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Abstract 

This thesis uses a three-dimensional (3D) seismic reflection data from the continental 

slope of the Espírito Santo Basin (SE Brazil) to investigate, at first, the prolonged 

halokinesis on raft tectonics and its effect on the surrounding structures and how these 

can affect the post-raft overburden units. Secondly, the high-quality 3D seismic dataset 

was the source of information to characterise, describe and model a set of mass-

transport deposits (MTDs). Their morphology and kinematic factors are described using 

a geomorphological approach. 

The main research hypothesis for this thesis are i) how the salt and raft tectonic are 

acting on the continental slope of Espírito Santo Basin and how is their influence in the 

post raft overburden? ii) which are the most common typology of MTDs in the study 

area and is it possible to related their morphometric and kinematic attributes with the 

slope geomorphology where the MTDs occurred?, and iii) is it possible applying a 

bivariate statistic method, already tested on onshore slope instability, to understand the 

natural conditions for the occurrence of MTD in the study area? 

The Espírito Santo Basin is characterised by halokinesis where the Aptian salt has been 

withdraw into salt structures through time (e.g. diapirs, rollers and pillows). This process 

leads to complex raft deformation, which occurs in different forms as documented in 

this thesis. The salt and raft tectonics triggered faults that strongly influenced the post-

raft overburden units and later induced the remobilisation of sediment near the 

seafloor.  

The second analysis in this thesis is focused on the characterisation of MTDs.  The 3D 

seismic data were the main source of information integrated into Geographic 

Information Systems (GIS) in order to compute a set of morphometric attributes to 

characterise the MTDs and the depositional surface which underlie them. At first, two 

different MTDs were identified and described; Confined and Unconfined. The inclusion 

of local topography in the studies to the occurrence of MTDs, as investigated in this part, 

is a new approach in submarine slope instability studies, and local topography was found 

to constrain the run-out distance of the MTDs.  
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Finally, the thesis aimed to understand the natural conditions favourable to the 

occurrence of MTDs in the study area.  Seven predisposing factors were computed from 

the topographic layer, or depositional surface as named in this thesis. The spatial 

integration of the predisposing factors with the inventory was based on a statistical 

bivariate method (Informative Value). The results were validated and the predisposing 

factors were ranked according to their contribution to MTDs’ spatial distribution, 

allowing for the computation of a sensitivity analysis. The best Area Under the Curve 

(AUC) was recorded by model 3 (AUC = 0.862). 

The results of this thesis are important for both hydrocarbon exploration and academia. 

From the exploration point of view, the information given in the first data chapter 

contributes to the understanding of raft and salt tectonics as a trigger of reservoir 

compartmentalisation. The second analysis provides valuable techniques and 

methodologies that combine seismic datasets and GIS, used in the last section to 

calculate favourability scores as a further step for offshore hazard assessments. From an 

academic point of view, this thesis comprises a timely test of how methods and 

techniques applied in onshore analysis apply to offshore environments.
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1.1. Project rational and objectives 

1.1.1. Rationale 

Deepwater continental slopes have been studied for many years, mostly related to 

hydrocarbon exploration, which has contributed to significantly improving the available 

tools and techniques for their analysis such as 3D seismic data. These forms of analysis 

can be applied not only to exploration but can also contribute greatly to improving 

knowledge within academia within which the information can be input in different 

approaches. The higher resolution of new datasets has allowed the use of that 

information to lead the application of new tools and methods related to submarine 

slope instability (e.g. McAdoo et al., 2000, Chang and Park, 2004, Nadim, 2006, Hough 

et al., 2011, Moscardelli and Wood, 2015).  

Salt basins are frequently the focus of research studies due their major hydrocarbon 

potential (Fort et al., 2004, Jean-Pierre Brun, 2011, Mohriak et al., 2012). However, 

margins affected by salt tectonics are very interesting from a structural perspective, 

driven by the combination of gravity gliding and its effects on shaping basins, generally 

affecting younger stratigraphic units. The most extreme deformation of salt tectonics 

occurs during down slope translation of large blocks of strata with no significant rotation 

and are termed raft tectonics (Gaullier et al., 1993). Salt withdraw and consequent raft 

deformation can trigger the evolution of the growth fault/raft system due to regional 

extension, which in practice affects the structures (e.g. Duval et al., 1992, Gaullier et al., 

1993, Penge et al., 1999, Rowan et al., 1999, Rouby et al., 2002, Brun and Mauduit, 2008, 

Alves, 2012) and stratigraphic units above (overburden) (Alves et al., 2009, Alves, 2012, 

Omosanya and Alves, 2013).  

Mass-wasting features are common place within continental slopes, whereby the 

combined actions of local and regional tectonics, sediment input and gravitational 

instability can result in the formation of complex structures (Mienert et al., 2003, Bryn 

et al., 2005, Kvalstad et al., 2005, Masson et al., 2006, Gee et al., 2006, Talling et al., 

2007, Garziglia et al., 2008, Gamboa et al., 2010). Mass-wasting occurs when downslope 

directed shear stress exceeds the shear strength of the seafloor (Varnes, 1978), resulting 
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in mass movement events that can be classified as mass-transport deposits (MTDs) or 

mass-transport complexes (MTC) when they are composed of multiple failure events 

(Moscardelli et al., 2006).  

Classifying MTDs can be a complicated and sometimes challenging task due to significant 

variability in their character (e.g. volume, thickness, provenance, lithology, kinematic 

features, etc.). Nevertheless, following the first mass failure, MTDs always involve the 

transport of sediments over a detachment surface termed the basal shear surface. 

During this process, depending on their origin, predisposing and triggering factors can 

result in variability in the final dimensions and size of MTDs (volume, area, length, width) 

(Hampton et al., 1996, Mosher et al., 2010, Moscardelli and Wood, 2015), associated 

kinematic features (Bull et al., 2009) and different forms of slope accommodation (Frey-

Martínez et al., 2006). Their classification, however, is primarily based on the 

movements themselves and in their geomorphologic expression. 

Despite all the published data about submarine slope movements in general and MTDs, 

there is still the need for further study of each of the parameters that are involved during 

their failure. Many studies apply to onshore analogues (Carrara et al., 1999, Guzzetti, 

2005, Guzzetti et al., 2006, Zêzere et al., 2009, Corominas et al., 2013). This conceptual 

model is part of the methodology that has been used for slope instability, hazard and 

risk assessment (van Westen et al., 2006, van Westen et al., 2008). It assumed that the 

answer for the past can be found by understanding the present, which may be the key 

to preventing future slope instability and associated events (Varnes, 1978).  

In this thesis, the three-dimensional (3D) seismic volume BES 100 from the salt-rich 

continental margin of the Espírito Santo Basin will be used to test the following general 

assumption:  

i) Raft tectonics are the last stage of salt tectonics deformation. Theoretically, 

areas of raft tectonics are the result of gliding downslope of the overburden 

on top of a viscous layer of salt, until salt has been completely withdrawn and 

rafts will be welded onto pre-salt units. During this process, rafts tectonics 

accommodate themselves into the salt layer and post-raft stratigraphic units 

will adjust to accommodate the space left by the movement of the rafts. In 

the meantime, salt accumulates into diverse forms (e.g. pillows, roller, 
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tongues and diapirs) and rafts will deform and compartmentalise in different 

styles, in order to accommodate salt withdrawal. The tectonics briefly 

described trigger a set of fault and regional adjustments in the post-raft 

stratigraphy and at basin scale. It is, therefore possible to describe the 

deformation styles of raft tectonics and establish their influence in the post-

raft overburden. The study area is shown to comprise an essential piece of 

information to understand the later stages of raft tectonics on continental 

margins which, in this case-study, shows little effect of overburden thickness 

on raft segmentation. 

 

ii) Mass-transport deposits are recognised in all margins and are well described 

in the literature based on their size, shape, accumulation and gliding 

patterns, stratigraphy and kinematic features. Essentially, the studies focus 

on the geomorphology of the movement itself. Although the movement of 

MTDs over any surface is generally erosive it is believed that the local 

topography and morphology within a region prior to mass movement have a 

significant influence on the final dimensions and location of MTDs during 

gliding. In order to fill the gap within literature, the relationship between 

these factors will be computed using a combination of 3D seismic data and 

Geographic Information Systems (GIS) slope morphometric tools. The 

primary focus will be on the surface beneath the MTDs, the depositional 

surface. 

 

iii) Submarine mass-movements are one of the most dangerous and destructive 

natural hazards that can affect offshore explorations and/or coastal 

populations and infrastructure. Identifying and understanding all of the 

natural factors that are involved in their failure parameters and processes is 

challenging. However, developed seismic databases can provide details 

which allow the application of methodologies from onshore risk assessment 

to offshore test areas. The uncertainties of this methodology must be taking 

into consideration, however, it is considered valid for the rationale 

framework for estimating the probability of slope failure to be applied to 
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submarine mass-movements in general. The MTDs presented within this 

study will be integrated together with a set of predisposing factors into a 

statistical bivariate method to understand the geomorphologic parameters 

contributing to submarine slope failure, in a given area, offshore Espírito 

Santo Basin.  

These assumptions are important because contribute are the base for further 

investigations, using a new detailed image of the structural deformation of salt tectonics 

areas, specifically raft tectonics. It will be connected to the MTD failure in the overlying 

stratigraphic units and ultimately used to produce a model and a methodology for the 

early stages of risk assessment offshore. The results presented here are important as an 

academic exercise and also relevant to industry and offshore geohazards assessment. 

1.1.2. Objectives 

This work presents an investigation of salt tectonic areas, specifically raft tectonic 

deformation styles and their influence on post-raft stratigraphic units where MTD are 

located. Using a high-quality 3D seismic data from the Espírito Santo Basin has allowed 

for the use of information for the early stages of offshore risk assessment using statistics 

bivariate methods. The aims of this research are expecting to fill and document the 

assumption pointed out following the objectives: 

- To image raft tectonics using high resolution seismic data from Espírito Santo 

Basin. 

- To document the spatial distribution and structural deformation of raft tectonics 

on the continental slope offshore Espírito Santo Basin (SE Brazil). 

- To relate raft tectonics with the post-raft thickness and fault set that also affect 

overburden stratigraphic units. 

 

- To document different MTD types at the same stratigraphic level considering the 

local topography of their location. 

- To calculate morphometric attributes and their spatial distribution providing 

information about the study area and computed-generated geomorphometric 

maps. 
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- To use a set of geomorphometric maps as a predisposing factor to understand 

the natural condition that were present when MTDs occurred.  

- To apply a bivariate statistic method in order to achieve favourability scores to 

MTD occurrence in the Espírito Santo basin.  

In the next section is given a summary of the literature review of salt and raft tectonics 

in the Espírito Santo Basin. This is followed by an overview of the main points focused 

on MTDs and statistics bivariate methods, and respective models validations, in order 

to provide the key background information into the three results chapters.  

1.2. Salt tectonics margins 

The prime interest in salt tectonics comes from the oil industry, due to important 

hydrocarbon provinces in salt basins (e.g. North Sea, Gulf of Mexico, Campos and 

Espírito Santo Basin, Levant Basin etc.). The interest of the oil industry has resulted in 

the provision of high resolution datasets, which has aided in the advancement of our 

understand of salt tectonics areas (Rowan et al., 1998, Penge et al., 1999, Rouby et al., 

2002, Fort et al., 2004). Salt is unique in its geologic deformation style, which can result 

in a massive deformation overprint on some passive margins making salt tectonics an 

important component of many sedimentary basins. Passive margins are, therefore, 

perfect natural laboratories to study the dynamics of salt tectonics, in the lack of crustal‐

scale tectonics (Jean-Pierre Brun, 2011). Furthermore, salt layers can play a significant 

role in the creation of structural traps and can have an enormous influence in reservoir 

distribution. Salt itself is an important seal to fluid migration. 

1.2.1. Salt flow – Mechanisms  

Regions of salt tectonics are well known by their deformation, which involves the flow 

of the salt as a viscous layer (Jackson and Talbot, 1991, Brun and Fort, 2011). Differential 

loading is considered to be one the dominant forces that drives salt flow. The capacity 

of salt to flow can be impeded by both boundary friction within the salt layer and the 

strength of the overburden. Salt can remain static for tens or hundreds of millions years, 



Introduction and literature review  Chapter 1 

9 
 

until the driving forces are sufficient to overcome the resisting forces (Hudec and 

Jackson, 2007). There are three main mechanism of salt flow:  

(i) Differential loading; the geometry of the salt body, geologic setting, depth and 

thermal conditions of the salt defines where the salt flows and is driving by gravitational 

loading (Figure 1.1), displacement loading (Figure 1.2) and thermal loading (Hudec and 

Jackson, 2007). 

(ii) Vertical salt flow (halokinesis) divides in three main processes 1) reactive stage, 

producing salt mounds and pillows, 2) active stage comprises the period during which 

the salt flows upward and arrives near or at the surface of seafloor and 3) the passive 

stage which forms apparent diapirism and the salt does not deform the sediments of 

the overburden sedimentary units  (Vendeville and Jackson, 1992a, Hudec and Jackson, 

2007) (Figure 1.3). 

(iii) Boundary friction within the salt layer and the strength of the overburden, where 

both the shear and friction strength increase with depth of burial and confined pressure 

(Hudec and Jackson, 2007).  
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Figure 1.1 – Gravitational loading; (a) A laterally varying overburden thickness above a horizontal head 
gradient. Salt will flow from left to right along the pressure head gradient. (b) A uniform overburden 
thickness above an inclined, tabular salt layer produces an elevation head gradient. Salt will flow from 
left to right down the elevation head gradient. (c) A uniform overburden thickness above a flat-lying 
salt layer produces neither elevation nor head gradients, even though the salt thickness varies.         
(Hudec and Jackson, 2007). 
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Figure 1.2 – The effects of displacement loading on salt structures; a) In shortening, salt is loaded 
horizontally by inward movement of one or both sidewalls where the horizontal displacement load 
exceeds the vertical gravitational load, forcing salt to rise. (b) During extension, the salt is unloaded 
horizontally by movements of one or both sidewalls. The vertical gravitational load then exceeds the 
horizontal displacement load, so salt subsides (Modified after Hudec and Jackson, 2007). 
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Figure 1.3 – Vertical salt flow. The mature of a given structure depends on availability of salt, extension 
rate and sedimentation. Vertical salt flow does not necessarily follow through all these stages. Modified 
after Vendeville and Jackson (1992b), Hudec and Jackson (2007), .  
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Figure 1.4 - Factors resisting salt flow, where first diapir required deformation of the overlying roof. Salt 
deformation is accomplished if the roof is thin and weak but becomes progressively more difficult as 
roof thickness increases. Secondly, salt is strongly sheared near the edges of salt bodies during flow, a 
phenomenon causing resistance to deformation. The salt flow is inhibited when the salt layers becomes 
too thin. Dashed red line represents the different phases of diapir grow. Red dashed-line represents the  
(Modified after Hudec and Jackson, 2007).  
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1.2.2. Structural style in salt-rich passive continental margins 

Salt tectonics within passive margins is currently interpreted as a gravity-driven over a 

décollement surface, such as evaporites or shales (Fort et al., 2004, Rowan et al., 2012), 

where the evaporites are considered a viscous material. Brun and Fort (2011) proposed 

dividing this process into two different types of models: i) pure spreading only driven by 

differential sedimentary loading and ii) dominant gliding primarily due to margin.  

The upper slope of salt-rich continental margins are generally dominated by an 

extensional domain and processes, where salt pillow and rollers are attached to large 

faults (Rowan et al., 1999, Alves, 2012). In mid-continental lower-slope domains the salt 

structures grow into diapir and salt walls, essentially making a transition between 

extensional upper-slope and lower-slope domains. These compressive zones are 

dominated by salt ridges, thrust, allochthonous salt sheets and canopies (Fort et al., 

2004, Omosanya, 2014).  

1.2.3. Raft tectonics 

The most extreme deformation associated with salt tectonics occurs with the down 

slope translation of large blocks of strata with no significant rotation and is termed raft 

tectonics (Gaullier et al., 1993). Raft tectonics is a major form of thin‐skinned extension 

(Duval et al., 1992, Gaullier et al., 1993, Mauduit et al., 1997), in areas where the 

overburden stretches to two or three times its original length (Figure 1.5). When the 

allochthonous fault blocks are sufficiently displaced for them to no longer be in mutual 

contact, they are termed rafts. With less extension, if fault blocks are still in contact, 

they can be termed pre‐rafts. Exceptional extension of the overburden over a non‐

deforming basement is enabled by an intervening ductile, weak, décollement layer, 

typically consisting of thin evaporates or shale. In the widening gaps between the gliding 

rafts, younger sediments accumulate as trough‐like depocentres (Duval et al., 1992). The 

geometry and the dynamics of the resulting extensional structures are strongly 

controlled by the slope orientation. The fault system is crucial to understand the 
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complex geometries of structures developed during rafting which, in turn, is important 

for efficient hydrocarbon exploration (Gaullier et al., 1993). 

 

 

Figure 1.5 – Raft tectonics formation during thin-skinned extension. Pre-rafts remain in mutual contact 
and hanging walls on their original footwall after faulting. In contrast, rafts separate so far that they are 
no longer in contact, and salt acts a décollement layer (Duval et al., 1992). 

 

Within documented literature some factors and parameters affecting raft geometry and 

gliding have been referred to. Mauduit et al. (1997) highlight some of these which were 

observed in the Gulf of Guinea. Three examples illustrate the possible role of the basal 

slope angle and sedimentation rate on syn‐sedimentary deformation during gravity 

gliding. If the slope angle is low, deformation is restricted to a few fault sites on the 

seaward (downslope) side. If the slope angle is higher the number of faults increases, 

indicating distributed deformation and displacement (Mauduit et al., 1997). In this case 

the sediment supply is low, however, if sediment supply is high during gliding, 

displacement rate seems to increase with time. To summarize, the author separated 

based on two clear factors that influence the geometry of the raft in the Gulf of Guinea: 

1) the effect of basal slope angle which resulted in the identification of three different 

deformation areas and; 2) Low basal slope angles (0 to 1°) by a single downslope 

deformed zone with tilted blocks and associated asymmetric depocentres. Block tilting 

is controlled by planar of listric synthetic normal faults. Antithetic normal faults are only 

active during the early stages of deformation. For higher basal slope angles, the 
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deformation zone develops upslope. A central raft translates without deformation of 

the overburden and separates the two deformation zones (Mauduit et al., 1997). 

In order to understand the potential effects of sedimentation on deformation, Mauduit 

et al. (1997) tested, two rates of sedimentation were tested, low and high. Both types 

of experiments yielded a downslope deformation zone with tilted blocks delimited by 

synthetic normal faults and rafted block. As was observed before, the first structures to 

develop correspond to symmetric grabens, regardless of the sedimentation rate. As 

sedimentation rate increases, the number of rafts or tilted blocks also increases. The 

study presented by (Mauduit et al., 1997), demonstrates that an increment in 

sedimentation rate enhances the displacement rate. 

Recently, new high resolution seismic data from hydrocarbon exploration allows a 

different approach about raft tectonic gliding and some new factors that control or 

condition the raft tectonic gliding are coming to light. Based on 3D seismic‐reflection 

data from SE Brazil, new approaches have been discuss, for instance, Alves (2012), 

highlighted normal faults reactivated during the gravitational gliding of Albian rafts. 

1.2.4. Salt-related faults  

Faults that are salt-related have been documented in many areas such as as SE Brazil 

(Baudon and Cartwright, 2008, Alves et al., 2009, Alves, 2012) and the Gulf of Mexico 

(Rowan et al., 1998, Rowan et al., 1999, Brun and Mauduit, 2008). The classification used 

in this thesis follows that from this published literature and gives a classification that is 

strictly geometric without reference to kinematics, dynamics, or genesis. The faults 

observed are grouped into fault families by Rowan et al. (1999) (Figure 1.6), where each 

fault family comprises a range of faults that display similar three-dimensional form and 

geometric relationships with deformed strata and associated salt (Rowan et al., 1999). 

The faults identified form in response to the adaptation of salt tectonics in vertical 

movement (caused by downward salt withdrawal or upward diapirism) and to lateral 

translation above salt (Rowan et al., 1999) (Figure 1.7).     
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Figure 1.6 - Classification system for fault families observed in the northern Gulf of Mexico. (Modified 
from Rowan et al., 1999). This classification is also observed in the Espírito Santo Basin and is used in 
this thesis to classify some of the faults observed related to salt and raft tectonics. 
 

 

Figure 1.7 - Development of typical structural faults patterns following the work of (Mauduit et al., 
1997).  (Synkinematic grabens formed at the initial phases of rafting give rise to synthetic and antithetic 
faults when stretching reaches its paroxysm, and rafts become individual structures moving downslope 
due to extension. 
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1.3. Mass-transport deposits 

The terminology mass-transport deposit (MTD) encompasses all types of submarine 

mass movement, comprising sediment packages emplaced during a single event of slope 

failure. It differs from mass-transport complex in the way that considered multiple slope 

failure when coalesced into a large unit or package (Varnes, 1978, Hampton et al., 1996, 

Masson et al., 2006, Moscardelli and Wood, 2008). Mass-transport deposits can be 

observed in all margins and different geological settings, occurring at all water depths 

where soft sediments are present and the natural conditions are favourable to their 

occurrence (McAdoo et al., 2000, Hühnerbach and Masson, 2004, Gamboa et al., 2010, 

Omeru and Cartwright, 2015).  

Mass-transport deposits can covers very large areas of tens to hundreds of kilometres, 

depending if they are formed in the shelf break or mid-slope. Smaller MTDs are normally 

formed at flanks of diapirs or by the collapse of canyons walls (Hampton et al., 1996, 

Masson et al., 2006, Omosanya, 2014). MTDs play a large role in the stratigraphic fill of 

worldwide basins (Moscardelli and Wood, 2008), transporting and remobilising a large 

amount of sediment in offshore areas, which comprise 10% to 27% of the continental 

slope strata (Hühnerbach and Masson, 2004). This fact has important implications on 

hydrocarbon reservoirs (Welbon et al., 2007) and geohazards, both in coastal areas or 

in exploration infrastructures (Ioualalen et al., 2010).  

1.3.1. Classification of mass-transport deposits 

Mass-transport deposit is a general term used for the failure and downslope movement 

of sediment under the influence of gravity forces. In recent years, the literature has been 

outlining different classification schemes. Nevertheless, a scale-consistent and common 

classification that focuses on the descriptive and morphological factors needed to be 

defined for all the MTDs (Posamentier et al., 2011). Moscardelli and Wood (2008) 

compiled a classification that has been also defined by Masson et al. (2006) based on 

the transport mechanism and sedimentary structures (Figure 1.8) which are: i)slides, 

involving movement of a coherent mass of sediment  along a planar glide plans; ii) 

slump, a coherent mass of sediment that moves on a concave-up glide plane and 
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undergoes rotational movements causing internal deformation; iii) debris flow, involving 

flow with plastic rheology, cohesive flow of clasts in a fine-grained matrix; and iv) 

turbidite, included gravity flows and turbulent state in which sediment grains are in 

suspension by fluid turbulence (Figure 1.8).   

 
 

 

Figure 1.8 – Classification of gravity- induced deposits Moscardelli and Wood (2008) 

 

1.3.2. Morphologic classification of mass-transport deposits  

In addition, multiple transport processes may have occurred within a single MTD, it is 

incorrect to characterise an entire deposit on seismic based on localised observation. 

MTD itself can have different features and can show a large range of internal 

deformation geometries.  

MTDs often present three important domains, the extensional headwall domain, 

translational domain and compressional toe domain (Figure 1.9). Nevertheless, not so 

well conserved MTD or poor documented can show absence of some of the domains. In 

these cases, that is possible identified the geological structures or features which 

records information related to the type and indication of motion at the time of 

emplacement are a great contribution to the understanding of the initiation, dynamic 
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and cessation of slope failures, and it is designated as kinematic indicators by Bull et al. 

(2009) (Figure 1.10). 

The frontal emplacement of MTDs are also geomorphologic features highlighted by 

Frey-Martínez et al. (2006) in the continental margin offshore Israel (Eastern 

Mediterranean), which have been used to analyse the compressional structures within 

the toe regions of two major buried submarine landslides. Using high spatial resolution 

data allowed a detailed analysis of the geometries and deformational structures within 

the toe regions of the two landslides, and this has been used to develop a mechanical 

model for their development. Importantly, it has been recognised that submarine 

landslides may be divided into two main types according to their form of frontal 

emplacement: frontally confined: the landslide undergoes a restricted downslope 

translation and does not overrun the undeformed downslope strata and; frontally 

emergent, much larger downslope translation occurs because the landslide is able to 

ramp up from its original basal shear surface and translate in an unconfined manner 

over the seafloor (Figure 1.11) (Frey-Martínez et al., 2006).  
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Figure 1.9 - Schematic representation of a typical MTD tripartite morphology: (1) Headwall scarp; (2) 
Extensional ridges and blocks; (3) Lateral margins; (4) Basal shear surface ramps and flats; (5) Basal 
shear surface grooves; (6) Basal shear surface striations; (7) Remnant blocks; (8) Translated blocks; (9) 
Outrunner blocks; (10) Folds; (11) Longitudinal shears/first order flow fabric; (12) Second order flow 
fabric; (13) Pressure ridges; (14) Fold and thrust systems  (Prior et al., 1984, Bull et al., 2009).  
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Figure 1.10 – Summary diagram showing key geometrical and geological criteria for the recognition of 
all kinematic indicator types. (Bull et al., 2009).  
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Figure 1.11 - Two main types of mass-transport deposits according to their frontal emplacement: (a) 
Frontally emergent, where the material ramps out the basal shear surface onto the seabed and is free 
to travel considerable distances over the undeformed slope position. (b) Frontally confined, the mass 
is buttressed against the frontal ramp and does not abandon the original basal shear surface (Modified 
from Frey-Martínez et al., 2006) 
 

 

1.3.3. Predisposing factors for the occurrence slope instabilities  

Predisposing factors (or preconditions) are static, inherent of slope environment, and 

not only influence the margin of stability, but more importantly in this context act as 

pre-disposing to allow other dynamic destabilising factors to operate more effectively 

(e.g. triggers). For instances, slope materials that lose strength more readily than others 

in the presence of water predispose the slope to failure during a rainstorm in onshore 

examples (Glade and Crozier, 2005). The predisposing factors are often considered as 

environmental factors which are constituted by terrain and topography attributes, 

whereby the Model Digital Terrain (MDT) is often the main source to produce very 

significant layers of predisposing factors. These factors include slope gradient, slope 

direction, slope shape, flow direction, flow accumulation, internet relief, rock types etc. 

(Remondo et al., 2003, van Westen et al., 2008). Usually, the predisposing factors that 

are used for modelling depend on the type of slope movement, the type of terrain and 

the availability of data sources (Zêzere et al., 2004, van Westen et al., 2008, Pereira et 

al., 2012). 
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1.3.4. Triggering factors  

Triggering factors are the ones responsible for the initiation of the movement. These 

factors shift the slope from a ‘marginally stable’ to an ‘actively unstable’ state (Glade 

and Crozier, 2005).  The common triggering factors are usually external forces that affect 

the slope and initiate the movement (Figure 1.12). In fact, depending on the slope, the 

actual trigger has little influence on the slope if the predisposing factors govern the 

stability of the slope (Rodríguez-Ochoa et al., 2015). 

Based on the literature (Hampton et al., 1996, e.g. Locat and Lee, 2002, Hance, 2003, 

Masson et al., 2006, Rodríguez-Ochoa et al., 2015) the most common triggering factors 

for submarine slope movements are mechanisms such as: earthquakes, gas hydrates, 

groundwater seepage, over steepening, high sedimentation rate/underconsolidation, 

magma and mud volcanoes, and salt diapirism.  

1.3.4.1. Factor of safety (F) 

Independent of the triggering mechanism responsible for the slope movements, the 

factor of safety (F) is the responsible for their occurrence (Hampton et al., 1996, Locat 

and Lee, 2002). A general definition of the factor of safety (F) of a slope results from the 

comparison the downslope shear stress with the shear strength of the slope, along as 

assumed rupture surface. The factor of safety, represents mathematically the 

equilibrium conditions between the factors that are favourable for the slope failure and 

those that prevent it (Figure 1.12). When F > 1 the slope is thought to be stable, unstable 

when F < 1, and relatively unpredictable if F = 1 (Figure 1.12). the transition between 

stability and instability may be predict mathematically as a decrease in the factor of 

safety to values below unity (De Blasio, 2011). The factor of safety is calculated by the 

equation: 

Equation 1.1 

ResistingForces
F

GravitationalForces




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Figure 1.12 – The factor of safety (F) reflects the equilibrium conditions between predisposing factors 
and triggering factors mechanisms. The factors favouring stability of the slope are shown in blue and 
the factors triggering failure are red. The slope fails when FS is <1. Modified after Camerlenghi (2013) 
in Omosanya (2014).  

 

 

1.4. Workflow to for and risk assessment  

The methodology for risk assessment for onshore slope movements is well known with 

a vast range of methods (Thiery et al., 2007, Cees J. van Westen, 2008, van Westen et 

al., 2008). The total risk is a result of an equation where the hazard and the elements at 

risk are considered. Varnes (1978) has proposed the most widely adopted definition of 

hazard as the probability of occurrence of a potentially damaging phenomenon within a 

given area and a given period of time. Legros (2002), pointed out that this definition 

requires the definition of the location (where?), time recurrence (when?) and the 

magnitude (how powerful?) of the phenomena. The susceptibility analysis tries to 

answer the question “where” and is done by following the methodology in the Figure 

1.13.   

In offshore studies is harder to assess the risk.  In this thesis presents the first steps to 

contribute for it, by the computation of the favourability scores for the occurrence of 

MTDs, following the methodology proposed in the Figure 1.13.  
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Figure 1.13 – Methodology for landslide susceptibility assessment and validation (Zêzere et al., 2004)  

 

 

1.4.1. Different types of models 

The first step in assessing slope instabilities is defining the susceptibility (LS), i.e., the 

spatial probability of slope instability occurrence. The most used methods for LS 

zonation can be synthetically divided into three main groups (van Westen et al., 1997, 

Carrara et al., 1999, Clerici et al., 2010): 

i) Heuristic methods: These can be separated into qualitative and 

semiquantitative methods. The weight of the factors that produce instability 

is evaluated by the operator based on their own knowledge and experience, 

which lends this method substantial subjectivity. The Heuristic qualitative 

approach uses direct and semi-direct mapping methodologies which means 

that during the inventory a direct relationship is made between the events 

and terrain parameters. Heuristic methods are suitable for small-scales and 

regional surveys.  

ii) Deterministic methods: This kind of method is based on engineering, 

geotechnical, or process-based approaches and requires a collection of 
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geotechnical parameters (e.g. normal stress, angle of internal friction, pore 

water pressure, etc). Deterministic methods due to their extreme variability 

of geotechnical characteristics are more effective only at single-slope scales, 

and are the most appropriate to use by engineers in the design of 

infrastructure or corrective works.  

iii) Statistics methods: This method can be divided into bivariate and 

multivariate. 

