to early Nodal/ Activin signal regulation, and the regulation of Nodal/ Activin 

protein antagonists (Bassett et al., 2014; Choi et al., 2007; Rosa et al., 2009). Although 

Nodal/ Activin signalling activates its own repressors, signalling inhibition is delayed. 

miRNA-430 has been shown to temporarily inhibit Lefty translation (van Boxtel et al., 

2015). This allows time for cells to be exposed to active Nodal/ Activin signalling 

before Lefty antagonism, allowing temporal exposure of cells to Nodal/ Activin 

signalling to be perceived.  

3.15.6  Smad2 is capable of propagating the cardiac inducing signal 

Rescue of the ALK4/5/7 inhibition phenotype by timed activation of Smad2 

demonstrates the specificity of experimental inhibition treatments and affirms that 

ALK4/5/7 signalling can act via Smad2 for cardiac specification. Furthermore, cardiac 

tissue rescue was achieved in a cell-autonomous manner, suggesting that ALK4/5/7 

signalling is required in presumptive cardiac cells for successful cardiac specification. 

This requirement is likely to be in regulating gene expression, activating cardiac genes 

and potentially repressing alternate lineages (Ross and Hill, 2008). Partial, but not 

complete, cardiac tissue rescue was achieved. This is potentially due to the 

requirement for another signalling mediator in addition to Smad2. An alternative 

explanation is that complete whole embryo phenotypic and specific tissue rescue is 

difficult to experimentally achieve. Embryos are exposed to high concentrations of 
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counteracting reagents, often not in a particularly cell-specific manner, thus 

balancing these influences to precisely achieve a ‘normal’ phenotype is unlikely. 

Therefore, although only partial rescue is achieved, it is a good indication of a 

successful rescue experiment. A successful rescue experiment was achieved at stage 

8 +1 hour. Using the same experimental methods, rescue was not observed at stage 

8. It is possible that with further work adjusting and optimising reagent 

concentrations and experimental procedures that this stage 8 rescue may work 

under altered conditions. However, the lack of rescue in itself is informative, 

revealing a greater requirement for active ALK4/5/7 signalling from midblastula 

transition. Presuming that cells become fated to the cardiac lineage upon being 

exposed to a threshold or cumulative dose of Nodal/ Activin signalling over time, 

these rescue experiments reveal further information about the specific time window 

of exposure required. Active ALK4/5/7 signalling from midblastula transition for the 

first hour appears vital, and even upon inhibitor removal after this time window, cells 

perhaps cannot be exposed to, or no longer have the competence to respond to, 

prolonged Nodal/ Activin signalling to acquire a cardiac fate. This may be due to the 

prevalence of endogenous Nodal/ Activin inhibitors, or that cells have received and 

are now responding to alternative fates, in the absence of early Nodal/ Activin 

signalling. Cells exposed to ALK4/5/7 inhibition at stage 8 +1 hour have previously 

received Nodal/ Activin signalling exposure, allowing partial, but not full, cardiac 

tissue specification. During the stage 8+ 1 hour rescue experiment, exogenous Smad2 

inputs may be acting upon cells which have already received a certain level of Nodal/ 

Activin signalling from midblastula transition. Thus, the signalling requirement level 

or time of exposure for cells to become cardiac is being fulfilled. Altogether, this 

reasons that a low level of active ALK4/5/7 signalling, over a time period of 2-3 hours 

from midblastula transition, is fundamental to cardiac specification. Interestingly this 

is when Nodal5 and Nodal6 levels are raised (Luxardi et al., 2010; Takahashi et al., 

2000), placing them as key Nodal ligands for cardiac specification. 
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3.15.7 Nodal is a key candidate TGF-beta ligand acting through ALK4/5/7 

for cardiac specification 

The work in this chapter demonstrated the similarity of effects between ALK4/5/7 

inhibition, using soluble inhibitors, and Nodal inhibition, using Lefty protein, on the 

whole tadpole and cardiac phenotypes. This, with other work (Cai et al., 2012; Parisi 

et al., 2003; Reissmann et al., 2001; Samuel and Latinkić, 2009; Xu et al., 1999) 

suggests that Nodal is a key candidate ALK4/5/7 ligand for inducing cardiac tissue in 

vivo in Xenopus laevis. The specific Nodal inhibition phenotypes are slightly less 

severe than ALK4/5/7 inhibitor SB505124 and A-83-01 phenotypes. One explanation 

for this is the lower relative dose of Lefty protein used. The maximum concentration 

of Lefty protein which could be achieved was 450 µg/ml. Hence a higher level of 

inhibition could not be achieved without using an alternative more concentrated 

stock or injecting larger volumes, which could negatively impact upon embryonic 

development. There is no evidence that this was a suboptimal amount of Lefty 

protein for affecting Nodal signalling, as p-Smad2 levels are suitably decreased. 

Another interpretation is that there are additional ALK4/5/7 ligands also involved, for 

example Activin, which plays a role in mesoderm formation alongside other Nodal-

related genes (Piepenburg et al., 2004). To test this, each ALK4/5/7 ligand would have 

to be inhibited independently. Alternatively, it has been shown that p-Smad2 levels 

decrease slowly upon Lefty treatment, compared to rapid signal termination with 

SB505124 (van Boxtel et al., 2015). This is presumably due to internalised receptor 

complexes in the early endosomes (Jullien and Gurdon, 2005; Vizán et al., 2013). 

Therefore, this temporarily sustained Nodal signalling may be resulting in the milder 

phenotypes observed. Current literature places Nodal spatially and temporarily as a 

suitable candidate, and work presented here demonstrates that Nodal is the most 

likely TGF-beta ligand acting via ALK4/5/7 and Smad2 for cardiac specification.  
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4 FGF/ MEK signalling is required for heart 

development after gastrulation 
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4.1 Introduction 

Fibroblast growth factor (FGF) signalling plays multiple roles during early embryonic 

development, including in tissue induction, cell fate specification, axis determination, 

morphological movements and gene maintenance (Coumoul and Deng, 2003; Thisse 

and Thisse, 2005). Several FGF ligands are expressed in the anterior endoderm, which 

underlies the developing heart field, of the blastula and gastrula staged Xenopus 

laevis embryo, thus inferring a possible role for FGF signalling in cardiac cell induction 

or maintenance (Alsan and Schultheiss, 2002; Deimling and Drysdale, 2011; Lea et 

al., 2009). Studies in zebrafish, Drosophila melanogaster, Xenopus laevis and chick 

have highlighted that there is a requirement for FGF signalling in cardiac cell 

induction, regulation and development (see Section 1.8.2 for more information)  

(Beiman et al., 1996; Keren-Politansky et al., 2009; Lopez-Sanchez et al., 2015; 

Marques et al., 2008; Reifers et al., 2000; Samuel and Latinkić, 2009; Simões et al., 

2011). However, there is little evidence that demonstrates a direct role for FGF 

signalling in cardiac specification. Previously, the role of FGF signalling in cardiac 

specification has not been separated from its broader functions in embryonic 

development. In addition, the time at which FGF signalling may be required for 

cardiac specification in vivo is largely unknown. An understanding of whether FGF 

signalling is required for cardiac cell specification and the time at which cardiac 

specification occurs will further our understanding of how signalling pathways 

orchestrate embryonic development. The work presented in this chapter investigates 

the requirement and timing for FGF/ MEK signalling in cardiac specification. 
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4.2 Optimisation of suitable reagents to inhibit the FGF/ MEK signalling 

pathway in Xenopus laevis embryos 

4.2.1 Small molecular drugs SU5402 and PD0325901 are suitable FGF/ 

MEK signalling inhibitors 

To investigate the requirement for the FGF signalling pathway in cardiac 

specification, FGF signalling was inhibited and the effects of the inhibition on cardiac 

tissue and whole embryonic development were observed. FGF signalling inhibition 

can be achieved using a variety of techniques, including dominant negative 

constructs, genetic mutants, morpholino oligonucleotides and small soluble 

molecular inhibitors (Amaya et al., 1991; Fletcher et al., 2006; Reifers et al., 1998; 

Samuel and Latinkić, 2009). There are a range of soluble molecular inhibitors 

available which inhibit various components of FGF signalling. These soluble FGF 

pathway inhibitors can be added to, or removed from, the embryonic media at any 

time point in development to permit time-controlled signalling inhibition, thus 

potentially allowing the diverse roles of FGF signalling in embryogenesis to be 

experimentally separated. FGF signalling can propagate via multiple transduction 

pathways downstream of the activated FGF receptors, including the ERK, PLC-

gamma, Pi3K and STAT branches (Kimelman, 2006; Thisse and Thisse, 2005). 

However, FGF predominantly signals via the ERK branch during embryonic 

development (Corson et al., 2003; Thisse and Thisse, 2005).  

Seven soluble inhibitors which act to inhibit components of the FGF signalling 

pathway were tested for their ability to effect embryonic development and result in 

phenotypes consistent with previous reports of FGF signalling inhibition. Previous 

research has shown that embryos subjected to suboptimal FGF inhibition presented 

a truncated anterior-posterior axis. Higher levels of FGF signalling inhibition resulted 

in embryos with incomplete gastrulation and neurulation, with the posterior region 

of the tadpole truncated and curling around towards the back of the head (Deimling 

and Drysdale, 2011; Delaune et al., 2005). This is as expected, as FGF signalling is 
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known to be involved in gastrulation movements and tail formation (Amaya et al., 

1991; Fletcher and Harland, 2008). Several of the inhibitors selected for testing have 

previously been used in research at concentrations of 0.1-100 µM, in Xenopus laevis 

and zebrafish (Anastasaki et al., 2012; Deimling and Drysdale, 2011; Rankin et al., 

2012; Samuel and Latinkić, 2009; Shifley et al., 2012). These concentrations were 

used to inform the choice of inhibitor concentrations tested here.  

The FGF signalling inhibitors were added to Xenopus laevis embryos shortly after 

fertilisation and incubated continuously throughout development. Tadpole 

phenotypes were observed at stage 32-36. The inhibitors, signalling component 

inhibited, inhibitor concentrations and phenotypic observations of tadpoles after 

inhibitor treatments are shown in Table 4:1. Embryos treated with the FGFR 

inhibitors SU5402, AZD4547 and PD173074 resulted in tadpoles which presented 

similar phenotypes to each other and previous reports of FGF signalling inhibition. 

These phenotypes were also observed after embryonic treatment with the MEK 

inhibitors PD0325901, PD98059 and the MAPK inhibitor SB203580. The FGFR 

inhibitor AZD4547 was found to lose efficacy over several weeks in storage, so was 

not selected for further use. The FGFR inhibitor PD173074 required supplementation 

with 0.1 mM of adenosine triphosphate (ATP). However, it was observed here that 

0.1 mM of ATP alone negatively affected whole embryonic development, resulting in 

tadpoles that were truncated with a curved anterior-posterior axis. Therefore, 

PD173074 was not selected for further use. The FGFR inhibitor SU5402 did not 

require ATP supplementation and retained efficacy after several months in storage, 

therefore it was selected for further testing. SU5402 (Figure 4:1 A) binds to and 

inhibits FGF receptor function (Mohammadi et al., 1997). SU5402 does not compete 

with the substrate peptide, but binds at the ATP site, acting as an ATP-competitive 

tyrosine kinase inhibitor. SU5402 has been found to have no, or very weak, inhibitory 

effects on related receptor tyrosine kinases such as insulin, epidermal growth factor 

(EGF) and platelet-derived growth factor (PDGF) (Mohammadi et al., 1997). 

In addition to an inhibitor which acts at the FGFR level and hence can inhibit 

downstream signal propagation by multiple transduction branches, a soluble 
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inhibitor which inhibits the ERK branch of FGF signal transduction was selected. The 

MEK inhibitor U0126 tested here did not affect embryonic development at any 

concentration tested, so was not selected for further testing. The MAPK/ ERK 

inhibitor SB203580 did negatively affect normal embryonic development in a manner 

consistent with previous reports. However, as examining the phosphorylation 

(activation) state of ERK is a useful experimental method for determining whether 

the FGF/ ERK pathway is active, the use of an inhibitor which acts upstream of ERK 

was selected instead. The MEK inhibitors PD0325901 and PD98059 work upstream 

of ERK and were found to effect normal embryonic development to result in 

phenotypes comparable to those previously reported after FGF signalling inhibition. 

PD0325901 was found to work effectively at relatively low concentrations of 2-20 

µM, compared with the higher concentrations of PD98059 which were required to 

achieve the same phenotypic effect, so was selected for further testing. PD0325901 

(Figure 4:1 B) selectively binds to, and inhibits MEK (Sebolt-Leopold and Herrera, 

2004). PD0325901 inhibits MEK in a non-ATP competitive manner, binding into a 

hydrophobic pocket and inducing conformational changes in MEK which renders the 

catalytic kinase function inactive. This binding occurs in a pocket with no known 

sequence homology to other kinases, hence MEK inhibition is highly selective (Sebolt-

Leopold, 2008; Sebolt-Leopold and Herrera, 2004). Due to the choice of FGF signalling 

pathway inhibitors selected, inhibition shall commonly be referred to as FGF/ MEK 

signalling inhibition. 

The concentrations of inhibitors tested here are similar to previously reported in vivo 

inhibitor use, although are higher than the IC50 values determined for cell culture. For 

example, previously SU5402 has been used at 50 µM, or at 10 µM when 

supplemented with 0.1 mM of ATP, in Xenopus laevis embryos or explants (Deimling 

and Drysdale, 2011; Samuel and Latinkić, 2009; Shifley et al., 2012). An IC50 of 10 -20 

µM, in the presence of 1 mM of ATP, in cell culture, has previously been determined 

for SU5402 (Mohammadi et al., 1997). Previously, PD0325901 has been observed to 

have an IC50 of between 5 - 1500 nM, in a variety of cell cultures of different 

sensitivities (Henderson et al., 2010; Pratilas et al., 2008; Ricciardi et al., 2012). 
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PD0325901 has previously been used in vivo in zebrafish at concentrations of 0.1-1 

µM (Anastasaki et al., 2012). It would appear that the concentration of inhibitor 

required between different in vivo and in vitro systems varies. This is most likely due 

to the sensitivity and traits of each system, in addition to the potency of the batch of 

inhibitor purchased. For example, the Xenopus laevis embryo contains a fatty yolk, 

which may be capable of sequestering the inhibitors. This might explain why higher 

inhibitor concentrations than those used in cell culture systems are necessary to 

achieve signalling inhibition in vivo. 
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Inhibitor Inhibits Concentrations 

tested (µM) 

Phenotype observations at stage 32-36 

 

SU5402 FGFR 1 - 100 Tadpoles were mildly truncated along the anterior-posterior axis at low concentrations. The severity of the 

phenotype became more prominent with increasing concentrations to result in tadpoles with a severely 

truncated anterior-posterior axis with the posterior region of the tadpole curling and signs of incomplete 

gastrulation and neurulation. 

PD0325901 MEK  1 - 100  Tadpoles were mildly truncated along the anterior-posterior axis at low concentrations. The severity of the 

phenotype became more prominent with increasing concentrations to result in tadpoles with a severely 

truncated anterior-posterior axis with the posterior region of the tadpole curling and signs of incomplete 

gastrulation and neurulation. 

U0126 MEK 35 - 70  No effect at concentrations tested 

AZD4547 FGFR 50 - 100  Tadpoles were mildly truncated along the anterior-posterior axis at low concentrations. The severity of the 

phenotype became more prominent with increasing concentrations to result in tadpoles with a severely 

truncated anterior-posterior axis with the posterior region of the tadpole curling and signs of incomplete 

gastrulation and neurulation. Inconsistent working effect after minimal time in storage.  

PD173074 FGFR 100 - 200 All inhibitor applications were supplemented with 0.1 mM of ATP. Tadpoles were mildly truncated along the 

anterior-posterior axis at low concentrations. The severity of the phenotype became more prominent with 

increasing concentrations to result in tadpoles with a severely truncated anterior-posterior axis with the 

posterior region of the tadpole curling and signs of incomplete gastrulation and neurulation. 
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SB203580 MAPK/ 

ERK 

50 - 100  Tadpoles were mildly truncated along the anterior-posterior axis at low concentrations. The severity of the 

phenotype became more prominent with increasing concentrations to result in tadpoles with a severely 

truncated anterior-posterior axis with the posterior region of the tadpole curling and signs of incomplete 

gastrulation and neurulation. 

PD98059 MEK 50 - 100  Tadpoles were mildly truncated along the anterior-posterior axis at low concentrations. The severity of the 

phenotype became more prominent with increasing concentrations to result in tadpoles with a severely 

truncated anterior-posterior axis with the posterior region of the tadpole curling and signs of incomplete 

gastrulation and neurulation. 

Table 4:1. FGF signalling inhibitors 



 152  

 

Figure 4:1 Chemical structure of FGF and MEK inhibitors 

(A) Chemical structure of SU5402. (B) Chemical structure of PD0325901. (www.tocris.com) 
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4.2.2 FGF/ MEK inhibitors SU5402 and PD0325901 adversely affect normal 

embryonic development in a dose-dependent manner 

FGF/ MEK inhibitors, SU5402 and PD0325901, were tested at a range of 

concentrations to establish the optimum concentration to use in further 

investigations in Xenopus laevis embryos. Embryos were treated at the 2 cell stage 

with increasing concentrations of the FGF/ MEK inhibitors and the tadpole 

phenotypes were examined. Both SU5402 and PD0325901 treatments produced a 

dose response. At the lowest dose of SU5402, 60 µM, a slightly truncated tadpole 

was observed (Figure 4:2 C, D), compared with the controls (Figure 4:2 A, B). The 

highest dose of 100 µM of SU5402 resulted in truncated tadpoles with deficient tail 

elongation and the posterior end curled towards the back of the head (Figure 4:2 I, 

J). Intermediate doses of 80 µM (Figure 4:2 E, F) and 90 µM of SU5402 (Figure 4:2 G, 

H) showed a dose response with a milder phenotype than after 100 µM, but more 

severe than with 60 µM, of SU5402 treatments. During the course of investigations 

contained within this chapter two different stocks of SU5402, from two different 

suppliers, were used: SU5402 from Calbiochem (SU5402-C) and SU5402 from Sigma 

(SU5402-S). SU5402-C at 20 µM resulted in the same phenotype as 100 µM of 

SU5402-S, with a similar dose response but at lower nominal concentrations. It shall 

be stated whether SU5402-C or SU5402-S was used for experiments in the 

corresponding figure legend. 