Bivariate and multivariate methods are GIS-based and despite the methodological and 

operational differences, when applied to LS studies are based on the common 

assumption that slope failure in the future will be more likely to occur under the same 

conditions that led to past and present instabilities events (Zêzere et al., 2004, van 

Westen et al., 2006). It is assumed for LS analyses that the futures instability events can 

be predict by statistical relationships between past events and spatial information of the 

predisposing factors. In other words, these methods are carried out by evaluating the 

similarity between the conditions in such areas and the conditions that led to slope 

instabilities in the past (van Westen et al., 2006), using algorithms based on 

statistical/probabilistic analysis (Bayesian model) over a unique-condition of terrain 

units in a raster basis (Zêzere et al., 2004). The conceptual model focuses mainly on the 

following steps: (1) the mapping of the slope movements; (2) the mapping of a set of 

predisposing or precondition factors that are considered to be directly or indirectly 

connected with the slope instabilities and (3) the classification of the final predictive 

maps on the basis of the final statistical relationships.  

1.4.1.1. Bivariate statistic methods 

The technical principle of bivariate statistic methods is that all possible causative terrain 

parameters are entered into a GIS and crossed for their analysis with a slope instabilities 

distribution map. By the use of bivariate statistical methods, the role of individual or a 

combinations of parameters with regard to slope failures is statistically evaluated. Many 

statistical methods exist to determine the contribution of a certain parameter class to 

the occurrence of a slope movement. In this thesis the Informative Value (IV) method is 

used (Yan, 1988, Yin and Yan, 1988). 
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Yin and Yan (1988) define an information value to calculate the susceptibility for the 

occurrence of a slide, which is a logarithm of the ratio between the density of landslides 

in a class and the density of landslides for the whole study area. Chung and Fabbri (1993) 

developed statistical procedures under the name of predictive modelling, applying 

favourability functions on individual parameters. Using these statistical and probabilistic 

methods, terrain units or grid cells are transformed to new values representing the 

degree of probability, certainty, belief or favourability that the terrain units or grid cells 

may contain or be subject to a particular type of slope movement. The bivariate 

statistical methods give a satisfactory combination of the (subjective) professionally 

geared direct mapping (e.g. slope movement inventory, mapping predisposing factors) 

and the (objective) data-driven analysis capabilities from the use of GIS  (van Westen et 

al., 1997).  

Recent developments in GIS software and computer power permit an increased number 

of independent variables for data-driven slope movement susceptibility models. Recent 

studies involve over a dozen variables considered as predisposing factors of slope 

instability (e.g. Den Eeckhaut et al., 2010, Sterlacchini et al., 2011). The inventory of 

slope movements is considered the dependent variable in the models.   

The drawback related to bivariate statistical methods is that it considers the assumption 

of conditional independence. Which in practice means that all the predisposing factors 

considered are independent with respect to the probability for the given type of slope 

movement, which in most of the cases are not valid. This drawback can be avoided or 

minimised by the user by making an evaluation and making a new parameter map by 

combining the dependent ones (van Westen et al., 1997).  

1.4.1.2. Data integration  

Data integration can be defined as the transformation of our experience of the real work 

into the computation domain, which can comply with models and rules with the aim to 

provide useful information (Chung and Fabbri, 1993). Quantitative representation of 

spatially distributed map patterns or phenomena plays a crucial role in data integration. 

It also defines the types of combination rules applied to them.  
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Maps are the representation of observations and interpretation of nature and can also 

include the interference of humans with nature, which is a basic and well-known 

concept still valid though time. Constructing thematic layers requires special care 

related to decisions and processes when selecting attributes, mainly accuracy and 

confidence (Chung and Moon, 1991, Chung and Fabbri, 1993).  

Following Chung and Fabbri (1993), maps can present different types of information, 

such as: 1) continuous measurements; 2) discrete samples (e.g. sediment data); 3) 

distinct geometric objects (polygons, point and lines) for example landslides or mineral 

occurrences as implied by the authors and 4) complete polygonisation of map space. In 

some cases it is necessary to construct special-propose thematic maps where different 

aspects of complex associations of mapable features on phenomena are represented 

and grouped into classes for human use, such as assessment of natural hazards and 

environmental impacts, for instances. To fulfil this the first step is to define the purpose 

of the information integration and the second is to represent the map information in a 

standard way according to the defined purpose. 

The data acquisition for modelling spatial data is nowadays mostly done by computer, 

where a set of attributes can be incorporated and used in the modelling. The data is 

characterised by high spatial variation (e.g. geologic layers, remotely sensed images and 

digital elevation) and the satisfactory representation is by using a “raster format”. Raster 

files can contain a rectangle or matrix of numbers in each element, called a pixel (p). The 

value of a pixel may represent a terrain unit of the phenomena represented in the map 

(Chung and Fabbri, 1993). For spatial data integration studies, it is important that all the 

different sources of information are represented in the same format and use the same 

single data model format (e.g. pixel size). Using a raster model seems to be the most 

practical and coherent representation for statistical analysis and interpretation. (Chung 

and Fabbri, 1993). The raster format is, therefore, the format representation that will 

be used in this thesis (chapter 5 and 6).  

Spatial integration is key for statistical modelling, whereby the rules work with different 

maps that can represent the phenomena to model. The representation of the 

Favourability Function considers a number (n) of layers of map data each containing a 

set of map units (in a single theme) for a given area (A) where a specific phenomenon 



Introduction and literature review  Chapter 1 

30 
 

(e.g. slope movement) for a specific theme (D) is sought. Consider a pixel p in A and a 

proposition: Tp: “p contains a phenomenon of type D” (Chung and Fabbri, 1993). The 

integration (or combination) rules for the data are determined by the method used, 

which in this thesis is the Bivariate Informative Value (IV) in the chapter 6.  

1.4.2. Model validation (success and predictive rates) 

An important and absolutely essential component is to carry out a validation of the 

prediction results. Validation of a model is essential in order for predictive models to be 

considered accurate (Chung and Fabbri, 2003). A predictive map can be validated using 

the data inventory data partition via 3 different procedures: i) temporal partition, which 

uses an inventory from two different dates; ii) spatial partition, whereby the inventory 

is divided between two different areas; and iii) random, where the inventory of past 

slope movements are randomly divided into groups, instead on two periods of time or 

two areas. (Chung and Fabbri, 2003).  

1.4.2.1. Success-rate curves 

Success-rate curves (SRCs) (Chung and Fabbri, 1999) are used to assess the 

performances of the models since success curves are computed using the same slope 

instability inventory training group that was used to compute the model. SRCs are made 

by plotting the cumulative percentage of susceptible areas (starting from the highest 

probability values to the lowest ones) on the X axis and the cumulative percentage of 

corresponding training points on the Y axis (Figure 1.14). The steeper the curve the 

better the capability of the model to describe the distribution of the slope movements 

considered in the model, which is also dependent of the slope instability distribution in 

the area. 

1.4.2.2. Prediction rate curves 

The predictive power of the maps is assessed using prediction-rate curves — PRCs 

(Chung and Fabbri, 2003). The methodology to calculate predictive-rate curves is the 

same as success-rate curves. Nevertheless, instead of the same training group, a 

prediction training group is used (that were not used in training the model), based in 
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one of the partition methods above mentioned. The predictive power of the three 

spatially divided inventories can be analysed by cross-validation.  

The model should be computed using an older slope movement inventory, and more 

recent ones should be used for the evaluation of the prediction, as applied by (Guzzetti 

et al., 2006, Zêzere et al., 2008, Blahut et al., 2010).  

Finally, the Area under the Curve (AUC) can be calculated. This area is expressed as a 

percentage of the graph that lies under the curve (Figure 1.14) and allows an easy 

comparison between success-rate curves and predictive-rate curves. Evaluation of the 

prediction power of the models remains a difficult task and for all approaches the quality 

of the predictive variable and inventory are essential to obtain high predictive models 

rates (Blahut et al., 2010). At closer to 1, the better AUC is for the predictive capability 

of the model for slope movement. A casual predictive rate will be manifested by 0.5 AUC 

(line in red). AUCs below 0.5 show models with a predictive power that is worse than a 

random one and should not be considered (Figure 1.14).  

1.4.2.3. Sensitivity analysis 

The sensitivity analysis is the last step to better understand the predictive models. The 

predictive capacity of the models does not automatically increase with the increasing 

number of variables assumed  to be slope movements predisposing factors (Zêzere et 

al., 2008). Undertaking a sensitivity analysis attempts to discriminate the relevance of 

each predisposing factor for the predictive model, by crossing each one individual with 

the inventory of slope movements and calculating the AUC for each individual model 

(Pereira et al., 2012). This step, allows the understanding of which predisposing factors 

are most important for the slope instability in a given area, but also defines the best 

variable combination by computing the corresponding success and predictive rates 

(Guzzetti et al., 2006, Zêzere et al., 2008).  
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Figure 1.14 – Graphic definition of the Success and Predictive rata. The red dashed line shows an AUC 
of 0.50, random calculated.  

 

1.5. Structure or layout of the thesis 

This thesis is divided into seven chapters. This chapter contains the introduction, which 

highlights the rationale, research hypothesis and the literature review for the focus of 

this thesis. Chapter 2 presents an overview of the geological context of the Espírito Santo 

basin, emphasizing the key geological features that are the focus of this PhD thesis. 

Chapter 3 describes the methods used within this study, describes the seismic 

interpretation techniques and tools used. There is also a focus on the statistical methods 

and Geographic Information Systems integration for modelling presented in chapters 4, 

5, and 6, which are the core results chapters of this thesis. Chapter 4 presents an analysis 

of salt tectonics and raft tectonics deformation within the Espírito Santo basin. Chapter 

5 introduces the palaeo-topography and barriers on the gliding surface for two MDTs 

considered. Chapter 6 introduces a new approach to favourability score analyses for the 
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occurrence of MTDs, considering a set of predisposing factors. The general discussion 

and conclusions of the major findings of this PhD thesis are included into chapter 7. The 

appendices includes a brief summary of the processing algorithm, and calculation of the 

Informative Value method used in chapter 6.  

Important contributions to knowledge from this research are: 

iv) The characterisation of the last stage of salt tectonics deformation, the raft 

tectonics, their forms of deformation and relationship with post-raft 

overburden and underneath salt layers. 

v) The geomorphologic characterisation of a topographic surface and its 

relationship with the MTDs.  

vi) The use of high resolution 3D seismic information as a source of data to 

compute morphometric attributes into a GIS environment.  

vii) The use of statistics methods (bivariate) for the computation of favourability 

scores to the occurrence of MTDs.
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2.1. Introduction 

The aim of this chapter is to describe the regional geological and tectonic stratigraphy 

settings of Espírito Santo Basin and regional aspects of SE Brazilian Margin. The 

information presented within this section is important as a way to provide a coherent 

geological context for the remaining chapters of the thesis. It is also describes the 

seismic stratigraphy of the study area.  

2.2. Location of the study area 

The Espírito Santo Basin (ESB) is located along the SE continental margin of Brazil, 

specifically in the central and northern parts of the Espírito Santo state (Figure 2.1). It 

covers an area of about 125 000 km2, the most part of which is offshore (107 000 km2). 

The basin is delimited by the Campos Basin to the south (Fiduk et al., 2004), and the 

Abrolhos Plateau to the north (Figure 2.1). The Abrolhos Plateau is a volcanic structure 

generated in the Palaeogene (Mohriak, 2005) and limiting the Espírito Santo Basin at 

North.  
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Figure 2.1 - Location and geographic limits of the Espírito Santo Basin, SE Brazilian Margin. The figure 
shows the location of the BES-100 seismic volume used in this thesis, roughly represented by the black 
rectangle. ODP Site 516 is indicated in the figure. 
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2.3. Andean tectonic phases and their effect on SE Brazil 

The SE Brazilian margin is well known to have been affected by important tectonic 

episodes (França et al., 2007), some of which can be correlated to deformation pulses 

in the Central Andes (Mégard, 1984, Mégard et al., 1984, Gregory-Wodzicki, 2000).  

These deformation pulses are chiefly materialised in the Espírito Santo by regional 

unconformities (França et al., 2007) (Figure 2.2).  

In South America, the Andean Orogeny was triggered in the Late Albian, during an event 

named Mochica phase (Mégard, 1984, Mégard et al., 1984).  The following tectonic 

event, the Peruvian phase (90-80 Ma; Scheuber et al., 1994) resulted in the deposition 

of extensive submarine channels, sands and finer-grained turbidites in the region where 

the study area is located.  

A major reconfiguration of SE-Pacific oceanic plates occurred at 49 Ma, during the 

Eocene Incaic phase (Mégard, 1984, Isacks, 1988). The last Andean compressive events 

are divided into three distinct phases: the Quechua 1, 2 and 3 (Mckee and Noble, 1982, 

Mégard et al., 1984). The Quechua 1 phase occurred between ~20 and 12.5 Ma (Early to 

Midle Miocene; Mégard, 1984), affecting the western Cordillera, where it reactivated 

the Incaic structures, the Altiplano and probably the eastern Cordillera when crustal 

shortening during this phase was northeast-southwest trending. Extensive uplift 

followed this phase and subsequent erosion carved the main Puna erosions surface 

(Mégard, 1984). The Quechua 2 phase 9.5-8.5 Ma in the Ayacucho basin of central Peru 

(Mégard, 1984), was marked by important strike-slip movements many longitudinal 

NW-SE trending faults analysis of brittle tectonics indicates that this motion was N-S 

oriented. Shortening in a nearly E-W direction occurred during Quechua 3 (at ~6 Ma) in 

Ayacucho but is considered to be Pliocene in age in the sub-Andrean zone where it gave 

rise to the sub-Andean trust and fold belt (STFB) (Mégard, 1984). It fix a setting that 

contrasts with the N-S compression recorded at present in the eastern part of South 

America (Lima, 2003).  
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Figure 2.2 – Correlation panel between the interpreted seismic units and stratigraphic information from Espírito Santo Basin based on (França et al., 2007). Velocity data 
for ODP Site 516 (Barker et al., 1993). 
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2.4. Tectonic and stratigraphic regional settings 

The Espírito Santo Basin is a typical rifted passive margin. It shares identical deformation 

histories with other basins of the SE Brazilian margin, in particular with the Santos and 

Campos Basins, two of the most well-known basins in the South Atlantic region (Figure 

2.1).  

The Espírito Santo Basin comprises a series of rift basins of Late Jurassic-Cretaceous age, 

which are located between the Victoria-Trindade High and Abrolhos Plateau. Its tectonic 

evolution records four distinct stages: pre-rift, syn-rift, transition and drift phase (Chang 

et al., 1992, Alves, 2012, Gamboa et al., 2012, Fiduk et al., 2004), which are materialised 

by five megasequences (Fiduk et al., 2004). 

The initial pre-rift stage occurred from the Late Jurassic to earliest Cretaceous 

(Berriasian) (Figure 2.3). This stage included the events that preceded continental rifting, 

and is associated with the crustal uplift and development of a peripheral depression 

(Ojeda, 1982).  

The syn-rift stage, dated from the late Berriasian/Valanginian to the early Aptian, is 

marked by significant tectonic activity that led to formation of rift basins (Ojeda, 1982, 

Demercian et al., 1993, Mohriak, 2005, França et al., 2007, Gamboa et al., 2011) during 

the divergent movement of the South American and African plates (França et al., 2007) 

(Figure 2.3). During this stage basic structural-stratigraphic framework of the Brazilian 

marginal basins was formed (Ojeda, 1982): i) a central graben along the intumescence 

axis of the rifting; and ii) asymmetric rift valleys, which were located between the central 

graben and the stable craton. This stage denotes the accumulation of lacustrine 

sediments in fault-controlled basins, followed by carbonate deposition at the beginning 

of the Aptian. The sediments recorded in this stage consist mostly of non-marine, fluvial, 

clastic, deltaic and deep-water basin deposits. The dominant lithologies are coarse to 

fine sandstones, silts and shales (Ojeda, 1982). Principal megasequences include the 

Cricaré and Marirícu Formations, which are composed of fluvial sandstones and syn-

tectonic conglomerates intercalated with magmatic extrusive marking the igneous 
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activity in the Espírito Santo Basin (Ojeda, 1982, Chang et al., 1992, Mohriak, 2003, Fiduk 

et al., 2004).  

The transitional stage, occurs between the Aptian and the Early Albian. It records 

widespread tectonic quiescence and the cessation of basement fault activity (Gamboa 

et al., 2011). Stratigraphically, this stage is marked by a transition from essentially 

continental syn-rift strata to marine drift units. These latter units mark the first marine 

incursions into the central graben of the southeast Brazilian rift basins (e.g. Dias, 2005). 

The transitional stage in SE Brazil records the deposition of more than 3000 m of 

evaporites, mainly halite and anhydrite resulting from extreme marine evaporation in 

arid climate conditions (Mohriak, 2003, França et al., 2007, Mohriak et al., 2008) under 

a relative tectonic stability. Ojeda (1982) identified two different episodes during the 

Aptian; the Paripueira cycle deposited during the early Aptian and the Ibura cycle during 

the late Aptian (Figure 2.3). 

The drift stage is marked by continued spreading between the South American and 

African plates. The stage is dominated by open marine environments. It is divided into 

two main periods: Albian-Cenomanian (transgressive) and Turonian-Holocene 

(regressive) (Ojeda, 1982). In the first transgressive period, the major geologic events 

affecting the study area were: i) the development of shelf and slope physiographic 

features; (ii) the generalized deposition of a thick carbonate sequence as slope 

calcilutites and clastic fan-delta depositional system; (iii) local syntectonic conglomerate 

deposition; (iv) diapirism of salt and shale; and (v) the development of growth faults 

with salt displacement (Ojeda, 1982). During the second (regressive) period are 

recorded: (i) a pronounced migration of the South American plates; (ii) accentuated 

subsidence of the oceanic crust; and (iii) accumulation of a thick wedge of sediments 

during a transgressive sequence. The late Albian limit coincides with the top of the first 

(transgressive) sequence and is associated with erosion of the Regência and Fazenda 

Cedro palaeocanyons onshore and on the continental shelf. The basal deposits in the 

transgressive sequence consist of dark mudstones, turbiditic sandstones and local 

carbonates derived from the erosion of Albian carbonate
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Figure 2.3 – Paleogeography and plate reconstruction of the Espírito Santo Basin during opening of the South Atlantic, from Aptian to Holocene. The red box highlights 
the relative position of the Espírito Santo Basin through time (Omosanya, 2014).
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The regressive sequence suggests important tectonic activity marked by the reactivation 

of ancient rift structures and uplift of hinterland mountain chains. This resulted in a 

generalised sea-level drop and creation of a regional unconformity (Meisling et al., 2001, 

França et al., 2007).  

The drift stage in the Espírito Santo Basin post-rift is, therefore, dominated by 

continental-slope embankment, incision of a submarine channel system and significant 

mass-gravitational processes, with salt tectonics playing a significant role in upper-crust 

deformation (Davison, 2007). Furthermore, it shows significant Late Cretaceous-

Cenozoic halokinesis controlled by thin-skinned gravitational gliding of post-salt strata 

over Aptian evaporites (Demercian et al., 1993).  

2.5. Halokinesis in the Espírito Santo Basin 

Evaporites were accumulated in the Espírito Santo Basin during the Late Aptian to Early 

Albian transitional stage and are widespread along both the Brazilian and West African 

margins. As a result, the Late Cretaceous and Cenozoic evolution of the Espírito Santo 

Basin are mainly controlled by thin-skinned gravitational gliding, differential loading and 

gravity spreading above Aptian evaporites  (Demercian et al., 1993, Fiduk et al., 2004). 

Deformation in the basin occurs in three (3) distinct tectonic domains: (i) extensional, 

which is located in the tilted margin; (ii) transitional, which is located in the mid-slope 

where salt are accumulated into diapirs (Figure 2.4); and (iii) compressional domain on 

the distal slope, where is observed allochthonous salt canopies (Demercian et al., 1993, 

Fiduk et al., 2004, Davison, 2007). In the study area are structures such as salt rollers, 

vertical salt diapirs, allochthonous salt tongues, shallow canopies coalescing from the 

combination of two distinct tongues, deep salt canopies, and trusted salt nappes (Fiduk 

et al., 2004, Omosanya and Alves, 2013). This salt is dated as late Aptian and corresponds 

mainly to halite with intercalations of less soluble salt (anhydrite) and more soluble K-

rich salts, such as sylvite, carnalite and tachydrite (Mohriak et al., 2008). The modern 

seafloor is deformed by several diapirs and salt canopies developed through the entire 

Cenozoic as a result of high sediment-input rates on the continental  
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Figure 2.4 - Sketch showing the relative location of the study area on the continental slope of Espírito Santo. Modified from Fiduk et al., (2004); Gamboa et al., (2010) and 
Omosanya and Alves (2013). SR – Syn-Rift sequence, T – Transitional sequence, ED – Early Drift sequence, LD – Late Drift sequence. Dashed line indicates the relative 
position of the interpreted seismic volume. 
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slope (Lima, 2003, Fiduk et al., 2004, Gamboa, 2011). The emplacement of the Abrolhos 

Plateau is also considered to have controlled salt deformation by inducing tectonic 

movements on the margin, thus accelerating gravitational gliding processes and the 

subsequent deformation of salt structures during the Early Cenozoic (Fiduk et al., 2004, 

Gamboa, 2011). The deformation of the Aptian salt layer into growing salt structures resulted 

in multiple stages of faulting (Baudon and Cartwright, 2008, Alves et al., 2009) (Figure 2.5). 

The fragmentation of post-salt strata generated isolated blocks of Albian carbonates, named 

‘tectonic rafts’ (Alves, 2012). Large roller and keystone faults propagated from these rafts into 

the post-raft overburden in the Late Cretaceous and Palaeocene. These faults are truncated 

by the Early/Mid-Eocene unconformity (Gamboa, 2011). In Late Eocene to Holocene strata 

faulting is less significant, but there is reactivation of the older faults due to the collapse of 

salt structures - with very little to insignificant expression on the actual seafloor (Baudon and 

Cartwright, 2008, Alves, 2012). 

Halokinetic movements thus play an important part in the Espírito Santo Basin evolution. 

Since its early deformation stages, halokinesis is closely associated with the triggering of 

expressive and important fault systems at depth (Figure 2.5). The resulting stratigraphic units 

deposited in the Espírito Santo Basin were mainly deposited during the transgressive and high 

stand episodes during the Cenozoic, followed by regressive episodes recording widespread 

submarine canyon incision (Fiduk et al., 2004). Consequently, the very thick Tertiary sequence 

in the Espírito Santo Basin continental slopes is composed of a mixture of carbonate and 

clastic sediment. In such a context, mass-wasting events offshore Espírito are a result of 

regional tectonic movements (Mohriak et al., 2008) and slope instability related to halokinesis 

(Fiduk et al., 2004).  

 

 



Geological setting                                                                                                                                        Chapter 2 

 

 
Figure 2.5 - A three-step evolutionary model for the crestal graben faults from Espírito Santo Basin. (a) First 
phase of faulting occurred between the early Cenozoic (time of formation of major anticlines) and the late 
Eocene (time of deposition of the sediments in the upper part of Unit 1b). Most of the uplift of the Cretaceous 
sequence (K) was contemporaneous with the deposition of sediments that compose Unit 1a. The faults 
offsetting Unit 1 were active at the deposition of the upper part of Unit 1b. (b) Period of quiescence during 
deposition of Units 2 and 3. (c) Phase of faulting 2 by blind propagation of post sedimentary faults resulting 
in the reactivation of faults situated in Unit 1 by upward post-sedimentary propagation (RP) into Units 2 and 
3 or reactivation by linkage (RL) of a fault that initiated in Units 2 and 3 and propagated downwards to link 
with faults in Unit 1. Dark shaded areas represent the slump deposit intervals. (Baudon and Cartwright, 2008) 
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2.6. Structural setting of the Espírito Santo Basin 

Continental rifting, and subsequent break-up associated with the opening of Southern 

Atlantic Ocean, contributed to shape the structural framework of Espírito Santo Basin. 

Structures generated at this time include antithetic step-fault blocks, synthetic step-faults, 

hinges with compensation grabens, structural inversion axes, homoclinal structures, growth 

faults with rollovers, salt and shale and also some structural features related to igneous 

activity (Ojeda, 1982, Fiduk et al., 2004, Mohriak, 2003).  

In detail, the study area crosses a region of salt structures, on the mid-continental slope, 

comprising a series of horsts, grabens and salt-related faults (Figure 2.4). As a result, three 

main phases of fault growth are observed in the study area, including faulting of overburden 

strata on salt crests linked to the development and later withdrawal of salt from diapirs (Alves 

et al., 2009, Alves, 2012, Omosanya and Alves, 2014, Omosanya, 2014). Omosanya (2014), 

pointed out three different stages of faulting on the Espírito Santo continental slope:  

(i) Early Paleocene to late Eocene, in which halokinesis triggered the growth of 

extensional faults set on the crest of rising salt anticlines. These faults propagated 

through the Late Cretaceous and Eocene strata and were mostly truncated by the 

mid-Eocene unconformity; 

(ii) These latter fault sets were then eroded during the deposition of mass-transport 

complexes (MTCs) and submarine channels in late Eocene to Oligocene times 

during a period of tectonic inactivity; 

(iii) Reactivation of older faults sets by vertical propagation and dip linkages in late 

Cenozoic were dependent on movements of Albian rafts and cessation of tectonic 

slope tilting (Alves, 2012). Faulting of Late Eocene to Holocene strata is less 

expressive, reactivated faults have poor or no expression on the modern seafloor 

(Alves, 2012).  

In parallel, the structural inversion of the East Brazilian Rift System (EBRIS) is recorded in the 

study area and was influenced by plate-wide horizontal compression associated with the 

Andean Orogeny (Cobbold, et al., 2010). This resulted in the reactivation of multiple faults 

reactivation in the study area and throughout the Southeast Brazilian margin. During the 
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Cretaceous and Cenozoic, Early Cretaceous and older structures on rifted margins of SE Brazil 

were reactivated as a result of far-field stresses and hotspot activity. That reactivation 

occurred as a right-lateral mode during three main phases (Late Cretaceous, Eocene and 

Neogene), which correlate with changing conditions of convergence at the Andean margin of 

South America (Cobbold et al., 2001).  

2.7. Seismic Stratigraphy 

The seismic stratigraphy of the Espírito Santo Basin is correlated here with lithostratigraphic 

information in França et al. (2007), Alves and Cartwright (2009) and Alves (2012). Figure 2.2 

includes a seismic section showing the horizons interpreted and mapped in this work: a) base 

(horizon 3a) and top rafts (horizon 3), b) base Santonian (horizon 4) and c) seafloor, which 

mainly divided the stratigraphic packages considered in this work.  For further detail, the 

interpreted seismic-stratigraphic units are summarised in Table 2.1.  

Despite the description of all stratigraphic packages that are observed in the Espírito Santo 

Basin, which are all affected by the processed described in this thesis. The focus are in the 

Aptian salt (K50), mainly constituted by halite intercalated with carbonate intervals and 

anhydrite. The Albian package (K62-K70) consists mainly of sand, silts, ooliticlimestones and 

marls, which are basically the material of the Albian rafts. These two stratigraphic packages 

are focused in the chapter 4, while the chapter 5 and 6 are focused on the sequence N20 – 

N60 constituted by sandstones, calcarenites and marls. As the study are located at continental 

slope is expected a sedimentary package marked by high percentage of sandy materials.  

2.7.1. K20 to K40 sequence (Earliest Cretaceous to Early/Mid Aptian) 

The K20-K40 sequences comprise syn-rift and early post-rift strata below the imaged tectonic 

rafts (Figure 2.2 and Table 2.1). The lower boundary of K20 is marked by a surface of 

moderate-amplitude, locally diffractive reflections which marks the top of basement rocks. 

The contact between K20 and K30 is hardly observed, as sequences comprise moderate to 

high amplitude, low frequency reflections. K40 has higher amplitude and is more continuous 

than K20 and K30.  
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The boundaries between K20, K30 and K40 are difficult to distinguish on the interpreted 

seismic volume partly because all sequences comprise moderate to high amplitude, low 

frequency reflections (Figure 2.2). Nevertheless, K40 shows higher amplitude reflections, 

more laterally continuous, than K20 and K30. 

K20 comprises the oldest units in the study area (dated as belonging to the Valanginian) and 

forms the base of the Nativo Group (Cricaré Formation). Heterolithic conglomerates and 

coarse sandstones, observed in proximal regions of Espírito Santo, grade into fine-grained 

mudstones towards distal areas (França et al., 2007). The K30 sequence comprises volcanic 

and volcaniclastic rocks intercalated in sandstones and conglomerates (Jaguaré Member), 

changing into shales, marls and carbonate units towards more distal regions (França et al., 

2007). The basal post-rift Sequence K40 comprises conglomerates and sandstones grading 

into fine sandstones and shales deposited in lacustrine and sabkha environments (Membro 

Mucurí, França et al., 2007). 

2.7.2.  K50 sequence (Aptian) 

The K50 sequence comprises the core of salt pillows and diapirs in the study area. It shows 

chaotic to low amplitude reflections in its interior (Figure 2.2 and Table 2.1). Its lower 

boundary consists of an irregular reflection with moderate to high amplitude, below which 

high amplitude strata are observed. Its top boundary coincides with the first continuous strata 

above the imaged salt structures. In the data interpreted in this work, the K50 sequence is 

only preserved within triangular salt anticlines (rollers) formed between displaced rafts 

(Figure 2.2). 

The K50 Sequence was deposited in a series of confined basins in conditions of high 

evaporation (França et al., 2007). Carbonate and anhydrite intervals predominate in shallow 

marginal areas of Espírito Santo, whereas halite is more abundant in the central and distal 

parts of the basin (Table 2.1).  

2.7.3. K62 to K70 sequences (Albian) 

The K62 to K70 sequences comprise high-amplitude internal reflections deposited above K50 

and the basal K20 to K40 sequences. The lower boundary of K62-K70 is coincident with 
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Horizon 2. The top (Horizon 3) comprises an angular unconformity in the study area (França 

et al., 2007). 

The thickness of K62-K70 reaches 600 ms two-way travel time (TWTT) in the interpreted 

seismic volume (Table 2.1). The sequences include marine strata, mainly sands, silt, shales 

and oolitic limestones and marls, which are partly time equivalent to Unit 7 at DSDP Site 356 

(Kumar et al., 1977)  and to the onshore Regência Formation (Bruhn and Walker, 1997, Fiduk 

et al., 2004, França et al., 2007). The top of K62-K70 is an angular unconformity in the proximal 

regions of the Espírito Santo Basin, and changes into a paraconformity in deeper waters 

(França et al., 2007). 

2.7.4. K82 to K88 sequences (Late Albian to Santonian) 

The K82 to K88 sequences comprise continuous, low-amplitude reflections deposited above 

Albian-Aptian rafts and salt structures. The lower boundary of K82-K88 is sharp, and marked 

by growth onto major faults above Horizons 2 and 3. The upper boundary of Late Albian-

Santonian strata is an irregular high-amplitude reflection representing an unconformity 

(Horizon 4) of Santonian age (França et al., 2007). 

In the K82-K88 sequences are included shales and turbidite sands (França et al., 2007). Locally, 

the lower boundary of K82 contains carbonate breccias derived from eroded Albian carbonate 

platforms. The K82-K88 sequences belong to the lower Urucutuca Formation.  

2.7.5. K90-K130 sequence (Late Santonian to Maastrichtian) 

A major unconformity related to the incision of a Late Santonian to Maastrichtian channel 

system is observed in the study area above low-amplitude strata of K82-K88 (Golfinho Field, 

Vieira et al., 2007). This same boundary (Horizon 4) is marked by high-amplitude reflections 

above a faulted succession (Figure 2.2). Growth of strata onto roller faults is observed below 

the unconformity. A regional unconformity of Late Maastrichtian age (Vieira et al., 2007) 

marks the upper boundary of K90-K130. 

K90-K130 comprises the middle part of the Urucutuca Formation (Fiduk et al., 2004; França 

et al., 2007). The main lithologies in the sequence are turbidites and shales, changing into 

marly successions towards more distal parts of the Espírito Santo Basin (França et al., 2007). 
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2.7.6. E10-E30 sequence (Paleocene to Early Eocene) 

The E10-E30 sequence comprises high-amplitude seismic reflections intersected by closely-

spaced normal faults. Its lower boundary coincides with the Maastrichtian unconformity. The 

upper boundary of the sequence is marked by Horizon 6, a regional unconformity above 

which moderately faulted high-amplitude strata are observed. In the E10-E30 sequence are 

observed sandstones and shales with offlap geometries on regional seismic data (Figure 2.2). 

This geometry has been interpreted as resulting from tectonic uplift of the basin shoulder 

areas during the early Cenozoic (França et al., 2007). 

2.8. E40 to N10 sequences (Eocene to Early Miocene) 

The E40 to N10 sequences are composed of reflections deformed by closely-spaced normal 

faults. The age of E40-N10 ranges from the Eocene to the Early Miocene, i.e. it comprises 

equivalent strata to the upper part of the Urucutuca Formation (França et al., 2007). The E40-

N10 sequences comprise turbidite sands intercalated with volcaniclastic deposits (França et 

al., 2007) (Table 2.1). 

2.8.1. N20 to N60 (Early Miocene to Holocene) 

The N20-N60 sequences comprise chaotic to continuous seismic reflections. The sequences 

belong to the Rio Doce, Caravelas and Urucutuca units, and are at places eroded by submarine 

channels. Strata in these sequences comprise sandstones (Rio Doce Formation), calcarenites 

(Caravelas member) and turbidite sands and marls (Urucutuca Formation). Mass-transport 

complexes and channel-fill deposits are abundant throughout the basin after the Early 

Miocene (França et al., 2007) (Table 2.1). 
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Table 2.1 - Summary of the seismic-stratigraphic character of interpreted units in the Espírito Santo Basin. 
Lithological data from França et al., (2007). Modified from Alves, 2012. 

TWTT 
Thickness 
(ms) 

Age 
(Sequence) 

Seismic facies Lithology Description 

100-850 Early 
Miocene 
(N20-N60) 

Chaotic to 
continuous 
reflections.   

Sandstones, 
calcarenites and 
marls 

Incised by submarine 
channels at places. 
Include strata from 
the Rio Doce, 
Caravelas and 
Urucutuca 
Formations.  

200 – 1000 Eocene to 
Early 
Miocene 
(E40 – N10) 

High to 
moderate-
amplitude 
internal 
reflections.  

Coarse grained 
turbidites, 
volcaniclastic 
sands and fine-
grained strata 

 Composed of 
prograding high-
amplitude 
reflections deformed 
by closely spaced 
normal faults.  

300 – 600 Maastrichtian 
to Early 
Danian 
(E10-E30) 
 

High amplitude 
internal 
reflections 

Sandstones and 
shales 

Lower boundary 
coincides with an 
unconformity of 
Maastrichtian age. 
The top of the unit is 
marked by another 
(Danian) regional 
unconformity.  
 

0 – 500 
 

Late 
Santonian to 
Maastrichtian 
(K90-K130) 

Moderate to 
high amplitude 
reflections. 
most filling  
erosional 
channels 

Interbedded 
sandy turbidites 
and shales 

Lower boundary 
comprises a sharp 
erosional boundary 
marking the base of 
the first submarine 
channels deposited 
in the basin.  

700 – 1500 
 

Albian to 
Santonian 
(K82-K88) 

Low amplitude 
internal 
reflections. 
mostly 
continuous. 
Drapes Albian 
rafts and 
adjacent salt 
structures  

Calcareous 
shales, 
intercalated with 
turbidite sands. 
Carbonate 
breccias. Some 
eroded strata 
derived from 
Albian rafts. 

Lower boundary is 
sharp, marked by the 
appearance of low-
amplitude 
reflections above 
Albian rafts and salt. 

0 – 600 
 

Albian 
(K62-K70)  

High-amplitude 
reflections with 
low frequency. 
Localised 

Sand, silts and 
Ooliticlimestones 
and marls.  

The lower boundary 
of the Albian 
sequence coincides 
with the base of the 
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growth and 
downlap are 
visible 

interpreted rafts. 
The upper boundary 
of the unit comprises 
an angular 
unconformity on the 
proximal margin 
(França et al. 2007; 
Alves, 2012).  

0 – 1800 Aptian 
(K50) 

Chaotic to low 
amplitude 
reflections.  

Halite 
intercalated with 
carbonate 
intervals and 
anhydrite.   

Triangular salt 
anticlines structures 
formed between 
displaced rafts.  
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3.1. Introduction 

The results presented in chapter 4, 5 and 6 are based on the interpretation of three-

dimensional (3D) seismic data with high-resolution, the BES-100 cube from offshore 

Espírito Santo Basin, SE Brazil (Figure 2.1 – chapter 2). Chapter 5 and 6 use Geographic 

Information Systems (GIS) by computing topographic information for morphological 

characterisation, spatial analysis and MTD modelling to obtain MTD favourability scores.  

The aims of this chapter are: i) to present information on the seismic data set used in 

the thesis; ii) to give a brief overview of seismic acquisition, survey parameters and 

processing sequence of the BES-100 cube; iii) to outline the seismic interpretation 

methods followed in the thesis and the way seismic data was integrated into GIS, and 

iv) to outline the statistical methods used to compute the favourability scores for MTD 

occurrence, and corresponding scientific validation.  

3.2. Three-dimensional (3D) seismic data  

The importance of three-dimensional (3D) seismic data increased substantially in late 

1980s and early 1990s (Brown, 2004, Bull et al., 2009). Its application is mainly focused 

on exploration for oil and gas resources and became a requisite tool in those terrestrial 

and marine surveys since that time (Brown, 2004). It has largely improved our 

understanding of sub-surface geology and associated ‘geohazards’ during the 

exploration (and production) of hydrocarbon and minerals (Cartwright and Huuse, 

2005). 

Three-dimensional seismic imagery derives from the acquisition of very closely-spaced 

data, and provides high-resolution information of the surface and subsurface strata in 

the horizontal and vertical directions (Bacon et al., 2003). The seismic acquisition is 

focused on the detection of compressive P-waves, which are reflected back to the 

surface at geological interfaces. The advantage of 3D seismic imagery, when compared 

to 2D data, is that it allows the improvement of spatial interpretations of geologic 

features. That improvement is particularly important in areas where the geology is 

markedly complex (Yilmaz, 2001). 
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In marine surveys, the data is acquired by generating a signal from an energy source 

near the surface, which is tuned to emit concentrated energy pulses downwards (Figure 

3.1). Part of the energy reflected at subsurface geological boundaries is then detected 

by hydrophones at the surface, which record the two-way travel time (TWTT) in seconds 

or milliseconds that P-waves take to travel from the source until they return to the 

surface (Gamboa, 2011). The direction in which waves are shot is the inline direction, 

being coincident with the boat track and orientation of the hydrophone arrays. The 

perpendicular direction to this is called the crossline direction. In order to obtain high-

quality data, trace spacing in 3D seismic surveys is performed at 12.5 to 25 m for inlines 

and at 25 to 50 m for crosslines (Yilmaz, 2001).  A rule-of-thumb is that marine seismic 

reflection surveys mostly image P-wave reflections because fluids do not transmit S-

waves (e.g.  Sheriff and Geldart., 1995, Bacon et al., 2003). Essential to the seismic 

reflection method is the property of a layer designated acoustic impedance (Z), and can 

be defined as:  

 

Equation 3.1 

Z pV   

Where p represents the density of the rock or the sediment and V represent the velocity 

of a P-wave through the geologic body. This way, the geological boundaries between 

rocks or lithologies with different physical properties (density) are resolved as layers of 

different acoustic impedance, with strong acoustic impedance contrasts resulting in a 

strong reflections on seismic.   

An increase in acoustic impedance is generally displayed as a “peak” on seismic data and 

is reflected as a positive amplitude, while a decrease in amplitude being displayed as a 

“trough” or negative amplitude (Bacon et al., 2003) (Figure 3.2). Seismic waves are 

commonly displayed in distinct colours in what is termed ‘SEG’ (Society of Exploration 

Geophysicists) normal polarity (Brown, 2004). 
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Figure 3.1 - Schematic representation of the acquisition geometry of 3D marine seismic surveys. An acoustic source on the surface emits a sound wave that travels through 
the water body. As soon as the wave reaches the seafloor, and the properties of the rock change, P-waves are reflected back to the surface and detected by hydrophones. 
Hydrophone spacing controls the horizontal resolution of the seismic (Gamboa, 2011, modified from Bacon et al. (2003).  
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Figure 3.2 - Schematic graphic of seismic data displayed in SEG normal polarity zero phased data. The 
variable area wiggle display ‘troughs’ (negative amplitude values) are displayed in white, and ‘peaks’ 
(positive amplitude values) are displayed in black. Variations in density and p-wave velocities are 
displayed as colour-coded voxels, which indicate their amplitudes. Modified from Hart (1999). 
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Figure 3.3 – The energy emitted from an airgun returned to the source from all the reflector points. The 
region of the reflector from which energy is returned within half a wavelength of the initial refection 
arrival is referred to as the Fresnel Zone. Fresnel Zone is the key control of the resolution and 3D seismic 
migration reduces Fresnel size zone. Modified from Brown (2004).  
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Figure 3.4 – The seismic volume used in this thesis is displayed in normal SEG convention. The figure 
highlights troughs and peaks on an Albian raft and their final aspect on the interpreted seismic volume.   

 

The width of the Fresnel zone and the spacing of the detectors (hydrophones) are the 

two factors that control the horizontal resolution of seismic data (Figure 3.3 and Figure 

3.4). The Fresnel zone is defined by the energy returned to the detector in an interval of 

half a wavelength of the initial arrival (Figure 3.3). Within that zone, reflected waves 

affect constructively to provide the reflected signal (Kearey et al., 2009). In order to 

prevent any inaccuracies generated by reflections that have been misplaced due to 

variations in dip and reflection patterns from points and edges hydrophone spacing 

determines the spacing, relative to the estimated depth, from which the subsurface 

interface can be reconstructed (Brown, 2004). 

3.3. Exploration 3D data survey parameters 

3.3.1. Espírito Santo Basin  

A three-dimensional (3D) seismic volume from offshore Espírito Santo Basin, SE Brazil, 

is the dataset used in this work, acquired by CGGVeritas© (Appendix I). The interpreted 

seismic volume images sub-surface strata on the continental slope at water depths 

between 100 m and 1800 m (Figure 3.5). The seismic volume was named block BES-100 

and was acquired using the coordinate reference system WGS_1984_UTM_Zone_24S. 
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In chapter 4 a seismic block is used covering an area of 1120 km2. In chapters 5 and 6 

are used cropped seismic volumes with 770 km2 imaging MTD-prone areas to the south 

of the larger seismic cube. The datasets were acquired using a dual air gun array and six 

streamers, 5700 m long. Data processing included resampling, spherical divergence 

corrections and zero-phase conversions undertaken prior to stacking (Fiduk et al., 2004, 

Omosanya, 2014).  

3.3.2. Seismic processing  

The main aim of the seismic processing is to obtain the most accurate representation of 

geologic bodies and any relevant subsurface information. It is an ambitious and time 

consuming process that aims to produce high signal-to-noise ratios from the raw seismic 

data. Seismic processing is a complex process from which further details are provided 

by Sheriff and Geldart. (1995) and Yilmaz (2001).   

3.3.3. Seismic frequency and resolution 

The frequency or spacing defines the quantity of reflectors per unit of time. Vertical 

space changes in reflector spacing can be a useful guide to locate boundaries between 

depositional sequences, which make the frequency a good discriminator to identify 

sedimentary facies.  

 

Equation 3.2 

Internal velocity = distance or depth (m) / TWTT (ms)  

 

Resolution varies laterally and vertically, and is defined as the minimum separation 

between two features. Lateral or horizontal resolution is how far two features involving 

a single interface must be separated to show their actually separation., Vertically, it is 

defined as the minimum separation between two interfaces that can be discriminated 

as two, rather than one (Sheriff and Geldart., 1995). Seismic velocity (v) is the product 

of frequency (f) and wavelength (ƛ):  
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Equation 3.3 

v fx  

Vertical resolution of the seismic volume used in this thesis, which has a dominant 

frequency of 40 Hz is ~15.6 and 19.35 m considering velocities of 3100 m/s and 2100 

m/s for the deeper and shallower horizons, respectively (Barker et al., 1993, Fiduk et al., 

2004). The frequency of the highest amplitude correspond to the dominant frequency, 

which is obtained from the processing algorithm. For migrated data, horizontal 

resolution is equal to the bin size and is ~12.5 m for the interpreted volume.  

3.3.4. Seismic interpretation 

Seismic interpretation used Schlumberger Petrel© 2013 and 2014 software. It included 

structural and stratigraphic analyses in order to describe the internal and external 

character of sub-surface geological bodies, applying a combination of 3D techniques of 

visualisation, mapping and construction of seismic attribute maps.  

3.3.4.1. Horizon mapping  

Seismic horizon represent an interface such as the contact between two bodies of rock 

having different density, porosity, fluid content, seismic velocity and all those 

characteristics that can be represented by a seismic reflection. Horizon mapping was 

done using traditional methods of seismic facies analysis. Horizon mapping is the basic 

process by which 3D surfaces are created, from structural and stratigraphic 

perspectives. Mapping in this thesis was carried out by tracking the horizon of interest 

manually or auto-tracking every 20 to 20 lines, crossline and inline. In areas of low 

amplitude or poor signal, auto-tracking was used in a series of lines oriented 

perpendicular to the interpreted ‘seed’ lines (Figure 3.5).  The auto-tracking window was 

narrowed in the areas where reflections have similar amplitudes, avoiding any ‘jumps’ 

in the interpreted surface.  
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Figure 3.5 – Different perspectives of the interpreted seismic cube, Espírito Santo Basin, SE Brazil. The figure shows examples of crosslines, inlines and a time slice.   
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3.3.4.2. Recognition of salt and raft tectonics 

The key criteria to identify raft tectonics and surrounding salt structures (see chapter 4) 

are summarised as follows: 

a) A raft body is characterised by a predominantly continuous seismic reflection 

of positive and negative amplitude bounded by even stronger amplitude 

reflections (Figure 3.4).  

b) Lateral boundaries of rafts in some parts show chaotic seismic reflections. 

Nevertheless, most of the rafts´ lateral boundaries show well-defined 

geometric shapes. 

c) The basal surface is a boundary with weak and chaotic seismic reflections 

produced by the underlying salt. In some areas, the lower part of rafts is 

welded on the pre-salt units (Figure 3.4).   

 

3.3.4.3. Recognition of faults 

Faults were identified during the process of rafts and MTDs mapping to understand the 

linkage between them, which is mainly presented in the chapter 4, whereby are related 

to rafts tectonics described.  Attribute maps of surfaces affected by these faults are 

shown to highlight how faults affect the overburden stratigraphic units.     

3.3.4.4. Recognition of MTDs on seismic data 

The key criteria established in the literature was followed in this thesis to recognise 

MTDs (e.g. Hampton et al., 1996, Frey Martinez et al., 2005, Bull et al., 2009). The main 

diagnostic criteria are summarised below: 

a) The MTD body is characterised by chaotic seismic reflections that are bounded 

by distinctive upper and lower bounding reflections (upper and basal surfaces 

respectively) with irregular geometries (Figure 3.6).  

b) The basal surface of a MTD is usually a high-amplitude reflection that is 

concordant with the underlying stratigraphy – named as ‘depositional surface’  
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Figure 3.6 – Seismic profile showing the upper and basal surfaces top reflections in a MTD and corresponding character of the same deposit. 
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in chapter 5. It is also common to observe irregular features on the basal shear 

surface due the MTD tendency to erode the depositional surface. This is 

expressed by long linear grooves and striations.  

c) The upper surface of a MTD body is usually marked by laterally continuous, or 

discontinuous and irregular reflections, depending on the degree of internal 

deformation of MTD strata.  

3.3.5. Seismic attributes  

Once the mapping was completed, a number of seismic attributes were obtained from 

the seismic volume. Seismic attributes are quantitative measures of seismic character 

that helps the interpreter to visualise, understand and quantify important features on 

the seismic data (Chopra and Marfurt, 2005). In this project, seismic attribute maps 

provided diverse information about unconformities, features of geologic bodies (e.g. 

rafts, MTDs) and internal geometries. Attributes used include:  

Dip or dip magnitude:  Dip attribute maps are excellent tools to characterise seafloor 

morphology and variations along a mapped surface, revealing changes in gradient. It is 

a time-derived attribute that shows changes in gradient on an interpreted horizon by 

comparing adjacent points in time value.  

Amplitude: It measures the distance between the maximum displacement of a wave at 

the top of a reflection, positive or negative, to the point at which there is no 

displacement in acoustic impedance. There are numerous factors that can affect the 

variations in acoustic impedance such as porosity, lithology, fluid content, bedding, 

thickness and geometry (Hart, 1999, Brown, 2004).  

Root mean Square (RMS) Amplitude: RMS amplitude maps display the average squared 

amplitude values from individual samples within a defined interval (Brown, 2004). RMS 

attribute maps can accentuate structural fabric due seismic wavelets are diminished 

across ramps/faults as a result of the destructive interference of seismic energy.  

RMS amplitude maps in this thesis relate to specified horizons and were useful in 

identifying different geological structures such as faults, blocks and rafts.   
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Variance (or coherence): Variance profiles on a time-sliced cube highlight areas of 

discontinuities in the reflections of a succession. To obtain a variance cube there is no 

need to interpret a horizon (Brown, 2004). Variance uses a set of mathematical 

algorithms, similar to correlation, to compare adjacent waveforms (Brown, 2004). 

Variance is an excellent tool for identifying and mapping the margins and the 

remobilised MTDs in the 3D seismic volume.  

3.3.6. Volume calculations 

Volume calculations were made using Petrel© software. The mapped upper and basal 

horizons were computed into surfaces to compute Volume Calculations using the Bulk 

volume option.  

3.3.7. Depth conversion 

The vertical scale of the 3D seismic data is recorded in milliseconds (ms) two-way travel 

time (TWTT). This latter term reflects the time P-waves take to travel through the crust 

to a reflector and back again into the seismic hydrophones.  

To convert TWTT to true depth, the one-way travel time distance (in seconds) needs to 

be multiplied by the P-wave velocity estimated for the stratigraphic interval considered. 

This conversion is represented by the following equation: 

 

Equation 3.4 

 

*
2 1000

TWTT V
D 

 

Where: D=Depth; TWTT= Two-way-travel-time (ms); V=velocity in m/s 

In this work, time conversions in the specific intervals was calculated using the velocity 

information obtained at DSDP site 516 located in Santos Basin (Figure 2.1) (Barker et al., 

1993). Horizontal lengths for geological features were calculated by multiplying the 

number of traces covered by the features by trace distance (12.5m). 
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3.3.8. Quantitative measurements derived from seismic data 

Thickness measurements were calculated from seismic volume to assess the thickness 

of sedimentary post-raft packages (chapter 4). They were obtained across the study 

area, above the raft structures and along inline intervals of 20 lines (250 m). The 

resulting plots represent average values of thickness considering different stratigraphic 

intervals.  

3.4. Seismic data interpretation and Geographic Information 

Systems data integration 

Data representation and integration consists of the transformation of our own 

experience or data from different environments into rules and formats that can be 

analysed together. Following this principle, information generated from the seismic 

interpretation was integrated and used into GIS software.  

The results chapters 5 and 6 are derived from horizons mapped using Petrel©. Once the 

horizons were completely mapped, they were transformed into surfaces 

(ProcessesUtilitiesMake/Edit Surfaces) and depth converted (time depth to real 

depth) in Petrel©. The multiple surfaces thus obtained were exported as Zmap+grid 

(ASCII) files and integrated into ArcGis© using the ArcGIS Data Integration with E&P 

Software© extension, which allows Petrel© surfaces to be directly imported as grid files 

into GIS software.  

MTDs here mapped individually and their upper and basal surface interpreted along 

their full length. During the mapping, polygons were created following their shapes after 

mapping, to constrain the areas of the surfaces created in a second step. The adopted 

method was used in all MTDs mapped, which correspond do the base information on 

chapter 5 and included in the MTDs inventory used for modelling in chapter 6. The same 

process was used to compute the depositional surface right beneath MTDs representing 

local topography, which together with the MTDs are the key information in chapter 5 

and 6, representing local topography as a proxy of Digital Model Terrain (MDT).   
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Based on that information, topographic profiles of MTD and depositional surface were 

computed into GIS and presented on chapter 5. As well as, morphometric attributes 

presented in chapter 5 and chapter 6.  

3.5. Favourability Scores  

The aim of chapter 6 is to provide a new methodology to assess which predisposing 

factors were present when four MTDs occurred in the study area. The methodology 

adopted in chapter 6 is presented in Figure 3.7.  

The depositional surface mapped and used in chapter 6 (and in chapter 5 too) was 

imported into ArcGIS as a Digital Terrain Model (DTM) using the ArcGIS Data Integration 

with E&P Software© extension after converted to true depth (metres). Based on that, 

surface seven predisposing factors, or independent variables, were then computed. The 

chosen variables are elevation, slope gradient, profile curvature, planform curvature, 

flow direction, flow accumulation and slope over area ratio.  

3.5.1. Mapping units 

The evaluation of the likelihood of mass-movements in a given area requires a 

preliminary selection of suitable terrain units (TMUs). These TMUs refer to a surface 

portion of the study area containing a set of ground conditions that differ from adjacent 

units across definable boundaries (e.g. Hansen, 1984, van Westen et al., 1997).  

The mapping of TMUs usually depends on the scale that best represents the phenomena 

studied. From a vast selection of terrain mapping unit categories (e.g. unique condition 

units, slope units, geo-hydrological units and topographic units), this thesis used grid 

cells. Grid cells are preferentially used by GIS models, dividing the study area into regular 

areas (cells) with a predefined size, which then become the mapping units of reference 

(Chung and Fabbri, 1999, Clerici et al., 2002, Remondo et al., 2003). To each grid cell is 

given a value for each predisposing factor taken into consideration (e.g. slope gradient, 

curvatures).  
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Figure 3.7 – Flowchart showing the methodology used to calculate the favourability scores for MTDs 
occurrence offshore Espírito Santo Basin, SE Brazil.  
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Each predisposing factor (independent variable) is computed into a raster file with a 

given cell size. The main conceptual limitation of grid cells is associated with the 

representation of continuous geological and morphological forms in a discrete form, and 

the representation of linear and area features (such as geological boundaries, landslide 

deposits, lithological units) using cells of predefined shape and size (Guzzetti, 2005).  

In this thesis, the independent variables chosen (e.g. elevation, slope gradient, profile 

curvature, planform curvature, flow direction, flow accumulation and slope over area 

ratio) were computed into GIS in a raster format. Due to the size of the study area and 

mapped MTDs, terrain units (pixels) were fixed at 50 m in five of the seven variables. 

The exceptions were the Profile curvature and Planform curvature, which were first 

computed with a pixel size of 250 m and subsequently converted into 50 m pixels for 

modelling together with the other themes.  

 

3.5.2. Predisposing factors: selection and preparation  

Predisposing factors are used as independent variables within the models, as mentioned 

before. Their selection was based on their geomorphologic meaning and on the 

availability of data extracted from the depositional surface. This same surface was 

mapped as a topographic palaeosurface (analogous to DTM), from which the seven 

independent variables were extracted. All of the seven variables were classified into 

classes.   

ArcGIS© software was used to compute all the variables following the tools represented 

in Table 3.1, using as a base variables which are non-classified raster files. The 

computation of the Slope over area ratio was made using the GIS extension TauDEM 5.0 

(developed by Utah State University). As a result, the seven independent variables were 

computed as raster files with 50 m cell sizes and classified into discrete classes for 

further use in statistical models (Table 3.1).  
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Table 3.1 – Seven predisposing factors used as independent variables, ArcGIS tools used in their 
computation and number of classes after reclassifying the variables for use in the models.  

Variable ArcGIS Tools Considered classes 

Elevation (m) ArcTollbox→Spatial Analyst 
Tools→Reclass→Reclassify 

[0-100], ]100-200], ]200-
300], ]300-400], ]400-
500], ]500-600] ]600-700] 

Slope gradient (°)  ArcTollbox→Spatial Analyst 
Tools→Surface→Slope 

[0-1], ]1-2], ]2-3], ]3-4], ]4-5], ]5-
6], ]6-7], ]7-8], > 8 

Profile curvature ArcTollbox→Spatial Analyst 
Tools→Surface→Curvature→
Output profile curve raster. 

Convex, Flat, Concave 

Planform 
curvature 

ArcTollbox→Spatial Analyst 
Tools→Surface→Curvature→
Output plan curve raster 

Concave, Flat, Convex 

Flow direction ArcTollbox→Spatial Analyst 
Tools→Hydrology→Flow 
direction 

E, SE, S, SW, W, NW, N, NE 

Flow 
accumulation 

(Log. Scale) 

ArcTollbox→Spatial Analyst 
Tools→Hydrology→Flow 
accumulation 

[0], [1], ]1-10], ]10-100], ]100-
1000], >1000 

Slope over area 
ratio 

(Log. Scale) 

ArcGIS TAUDEM Extension 

 1. Fill Pits 

2. D. Inf. Flow Direction 

3. D. Ind. Contributing area 

4. Slope over area ratio 

[0], ]0-0.00001], ]0.00001-
0.0001],  

]0.0001-0.001], ]0.001-0.01] 
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3.6. Modelling strategy   

3.6.1. Informative value – Bivariate statistical method 

The Informative Value (IV) is a bivariate statistical method used to weight each class of 

each variable proposed. It describes quantitatively the relationship between each class 

of an independent variable (Xi) and a set of instability events on slopes through 

individual scores obtained by Equation 3.5.  

For each class, within each MTD variable proposed, IV was calculated using the following 

equation (Yin and Yan, 1988): 

 

Equation 3.5 

/
1

/

i i
i

S N
IV n

S N

 
  

   

with:  

Si – Number of pixels with instability events within variable Xi; 

Ni – Number of pixels with variable Xi; 

S – Total number of pixels with instability events; 

N – Total number of pixels of the study area.  

In Equation 3.5 S/N is the a priori probability. It is the probability for each pixel to have 

an MTD without considering predisposing factors. Si/Ni is the conditional probability. It 

is the probability of an instability event to occur given the presence of variable Xi. A 

negative IVi means that the presence of the variable is favourable to slope stability. A 

positive IVi indicates a relevant relationship between the presence of the variable and 

MTDs distribution; the higher the score, the stronger the relationship (Yin and Yan, 

1988). An IVi equal to zero means no clear relationship between the presence of the 

considered variable and the occurrence of MTDs.  

The classes of each independent variable not containing MTDs have a conditioned 

probability of zero. In this case, IVi cannot be obtained considering the log 
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transformation in Equation 3.5, and therefore the IVi was forced to be two decimal 

values lower than the lowest IVi  computed for classes of the corresponding predisposing 

factor.  

The final model is calculated based on the following equation:  

Equation 3.6 

1

n

ji i

i

IVj X IV


  

 

Where: 

 n - Number of variables, 

Xji - either 0 if the variable is not present in the pixel j, or 1 if the variable is present. 

The IV was calculated using three different partitions of the same MTD inventory 

considered in the models such as: 

1. Model 1: includes the total area of MTDs. 

2. Model 2: includes 1/3 of the total length of the mapped MTDs. 

3. Model 3: includes the upper half of the area used in Model 2. 

 

3.6.2. Validation. Success-rate curves   

The performance of the predictive models was assessed through the computation of 

success-rate curves (Fabbri et al., 2002). Success-rates curves are based on the 

comparison between the final model and the spatial distribution of MTDs. They are used 

to weight the predictive variables expressing the goodness of fit of MTDs with the final 

model (Chung and Fabbri, 2003). Success-rate curves were computed by crossing the 

distribution of the set of MTDs used to generate each model (Models 1 to 3) with the 

(predictive) model results.  

The success-rate curves are prepared by plotting the cumulative percentage of the area 

most likely to fail (starting from the highest probability values towards the lowest) on 
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the horizontal (x) axis, and the cumulative percentage of corresponding MTDs area on 

the vertical (y) axis. The steeper the curve the more capable the model is to describe the 

distribution of MTDs in a given study area. The steepness of the curve also depends on 

the instability events distribution in the study area. In a situation when a large portion 

of the area is covered by instability, it is still possible to get steep curves (Chung and 

Fabbri, 1999).  

The favourability values obtained for each pixel were sorted in descending order. 

Additionally, an “Area Under the Curve” (AUC) analysis was computed for each success-

rate curve so one can quantify the performance of each model and compare results for 

the different success-rates. Assuming that the higher the AUC value is, better the model 

(Bi and Bennett, 2003, Blahut et al., 2010, Pereira et al., 2012, Guillard and Zezere, 2012), 

the absolute AUC value is given by:  

 

Equation 3.7 

 
1

1
2

yi yi
AUC xi xi

  
   

 
  

 

where x  gets the percentage of study area predicted as susceptible by descending order 

and y  the percentage of correctly classified landslide area belonging to the validation 

group.  

3.6.3. Sensitivity analysis  

Sensitivity analysis of the variables were performed after the AUC analysis in order to 

understand which combination of factors contribute more to trigger unstable areas on 

the Espírito Santo continental slope.  