Embryos treated with 2 µM of PD0325901 presented a truncated phenotype, bent 

along the anterior-posterior axis (Figure 4:2 M, N), with a similar but more severe 

effect observed at 5 µM (Figure 4:2 O, P), compared with the controls (Figure 4:2 K, 

L). Treatment with 10 µM of PD0325901 often resulted in embryos with a truncated 

anterior posterior axis and retarded tail development (Figure 4:2 Q, R). PD0325901 

at 50 µM severely affected development, resulting in tadpoles with a barely 

distinguishable axis and landmark embryonic features including the eyes and cement 

gland (Figure 4:2 S, T).  
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The phenotypes observed here are in keeping with previously reported phenotypes 

of FGF/ MEK signalling downregulation, and the requirement for FGF/ MEK signalling 

in cellular movements during gastrulation and in maintaining the tailbud domain 

(Amaya et al., 1991; Deimling and Drysdale, 2011; Delaune et al., 2005; Fletcher and 

Harland, 2008; Pownall et al., 1996). 

By comparing experimental replicas throughout all of the experiments presented 

here, it was apparent that the potency of the inhibitor treatment varied. This is 

consistent with previous reports (Fletcher and Harland, 2008). The same range of 

developmental features were observed, but the severity of phenotypes fluctuated 

between batches of embryos and between embryos within the same batch. Treated 

embryos presented the same phenotypic features, but the efficacy of a given drug 

treatment varied. For example, the tail was truncated to a greater extent in some 

embryos, but not others, which were subjected to the same FGF/ MEK inhibition 

treatment. Importantly, the range of different phenotypes observed was narrow and 

consistent. In order to control for the variation in the efficacy of the drugs, each 

experiment included a positive control consisting of embryos that were treated from 

the 2 cell stage, continuously, with the FGF/ MEK inhibitors. In addition, experiments 

were typically performed using both inhibitors independently to ensure consistent 

results. Throughout this results chapter the most representative images of FGF/MEK 

inhibition treatments are shown, although more and less severely affected 

embryonic phenotypes can be observed in the group images.  
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Figure 4:2. FGF/ MEK inhibitors SU5402 and PD0325901 adversely affect normal embryonic 

development in a dose-dependent manner 

Embryos were treated continuously from the 2 cell stage with (A, B, K, L) DMSO or increasing 

concentrations of (C-J) SU5402-S or (M-T) PD0325901, displayed down the left of the images. 

All individual images are a lateral view orientated anterior left, dorsal up. Scale bar 

represents 1 mm. SU5402 column – DMSO n=25, SU5402 60 µM n=29, 80 µM n=27, 90 µM 

n=26, 100 µM n=27. PD0325901 column – DMSO n=77, SU5402 2 µM n=28, 5 µM n=89, 10 

µM n=82, 20 µM n=91. 
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4.2.3 A dominant negative FGFR adversely affects normal embryonic 

development in a similar manner to SU5402 and PD0325901 

In order to compare and validate the results observed using soluble inhibitors of the 

FGF/ MEK signalling pathway, a well-established dominant negative FGF receptor 

(DN-FGFR) (Amaya et al., 1991) was used to inhibit FGF signalling. The DN-FGFR is 

truncated at amino acid 398, directly downstream of the transmembrane domain, 

resulting in an absent intracellular tyrosine kinase domain (Amaya et al., 1991). In 

response to ligand binding under normal conditions, FGFR dimerisation and 

transphosphorylation of the intracellular tyrosine kinase domain is required for 

adaptor protein docking and downstream signal transduction (Turner and Grose, 

2010). Hence, the mutated FGFR can form a dimer with endogenous FGFRs, however, 

the absence of the intracellular tyrosine kinase domain results in a non-functional 

receptor complex.   

Xenopus laevis embryos were injected uniformly with mRNA encoding the DN-FGFR 

at the 2 cell stage. Tadpole phenotypes were observed at stage 32-36. Figure 4:3 G 

and H shows that embryos injected with DN-FGFR mRNA presented a truncated 

anterior-posterior axis and displayed a small trunk and tail, compared to the 

phenotypes of the controls (Figure 4:3 A, B). This tadpole phenotype is similar to 

tadpole phenotypes observed after embryos were treated with the FGF/ MEK 

inhibitors SU5402 and PD0325901 (Figure 4:3 C-F) and of previously reported FGF/ 

MEK signalling inhibition phenotypes (Deimling and Drysdale, 2011; Delaune et al., 

2005).  
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Figure 4:3 A DN-FGFR adversely affects normal embryonic development in a comparable 

manner to FGF/ MEK inhibitors SU5402 and PD0325901 

Embryos were either treated with (A, B) DMSO (n=96), (C, D) 20 µM of SU5402-C (n=110), (G, 

H) 10 µM of PD0325901 (n=106) or (E, F) injected uniformly with 2 ng of DN-FGFR mRNA 

(n=101). Injections were at the 2 cell stage and all other treatments commenced at stage 8 

and were continuous. Individual images are a lateral view orientated anterior left, dorsal up. 

Scale bar represents 1 mm. Embryos have been stained by whole mount in situ hybridisation 

for cardiac tissue (myl7) and blood (hba3) and by immunohistochemistry using the skeletal 

muscle marker 12/101; more information below in Section 4.4. 
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4.2.4 SU5402, PD0325901 and a DN-FGFR inhibit the activation of the FGF/ 

MEK downstream signalling transducer ERK 

SU5402, PD0325901 and the DN-FGFR act to inhibit the FGF/ MEK signalling pathway 

upstream of the signalling mediator ERK. In response to FGF signal propagation, the 

FGF downstream signalling mediator ERK is activated by dual phosphorylation on its 

regulatory tyrosine and threonine residues, located at positions 202 and 204 

respectively (Payne et al., 1991; Shaul and Seger, 2007). The phosphorylation state 

of ERK was examined after inhibition of the FGF/ MEK signalling pathway by using a 

phospho-specific ERK antibody to detect the phosphorylation of tyrosine 202 and 

threonine 204. Figure 4:4 shows a western blot analysis which demonstrates that the 

amount of phosphorylated-ERK (p-ERK) has decreased in embryos subjected to FGF/ 

MEK signalling inhibition by SU5402, PD0325901 or DN-FGFR, in comparison with 

control (DMSO) treated embryos. A small amount of remaining p-ERK was observed 

after FGF/MEK signalling inhibition, indicating that FGF/ MEK signalling inhibition 

resulted in substantial, but not complete, reduction of p-ERK levels. A minimal 

difference in the level of remaining p-ERK was observed between the FGF/ MEK 

inhibition reagents used. This suggests that all three methods of inhibition affect the 

phosphorylation of ERK.  

In summary, SU5402, PD0325901 and the DN-FGFR inhibit the FGF/ MEK signalling 

pathway and they are all appropriate reagents for use in further investigations into 

the role of FGF/ MEK signalling in cardiac specification. This work has shown that 

there is agreement between phenotypic and molecular observations upon using 

three different FGF/ MEK signalling inhibition reagents. 
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Figure 4:4. SU5402, PD0325901 and a DN-FGFR inhibit the activation of the FGF/ MEK 

downstream signalling transducer ERK  

Embryos were either treated with DMSO, 20 µM of SU5402-C, 10 µM of PD0325901 or 

injected uniformly with 2 ng of DN-FGFR mRNA. Injections were at the 2 cell stage and all 

other treatments commenced at stage 8 and were continuous. Western blot analysis of 

protein extracts at stage 10-10.5. ERK is a loading control. 
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4.3 Cardiac tissue is marginally affected by FGF/ MEK signalling inhibition  

To investigate the requirement for FGF/ MEK signalling in cardiac specification, the 

FGF/ MEK signalling pathway was inhibited and the effects on differentiated cardiac 

tissue were examined. ALK4/5/7 signalling was shown to be required from stage 8 

for cardiac specification in Chapter 3, hence stage 8 was selected as an appropriate 

time point for commencing soluble FGF/ MEK inhibitor treatments. Embryos were 

treated with FGF/ MEK inhibitors, or DMSO, continuously from stage 8 or were 

injected with DN-FGFR mRNA at the 2 cell stage. Tadpoles were assayed by whole 

mount in situ hybridisation (WMISH) using the differentiated cardiac tissue marker 

myosin light chain 7 (myl7). Myl7 staining was classified as either absent, severely 

reduced, reduced or normal and examples of each classification are shown in Figure 

4:5 I-L. Figure 4:5 A-H shows that FGF/ MEK signalling inhibition resulted in tadpoles 

which were truncated along the anterior-posterior axis, specifically affecting the tail 

and trunk structures. In addition, anterior features including the head and eyes were 

reduced in size. Cardiac tissue was observed, although staining was often modestly 

reduced, compared with DMSO treated controls. There is agreement in both the 

cardiac staining and whole embryo phenotypes between the three different FGF/ 

MEK signalling inhibition reagents.  

Western blot analysis of protein extracts at stage 9 and 10.5 shows that there is a 

decrease in p-ERK levels in FGF/ MEK inhibitor treated samples compared with the 

controls (Figure 4:5 N). This suggests that FGF/ MEK signalling inhibition has been 

successful. Analysis at stage 9 reveals a minor difference in the p-ERK levels upon 

FGF/ MEK inhibitor treatments commencing at either stage 5 or stage 8 (Figure 4:5 

N). This minor difference may be due to the natural variation between samples. 

Alternatively, it may reflect a slight delay in inhibition, potentially due to the diffusion 

rate for the inhibitors to reach their targets, or, if acting rapidly, the time it takes for 

pre-existing p-ERK to be dephosphorylated or recycled. However, as a substantial 

decrease in p-ERK levels is observed by stage 9, in FGF/ MEK inhibited samples 
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compared to controls. This suggests timely and effective FGF/ MEK signalling 

inhibition. 

In summary, differentiated cardiac tissue was observed, although staining is reduced, 

after FGF/ MEK signalling inhibition. However, the whole embryonic phenotype is 

also reduced in size, with anterior features such as the head being noticeably smaller. 

This raises the question as to whether the modest reduction in cardiac tissue 

observed is the direct effect of a FGF/ MEK signalling requirement in cardiogenesis, 

or perhaps an indirect effect due to the adverse effects of FGF/ MEK inhibition on 

embryonic development. For example, FGF/ MEK signalling is known to be required 

for axis determination and convergent extension movements (Amaya et al., 1991; 

Ciruna and Rossant, 2001; Fürthauer et al., 2004; Nutt et al., 2001). 
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Figure 4:5. Cardiac tissue is observed, although is reduced, after FGF/ MEK signalling 

inhibition 

Embryos were treated with DMSO (D), 20 µM of SU5402-C (SU) or 10 µM PD0325901 (PD) 

continuously from stage 8, or for western blot (WB) analysis from stage 5 or stage 8, or were 

injected uniformly with 1 ng of DN-FGFR mRNA at the 2 cell stage. Tadpoles were analysed 

by whole mount in situ hybridisation using the cardiac marker myl7 (white arrows) and the 

blood marker hba3 (blue stain at the ventral region of embryo, however, blood is not the 

focus of this current analysis) and by immunohistochemistry using the skeletal muscle 

marker 12/101 (brown stain). (A, B) DMSO, (C, D) SU5402, (E, F) PD0325901 or (G, H) DN-

FGFR mRNA treatments. The extent of marker staining was classified. (I) Absent: no staining 

observed. (J) Severely reduced: between 1-50% of staining area and intensity observed in 

controls. (K) Reduced: between 50-90% of staining area and intensity observed in controls. 

(L) Normal: the average staining observed in a given control sample. All individual images are 
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a lateral view orientated anterior left, dorsal up. Scale bar represents 1 mm. (M) Graph 

quantifying myl7 expression observed in A-H. DMSO n=134, SU n=66, PD n=58, DN-FGFR 

n=66. (N) Western blot analysis of protein extracts at stage 9 (top row) and stage 10.5 

(bottom row). ERK is a loading control.  
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4.4 Cardiac morphogenesis is affected after continuous FGF/ MEK 

signalling inhibition from midblastula transition 

In order to establish additional information about the role of FGF/ MEK signalling in 

cardiogenesis, the morphology of the developing heart was examined after embryos 

were treated with FGF/ MEK signalling inhibitors. Experimental samples from Figure 

4:5 were examined for the morphology of the developing heart. Briefly, embryos 

were treated with FGF/ MEK inhibitors, or DMSO, continuously from stage 8, 

followed by analysis by whole mount in situ hybridisation using the differentiated 

cardiac tissue marker myl7 and by immunohistochemistry using the skeletal muscle 

marker 12/101. The morphology of the heart was observed at stage 36. In DMSO 

treated embryo controls, normal hearts were observed (Figure 4:6 A, B). These 

samples show a normal heart phenotype resulting from having undergone the 

characteristic anticlockwise spiralling and anterior movements to create a rightward, 

s-shaped bend prior to chamber formation (Kolker et al., 2000; Latinkić et al., 2004; 

Mohun et al., 2000). In contrast, Figure 4:6 C and D shows that severely reduced 

hearts appeared as linear tubes, often bulging slightly, but with no indication of 

looping. In tadpoles classified as having reduced cardiac tissue, linear heart tubes 

were most frequently observed, where there were no signs of morphological 

movements and looping (Figure 4:6 E, F). A small proportion of tadpoles showed signs 

of cardiac morphological movements, for example, it is apparent in Figure 4:6 H that 

the most posterior end of the heart tube has moved in an anterior direction, but that 

the heart is not normal. In many cases, although the extent of cardiac tissue was 

classified as reduced compared with controls, there was still substantial cardiac 

tissue within the embryo, relative to the diminished size of the whole embryo (Figure 

4:6 G, H). Cardiac bifida was infrequently evident, defined by the formation of two 

independent linear heart tubes or cavities (Figure 4:6 I, J). It is apparent from these 

results that skeletal muscle development is adversely affected by the inhibition of 

FGF/ MEK signalling, as the presence of skeletal muscle was rarely observed in 

treated tadpoles (Figure 4:6 A, C, E, G). This result is in agreement with previous work 

that has shown that there is a requirement for FGF/ MEK signalling in skeletal muscle 
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development (Isaacs et al., 2007) and that skeletal muscle is specified prior to cardiac 

tissue (Hagos and Dougan, 2007). Figure 4:6 A, C, E and G shows that the overall 

proportions of the head appeared to be moderately reduced in samples subjected to 

FGF/ MEK signalling inhibition. This could indicate abnormal anterior development, 

which raises the question as to whether the reduction in cardiac tissue is a direct or 

indirect effect of FGF/ MEK signalling inhibition. These results suggest that specified 

cardiac tissue has successfully migrated to the ventral midline but that morphological 

movements were often impeded. This could suggests a role for FGF/ MEK signalling 

in later heart develop. 
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Figure 4:6. Cardiac morphogenesis is affected after continuous FGF/ MEK signalling 

inhibition from midblastula transition 

Tadpoles subjected to treatments in Figure 4:5 were analysed by whole mount in situ 

hybridisation using the cardiac tissue marker myl7 (blue stain), followed by 

immunohistochemistry using the skeletal muscle marker 12/101 (brown stain).  (A, B) DMSO 

treated with future atrium (a), ventricle (v) and outflow tract (oft) highlighted (arrows). (C, 

D) Severely reduced cardiac tissue. (E, F) Tadpoles classified as having reduced cardiac tissue 

often presented a linear heart tube, orientated along the anterior-posterior axis but with no 

further signs of morphological movements or looping. (G, H) Tadpoles with reduced hearts 

displayed signs of morphological cardiac movements, with signs of cavities and looping. (I, J) 

Cardia bifida. C-J example embryos have been treated with 20 µM of SU5402-C, and 

developed until the tadpole stage. Scale bar represents 1 mm. A, C, E and G show a lateral 

view orientated anterior left. B, D, F, H, I and J show a ventral view, anterior upwards. These 

are example cardiac phenotypes from the experiments presented and quantified in Figure 

4:5. 
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4.5 Maximal inhibition of FGF/ MEK signalling adversely affects normal 

embryonic development 

Cardiac tissue has been shown to be present, albeit with a reduced staining pattern, 

after FGF/ MEK signalling inhibition. This reduction in cardiac tissue could be due to 

a requirement for FGF/ MEK signalling in cardiac specification. It is possible that 

complete FGF/ MEK pathway inhibition was not achieved using SU5402, PD0325901 

or DN-FGFR treatments, as western blot analysis showed that the reduction in p-ERK 

levels was substantial but not complete (Figure 4:4). Therefore, it is possible that a 

low level of active FGF/ MEK may be necessary and sufficient for cardiac specification. 

To test this, a higher level of FGF/ MEK signalling inhibition was required. Higher 

concentrations of SU5402 and PD0325901 than in the aforementioned experiments 

were tested for use, but these concentrations frequently resulted in embryonic death 

by the tadpole stage. Therefore, the DN-FGFR was used in conjunction with SU5402 

or PD0325901 to maximise FGF/ MEK pathway inhibition, whilst endeavouring to 

maintain embryonic viability. 

Embryos were injected at the 2 cell stage with DN-FGFR mRNA. Injected and 

uninjected embryos were then further treated with either the FGF/ MEK inhibitors, 

or DMSO, continuously from stage 8. DN-FGFR, SU5402 or PD0325901 individual 

treatments resulted in truncated tadpoles with small anterior features and a 

truncated trunk and tail (Figure 4:7 C, D, E, F, I, J, M, N), compared with the controls 

(Figure 4:7 A, B, M, N). These treated tadpoles displayed only moderately reduced 

cardiac tissue, but minimal levels of skeletal muscle. Although there were no 

biological replicas for the skeletal muscle experiment, the results are consistent with 

previous work that shows a requirement for FGF/ MEK signalling for skeletal muscle 

development (Hagos and Dougan, 2007; Isaacs et al., 2007). DN-FGFR mRNA 

injections in conjunction with SU5402 or PD0325901 treatments resulted in a 

severely affected tadpole phenotype. These tadpoles were small, lacked landmark 

embryonic features including the tail, eyes and cement gland and had a barely 

identifiable embryonic axis. Figure 4:7 G, H, K, L, M, and N shows that tadpoles often 
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had absent or severely reduced cardiac tissue and absent skeletal muscle. In addition, 

Figure 4:7 O shows that p-ERK levels are reduced to a greater extent where DN-FGFR 

and molecular inhibitors are used together, as opposed to separate treatments. This 

suggests that a greater level of FGF/ MEK signalling inhibition was achieved in these 

experiments.  

It can be reasoned that the increased phenotypic severity is specific to FGF/ MEK 

signalling downregulation, rather than general toxicity, as the two different drugs at 

two different concentrations, along with the DN-FGFR, still cause similar phenotypes. 

Determining whether the effect on cardiac tissue is directly or indirectly due to FGF/ 

MEK inhibition is, however, more problematic. The reduction in cardiac tissue could 

be due to a requirement for FGF/ MEK signalling in cardiogenesis, although given that 

cardiac tissue is observed it is likely that a low level of FGF/ MEK signalling would be 

required. However, developing embryos may have reached an FGF/ MEK depletion 

threshold where global embryonic development is unable to proceed normally and 

many embryonic features are compromised, regardless of a direct FGF/ MEK 

signalling requirement. If this is so, then cardiac tissue development could be 

indirectly affected by FGF/ MEK inhibition. Indeed, many embryonic features appear 

to be more widely affected after greater FGF/ MEK inhibition, but not all of them are 

affected proportionally. For example, skeletal muscle is more affected than cardiac 

tissue. Preliminary analysis reveals that blood is observed (Figure 4:7), suggesting 

that FGF/ MEK inhibition is having a greater effect on select mesoderm derivatives.  

In summary, these results suggest that, should this increased level of FGF/ MEK 

inhibition be specific to cardiac development, then a low level of FGF/ MEK signalling 

is required for cardiac specification. A higher level of FGF/ MEK inhibition, as assessed 

by a further reduction in p-ERK levels, is associated with a severe phenotype affecting 

the entire embryo and its viability, characterised by the truncated anterior-posterior 

axis and loss or severe reduction of anterior and landmark features including the 

head, eyes and cement gland. These findings question the specificity of the effects 

on the heart. 
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Figure 4:7. Maximal inhibition of FGF/ MEK signalling adversely affects normal embryonic 

development 

Embryos were either uninjected or injected uniformly with 2 ng of DN-FGFR mRNA. Injected 

and uninjected embryos were treated with DMSO, 20 µM of SU5402-C (SU) or 10 µM of 

PD0325901 (PD) continuously. Injections were at the 2 cell stage and all other treatments 

commenced at stage 8. (A-L) Tadpoles were analysed by whole mount in situ hybridisation 

using the cardiac marker myl7 (white arrows) and the blood marker hba3 (red arrows) then 

subsequently stained by immunohistochemistry for skeletal muscle marker 12/101 (yellow 

arrows). All individual images show a lateral view orientated anterior left, dorsal up. Scale 
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bar represents 1 mm. Graphs quantifying data displayed in A-L. (M) Myl7 DMSO n=71, DN-

FGFR n=66, DN-FGFR +SU n=66, SU n=75, DN-FGFR +PD n=68, PD n=68. (N) 12/101 DMSO 

n=35, DN-FGFR n=32, DN-FGFR +SU n=36, SU n=37, DN-FGFR +PD n=36, PD n=37. (O) 

Western blot analysis of protein extracts at stage 9. ERK is a loading control. 
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4.6 FGF/ MEK signalling is not required before gastrulation for 

cardiogenesis 

To investigate the requirement for FGF/ MEK signalling in cardiac specification 

further, time-controlled FGF/ MEK inhibition was utilised during the midblastula 

transition to gastrulation time window, where ALK4/5/7 signalling has been shown 

to be required (Chapter 3). Previously, SU5402 has been shown to act reversibly 

when removed from embryos (Delaune et al., 2005; Fletcher and Harland, 2008), 

with total recovery after SU5402 treatment taking 2 hours (Crump et al., 2004; 

Maroon et al., 2002; Marques et al., 2008). It was reasoned that using defined time 

windows of FGF/MEK inhibition should assist to alleviate some of the more general 

developmental abnormalities observed upon continuous FGF/ MEK inhibition, such 

as truncated anterior-posterior axis development. 

Embryos were treated from stage 8 with FGF/ MEK inhibitors for three, five or twenty 

hours. Figure 4:8 A-F and I shows that embryos treated with FGF/ MEK inhibitors for 

three or five hours had normal phenotypes and normal cardiac tissue staining at the 

tadpole stage, compared with controls. These results are in agreement with previous 

work that has shown that FGF/ MEK signalling inhibition between midblastula 

transition and gastrulation, using SU5402, gave rise to tadpoles with tails, albeit also 

with expanded abdominal regions (Cha et al., 2008). Figure 4:8 G-I shows that only 

FGF/ MEK inhibition for an extended time period of 20 hours, which encompasses 

gastrulation and neurulation, resulted in tadpoles with a truncated anterior-posterior 

axis, a small head, eyes and cement gland and reduced cardiac tissue. This is 

consistent with work that demonstrates that FGF/ MEK inhibition from midblastula 

transition to stage 26, equivalent to the 20 hour treatment category, resulted in 

tadpoles with curved backs and shortened tails (Cha et al., 2008).  

Western blot analysis of protein extracts from stage 10 embryos revealed that p-ERK 

levels in FGF/ MEK inhibited samples were lower than in the control. Samples that 

were treated with FGF/ MEK inhibitors for 3 hours showed higher levels of p-ERK 

compared with samples treated for 5 or 20 hours (Figure 4:8 J). Samples treated for 
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3 hours had 2 hours of recovery time after inhibitor removal prior to western blot 

analysis, whereas samples treated for 5 or 20 hours had not had the inhibitor 

removed at the time of protein extraction for western blot analysis. These results 

suggest that partial recovery of FGF/ MEK signalling had occurred after inhibitor 

removal. At stage 10, 5 hour and 20 hour samples subjected to FGF/ MEK signalling 

inhibition had thus far received the same treatments, hence they were replicas at 

that time point. This result shows that there was a slight variation in p-ERK protein 

levels between biological samples. This western blot analysis suggests that FGF/ MEK 

signalling inhibition has been achieved. Collectively, these results suggest that FGF/ 

MEK signalling is not required between midblastula transition and gastrulation for 

cardiac specification, but may be required later for normal heart development.
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Figure 4:8. FGF/ MEK signalling is not required between midblastula transition and 

gastrulation for cardiogenesis 

Embryos were treated with DMSO or with 100 µM of SU5402-S (SU). Treatments commenced 

at stage 8, for the time period indicated, then the treatment media was removed, and 

embryos were washed by two 5 minute washes in 30 ml of fresh 10% NAM. Tadpoles were 

analysed by whole mount in situ hybridisation using the cardiac marker myl7 (white arrows). 

Treatments of (A, B) DMSO, or SU5402-C for (C, D) 3 hours, (E, F) 5 hours or (G, H) 20 hours. 

All individual images show a lateral view orientated anterior left, dorsal up. Scale bar 

represents 1 mm. (I) Graph quantifying the results displayed in A-H. DMSO n=44, SU 3hr 

n=59, SU 5hr n=63, SU 20hr n=35. (J) Western blot analysis at stage 10. ERK is a loading 

control. 
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To investigate the requirement for FGF/ MEK signalling before, during and 

proceeding gastrulation further, time-dependent FGF/ MEK signalling inhibition was 

carried out during select time windows and the morphology and extent of cardiac 

tissue was assessed in stage 36 tadpoles. Experimental protocol and analysis by Sarah 

Black, procedures and images were courtesy of Dr Branko Latinkic. FGF/ MEK 

signalling inhibition between midblastula transition and gastrulation (stages 8-10) 

resulted in tadpoles with normal cardiac size and morphology, comparable to the 

controls (Figure 4:9 A-F). This suggest that FGF/ MEK signalling is not required during 

the midblastula transition to gastrulation time window, where ALK4/5/7 signalling 

was shown to be necessary for cardiac specification (Chapter 3). FGF/ MEK signalling 

inhibition between stages 10-28 resulted in tadpoles that had linear heart tubes 

(Figure 4:9 G-I). These specimens appear to have only a slight reduction in cardiac 

tissue, but morphogenesis, including the anterior dorsal movement of the posterior, 

future atrial, cardiac region, and thus looping and chamber expansion have failed. A 

more striking phenotype was the prevalence of cardiac bifida and a reduced quantity 

of cardiac tissue upon FGF/ MEK signalling inhibition between stages 13-28 (Figure 

4:9 J-L). This is surprising as this shorter time window of FGF/ MEK signalling 

inhibition resulted in a more severe cardiac phenotype than a longer inhibition 

period. These results support the aforementioned finding that suggested that FGF/ 

MEK signalling is not required between midblastula transition (stage 8) and the onset 

of gastrulation (stage 10) for cardiac specification.  However, these results do provide 

evidence that suggests that FGF/ MEK signalling is required for continued normal 

heart development after cardiac specification. 
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Figure 4:9. FGF/ MEK signalling is required after initial specification for correct heart 

formation 

Embryos were treated with DMSO or with 100 µM of SU5402-S. Treatments commenced 

during the time period indicated, then treatment media was removed, by two 5 minute 

washes in 30 ml of fresh 10% NAM, and embryos developed until the tadpole stage. The 

Xenopus laevis used are transgenic for cardiac actin –green fluorescent protein (CA-GFP), 

thus the heart is visualised in live anesthetised tadpoles (green, white arrows) with three 

example per treatment shown in vertical columns. (A-C) DMSO n= 46/46. (D-F) SU5402-S 

treated between stages 8-10, n= 23/25. (G-I) SU5402-S treated between stages 10-28, n= 

63/69. (J-L) SU5402-S treated between stage 13-28, n=32/47. The developing aorta (a), 

ventricle (v) and outflow tract (oft) can be identified (arrows). Images display a ventral view, 

with the anterior upwards. Scale bar represents 1 µm. Experimental protocol and analysis by 

Sarah Black, procedures and images were courtesy of Dr Branko Latinkic. 
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4.7 Discussion 

4.7.1 FGF/ MEK signalling inhibition using three complementary reagents 

FGF/ MEK signalling has been implicated in the specification of cardiac tissue in 

Xenopus laevis (Keren-Politansky et al., 2009; Samuel and Latinkić, 2009), zebrafish 

(Reifers et al., 2000) and chick (Alsan and Schultheiss, 2002). To investigate the 

requirement and timing of FGF/ MEK signalling in cardiac specification in vivo in 

Xenopus laevis, SU5402, PD0325901 and a DN-FGFR were used to inhibit the FGF/ 

MEK signalling pathway. Whole embryo phenotypes after treatment ranged from 

presenting a truncated posterior region at low effective concentrations of treatment, 

to embryos which were severely truncated along the anterior-posterior axis with  

underdeveloped anterior features at higher concentrations of inhibition, consistent 

with phenotypes shown in previous reports (Amaya et al., 1991; Deimling and 

Drysdale, 2011; Delaune et al., 2005; Fletcher and Harland, 2008; Isaacs et al., 2007). 

The use of three different FGF/ MEK signalling inhibition reagents throughout the 

work presented here demonstrated the specificity of FGF/ MEK signalling inhibition, 

as results gained using the different reagents were in agreement. Inhibition of FGF 

signalling at either the FGF receptor level, or at MEK, resulted in phenotypes that 

were similar between the different inhibition approaches. This suggests that FGF 

signalling is primarily acting via the MEK/ ERK pathway during early development. 

4.7.2 Cardiac tissue and morphogenesis are affected by continuous FGF/ 

MEK signalling inhibition from midblastula transition 

Cardiac tissue was observed in tadpoles despite early and continuous FGF/ MEK 

signalling inhibition. Cardiac tissue staining was reduced, but only modestly. The 

whole embryonic phenotype was affected with the anterior-posterior axis 

substantially truncated and anterior features including the head, eyes and cement 

gland were underdeveloped. These results suggested that either a low level of FGF/ 
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MEK signalling is required for cardiac specification, or that FGF/ MEK signalling is not 

required and the observed reduction in cardiac tissue was a secondary effect of 

abnormal embryonic development. Previous research has shown that FGF/ MEK 

pathway inhibition results in the abolition (Rankin et al., 2012) or severe reduction 

(Deimling and Drysdale, 2011; Keren-Politansky et al., 2009; Reifers et al., 2000; 

Shifley et al., 2012) in the expression of the cardiac marker nkx2.5. This work is in 

conflict with data presented within this chapter demonstrating only a modest 

reduction in cardiac marker expression. However, analysis for alternate cardiogenic 

factors upon FGF/ MEK pathway inhibition show a reduction in cardiac progenitor 

marker isl1 (Deimling and Drysdale, 2011), but that cardiogenic gata4 is barely 

affected (Keren-Politansky et al., 2009). Analysis of differentiated cardiac markers 

cardiac troponin (Shifley et al., 2012) and myocardin (Keren-Politansky et al., 2009) 

show that there is a mild reduction in expression. However, this disagrees with other 

work illustrating the total loss of cardiac troponin (Deimling and Drysdale, 2011), 

presenting an inconsistent, conflicting result. In addition, it has been shown that, 

upon FGF/ MEK pathway inhibition, there is an early reduction in cardiac markers 

nkx2.5 and myocardin, followed by recovery of those markers later in development 

(Keren-Politansky et al., 2009; Reifers et al., 2000). Therefore, although nkx2.5 

expression is commonly reported to be absent or severely reduced after FGF/ MEK 

signalling inhibition, it appears that differentiated cardiac tissue markers do not 

reliably reflect the severity of reduction seen in early cardiac field markers. Perhaps 

there is a compensatory mechanism allowing for alternate cardiogenic factors to 

ensure the development of differentiated cardiac tissue. Cardiac tissue has been 

specified and previous work, both in Xenopus laevis and zebrafish, suggests a role for 

FGF/ MEK in regulating heart size, survival and proliferation (Fletcher and Harland, 

2008; Langdon et al., 2007; Marques et al., 2008; Simões et al., 2011). Therefore, it 

is plausible that FGF/ MEK signalling is required throughout development for the 

maintenance and promotion of cardiac cells. 
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4.7.3 FGF/ MEK signalling is not required before gastrulation for cardiac 

specification, but is required later for normal heart development 

Nodal/ Activin signalling is required from midblastula transition, but before 

gastrulation, for cardiac specification (Chapter 3).  To ascertain whether FGF/ MEK 

signalling is likewise required during this time window for cardiac specification, time-

controlled inhibition of FGF/ MEK signalling was used. FGF/ MEK signalling inhibition 

between midblastula transition and gastrulation did not negatively affect cardiac 

specification or whole embryonic development. In addition, cardiac morphology in 

tadpoles was normal. This suggests that FGF/ MEK signalling is not required between 

midblastula transition and gastrulation for cardiac specification. However, 

experiments also demonstrated that sustained FGF/ MEK signalling inhibition, from 

midblastula transition, resulted in tadpoles displaying a reduced quantity of cardiac 

tissue. Therefore it is possible that FGF/ MEK signalling may have a role in later heart 

development after initial specification. Tadpoles displayed greater cardiac tissue 

staining when FGF/ MEK signalling inhibition commenced earlier, at midblastula 

transition (stage 8) or gastrulation onset (stage 10), compared with later, at the end 

of gastrulation (stage 13). This suggests that some exposure to FGF/ MEK signalling, 

followed by inhibition, is more severe than no exposure. There are several possible 

explanations. FGF/ MEK signalling is required post-gastrulation, but the loss of FGF/ 

MEK signalling from midblastula transition or gastrulation onset is sensed by the 

embryo, allowing for the activation of alternative compensation mechanisms, thus 

sufficient cardiac tissue was observed. Alternatively, FGF/ MEK signalling may first 

induce a cardiogenic inhibitor to regulate cardiac field dimensions, then later be 

required to positively regulate cardiogenesis, with this later step void in later 

experimental FGF/ MEK signalling inhibition. Finally, cardiac progenitors which are 

primed and committed during pre-gastrula and gastrula stages may be more 

susceptible to a lack of FGF/ MEK signalling later on than cardiac progenitors which 

are never exposed to FGF/ MEK signalling.  

The differences in the amount of cardiac tissue between FGF/ MEK signalling 

inhibition treatments before and after the end of gastrulation suggests that the role 
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of FGF/ MEK signalling is not in cardiac specification, but in later heart development. 

Previously, it has been shown that cardiac tissue is specified by the end of 

gastrulation (Samuel and Latinkić, 2009; Sater and Jacobson, 1989), hence it is 

unlikely that this post-gastrula FGF/ MEK signalling requirement is in specifying 

cardiac tissue. Consistent with this, FGF/ MEK signalling may be required for 

maintaining and promoting cardiomyocyte development, and inhibiting alternative 

mesodermal fates, such as the blood lineage (Deimling and Drysdale, 2011; Isaacs et 

al., 2007; Shifley et al., 2012; Walmsley et al., 2008). Indeed, it has been proposed 

that FGF/ MEK signalling is required first for the induction of blood (Isaacs et al., 2007; 

Walmsley et al., 2008), and then for inhibiting blood progenitors to favour cardiac 

progenitor development (Deimling and Drysdale, 2011; Isaacs et al., 2007; Langdon 

et al., 2007; Simões et al., 2011; Walmsley et al., 2008). This contradicts work in 

Xenopus laevis animal cap and marginal zone explant experiments, which argue for 

the requirement of FGF/ MEK signalling in inducing cardiac markers (Keren-

Politansky et al., 2009; Samuel and Latinkić, 2009). Although FGF/ MEK signalling has 

been shown to be required for cardiogenic induction in explant models, this may not 

reflect the true in vivo scenario. The results presented here are consistent with 

previous work that demonstrates that FGF/ MEK signalling inhibition, using molecular 

inhibitor PD173074, resulted in reduced cardiac tissue when acting between stages 

18-23, with only a small effect seen after stage 23 (Shifley et al., 2012). Similarly, FGF/ 

MEK signalling inhibition, using SU5402, from the end of gastrulation until stage 28 

resulted in absent cardiac tissue (Deimling and Drysdale, 2011). Therefore, the 

results presented here along with current literature suggest that FGF/ MEK signalling 

is not required for cardiac specification, but is required later in heart development, 

perhaps for the maintenance and promotion of cardiomyocytes.  

In addition to reduced cardiac tissue, defective cardiac morphology upon post-

gastrula FGF/ MEK signalling inhibition was shown here. Again, the most severe 

phenotypes were seen after FGF/ MEK signalling inhibition in the later and shorter 

time window (stage 13-28). FGF/ MEK signalling inhibition between midblastula 

transition (stage 8) and gastrulation onset (stage 10) had no obvious effect on the 
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heart size or morphology, reiterating that FGF/ MEK signalling is not required during 

this time window for cardiogenesis. During prolonged FGF/ MEK signalling inhibition 

from stage 10-28, linear heart tubes formed, with only modestly reduced cardiac 

tissue. Given the amount of cardiac tissue which has formed and migrated correctly 

to form a linear heart tube, it is likely that FGF/ MEK signalling may provide additional 

information necessary for correct morphological movements. This may occur 

directly, or by acting during neurula stages to activate genes which later control 

morphological events. Upon FGF/ MEK signalling inhibition from the end of 

gastrulation (stage 13), cardia bifida was observed, with reduced cardiac tissue. In 

agreement with these findings, previous work illustrates that cardia bifida prevails 

upon FGF/ MEK signalling inhibition, using SU5402, between stages 12.5-20 and 12.5-

22 (Deimling and Drysdale, 2011). FGF/ MEK signalling inhibition from stages 18 

(Shifley et al., 2012) or 24 (Deimling and Drysdale, 2011) resulted in reduced cardiac 

tissue. FGF/ MEK signalling inhibition from stages 23 or 28 had minimal effect on the 

amount of cardiac tissue (Shifley et al., 2012); however, no discernible heart tube 

was detected in another study (Deimling and Drysdale, 2011), suggesting that FGF/ 

MEK signalling is involved in the movements of cardiac cells, rather than their 

specification or quantity. The presentation of cardia bifida may be due to the 

reduction in cardiac tissue, and thus also migratory capacity, due to a FGF/ MEK 

signalling requirement in maintaining and promoting the expansion of cardiac 

progenitors. Additionally, FGF/ MEK signalling may be required for correct cardiac 

progenitor migration. FGF/ MEK signalling has been shown previously to be required 

for cell migration in the developing embryo (Beiman et al., 1996; Sun et al., 1999). 