Each predisposing factor was crossed autonomously with the MTD inventory set of the 

study area, generating an individual model for each one. Whereby each individual model 

was validated by building a success-rate and respective calculus of AUC for each variable 

of the model (predisposing factor). The results were ordered by growing range to purse 

comparing factors. 
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The ranking mentioned above was taken into consideration throughout the sensitivity 

analysis. The finally sensitivity analysis was computed by adding a systematic way 

through the introduction of a new variable in the model (e.g. M2 = f (V1 + V2); M3 = f (V1 

+ V2 + V3); M4 = f (V1 + V2 + V3 + V4); Mn = f (V1 + V2 + V3 + V4 +…Vn). For each model 

obtained, AUC was calculated so to understand which variable combination obtains 

better predictive capacity (e.g. Guzzetti et al., 2006, Zêzere et al., 2008).
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4.1. Abstract 

The SE Brazil continental margin is dominated by continental-slope embankment, incision of 

submarine channel systems and significant mass-gravitational processes, with salt tectonics 

playing a significant role in upper-crust deformation. The hydrocarbon exploration offshore 

SE Brazil has focused on Early Cretaceous units that were deformed due to Albian-Cenomanian 

gravity gliding above Aptian salt.  

 A three-dimensional (3D) seismic volume from the Espírito Santo Basin (ESB), SE Brazil is here 

used, aiming to provide first 3D seismic images of the raft tectonics in ESB and describe 

tectonic reactivation on the Albian rafts and post-strata overburden. Which is based on: a) 

test the parameters considered to control raft tectonics on a margin tectonically reactivated 

in the Cenozoic; and b) investigate the impact of prolonged halokinesis on raft deformation 

and post-strata overburden. The combined effects of halokinesis and multiple tectonic phases 

are expressed by local collapse, fault reactivation and late segmentation of Albian rafts, 

offshore Espírito Santo Basin.  As a result four main raft geometries of deformation were 

observed: a) rolled-over rafts, b) tabular rafts, c) collapsed rafts, and d) folded and tilted rafts 

on the flanks of salt rollers. This chapter conclusions shows that salt rollers formed buttresses 

to moving Albian rafts, with withdrawal of salt from underneath some of the rafts leading to 

their collapse and welding onto pre-salt strata. This phenomenon is important as it enhanced 

connectivity between pre-salt and post-salt units, and how it shapes the basin in general 

influencing the post-raft overburden, from a sedimentary and stratigraphic point of view. 

Importantly this process occurred, in the studied part of the Espírito Santo Basin, with 

minimum control of post-raft overburden thickness on raft segmentation.  
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4.2. Introduction  

Raft tectonics comprises one of the most extreme deformation styles on salt-influenced 

continental margins (Duval et al., 1992, Demercian, et. al., 1993, Gaullier et al., 1993, Mauduit 

et al., 1997, Penge et al., 1999, Cobbold, et. al., 2001, Alves, 2012, Pilcher et al., 2014). Raft 

tectonics are characterised by downslope translation of large blocks of strata above a ductile 

detachment layer (Gaullier et al., 1993). A key characteristic of raft tectonics is that thin-

skinned stretching in overburden strata reaches beta (β) values of 2-3, with associated 

gravitational gliding contributing to the fragmentation of post-salt units (Duval et al., 1992, 

Gaullier et al., 1993, Mauduit et al., 1997, Vendeville, 2005, Jackson, et al., 2015). The majority 

of published work suggests this fragmentation results from the interaction between gliding 

blocks (rafts), faulting and a thickening overburden. Based largely on the interpretation of 

regional 2D seismic data and the analysis of physical models, published results consider the 

thickness of the post-raft overburden and the slope gradient as the main controlling 

parameters on the degree and style of raft segmentation and downslope movement (Duval et 

al., 1992, Gaullier et al., 1993, Mauduit et al., 1997, Vendeville, 2005, Brun and Mauduit, 

2009). According to these authors, differences in post-raft overburden thickness can maintain 

downslope gliding of rafts even if slope gradient is close to zero, as long as an efficient basal 

décollement is present at depth. The models essentially suggest that increasing rates of syn-

kinematic sedimentation increase downslope displacement of rafts and make listric normal 

faulting more likely (Mauduit et al., 1997). However, the role of salt thickness and tectonic 

reactivation in raft evolution is still poorly understood in basins such as the Espírito Santo 

Basin, in which significant tectonic and igneous events are known to have controlled the 

structural evolution (Fiduk et al., 2004).  

This chapter uses 3D seismic data from Espírito Santo Basin, offshore SE Brazil, to describe and 

discuss the effect of tectonic reactivation and halokinesis on the structure of six Albian rafts 

and overlying post-strata (Figure 4.1a and b). It focuses on a region of offshore SE Brazil where 

a direct relationship between post-raft overburden thickness and raft internal deformation is 

not observed, and concludes on the factors that may have controlled raft evolution in the 

Espírito Santo Basin. Importantly, the study area records multiple episodes of tectonic 

reactivation related to the Andean tectonic phases and Paleogene emplacement of the 



Albian Raft tectonics in Offshore Espírito Santo Basin                                                                                Chapter 4 

79 
 

Abrolhos Volcanic Plateau (Fiduk et al., 2004) (Figure 4.2). The first of these episodes, the Late 

Cretaceous Peruvian phase (Scheuber et al., 1994), had a profound control on fault 

reactivation and local erosion in the study area. The main advantage of this work, when 

compared with work previously done in salt tectonics areas, is that it uses a high-quality 3D 

seismic data volume to describe in great detail the fault families associated with salt structures 

and adjacent rafts. In such a context, fault families and types of raft deformation in a 

sedimentary basin can be identified.  

This chapter describes the main raft geometries, plots overburden thickness, and documents 

the main fault families observed in the study area. It also relates the styles of halokinesis 

imaged on seismic data to the styles of deformation observed within the rafts. The discussion 

attempts to answer three important questions related to raft evolution: 

a) Is the thickness of post-raft overburden the sole controlling factor on raft deformation 

offshore Espírito Santo? 

b) Are growing salt structures capable of imposing renewed compartmentalisation in 

otherwise welded (and stable) rafts? 

c) What is the importance of halokinesis to the charging of Albian rafts in the study area of the 

Espírito Santo Basin and its influence in the post-raft overburden? 
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Figure 4.1 . Structural map indicating the interpreted rafts location and spatial distribution in the Espírito Santo 
Basin. Number 1 to 6 denote the raft structures analysed in this chapter; b) Interpreted West to East seismic 
profile highlighting the style of raft tectonics and geometry of surrounding units for general context. Top and 
base of raft 1 to 3 are observed in the seismic section, while only visible the top horizon is visible for raft 4 to 
6.  
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Figure 4.2 – Seismic profile highlighting the presence of reactivated structures (included local pop-up 
structures) in the study area. Highlighted are also roller fault (RF), rollover faults (RoF) and reactivated faults 
(RvF).  
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4.3. Controls on raft movement and segmentation  

Raft tectonics is the most significant style of deformation accompanying thin-skinned 

extension on continental margins. Raft tectonics can generate regions in the upper crust 

where the overburden stretches by two or three times its original length (Gaullier et al., 1993, 

Duval et al., 1992, Mauduit et al., 1997). When fault blocks at the base of stretched 

overburden units are no longer in contact, they are termed rafts. If they are still partly in 

contact, they are termed pre-rafts (Duval et al., 1992). 

Most published studies used experimental or numerical models to understand the 

mechanisms of raft tectonics (Duval et al., 1992, Gaullier et al., 1993, Mauduit et al., 1997, 

Brun and Fort, 2011). Models were based on various assumptions on the physical processes 

involved in downslope rafting, backed-up by regional (2D) seismic data. Assumptions basic 

take in consideration that the model has its own coherence that could link any input 

combination of the parameters to a specific structural response and the model response to 

variations in the input parameters. Such models were, nonetheless, crucial to understand: (i) 

the mechanical behaviour of raft systems (ii) how modeled systems compare to natural 

examples, in order to test the applicability of physical and mathematical models. Such seismic 

data were crucial to understand the mechanical behavior of raft systems and test the 

applicability of physical and numerical models (Brun and Fort, 2011). 

One of the key parameters mentioned in published models as capable of controlling raft 

displacement is overburden thickness (Mauduit et al., 1997). In their physical models, Mauduit 

et al. (1997) tested how overburden sedimentation rate controlled rafting. The experiment 

resulted in the formation of a wide deformation zone in the lab, with tilted blocks delimited 

by extensional normal faults and rafts. The first structures to develop are symmetric grabens 

and, as sedimentation rate increases, the number of rafts or blocks increases proportionally 

(Figure 4.3). The models of Mauduit et al. (1997) indicate that an increase of the 

sedimentation rate enhances the displacement rate of rafts as a response to increasing 

vertical loading. Vendeville (2005) later showed that regional sediment deposition can trigger 

gravity spreading, in the absence of an oceanward dipping basal slope. As a key example, rafts 

in the Gulf of Mexico record pure spreading driven by sedimentary loading. This setting 

requires a thick sedimentary overburden, high sediment density and low frictional angles of 
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the sediments (Brun and Fort, 2011, Rowan et al., 2012). It will also imply the creation of large 

amounts of lateral space into which overburden units can accumulate during stretching, as 

recorded in the Kwanza Basin (Angola) by Duval et al. (1992).  

Salt as a viscous evaporitic layer has been described as an important factor not only in raft 

formation, but also in raft gliding and subsequent deformation (Brun and Mauduit, 2009, 

Vendeville, 2005). Salt acts as a lubricant layer and forms rollers, pillows and diapirs adjacent 

to individual rafts (Gaullier et al., 1993, Brun and Mauduit, 2009, Alves, 2012). Brun and 

Mauduit (2009) performed laboratory experiments to study the development of growth faults 

during rafting. Where their concave shape results from the connection between a steeply 

dipping normal fault and a flat-lying or gently dipping décollement, a geometry prone to cause 

important tectonic reactivation in adjacent rafts due to the mechanical instability of rollover 

faults (Brun and Mauduit, 2008). In other words, changes in the dip of roller faults at depth 

results in the transfer of horizontal displacement towards the surface through the rolling over 

of strata in the rafts, and in post-raft overburden strata every time roller fault sole out into 

the detachment salt layer and significant lateral movement is recorded in rafts. In support of 

this, Alves (2012) documented significant Late Cretaceous-Early Cenozoic reactivation in raft-

related faults in the Espírito Santo Basin, a phenomenon triggered by regional (Andean) 

tectonics and related slope oversteepening. 

This chapter builds on the ideas of Alves (2012), recognizing that the thickness of post-raft 

overburden units does not vary significantly in the study area, a character suggesting that the 

salt thickness and the evolution of salt rollers are the main controlling factors in their 

compartmentalization and ramping up on the flanks of growing salt rollers. For that reason, 

thin-skinned deformation was named ‘late rafting’, as it occurred in the late Cretaceous after 

the main stage of raft movement in the Espírito Santo Basin. 
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Figure 4.3 – Simplified schematic evolution of raft tectonics during Albian-Santonian period in the study area 
(Duval et al., 1992, Pilcher et al., 2014). In a first stage (1), early rafts are formed together with extensional 
faults. In second stage (2), the post-raft overburden fills the gaps between the rafts. In the last stage (3), the 
tabular rafts remained isolated become progressively welded on the pre-salt strata. Note the erosion at the 
end of this stage (Santonian). The salt accumulated into salt rollers, pillows and rafts growth internally. In the 
last two stages are observed extensional faults into the post-raft overburden that laterally confined the raft 
and/or the salt accumulations. The arrows indicate the slope direction in the Espírito Santo Basin (not to scale).  
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Figure 4.4 – a) Uninterpreted and b) interpreted seismic profile highlighting a phase of widespread movement 
and erosion of rafts at the end of the Cretaceous (Horizons 4 and 5). As with other figures, the seismic profile 
shows roller faults (RF), rollover faults (KF) and reactivated Faults (RvF). In this profile, raft 2 collapsed by 
probable withdrawal of salt from underneath.  
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4.4. Observation and results  

4.4.1. Raft tectonics in the Espírito Santo Basin, offshore Brazil  

The rafts in the Espírito Santo Basin are considered in this chapter as an element of slope 

instability triggering in the sense that they are large blocks gliding down slope due to the tilt 

of the margin and the viscous layer (salt), which are close related to raft tectonics shape and 

morphology. At the present, Aptian salt constitutes the viscous layer which beneath in 

interpreted rafts (Figure 4.4). 

Raft structures are observable in the seismic profiles as a negative seismic reflection marking 

their upper and basal surfaces. Raft bodies are marked by positive and negative seismic 

reflections, forming layers whereby can be understand their internal adaptation to the 

movement downslope. In most of the area, the rafts structures are lateral confined by Aptian 

salt that forms isolated accumulation as rollers, small pods or pillows (e.g. Figure 4.2 and 

Figure 4.4) 

At present, Aptian salt forms isolated accumulations, some of which are observed beneath the 

interpreted rafts in the form of rollers. Above the Aptian salt are observed symmetric and 

asymmetric rafts with distinct structural styles and inferred evolutions (Figure 4.4 and Figure 

4.5). 

A structural map of Horizon 3 (top rafts) illustrates the plan-view geometry of rafts 1 to 6 

(Figure 4.1a and Figure 4.6a). In the northwest part of the study area, the rafts are intensely 

faulted. In east-west profiles, i.e. perpendicular to the strike of rafts, raft 1 is irregular and 

discontinuous, showing important segmentation (Figure 4.6a). In the map in Figure 4.6a, this 

raft is at least 36 km long. For raft 2, two-way travel time (TWTT) raft thickness ranges from 

34 ms to 815 ms along the north-south profile. This corresponds to a thickness of 450 m-1107 

m, using velocity data from Barker et al. (1983).  

In contrast to raft 1, the north-south profile shows raft 2 to be continuous with a well-defined 

branch in its northeast portion (Figure 4.6a). The gap between the main body of the raft 2 and 

this latter branch is occupied by a chasm with a small salt roller Figure 4.5. The TWTT thickness 

of raft 2 varies between 52 ms and 991 ms, i.e. between 702 m and 1340 m. Rafts 3 and 4 are 

geometrically similar without any visible branches developed along their long axes (Figure 4.1a 
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and Figure 4.6a). Raft 4 comprises a north-trending raft with a tabular shape showing distinct 

degrees of bucking and faulting at Cretaceous level (Figure 4.6a).   

Rafts 5 and 6 are the structures less visible on seismic data, with their base not visible in most 

of the study area. Their tops are irregular, with several segments visible on structural data 

(Figure 4.6a). Aptian salt viscous layer is present in the study area beneath rafts 1 to 6, in 

places where salt was already withdraw is present as isolated accumulations (e.g. rollers and 

pillows) beneath and sidewise of the raft structures. In part of the study area (e.g. beneath 

raft 5 and 6) due seismic restrictions is not possible to observe the basal surface of the rafts.   

4.4.2. Evidence for tectonic reactivation and late halokinesis 

 

The Andean tectonic phases were key events controlling the structural evolution of the 

Espírito Santo Basin (Lima, 2003). Tectonic reactivation was chiefly recorded at the end of the 

Cretaceous and in the Eocene, as revealed on seismic data. Figure 4.7 shows a series of 

isochron maps between the Maastrichtian and Santonian unconformities i.e., between the 

stratigraphic unconformities that mark Late Cretaceous and Eocene tectonic episodes in the 

Espírito Santo Basin (Alves, 2012). Of importance are the thickness variations recorded at 

Santonian-top Maastrichtian and Maastrichtian-Eocene levels. Areas recording reactivation 

and local erosion present the lower thickness values in Figure 4.6. Tectonic reactivation on 

seismic data is marked by low-amplitude folding and reactivation of extensional structures 

(Figure 4.2 and Figure 4.4). Erosion of Horizons 5 and 6 accompanied Late Cretaceous and 

continued during Eocene tectonism, and resulted in the deposition of less than 400 ms TWTT 

between the two mapped unconformities (Figure 4.4). 

Reactivated faults occur in the imaged seismic line between rafts 1 and 2, towards the upper 

part of the continental slope. In other regions, pop-up structures intersect Late Cretaceous 

and early Cenozoic strata (Figure 4.2 and Figure 4.4).  

In summary, Late Cretaceous tectonic reactivation on the Espírito Santo continental slope area 

is marked by: a) localised back-thrusting of raft-bounding normal faults, forming local pup-up 

structures b) shortening of Meso-Cenozoic strata to form local pop-up structures (Figure 4.2). 

 



Albian Raft tectonics in Offshore Espírito Santo Basin                                                                                Chapter 4 

88 
 

 

 

 

Figure 4.5 – a) Uninterpreted and b) interpreted seismic profile showing the geometry of collapsed raft (see 
Horizon 3 and 4 for reference). As with other figures, the seismic profile shows roller faults (RF), rollover faults 
(RoF), keystone faults (KF) and reactivated faults (RvF). In this profile, raft 2 collapsed by probable withdrawal 
of salt from underneath.  
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Figure 4.6 – TWTT structure and isochron maps of key horizons in the study area. a) TWTT of the top rafts 
horizon 3, showing the relative location of rafts 1 to 6; b) Isochron map for strata between top rafts (horizon 
3) and base Santonian (horizon 4) and c) Isochron map for strata between horizons 4 and 5 (Santonian to 
Maastrichtian). Note the marked variations in thickness in these last two maps.  
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4.4.3. Thickness variations in the post-raft overburden 

Thickness plots were calculated from seismic data (Figure 4.7). The plots are separated into 

two main packages comprising post-raft sediments: (i) top rafts (Albian to Early Cretaceous) 

to base Santonian (Late Cretaceous) and (ii) top rafts (Albian to Early Cretaceous) to seabed 

(Figure 4.8). Over the northern part of raft 1, overburden thickness is ~700 ms (875 m) from 

top raft to the base Santonian (K82 to K88 sequences); and ~1600 m for the Santonian to the 

seafloor (K90 to N60 sequences) (Figure 4.7a). Trend curves for overburden thickness are 

similar for the two intervals considered: top raft to base Santonian and base Santonian to 

seafloor, and when plotting the curves for the total post-raft overburden (Figure 4.7 and 

Figure 4.8).  

Overburden strata draping rafts 2 and 3 show a similar thickness trend to equivalent strata 

above raft 1, recording ~1250 ms (1562 m) and 2600 ms (2860 m) for the top raft to base 

Santonian, and base Santonian to seafloor intervals (Figure 4.7c). Strikingly, rafts 4 and 5-6 

show marked thickness variations in north-south profiles, but with the thicker overburden 

strata occurring to the north and central parts of the rafts. Raft 6 shows larger thickness in its 

central part (Figure 4.7d). In essence, the thickness of post-raft overburden increases towards 

the south when considering the sequences between Horizon 4 and 5, and decreases for the 

Santonian-Seafloor sequence (Figure 4.7). 
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Figure 4.7 - Thickness of post overburden strata of raft 1 in offshore Espírito Santo Basin (SE Brazil). Data 
acquired N-S direction on the seismic volume. The data and trend lines refers to different intervals: (i) top raft 
to base Santonian (grey line); (ii) base Santonian to seafloor (dashed line in back) and (iii) total overburden 
which includes thickness of post Albian rafts until the seafloor (back). 
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4.4.4. Fault families 

The isochron map in Figure 4.6c between Horizons 4 and 5 (Santonian to top Maastrichtian). 

In addition, the seismic profiles in Figure 4.4, Figure 4.5 and Figure 4.8 highlight the main fault 

families developed above the Aptian salt and in Albian rafts. Figure 4.6c is complemented by 

the TWTT structural maps in Figure 4.9. The maps show the complex sets of faults affecting 

post-salt overburden units near the base of the Santonian and above. The seismic profiles in 

Figure 4.8 show that overburden faults propagated vertically until they reached horizon 4 

(base Santonian) and overlying strata. Fault families in rafts 1 to 6 include: a) roller faults, b) 

rollover faults, c) keystone faults; d) reactivated faults and f) concentric faults. A schematic 

map of these types of faults is shown in Figure 4.10. 

 

4.4.4.1.  Roller Faults 

Roller faults accommodated bulk downslope displacement in rafts. Roller faults dip both 

oceanwards (east) and landwards (west), offsetting strata in rafts 1 to 6 and overlying strata 

above them (Figure 4.5, Figure 4.8, Figure 4.10 and Figure 4.14a). Roller faults sole out into 

the Aptian salt. Triangular salt rollers are observed in the footwalls of roller faults (Figure 4.11). 

Some of the roller faults propagated upward into lower Cenozoic strata, topping out at the 

base of a mass-transport deposit that contains large remnant blocks (Alves, 2012). 

4.4.4.2. Rollover Faults 

Rollover faults comprise closely-spaced antithetic and synthetic faults generated on top of 

monoclinal rollovers and turtle anticlines, themselves formed due to movement on adjacent 

roller faults. Together with keystone faults, rollover faults accommodate some of the bending 

strain related to the downslope displacement of collapse of underlying rafts. They are formed 

due to progressive bending of rollover structures above the Albian rafts (Figure 4.5, Figure 4.8 

and Figure 4.14a). 
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4.4.4.3. Keystone faults 

Keystone faults are pairs of conjugate normal faults that dip in the opposite direction to, and 

accommodate displacement occurring on rollers faults (Figure 4.8 and Figure 4.4b). Keystone 

faults can also manifest as planar growth faults rooted into the crests of triangular salt rollers. 

Throws on keystone faults are small in the regions where they intersect collapsed salt rollers 

(Alves, 2012).  

4.4.4.4. Reactivated faults 

Reactivated faults comprise fault sets initially formed by the arching of overburden units 

above the Albian rafts. They were later reactivated in late Cretaceous anticlines, as shown in 

Figure 4.8. The geometry of inverted roller faults resemble that of keystone faults, but they 

form anticlinal structures towards their top (Figure 4.14d). They are interpreted as rollover, 

keystone faults that were reverse-reactivated.   

4.4.4.5. Concentric faults 

Concentric faults are observed above the depocentres formed by raft tectonics (Alves, 2012) 

(Figure 4.10b). They are developed on the margins of extensional sub-basins, dying out 

downwards the main Cretaceous depocentres, accommodating local strain at the tips of the 

oval-shaped sub-basins formed on the hanging-wall blocks of roller faults.  
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Figure 4.8 – Seismic profile highlighting the principal fault families related to raft movements. The figure shows roller faults (RF), rollover faults (RoF), keystone faults (KF) 
and reactivated faults (RvF). The raft reactivation is observed on the base Santonian unconformity, showing local pop-up and tight anticlinal structures (square dashed 
line). The main horizons considered for thickness plots in the Figure 4.7 are also pointed out: base and top rafts, base Santonian and seafloor. The figure include a line (in 
grey) for horizon reference.  
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Figure 4.9 – Structural maps for key horizons mapped in the study area a) seafloor; b) Eocene unconformity 
(horizon 6); c) top Maastrichtian uniformity (horizon 5); d) intra-Santonian unconformity (horizon 4). Note the 
masked faulting of the mapped horizons.  
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Figure 4.10 – Amplitude map of base Santonian showing the main fault families that intersect Horizon 4 (base 
Santonian); b) interpreted based on the amplitude map highlighting the faults families; c) block diagram 
though segment A-B (Figure 4.10a) highlight the faults families; c) block diagram through segment A-B’ (Figure 
4.10a), with ~5x vertical exaggeration. It shows raft 2, 4 and 5, and the main roller fault adjacent to the raft. 
(Radial fault from Alves (2012).  
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Figure 4.11 – a) Uninterpreted and b) interpreted West to East seismic profile showing gentle internal strata 
growth in raft 2. Note the presence of growth raft strata above the salt roller to the east, and the initiation of 
a triangular-shaped structure above raft 2. The raft is lateral confined by salt structure, salt roller to the east 
and salt pillow to west. 

 

 
 
Figure 4.12 – a) Uninterpreted and b) interpreted West to East seismic profile showing collapsed lateral part 
of raft 2, roller faults and salt welded on the pre-salt units.  
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Figure 4.13 – a) Uninterpreted and b) interpreted West to East seismic profile showing the structural 
deformation in raft 2. Deformation styles include the tilting of flaking strata, ramping up on the salt structures 
and collapse of central part of the raft 2, lateral constrained by extensional faults and welded on the pre-salt 
units. Is highlight the thickness (m) between the i) top raft to base Santonian and ii) base Santonian to seafloor, 
for reference.  
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Figure 4.14 – Seismic profile highlighting the major fault types triggered by the movement of rafts and post-
raft overburden: a) Roller and rollover faults; b) Keystone faults; c) Reactivated faults; d) Rollers, reactivated 
and rollover faults. See Figure 4.1a for location of the seismic profiles.  
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4.4.5. Structural styles documenting raft deformation over Aptian salt 
structures 

4.4.6. Rolling-over and internal strata growth 

 

Rolled-over rafts are those showing important growth of strata adjacent to salt rollers and 

roller faults (Figure 4.12). These rafts are not cross-cut by major faults, and are mostly 

bounded landwards and oceanwards by large roller faults. Rolled-over rafts formed during 

Cretaceous gravitational collapse of the margin, but with most of the extension concentrated 

on the larger roller faults. Turtle-back structures are not developed above these rafts (Figure 

4.4 and Figure 4.8). 

The raft imaged in Figure 4.11 shows important growth of strata in the areas where salt was 

withdrawn from the base of the raft towards adjacent salt pillows. It is also noted the 

increasing angle of basal strata in the raft as the rolling-over of the raft continues in time 

(Figure 4.8).  

 

4.4.7. 'Passive' fragmentation in the form of tabular rafts 

 

Tabular rafts are structures displaced over salt without significant control of roller faults on 

local subsidence (Figure 4.8 and Figure 4.12). Instead, these rafts are interpreted to have 

evolved with large salt rollers separating them from adjacent rafts, and hindering any rolling 

over of strata on their flanks (Figure 4.8 and Figure 4.12). Faults are scarce in their interior 

and, when present, show predominant normal offsets resulting from salt withdrawal at flanks 

of the rafts. Turtle anticlines can form in younger overburden units in response to folding of 

latest Cretaceous-early Tertiary strata (Figure 4.15). 

Raft 2 is also an example of a tabular raft in the study area of Espírito Santo presented in Figure 

4.15. Tabular rafts show no significant growth of strata in their interior, suggesting they were 

'passively' translated and fragmented on the continental slope. In the study area, most of the 

tabular rafts seem to be partly welded on pre-salt successions and are bounded by small to 

moderate size salt rollers that did not deformed their flanks (Figure 4.15). 
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4.4.8. Collapse and folding of rafts' flanks due to salt withdrawal 

 

Collapsed blocks are observed in flanking strata to sub-tabular rafts, always in association with 

withdrawal of salt from evolving salt rollers Figure 4.13. Resulting fault styles include normal 

faults showing no growth at the level of the Albian rafts, but showing growth and erosional 

truncation at Late Cretaceous level (Figure 4.13). This character suggests the faults post-date 

the deposition of Albian-Cenomanian strata draping the interpreted rafts. As a result of the 

withdrawal of salt from salt rollers, most of these collapsed blocks are, at present, welded 

onto pre-salt successions (Figure 4.13).  

Rafts are usually folded in the immediate footwall of the larger roller faults (Figure 4.13). They 

reflect later growth of roller faults and associated growth of salt rollers on the flanks of 

relatively stable rafts. Roller faults show predominant normal offsets and, in some parts of the 

study area, were reactivated to form pop-up structures expressed in Upper Cretaceous strata. 

The withdrawal of salt from underneath of the raft 2, and subsequent growth of the salt pillow 

to the west, resulted in the collapse of the flank of the imaged rafts (Figure 4.13). This 

structural style is more obvious to the north of the study area, where rafts 1 to 6 are close 

together and segmented in smaller rafts. Local collapse structures accompany the tilting and 

fragmentation of rafts on the flanks of salt rollers that grew, or where shortened, during the 

Late Cretaceous and Cenozoic. 
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Figure 4.15 – Profile North-South above raft 2. It is showing the elongated body of raft 2. The figure highlights any interpreted horizons together with main sedimentary 
and structural bodies in the study area. Dashed line (in grey) included for reference.
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4.4.9. Tilting and fragmentation of rafts on the flanks of growing salt 
rollers 

 

The most striking example of late reactivation in rafts comes from the array of faults and rafts 

formed and tilted on the flanks of growing salt rollers. An example of one of such structures is 

shown in Figure 4.13, in which the oceanwards half of raft 2 is fragmented collapsed and tilted 

on the flank of the salt roller separating raft 2 into two parts. Normal faults related to the 

collapse of rafts over withdrawn Aptian salt are observed in Figure 4.5 and Figure 4.13. Faults 

show predominant normal offsets resulting from extension and salt withdrawal, but do not 

extend up into Upper Cretaceous strata i.e., they were chiefly generated by short-lived 

collapse of rafts during the Late Cretaceous. As a result of collapse, complex sets of conjugate 

normal faults are often observed in Upper Cretaceous rollovers, as structures formed to 

accommodate the collapse of underlying rafts (Figure 4.13). 

The imaged raft was tilted and fragmented on the flank of a growing salt roller, which shows 

evidence for Late Cretaceous reactivation. Part of this fragmentation results from withdrawal 

of salt from the base of the rafts to inflate the adjacent salt pillow, thus resulting in complex 

structural compartmentalisation of intra-raft strata. 
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4.5. Discussion 

Fiduk et al. (2004) assumed tectonic contraction in post-salt units began early in the Albian 

and continued until the present day. Rafting ceased at different times depending on the initial 

thickness of the salt available and overburden thickness. Based on these two principles, we 

discuss in this section: (i) the different styles of deformation observed on the rafts and (ii) 

reactivation of faults as a function of salt roller growth.  

4.5.1. Why is there a poor correlation between basal slope angle, 
overburden thickness and the degree of raft deformation? 

 

The key question posed by this work is why there is a poor correlation between slope angle, 

overburden thickness and the degree of raft deformation in the Espírito Santo Basin? Based 

on the evidence of moderate, but widespread tectonic reactivation of the continental slope 

during the Late Cretaceous and Eocene, a plausible explanation should consider important raft 

movement in Espírito Santo after the Santonian. An example of late-stage raft tectonics, in 

which the reactivation of salt rollers is a key control on rafts’ structural deformation, is 

provided by raft 2 (Figure 4.8 and Figure 4.9). Ramped-up strata on the flanks of a salt roller, 

with associated uplift and erosion of the Late Cretaceous Horizon 4 demonstrates a later stage 

of deformation in the study area (Figure 4.4 and Figure 4.5). This geometry was interpreted as 

reflecting late evacuation of evaporites from upper-slope regions of the Espírito Santo Basin 

to the base of the continental slope. Downslope salt flow resulted in the collapse of minor salt 

pillows below individual rafts, in the growth of the larger salt rollers, and in the progressive 

welding of rafts 1 to 6 onto pre-salt units. Most of this collapse occurred in the Late 

Cretaceous, as shown by the collapse faults developed above Horizon 4. 