Therefore, this could suggest that FGF/ MEK signalling may be required from late 

gastrulation into early neurulation for cardiac tissue maintenance and proliferation. 

FGF signalling may be further required during later neurula stages for correct cardiac 

morphology configuration. 

In summary, the results suggest that FGF/ MEK signalling is not required before the 

end of gastrulation (stage 13) for cardiac specification. The evidence suggests that 

FGF/ MEK signalling is required for normal cardiac development, from the end of 
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gastrulation and throughout neurulation, perhaps for the maintenance, expansion, 

regulation of size and in conveying morphological cues to cardiac tissue. This is in 

keeping with a re-iterative role for FGF/ MEK signalling in cardiac development 

(Fletcher and Harland, 2008; Langdon et al., 2007; Marques et al., 2008; Simões et 

al., 2011). 
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5 A novel role for p53 in early heart 

development 
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5.1 Introduction 

p53 is well known as a tumour suppresser protein but has also been shown to have 

a broad range of other functions including in DNA repair, cell survival, proliferation, 

adhesion, motility, differentiation, metabolism and development (Beckerman and 

Prives, 2010; Brady and Attardi, 2010). p53 can be modified by post-translational 

modifications in response to a variety of stimuli, which influence the function of p53 

(Meek and Anderson, 2009; Vogelstein et al., 2000). New roles for p53 in embryonic 

development are constantly being uncovered, for example, during mesoderm 

induction in Xenopus laevis (Cordenonsi et al., 2007, 2003; Piccolo, 2008; 

Takebayashi-Suzuki et al., 2003). For mesoderm induction in Xenopus laevis it has 

been shown that FGF activated phosphorylated-ERK (p-ERK) phosphorylates p53, on 

Serine 6 and Serine 9, which then interacts with Nodal-activated phosphorylated-

Smad2 (p-Smad2) (Cordenonsi et al., 2007, 2003). p-Smad2 and phosphorylated-p53 

(p-p53) physically interact to regulate the transcription of some, but not all, TGF-beta 

target genes, therefore implicating p53 in mediating pathway crosstalk between the 

Nodal/ Activin and FGF signalling pathways for mesoderm induction (Cordenonsi et 

al., 2007, 2003; Dupont et al., 2004). Previous research implicates Nodal/ Activin and 

FGF signalling in cardiac specification, however, the relationship between the two 

pathways is unclear (Noseda et al., 2011). It is possible that p53 might be involved in 

mediating a putative interaction between Nodal/ Activin and FGF signalling for 

cardiac specification, or may be required to fine-tune the Nodal/ Activin signalling 

pathway for the induction of cardiac specific target genes. It has been shown that 

p53 knockout mice develop normal hearts, thus finding a developmental role for p53 

in Xenopus laevis heart development may be surprising (Donehower et al., 1992). 

However, the expression of mouse p53, p63 and p73 are detected in the early mouse 

embryo and the family members have previously been shown to have overlapping 

functions  (Hernández-Acosta et al., 2011; Levrero et al., 2000). In contrast, there is 

little evidence of redundancy within the p53 family members during early Xenopus 

laevis development, as p63 is not expressed until later in development and p73 is not 

found in lower vertebrates (Cordenonsi et al., 2003; Lu et al., 2001). This presents 
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Xenopus laevis as a good model to study the role of p53 in heart development. Work 

presented in this chapter uses antisense morpholino oligonucleotides and dominant 

negative p53 mRNA to downregulate endogenous p53 activity to investigate the role 

of p53 in heart development.  

5.2 Experimental approach 

To investigate the role of p53 in cardiac specification, p53 activity was downregulated 

in vivo in Xenopus laevis embryos and the effects on cardiac tissue were analysed. 

Antisense morpholino oligonucleotides (MOs) are short oligomers which bind to a 

specific RNA target sequence to inhibit cellular processes, such as RNA splicing or 

translation, and are used to downregulate the expression of a protein of interest. 

Previously reported MOs against Xenopus laevis p53 (p53) are targeted to two 

different sequences (Cordenonsi et al., 2003; Rana et al., 2011; Takebayashi-Suzuki 

et al., 2003). However, the sequences are nearly identical, overlapping in 21 out of 

25 bases (Figure 5:1). One of these previously reported p53 MOs, here named p53 

MO1, was used in this study (Figure 5:1 and Table 5:1). In addition, one new 

translation blocking MO which did not overlap the sequence of the previously 

published p53 MOs and two new splice blocking MOs were designed and tested for 

this study (Table 5:1). The available 5’UTR sequence of Xenopus laevis p53 is 

relatively short, which is perhaps why few successful translation blocking MOs have 

been previously reported. 

Figure 5:1 and Table 5:1 show the sequences of the previously published p53 MOs 

and those designed for this study, in addition to the position in the p53 mRNA to 

which the translation blocking MOs are targeted. The translation blocking p53 MO 

designed for this study, named p53 MO3, is targeted to the 5’UTR upstream of the 

ATG site and does not overlap the sequences of the previously published p53 MOs, 

here named p53 MO1 and p53 MO2 (Figure 5:1). The translation blocking p53 MO1 

and p53 MO3 were tested for their ability to downregulate the abundance of the p53 

protein (see Section 5.3 below) and were selected as suitable reagents for further 
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use in investigating the requirement of p53 in heart development. p53 MO1, but not 

p53 MO3, was predicted to work in Xenopus tropicalis based on sequence homology. 

Splice blocking MOs were targeted to block mRNA splicing events occurring at the 

exon 2 to intron (E2I) and exon 3 to intron (E3I) boundaries. Reverse 

transcription polymerase chain reaction (RT-PCR) analysis was performed to 

examine interrupted splicing events. However, no difference was observed in the 

quantity and size of the original amplicon spanning the E2I and E3I sites, indicating 

that splicing events have not been disrupted (not shown). The amplicon spanning the 

E2I and E3I sites was examined, rather than looking for a new predicted amplification 

fragment, as altered splicing events are difficult to predict. To rule out the possibility 

of a sequence mismatch between the Xenopus laevis sequence assembly and the 

animal stock used in this project as a potential reason for the lack of MO activity, 

genomic DNA, randomly selected from four individuals from the laboratory colony of 

Xenopus laevis, was sequenced and found to be homologous to the reference 

genome used for designing the MOs. With no indication that the p53 splice blocking 

MOs were altering splicing events, the splice blocking MOs were not utilised.  

A control MO (cMO) was also utilised in all experiments to ensure that the observed 

effects were specific to p53 downregulation, and not a side-effect of MO treatments 

(Table 5:1). At the time that this study began, there was evidence of one orthologue 

of Xenopus laevis p53 within the genome. Despite recent improvements in the quality 

of the available sequence of the Xenopus laevis genome, no further Xenopus laevis 

p53 orthologues have been identified. 

The soluble molecular p53 inhibitor, Pifithrin-α, was tested for its suitability to inhibit 

p53 for these studies (Komarov et al., 1999; Villiard et al., 2007). Soluble molecular 

inhibitors are experimentally advantageous, allowing the inhibitor to be added to, or 

removed from, the embryo containing media at any time point in development, 

allowing time-dependent inhibition control. Despite testing two batches of Pifithrin-

α, at a range of concentrations up to 500 µM, no effect was observed on the 

phenotype of the whole embryo. This could have been be due to Pifithrin-α being 
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unable to penetrate through the vitelline or plasma membranes. To address this 

possibility, Pifithrin-α was injected to a final internal concentration of approximately 

100 µM, in addition to 100 µM of external treatment, into the blastomeres of an 

embryo at the 2 cell stage, or into the blastocoel at stage 8. Embryos were examined 

at stages 32-36 (tadpole). Tadpoles which had been subjected to Pifithrin-α injections 

and treatment at the 2 cell stage either developed normally, or presented extremely 

retarded phenotypes lacking axis elongation and with underdeveloped landmark 

features including the tail, head, eyes and cement gland. Pifithrin-α injections and 

treatment at stage 8 did not affect the phenotypes of tadpoles. The disadvantages of 

having to inject Pifithrin-α includes the lack of penetrance knowledge and restricts 

the time of inhibitor administration to stages when injections can be performed. It 

was decided not to use Pifithrin-α for this study.  
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Figure 5:1. p53 translation blocking antisense morpholino oligonucleotides 

Translation blocking p53 MO1, p53 MO2 and p53 MO3 bind p53 mRNA before and over the 

start site, inhibiting protein synthesis. 

 

Name Action Sequence Reference 

cMO Control GTAACGATTTGAGTTTGGTGTTCAT (Haworth et al., 2008) 

p53 

MO1 

Translation 

blocking 
GAACCTTCCTCTGAGACCGGCATGG 

(Cordenonsi et al., 

2003) 

p53 

MO2 

Translation 

blocking 
AATGGAACCTTCCTCTGAGACCGGC 

(Takebayashi-Suzuki 

et al., 2003) 

p53 

MO3 

Translation 

blocking 
TTCTATCCTCTCTGCTTCCTCGTGC New design 

p53 MO 

E2I 
Splice blocking AAAGCACAAGAGGGACTCACCGTGC New design 

p53 MO 

E3I 
Splice blocking ATAAGAATGAAAGCACTCACCCTCC New design 

Table 5:1. p53 antisense morpholino oligonucleotides 
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5.3 p53 antisense morpholino oligonucleotides downregulate p53 

protein 

To confirm that p53 MO1 and MO3 efficiently downregulate p53 protein by blocking 

translation, the abundance of the p53 protein was examined using western blot 

(WB). Initially, detection of endogenous Xenopus laevis p53 protein using western 

blot was problematic, due to low sensitivity. Therefore, the overexpression of a 

tagged p53 protein was initially used to establish the effectiveness of the p53 MOs 

before confirmation and further analysis of endogenous p53. 

A Xenopus laevis p53 construct was created, whose mRNA could be injected into 

embryos allowing p53 protein overexpression and detection. The construct 

incorporated 92 nucleotides of 5’ untranslated region (UTR) and a human influenza 

hemagglutinin (HA) tag at the 3’ terminus (p53-5’U92-HA). The inclusion of the 5’UTR 

was paramount, as this contains the target sequence of the p53 MOs. The HA tag aids 

detection by providing an epitope to an established antibody. Injecting 100 pg of p53-

5’U92-HA mRNA into Xenopus laevis embryos resulted in the overexpression of p53 

protein to such levels as can be readily detected by western blot, by both p53 and 

HA antibodies (Figure 5:2). The p53 MOs were co-injected into embryos at a range of 

doses, together with 100 pg of p53-5’U92-HA mRNA, to test and establish a MO dose 

which achieves p53 downregulation. Figure 5:2 A shows that p53 MO1 can effectively 

cause the downregulation of the p53 protein at all doses tested. Injection of 100 pg 

of p53-5’U92-HA mRNA and increasing doses of p53 MO3 likewise illustrated the 

robust downregulation of the p53 protein (Figure 5:2 B). Notably, 1 ng of p53 MO3 

appeared to decrease p53 protein levels to a greater extent than 1 ng of p53 MO1, 

suggesting that p53 MO3 may be more potent. Although the p53 MOs appear to 

almost eradicate overexpressed p53 protein from detection at 1 ng, endogenous 

protein in untreated samples is barely observed, hence it is likely that a proportion 

of p53 protein may be remaining but has not entered the detectable range afforded 

by these western blots. Additionally, no obvious whole embryonic phenotype is 

observed at the lower doses tested. Therefore, a mid-range dose is likely to be the 
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most appropriate for reliable and consistent p53 protein downregulation, without 

affecting the viability of the embryo, in further investigations. A high level of 

agreement is perceived between p53 and HA antibodies, giving confidence in the 

observed results (Figure 5:2). 100 pg of p53-5’U92-HA mRNA caused toxicity and 

death in Xenopus laevis embryos by the neurula stage. This embryonic death can be 

prevented by injection of the higher doses of the p53 MOs. 
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Figure 5:2. p53 antisense morpholino oligonucleotides efficiently downregulate 

overexpressed p53 protein 

Embryos were either uninjected or injected uniformly at the 2 cell stage with 100 pg of p53-

5’UTR-HA mRNA. Subsequently, at the 2-4 cell stage, embryos were injected uniformly with 

increasing amounts (as indicated in the figure) of p53 MO1, p53 MO3, 40 ng control MO 

(cMO) or did not receive further injection. At stage 9 protein extracts from embryos were 

analysed by western blot.  ERK is a loading control.  
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Initially, the p53 protein appeared to have a narrow dynamic range of detectable 

expression, hence tagged-p53 mRNA injections were used to test whether the p53 

MOs could effectively downregulate p53 protein expression. During initial 

experiments, the western blotting technique was optimised to increase the 

sensitivity and to enable the reliable detection of endogenous p53.  Figure 5:3 A 

shows a western blot analysis of endogenous p53 protein levels throughout Xenopus 

laevis development. This western blot shows that endogenous p53 protein levels 

remain relatively constant throughout different developmental stages. Figure 5:3 B 

shows that treatment of Xenopus laevis embryos with doses of 10 ng, 20 ng and 40 

ng of p53 MO1 resulted in the downregulation of endogenous p53 protein until at 

least stage 32. In embryos treated with 5 ng or 10 ng of p53 MO3, endogenous p53 

protein was downregulated between stage 9 and 20 inclusive. However, unlike p53 

MO1, p53 protein levels recovered to a level that was greater than the level of 

endogenous p53 in control samples by stage 32, despite robust inhibition at earlier 

stages (Figure 5:3 C). Interestingly the phenotypes of the tadpoles (Figure 5:4 and 

Figure 5:5) observed in embryos injected with p53 MO1 and p53 MO3 are highly 

similar. 

It has been shown here that the translation blocking p53 MO1 and p53 MO3 resulted 

in the downregulation of both overexpressed and endogenous p53 protein in 

Xenopus laevis. These results suggest that p53 MO3 is slightly more potent than p53 

MO1 at lower doses, but that the downregulation of p53 protein by p53 MO3 did not 

persist until the tadpole stages, whereas p53 MO1 downregulated p53 as far as stage 

32. Both p53 MOs are suitable reagents for investigating the role of p53 in 

cardiogenesis. 
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Figure 5:3. p53 antisense morpholino oligonucleotides efficiently downregulate 

endogenous p53 protein 

Embryos were either uninjected or injected uniformly at the 2 cell stage with 40 ng of control 

MO (cMO), 10 ng, 20 ng, 40 ng of p53 MO1 or 10 ng, 20 ng of p53 MO3. At stage 9, 13, 20 or 

32, as indicated, protein extracts from embryos were analysed by western blot. (A) 

Uninjected and cMO injected samples demonstrate that uniform levels of endogenous p53 

protein are detected as embryonic development progresses. (B) p53 MO1 effectively 

downregulates endogenous p53 protein levels throughout development until at least stage 

32. (C) p53 MO3 effectively downregulates endogenous p53 protein levels throughout 

development until the neurula stages, with p53 protein levels elevated above the level of 

endogenous protein by stage 32. ERK is a loading control.  
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5.4 p53 antisense morpholino oligonucleotides act in a dose dependent 

manner and affect cardiac tissue 

To further establish the suitability and optimum dose of p53 MOs to utilise in 

investigating the role of p53 in cardiac specification, tadpoles were analysed after 

being injected with a range of doses of the p53 MOs. Embryos were injected with 

increasing doses of p53 MO1 or p53 MO3 at the 2 cell stage. At stage 32-36 (tadpole 

stage), embryos were analysed by whole mount in situ hybridisation (WMISH) using 

differentiated cardiac tissue marker myosin light chain 7 (myl7) and whole embryonic 

phenotype. Control embryos presented a well-defined axis and a normal pattern of 

cardiac tissue staining (Figure 5:4 A-D). The normal appearance of embryos injected 

with cMO, which matched the highest dose of p53 MO used, suggests that, at this 

dose, the MO reagents are not having any obvious non-specific effects. Embryos 

injected with p53 MO1 demonstrated a dose-dependent response in the whole 

embryo phenotype, with the anterior-posterior axis becoming truncated and the tail 

less defined towards the higher doses tested (Figure 5:4 E-J). The phenotypes 

observed with the higher dose of 40 ng of p53 MO1 are in agreement with previously 

published work (Cordenonsi et al., 2007, 2003). Heart development, as assessed by 

the relative size of the cardiac-marker stained area, was reduced in p53 MO1 injected 

tadpoles, compared with the controls (Figure 5:4 A-J). Upon p53 MO3 injections a 

similar phenotypic dose-response was observed, with a truncated anterior-posterior 

axis and a less defined tail at the highest dose tested (Figure 5:4 K-P). Cardiac tissue 

staining appeared reduced in all p53 MO3 treated tadpoles in comparison to the 

controls (Figure 5:4 A-D, K-P). Both p53 MOs act in a dose-dependent manner, with 

p53 MO3 having similar effect as p53 MO1, but at slightly lower doses. From the data 

shown here and from published work, optimal doses of p53 MO were selected for 

use in further investigations. Although high doses of 40 ng and 50 ng of p53 MO1 

(equivalent to 20 ng of p53 MO3) have been previously used (Cordenonsi et al., 2007; 

Sasai et al., 2008), lower doses, that exerted a cardiac phenotype with a less severely 

affected global embryonic phenotype, were selected as optimal for investigations 
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here. Doses of 20 ng of p53 MO1 and 10 ng of p53 MO3, when targeted uniformly 

into the embryo, were selected for use in further investigations.  
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Figure 5:4. p53 antisense morpholino oligonucleotides act in a dose-dependent manner to 

affect cardiac tissue 

Embryos were either (A, B) uninjected (n=127) or injected uniformly at the 2 cell stage with 

(C, D) 40 ng of control MO (cMO) (n=40), (E, F) 10 ng (n=19), (G, H) 20 ng (n=68), (I, J) 40 ng 

(n=52) of p53 MO1 or (K, L) 5 ng (n=23), (M, N) 10 ng (n=98), (O, P) 20 ng (n=15) of p53 MO3. 

Tadpoles were analysed by whole mount in situ hybridisation using the differentiated cardiac 

tissue marker myl7 (white arrows). 
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5.5 p53 is required for normal heart development  

Having established the effectiveness and selected optimum dose of p53 MO1 and 

MO3, these MOs were utilised to investigate the role of p53 in heart development. 

The focus of this study concerns the first step of heart development- the specification 

of cardiac tissue. There are currently no known cardiac specific markers allowing 

cardiac progenitor cells to be traced from initial specification, throughout 

development, until terminal differentiation (Scott, 2012). Although there are genes 

that are known to be expressed by the cardiac progenitor cell population, these are 

not unique to the cardiac lineage and are often expressed in progenitor cells of 

alternative lineages (Scott, 2012). Cardiac markers that are expressed in 

differentiated cardiac cells, for example myl7, are specific to the cardiac lineage and 

their relative expression can be used as an indirect readout of cardiac progenitor 

population specification. Therefore, the staining of differentiated cardiac tissue was 

analysed after p53 downregulation to examine the requirement for p53 in cardiac 

specification, with the intention to investigate whether heart field progenitor 

markers are altered should a reduction in differentiated cardiac tissue be observed.  