The history of gravity-gliding extension of the Albian rafts and the relationship with Aptian salt 

layer are summarized in Figure 4.16. At the scale of the interpreted 3D seismic volume, we 

observe that syn-kinematic sediment thickness is relatively constant, a character suggesting 

that vertical loading imposed by overburden strata was not the key factor controlling raft 

movement and deformation in the study area. Instead, lateral spreading and downslope 

gliding of the rafts was likely controlled by the presence of intra-raft salt structures – which 
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closely controlled the degree of downslope movement and faulting experienced by rafts 1 to 

6 (Figure 4.11 and Figure 4.16). 

Based on the interpreted data, is suggest that ‘late’ compartmentalisation of rafts offshore 

Espírito Santo is an important phenomenon, with overburden thickness playing only a minor 

role. In this work is demonstrate that salt rollers and the relative thickness of salt underneath 

individual rafts are the main factors controlling raft movement. In regions where raft 

movement was overprinted by the growth of salt rollers, rafts are highly segmented by 

reactivated faults (Figure 4.4, Figure 4.5 and Figure 4.16). In regions where smaller volumes of 

salt were available below the rafts and ramping-up over growing salt rollers was hindered, 

rafts were static throughout most of their late evolution and structural compartmentalisation 

was accordingly moderate. 

A second question that arises when interpreting the seismic data in this paper is why are 

structural collapse, tilting and local deformation so prominent in raft 2? One possible answer 

to this question assumes that extension-related faulting was predominant in the study area, 

and that no major reactivation occurred in response to the Andean tectonic stages. A second 

potential explanation is that tectonic reactivation was significant, and that a later stage of 

roller growth and salt withdrawal may have occurred, even if in a predominantly extensional 

regime. 

Locally reactivated faults and associated pop-up structures indicate that a late stage of 

horizontal shortening affected the study area, particularly during the latest Cretaceous and 

Palaeogene (e.g. Alves, 2012) (Figure 4.8 and Figure 4.16). These structures were previously 

interpreted as partly accommodating strain across the hinge of extensional rollovers. It was 

interpreted as reflecting a later stage of gravitational gliding in the study area, in which Late 

Cretaceous strata (K82-K88) were compressed against Aptian rafts (and overburden strata) 

due to the change from vertical subsidence, recorded on the upper part of roller faults, to sub-

horizontal strain in the regions where roller faults sole into the Aptian salt (Alves, 2012).  

Deformation in raft 2 is interpreted as a result from the combination of factors described 

above, but the surprising result in our analysis is that the thickness of the sediments 

overburden is not a key factor in the onset of late raft deformation. Instead, it is suggested 

that deformation in raft 2 resulted from a combination of factors, including slope 
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oversteepening and resulting stresses imposed by a gravitationally unstable, downslope-

moving overburden sequence against rafts 1 to 6. In this model, the evacuation of salt from 

beneath the rafts, and their eventual grounding, was an important process controlling the 

degree of deformation in Albian-Cenomanian rafts. Rafts overlying thin salt successions were 

quickly grounded, and faults mostly occur within Late Cretaceous-Early Cenozoic overburden 

strata (Figure 4.4 and Figure 4.5). Rafts with significant thickness of salt underneath record 

important collapse, with salt withdrawal contributing to the growth of adjacent salt rollers. 

The combined effect of salt roller growth and horizontal shortening of these same salt 

structures (contributing to an increase in the angle of rollers’ flanks) acted together to further 

tilt and deform Albian-Cenomanian strata (Figure 4.16). As a conclusion, is observed in the 

study area styles of raft compartmentalisation distinct to those published in the literature, 

with the thickness of overburden units and slope oversteepening being locally replaced, as 

primary factors in raft compartmentalisation, by the thickness of available salt below and 

adjacent to fully developed rafts. The Figure 4.16 shows the advances in raft tectonics 

knowledge after Alves (2012), where is proposed as first stage (Albian to Post-Albian) 

highlighting a stage of pre-raft structures. The salt withdraw and consequent salt weld, raft 

deformation and compartmentalisation of Albian raft are also proposed as a tectonics and 

structural evolution of the salt tectonics areas in the Espírito Santo Basin.  

4.5.2. Importance of collapse features to the generation of salt welds 

 

Salt welds are formed at the base of post-salt strata by the complete evacuation of salt from 

below these strata (Jackson and Cramez, 1989; Rowan et al., 1999). A consequence of welding 

of post-salt strata onto pre-salt units is the establishment of fluid conduits between 

stratigraphic intervals that, otherwise, would be hydrodynamically separated (Rowan, 2014). 

A key observation from the interpreted seismic data is the generation of salt welds in regions 

recording collapse and tilting of strata on the flanks of salt rollers (Figure 4.16). In these cases, 

the timing in which the salt was withdrawn from the base of the rafts, and a full weld was 

formed, is an important piece of information when assessing the degree and timing of 

connectivity between pre-salt and post-salt units. An example of these salt welds in shown in 

(Figure 4.12 and Figure 4.15), in which only a small part of the raft is in contact with pre-salt 
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strata (salt weld). It is assuming that most of this welding occurred relatively late in the Espírito 

Santo Basin, allowing the migration of fluids from pre-salt source intervals into rafts and 

Cretaceous reservoirs only after welds were present below individual rafts. This is an 

important observation, and one that confirms that palaeoreconstructions of raft movement, 

and fluid migration, are key to explaining discrepancies in the charging of post-salt reservoirs 

on continental margins dominated by gravitational collapse. Still to explain is the importance 

of deeper (raft-related) structures in controlling slope depositional systems in the post-

overburden strata and the deformation of near-seafloor strata.  
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Figure 4.16 – Conceptual schematic evolution of rafts in the study area, highlighting the effect of salt pillow 
growth on structural compartmentalisation of Albian (and younger) strata in the Espírito Santo Basin. Fault 
systems in the figure are associated with different styles of raft deformation, as described in this chapter. After 
Alves (2012).  
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4.6. Conclusions 

This chapter shows that the most developed styles of faulting and raft deformation occur 

where salt was withdrawn from the base of rafts in the Late Cretaceous/Early Cenozoic. This 

withdrawal likely resulted from tectonic imbalance between overburden loading and slope 

gradient imposed by the Andean tectonic phases affecting SE Brazil. 

The most important conclusion from the observations are summarised as follows:  

- Identification of different styles of raft deformation:  

i) Rolling-over and internal strata growth in rafts that were displaced in the Albian-

Cenomanian;  

ii) Fragmentation in the form of sub-tabular rafts whenever they were 'passively' 

translated on the continental slope; 

 iii) Collapse of rafts' flanks due to salt withdrawal from beneath them; - Tilting and 

fragmentation of raft on the flanks of growing salt rollers; 

iv) Tilting and fragmentation of raft on the flanks of growing salt rollers. 

- By the above documented raft deformation is assumed their contribution to a large degree 

of faulting which is documented in this chapter which affects the post-raft overburden. 

- The faults resulting from the adaptation of raft tectonics deformation and salt withdraw is 

influencing the post-raft stratigraphic units and consequently affect the slope instability in the 

area. Not only around diapirs (Omosanya and Alves, 2013), but also in areas where is not direct 

affected by salt structures but by stratigraphic accommodation. 
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5.1. Abstract 

Mass-transport deposits form a significant part of the stratigraphic record of ancient and 

modern deep-water basins worldwide. Three-dimensional (3D) seismic data is used in 

this chapter to analyse two different types of buried mass-transport deposits offshore 

Espírito Santo Basin (SE Brazil). Both types are developed within Early Miocene to 

Holocene stratigraphic units composed of sandstones, calcarenites, turbidite sands and 

marls. The high resolution images provided by the interpreted 3D seismic data allowed 

a detailed analysis of the seismic stratigraphy and internal structure of mass-transport 

deposits. In addition, improvements in visualisation techniques were used to compute 

simple morphometric attributes of buried mass-transport deposits in continental slopes.  

This study classifies the interpreted mass-transport deposits in two different types 

according to the relationship between the morphology of mass-transport deposits and 

the surrounding topography. Locally confined mass-transport deposits are laterally 

constrained by non-deformed strata that surround the mass-transport deposit and by 

the local topography of the depositional surface. Their dimensions are relatively small 

(area of ~5.251 km2). Unconfined mass-transport deposits show a much larger volume 

compared to the previously type (~87.180 km3), and local topography does not have 

control on their geometry. The analysis in this chapter proves that local topography and 

geometry of the depositional surface are key controlling factors on the spatial 

distribution and dimensions of the two types of mass-transport deposits. However, the 

two types differ in size, geomorphological expression, local structural controls and run-

out distance. 

This work is important because it relates variations in the character of the depositional 

surface with the morphology of mass-transport deposits and run-out distance. As a 

result of the methodology used, two different styles of mass-transport run-out are 

identified and local factors controlling their morphology are addressed, such as 

roughness and local morphology of the depositional surface. Separating these two 

styles, or types, of mass-transport deposits it is of critical importance to understand their 

mechanisms of gliding, downslope spreading and emplacement. Furthermore, the 
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results from this chapter are an important scientific contribution, because the effect of 

local topography beneath mass-transport deposits are not been fully addressed in the 

literature.  

5.2. Introduction  

Mass-wasting is one of the most important processes shaping and filling offshore 

sedimentary basins (McAdoo et al., 2000, Locat and Lee, 2002, Gee et al., 2005, Gee and 

Gawthorpe, 2006, Masson et al., 2006, Moscardelli and Wood, 2008). Mass-transport 

deposits (MTDs) comprise 10% - 30% of continental slope strata in all latitudes (Talling 

et al., 2007), and occur on both tectonically 'passive' and 'active' margins (Urgeles et al., 

1999, Garziglia et al., 2008, Bull et al., 2009, Scholz et al., 2012). While their kinematic 

indicators and seismic expression have been comprehensively documented 

worldwide(Frey-Martínez et al., 2006, Moscardelli and Wood, 2008, Bull et al., 2009, 

Alves, 2010, Dalla Valle et al., 2013, Omosanya and Alves, 2013b, Gong et al., 2014, 

Harishidayat et al.), new techniques and tools have improved the way their internal 

character and distribution on continental margins is documented in the literature (e.g. 

Mienert et al., 2003, Micallef et al., 2007, Camerlenghi et al., 2010, Micallef, 2011, 

Moscardelli and Wood, 2015, Harishidayat et al., 2015). For instance, the continental 

slope of Espírito Santo (SE Brazil) has recently been the focus of several studies which 

contributed largely to the understanding of the mentioned sedimentary deposits 

(Gamboa et al., 2010, Alves, 2010, Omosanya and Alves, 2013a, Omosanya and Alves, 

2013b, Omosanya, 2014). Frey-Martínez et al. (2006) identified two different types of 

submarine landslides, which were classified according to their frontal geometry: a) 

frontally confined and b) frontally emergent.  A few years later, Bull et al. (2009) “defined 

kinematic indicators as geological structures or features recording the type and direction 

of motion at the time of landslide emplacement”, contributing greatly to the 

understanding of the initiation, dynamic evolution and cessation of continental slope 

failure. The work of Bull et al. (2009) confirms the processes and mechanisms pointed 

out in Frey-Martinez (2006). Nevertheless, the relationship between mass-movement(s) 

morphology and the characteristics of the surface over which the mass movements 
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occur is still unclear. The published literature commonly focuses on describing the 

geomorphology of the movements per se (e.g. Moscardelli et al., 2006, Posamentier et 

al., 2011, Gong et al., 2014, Alfaro and Holz, 2014, Rovere et al., 2014), but the local 

topography under the movements is seldom investigated as a key factor controlling the 

morphology and internal character of mass-transport deposits.   

This chapter aims to document how the local topography of the depositional surface 

and the surrounding (unaffected) stratigraphy controlled the shape and the run-out of 

a set of mass-transport deposits (MTDs) interpreted in SE Brazil (Espírito Santo Basin). 

This is achieved by considering the run-out area to comprise the distance from the 

source area of the slope movement to the distal toe of its depositional area (McAdoo et 

al., 2000, Dai et al., 2002). In order to better understand the behaviour of MTDs, one 

should predict their run-out behaviour, namely how far they can travel once mobilised, 

and the factors controlling their resulting morphology. In general, run-out behaviour 

depends on a set of quantitative and qualitative parameters (e.g. slope characteristics, 

downhill path, residual strength behaviour of sheared zones, mechanisms of failure and 

types of movement)  that control the MTDs spatial distribution and ultimately define the 

type of mass movement(s) on a continental slope (Dai et al., 2002). The understanding 

of the factors controlling run-out behaviour depends on the adequate interpretation of 

topographic factors affecting MTDs` transport and deposition. Dai et al. (2002) pointed 

out the relevant parameters that need to be taken into consideration when studying 

run-out behaviour. They include slope characteristics, the mechanisms of failure and 

modes of mass movement, the downhill path and residual strength behaviour of basal 

sheared zones (Dai et al., 2002). Part of the parameters are depending of slope 

roughness, which in geomorphometric point of view is described as an expression of the 

variability of a topographic surface elevation at a given scale. Where the scale of analysis 

is determined by the size of the forms or geomorphic features of interest, either local or 

regional scale (Grohmann et al., 2009). 

This work intends to study two main types of MTDs observed in offshore Espírito Santo 

Basin (SE, Brazil). The two MTD types match the classification in Frey-Martínez et al. 

(2006) and Bull et al. (2009). The main contribution of this chapter is to provide an 
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understanding of the relationship between the MTDs described and the topography on 

which these MTDs were triggered and later deposited. The interaction between MTDs 

and surrounding (non-deformed) slope strata is also discussed in this chapter. This 

analysis has been undertaken thought the use of high-quality 3D seismic data integrated 

into Geographic Information Systems (GIS). Hence, this chapter aims: 

(i) To describe two types of MTDs based on their stratigraphic architecture and 

geomorphological characteristics; 

(ii) To characterize the depositional surface of the MTDs based on their local topography 

features; 

(iii) To understand how changes in the geometry of the depositional surface control 

MTDs internal character and dimensions. 

iv) To relate MTDs' transport distance and local depositional surface topography.  

This chapter starts with a description of the internal character, seismic geometry of 

lateral contacts, thickness and geometries of basal and upper surfaces of the interpreted 

MTDs. It is followed by the morphological description of the depositional surface where 

the MTDs occurred. Detailed topographic profiles and maps highlight possible 

topographic barriers at the base of MTDs. The discussion establishes the main 

differences between the two types of MTDs and addresses depositional surface 

morphology as a plausible controlling factor for their differences in geometry and 

internal character.  
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5.3. Depositional surface – definition and characteristics  

In this chapter is introduced the concept adopted in this thesis as depositional surface, 

which is important in this chapter and further analyses in the next chapter.  

As depositional surface is defined the high-amplitude seismic reflection (negative, in this 

case) which reflect the boundary (superior or inferior) of a stratigraphic unit, or bed for 

an accumulated sediment package. It can represent the lower boundary of a 

stratigraphic package, but at the same time, making the upper limit of another and older 

stratigraphic unit (Figure 5.1a).  

In this thesis, the high amplitude seismic reflection mapped as a depositional surface 

marks the boundary between the Early and upper Miocene strata (17 – 18 Ma; Horizon 

7), which covers an area of approximately 756 km2. As it is mentioned in methodological 

chapter, depositional surface was acquired by mapping a horizon across the entire study 

area (Figure 5.1), taking extremely care to follow along the entire area the same seismic 

reflection using Inline and crossline mapping during the interpretation process (chapter 

3). The process of mapping a horizon reflection was hampered by physical process, as 

erosion or cementation, that may been affected the reflections along the entire area.  

Depositional surface used in this analysis represents the base of emplacement for the 

identified MTDs which materialise the palaeo-topography behind MTDs occurrence. In 

this sense, the depositional surface is used in this work as a Digital Terrain Model (DTM) 

representing the topography of a palaeo-slope behind where the considered unstable 

events occurred. Despite the movements occurred just above the depositional surface, 

the surface itself was not affected by the downslope movement, during the event of 

instability. The mapping followed a horizon that did not show any disturbance by the 

downslope slope movements (Figure 3.6). 

In turn, the basal shear surface is defined as the lower boundary of the deformed and 

chaotic of the MTD body, formed in its translation zone above relatively undeform slope 

strata. In general, basal shear surfaces are concordant with the slope where MTDs are 

emplacement (Figure 5.2), which partly of it is also concordant with the depositional 
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surface, except in the headwall domain (or in some examples, scarps) and in the toe 

domain (Figure 5.2), where basal shear surface cut up-section and in areas where MTDs 

encountered basal ramps (Frey Martinez, et al 2005). 

The depositional surface works in this thesis as a topographic layer (DTM) and is used to 

compute the predisposing factors for slope instability modelling presented in the 

chapter 6. The slope morphology observed on the depositional surface is characterised 

by low slope gradients, which range from 0 to 8° in the steeper areas, making it a very 

gentle slope of the continental margin. The morphology is marked by a salt diapir in the 

north, sediment ridges and gentle depressions (Figure 5.3).  

5.4. Chapter specific methodology  

The interpretation of MTDs follows previously established criteria to describe packages 

of remobilised material and corresponding kinematic indicators (e.g. Hampton et al., 

1996, Frey-Martínez et al., 2006, Moscardelli and Wood, 2008, Bull et al., 2009, Gamboa 

et al., 2010, Omosanya and Alves, 2013a). The upper surface of an MTD is usually a 

ridged and rugged surface located right above chaotic to moderate seismic reflections 

of different amplitude. Internal reflections within MTDs are characterised by chaotic to 

imbricated blocks of distinct amplitude (e.g. Frey-Martínez et al., 2006). The basal 

surface is identified as coinciding with the first lateral continuous reflection below MTD 

strata. The top of the MTDs is marked by a continuous positive reflection covering the 

chaotic strata (Frey-Martínez et al., 2006).  

In this study, the MTDs mapped and considered along this thesis are a specific 

population which are emplaced exactly on the depositional surface and the entire MTD 

body was observed. During the mapping process were observed others unstable events, 

nevertheless the mass movements in this analysis needed to fill some criteria as, i) the 

entire MTD body was within the seismic data and possible to map is entire body, plus ii) 

the MTDs needed to be emplaced exactly in the depositional surface. The two typologies 

presented in this chapter are representative of most the mass movements is the study 

are and documented in the literature (e.g. Omosanya and Alves, 2013a, Omosanya and 



Palaeogeomorphological controls on Mass-Transport Deposits                                          Chapter 5 

118 
 

Alves, 2014) The interpretative methods used in this chapter are described in chapter 3 

and consist mainly of seismic mapping and computation of seismic attributes. The 

depositional surface was integrated into a GIS environment and used to compute the 

bulk of the morphometric analyses presented in this chapter.   

 

Figure 5.1 - a) Seismic profile highlighting the high amplitude reflector mapped as representing the 
Depositional Surface and b) 3D view of the Depositional surface with a selected inline and crossline, for 
context.   
 

 

 
Figure 5.2 - Schematic illustration highlighting what is considered in this chapter to be the Basal shear 
and Depositional surfaces.  The figure represents a submarine landslide and its main geomorphological 
members. Modified from Frey-Martínez et al. (2006). 
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5.5. Seismic stratigraphic framework 

The two studied examples of MTDs are located within stratigraphic sequences N20 to 

N60 (Early Miocene to Holocene – see chapter 2). These sequences comprise sandstones 

in the Rio Doce Formation, calcarenites in the Caravelas member, and turbidite sands 

and marls in the Urucutura Formation (França et al., 2007) (chapter 2). The internal 

character and geometry of MTDs are characterized by chaotic to continuous reflections 

within seismic intervals that are continuous and of high amplitude, which likely 

represent interbedded turbidites (Gamboa, 2011). The unconformity used as a 

depositional surface which makes the bedding for the two MTDs correspond to Horizon 

7 (Figure 2.2). This high-amplitude continuous reflection corresponds to the base of 

Holocene strata in the study area, and is located at a depth of 1700 to 2400 m below the 

seafloor (Figure 2.1).  
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Figure 5.3 – Three-dimensional perspective of the depositional surface. 
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5.6. Results 

This section focuses on the analysis of two different MTDs (MTD A and MTD B) within 

the same stratigraphic unit in the Espírito Santo Basin (SE Brazil). First, the section 

presents a description of the two MTD types such as size, kinematic features and seismic 

internal characters. Later in the section, the local topography beneath the MTDs is 

characterised in detail.   

5.6.1. Locally confined – MTD A 

MTD A covers an area of approximately 5.251 km2, presenting a maximum width of 

1.386 km and a maximum length of 5.915 km. Its total volume approaches 0.128 km3 

(Figure 5.4). MTD A shows a rupture zone marked by a headwall scarp that is marked by 

a change in seismic character, from continuous strata on the headwall to folded, high-

amplitude seismic reflections in the MTD (Figure 5.5). Internal reflections within MTD A 

are mainly sub-parallel, showing imbricated reflections at places. Generally, imbricated 

reflections verge to the SE and are tilted at ~ 45° (Figure 5.6). The toe domain records 

an abrupt change from disturbed seismic reflections within MTD A to continuous strata 

(Figure 5.5). Lateral margins in Figure 5.6 are also marked by an abrupt change in seismic 

facies, from continuous to chaotic, with these latter corresponding to the remobilised 

mass. The geometry of MTD A denotes a laterally confined mass-transport body. The 

west margin exhibits a positive topography within remobilised strata. The high variance 

coefficients in Figure 5.7 mark the lateral margins, headwall scarp and toe domains of 

MTD A. In both figures (Figure 5.7a and b) the high variance from the remobilised MTD 

body contrasts with the low-variance character of undeformed strata surrounding it. 

The headwall scarp and lateral margins in MTD A show significant changes in variance 

coefficient when compared to the main body of the MTD (Figure 5.7). The basal shear 

surface can be traced with confidence throughout the study area (Figure 5.5 and Figure 

5.6). It is characterised by a seismic positive reflection that is affected by the displaced 

MTD. In some areas of the MTD the basal shear surface is continuous and uniform, 

whereas in others is clearly eroded and shows prominent grooves. The basal shear 
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surface is often continuous and concordant to the depositional surface (bedding) (Figure 

5.5. and Figure 5.6). 

 

 
Figure 5.4 – Basal surface of the Confined MTD A. The figure highlights the shape and elevation in time. 
The location of seismic profiles referred to in the chapter is also highlighted in the figure.  

 

 
Figure 5.5 - Longitudinal seismic profile through MTD A. a) upper part crossing the headwall scarp (see 
Figure 5.4 for location). The headwall scarp forms a steeply dipping boundary between undisturbed and 
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disturbed seismic reflections. b) Seismic profile providing another perspective of MTD A (see Figure 5.4 
for location). This figure highlights the eastern margin of MTD A, and shows an abrupt change from 
disturbed to undisturbed material. The basal shear surface corresponds to the depositional surface. 
Vertical Exaggeration = 2.5x. 

 
 
 
 

 
Figure 5.6 – a) Uninterpreted and b) interpreted west-east seismic profile of the Confined MTD A (see 
Figure 5.4 for location). The western margin of MTD A is shown as the boundary between chaotic 
seismic facies in the MTD and continuous reflections in undeformed slope strata. The eastern margin is 
also shown as an abrupt boundary between chaotic seismic facies in MTD A and continuous slope strata. 
Vertical Exaggeration = 2.5x. 
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Figure 5.7 - a) Variance time-slice above the basal surface of MTD A (Z=-2328). The figure illustrates the 
variance character of the headwall scarp and rupture zone in contrast to the highly deformed MTD. b) 
Variance time-slice above the basal surface of MTD A (Z=-2360) illustrating the variance character of 
the main MTD body and its toe domain. Note the high variance coefficients associated with remobilised 
strata in MTD A.   
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5.6.1.1. Thickness and morphological variations in MTD A 

The thickness of MTD A varies between 0 to 60 m, its thinner part is located on its lateral 

margins, whereas the thicker regions are located at the toe domain (Figure 5.8). The 

remainder of MTD A shows a thickness ranging between 15 and 25 m (Figure 5.8), with 

a maximum thickness (60 m) recorded at the toe. Topographic profiles in Figure 5.9 

represent the basal and upper surfaces of MTD A across the area marked in Figure 5.8 

(black line). The profile of the basal surface of MTD A is mostly continuous and 

concordant to the Depositional surface (Figure 5.10), showing a topographic concavity 

in the toe domain - which represents the accumulation zone of the MTD. The upper 

surface essentially follows topographic variations in the basal surface but, in contrast to 

this latter, shows a positive topographic convexity at the toe domain (Figure 5.9).  The 

mass accumulated at the toe domain is buttressed against undisturbed strata that are 

the stratigraphic equivalent to the MTD mass, forming a frontal ramp (Figure 5.10).  

5.6.2. Unconfined MTD B 

The unconfined MTD B is much larger than MTD A and covers an area of ~87.180 km2 

(Figure 5.11). Its maximum width reaches 8.5 km with a maximum length of 18 km 

(Figure 5.11). The estimated volume of remobilised material approaches 3.163 km3. 

MTD B forms an elongated body that is marked by a smooth headwall scarp and smooth 

lateral margins changing gradually to disturbed strata (Figure 5.12,Figure 5.13, Figure 

5.14 and Figure 5.15). Despite being marked by this gentle transition, the rupture zone 

is clearly marked by the headwall scarp on variance data. The headwall scarp is clearly 

marked as a feature of high variance coefficients showing a characteristic ‘crown’ shape 

(Figure 5.16). Internal seismic reflections within MTD B vary from chaotic to patches of 

imbricated, sub-parallel and continuous reflections. Relatively continuous seismic 

reflections within MTD B are often associated with local  
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Figure 5.8 – Thickness map of the Confined MTD A, in meters.  The thickness of MTD A increases 
significantly towards the toe domain where the mass is accumulated against continuous seismic 
reflections. Black line shows the location of the upper and basal profiles in Figure 5.9.  

 

 

 
Figure 5.9 – Topographic profile illustrating the upper and basal shear surfaces of MTD A. The space 
between the two surfaces represents the thickness of remobilized sediment along the MTD body. Note 
that the thickest area in MTD A occurs in its toe domain. No vertical exaggeration.  
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Figure 5.10 – Seismic profile through the topographic profile of MTD A shown in Figure 1.8. The headwall scarp forms an abrupt transition between undisturbed and 
disturbed seismic reflections. The toe domain shows accumulations and a clear basal ramp. MTD A was translated through a relatively short distance. Seismic reflections 
at the toe domain are folded and disrupted, suggesting ramping-up of the glided mass.   
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Figure 5.11 – Basal surface of unconfined MTD B, shown in two-way time. Note the location of seismic 
profiles referred to in the text.  
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Figure 5.12 – Uninterpreted and b) interpreted W-E seismic profile of unconfined MTD B. The lateral 
margins of the MTD are shown as smooth transitions from the main MTD body and undeformed strata 
See Figure 5.11 for location. Vertical Exaggeration = 2.5. 

 

 

 
 
Figure 5.13 - Seismic profile of unconfined MTD B at its toe domain. Seismic reflections are folded and 
disrupted in the figure. See Figure 5.11 for location. Vertical Exaggeration = 2.5. 
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Figure 5.14 – Interpreted seismic profile showing part of unconfined MTD B. The figure highlights the presence of fault sets at depth and their inferred influence on the 
Depositional surface and basal shear surface of MTD B.  The dashed rectangle highlights the presence of a basal ramp in MTD B that generated considerable topography. 
See Figure 5.11 for location. Vertical Exaggeration = 2.5.   
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Figure 5.15 – Interpreted N-S seismic profile highlighting a portion of the lateral margin of MTD B. In 
this particular example, the position of the lateral margin is coincident with underlying fault. See Figure 
5.11 for location. Vertical Exaggeration = 2.5. 
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Figure 5.16 - a) Variance time-slice above the basal surface (Z=-2556) of MTD B. The figure illustrates the variance character of the headwall scarp of MTD B. b) Variance 
time-slice of the basal surface of MTD B (Z=-2684) illustrating the seismic character of the main MTD body and toe domain. Once again, note the larger variance values 
that are associated with the deformed body.   
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thrusts (Figure 5.12). The toe domain shows a marked tongue shape, which changes 

downslope into a very smooth transition between MTD B and confining strata. Seismic 

reflections in this area are chiefly undulated and continuous, rather than chaotic (Figure 5.13). 

The upper surface of MTD B is a positive high reflection overlying chaotic reflections in the 

main body. Some areas are interrupted by low amplitude folds and erosional surfaces (Figure 

5.12, Figure 5.14 and Figure 5.15). The basal shear surface is traceable with a high degree of 

confidence but exhibits lateral variations in seismic amplitude and geometry separating the 

chaotic MTD body from the depositional surface (Figure 5.12, Figure 5.14 and Figure 5.15). 

Local ramps at the basal shear surface generated internal deformation in MTD B. Figure 5.16 

shows changes in variance within MTDs that mark the range of remobilised material vs. non-

remobilised strata. 

5.6.2.1. Thickness and morphological variations in MTD B 

The thickness of unconfined MTD B ranges from 0 to 70 m (Figure 5.17). The minimum 

thickness is observed on the lateral margins of the MTD. Its thickest area is observed in the 

middle of the MTD, increasing from its lateral margins to its central part (Figure 5.7). This trend 

is also noted in the topographic profile of the basal and upper surfaces, which shows that 

maximum thickness is reached 8 km to 14 km downslope from the headwall (Figure 1.17). In 

these profiles, the headwall and toe domain show the lowest thickness values (Figure 5.17). 

Topographically, the upper and basal profiles follow a similar trend and showing a reduction 

at the headwall of MTD B. Topographic variations follow the headwall in the form of small-

scale roughness at the basal surface. The upper surface profile at 8 km presents a convexity 

that corresponds to the largest thickness of gliding mass. The toe domain is marked by a gently 

confluence of the two profiles and a small concavity on the basal surface profile (Figure 5.18).  
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Figure 5.17 - Thickness map of MTD B. The MTD is thick at the central core. Lateral margins shows the lower 
thickness. Contours gives information about accumulation patterns. It is also indicated the location of Figure 
5.18.  

 

 
Figure 5.18 - Profile illustrating the upper and basal surfaces of MTD B. The space between the two profiles 
represents the thickness of remobilised strata in MTD B.  
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5.6.3. Palaeogeomorphology of the Depositional surfaces 

This section investigates the main characteristics of depositional surfaces in MTD A and B that 

influenced their internal deformation and run-out distances. On seismic data, the Depositional 

surface is a negative high-amplitude reflection marking the boundary between Miocene and 

Holocene strata. It corresponds to Horizon 7 on the interpreted seismic volume.  

5.6.3.1. Depositional surface beneath the confined MTD A 

The hillshade map in Figure 5.19 represents the topography of the surface under (and 

surrounding) MTD A and highlights relevant geomorphological features. The map in Figure 

5.19 shows the limits of the MTD A as dotted lines. In this figure the topographic features 

delimiting MTD A and forming topographic constraints to it are observed. Lateral margins and 

a barrier in the toe area are also observed.  The depositional surface where MTD A is located 

shows roughness at the basal shear surface, highlighting local topography as an important 

conditioning factor.  