Embryos were injected with the p53 MOs either uniformly or targeted to two dorsal 

vegetal (DV) or two ventral vegetal (VV) blastomeres of an 8 cell embryo. Work 

previously presented in this chapter demonstrated that 20 ng of p53 MO1 and 10 ng 

of p53 MO3 only caused subtle axial effects when injected uniformly, therefore it was 

reasoned that targeted injections at higher doses per blastomere might result in a 

more obvious specific cardiac effect, without a global phenotypic effect. At the 

tadpole stage (stage 32-36), embryos were analysed by whole mount in situ 

hybridisation using the differentiated cardiac tissue marker myl7. The staining 

pattern of myl7 was categorised as either normal, reduced, severely reduced or 

absent and examples of each staining category are shown in Figure 5:5 L-O. The 

results displayed in Figure 5:5 A, D, G, J and K show that embryos injected uniformly 

with p53 MO1 or MO3 resulted in comparatively normal tadpoles, but with reduced 

cardiac tissue compared with the controls. p53 MOs targeted to the dorsal vegetal, 
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future cardiac, region presented a normal whole embryonic phenotype, including 

normal head and eyes, but with severely reduced cardiac tissue staining (Figure 5:5 

B, E, H, K). p53 MOs targeted to the ventral vegetal blastomeres displayed normal 

cardiac tissue staining and a relatively normal anterior-posterior axis, although small 

posterior defects, for example reduced or bent tails, were commonly observed 

(Figure 5:5 C, F, I, K). These results suggest that p53 is required in dorsal vegetal, 

future cardiac, cells for heart development and that the p53 MOs had a specific effect 

in the injected region, as the anterior features of dorsal vegetal injected embryos 

appeared normal. The posterior region of ventral vegetal p53 MO injected embryos 

was relatively normal, providing evidence that a higher relative p53 MO dose per 

blastomere had minimal non-specific effects. Lineage tracing, which highlights all 

cells that received injected material, was used to first select embryos which had 

received the correctly targeted injection and then to examine the relative 

contribution of the injected region to the phenotype of the whole tadpole. Analysis 

of lineage traced embryos in Figure 5:5 P-S shows that the injected area appears to 

be of the correct size and proportion compared with the rest of the tadpole and with 

the controls. This would suggest that p53 MO is unlikely to be causing cell loss and 

that p53 is required cell-autonomously for heart development. 
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Figure 5:5. p53 MOs cause a reduction in differentiated cardiac tissue staining 

Embryos were either (J) uninjected or injected uniformly (U) at the 2 cell stage with (A) 40 ng 

of control MO (cMO), (D) 20 ng of p53 MO1 or (G) 10 ng of p53 MO3. Alternatively embryos 

were injected at the 8 cell stage into two dorsal vegetal (DV) or ventral vegetal (VV) 

blastomeres with (B, C) 10 ng/ blastomere of cMO, (E, F) 10 ng/ blastomere of p53 MO1 or 

(H, I) 5 ng/ blastomere of p53 MO3. Tadpoles were analysed by whole mount in situ 

hybridisation using myl7 (white arrows). (K) Graph displaying results of A-I. Uninjected 
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n=293, cMO U n=40, DV n=68, VV n=27, p53 MO1 U n=68, DV n=122, VV n=15, p53 MO3 U 

n=98, DV n=120, VV n=22. Following whole mount in situ hybridisation the extent of marker 

staining in tadpoles was classified. (L) Normal: the average staining observed in a given 

control sample. (M) Reduced: between 50-90% of staining area and intensity observed in 

controls. (N) Severely reduced: between 1-50% of staining area and intensity observed in 

controls. (O) Absent: no staining observed. (P-S) Lineage tracing (outlined) reveals the correct 

injection target. Images and show a lateral view orientated anterior left, dorsal up. Scale bars 

represent 1 mm. 
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5.6 The migration, fusion and remodelling of cardiac tissue is largely 

unaffected by p53 downregulation 

The morphology of cardiac tissue in p53 morphants was analysed in more detail, to 

obtain additional information about heart development after p53 downregulation. 

Experimental samples that were scored for the relative staining of cardiac tissue in 

Figure 5:5 were examined for cardiac morphology. Uninjected controls presented a 

heart of normal size and morphology (Figure 5:6 A, B). At this stage of development 

(stage 34-36), the linear heart tube, which initially forms along the anterior-posterior 

axis, has begun to bend laterally towards the right side of the embryo as it forms an 

anticlockwise spiral (Kolker et al., 2000; Latinkić et al., 2004; Mohun et al., 2000). The 

posterior, future atrial region moves more anterior and dorsal, resulting in an s-

shaped bulging cardiac tube. Distinct chamber cavities are formed later in 

development  (Kolker et al., 2000; Latinkić et al., 2004; Mohun et al., 2000). Figure 

5:6 E and F shows, in embryos displaying severely reduced cardiac tissue after p53 

downregulation, that only a subtle area of cardiac cells was observed with no 

evidence of heart tube formation or cardiac looping. Tadpoles presenting reduced 

cardiac tissue most often had a small cavity, albeit lacking expansion, but with signs 

of looping (Figure 5:6 G, H). The vast majority of cardiac tissue was observed in the 

correct location on the ventral midline, indicating that cardiac primordia have 

maintained their migratory capability. Infrequently, cardia bifida was observed, 

where heart primordia failed to meet and fuse on the ventral midline. Where there 

was sufficient cardiac tissue, two cavities formed independently (Figure 5:6 I, J). 

Linear heart tubes were rarely observed suggesting that looping and morphogenesis 

could still occur. In some tadpoles, no cardiac tissue was observed, not even 

aberrantly localised (Figure 5:6 C, D). In all categories of staining it was apparent that 

normal anterior development proceeded. The size and location of landmark features, 

such as the eyes and cement gland, was normal. In addition, normal anterior skeletal 

muscle development was observed (Figure 5:6 A, C, E, G). In summary, the initial 

results suggest that the migratory, fusing, and looping capacities of cardiac tissue are 

largely unaffected after p53 downregulation. This suggests that p53 may have an 
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early role in heart development, perhaps in cardiac specification or early cardiac 

progenitor promotion.  
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Figure 5:6. The migration, fusion and remodelling of cardiac tissue is largely unaffected by 

p53 downregulation 

Following p53 inhibition treatment in Figure 5:5, tadpoles were analysed by whole mount in 

situ hybridisation using the cardiac tissue marker myl7 (blue stain), followed by 

immunohistochemistry using the skeletal muscle marker 12/101 (brown stain).  (A, B) 

Uninjected controls with the future atrium (a), ventricle (v) and outflow tract (oft) highlighted 

(arrows). (C, D) Absent cardiac tissue. (E, F) Severely reduced cardiac tissue. (G, H) Reduced 

cardiac tissue. (I, J) Cardia bifida. C-J examples have been injected at the 8 cell stage into two 

dorsal vegetal blastomeres with 20 ng/ blastomere of p53 MO1. Scale bar represents 1 mm. 

A, C, E, G show a lateral view orientated anterior left. B, D, F, H, I and J show a ventral view, 

anterior upwards. These are example cardiac phenotypes from the experiments presented 

and quantified in Figure 5:5. 
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5.7 A gain of function dominant negative p53 protein interferes with 

cardiogenesis 

To validate the experiments carried out using p53 MOs, another independent 

method of downregulating p53 activity was utilised. mRNA encoding a dominant 

negative p53 protein, injected into the Xenopus laevis embryos, was utilised to 

downregulate active p53 signalling.  

Human p53 (hp53) with a G to C point mutation at residue 974 results in an arginine 

to threonine (thr) substitution at codon 280 (hp53thr280) (Sun et al., 1992). Arginine 

280 is a fundamental component of the DNA binding domain of p53, providing a 

positive charge to form ionic bonds with negative phosphate groups of the DNA 

major groove (Wright and Lim, 2007). Replacing arginine 280 with threonine 

interferes with the proteins ability to form a stable interaction with DNA (Wright and 

Lim, 2007). As p53 functions as a tetramer, one hp53thr280 protein can theoretically 

oligomerise with, and inhibit the function of, up to three wild type endogenous 

Xenopus laevis p53 proteins, thus acting in a dominant negative manner (Friedman 

et al., 1993; Sun et al., 1993; Wallingford et al., 1997). Hp53thr280 has been 

previously utilised for investigating the role of p53 in Xenopus laevis development, 

thus a similar approach was used in the work presented here (Wallingford et al., 

1997). 

Initially, wild type hp53 mRNA was tested by injecting into embryos and observing 

the tadpole phenotypes, to gauge an appropriate working dose for hp53thr280 and 

to compare the effect of the wild type hp53 mRNA phenotype to the hp53thr280 

mRNA phenotype. When dorsal vegetal cells of an 8 cell embryo were injected with 

0.5 ng of hp53 mRNA, the resulting tadpoles presented a slightly bent axis at early 

stages, but only subtle overall phenotypic abnormalities were observed by stage 40 

(Figure 5:7 C, D), compared with the controls (Figure 5:7 A, B). A higher dose of 1 ng 

of hp53 mRNA, targeted to dorsal vegetal cells, had a more severe effect, resulting in 

a phenotype with a harshly bent axis at stage 28 and anterior developmental 

abnormalities presented by stage 40 (Figure 5:7 G, H). When ventral animal cells were 
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targeted with 0.5 ng of hp53 mRNA, tadpoles had small posterior outgrowths and 

abnormalities (Figure 5:7 E, F). The same injection target, but at 1 ng of hp53 mRNA, 

resulted in a more severe posterior disruption and a higher incident of outgrowths, 

notably with a high level of pigment localised to the extreme posterior end of the 

embryo at stage 28 (Figure 5:7 I, J). These results suggest that hp53 mRNA affects 

embryonic development in a dose dependent manner. Relatively high doses of hp53 

mRNA were required to achieve the observed phenotypes. Concerns with doses 

greater than 1 ng globally being toxic were addressed by using targeted injections, 

which allowed a higher dose per blastomere without increasing the dose received by 

the whole embryo.  

The hp53thr280 construct was created by site directed mutagenesis of the wild type 

p53 during this project (see Section 2.5). The difference in embryonic phenotypes 

observed between hp53 and hp53thr280 mRNA injected embryos were tested using 

similar doses and targets. Uniform injections of 1 ng of hp53thr280 mRNA did not 

affect the phenotype of the tadpoles, compared with uninjected controls (Figure 5:7 

K, L). Injections of 1 ng of hp53thr280 mRNA, targeted to dorsal vegetal or ventral 

vegetal cells, had only a very subtle effect on the phenotype of the whole embryo, 

with normal axis formation, length and appearance and no observed outgrowths 

observed (Figure 5:7 M , N). This suggests that the site specific mutation between 

hp53 and hp53thr280 is effective to disrupt p53 signalling and circumvent the 

phenotypes caused by the same dose of wild type hp53 mRNA. Western blot analysis 

of protein extracts from stage 9 embryos shows that the hp53thr280 protein is 

produced in a dose dependent manner (Figure 5:7 O), but was less readily detected 

at lower doses than Xenopus laevis p53 (Figure 5:7 P). It would appear that hp53 is 

less effective than Xenopus laevis p53, hence higher doses of hp53 were necessary. 
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Figure 5:7. Dominant negative p53 gain of function optimisation 

Embryos were either (A, B) uninjected, or injected at the 8 cell stage with 0.5 ng of hp53 

mRNA into (C, D) two dorsal vegetal (DV) or (E, F) two ventral animal (VA) blastomeres (0.25 

ng/ blastomere). 1 ng of hp53 mRNA was injected into (G, H) two DV or (I, J) two VA 

blastomeres (0.5 ng/ blastomere). Embryos developed until stage 28 (top row: A, C, E, G, I) 

or stage 40 (bottom row: B, D, F, H, J) for phenotypic analysis. Stage 28 – uninjected n=26, 

hp53 mRNA 0.5 ng DV n=22, 0.5 ng VV n=19, 1 ng DV n=20, 1 ng VV n=21. Stage 40 – 

uninjected n=25, hp53 mRNA 0.5 ng DV n=20, 0.5 ng VV n=18, 1 ng DV n=23, 1 ng VV n=21. 

Embryos were either (K) uninjected (n=124) or injected with 1 ng of hp53thr280 mRNA either 

(L) uniformly (U) (n=59), or into (M) two dorsal vegetal (n=110) or (N) two ventral vegetal 

(n=74) blastomeres of an 8 cell embryo (0.5 ng/ blastomere), and developed until the tadpole 

stage for phenotypic analysis. Embryos were analysed by whole mount in situ hybridisation 

using the cardiac tissue marker myl7. Images show a lateral view orientated anterior left, 

dorsal up. Scale bars represent 1 mm. (O) Embryos were injected uniformly with 125 pg, 500 
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pg or 1 ng of hp53thr280 mRNA, or left uninjected, and developed until stage 9 for western 

blot analysis for p53. (P) Embryos were injected uniformly with 100 pg of p53-5’U92-HA 

mRNA, or left uninjected, until western blot analysis at stage 9 for p53. ERK is a loading 

control.  
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To address whether p53 downregulation by hp53thr280 mRNA affects normal heart 

development, embryos were injected with hp53thr280 mRNA and cardiac 

phenotypes were examined at the tadpole stage. 1 ng of hp53thr280, injected 

uniformly, had no obvious effect on embryonic development or on cardiac tissue, 

with the phenotypes of the tadpoles similar to the uninjected controls (Figure 5:8 A-

F, M). Hp53thr280 mRNA injections targeted to ventral vegetal, non-cardiac, regions 

presented a relatively normal embryonic phenotype, occasionally with a small 

posterior tail defect, but with normal cardiac tissue (Figure 5:8 J-L, M). Hp53thr280 

mRNA injected into the dorsal vegetal, future cardiac regions resulted in a relatively 

normal whole embryo phenotype but notably with reduced cardiac tissue (Figure 5:8 

G-I, M). This result suggests that p53 is required for normal heart development. 

Indeed, the effect of hp53thr280 appears to be specific to heart development, as 

other anterior features such as the eyes, cement gland and head appear to be 

normal, despite having also received hp53thr280 mRNA. Lineage tracing (Figure 5:8 

C, F, I, L) was used to confirm the correct injection target. Analysis of lineage traced 

tadpoles shows that the domains of cells which received injected material appeared 

to be normally proportioned, suggesting that normal development had occurred with 

minimal cell loss or death. The relatively mild effects observed on the whole embryo 

phenotype after p53thr280 mRNA injection suggests that the cardiac effects 

observed here are likely to be specific and that p53 is required for heart 

development.  

Previously, it has been shown that hp53thr280 forms a tetramer with endogenous 

p53 proteins, acting in a dominant negative manner to inhibit normal p53 function 

by disrupting DNA binding (Sun et al., 1993; Wallingford et al., 1997). p53 MO1 and 

MO3 bind p53 mRNA, inhibiting successful translation of the p53 protein. 

Hp53thr280 mRNA and p53 MOs are very different mechanisms for downregulating 

endogenous p53 activity. Nevertheless, both approaches yield similar results: a 

minimal effect on the global embryonic phenotype, but a specific effect resulting in 

the reduction of cardiac tissue in a cell-autonomous manner. The agreement of the 
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results of these two complementary approaches provides evidence that p53 is 

probably required for normal heart development. 
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Figure 5:8. Dominant negative hp53 mRNA interferes with cardiogenesis 

Embryo were either (A-C) uninjected or (D-F) injected uniformly (U) at the 2 cell stage with 1 

ng of hp53thr280 mRNA. Alternatively, embryos were injected at the 8 cell stage into two 

(G-I) dorsal vegetal (DV) or (J-L) ventral vegetal (VV) blastomeres with 500 pg/ blastomere of 

hp53thr280 mRNA. Tadpoles were analysed by whole mount in situ hybridisation using myl7 

(white arrows). Lineage tracing (outlined) reveals the correct injection target. Images show 

a lateral view orientated anterior left, dorsal up. Scale bars represent 1 mm. (M) Graph 

displaying results of A-L. Uninjected n=70, hp53thr280 U n=42, DV n=88, VV n=69. 
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A rescue experiment was attempted using p53 MO3 and Xenopus laevis p53 mRNA 

beginning at the ATG site (p53-ATG-HA). p53-ATG-HA mRNA does not contain the 

5’UTR sequence which p53 MO3 is targeted to, hence should not be affected by the 

p53 MO3. First, the p53-ATG-HA mRNA was tested at increasing doses to establish 

an appropriate dose to be combined with the p53 MO3 in an attempt to rescue the 

cardiac tissue and whole embryo phenotype. Doses of less than or equal to 20 pg of 

p53-ATG-HA mRNA did not negatively affect the embryonic phenotype throughout 

development (Figure 5:9 A, D). A dose of 50 pg p53-ATG-HA mRNA resulted in a 

truncated embryo with underdeveloped head and eyes, amongst other 

developmental abnormalities (Figure 5:9 B). 100 pg of p53-ATG-HA mRNA was toxic, 

resulting in embryonic death (Figure 5:9 C). Doses of 5 pg and 20 pg of p53-ATG-HA 

mRNA, along with 10 ng of p53 MO3, were utilised for rescue experiments. These 

amounts were reasoned to rescue p53 protein without causing toxicity, based on 

previously observed phenotypes and western blots. Rescue of the cardiac phenotype 

was not observed using these conditions, although it is noted that 10 ng, or greater, 

of p53 MO3 can prevent the toxic phenotype caused by 100 pg of p53 mRNA. Rescue 

experiments are particularly challenging to achieve especially when there is strong 

overexpression phenotype, such as embryonic death observed here (Eisen and 

Smith, 2008). In addition, the p53 MO phenotype is subtle, thus there is a narrow 

margin between no rescue to overloading and toxicity. Perhaps with further work 

and the use of the more active, alternatively spliced mouse p53 (mp53AS), which has 

been shown to induce secondary axis formation in Xenopus laevis (Cordenonsi et al., 

2003), a rescue experiment might be achievable. Rescue experiments would 

additionally act as a control to address MO off-target effects. The results of 

experiments shown here using the two independent p53 MOs and the dominant 

negative hp53thr280 are in agreement, suggesting that these methods result in 

specific p53 downregulation, rather than non-specific effects of the reagents used. 

An interesting observation is the different gain of function activities which Xenopus 

laevis, human and mouse p53 have when expressed in Xenopus laevis. For example, 

the ability for hp53 and mp53AS, but not Xenopus laevis p53, to reliably induce a 

secondary axis or tail structure (Cordenonsi et al., 2003). This could possibly reflect 
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protein divergence, as Figure 5:10 shows that there is dissimilarity between the 

Xenopus laevis p53 amino acids and those of the human and mouse proteins. 

Although the sequences are highly similar, this protein alignment suggests that some 

degree of divergence has occurred between Xenopus laevis, human and mouse p53. 
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Figure 5:9. p53-ATG-HA mRNA dose response 

Embryos were injected uniformly at the 2 cell stage with (A) 20 pg (n=64), (B) 50 pg (n=50) 

or (C) 100 pg (n=21) of p53-ATG-HA mRNA, or (D) left uninjected (n=81). 

 

 

 

 

Figure 5:10. Human, Xenopus laevis and mouse p53 protein alignment showing conserved 

and diverging residues 

The protein alignment was created by comparing Homo sapiens (human), Xenopus laevis and 

Mus Musculus (mouse) p53 protein sequences using the online Constraint-Based 

Multiple Alignment Tool (COBALT). Red highlights conserved amino acids, blue divergent 

amino acids. Asterisk and box shows the position of the mutated Arginine (R) in the 

p53thr280 protein. 
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5.8 p53 may be required for the specification of cardiac progenitors 

Having surmised a role for p53 in heart development, investigations next addressed 

the timing of the p53 requirement. The effects of p53 downregulation on the cardiac 

progenitor pool was examined. nkx2.5 and isl1 are amongst the earliest known 

cardiac progenitor markers, with their expression commencing from the late gastrula 

stages (Brade et al., 2007; Tonissen et al., 1994). nkx2.5 expression is detected in 

both the primary and secondary developing heart fields, and continues to be 

expressed in the left ventricle and atrial chambers in the mature heart (Kasahara et 

al., 1998; Komuro and Izumo, 1993; Lints et al., 1993; Tonissen et al., 1994). isl1 

expression is localised primarily in the secondary heart field and overlaps with the 

more anterior domain of nkx2.5 expression (Cai et al., 2003; Gessert and Kühl, 2009). 

The expression of nkx2.5 and isl1 was examined after p53 downregulation.  

Embryos were either injected uniformly, or injected at the 8 cell stage targeted to 

two dorsal vegetal or two ventral vegetal blastomeres, with p53 MO1, p53 MO3, 

cMO, hp53thr280 mRNA or left uninjected. Neurula stage embryos (stage 20) were 

analysed by whole mount in situ hybridisation for the expression of cardiac 

progenitor markers nkx2.5 and isl1. The observed expression patterns were 

categorised as either normal, reduced or severely reduced and examples of these 

categories are shown in Figure 5:11 C1-E1. The cells which received injected material 

were traced and this observation was used to identify correct injection targets, and 

to ascertain whether observed phenotypic and staining effects were due to cell 

autonomous p53 downregulation. Control embryos demonstrated normal staining 

area and intensity of nkx2.5 and isl1 positive cardiac progenitor cells (Figure 5:11 A-

I, B1, Figure 5:12 A-I, B1, Figure 5:13 A-D, M, N). Neurula stage embryos subjected to 

uniform p53 downregulation presented reduced cardiac progenitor tissue (Figure 

5:11 J-L, S-U, B1, Figure 5:12 J-L, S-U, B1). Embryos with downregulated p53 in dorsal 

vegetal cells showed reduced to severely reduced nkx2.5 and isl1 positive cardiac 

progenitors (Figure 5:11 M-O, V-X, B1, Figure 5:12 M-O, V-X, B1, Figure 5:13 E-H, M, 

N). Upon p53 downregulation in ventral vegetal cells, the nkx2.5 and isl1 positive 
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cardiac progenitor pool was more comparable to that of the controls (Figure 5:11 P-

R, Y-A1, B1, Figure 5:12 P-R, Y-A1, B1, Figure 5:13 I-L, M, N). This suggests that p53 is 

required for the specification of nkx2.5 and isl1 positive cardiac progenitor cells in a 

cell autonomous manner. 
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Figure 5:11. Cardiac progenitor cell marker nkx2.5 expression is reduced by p53 antisense 

morpholino oligonucleotides 

Embryos were either (A-C) injected uniformly (U) at the 2 cell stage with 20 ng of control MO 

(cMO), (D-F) injected into two dorsal vegetal (DV) blastomeres with 10 ng/ blastomere of 

cMO, or (G-I) uninjected, as controls. Embryos were either (J-L) injected U at the 2 cell stage 

with 20 ng of p53 MO1, or injected at the 8 cell stage into (M-O) two DV or (P-R) two ventral 

vegetal (VV) blastomeres with  10 ng/ blastomere of p53 MO1. Embryos were (S-U) injected 

uniformly at the 2 cell stage with 10 ng of p53 MO3, or injected at the 8 cell stage into (V-X) 

two DV or (Y-A1) two VV blastomeres with 5 ng/ blastomere of p53 MO3. Neurula staged 
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embryos were analysed by whole mount in situ hybridisation using the cardiac progenitor 

marker nkx2.5 (red arrows). Lineage tracing (outlined) reveals the correct injection target. 

Images show a ventral view orientated anterior left. Scale bars represent 1 mm. (B1) Graph 

displaying results of A-A1. Uninjected n=25, cMO U n=50, DV n=15, p53 MO1 U n=58, DV 

n=50, VV n=14, p53 MO3 U n=65, DV n=40, VV n=12. Following whole mount in situ 

hybridisation, the extent of marker staining in neurula stage embryos was classified, 

illustrated here using nkx2.5 cardiac tissue staining. (C1) Normal: the average staining 

observed in a given control sample. (D1) Reduced: between 50-90% of staining area and 

intensity observed in controls. (E1) Severely reduced: between 1-50% of staining area and 

intensity observed in controls. All example images shown are from the same experiment. 
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Figure 5:12. Cardiac progenitor cell marker isl1 expression is reduced by p53 antisense 

morpholino oligonucleotides 

Embryos were either (A-C) injected uniformly (U) at the 2 cell stage with 20 ng of control MO 

(cMO), (D-F) injected into two dorsal vegetal (DV) blastomeres with 10 ng/ blastomere of 

cMO, or (G-I) uninjected, as controls. Embryos were either (J-L) injected uniformly at the 2 

cell stage with 20 ng of p53 MO1, or injected at the 8 cell stage into (M-O) two DV or (P-R) 

two ventral vegetal (VV) blastomeres with 10 ng/ blastomere of p53 MO1. Embryos were (S-

U) injected U at the 2 cell stage with 10 ng of p53 MO3, or injected at the 8 cell stage into (V-

X) two DV or (Y-A1) two VV blastomeres with 5 ng/ blastomere of p53 MO3. Neurula staged 
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embryos were analysed by whole mount in situ hybridisation using the cardiac progenitor 

marker isl1 (purple arrows). Lineage tracing (outlined) reveals the correct injection target. 

Images show a ventral view orientated anterior left. Scale bars represent 1 mm. All example 

images shown are from the same experiment. (B1) Graph displaying results of A-A1. 

Uninjected n=17, cMO U n=21, DV n=14, p53 MO1 U n=15, DV n=14, VV n=15, p53 MO3 U 

n=16, DV n=14, VV n=13.  
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Figure 5:13. The expression of the cardiac progenitor cell markers nkx2.5 and isl1 is 

reduced after expression of a dominant negative hp53 

Embryos were either (A-D) uninjected or injected at the 8 cell stage into (E-H) two dorsal 

vegetal (DV) or (I-L) two ventral vegetal (VV) blastomeres with 500 pg/ blastomere of 

hp53thr280 mRNA. Neurula staged embryos were analysed by whole mount in situ 

hybridisation using the cardiac progenitor markers nkx2.5 (red arrows) or isl1 (purple 

arrows). Images show a ventral view orientated anterior left. Scale bars represent 1 mm. 

Graph displaying results of A-L. (M) nkx2.5; uninjected n=31, hp53thr280 DV n=28, 

hp53thr280 VV n=27. (N) isl1; uninjected n=30, hp53thr280 DV n=29, hp53thr280 DV n=27.  
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Intriguingly, there appears to be a difference in cardiac tissue expression between 

the neurula and tadpole stages. For example, in targeted p53 downregulation in the 

dorsal vegetal region, at the neurula stage there is predominantly reduced to 

severely reduced cardiac tissue. However, by the tadpole stage, cardiac tissue is 

predominantly severely reduced to absent. The cardiac phenotype appears to 

become more severe as development progresses. Direct comparison of sibling 

embryos subjected to p53 downregulation and collected at stages 20 and 36 for 

whole mount in situ hybridisation analysis using nkx2.5 and Myl7, respectively, 

confirms these results. As previously highlighted, the areas of injected, lineage traced 

cells appeared to be complete and in proportion and embryonic phenotypes were 

largely unaffected by p53 downregulation. Therefore, it is unlikely that this reduction 

in cardiac tissue was due to cell loss.  

These results suggest that p53 plays an early role in specifying nkx2.5 and isl1 positive 

cardiac progenitors, due to the reduction in nkx2.5 and isl1 staining after p53 

downregulation. The more severe reduction observed in differentiated cardiac tissue 

marker myl7 at the tadpole stage suggests that p53 may have a continued role 

throughout development in cardiogenesis. If indeed p53 is required for progenitor 

specification and maintenance, then it would be expected that nkx2.5 and isl1 levels 

would become progressively further reduced prior to linear heart tube formation. 

p53 levels recover by stage 32 in p53 MO3 treated samples, but p53 MO1 and p53 

MO3 injected embryos show comparable phenotypes (Figure 5:4). Therefore, these 

results suggest that p53 is required early, perhaps for cardiac specification, and also 

slightly later during the neurula stage, but before the tadpole stage, for normal heart 

development.  

5.9 Mesoderm induction is largely unaffected by p53 downregulation 

Previous publications have alluded to the importance of p53 in mesoderm induction, 

which precedes cardiac specification (Cordenonsi et al., 2007, 2003; Sasai et al., 

2008). However, it was found here that the phenotypes of tadpoles after p53 

downregulation appear to be normal with no, or minimal, axial defects (Figure 5:4 
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and Figure 5:7). Additionally, should mesoderm induction be disrupted, it would be 

expected that cardiac tissue development would be affected, as cardiac cells are 

derived from mesoderm. To investigate this further, the presence of the pan-

mesodermal marker, Xenopus laevis brachyury (t), was examined by whole mount in 

situ hybridisation after p53 downregulation. brachyury staining was categorised as 

either normal or reduced and examples of the staining categories are shown in Figure 

5:14 R and S. Figure 5:14 and Figure 5:15 show that embryos that were subjected to 

p53 downregulation have normal brachyury staining, suggesting that normal 

mesodermal tissue formation has occurred. No difference was observed upon 

uniform or target p53 MO or hp53thr280 injections, compared with the controls. This 

implies that p53 downregulation has not affected mesoderm induction, consistent 

with the observation that tadpoles with downregulated p53 activity show normal 

embryonic and axial development. This is in apparent contradiction to previously 

reported results that implicate p53 in mesoderm induction (Cordenonsi et al., 2007, 

2003; Piccolo, 2008; Sasai et al., 2008). During the investigations presented here a 

lower p53 MO dose is utilised than in previously published work, which has 

demonstrated specific cardiac effects without more general embryonic phenotypes. 

However, data presented here agrees with other published work which shows no 

change in markers brachyury and goosecoid after p53 downregulation using 

hp53thr280 mRNA (Wallingford et al., 1997). 
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Figure 5:14. Mesodermal marker brachyury expression is largely unaffected by p53 

antisense morpholino oligonucleotides 

Embryos were either (A, B) injected uniformly (U) at the 2 cell stage with 20 ng of p53 MO1, 

or injected at the 8 cell stage into (C, D) two dorsal vegetal (DV) or (E, F) two ventral vegetal 

(VV) blastomeres with 10 ng/ blastomere of p53 MO1. Embryos were (G, H) injected U at the 

2 cell stage with 10 ng of p53 MO3, or injected at the 8 cell stage into (I, J) two DV or (K, L) 

two VV blastomeres with 5 ng/ blastomere of p53 MO3. Embryo were either (M, N) injected 

U at the 2 cell stage with 20 ng of control MO (cMO) or (O, P) injected into two DV 

blastomeres with 10 ng/ blastomere of cMO. Stage 10 embryos were analysed by whole 

mount in situ hybridisation using the pan-mesodermal marker brachyury. (Q) Graph 

displaying results of A-P. Uninjected n=67, cMO U n=66, DV n=28, p53 MO1 U n=62, DV n=31, 

VV n=26, p53 MO3 U n=64, DV n=27, VV n=29. Following whole mount in situ hybridisation, 

the extent of marker staining was classified. (A) Normal: the average staining pattern 

observed in a given control sample. (B) Reduced: between 1-90% of staining intensity, 

thickness and completeness observed in controls encompassing intensity, thickness and 
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completeness of the characteristic brachyury circle. Changes in staining are subtle but 

apparent. All example images shown are from the same experiment. Images show a ventral 

view. Scale bars represent 1 mm. 
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Figure 5:15. Mesodermal marker brachyury expression is largely unaffected the 

expression of a dominant negative hp53 

Embryos were injected at the 8 cell stage into (A, B) two dorsal vegetal (DV) or (C, D) two 

ventral vegetal (VV) blastomeres with 500 pg/ blastomere of hp53thr280 mRNA, (E, F) or left 

uninjected. Stage 10 embryos were analysed by whole mount in situ hybridisation using the 

pan-mesodermal marker brachyury. Uninjected n=33, hp53thr280 DV=32, VV=26. 
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5.10 CRISPR technology attempted in Xenopus p53 gene 

Clustered regularly interspaced short palindromic repeat (CRISPR) technology is a 

recently developed, powerful tool for genome editing (reviewed in Sander and Joung, 

2014). The CRISPR/ Cas9 system takes advantage of the bacterial adaptive immune 

system for guiding targeted DNA cleavage. It was decided to use this technique to 

knowkdown the p53 gene in Xenopus as an alternative and complementary approach 

to those used previously to study p53 in the work presented in this thesis. A CRISPR 

approach for knocking down the p53 gene was attempted during the final months of 

investigations. Although the work reported here did not progress as far as achieving 

meaningful experiments to investigate the role of p53 in heart development, 

numerous protocols and reagents were developed and tested which will provide 

useful information for future investigations into the roles of p53 in Xenopus 

development. 

Initial CRISPR attempts were made in Xenopus laevis, using Cas9 mRNA injections 

along with the designed guide RNAs. However, after multiple optimisation 

experiments, initial tests did not produce positive results. This could for a number of 

reasons, for example, a delay in the translation of the injected Cas9 mRNA. Injected 

Cas9 mRNA must first be translated before being guided to DNA to induce gene 

editing events. Recombinant Cas9 protein can induce target specific gene editing 

events immediately after injection, and in addition is degraded rapidly, reducing off-

target effects (Kim et al., 2014). CRISPR technology has been used successfully in 

Xenopus tropicalis (Blitz et al., 2013; Guo et al., 2014; Nakayama et al., 2013). 

Therefore, it was decided to use Xenopus tropicalis, and adopting the strategy of 

injecting Cas9 protein.  

Short guide RNAs (sgRNAs) targeting Xenopus tropicalis p53 were kindly designed by 

Dr Richard White (The Welcome Trust - Sanger Institute) using in-house developed 

tools. From multiple potential sgRNAs, 8 were selected for production and further 

screening (Table 5:2). As sgRNA have a range of efficiencies, which are not necessarily 

predictable, the 8 sgRNAs were tested in vitro for the ability to cleave an amplicon of 
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Xenopus tropicalis p53 DNA. sgRNA5 and sgRNA8 proved capable of guiding in vitro 

cleavage, thus were further tested in vivo (Figure 5:16). The sgRNAs target the initial 

3 exons of p53, upstream of the DNA binding and oligomerisation domains. It was 

reasoned that a gene editing event at the N-terminus of p53 was most likely to cause 

global gene disruption, by homologous recombination creating a missense transcript. 

sgRNA5 and sgRNA8 both target sequences in exon 3, which contributes to the 

proline rich domain of the p53 protein. Gene editing events guided by sgRNA5 and 

sgRNA8 were predicted to occur around amino acids 40-47 and 62-69, respectively 

(Figure 5:17). After a number of attempts and optimisation strategies using sgRNA5, 

sgRNA8 and Cas9 protein in vivo, no indication of successful DNA cleavage was 

observed. A known working CRISPR control, editing the tyrosinase gene, also did not 

yield positive results, indicating unsuccessful CRISPR application. With further 

optimisation work this approach could be successful and a valuable tool for 

investigating the role of p53 in cardiac specification. Further work on p53 CRISPR/ 

Cas9 in Xenopus tropicalis was continued as a collaboration with Dr Harry Isaacs (York 

University).  
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sgRNA Name Target sequence Target strand Exon 

Xt tp53 sgRNA 1 AGGAGACCTTCGAGGATTTGTGG + 1 

Xt tp53 sgRNA 2 GACCCCCTACAGACCGGGACAGG + 2 

Xt tp53 sgRNA 3 GACCTGTCCCGGTCTGTAGGGGG - 2 

Xt tp53 sgRNA 4 AGGTCAGATGGAAAACTTTGCGG + 2 

Xt tp53 sgRNA 5 GGAGTTTTCAGAGTACCCCCTGG + 3 

Xt tp53 sgRNA 6 GAACCGTCATGTCTGGCGCCAGG - 3 

Xt tp53 sgRNA 7 GACATGACGGTTCTGCAGGAAGG + 3 

Xt tp53 sgRNA 8 AGACGAAGTCACGGTGGGCACGG - 3 

Table 5:2. CRISPR sgRNAs targeted to Xenopus tropicalis p53 

 

 

Figure 5:16. In vitro assay for successful sgRNA-Cas9-mediated DNA cleavage 

sgRNAs guide Cas9 protein to successfully cleave a fragment of PCR-amplified genomic p53 

DNA, in vitro. 
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Figure 5:17. sgRNA target sites for p53 CRISPR 

 (A) sgRNA5 and sgRNA8 are targeted to exon 3 in p53 genomic DNA. (B) sgRNA5 and sgRNA8 

target sequences are within the proline rich domain of the p53 protein. NLS = nuclear 

localisation signal. 
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5.11 Discussion  

5.11.1 p53 is required for early heart development 

The aim of this chapter was to investigate the requirement for p53 in heart 

development. Two different translation blocking p53 MOs and a dominant negative 

p53 protein were utilised to downregulate endogenous Xenopus laevis p53 activity. 