Topographic profile showed in Figure 5.20 is oriented NW-SE (A – A’ on Figure 5.19). In the 

same figure, the location of the confined MTD A is also highlighted, together with its headwall 

scarp, which is delimited by a slope change consistent with the rupture zone. Roughness along 

the depositional surface (Figure 5.20) highlights the presence of a promontory between 4500 

m and 6500 m. At the toe domain, an accumulation area is observed corresponding to a lateral 

wall imaged on the hillshade map (Figure 5.19). 

The slope profile in Figure 5.21 shows segment B – B’, oriented N–S. In addition, Figure 5.19 

shows MTD A to be located between two lateral features (or ramps), which act as topographic 

barriers to the MTD and correspond, as such, to its lateral margins. This is confirmed by the 

seismic profile in Figure 5.6.  

The slope gradient in the area surrounding MTD A is very gentle and ranges between 0 and 3 

degrees. However, in Figure 5.22 local changes on slope gradient are observed, and the 

uppermost limit of the MTD is actually followed by a high slope gradient where the headwall 

scarp is located (i.e., on the N – NE), and also in the toe domain. Within MTD A, the 

depositional surface shows a high slope gradient (approximately 6 to 8 degrees), which 

corresponds to the promontory mentioned above. 
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Figure 5.19 - Hillshade map of the depositional surface under the confined MTD A, as highlighted by the dotted 
line. The cross-section A – A’ is oriented NW – SE and B-B’ is N – S. Vertical exaggeration = 5x. 

 

 

 
Figure 5.20 – Cross-section through the depositional surface highlighting the morphology underneath the 
confined MTD A (A-A’). Dashed vertical lines mark the location of MTD A. Vertical exaggeration = 5x. 
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Figure 5.21 Cross-section through the depositional surface under MTD A (B-B’).  Dashed vertical lines highlight 
the location of confined MTD A and its limits. The black line in the figure denotes the position in which cross-
section A-A’ crosses B-B’. Vertical exaggeration = 5x. 

 

 

 
Figure 5.22 – Slope gradient map of the depositional surface beneath MTD A, as highlighted by the dotted line. 
The cross-sections A – A’ are oriented NW – SE and B-B’ are N – S. No vertical exaggeration. 
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5.6.3.2. Depositional surface beneath the unconfined MTD B  

The depositional surface beneath MTD B shows distinct characteristics from MTD A. As 

previously mentioned, MTD B is larger than MTD A and does not show considerable 

topographic (or structural) barriers constraining its downslope gliding (Figure 5.24). The 

headwall scarp of MTD B is defined on the hillshade map as a topographic elevation when 

compared to the surrounding areas (Figure 5.23).  

Figure 5.24 presents a topographic profile along cross-section A – A’, which is oriented NW – 

SE (see Figure 5.23 for location). It shows the local topography of the Depositional surface, 

with the dashed line marking the approximately boundaries of unconfined MTD B. The 

headwall scarp is visible where the topographic profile denotes a marked rupture. It is 

followed by a smooth promontory and multiple topographic features along the downslope. In 

general does not show marked roughness. Figure 5.25 shows the topographic profile for cross-

section B – B’ (see Figure 5.23 for location), in which the dashed lines mark the lateral margins 

of MTD B location. The lateral margin to the SW shows small ramps acting as lateral 

topographic barriers to MTD B.  

The local geomorphology shows features that are associated with the vertical propagation of 

faults from below the depositional surface, thus creating roughness in the latter. In Figure 5.15 

a fault is observed whose vertical propagation does not directly affect the Depositional 

surface. However, its location corresponds to a topographic depression where the lateral 

margin of the MTD is located. A similar control of pre-existing faults is observed in Figure 5.27, 

where a normal fault does not propagate through the depositional surface but is affecting its 

shape, creating a local promontory or elevation.  

 



Palaeogeomorphological controls on Mass-Transport Deposits                                                               Chapter 5 

139 
 

 

 
 

Figure 5.23 – Hillshade map of the Depositional surface of MTD B, whose limits are shown by the dotted line. 
Cross-section A – A’ is oriented NW – SE and B-B’ is oriented SW – NE.  Vertical exaggeration = 5x. 

 

 

 
Figure 5.24 - Cross-section through the Depositional surface of MTD B highlighting its basal morphology (A-A’).  
Dashed vertical lines mark the location of MTD B on the continental slope. Vertical exaggeration = 5x. 
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Figure 5.25 - Cross-section through the depositional surface of MTD B (B-B´).  Dashed vertical lines mark the 
location of MTD B and its limits. The black line highlights the position in which cross-section A-A’ intersects B-
B’. Vertical exaggeration = 5x. 

 

 

 
 

Figure 5.26 – Slope gradient map of the Depositional surface of MTD B, whose limits are shown by the dotted 
line. Cross-section A – A’ is oriented NW – SE and B-B’ is oriented SW – NE. No vertical exaggeration. 
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Figure 5.27 - Interpreted N-S seismic profile highlighting two faults beneath unconfined MTB B and their 
influence on the shape of the Depositional surface. A local ramp is formed just above the faults. Seismic 
reflections within the MTD body show low- to moderate-amplitude seismic reflections that are essentially 
continuous. See Figure 5.11 for location of the seismic profile. Vertical exaggeration = 2.5 
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5.7. Discussion   

The most important observations regarding the two types of MTDs described relate to: a) their 

distinct sizes and any observed interactions with surrounding structures, b) the Depositional 

surface morphology, and c) the location of undisturbed material within the same stratigraphic 

unit. The modes in which the two types of MTDs accumulate at their toe domain are also 

strikingly different. Furthermore, their headwall scarps, toe domains and lateral margins are 

very different when comparing the two MTD types.   

A summary of the MTDs' characteristics is shown in Table 5.1. The table summarises the most 

important observations from seismic interpretation and GIS spatial analyses, and constitutes 

the base for this discussion. 

Table 5.1 – Summary of characteristics of confined MTD A and unconfined MTD B  

 Confined MTD A Unconfined MTD B 

Morphology Comprises a small-scale movement 
that was abruptly confined between 
undeformed stratigraphy. Its L/W 
ratio approaches 4.27. 

Unconfined MTD B is much larger than 
MTD A, showing margins that 
gradually change into undeformed 
stratigraphy.  Its L/W ratio approaches 
2.18. 

Headwall 
domain 

Headwall domain is marked by a 
scarp, as shown in Figure 5.10. Figure 
5.7 shows remobilized material of 
high variance coefficients. Headwall 
scarp domain is ~25 m in height and 
~900 m in length.  

Headwall scarp is marked by a smooth 
transition on seismic profiles from 
undeformed to deformed seismic 
reflections (Figure 5.12 and Figure 
5.14).  Headwall scarp domain in ~80 
m in height and ~3000 m in length.  

Translation 
domain 

Abrupt lateral margins (Figure 5.6 
and Figure 5.7). 

Lateral margins are marked by a 
smooth transition from undeformed 
to deformed seismic reflections 
(Figure 5.12 and Figure 5.14).   

The basal shear surface is marked by 
irregular topography, such as 
promontories, ramps and other 
features that may hinder downslope 
movement (Figure 5.20). 

Basal shear surface shows an irregular 
topography and coincides with the 

depositional surface (Figure 
5.18Figure 5.8).  

Toe Domain Positive topographic convexity 
formed by a frontal ramp (Figure 
5.10).   

Gentle confluence of the basal and 
upper profiles showing small 
concavity (Figure 5.13) 

Thickness  Range between 0 to 60m. The 
thickest is located at its toe 

Range between 0 to 70m. The 
thickest area is observed at the 
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domain (Figure 5.8 and Figure 
5.9). 

centre of the MTD body (Figure 
5.17 and Figure 5.18). 

Run-out Run-out domain is ~105 m height 
and ~5000 m in length. 

Run-out domain is ~340 m in height 
and ~15400 m in length. 

 

The two MTDs are very similar to the typology described by Frey-Martínez et al. (2006): 

frontally confined and frontally emergent landslides. However, Frey-Martínez et al. (2006) 

focused on the movement of landslide masses per se, rarely focusing on surrounding 

undisturbed strata or on any relationships with the surrounding topography (Frey-Martínez et 

al., 2006). In this work the two types of mass movements in Frey-Martínez et al. (2006) were 

reassessed by focusing in topographic features that can be influencing MTDs' downslope 

movement and accumulations patterns.   

From the summarized observations, differences are clear between the two MTD types. 

Considering Moscardelli and Wood (2008) classification, MTD A has a L/W ratio of 4.27 and is 

classified as attached (>4), while MTD B has a L/W ratio of 2.18 and is classified as detached 

(<4).  

5.7.1. Are MTDs depositional styles controlled by underlying 
topography? 

5.7.1.1. Locally Confined – MTD A 

Confined MTDs are described by Frey-Martínez et al. (2006) as presenting a frontal region 

buttressed against local topographic features, as also observed in MTD A (Figure 5.10). 

Trincardi and Argnani (1990) attributed frontal confinement to the presence of morpho-

structural obstacles, arguing that confinement happens where topographic features provide 

necessary resistance forces to prevent further translation. The authors mentioned that in this 

case the gliding material stops against topographic barriers and propagates from the area of 

the impact (Trincardi and Argnani, 1990). Such a description adjusts perfectly with MTD A's 

(confined) geometry. The TWTT time-structure map of the basal and upper surface of MTD A 

in Figure 5.28b and 1.28a show an abrupt end at a toe wall (Figure 5.28b). In addition, MTD 

A's upper surface shows a correlative topographic elevation, suggesting that the sliding 
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material has encountered a topographic barrier and jumped over it, propagating shortly on 

the palaeo-seafloor. This mechanism is well illustrated in the seismic profile in Figure 5.10, 

which shows glided material accumulated on the toe domain, confined by a topographic ramp 

that makes the material propagate in free translation over the palaeo-seafloor. This material 

did not travel far, accumulating after a short free translation.   

Lateral margins dip parallel to MTD A and were identified and imaged on variance maps 

(Figure 5.7). Identifying the lateral margin of the entire body can be crucial to understand the 

gliding direction of both confined and unconfined MTD. By computing the Depositional 

surface of MTDs into GIS one can obtain hillshade and slope gradient data that are useful to 

distinguish their lateral margins. The lateral margins of MTD A correspond to the regions with 

the highest slope gradients (Figure 5.22), inducing that they can work as natural barriers to 

the mass propagation.  

Confined submarine slope movements show small to moderate downslope translation (Frey-

Martínez et al., 2006, Moscardelli and Wood, 2008) as also observed for MTD A.  The basal 

surface presented in Figure 5.28b shows structural contours that are an indication of how 

failed strata flowed within the MTD body. The contours at the toe domain mark a convex area 

on the basal surface, suggesting accumulation against undeformed material on the toe area 

that is stratigraphically equivalent to the failed material. In turn, the upper surface contours 

express chaotic accumulation by observing the contours patterns presented in the Figure 

5.28a. This latter topographic character signs that the material has been stopped by a barrier 

and ramp and quickly accumulated. This fact is also discernible on seismic profile in Figure 

5.10 that shows accumulation of sediment on the toe domain, ramping-up of sediment above 

undeformed strata and a short translation.  
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Figure 5.28 - Time structure map of the (a) top and (b) basal surfaces of confined MTD A, in time (ms). The 
contours image slide movement and accumulations patterns within the MTD body, highlighting its 
morphology. Vertical exaggeration = 5x.  
 

 

 



Palaeogeomorphological controls on Mass-Transport Deposits                                                               Chapter 5 

146 
 

5.7.1.2.  Unconfined – MTD B 

The typology of unconfined MTDs is well known from the literature. Depositional mechanisms 

have been described by Frey-Martínez et al. (2006) and named frontally emergent landslides. 

A vast portion of slope movements described in the last decades focused on unconfined MTDs.   

The unconfined MTD B overlies the depositional surface in all its extension (Figure 5.12, Figure 

5.13, Figure 5.14 and Figure 5.15). The depositional surface beneath MTD B has been partly 

affected by the growth and vertical propagation of faults formed in association with salt 

tectonics in the Espírito Santo Basin (Alves, 2012, and Omosanya and Alves, 2014). Salt 

tectonics can be associated with submarine mass movements and resulting faults can 

propagate enough to interact with near-seafloor MTDs (McAdoo et al., 2000, Omosanya and 

Alves, 2014). In this work, the depositional surface underneath MTD B is affected by faults 

designated by Omosanya and Alves (2014) as decoupled faults -  their tips are confined to the 

basal shear surface of the interpreted MTD. Omosanya and Alves (2014) discussed the way of 

vertical fault propagation can be hindered by MTDs. However, this chapter does not discuss 

fault propagation from a structural point of view, for the reason that neither the Depositional 

surface mapped nor the MTDs have been affected directly by the faults themselves. It is 

therefore induced that MTDs did not hinder fault propagation in the stratigraphic unit 

analysed. 

Observing the seismic profiles in Figure 5.14 and Figure 5.15 it is induced that fault 

propagation have had  indirect effect on the local morphology of the depositional surface of 

MTD B. Consequently, extensional forced-folding is observed in the area just above the fault. 

The faults also created a relatively brittle area on the seafloor which is actually coincident with 

lateral margins of MTD B (dashed line in Figure 5.5). The basal shear surface of MTD B is often 

continuous and concordant to the depositional surface (bedding) (Bull et al., 2009), 

nevertheless, it can be affected by sediment variations or faults. This fact is observed in Figure 

5.27, where the dashed line highlights the area of extensional forced-folding, which coincides 

with local ramp on the Depositional surface - and associated basal shear surface of MTD B.  
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Figure 5.29 - Time structure map of the (a) top and (b) basal surfaces of the unconfined MTD B, in time (ms). 
The contours shown help identifying the directions of slide movement and accumulations patterns within the 
MTD body. Vertical exaggeration = 2.5x.  
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The basal surface of MTD B shows convexity across its body, a fact highlighting that the 

headwall scarp domain is rather prominent in this type. This same convex areas highlight 

portions of MTD B where erosion prevailed (Rovere et al., 2014) (Figure 5.29b). The opposite 

effect is observed throughout the upper surface of MTD B, where the headwall scarp domain 

that shows little convexity. (Figure 5.29a). The main body of the MTD B shows an upwardly 

concave surface, indicating deposition, and highlights the main body of the unconfined MTD 

B. The thicker part of the MTD corresponds clearly to the more expressive concavity showed 

by the upper surface.  

5.7.2.  Role of topographic barriers in controlling MTD run-out distance 
and deposition   

Run-out distance is the limit of the disturbed area on a continental slope away from the 

headwall scarp (McAdoo et al., 2000). Usually, it is represented by the horizontal distance 

between the headwall scarp and the toe region of the MTD (Moernaut and De Batist, 2011). 

As pointed out by Moernaut and De Batist (2011) for sub-lacustrine landslides, median length, 

width and run-out distance are larger for emergent types when compared to confined MTDs. 

Moernaut and De Batist (2011) also pointed out that median depth of the basal shear zone is 

shallower for emergent landslides, a character that is not observed in the two studied MTD A 

and MTD B. Nevertheless, considered that MTD A headwall scarp drops 25 m through a 

distance of 900 m, while MTD B drops 80 m through a distance of ~3000 m (Table 5.1), the 

headscarp domain of MTD B is relatively smoother and meets the observations in {Moernaut, 

2011 #353@@author-year}. The run-out area of MTD A is smaller than for MTD B, showing a 

drop of 100 m height for a distance of 4750 m (Table 5.1; Figure 5.30). In comparison, MTD B 

drops 200 m in height at its headwall domain, which extends as far as 16200 m in distance 

(Table 5.1; Figure 5.31). 

The proposed headwall scarp and run-out area were considered the major morphological 

changes on the basal topographic profile. However, their morphometric attributes are 

considerably different when considering the two MTD types proposed. The depositional 

surface on which MTD A is resting (Figure 5.19) shows topographic barriers at the limits of the 

MTD body, as highlighted on the slope gradient map (Figure 5.22). The headwall scarp, 

northern lateral margin and toe domains are marked by high slope gradients, which changing 
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to a relatively flat area away from MTD A (between 0 to 2° and 4 to 8°, approximately). This 

character suggests that MTD A was triggered in a relatively steep zone and its movement was 

somehow stopped by adjacent topographic barriers. The depositional surface beneath MTD A 

also shows a marked promontory presenting the largest slope gradients (4 to 8°, 

approximately) (Figure 5.19 and Figure 5.20). This latter observation suggests that MTD A was 

first triggered as a small slope movement, in a region of relatively low slope gradient, having 

lost downslope inertia against the promontory. MTD A, however, continued to glide 

downslope until it was buttressed once more against a seafloor barrier and accumulated at 

the toe domain, emerging from its glide plane only shortly (Figure 5.10 and Figure 5.30).    

Considering the morphology where MTD B is resting (Figure 5.23), a steeper change on its 

headwall scarp is observed when compared to MTD A. The slope gradient is also comparatively 

steeper (Figure 5.26), and suggestively predisposing MTD B at its maximum. The slope does 

not show strong topographic changes, revealing a rather smooth Depositional surface for MTD 

B. Nevertheless, it shows some minor ridges downslope, reflecting the local expression of 

vertically propagating faults. Normal faults in the study area created weakness zones at the 

seafloor, which bounded MTD B in multiple directions (Figure 5.14, Figure 5.15 and Figure 

5.27). 
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Figure 5.30 - Topographic profile of the basal surface of the confined MTD A with interpreted limits of headwall 
scarp domain and run-out distance, based on profile morphology. 

 

 

 

 
Figure 5.31 – Topographic profile of the basal surface of unconfined MTD B with interpreted limits of headwall 
scarp domain and run-out distance, based on profile morphology.  
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5.8. Conclusions 

The most important conclusions from the observation of the two types of MTDs are 

summarised as follow:  

- Three-dimensional (3D) seismic reflection data, used together with Geographic 

Information Systems (GIS), proved to be valid tools to study the morphometric 

attributes of submarine slope movements and surrounding areas.  

 

- 3D seismic interpretation offshore Espírito Santo Brazil reveals the existence of two 

types of MTDs, Confined (MTD A) and Unconfined (MTD B), within the same 

stratigraphic package (Sequences N20 to N60 - Early Miocene to Holocene). 

 

- The Confined MTD A is relatively small and was controlled by buttresses on the 

continental slope (chiefly hard, undisturbed strata) within Sequences N20 to N60. The 

thickest part of MTD A is located at its toe domain.   

 

- The Unconfined MTD B is must larger when compared to MTD A. This unconfined MTD 

appears to have moved in a free translation mode until 'frozen' in place and buried. 

 

- The local morphology of the depositional surface where MTDs are resting needs to be 

taken into consideration as a controlling factor to the total run-out distance of MTDs. 

 

- Both MTDs are located where the Depositional surface shows the smaller slope 

gradients. However, kinematic indicators such as the headwall scarp (in both MTD A 

and MTD B), the lateral margins (MTD A) and toe domain (MTD A) are located where 

the slope gradient increases substantially in comparison to the surrounding slope. 

- Depositional surface topography, based on the data analysed in this chapter, is an 

important factor controlling MTDs' morphology and sizes.   

 

- Both MTD types can be characterised, and distinguished, by simple morphometric 

attributes such as MTD area, volume and thickness, slope gradient, headwall scarp 
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height, run-out area and slope gradient adjacent to failed strata. However, 

sedimentation and erosion patterns, together with local geology, are very important 

factors controlling slope movement (and sizes) that were discarded from this chapter.  

Detailed geological information is not available for this study as well as seismological 

data from nearby stations.  
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Abstract 

Slope instability is one of the most effective processes shaping the seafloor on both 

passive and tectonically active continental margins. Their end-product, mass-transport 

deposits (MTDs) have been documented on several continental margins using diverse 

approaches and methodologies. 

This chapter tests a new methodology for the evaluation of MTD occurrence, and applies 

it to an area offshore Espírito Santo, SE Brazil. An MTD inventory was made for an area 

cropped from a 3D seismic volume (BES-100). The MTD inventory consists of four MTDs 

integrated into a Geographic Information Systems (GIS) database. MTD favourability 

scores were computed using algorithms based on statistical/probabilistic analyses 

(Information Value Method) over unique condition terrains in a raster basis. Terrain 

attributes derived from the Digital Terrain Model (DTM), were used as proxies to several 

driving factors of MTDs and as predictors in the models. Three models are discussed 

independently according to the different parts of the interpreted MTD (Model 1, Model 

2 and Model 3). The final results were prepared by sorting all pixels according to the 

pixel favourability value in descending order. The robustness and accuracy of the MTD 

favourability models were then evaluated through the use of success-rate curves. The 

curves aided in the quantitative interpretation of the models expressing their goodness 

of fit to the interpreted MTDs. 

The results in this section confirm that the method is valid for submarine slopes. From 

the three models, Model 3 obtained the highest goodness of fit (0.862).  Based on these 

results, a sensitivity analysis was undertaken and key predisposing factors were 

identified. 

This methodology was never applied before to submarine environments and has the 

potential to become a very important and valid approach for the recognition of 

submarine slopes prone to failure.  
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6.1. Introduction 

Submarine slope instability is one of the key natural hazards affecting continental 

margins and can result in direct and indirect damages to seafloor substructures (Dai et 

al., 2002). The last few decades witnessed great improvements in submarine landslide 

characterisation and in the understanding of the local conditions leading to slope 

instability at small and large scales (Nadim, 2006, Hough et al., 2011, Gilbert et al., 2013, 

Rodríguez-Ochoa et al., 2015). The development of new techniques such as three-

dimensional (3D) seismic data has contributed greatly towards the understanding of 

submarine slope instability, and allowed its integration in GIS. The use of GIS techniques 

thus far applied in onshore risk assessments has improved our knowledge on the factors 

that lead to the triggering of offshore instability events (McAdoo, 2000). By combining 

3D seismic datasets with GIS databases we can explore the different tools used in GIS 

spatial analyses (Haneberg et al., 2015), taking advantage of methodologies tested 

onshore.  

Onshore, slope stability analyses have recently benefited from improvements in data 

acquisition, data processing and analytical techniques.  Some of these improvements 

include the completion of susceptibility assessments using several maps representing 

the spatial distribution of physical parameters that may influence the occurrence of 

mass movements (Urgeles et al., 2006, Micallef et al., 2007, Micallef, 2011, Li et al., 

2014, Haneberg et al., 2015). Susceptibility analyses are undertaken with the final aim 

of understanding the conditions and parameters that favour the occurrence of mass 

movements in specific locations (Soeters and Van Westen, 1996, van Westen et al., 

2006, van Westen et al., 2008, Thiery et al., 2007). In its final stage, the analyses are able 

to identify the areas where, under a set of favourable conditions, mass movements will 

probably occur. A great part of slope instability predictive studies uses statistical 

methods which cross  predisposing factors with inventories of (past) events, within a GIS 

environment (van Westen et al., 1997, Carrara et al., 1999, Piedade et al., 2010, Pereira 

et al., 2012).  

Submarine slope instability occurs when there is a significant reduction in the shear 

strength of continental slope sediment, usually at the location of a future basal glide 
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plane, or shear zone (Varnes, 1978, Hampton et al., 1996). Slope stability analyses have 

been based on a deterministic approach, where the level of safety of a slope is quantified 

by a ‘safety factor’ (Nadim, 2006). The factors that cause slope failure include: 

preconditioning factors, preparatory factors and triggering factors (Glade and Crozier, 

2005). Even so, it is common to distinguish between trigger and predisposing factors in 

slope stability analysis (Zêzere et al., 1999, van Westen et al., 2008, Pereira et al., 2012).  

This chapter focuses on predisposing factors (e.g. Glade and Crozier, 2005, Pereira et al., 

2012), that were present during slope failure in parts of the Espírito Santo Basin, SE 

Brazil. This was undertaken via integration of data from the interpreted 3D seismic 

volume into GIS integrated using a statistical method, the Informative Value (IV). As a 

result, the aims of this chapter are as follows: 

(a) To determine a set of predisposing factors that can reflect the natural conditions for 

the occurrence of MTDs on the continental slope, 

(b) To perform a bivariate statistical model that integrates the mapped MTDs and the 

predisposing factors into GIS and performed a predictive map to MTDs occurrence for 

the area,  

(c) To determine the favourability scores of predisposing factors that are capable of 

triggering MTDs,  

(d) To validate the statistical model applied using Success-Rate and Area Under the 

Curve (AUC) validation techniques, 

(e) To run a sensitivity analysis of the variables used for modeling in order to understand 

which variables influence the model in greater degree (s).  

The key objective of this work is to understand how the bivariate statistical model of 

Informative Value (IV) responds to marine mass movements by using data derived from 

3D seismic volumes. It was based on the following research questions (i) is it possible to 

use statistical methods integrated in GIS environments to identify the predisposing 

factors that constrained the location of MTDs offshore Espírito Santo? (ii) Are 3D seismic 

volumes a valid data source for these kind of studies? (iii) Are the obtained models 

scientifically valid to justify their application to others 3D seismic datasets? 
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In this chapter, a horizon at the base of multiple MTDs was mapped (depositional 

surface) and computed into seven predisposing factors, which were later integrated into 

a GIS environment. The aim was to identify the natural conditions present at the time of 

the slope failure, presumed to have occurred at the end of the Miocene. Three different 

models were run using the i) total area of MTDs (model 1), ii) 1/3 of the MTDs total 

length (model 2) and iii) half of the lenght used in model 2 (model 3). An attempt at 

constraining the probable rupture zone of these MTDs is undertaken by model 2 and 

model 3. Favourability scores were calculated for each class of each variable and for the 

three models. The models were validated through success-rate curves and 

corresponding AUC´s. The results are very positive and the rationale of applying the 

bivariate statistical methods to a submarine environment is validated. These results are 

robust and are found to be valid for other continental slopes on where 3D seismic data 

is available.   

An important statement is needed to present at this time, as a data limitation for the 

methodology proposed. The population of MTDs are constituted by only four 

movements, included the two examples described in chapter 5. The population is 

considered valid to proceed with the methodology application. Nevertheless, is not big 

enough for data partition, whereby the same inventory is used to run the model and to 

validate (success-rates). As the population is relative small, the different MTD typologies 

are not considered into the models and the four MTDs entered in the same model. This 

limitation from the database point of view will be under discussion further in this thesis.   

This chapter starts by describing the depositional surface that was the base to compute 

the predisposing factors and works as a Digital Terrain Model (DTM), representing the 

relief. The results chapter presents the favourability scores that are determined through 

a statistical integration for MTDs instability. The three models (models 1 to 3) obtained 

using different areas of the same MTDs inventory are presented and validated. A 

sensitivity analysis is undertaken for the models which obtained the best predictive 

capacity. A key aim of this chapter is to discuss the importance of this new approach, in 

order to define the predisposing factors that are favourable in the occurrence of MTDs 

in the Espírito Santo continental slope. The limitation of the method and input dataset 

(MTDs inventory and DTM) obtained from 3D seismic data will also be discussed. At the 
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end of the chapter, information on improvements to the models are suggested bearing 

in mind its application to marine datasets.   

6.2. Mass-Transport Deposits 

The interpretation of four MTDs follows previously-established criteria to describe the 

internal character of remobilized material (e.g. Hampton et al., 1996, Frey-Martínez et 

al., 2006, Moscardelli and Wood, 2008, Bull et al., 2009, Gamboa et al., 2010, Omosanya 

and Alves, 2013). Internal reflections in the interpreted MTDs show chaotic stratigraphy 

and imbricated blocks (e.g. Frey-Martínez et al., 2006). The basal surface is shown as a 

high-amplitude seismic reflection below chaotic reflections within the MTDs (Frey-

Martínez et al., 2006). The top of the MTDs is marked by a continuous high amplitude 

reflection that overlies chaotic internal reflections. The four MTDs mapped in this 

chapter exhibit varying areas, volumes and slope locations, but the thickness of the 

remobilized material is very uniform among all MTDs (Table 6.1).  

 
Table 6.1 - Morphological characteristics of MTDs interpreted in the Espírito Santo Basin. 

 Area (km2) Volume (km3) Max. Thickness 
(m) 

Location 

MTD 1 5. 251 0.128 ̴60 Sub-parallel to slope 

MTD 2 20.88 0.659 ̴65 Upslope to mid-slope 

MTD 3 87.180 3.163 ̴70 
Mid-slope to lower 

slope 

MTD 4 19.790 0.470 ̴80 Sub-parallel to slope 

 

Figure 6.1 displays the general location of the MTDs in the continental slope offshore 

Espírito Santo, SE Brazil and the area of each MTD that was later considered in Models 

1 to 3. For Model 1, the total unstable area considered is 133.8 km2, 17.7% of the total 

study area. In Model 2, the unstable area considered is 30.2 km2, 4% of the total area. 

Model 3 considered an unstable area of 11.1 km2, which corresponds to 1.47% of the 

total area (Table 6.2).
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Figure 6.1 - Study area offshore Espírito Santo Basin (SE Brazil). The figure shows the location of four MTDs considered in the models. Different shades of grey show the 
areas of the MTD used for each model. The map shows also the elevation across the study area after depth-converting from time-depth to true-depth. 
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Table 6.2 - Unstable area in square kilometres and relative percentage for the three different models used and 
total area of the depositional surface for comparison. 

 Unstable area (km2) Unstable area (%) 

Model 1  133.8 17.7 

Model 2 30.2 4 

Model 3 11.1 1.47 

Study area  756 km2 100% 

 

6.3. Characterization of predisposing factors  

Predisposing factors considered in this section are elevation, slope gradient, profile curvature, 

planform curvature, flow direction, flow accumulation and slope over area ratio. These 

predisposing factors are considered in the models as independent variables. 

The characteristics of the seven predisposing factors for slope instability that are considered 

in this study are synthesized in Table 6.3. It also shows a class code, the number of cells (pixels) 

that each class contains and the percentage of area which each class covers.  

 

Table 6.3 - Absolute and relative frequencies for each class of each variable for the seven predisposing factors 
(variables). 