The p53 MOs were shown to effectively downregulate overexpressed and 

endogenous Xenopus laevis p53 protein. All three p53 downregulation techniques 

were shown to have minor effects on global phenotypic development, but gave rise 

to tadpoles with diminished cardiac tissue. At the neurula stages, the cardiac 

progenitor pool, which expresses nkx2.5 and isl1 markers, was reduced, in a cell-

autonomous manner. By the tadpole stage, corresponding samples to neurula stages 

presented severely reduced differentiated cardiac tissue. Cardiac marker expression 

decreased between the neurula and tadpole stages, with myl7 expression reduced 

to a greater extent than nkx2.5 and isl1 expression. This suggests that p53 is required 

early, perhaps for the specification of cardiac progenitor cells, in addition to having a 

role during the neurula to late neurula stage. Perhaps this later role is in maintaining 

the existing cardiac progenitor pool, or in promoting further proliferation and 

development. It is unlikely that p53 is required after the neurula stages for cardiac 

tissue development. In p53 MO3 injected samples, endogenous p53 protein levels 

recovered by stage 32. However, p53 MO1 and p53 MO3 injected tadpoles were 

indistinguishable in both the whole embryo and cardiac phenotypes. Therefore, as 

p53 protein recovery is having minimal noticeable effect on phenotypes, this 

suggests that p53 is required earlier, before protein levels recover. It is unlikely that 

cell death is contributing to the loss of cardiac progenitors and differentiated cardiac 

tissue.  Any non-specific toxic effects due to p53 MOs which alter embryonic viability 

would be expected to be apparent by an early stage. Prior to staining, neurula stage 

embryos from different treatment regimes appear to be indistinguishable, 

suggesting that p53 downregulation is not negatively affecting general embryonic 

development. Indeed, morphological landmark features such as the cement gland 
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were of comparable sizes between all samples. Lineage traced targeted injection 

domains of neurula and tadpole staged embryos were comparable to that of 

controls, implying that p53 MO and hp53thr280 treatments are having specific, and 

non-toxic, effects. Another possibility is cell fate change, where targeted cells are 

correctly located but adopt an alternative, non-cardiac fate. This minimal phenotypic 

global effect, but defined cardiac effect, suggests that p53 is required specifically for 

heart development. This work suggests that p53 has an additional novel role in 

Xenopus laevis cardiac specification and development. 

The power of the CRISPR-Cas9 system to specifically knock-out the Xenopus p53 gene 

would have been a useful and complementary method to the p53 MO and 

hp53thr280 methods utilised in these investigations. First utilised in 2012 for genome 

editing, the CRISPR-Cas9 system takes advantage of the bacterial adaptive immune 

system for guiding targeted DNA cleavage (Jinek et al., 2012). CRISPR technology has 

advanced rapidly in recent years, becoming a mainstream method in research for 

editing genomic DNA targets (Sander and Joung, 2014). With such a new technology, 

its flaws and limitations are largely unknown, and are slowly coming to light as further 

CRISPR applications are tested. CRISPR-mediated gene editing is believed to be highly 

specific, but recent studies are highlighting off-target and unknown effects (Rossi et 

al., 2015; Zhang et al., 2015). In a study comparing morphants (MO-induced) to 

mutants (CRISPR-induced), phenotypes were often not comparable  (Kok et al., 

2015). It was suggested that MOs frequently generate non-specific effects, and 

should only be utilised once validated against a corresponding mutant (Kok et al., 

2015). However, in a subsequent study it was shown that embryos can compensate 

for genomic mutations, but not for alterations resulting from MOs treatment (Rossi 

et al., 2015). Indeed, mutants, additionally treated with MO, did not succumb to 

morphant phenotypes, whereas wild type MO treated samples were affected (Rossi 

et al., 2015). It is apparent that further studies are required to ascertain if, and how, 

such compensation works, and to understand the differences observed in morphant 

and mutant phenotypes, in addition to investigating CRISPR off-target effects. 

CRISPR/ Cas9 technology is revolutionary and is an important new technique for 
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investigating gene function. However, until the technology is fully understood, it is 

prudent to use a variety of complementary methods. 

5.11.2 Mesoderm specification is unaffected by p53 downregulation 

The role of p53 in cardiac specification was investigated here as previous work had 

shown that p53 was involved in mediating pathway crosstalk for mesoderm 

induction, so it was hypothesised that a similar mechanism could be functioning for 

cardiac specification (Cordenonsi et al., 2007, 2003; Sasai et al., 2008). However, the 

results presented here, observing the overall tadpole phenotype and analysis of the 

pan-mesodermal marker brachyury, suggests that mesoderm induction is unaffected 

by the level of p53 inhibition utilised throughout this investigation. Direct comparison 

of tadpoles between this work and previously published data is not possible, as there 

are no published examples of p53 MO injected Xenopus laevis embryos developed 

until the tadpole stages. The tadpole phenotype can be highly informative, as without 

normal mesoderm formation, embryonic processes including gastrulation, axial 

patterning and elongation are compromised (Keller et al., 2000). Hence, where 

embryonic development appears to be relatively normal, this is a good indication that 

mesoderm induction has occurred. Cordenonsi et al. (2003) report the attenuation 

of brachyury, cell-autonomously, upon p53 downregulation, using 10 ng of p53 MO1 

injected into 1 blastomere of a 4 cell embryo (Cordenonsi et al., 2003). This dose and 

targeted injection is not dissimilar to experiments performed here, but with a 

conflicting result. In the work presented here, a phenotypic dose response to the p53 

MOs was observed, however, p53 protein detected by western blotting appeared to 

be sufficiently decreased at lower p53 MO concentrations. As the detection of p53 

protein by western blotting is subtle this could suggest that a residual amount of p53 

protein remains but has not entered the detectable range, or that higher doses of 

p53 MOs are creating artefactual, non-specific phenotypic effects. For this reason 

intermediate doses of 20 ng p53 MO1 or 10 ng p53 MO3 were used for uniform 

injections throughout experiments presented in this chapter, rather than the higher 

dose of 40 ng p53 MO1 injected uniformly by Cordenonsi et al. (2007) and 
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Takebayashi-Suzuki et al., 2003. At the neurula stage, the expression of the dorsal 

mesoderm derivative myod1, which is required for skeletal muscle formation 

(Hopwood and Gurdon, 1991), was previously shown to be reduced (Cordenonsi et 

al., 2003). It would, however, be informative to observe how, and whether, these 

embryos developed into the tadpole stages, and developed differentiated skeletal 

muscle. Cordenonsi et al. (2003) employ unilateral p53 MO injections, using the 

uninjected half of the embryo as an internal control to demonstrate abnormal 

development. However, it is known that some MO injections can cause slight 

developmental delay, thus it would have been advantageous to observe these 

embryos at a later stage of development. Reportedly, significant proportions of the 

embryos failed to gastrulate properly (23%), and a number lacked tail structure and 

developed a shortened trunks (n=76, 54%) (Cordenonsi et al., 2003). Examples given 

for this analysis were at a relatively early stage (tailbud). Extended analysis at a later 

stage would perhaps better summarise the full extent of the reduced tail and trunk 

phenotypes, ensuring that effects seen are consistent throughout development and 

are not due to developmental delay. It was documented that 54% of embryos which 

survived beyond the neurula stage lacked tail structures and were truncated 

(Cordenonsi et al., 2003). Presumably, the remaining 46% retained these features, 

indicating successful mesoderm induction. It is apparent from neurula staged p53 

MO injected sample images, displaying reduced myod1, that gastrulation has 

occurred and axis elongation is underway, albeit slightly hindered compared with the 

uninjected side of the embryo (Cordenonsi et al., 2003). Critical analysis reveals that 

the case is not as simple as p53 downregulation resulting in defective brachyury 

expression and thus defective mesoderm, as despite reports of brachyury reduction 

there are still indications that mesoderm formation has occurred. Examining 

published RT-PCR data, in an animal cap model for mesoderm induction, reveals that, 

upon p53 downregulation, using 40 ng of p53 MO1, brachyury expression was 

reduced but not abolished (Cordenonsi et al., 2007). Additionally, it was shown that 

p53 mRNA can induce mesodermal marker genes. However, the ability to induce an 

event in a model such as animal caps shows the capacity of a protein to induce an 

event, but this does not necessarily reflect an in vivo role. p53 downregulation by 
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overexpression of the p53 inhibitor Znf585b, or by p53 MO1, was shown to result in 

the severe reduction of brachyury expression (Sasai et al., 2008). Doses of 50 ng per 

blastomere of p53 MO1, injected at the 4 or 8 cell stage, are higher than those used 

throughout the work presented here. This may account for the discrepancy in results. 

However, there are no embryos or markers older than the gastrula stage from which 

to examine and extrapolate additional information about mesoderm development 

(Sasai et al., 2008). In agreement with the results in this chapter, Wallingford et al. 

demonstrate that interference with p53 activity, using hp53thr280, does not affect 

the expression of mesodermal markers brachyury and goosecoid (Wallingford et al., 

1997). In addition, tadpole embryos appear to have gastrulated and have an 

extended anterior-posterior axis, indicating intact mesoderm development 

(Wallingford et al., 1997).  

As documented above, there are discrepancies between different studies as to the 

effect of p53 inhibition on mesodermal gene expression and ultimately mesoderm 

development. It could be reasoned that, during experimental investigations in this 

chapter, complete p53 inhibition was not achieved, and this could explain the 

difference in brachyury expression between the work presented here and published 

data. However, the doses of p53 MOs selected for these investigations, and lower 

doses, resulted in the robust downregulation of p53 protein, therefore making this 

explanation less plausible. Ultimately, further studies may reveal the true role, if any, 

of p53 in mesoderm induction. Experimental results presented here do not find a 

correlation between p53 inhibition and aberrant mesoderm induction.  

5.11.3 A potential mechanism of action for p53 in cardiac specification 

The p53 protein undergoes a variety of posttranslational modifications, has multiple 

signalling partners, and primarily acts as a transcription factor (Beckerman and 

Prives, 2010; Meek and Anderson, 2009; Vogelstein et al., 2000). As a potential role 

for p53 in cardiac specification has been suggested in this work, the next challenge is 

to understand the mechanisms involved in its role in cardiac specification. The hp53 

arginine 280 to threonine mutation disrupts DNA binding, thus suggesting that 
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binding DNA is an important function for p53 in cardiac specification. This could 

suggest that p53 is acting as a transcription factor for cardiac specification. p53 forms 

complexes with other transcription factors to regulate gene transcription. ALK4/5/7 

activated Smad2 is a known p53 binding partner (Cordenonsi et al., 2007, 2003; 

Takebayashi-Suzuki et al., 2003) which is required for cardiac specification (Chapter 

3). p53 N-terminal Serine 6 and Serine 9 have been shown to be important 

phosphorylation modifications required for the p53-Smad2 interaction (Cordenonsi 

et al., 2007). Further investigations could focus on whether these p53 N-terminus 

phosphorylation modifications are important for the role of p53 in cardiac 

specification, potentially by interacting with Smad2. 
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6 Discussion
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The purpose of this study was to investigate the requirement and timing of Nodal/ 

Activin and FGF/ MEK signalling in cardiac specification, and whether p53 may have 

a role in cardiac specification, perhaps by mediating an interaction between the 

Nodal/ Activin and FGF/ MEK pathways. Work presented in this study demonstrates 

the requirement for Nodal/ Activin signalling for the specification of cardiac tissue, 

separate from its well-established role in mesoderm induction. Furthermore, Nodal/ 

Activin signalling was shown to be required over a 2-3 hour time-window after 

midblastula transition, for cardiac specification, which is well before gastrulation and 

at an earlier time point than previously suggested. FGF/ MEK signalling was shown to 

be required during gastrulation for normal cardiac development. Contrary to 

expectations, the results did not show a requirement for FGF/ MEK signalling prior to 

gastrulation, during the time-window in which Nodal/ Activin signalling specifies 

cardiac tissue. Work presented here also provides evidence for a novel role for p53 

in early cardiac development, potentially with a role in the specification and then 

promotion and/ or maintenance, of cardiac progenitors. 

6.1 Nodal/ Activin signalling is required for cardiac specification hours 

before gastrulation  

Throughout development, a relatively small number of signalling pathways are used 

to orchestrate embryogenesis. The time of action, duration of signalling, spatial 

localisation and utilisation of different pathway combinations are all factors which 

influence cellular fates and behaviour. Deciphering the roles of the specific 

components of the signalling pathways and the crosstalk between these pathways 

required during early development remains an ongoing challenge. To define the role 

of Nodal/ Activin signalling in cardiac specification, soluble molecular inhibitors were 

used in the work presented here to study the effects of time-dependent pathway 

inhibition. This demonstrated that Nodal/ Activin signalling is required for cardiac 

specification and that the role of Nodal/ Activin signalling in mesoderm induction and 

cardiac specification can be uncoupled. 
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The time of cardiac specification was defined as a 2-3 hour time-window succeeding 

midblastula transition. This time-window is earlier than the previously predicted 

occurrence during gastrulation (Section 1.10). These results are in agreement with 

previous work where Skirkanich et al. (2011) have shown that Nodal transcripts can 

be detected as early as the 128 cell stage, with active signalling confirmed by 

midblastula transition, supporting the idea that active Nodal/ Activin signalling has a 

role inducing mesoderm before midblastula transition (Skirkanich et al., 2011). 

Previous work suggests that Nodal/ Activin signalling is required initially to induce 

mesodermal genes and FGF signalling, with FGF signalling maintaining mesoderm 

without requiring further Nodal/ Activin signalling inputs (Fletcher and Harland, 

2008; Kimelman, 2006; van Boxtel et al., 2015). Taken together, the findings 

presented in this thesis provide evidence to show that Nodal/ Activin signalling has 

fulfilled its role in mesoderm and FGF induction prior to midblastula transition, and 

is subsequently involved in cardiac specification during a specific 2-3 hour time-

window following midblastula transition. 

During investigations into the role of Nodal/ Activin signalling in heart development, 

there was no indication that Nodal/ Activin signalling was required after cardiac 

induction for normal cardiac tissue development. Cardiac tissue persisted upon 

Nodal/ Activin signalling inhibition after specification (after stage 9), suggesting that 

Nodal/ Activin signalling is not required for cardiac cell maintenance or proliferation. 

This is consistent with a previously published explant experiment that demonstrated 

that Nodal is only required during the first hour of cardiogenesis (Samuel and 

Latinkić, 2009). In addition, a transient requirement for Nodal/ Activin signalling is 

consistent with the role of Nodal/ Activin signalling in the activation of tissue specific 

genes and signalling pathways which maintain that gene expression (Fletcher and 

Harland, 2008; Kimelman, 2006; van Boxtel et al., 2015). Previous research has 

established a role for Nodal/ Activin signalling in left-right axis asymmetry, which is 

important for the asymmetric formation of visceral organs including the heart 

(Brennan et al., 2002; Ramsdell, 2005). Asymmetric expression of Nodal 1 in the left 

lateral plate mesoderm during neural tube closure was found to be important for 
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cardiac asymmetry (Lohr et al., 1998, 1997). Bilateral or absent Nodal 1 expression 

resulted in cases of cardiac reversal, where the heart tube loops to the right instead 

of the left (Lohr et al., 1997). In work shown here, the morphology of the heart in 

tadpoles that were subjected to continuous Nodal/ Activin inhibition after cardiac 

tissue specification was not examined. However, analysis of cardiac morphology was 

carried out in tadpoles which had disrupted cardiac tissue specification due to 

ALK4/5/7 signalling inhibition during the 2-3 hour time window following midblastula 

transition. However, the ALK4/5/7 inhibitors had been removed before then time 

when asymmetric Nodal/ Activin expression is prevalent at approximately stage 20. 

Regardless, the reduction in the size of the heart was such that the direction of heart 

tube looping could not be accurately detected. In summary, this suggests that Nodal/ 

Activin is required for cardiac specification, but not for further cardiac tissue 

maintenance, proliferation, migration and morphogenesis, but is involved in 

conveying cardiac left-right asymmetry.   

6.2 Cardiac specification by Nodal/ Activin signalling occurs at a time 

when p-Smad2 cannot be readily detected 

P-Smad2 is readily detectable at the onset of gastrulation; however, prior to stage 9 

detection is difficult to achieve using methods such as western blotting or 

immunohistochemistry (Faure et al., 2000; Lee et al., 2001 and this work). Skirkanich 

et al. (2011) have shown that p-Smad2 can be detected at midblastula transition by 

immunoprecipitation of over 100 embryos, followed by western blotting (Skirkanich 

et al., 2011). Despite difficulties in detecting p-Smad2 prior to stage 9 in this work, 

Nodal/ Activin signalling inhibition revealed the functional significance of active 

signalling around the time of midblastula transition. It was shown here that Nodal/ 

Activin signalling is required for cardiac specification during a time-window when 

very little p-Smad2 could be detected. This raises the question as to how seemingly 

globally low levels of active Nodal/ Activin signalling can convey a cardiac fate, when 

previously it has been shown that high levels of Nodal/ Activin signalling are required 

for the specification of cardiac tissue (Ariizumi et al., 1991; Kimelman, 2006; 
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Okabayashi and Asashima, 2003). The effects of timing, dose or length of exposure 

to active Activin/ Nodal signalling to specify cells within an early embryo is of great 

interest.  

6.3 A cumulative dose of Nodal/ Activin signalling conveys cardiac 

specificity within a specific time-window 

There are various models, and evidence to support each of them, to explain how 

Nodal/ Activin signalling may be received and interpreted by cells in the early embryo 

(Shen, 2007). The approach employed in this study was to observe, in an unbiased 

manner, the effects of Nodal/ Activin inhibition, in an attempt to understand how 

the timing, dose, and length of exposure apply.  

6.3.1 The timing of Nodal/ Activin signalling 

It was shown here that Nodal/ Activin signalling is required to specify cardiac cells 

within a 2-3 hour time-window after midblastula transition. Inhibiting Nodal/ Activin 

signalling for one hour starting from midblastula transition severely disrupted the 

formation of cardiac tissue, highlighting the importance of Nodal/ Activin signalling 

in this time-window. This contrasts with the results obtained in zebrafish, which 

suggest that cells are specified depending on the total level of Nodal/ Activin 

signalling which they receive, rather than specification being restrained to a discreet 

time-window (Hagos and Dougan, 2007). There are numerous examples across 

development where cells must respond to temporal signals within a specific time-

window. For example, Xenopus laevis animal cells remain competent to respond to 

mesoderm inducing signals for approximately 7 hours during the blastula stage 

(Wolpert et al., 2015). In the absence of a sufficient levels of Nodal/ Activin signalling 

at the appropriate time, it is possible that cells will no longer be able to respond to 

Nodal/ Activin signalling, or that alternative signals from different pathways will 

specify a different fate onto presumptive cardiac mesoderm, which cannot be 

reassigned by later exposure to Nodal/ Activin signalling.  
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6.3.2 The Dose of Nodal/ Activin signalling 

In Xenopus laevis it has been shown that pluripotent animal cap explants will respond 

to Activin treatments, in a concentration dependent manner, to form tissues that are 

derived from mesoderm, including blood, muscle, notochord, and heart. Heart tissue 

formation requires the highest concentration of Activin (Ariizumi et al., 1991; 

Kimelman, 2006; Logan and Mohun, 1993; Okabayashi and Asashima, 2003). In 

zebrafish, Nodal/ Activin signalling was found to specify cell fates in a time dependent 

manner, with tissues requiring high levels of Activin for specification, such as the 

heart, being specified after tissues requiring low Activin levels, such as skeletal 

muscle (Hagos and Dougan, 2007). It would appear that a high level of Nodal/ Activin 

signalling is required to specify cardiac cells, yet cardiac specification occurs at a time 

when only low levels of p-Smad2 can be detected.  