Variable Class Code Class N. of pixels Area of the class (%) 

Elevation 
(m) 

E1 
E2 
E3 
E4 
E5 
E6 
E7 

0-100 
100-200 
200-300 
300-400 
400-500 
500-600 
600-700 

9721 
48435 
66999 
52189 
57874 
53176 
15130 

3.2 
16.0 
22.0 
17.2 
19.2 
17.4 
5.0 

Slope 
gradient 
(º) 

S1 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

[0-1] 
]1-2] 
]2-3] 
]3-4] 
]4-5] 
]5-6] 
]6-7] 
]7-8] 

>8 

108560 
131386 
39530 
12232 
5377 
2751 
1651 
898 

1139 

35.8 
43.3 
13.0 
4.0 
1.8 
0.9 
0.5 
0.3 
0.4 

Profile PrC1 Convex 4151 34.2 
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curvature PrC2 
PrC3 

Flat 
Concave 

3827 
4172 

31.5 
34.3 

Platform 
curvature 

PlC1 
PlC2 
PlC3 

Concave 
Flat 

Convex 

5556 
959 

5635 

45.7 
7.9 

46.4 

Flow 
direction 

FD1 
FD2 
FD3 
FD4 
FD5 
FD6 
FD7 
FD8 

E 
SE 
S 

SW 
W 

NW 
N 

NE 

86791 
86456 
53672 
13530 
7613 
3839 

14827 
36796 

28.6 
28.5 
17.7 
4.5 
2.5 
1.3 
4.9 

12.1 

Flow 
accumulation 
(Log scale) 

FA1 
FA2 
FA3 
FA4 
FA5 
FA6 

0 
1 

1-10 
10-100 

100-1000 
>1000 

67875 
49210 

126086 
46277 
12739 
1337 

22.4 
16.2 
41.5 
15.2 
4.2 
0.4 

Slope over 
area ratio 
(log scale) 

SAR1 
SAR2 
SAR3 
SAR4 
SAR5 

0 
0-0.00001 

0.0000-
0.0001 
0.0001-
0.001 

0.001-0.01 

9648 
47399 

101146 
138112 

4973 

3.2 
15.7 
33.6 
45.8 
1.7 

 

6.3.1. Elevation  

Elevation is useful to classify any changes in local relief and locate the maximum and minimum 

height within the study area. In this particular case, the relief changes continually from the 

highest to the lower elevation along the Espírito Santo slope (Figure 6.2). 

Elevation is classified into seven classes which are described in Table 6.3. Class E1 (0 – 100 m) 

and class E7 (600-700 m) are the classes covering the smaller percentage of area   ̴8.2%. The 

rest of the study area is distributed homogeneously among the other classes. Class E3 (200-

300 m) covers the high percentage of area in the study area (22%) (Figure 6.2). 
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Figure 6.2 – Thematic layer showing the spatial distribution of each Elevation class (E) in meters. 



Favourability scores for mass-transport deposits (MTD) occurrence                                        Chapter 6 

163 
 

6.3.2. Slope gradient   

The slope gradient (in degrees) of the depositional surface is presented in the map in Figure 

6.3. The class limits were defined considering particular conditions of the continental slope, 

which is very smooth along the Espírito Santo margin, due this fact, slope gradient is classified 

in eight distinct classes, in order to discriminate in detail the physical characteristics of the 

slope, as shown in Table 6.3 Class S2 represents most of the total area (43.5%) and exhibits 

slope gradients between 1 and 2° (Figure 6.3). Class S1 represents 35.8% of the total area and 

exhibits a gradient 0 – 1°. Approximated 13% of the study area comprises slope gradients of 

2-3° (class S3). These three classes combined cover 92.1 % of the total area studied in this 

chapter (Figure 6.3). 

6.3.1. Profile curvature 

The spatial distribution of profile curvature in the study area is presented in Figure 6.4. Profile 

curvature directly affects the acceleration or deceleration of mass-flows along the 

depositional surface. Profile curvature relates to the convergence and divergence of mass-

flows across a surface (Menno-Jan, 2013). In summary, profile curvature reflects the change 

in slope angle, and mainly controls the change of velocity of mass flowing down along the 

slope (Clerici et al., 2010). It is parallel of the maximum slope (Menno-Jan, 2013) and negative 

values indicate that the surface is upwardly convex at the cell. A positive profile indicates that 

the surface is upwardly concave at that cell, whereas zero value indicates that the surface is 

linear (Figure 6.5). The contours in the image help to identify the areas where the slope 

presents a concentration of convex, rectilinear/flat and concave forms. 

The classes and the distribution of Profile curvature in the study area, for the three classes 

mentioned above is displayed in Figure 6.4. The classes are seen as roughly equally distributed 

in Table 3. The class PrC2 occupies a small part (31.5%) of the study area. The two other classes 

each occupy ~34% of the study area (Table 6.3).   
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Figure 6.3 - Thematic layer showing the spatial distribution of each Slope gradient theme (S), in degrees. In Espírito Santo (SE Brazil). 
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Figure 6.4 - Thematic layer with spatial distribution of each class for Profile curvature (PrC1), offshore Espírito Santo (SE Brazil). The contours are equidistant 25 meters. 
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Figure 6.5 - Profile curvature as represented on theoretical surfaces. The arrow indicates the direction of the 
slope. A) convex slope, B) concave slope and C) linear slope (Menno-Jan, 2013). 

 

6.3.2. Planform curvature 

Planform (or plan) curvature is perpendicular to the direction of maximum slope. Positive 

values of planform curvature indicate the surface is sideward convex at this cell. Negative 

values indicate the surface is sideward concave, whereas zero value indicates the surface is 

flat (Figure 6.6). Planform curvature reflects the changes in aspect angle and control the mass 

flow divergence/convergence (Clerici et al., 2010). It is related to the superficial and sub-

superficial runoff flow on the slope. The spatial distribution of classes within the study area 

are displayed in Figure 6.7, where it is observed that 46.4% diverge and 45.7% converge the 

slope and 7.9 % exhibit a flat slope (Table 6.3). The contours lines in Figure 6.7 help to identify 

the forms of the 3 classes proposed.  

 

 
Figure 6.6 - Planform curvature as represented on a theoretical surface. The arrow indicates the direction of 
the slope. A) convex slope, B) concave slope and C) linear slope. 
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Figure 6.7 - Thematic layer showing the spatial distribution of each class for plan curvature (PlC), offshore Espírito Santo (SE Brazil). The figure shows contours lines with 
an equidistance of 25 m. 
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6.3.3. Flow direction 

The greater percentage of area is occupied by the first two classes, FD1 and FD2, which cover 

an area of 28.6 and 28.5%, respectively. These values indicate that these mass-flows have an 

east to southeast direction in 57% of the study area. In 17.7% of the study area, the flow 

direction is south as represented by class FD3. This is followed by the northeast-trending class 

FD8, which occupies 12.1% of the study area. The remaining 8.7% of the area is occupied by 

mass-flows directed to the north, east and northeast, with 4.9, 2.5 and 1.3% of the total study 

area, respectively (Table 6.3 and Figure 6.8).  

6.3.4. Flow accumulation 

Flow accumulation is classified into six classes (Table 6.3) and is represented spatially in Figure 

6.9. The class FA3 covers the greatest percentage of the study area with 41.5% coverage. This 

is followed by class FA1 with 22.4% of the study area. Classes FA2 and FA4 cover 16.2% and 

15.2%, respectively. The last two classes, FA5 and FA6 cover together less than 5% of the total 

area. Areas classified by high accumulations are areas of concentrated mass-flows and can be 

used to identify stream channels (Figure 6.9). Areas classified as 0 comprise topographic highs 

where there is no mass-flow accumulation.  

6.3.5. Slope over area ratio 

Slope over area ratio calculates the ratio of the slope to the specific catchment area or 

contributing area for each pixel. The final map is classified in a logarithmic scale into fixed 

classes (Table 6.3) as represented in Figure 6.10. Class SAR4 observed in 45.8% of the study 

area, followed by the class SAR3 with 33.6% and SAR2 with 15.7%. Class SAR1 and SAR4 

occupied respectively, 3.2% and 1.7% of the study area (Table 6.3, Figure 6.10).  
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Figure 6.8 - Thematic layer showing the spatial distribution of each class for flow direction (FD), offshore Espírito Santo, (SE Brazil). 
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Figure 6.9 – Thematic layer with spatial distribution of each class for flow accumulation (FA), offshore Espírito Santo (SE Brazil). 
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Figure 6.10 - Thematic layer showing the spatial distribution of each class for slope over area ratio (SAR), offshore Espírito Santo (SE Brazil). 
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6.4. Results  

6.4.1. Weighting of variables  

The weighting of variables for the evaluation of MTDs favourability scores is calculated 

applying the Informative Value (IV) bivariate statistical method, the methodology of which is 

described in chapter 3.  

The weighting is prepared using three different partitions for the same MTDs inventory: 1) 

Model 1, using the total area of MTDs inventory; 2) Model 2 – using 1/3 of MTDs total length 

and; 3) Model 3 – using half of the length in used in Model 2. 

In the plots shown in Figure 6.11, Figure 6.12 and 

Figure 6.13 show the relationship between the class occupancy and favourable scores for 

MTDs occurrence. In practice, the figures plot the number of pixels containing MTDs (Si) and 

the number of pixels with variable xi (Ni). The classes that do not contain pixels of MTDs have 

no representation on the plots (i.e. Si equal to 0).  

6.4.1.1. Model 1 
The classes covering large areas do not necessarily present high favourability to the 

occurrence of MTDs. As it is observable from the plot of variable Elevation in Figure 6.11a, 

class E2 reveals the highest favourability to the occurrence of MTDs (0.321), but this is not the 

class occupying the larger area (16%). Class E3, corresponding to an elevation between 200 to 

300 m, covers a larger percentage of total area (22.1%) that E2, and presents the second high 

favourability to the occurrence of MTDs (0.234) (Figure 6.11a).  

The Slope gradient class S2, corresponding to slopes with 1-2° in gradient, occupies the larger 

area (43.3%) and it is the class with the highest favourability score; 0.20. Class S2 is followed 

by classes S3 (2-3°) and S1 (0-1°), which occupy 13% and 34.8% of the total area of the study. 

They present, respectively, favourability scores of 0.176 and 0.161. Classes S4, S5 and S6 are 

represented in very small areas and have favourability scores above 0.10 (0.134, 0.125 and 

0.118) respectively (Figure 6.11b).  
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Profile curvature correlates with area and favourability scores. Three Profile curvature classes 

PrC1, PrC2 and PrC3 covering 34.2%, 31.5% and 34.3% of the total area, corresponding to 

favourability scores of 0.181, 0.156 and 0.186 respectively are displayed in Figure 6.11c.  

The plan curvature variable presents a higher discrepancy between classes and favourability 

scores for MTDs that follow the observed tendency. The pixels constituting the study area in 

Figure 6.11d are distributed in the form of two main classes, PlC1 (45.7%) and PlC3 (46.4%), 

contributing for favourability scores of 0.183 and 0.175. This leaves only 7.9% of total area to 

PlC2, which presents a favourability score of 0.136 and corresponds to a relative flat area on 

the continental slope (Figure 6.11a).  

The flow direction variable is plotted in Figure 6.11e. The higher favourability score for this 

variable correlates with the class covering the smaller area. It corresponds to class FD4 (SW), 

which presents a favourability score of 0.29 and covers an area of 4.5%. Classes FD1 and FD2 

each cover ~28% of the total area and their favourability scores are 0.145 and 0.174, 

respectively. Considering variable flow accumulation, the favourability scores are for five of 

the classes around 0.170. The highest favourability scores are related to the class FA6 

presenting 0.24, which is the class that covers the least area, 0.4% of the total area.  

Slope over area ratio follows a trend similar to the previous variable Figure 6.11g. Class SAR1 

covers only 3.2% of the total area, and is the class that presents higher favourability scores 

(0.216) for the occurrence of MTDs. The class that occupied 45% of the area shows a 

favourability score of 0.181.  
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Figure 6.11 – Favourability and thematic layer class frequency of predisposing factors in Model 1, which uses 
the total area of MTDs; a) Elevation, b) Slope gradient, c) Profile curvature, d) Plan curvature, e) Flow direction, 
f) Flow accumulation and g) Slope over area ratio. 

 

6.4.1.2. Model 2 
Model 2 was prepared using 1/3 of the total length of the interpreted MTDs. The area covered 

by the MTDs reaches a total of 30.2 km2 in Model 2 i.e., it was significantly reduced when 

compared to the total area. Using this smaller value constrains the modelling so that is closer 

to the rupture area of the MTDs (Chapter 3 for complete explanation). This way, the maximum 

and minimum favourability scores are better resolved, pointing out the areas where the MTDs 

were first triggered and their rupture zones. When modelling with this smaller inventory 

partition, some of the classes do not register pixels with MTDs.  

The Elevation variable presents favourability scores for only 4 of the 7 classes. The highest 

score is recorded by class E6 (500-600 m) followed by class E4 (300-400 m), respectively at 

0.095 and 0.072 (Figure 6.12a). Instead, the slope gradient variable presented favourability 

scores for all classes. Class S6 (0.9 % of total area) presents a score of 0.071 followed by S5 

(1.8% of total area) with 0.071. Class S2 covers 43.3% of the area analysed and has a score of 

0.046 (Figure 6.12b).  
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6.12c). For plan curvature, the highest favourability score is 0.046 in association with class 

PlC1 (Figure 6.12d).  

The highest score for flow direction is observed by class FD3 (0.049), followed by FD2 (0.047) 

and FD8 (0.041). The classes that cover the largest area are FD1 (28.6%) and FD2 (28.5%) 

(Figure 6.12e). The highest favourability score for flow accumulation is observed at class FA6, 

the class covering the smallest area, and approaches 0.119. In parallel, class FA3 cover the 

largest area (41.5%) and has a favourability score of just 0.042 (Figure 6.12f).  

The slope over area ratio has three classes with very similar favourability scores (Figure 6.12g). 

The highest score is recorded by class SAR2 with 0.042, and covers 15.7% of the analyses area. 

Class SAR4 covers 45.8% of the analysed area and has a favourability score of 0.039.  
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Figure 6.12 - Favourability and thematic layer class frequency of predisposing factors in Model 2, which uses 
1/3 of the total area MTDs length; a) elevation, b) slope gradient, c) profile curvature, d) plan curvature, e) 
flow direction, f) flow accumulation and g) slope over area ratio.  

 

 

6.4.1.3. Model 3 
In order to better constrain the natural predisposing factors for MTDs in the study area, the 

inventory used in Model 2 was reduced in half to assemble Model 3.  

Elevation has no pixels representing MTDs in 4 of the 7 classes (Figure 6.13a). Its highest 

favourability score is 0.047 in class E6 (5-6°), followed by class E4 with a favourability score of 

0.035.   

Slope gradient (Figure 6.13b) reveals the highest favourability score in class S6 (0.049). This 

same class covers only 0.9% of the total area analysed in Model 3. Class S6 is followed by the 

class S5, which shows a favourability score of 0.038 and covers 1.8% of the total area. The 

class covering the larger area is the S2 (43.3%) and its favourability score approaches 0.0146. 

Similarly to Models 1 and 2, slope curvature shows a higher favourability score for PrC3 

(0.090), due to local Profile curvature (Figure 6.13c). In addition, class PlC1 is the most 

important concerning Planform curvature evidencing the highest favourability score in the 

study area (0.118) (Figure 6.13d).  
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The highest favourability score for flow direction is recorded at class FD3 (0.022), which covers 

28.5% of the study area (Figure 6.13e). Class FD3 is followed by class FD6 with a favourability 

score of 0.022 for an area of 1.3%. Again in similarity to Models 1 and 2, Flow accumulation 

shows a highest favourability (0.04) in the class FA6, which occupies only 0.45% of the total 

analysed area. Class FA3, comprising a larger area (41.5%), has a favourability score of 0.016 

(Figure 6.13f).  

The highest favourability score obtained for the Slope over area ratio theme is recorded by 

class SAR1 (0.023), which covers an area of 3.2%. This is followed by class SAR4 (0.016) which 

covers 45.8% of the total area (Figure 6.13g).  
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Figure 6.13 - Favourability and thematic layer class frequency of predisposing factors in Model 3, which uses 
half of 1/3 of the total MTDs length; a) Elevation, b) Slope gradient, c) Profile curvature, d) Plan curvature, e) 
Flow direction, f) Flow accumulation and g) Slope over area ratio. 
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6.4.2. Informative Value Scores (IV) 

Informative Value scores obtained from the three susceptibility models (Models 1 to 3) are 

summarized in Table 6.4. In bold are highlighted the highest favourability scores for the 

occurrence of MTDs for each variable. The values in red are classes for which it was not 

possible to compute IV scores due the absence of MTDs pixels in that classes (Si = 0) due its 

logarithmic transformation (see previous section). To fill this data gap while modeling, the 

minimum IV score registered in all the variables for each model was given to these areas. This 

procedure does not interfere in the computation of the models. The classes with higher IV 

scores i.e., that contribute more for occurrence of MTDs in the study area, differ as a function 

of the total area considered in the three models performed (Models 1 to 3).  

In Model 1 was considered the total length (and area) of MTDs in the study area and, based 

on the IV scores obtained, it is possible to state that the occurrence of MTDs was conditioned 

by local conditions. Local conditions of importance include an elevation between 100 – 300 m 

(namely elevation classes between 100 – 200 m), slope gradients between 1 and 2 degrees, 

and concave slope areas in both profile and plan curvature. Slopes that are most prone to the 

occurrence of MTDs are those flowing to SW, and secondarily to S and NW. In this model, the 

critical flow accumulation for the occurrence of MTDs occurs in the class >1000 and the most 

MTD prone slope over area ratio of ~0.  

Model 2 was performed using 1/3 of the total MTDs length. Favourable conditions for the 

occurrence of MTDs occurrence change in Model 2 when compared with Model 1, as initially 

expected. In this case, the ideal conditions for the occurrence of MTDs are elevation ranging 

from 500 to 600 m and, to a lesser extent, elevation ranging between 300 and 400 m. Slope 

gradient ranges from 1 to 6 degrees, with the 5-6° class being the most favourable to the 

occurrence of MTDs. Concave slopes are prone to generate MTD, when considered the profile 

and plan curvature, as also recorded in Model 1. The critical flow direction is S and SE, although 

NE-dipping slopes also appear as favourable to the occurrence of MTDs. The flow 

accumulation most prone to the occurrence of MTDs is >1000 and, to a lesser extent, class 
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100 – 1000. Regarding slope over area ratio two classes are highlighted in Model 2: 0- 0.00001 

and 0.00001 to 0.0001.  

Model 3 used only half of the length of the MTDs considered in Model 2, but results show that 

preferential conditions for the occurrence of MTDs are similar to Model 2. In Model 3, perfect 

conditions for MTD occurrence are elevation between 500 and 600 m and to a less extent, 

elevation between 300 and 400 m. Slope gradient plays a major role in Model 2, particularly 

within the class ranging between 5 and 6°. However, slope gradients between 2 and 5º are 

also favourable. As with Models 1 and 2, slope curvatures most prone to MTD occurrence are 

concave and their flow directions are essentially S, NW, N and SE. Flow accumulation class 

>1000 is the most favourable, while the class 0 is the most favourable regarding the slope over 

area ratio.  

 

Table 6.4 – Informative Value scores for each class of each variable for the three models proposed. 

  Informative Value 

Variable Class 
Code 

Model 1 Model 2 Model 3 

Elevation E1 
E2 
E3 
E4 
E5 
E6 
E7 

-2.527 
0.601 
0.286 
-0.495 
-0.118 
-0.237 
-2.527 

-3.393 
-3.393 
-0.542 
0.596 
-0.326 
0.877 
-3.393 

-1.868 
-1.868 
-1.868 
0.858 
-1.868 
1.171 
-1.868 

Slope 
gradient 

S1 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

-0.094 
0.128 
0.002 
-0.273 
-0.337 
-0.401 
-1.208 
-1.929 
-2.007 

-0.488 
0.136 
0.352 
0.182 
0.424 
0.577 
-0.075 
-0.937 
-0.869 

-0.586 
-0.004 
0.453 
0.643 
0.966 
1.209 
0.664 
-1.191 
-1.868 

Profile 
curvature 

PrC1 
PrC2 
PrC3 

0.035 
-0.113 
0.059 

-0.01 
-0.231 
0.182 

0.015 
-0.127 
0.090 

Plan 
curvature 

PlC1 
PlC2 
PlC3 

0.038 
-0.258 
0.0002 

0.095 
-3.393 
-0.044 

0.118 
-0.376 
-0.081 
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Flow 
direction 

FD1 
FD2 
FD3 
FD4 
FD5 
FD6 
FD7 
FD8 

-0.192 
-0.015 
0.234 
0.509 
0.237 
0.067 
-0.141 
-0.219 

-0.207 
0.168 
0.211 
-0.688 
-0.731 
-0.209 
-0.117 
0.024 

-0.381 
0.120 
0.393 
-0.562 
-0.358 
0.352 
0.183 
-0.174 

Flow 
accumulation 

FA1 
FA2 
FA3 
FA4 
FA5 
FA6 

0.008 
0.004 
0.001 
-0.009 
-0.080 
0.342 

-0.130 
-0.080 
0.060 
-0.004 
0.129 
1.094 

-0.132 
-0.065 
0.088 
-0.023 
-0.117 
1.014 

Slope over 
area ratio 

SAR1 
SAR2 
SAR3 
SAR4 
SAR5 

0.196 
-0.052 
0.001 
0.018 
-0.596 

-0.175 
0.049 
0.016 
-0.003 
-0.324 

0.430 
-0.103 
-0.085 
0.065 
-0.364 

 

6.4.3. Data integration and predictive maps 

Predictive maps are the final output derived from the integration of all steps previously 

described. Predictive maps represent the spatial distribution of the susceptibility of 

continental slopes for the occurrence of MTDs, considering the three models developed. The 

maps presented are computed based on the seven predisposing factors (variables) previously 

described: Slope gradient, Elevation, Profile curvature, Platform curvature, Flow direction, 

Flow accumulation and Slope over area ratio.  Thus, Figure 6.14 was computed using the total 

area of MTDs, as considered in Model 1. Figure 6.15 was computed with inventory used in 

Model 2. Finally, Figure 6.16 is presented based on the outputs of Model 3. The three models 

show a non-classified legend, sorted in descending order of favourability values (Figure 6.14, 

Figure 6.15 and Figure 6.16). From a preliminary visual observation, there are clear differences 

between the three maps. Nevertheless, one can observe the prominent influence of the same 

variables - Elevation, Slope gradient, Profile curvature, Flow direction, Flow accumulation and 

Slope over ratio - in the three models. 
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Figure 6.14 – Non-classified MTD predictive map for offshore Espírito Santo (SE Brazil), based on Model 1 (i.e. computed considering the total area of MTDs).  
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Figure 6.15 - Non-classified MTD predictive map for offshore Espírito Santo (SE Brazil), based on Model 2 (i.e. computed considering 1/3 of total MTDs length). 
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Figure 6.16 - Non-classified MTD predictive map for offshore Espírito Santo (SE Brazil), based on Model 3 MTDs group (computed with half of the area used before). 
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6.4.4. Validation – Success-rates 

The AUC values range from 0-1, considering that the quality of the model increases towards a 

value of 1 Guzzetti (2005). Models showing an AUC of 0.75 are “acceptable”, > 0.80 “very 

good” and >0.90 are considered “excellent”.   

The success-rate curves for Models 1 to 3 are displayed in Figure 6.17. As previously 

mentioned, the success-rate measures the goodness of fit assuming that the model is correct 

for the area analysed. Model 1 (dark blue line in Figure 6.17) was performed using the total 

area of the mapped MTDs and shows the lower goodness of fit. For Model 1, AUC is 0.657 

(66%). In Model 1, 30% of the area classified as most favourable to the occurrence of MTD 

validates 50% of the MTDs. However, the curve loses gradient in Figure 6.17, to validate all 

the MTDs it is necessary 90% of the study area.  

Regarding Model 2 (light blue line in Figure 6.17), AUC shows the model to perform better in 

comparison to Model 1. The goodness of fit for Model 2 is 0.747 (75%). Considering 50% of 

the area classified as most favourable to the occurrence of MTDs, Model 2 is valid for around 

85% of the MTDs area. Yet, the totality of the MTD area is only validated when 90% of the 

study area is reached.  

The Model 3 presents the highest goodness of fit, with an AUC of 0.862 (86%). The 30% of the 

area classified as most favourable to the occurrence of MTDs validates 90% of the MTD area, 

reaching the 100% with 55% of the total area. 

Through the AUC’s plots is observed Model 3 obtained the highest performance with 0.862 

(Figure 6.17). Considering the classification of Guzzetti (2005), this value plots within the “very 

good” class. Model 2 obtained 0.747 of AUC, which can be classified as “acceptable”, whereas 

Model 1 recorded an AUC of 0.657, which is below an acceptable class.  
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Figure 6.17 – Cumulative frequency diagram showing the cumulative MTDs occurrence (y axis) in the study 
area classified as susceptible in descending order. Success-rate curves of the final models are shown in the 
figure. 
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6.4.5. Sensitivity analysis  

Sensitivity analysis allows us to outline which predisposing factors are key to explaining the 

spatial distribution of a dependent variable (e.g. the MTD). It assesses the weight of different 

MTD predisposing factors within a statistically-based model (more detail is given in Chapter 

3). Therefore, Model 3 was chosen in this sub-section to run a sensitivity analysis, as it 

obtained the highest AUC value (0.862) from the three built models.   

 

Table 6.5 – Hierarchy of predisposing factors for MTDs occurrences, according to success rate curves and AUC 
(Area Under the Curve). 

 

Ranking Variable AUC 

1 Elevation 0.832 

2 Slope gradient 0.616 

3 Flow direction 0.584 

4 Plan curvature 0.542 

5 Flow accumulation 0.537 

6 Profile curvature 0.534 

7 Slope over area ratio 0.493 

 

 

 
Figure 6.18 – Cumulative frequency diagram showing the success-rate curves of the seven predisposing factors 
used in the Model 3. The curves are showing how each variable correlates spatially with the MTD.  
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Table 6.5 shows the hierarchy of predisposing factors with the highest contribution to the 

occurrence of MTDs in the study area. The hierarchy is selected through the AUC values for 

success-rate which were ran independently for each predisposing factor. Through these 

analyses it is observed that elevation is the predisposing factor which most greatly influences 

Model 3, with 0.832 of AUC. It is followed by slope gradient, showing 0.616 of AUC and the 

flow direction with 0.584 (Table 6.5).  At the bottom of the hierarchy appears slope over area 

ratio showing an AUC of 0.493.  

The results obtained demonstrate that the independent variables considered do not correlate 

precisely with the distribution of MTDs, as it is demonstrated by the AUC range obtained from 

0.493 (Slope over area ratio) to 0.832 (elevation). The ranking expressed in Table 6.5 was 

therefore used to define the relative importance of MTDs predisposing factors that support 

the model. Successive models were performed adding one additional variable to the model at 

each step following the raking previously archived. Results are summarized in Figure 6.19 and 

Table 6.6.  

The quality of MTDs predictive model demonstrates a slight tendency to improve with an 

increment of variables, as shown by the AUC values on Table 6.6. This is particularly true until 

the model is run with 4 variables, from which moment a maximum AUC of 0.861 is achieved. 

After that, the increment of variable does not increase the predictive performance of the 

Model 3 (Table 6.6). Success curves represented in Figure 6.19 show that all models tend to 

behave very similar, whereby if we consider 30% of the area classified as most favourable to 

the occurrence of MTDs, the predicted result are similar in all models with the different set of 

variables (90%). This behaviour demonstrates the low sensibility of MTDs prediction to the 

increasing number of MTDs predisposing factors considered 
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Figure 6.19 – Success rate curves corresponding to MTDs models obtained using 2 to 7 predisposing factors 
selected according the sensitivity analysis (2 variables = E+S; 3 variables = E+S+FD; 4 variables = E+S+FD+PlC; 5 
variables = E+S+FD+PlC+FA; 6 variables = E+S+FD+PlC+FA+PrC; 7 variables= model 3) 

 

 

 

Table 6.6 – Area under the curve (AUC) of success rate curves corresponding to the model 3 obtained using 
from 2 to 7 predisposing factors. 

Variable AUC 

2 variables (Variable Id: E+S) 0.8543 

3 variables (Variable Id: E+S+FD) 0.8603 

4 variables (Variable Id: E+S+FD+PlC) 0.8619 

5 variables (Variable Id: E+S+FD+PlC+FA) 0.8619 

6 variables (Variable Id: E+S+FD+PlC+FA+PrC) 0.8616 

7 variables (Variable Id: E+S+FD+PlC+FA+PrC+SAR) 0.8615 
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6.5. Discussion  

6.5.1. Depositional surface, predisposing factors and modelling 

The rationale for the work presented in this chapter is based on many studies for landslides 

susceptibility analyses onshore, which is part of the conceptual model of risk (e.g. van Westen 

et al., 1997, Guzzetti et al., 2006, Thiery et al., 2007, van Westen et al., 2008, Blahut et al., 

2010, Guillard and Zezere, 2012, Pereira et al., 2012). Based on the conceptual model of risk, 

the existence of a topographic surface is crucial as a proxy of the Digital Terrain Model (DTM) 

from onshore studies, in order to compute a set of derived variables that could be used in GIS 

for that propose. Whereby, the follow step was to map a depositional surface which can be 

used to reproduce the topography and can be used as a DTM. This concept was previously 

applied to marine studies (e.g. Micallef, 2011).  

The depositional surface mapped in this work was chosen based on two key aspects, already 

pointed out in the chapter 5. The first was the necessity of mapping a high-amplitude, 

regionally significant seismic reflection in the entire study area. Secondly, the possibility of 

mapping all the different MTD bodies immediately above the interpreted seismic reflection. 

Using a depositional surface mapped becomes crucial to the analysis in this chapter as it 

should represent the topography before the instability event occurs; in other words, it should 

not only reflect the slope instability morphology but the terrain attributes which were present 

before the occurrence of the MTDs. In onshore studies, a DTM is used to analyse the 

topographic features that are favourable to instability. In a previous work, Clerici et al. (2010) 

discussed a better approach for susceptibility studies, pointing out that some factors such 

slope angle, aspect or curvature may be modified by the occurrence of slope instability events, 

so the morphology present when the topographic/bathymetric/seismic survey is acquired can 

be substantially different from the pre-instability conditions. In such a case, some authors 

suggested and agreed that the factors values should be acquired in undisturbed areas, 

immediate surrounding the unstable areas (Clerici et al., 2002, Clerici et al., 2010) unless the 

morphometric parameters in those areas do not relate at all to the reality of pre-failure slope 

conditions.  
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In this work, the surface was used as a DTM and was integrated into a GIS software. Seven 

variables in raster format were computed to archive the predisposing factors that were 

present and more contributed to the occurrence of MTDs offshore Espírito Santo. The 

predisposing factors derive from the surface mapped and later integrated into the GIS 

software. The variables are precisely defined and comprehensively used in onshore studies 

(e.g. Soeters and Van Westen, 1996, van Westen et al., 1997, Cees J. van Westen, 2008, Zêzere 

et al., 2009, Piedade et al., 2010, Blahut et al., 2010, Pereira et al., 2012). However, similar 

offshore studies are scarce and lack terms of comparison between distinct continental slopes. 

Micallef et al. (2007) pointed out four morphometric maps used in the Storegga Slide using 

GIS terrain delivery attributes. They were slope gradient, slope aspect, profile curvature and 

plan curvature, apart from shaded relief. This work went beyond Micallef et al. (2007) to use 

seven morphometric variables, considered as predisposing factors to the occurrence of MTDs 

offshore Espírito Santo. The criteria to choose the variables to use into the bivariate is based 

on the mentioned studies that had proven to be capable to determinate area where the slope 

movement are more prone to occur. The variables are elevation, slope gradient, planform 

curvature, profile curvature, flow direction, flow accumulation and slope over area ratio. This 

work used data exclusively derived from the seismic volume interpreted - local information 

such as lithology were insufficient to interpolate and create a map containing its spatial 

distribution, due the insistence of data wells over the study area, which is a pitfall of this study.  