6.3.3 The Length of exposure to Nodal/ Activin signalling 

At midblastula transition, p-Smad2 is enriched dorsally (Lee et al., 2001; Schohl and 

Fagotto, 2002; Skirkanich et al., 2011). Cardiac tissue originates from dorsal 

mesoderm, therefore pre-cardiac mesoderm will be one of the first regions exposed 

to Nodal/ Activin signalling and will be exposed continuously as Nodal/ Activin 

signalling spreads across the marginal zone (Lee et al., 2001). 

6.3.4 Cells are exposed to a cumulative dose of Nodal/ Activin signalling 

within a specific time window to become cardiac cells 

Considering the influences of time, dose and length of exposure to Nodal/ Activin 

signalling, it can be speculated how each contributes to the final outcome of cardiac 

cell specification. It was found here that the Nodal/ Activin signalling requirement for 

cardiac specification is temporally limited to within a 2-3 hour time-window after 

midblastula transition. However, this window is relatively broad. As pre-cardiac 

mesoderm is one of the first mesodermal regions to be exposed to Nodal/ Activin 

signalling, and will be exposed over the longest time period, the total cumulative 



 241  

dose of Nodal/ Activin which cells receive will be the highest. This supports the 

concept that cells respond to the cumulative dose of Nodal/ Activin signalling which 

they are exposed to and once a threshold dose is established, cells become fated to 

form cardiomyocytes.  

Endogenous p-Smad2 levels continue to increase up to the onset of gastrulation, but 

no further cardiac tissue is specified elsewhere along the margin. This reinforces the 

idea that a competency window exists for time-dependent specification, but may 

also suggest that the activation of negative regulators might occur as a mechanism 

for controlling cardiac progenitor number and tissue dimensions. Conceivably, 

negative regulators may be activated by Nodal/ Activin signalling itself, which is 

known to cooperate in negative feedback loops (Chen and Meng, 2004; Shen, 2007; 

van Boxtel et al., 2015). Lefty could be such a negative regulator. Previously, it has 

been shown that microRNAs temporarily repress the translation of Lefty, allowing 

Nodal/ Activin signal propagation before Lefty translation and diffusion at a faster 

rate, thus negatively regulating Nodal/ Activin signalling (Sakuma et al., 2002; van 

Boxtel et al., 2015). Alternatively, or in addition, the induction of the multifunctional 

antagonist Cerberus, by Nodal, has been shown to be important for establishing the 

correct timing and/ or level of Nodal signalling for cardiac induction (Foley et al., 

2007). Negative regulators may also originate from outside of the cardiac-forming 

region to negatively influence Nodal/ Activin signalling, or p-Smad2 binding partners, 

to define tissue boundaries.  

6.4 Cardiac specification is primarily mediated by Nodal via Smad2  

Drosophila melanogaster, mouse and mouse embryonic stem cells containing 

mutant Cripto provide evidence for the involvement of Nodal in cardiac specification, 

but these experiments do not separate the role Nodal plays in mesoderm induction 

from cardiac specification (Parisi et al., 2003; Reiter et al., 2001; Xu et al., 1999). In 

this work, the use of soluble recombinant Lefty protein allowed the time-dependent 

inhibition of Nodal signalling, without affecting the signalling of alternate family 

members, such as Activin or TGF-betas. This allowed the key role of Nodal in Xenopus 
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laevis cardiac specification to be demonstrated. In the work presented here, 

compensation for the loss of Nodal was not observed, suggesting that Nodal is an 

indispensable ligand for inducing a cardiac fate. However, a role for other Nodal/ 

Activin family members in cardiac specification cannot be ruled out. Further 

experimentation, inhibiting other Nodal/ Activin family members, whilst leaving 

Nodal signalling intact could be done. In mouse embryonic stem cells it has been 

shown that Nodal induces TGF-beta2, with both ligands further controlling cardiac 

fate (Cai et al., 2012). A similar system may be acting in Xenopus laevis, and such a 

mechanism could explain the severity of Nodal inhibition, if Nodal were acting 

upstream of further Nodal/ Activin family members which are required for normal 

heart development.  

Nodal/ Activin signalling can propagate via Smad2 or Smad3 (Shi and Massague, 

2003). Smad2 is predominant in the blastula stage Xenopus laevis embryo (van Boxtel 

et al., 2015), and Smad2 mutant mice display a range of early developmental defects 

in mesoderm formation, gastrulation and left-right patterning (Nomura and Li, 1998). 

Previously, Smad2 has been shown to be capable of mimicking Vg1, Activin and Nodal 

activity by inducing the formation of dorsal mesoderm (Baker and Harland, 1996; 

Graff et al., 1996). This suggests that Smad2 is a candidate for transmitting Nodal/ 

Activin signalling in the early embryo and for cardiac specification. The use of Smad2, 

induced in an appropriate timely manner to bypass ALK4/5/7 timed inhibition, was 

shown here to partially rescue the cardiac and whole embryo phenotype. This 

provides evidence that Smad2 is capable of propagating the cardiac inducing signal. 

The regulation of Smad2 may additionally contribute to defining the cardiac domain. 

For example, Xenopus laevis Pias4 has been shown to downregulate Smad2 

transcriptional activity resulting in the negative regulation of mesoderm induction 

(Daniels et al., 2004). Smurf2 can decrease Smad2, but not Smad3, protein levels by 

targeting Smad2 for ubiquitination and proteasome-mediated degradation (Zhang et 

al., 2001). A complex containing Foxh1 and Smad2 constitutes an active DNA-binding 

factor (Chen et al., 1997). Therefore, a combination of positive and negative Smad2 

regulators may be cooperating to influence cardiac progenitors. 
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6.5 The targets of Nodal/ Activin signalling for cardiac specification are 

largely unknown 

Although the requirement for Nodal/ Activin signalling in cardiac specification has 

been demonstrated here, how cardiac specification is being mediated, and which 

cardiogenic transcripts are being activated by the Nodal/ Activin pathway is largely 

unknown. A deeper understanding of Nodal/ Activin signalling targets may aid in the 

identification of potential candidate genes which are required to modulate or assist 

Nodal/ Activin signalling for cardiac specification. Initial unpublished RNA-sequencing 

data has identified a selection of genes whose expression is altered after ALK4/5/7 

signalling inhibition during the time when ALK4/5/7 signalling is required for cardiac 

specification. In addition, a range of different transcripts were found to be 

differentially expressed between two time-windows that were only 1 hour apart. 

Further analysis of these transcripts may confirm the identity of novel Nodal/ Activin 

targets and will help to further decipher the mechanism of Nodal/ Activin signalling 

in cardiac tissue induction. 

6.6 FGF/ MEK signalling is not required for cardiac specification 

Soluble molecular inhibitors and a dominant negative FGFR were used here to inhibit 

FGF/ MEK signalling in a time-controlled manner to investigate the role of FGF/ MEK 

signalling in early heart development. In this work, normal cardiac development was 

observed after FGF/ MEK signalling inhibition during the midblastula transition to 

gastrulation time-window, when ALK4/5/7 signalling is required for cardiac 

specification. This suggested that FGF/ MEK signalling is not required for cardiac 

specification, which contradicts previous research suggesting a role for FGF/ MEK 

signalling in cardiac specification. In addition, the finding that continuous FGF/ MEK 

signalling inhibition, commencing before gastrulation, resulted in a only a modest 

reduction in differentiated cardiac tissue was surprising given that previous reports 

have shown that there is severe reduction or loss of cardiac marker expression upon 

FGF/ MEK signalling downregulation in Xenopus laevis and zebrafish (Deimling and 

Drysdale, 2011; Keren-Politansky et al., 2009; Rankin et al., 2012; Reifers et al., 2000; 
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Shifley et al., 2012). However, previous studies have largely relied on the analysis of 

cardiac progenitor markers, such as nkx2.5 and isl1 (Deimling and Drysdale, 2011; 

Keren-Politansky et al., 2009; Rankin et al., 2012; Reifers et al., 2000; Shifley et al., 

2012). It has been shown here and in previous studies that differentiated cardiac 

tissue marker expression is mildly reduced after FGF/ MEK signalling downregulation 

(Keren-Politansky et al., 2009; Shifley et al., 2012 and Chapter 4). However, these 

results are in conflict with other published work (Deimling and Drysdale, 2011). In 

addition, the cardiogenic factor gata4 has been demonstrated to be barely affected 

upon FGF/ MEK signalling inhibition (Keren-Politansky et al., 2009). This supports a 

reiterative role for FGF/ MEK signalling in the regulation and/ or maintenance of 

nkx2.5 and isl1 positive cardiac progenitor cells, rather than in the specification of a 

cardiac progenitor pool. It is conceivable that, with a reduction in nkx2.5 and isl1 

expression due to reduced FGF/ MEK signalling, alternative cardiogenic factors, for 

example gata4, may be able to regulate the cardiac program, resulting in 

differentiated cardiac tissue.  

6.7 FGF/ MEK signalling is required after gastrulation for normal heart 

development 

In addition to the post-blastula roles that FGF/ MEK signalling plays in cellular 

movements and trunk and tail development (Amaya et al., 1991; Griffin and 

Kimelman, 2003), FGF/ MEK signalling has been shown to have reiterative roles in 

cardiomyocyte regulation during development (Marques et al., 2008; Simões et al., 

2011). From this work it is apparent that there is a post-gastrula role for FGF/ MEK 

signalling, but whether this role is in maintaining cell fate, migration, survival or 

proliferation of cardiomyocytes is not clear.  

Throughout embryonic development, it has been demonstrated that FGF/ MEK 

signalling is required for the maintenance of select tissue types, for example in 

mesoderm maintenance in Xenopus laevis (Fletcher and Harland, 2008) and in neural 

progenitor maintenance in mouse (Mathis et al., 2001). FGF/ MEK signalling may 

likewise participate in cardiac progenitor maintenance. FGF/ MEK may be required 
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for the maintenance of genes such as nkx2.5 and isl1, as previously discussed, and/ 

or the repression of alternative lineages, such as blood. The importance of FGF/ MEK 

signalling in promoting cardiac progenitor cells by inhibiting the formation of blood 

has previously been reported (Peterkin et al., 2009; Simões et al., 2011; Walmsley et 

al., 2008). Cardiac and blood progenitors are located adjacent to each other on the 

ventral midline of the developing embryo and it has been shown that their control is 

partially overlapping, for example by gata4, 5 and 6 in zebrafish (Peterkin et al., 2009; 

Simões et al., 2011). In zebrafish, FGF signalling inhibition results in the loss of cardiac 

tissue accompanied by the expansion of blood markers (Isaacs et al., 2007; Simões et 

al., 2011). There is conflicting data in Xenopus laevis, with reports that FGF inhibition 

does (Isaacs et al., 2007; Walmsley et al., 2008) or does not (Deimling and Drysdale, 

2011) result in the expansion of blood progenitors in conjunction with cardiomyocyte 

loss. Therefore, FGF/ MEK signalling could be required to maintain normal cardiac 

proportions, plausibly at the expense of blood. Alternatively, FGF/ MEK signalling 

may be required to prevent terminal differentiation of cardiomyocytes, in a similar 

manner to in neural progenitors, allowing sufficient proliferation and expansion of 

cardiac progenitor cells (Diez del Corral et al., 2003). This is a less favourable 

hypothesis, as the level of differentiated cardiac tissue observed in tadpoles which 

had been subjected to FGF/ MEK inhibition was only minimally reduced in 

comparison to controls. Defective cardiomyocyte migration, due to deficient FGF/ 

MEK signalling, would incorrectly relocate cells, altering contacts with underlying 

tissues and resulting in cardiac progenitors perhaps not receiving the correct signals. 

Cardiac tissue is most frequently observed correctly located on the ventral midline 

upon FGF/ MEK signalling disruption, except in the more severe cases of cardiac 

bifida, but these were observed infrequently. This suggests that FGF/ MEK signalling 

may have a role in role in contributing to cardiac cell migration after initial cardiac 

specification.  

The evidence suggests a reiterative role for FGF/ MEK signalling in the maintenance 

of cardiac progenitors. However, there may be alternative complementary pathways 

allowing the cardiogenic program to persist in the absence of FGF/ MEK signalling. 
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Gata4 has been found responsive to BMP signalling, with BMP implicated in 

regulating gata4 and fgf8 for normal cardiac development in chick (Alsan and 

Schultheiss, 2002; Andrée et al., 1998; Schultheiss et al., 1997). Both of the FGF/ MEK 

and BMP signalling pathways might have a role in maintaining, promoting and 

regulating the cardiac program after specification. This is in agreement with work 

highlighting the role of BMP in regulating cardiac progenitor cell development (Reiter 

et al., 2001; Walters et al., 2001; Zhang and Bradley, 1996). A successive FGF/ MEK 

signalling requirement in regulating heart size and chamber proportions, and then 

promoting ventricular development, has been shown previously (Marques et al., 

2008; Reifers et al., 2000; Simões et al., 2011). This study is in agreement, promoting 

a reiterative role for FGF/ MEK signalling in cardiac progenitor maintenance. The 

presentation of linear heart tubes, or cardia bidifa, as a result of FGF/ MEK signalling 

downregulation may be due to an underdeveloped ventricular region, highlighting 

an interesting avenue for further investigations. 

A surprising observation in this work was the more severe cardiac phenotype 

observed upon later and shorter FGF/ MEK signalling inhibition, in comparison to 

earlier and longer inhibition. Explanations such as compensation mechanisms upon 

early detection of FGF/ MEK signalling downregulation or susceptibility of cells which 

earlier received FGF/ MEK signalling can only be conjectured, and this could prove an 

interesting line of enquiry for future work. This work does, however, highlight a time-

window from late gastrulation into neurulation in which FGF/ MEK signalling appears 

important for normal cardiac development. Focused analysis during this time-

window may further pinpoint a more precise requirement.  

6.8 p53 is required during early cardiac development 

With the recent finding that p53 is required to modulate the TGF-beta response for 

mesoderm development (Cordenonsi et al., 2007, 2003), it was hypothesised that a 

similar mechanism could be working for cardiac specification. Work presented here 

identifies a novel role for p53 in heart development, but also highlights a potential 

biphasic role with an early and late function. This early action is likely to be in the 
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establishment of the early cardiac progenitor pool, possibly cooperating with Nodal/ 

Activin signalling for cardiac specification. It was reasoned that the later function 

occurs during the late neurula to early tailbud stages of development, due to the 

observed recovery of p53 protein by stage 32 upon the use of p53 MO3, and the 

consistency between phenotypes of either p53 MO treated sample. It is unlikely that 

the loss of cardiac cells upon p53 downregulation is due to apoptosis, as lineage 

traced areas of tadpoles were of the correct size and proportion, but this would have 

to be tested directly, for example by a Terminal deoxynucleotidyl transferase (TdT) 

dUTP Nick-End Labeling (TUNEL) assay, to provide confirmation. Therefore, this 

suggests that cells may not be maintaining their cardiac fate and deviate into an 

alternative lineage. It is not known how p53 is acting early to influence cardiogenesis 

but one possibility is that p53 might cooperate with Smad2. Previously published 

bioinformatics screens have revealed that a large proportion of TGF-beta target 

genes also contain putative p53 binding sites (Dupont et al., 2004). Transcriptome 

analysis for Nodal/ Activin signalling targets, combined with bioinformatics 

identifying genes which are potentially co-regulated, may aid in the identification of 

novel cardiogenic factors and a greater understanding of the mode of action of p53 

and Nodal/ Activin signalling in early cardiogenesis. p53 may be required later in 

heart development for proliferation, maintenance, migration or inhibition of 

alternative lineages. Despite the previously established role of p53 in restraining 

proliferation, it has been shown that, in the correct environment, p53 can cooperate 

for the proliferation and maintenance of progenitor cells (Cicalese et al., 2009; Li et 

al., 2015; Schoppy et al., 2010). The maintenance of Nodal/ Activin activated genes, 

particularly genes co-regulated by Nodal/ Activin and p53, could require the presence 

of p53. p53 may be required to facilitate the migration of cardiomyocytes, with p53 

downregulation resulting in aberrantly localised cardiac tissue, disrupting correct 

tissue interactions for cardiomyocyte maintenance and expansion (Alexandrova et 

al., 2000; Elyada et al., 2011; Guo et al., 2003).  p53 has been shown to impede the 

self-renewal of haematopoietic stem cells, highlighting a potential role in inhibiting 

the expansion of blood progenitors (Pant et al., 2012).  
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It has been shown here that the hypothesis that FGF/ MEK signalling is required to 

activate p53 to mediate crosstalk with the Nodal/ Activin pathway in cardiac 

specification is unlikely to be true. It was shown that FGF/ MEK signalling is not 

required during the early pre-gastrula stages of cardiogenesis. However if p53 were 

required at an earlier stage than FGF/ MEK signalling, the task remains to identify the 

factor(s) which induce p53 to positively regulate heart development. Plausibly, p53 

could be under the control of an unidentified signalling pathway during early, and 

then FGF/ MEK signalling during late, heart development. In addition, p53 

antagonists may be involved in defining the cardiac boundaries. p53 antagonists 

residing in non-cardiac mesoderm may restrict the activation of cardiac targets 

requiring the cooperation of Nodal/ Activin signalling and p53 to within the intended 

pre-cardiac region. This could be in a similar manner to how the p53 ectodermal 

antagonist Znf585b limits mesoderm boundaries (Sasai et al., 2008). It has been 

shown here that the temporal requirements of Nodal/ Activin, p53 and FGF/ MEK 

signalling in mesoderm induction and cardiac specification are different. This may 

lead to identifying the mechanisms involved in the control of these two different 

processes which occur in rapid succession in the early embryo. 

6.9 Concluding remarks 

This work has expanded and improved upon previous research, highlighting an 

indispensable role for Nodal/ Activin signalling in cardiac specification and 

demonstrating that this can be uncoupled from its role in mesoderm induction. 

Furthermore, a novel early time-window for cardiac specification has been identified, 

where cells respond to a cumulative dose of Nodal/ Activin signalling within a 2-3 

hour time-window succeeding midblastula transition. Cardiac specification signalling 

is most likely mediated by Nodal, and transduced via Smad2, although alternative 

Nodal/ Activin family ligands, and Smad3, may be involved. It was found that FGF/ 

MEK signalling is not required for cardiac specification, but is required after initial 

specification for normal heart development, perhaps for the continued maintenance 

of cardiac cells. A novel role for p53 in heart development was demonstrated. These 
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findings aid in the understanding of how signalling pathways orchestrate 

developmental processes. This knowledge can be utilised to better comprehend the 

causes of congenital heart defects and improve directed differentiation protocols for 

regenerative medicine in the treatment of cardiac disease or infarction. 
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