The models were computed using three different areas of the same inventory. Clerici et al. 

(2010) pointed out that this kind of studies can identify the conditions under which the 

instability events are generated. This way, the favourability analyses have to be restricted to 

the areas from where the mass movement originated, i.e. the rupture zones. Other authors 

(Chung and Fabbri, 2005, Guillard and Zezere, 2012) stressed this same limitation, but 

concluded that modeling the favourability of slopes to the occurrence of mass movements 

using data from different areas does not affect the final results. To confirm this latter 

postulate, the model used three different MTD zones obtained from the same inventory.  

Based on this, the reason to model 3 different areas was to try getting close of what is believed 

to be the rupture zone and consequently to the area where the movement starts even without 

knowing exactly how much displacement it can present. The use of the total area (Model 1) is 

not considered as the most correct approach for most authors because the predisposing 
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factors are estimated also for the accumulation zone, which is affected by the arrival of 

depleted material from up-slope source areas. In this case, the conditions present in the 

accumulation zone are erroneously considered to be prone to sliding (Clerici et al., 2010). 

Acknowledging the latter caveat, the data inventory was reduced to 1/3 of the total length in 

Model 2, getting close to excluding the depletion zones of the interpreted MTDs (Figure 6.1). 

This improved substantially the quality of Model 2 when compared to Model 1. However, the 

best performance was achieved by Model 3 by using half of the length of Model 2.  

To understand how valid the models compiled in this work are, a validation was performed 

via the estimation of success-rates and corresponding Area Under the Curve (AUC) values 

(Fabbri et al., 2002, Zêzere et al., 2008, Vorpahl et al., 2012). The success-rate results obtained 

are considered very positive. As was expected, modelling using the total area (Model 1) 

obtained the poorest predictive capacity of 0.657 (66%) for the three models, followed by the 

model using 1/3 of the total length of MTD (Model 2) which improved success-rates to 0.747 

(75%). Success-rates were even better when the study area was reduced to half of the 

previously length in Model 3, which showed an AUC of 0.862 (86%). The last two models are 

considered in Guzzetti (2005) classification, as “acceptable” and “very good”, respectively. The 

models performed using an inventory collected with the area believed to be more closest to 

the rupture zone calculated the best predictive model.  

Following the results of Models 1 to 3, it was decided that identifying what predisposing 

factors have more weight on the occurrence of MTDs offshore Espírito Santo Basin was 

important. As a result, a sensitivity analysis was undertaken crossing each variable 

(predisposing factors) individually with the inventory of MTDs used in Model 3 (which 

obtained the best predictive capacity), and the computation of success-rates and AUCs for 

each individual variable (Chung and Fabbri, 1999, Zêzere et al., 2008, Blahut et al., 2010, 

Pereira et al., 2012). The results obtained demonstrate that the independent variables 

considered do not contribute equally to explain the distribution MTDs in the study area, 

showing AUCs ranging from 0.493 to 0.832 (Table 6.4). Moreover, according to the AUC 

records, Elevation and Slope gradient are the variables that better correlate with the spatial 

occurrence of MTDs, showing AUCs of 0.832 and 0.616, respectively. Elevation is not often 

used as a predisposing factor; yet some authors have considered elevation as a predisposing 
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factor valid enough to be included in the models (e.g. Remondo et al., 2003, van Westen et 

al., 2008). In this analysis, elevation was included on all the modelling sets, and is revealed as 

the variable with higher prediction performance in Model 3. Slope gradient is generally the 

variable that most contributes to explaining slope instability (e. g. Remondo et al., 2003, 

Piedade et al., 2010, Pereira et al., 2012), but its recorded in this work as showing less 

predictive capacity when compared to Elevation (Table 6.4).  

The ranking of variables was performed to understand which variables add more weight to 

the final model, but also to understand which are the best variable combinations. The capacity 

of the predictive models does not tend to improve with the increment on the number of 

variables within the model, as showed by the AUC distribution in Table 6. Thus, the models 

performed using four variables (Elevation, Slope gradient, Flow direction and Plan curvature) 

show the highest AUC (0.861). The results mean that the increment of variables in the MTD 

predictive models do not necessarily generate better success rates.   

With this in mind, the results obtained by the validation exercise match the bibliography. The 

validation exercise in this chapter does not necessarily represent an improvement on the 

predictive capacity of the models, but success rates and AUC analyses help to discriminate the 

importance of each variable within the models considered in slope stability assessments 

undertaken using 3D seismic data.  

As last and despite the good result, need to point out that due the small population of MTDs, 

the models presented in this chapter did not consider separately the different types of MTDs 

identified in the study area. In onshore studies, different types pf slope movements have been 

modelled separately based on the assumption that different slope movements are caused by 

different natural conditions (van Westen et al., 2008, Pereira et al., 2012). As it was identified 

in chapter 5, this work identified two types of MTDs, which in case of larger populations, need 

to be modelled separately in order to improve the predictive results.  
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6.5.2. Applicability of the methodology to submarine slopes 

Theoretically and practically, the methodology proposed in this chapter has positive results 

on onshore studies, which has been extensively used and included in land management, urban 

planning and natural hazards prediction (Carrara et al., 1999, van Westen et al., 2003, 

Malamud et al., 2004, Pereira et al., 2012). Yet, the applicability of this method to submarine 

environments cannot simply be taken for granted. To apply statistical methods used on land 

to submarine environments, some assumptions have to be made when collecting and 

integrating basic morphological data. This work proposes the acquisition of 

topographic/morphological information through the mapping of palaeosurfaces represented 

as high-amplitude seismic reflections on 3D seismic data. The results confirm that the 

methodology adopted constitutes a valid approach; it nevertheless needs to take into account 

the resolution of the interpreted seismic volumes. Even when using high resolution seismic, 

topographic details can be partly lost by incorrect processing techniques and seismic artifacts 

(Marfurt and Alves, 2015) or simply by seismic vertical and horizontal resolution. The 

statistical bivariate analysis used in this chapter can be used in the assessment of offshore 

slopes and it may have better results if applied, for instance, to instability events at the 

seafloor mapped through bathymetry techniques such multibeam echosounders, sidescan 

sonars, interferometric sonars, seabed video systems, landers and sediment samples. Which 

are the sources of data of the most published studies (e.g. McAdoo et al., 2000, Urgeles et al., 

2006, Mosher et al., 2010, Rodríguez-Ochoa et al., 2015, Moscardelli and Wood, 2015).  

Submarine slopes have been comprehensively studied from multiple points of view. Mass 

movements have gained the attention of academia and industry, but most studies have 

focused on the sedimentary processes that result from slope instability, e.g. submarine 

landslides, MTDs, MTCs, slumps, debrites, etc. (e.g. Frey Martinez et al., 2005, Moscardelli et 

al., 2006, Moscardelli and Wood, 2008, Gamboa et al., 2010). Amongst these studies, Micallef 

et al. (2007) proposed the applicability of subaerial quantitative geomorphological techniques 

to submarine environments, opening an important research field in the direction of the 

rational and methodology presented in this chapter. It was by taking into consideration the 

know-how derived from onshore studies, namely knowledge associated with the compilation 

of predictive models to explained landslides susceptibility, that this work took a step further 
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by applying it to palaeo-MTDs offshore Espírito Santo, SE Brazil. The main advantage of the 

methodology presented in this chapter is the possibility of understanding which variables (or 

predisposing factors) are capable of better predicting the location of future slope instability 

events.  

Geographic information Systems (GIS) are very suitable for indirect landslide hazard 

assessments, in which all possible terrain factors contributing to slope instability are combined 

within a landslide inventory map using data integration techniques (van Westen et al., 2003). 

In addition, Chung and Fabbri (1999) developed statistical procedures under the name of 

‘predictive modelling’, applying favourability functions on individual parameters. Using this 

statistical methods, terrain units or grid cells can be adjusted to new values representing the 

degree of probability, certainty, belief or plausibility that the respective terrain units or grid 

cells may be subject to a particular type of landslide in the future. (van Westen et al., 2006) 

pointed out a number of drawbacks of this approach. One of these drawbacks is the fact that 

most methods simplify the factors that condition landslides by using only the variables that 

can be relatively easily mapped in an area, or derived from a DTM. Another problem also 

identified in the literature is related to the fact that each instability event (and type) will have 

its own set of predisposing factors and should be analysed individually. Different typologies 

need to be modelling separately. In this study, due the restriction of MTDs population (four), 

the models were computed not taking it into consideration, which can create more 

uncertainties to the final results. For the same reason, the models were validated through the 

success-rate (same inventory to model and to validate), which assess the goodness of fit of 

the MTD to the final model. In case of larger inventory, the predictive-rates that use a different 

inventory to model run and validation, the result are more accurate in predicting where MTDs 

will occur in the future, under the same geomorphologic conditions.  

The bivariate statistical models, including the Informative Value presented in this thesis, still 

limited from geomorphological point of view, even when applied to onshore studies. Its expert 

dependency is very high because its good performance strongly depend from the inventory 

quality. When applied to offshore the uncertainties are even higher, because it still dependent 

of the expert knowledge about geomorphologic process but also from seismic resolution and 

expertise if the interpreter to produce a reliable mass movement inventory, which is crucial 

to model quality. This fact, is also important because statistical models are very sensitive to 
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the number of cells (pixels, in this case) that overlap the variables, once again responding to a 

quality of the inventory, which should have as must movements as possible and separated by 

typology.  

6.6. Conclusions 

The primary conclusion of this chapter is that the new methodology presented within this 

study can be positively applied to offshore slope instabilities, as the goodness of fit of the 

models was favourable. However, detailed observations about the best ways to apply this 

method need to be point out.  

- The technique of mapping a depositional surface from a 3D seismic survey is a valid 

method and it can be used as topographic database. The horizon needs to be a 

relatively high-amplitude reflection and should be possible to follow throughout the 

entire study area.  

- The data that can be extracted from a seismic volume have to be carefully considered. 

Most mapping techniques are unable to extract very detailed morphological features, 

due the limitations in seismic resolution.  

- The bivariate statistic Informative Value (IV) method was revealed to be applicable to 

submarine environments. It was observed that models responds differently according 

the type and detail of MTD data provided to the model.   

- The three models compiled were assessed via the analysis of success-rates and 

computing the Area Under the Curve (AUC). The assessment reveals that Model 3, 

which contains the MTDs area of which is believed to be the closest of the rupture 

zone, shows a highest AUC of 0.86. According (Guzzetti, 2005), this value can be 

classified as “Very good”.  

- The model performed using the set designed by Model 2 revels an AUC of 0.747, which 

following the classification above mentioned is on the lower threshold considering 

“acceptable”. The model performed using the total MTD area (Model 1) reveals the 

poorest AUC (0.657). The results fit the expectations that modelling using the entire 

MTD body does not exactly reflect the predisposing factors at the rupture zone, where 

MTDs started. 
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- Sensitivity analysis performed to the model which obtained the highest AUC (Model 

3), indicate that elevation and slope gradient are the most important variables in MTD 

initiation. 

- Elevation is the variable that most contributes to the explanation of the MTDs in the 

study area, which is clear by marking the zonation of MTD occurrence in the predictive 

models (Figure 6.14, Figure 6.15 and Figure 6.16). This unusual result (considering 

onshore studies) will be under discussion in chapter 7.  
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7.1. Discussion 

The preceding chapters in this thesis have presented a new approach to the use of 

morphometric attributes in a sedimentary basin, the Espírito Santo Basin, using as base 

information high-resolution 3D seismic data.  

In this section, the key scientific results from the three core result chapters (chapter 4, 

5 and 6) are summarised and discussed to address the main research hypotheses in this 

thesis. The core result chapters are structured into two main themes. Chapter 4 

addresses the last stage of deformation in areas with important halokinesis, highlighting 

the most significant structural deformation styles in tectonic raft and overlying 

stratigraphic units (Figure 7.2). It also describes how raft tectonics and halokinesis shape 

the seafloor and the Espírito Santo Basin per se, mainly through the formation (and 

reactivation) of faults. Chapters 5 and 6 presented a methodology to use seismic data 

into Geographic Information Systems (GIS), and later compute morphometric attributes 

for the analysis of mass-transport deposits (MTD). Chapter 5 identified two different 

types of MTDs and how local topography and bathymetric barriers can influence their 

movement and deposition on a Depositional surface. A combination of 3D seismic 

images, seismic attributes and GIS tools were used in chapter 5. The last data analysis 

chapter (chapter 6) proposed a new approach, using data acquired in the seismic 

environment into GIS and data integrated through a bivariate statistical method to 

obtain favourability scores to spatial occurrence of the MTDs. This step was achieved by 

using a set of variables related to the topography that were spatially related with 

location of MTDs. 

The general limitations encountered during this project are highlighted, and future work 

is suggested at the end of this discussion.  
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7.1.1. Summary of the results from technical chapters 

After the rationale of this thesis (chapter 1), three data analysis chapters were presented 

with novel data and analyses. Preceding these, the summarised chapters are introducing 

the main subjects of the discussion. In Figure 7.1 is presented a cross-session, which 

contains the actual configuration of the ESB, where the relative location of the 

interpreted geological bodies in the wider Espírito Santo Basin is highlighted.  

 

 

 

Figure 7.1 – Line cross-session representing the actual configuration of Espírito Santo Basin. The red and 
purple boxes are indicating where the main chapters of this thesis focus on relative to the cross-session. 
Purple box: chapter 4 and red box: chapter 5 and 6.  
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Chapter 4: Structural styles of Albian rafts recording tectonic reactivation and late 

halokinesis in offshore Espírito Santo Basin 

Six rafts tectonics were identified through the mapping of high-amplitude seismic 

reflections corresponding to the base and top of tectonic rafts in the Espírito Santo Basin 

(Figure 7.2). The mapping of distinct horizons allowed the acquisition of structural data 

that was used later in chapter 4 to characterise the gliding and deformation styles of 

rafts vs. the thickness of post-raft overburden units in the Espírito Santo Basin. Raft 

tectonics are the last stage of deformation in regions with salt tectonics, and their 

evolution is usually prolonged in time (Alves, 2012). The extreme deformation observed 

resulted from prolonged salt withdrawal and fragmentation (and gliding) of tectonic 

rafts on an oversteepened continental slope. This fact resulted in the movement of rafts 

and generation of complex sets of faults - which were identified in section in the chapter. 

In addition, the study area records an important tectonic imbalance between 

overburden loading and slope gradient due to the multiple Andean tectonic phases that 

affected SE Brazil from the Cretaceous onwards. As a result, different types of raft 

deformation were identified in the study area. Stratigraphic units above were also 

influenced by deformation in underlying rafts.  Methodologically, horizon mapping and 

structural measurements were the most important techniques applied in this chapter, 

and results show that the Albian rafts were deformed by withdraw of Aptian salt 

underneath - a phenomenon leading to the rafts' collapse and welding onto pre-salt 

units. This result is very important and enhanced connectivity between pre-salt and 

post-salt units. It also shaped the basin and influenced the post-raft overburden in 

depositional and stratigraphic points of view. 
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Figure 7.2 - Summary of the main findings and results from the technical chapter 4
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Chapter 5: Palaeogeomorphological controls on mass-transport deposits (MTDs) offshore 

Espírito Santo Basin  

Chapter 5 focused on the study of two types of MTDs. These MTDs were similar to submarine 

slope movements previously discussed in the literature (Frey-Martínez et al., 2006). The two 

MTDs are distinct in their dimensions, kinematic features and run-out distances on the 

Espírito Santo continental slope (Figure 7.3). The main contribution of this chapter relates to 

the identification of two different slope movements, which were markedly controlled by local 

topography where they occurred. In this thesis, the surface on which the MTDs were settled 

or reposed was named Depositional surface. The principal methods used in chapter 5 were 

the mapping of the basal and upper surfaces of interpreted MTDs, and of computation of the 

Depositional surface in a 3D seismic environment to be later imported into GIS. Both were 

the basis of the analysis and lead to computation of terrain morphometric attributes on from 

the Depositional surface as a raster file.  The faults identified in the previous chapter were 

also brought to the discussion and pointed out as an important factor controlling the size and 

geometry of MTDs in the study area.  

Two types of MTDs were identified in chapter 5. MTD A – Confined which show kinematic 

indicators that suggest topographic barriers confining its shape; and MTD B – Unconfined that 

appear larger than the previously type, with free translation downslope, without any 

apparent local topographic barriers.  

 

 

 



Discussion and Conclusions                                                                                                                                                                                                                          Chapter 7 

209 
 

 

 

Figure 7.3 - Summary of the main findings and results from chapter 5. 
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Chapter 6: Favourability scores for the occurrence of mass-transport deposits (MTDs) 

offshore Espírito Santo  

The aim of chapter 6 was to understand the natural conditions that are favourable to the 

occurrence of MTDs in the study area.  Seven predisposing factors were computed from the 

topographic layer (Depositional surface) derived from chapter 5. Four MTDs were considered 

to the inventory, including the two types (MTDs A and B) previously identified (Figure 7.4). 

The spatial integration of the predisposing factors with the inventory was based on a statistics 

bivariate method (Informative Value), which assumes that the likelihood of and MTD to occur 

can be measured by a statistical relationship between past events and specified spatial 

datasets. In order to stress the scientific meaning of this method, the results were validated 

and the predisposing factors were ranked according to their contribution to explain the MTD 

spatial distribution, allowing for the computation of a sensitive analysis. The best Area Under 

the Curve (AUC) was recorded by model 3 (AUC = 0.862). 

The top three predisposing factors that most contribute for the occurrence of MTDs in Espírito 

Santo Basin are elevation, slope gradient and flow direction, independently on the model 

considered.  
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Figure 7.4 - Summary of the main findings and results from the technical chapter 6. 
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7.2. Salt and raft tectonics influencing the deformation of 

overburden strata  

Regardless of the results obtained in chapter 4, the key additional finding in this thesis is that 

the long-term stratigraphic organisation of the upper slope area was influenced by salt 

withdrawal and raft tectonics. Both were capable of enhancing local sediment 

accommodation space, seafloor deformation and faulting. Controls on accommodation and 

fault patterns have a crucial impact on upper slope deposition patterns, as documented in 

areas of salt and raft tectonics offshore Angola (Anderson et al., 2000, Rouby et al., 2002, Fort 

et al., 2004, Olafiranye et al., 2013), Brazil (Demercian et al., 1993, Fiduk et al., 2004, Baudon 

and Cartwright, 2008, Alves et al., 2009, Alves, 2012, Garcia et al., 2012, Mohriak et al., 2012), 

Gulf of Mexico (Rowan et al., 1998, Rowan et al., 1999, Rowan et al., 2012, Rowan, 2014, 

Pilcher et al., 2014) and also in Northwest Europe (Penge et al., 1999).  

The evolution of the Espírito Santo Basin was highlighted in chapter 4, which shows that 

accommodation space for overburden sediment was triggered by the reactivation and 

consequently salt withdraw and raft deformation. 

7.2.1. Faulting associated with raft tectonics in the Espírito Santo Basin 

Raft tectonics triggered a set of faults, which are documented in chapter 4 and in the 

literature focusing on the Espírito Santo Basin (Fiduk et al., 2004, Alves et al., 2009, Alves, 

2012, Omosanya and Alves, 2014). Fiduk et al. (2004) stated that this additional element had 

a significant impact in shaping the architecture of the Espírito Santo Basin; in a first stage, due 

the deposition of Aptian-age salt and its later withdraw into rollers, diapirs and tongues during 

gravitational failure of the margin, it influenced the deposition of overlying and surrounding 

strata. At a later stage, due to further salt withdraw and raft deformation, it generated welds 

between Albian strata and pre-salt sequences. The details of raft deformation and 

compartmentalisation were presented and discussed in chapter 4. This discussion focus on 

the importance of deeper (raft-related) structures in controlling slope depositional systems, 
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and deformation of near-seafloor strata, which is believed to have triggered slope instability 

across the Espírito Santo Basin .  

Faults near the palaeo-seafloor were triggered in discrete episodes throughout the Cenozoic 

(Omosanya, 2014). They are observed in different horizons, as shown in Figure 7.5. Faults 

propagated through the post-raft overburden, affecting and shaping it and interacting in slope 

movements, particularly above or adjacently to rising salt structures and rafts (Omosanya and 

Alves, 2014). Despite this latter fact, fault growth did not affect directly the MTDs 

documented in chapters 5 and 6. However, even if faults do not affect direct horizon 7 and 

MTDs interpreted in the study, they created extensional forced-folds at the base of the MTDs. 

In some areas, seabed topography beneath the MTD was also significantly changed due to 

the propagation of faults at depth, leading to local slope oversteepening (Figure 7.5). 

 

 

 

Figure 7.5 – Schematic representation of how the salt and raft tectonics controlled deformation in the post-
raft overburden units. The MTDs in focus in this thesis are located right above horizon 7. Dashed lines in grey 
colour are highlighting the forced-folds created by the growth of underlying faults (modified from Omosanya 
and Alves, 2014). 
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Figure 7.6 – Illustration of horizons above tectonic rafts and how faults rooted in Albian rafts propagated into 
the Cretaceous and Cenozoic overburden, up to horizon 7. Horizon 7 corresponds to the depositional surface 
used in chapters 5 and 6.  
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7.3. Offshore slope instability 

Chapters 5 and 6 aimed at developing a set of methodologies to improve our understanding 

about submarine slope instability under a set of natural conditions. The starting point was the 

previous knowledge of submarine slope instability occurrences in the area, which show 

different aspects, different stratigraphic ages and are distributed in different areas within the 

Espírito Santo Basin (Alves, 2010, Gamboa et al., 2010, Omosanya and Alves, 2013a, 

Omosanya and Alves, 2013b, Omosanya and Alves, 2014). The fact that the Espírito Santo 

Basin is a well-documented area of slope instability was key to this study, which assumed that 

existing natural conditions were favourable to their occurrence. 

 

7.3.1. Three-dimensional (3D) seismic data as source of information to 
compute morphometric attributes  

A three-dimensional (3D) seismic volume was the main source of data for the new 

methodologies proposed in this thesis (chapter 2 – Data and Methods). Horizon mapping and 

their transformation into surfaces constitute a simple but crucial process during seismic 

interpretation, allowing the use of these same surfaces as a topographic indicator (i.e., a proxy 

to Digital Terrain Models), after being converted from time-depth (TWTT) to true depth (m).  

The seismic volume used in this thesis (BES-100) comprises a high-resolution volume, which 

means it can be used in geomorphologic studies, not only on the seafloor, but also using 

mapped horizons of different ages and features, as undertaken in this study. The palaeo-

horizon mapped and converted into a surface (depositional surface) turned out to be the most 

import dataset explored in this thesis.  

Initial assessments of slope instability, in a given area, are often attained by documenting 

geomorphological features that indicate a slope has been affected by catastrophic events in 

the past (Locat and Lee, 2002). In this thesis, the computation of maps that document slope 

instability features on the seafloor has been used to document morphometric attributes and 

characterise multiple features, including slope movements that occurred previously, mostly 

on the seafloor (McAdoo et al., 2000, Micallef et al., 2007, Micallef, 2011, Haneberg et al., 

2015), as well as topographic accidents on the modern or palaeo-seafloor.  
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In other words, the advantages of using a seismic dataset in this thesis included the 

acquisition of information that usually are only available for seafloor features, in offshore 

studies, and from Digital Terrain Models (DTM) from onshore studies. The information that 

was obtained included: i) topographic information from a seismic horizon across a given area 

on the continental slope, which was converted into raster format to compute morphometric 

parameters; and ii) an inventory of MTDs after mapping their basal surfaces, their upper 

surfaces, any kinematic indicators and sizes. These two elements constitute the crucial basis 

for the methods applied in chapter 5 and 6. 

7.3.2. Favourability scores for the occurrence of MTDs  

The method used to study the spatial distribution of MTDs was the Informative Value, which 

is based on the concept of favourability function (Chung and Fabbri, 1993, Fabbri et al., 2002). 

This concept assumes that the likelihood of a mass movement to occur can be measured by 

statistical relationships between past events and specified spatial data sets. This technique 

assumes that any slope movement occurs under particular conditions, and can be 

characterised by a set of spatial sets - the called independent predisposing factors (Zêzere et 

al., 2004).  

The methodology proposed aims to understand which predisposing factors from the 

considered slope have the major influence on slope failure when specific trigger factors occur 

along the Espírito Santo Basin. The methodology is based on the assumption that the past is 

the key to the future.                                                        

7.3.3. Validity of predisposing factors for the occurrence of MTDs  

It is common practice to distinguish between predisposing and trigger factors to understand 

the occurrence of MTDs (Zêzere et al., 1999, van Westen et al., 2008, Rodríguez-Ochoa et al., 

2015). Therefore, a geodatabase containing MTDs predisposing factors was created in this 

work to allow the quantification of relationships between MTDs and the key 

geomorphological characteristics of the terrain (Carrara et al., 1982).  

Spatial information that better represents topographic and geomorphological characteristics 

was computed for the entire study area. The predisposing factors that are normally used for 
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the kind of studies mostly depend on the typology of slope movements and the availability of 

existing data and resources (van Westen et al., 2008). Nevertheless, the digital representation 

of the topography is crucial for the models, because it constitutes the base to compute 

morphometric attributes. In this thesis, the mapped depositional surface was the only source 

of topographic information and was used as a DTM. The accuracy of the resulting DEM 

depended on the resolution of the seismic cube (vertical between 15.6 and 19.35 m and 

horizontal 12.5m, see chapter 3) and on the accuracy of the horizon mapping, which was done 

every 3 lines (inline and crossline), contributing for a very accurate output information. 

However, erosion in this same seismic horizon constituted the main problem controlling its 

accuracy at a local scale.  

After obtaining the DTM, all the information was derived from the same elevation layer, 

following previously studies on onshore slope instability (Remondo et al., 2003, van Westen 

et al., 2006, van Westen et al., 2008, Thiery et al., 2007, Pereira et al., 2012), and from 

offshore studies (Micallef et al., 2007, Micallef, 2011, Baeten et al., 2013, Rovere et al., 2014). 

These studies used the topography of the seafloor as the base of their information. The use 

of seismic reflections to build a palaeo-topographic map that was used to study palaeo-slope 

movements is a novel method, where the terrain attributes, as derived from the DTM, are 

used as proxies for the natural factors present at the time of slope failure. By creating spatial 

representations of the predisposing factors as predictors for slope instability, the same maps 

could be (as morphometric attributes) integrated and used to compute favourability scores, 

resulting in final predictive maps.  

 

7.3.4. Predictive models for MTDs occurrence in the Espírito Santo 
Basin  

Favourability scores for the occurrence of MTDs were computed by integrating the data with 

a bivariate method, the Informative Value (Yan, 1988, Yin and Yan, 1988). In chapter 6, three 

models were ran to test the hypothesis that the increase of slope movement area used in a 

prediction model is not directly related to an increase in predictive rates (Blahut et al., 2010, 

Oliveira et al., 2015).  The rationale was that due to their water content, slope movements 

achieve larger run-out areas in submarine environments than onshore (Blahut et al., 2010). 
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This means that the rupture zone may be a more accurate parameter for predictive models 

in submarine environments. This fact has already been tested in onshore analyses (e.g. 

Oliveira et al., 2015). In other words, the run-out area does not truly express the predisposing 

conditions responsible for the failure of MTDs in submarine environments.  

Based on this rationale, three models were performed: Model 1 (for the MTDs total area) 

returned an Area Under the Curve (AUC) value of 0.657; Model 2 (for 1/3 of the total length 

of the MTDs) resulted in an AUC of 0.747; and Model 3 (half of the length of the Model 2) 

recorded an AUC of 0.862. Model 3 obtained the best predictive rates, which is classified as 

“good” following Guzzetti (2005) classification. MTD length and the area deemed unstable 

was reduced for which is believed to be the rupture zone (headscarp domain). Judging from 

AUC rate, this reduction in scale is proved correct and Model 3 reflects the accurate conditions 

for the occurrence of MTDs in the Espírito Santo Basin.  

In chapter 5 the geomorphological approach led to the identification of the MTDs probable 

headscarp domain (or rupture zone), by using information from their basal topographic 

surface (Figure 7.7 and Figure 7.8). It means that by reducing the length, and consequently 

the area of the inventory, the favourability scores derived from Model 3 are more accurate in 

taking the natural slope conditions existing when the instabilities occur. It also demonstrates 

that the same types of slope movements were prone to fail in areas where the same 

conditions are present, i.e. an elevation between 500 - 600 m and 300 - 400m. Slope gradients 

also play an important role particularly within the class ranging between 5 and 6°. However, 

slope gradients between 2 and 5o are also favourable to the occurrence of MTDs. Slope 

curvatures that are most prone to MTD occurrence are concave and their flow directions are 

essentially S, SE, NW and N. Flow accumulation classes larger than 1000 are the most 

favourable, while class 0 is the most favourable regarding the slope over area ratio. 
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Figure 7.7 – Topographic profile of the basal surface of Confined MTD A, highlighting the length used the three 
models. Model 1, computed with total area; Model 2, computed with 1/3 of total length and; Model 3, half of 
the length of the model 2. In the figure is also identified the considered limits of headwall scarp domain and 
run-out. 

 

 

 

 

Figure 7.8 - Topographic profile of the basal surface of Unconfined MTD B, identifying the length used the 
three models. Model 1, computed with total area; Model 2, computed with 1/3 of total length and; Model 3, 
half of the length of the model 2. In the figure is also identified the considered limits of headwall scarp domain 
and run-out. 
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An important result of this thesis is that the quality of the prediction models does not 

automatically increase with an increase in the number of variables assumed as predisposing 

factors and included into the predictive model. This fact was demonstrated in chapter 6, 

where an increase in the number of variables did not increase the AUC values for Model 3. 

The model was applied individually for each variable of each model (Table 7.1) and computed 

success-rates where used to understand the behaviour and contribution of each variable 

within each model.   

A sensitivity analyses was made to assess the weight of the different variables. They revealed 

elevation as the greater contributor for the model (0.832 AUC). Model 3 showed the best 

performance (0.862 AUC) overall, a result that is clearly visible in the predictive maps in 

chapter 6 showing the spatial distribution of favourability scores. Figure 7.9 shows the 

predictive map of Model 3, where the spatial distribution of the favourability score is marked 

by the elevation. The map shows that elevation is the key predisposing factor for the 

occurrence of MTDs.  
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Figure 7.9 – Predictive Model 3 where is visually identifiable that elevation is the variable that most contribute 
for the computation of the predictive model, by it clear denotation of given highest favourability band on the 
predictive image.  

 

 

A similar trend is observed in the other two models, Models 1 and 2 (chapter 6). Elevation is 

the variable that contributes more for the occurrence of MTDs in Models 1 and 2, and it is 

clearly independent on the inventory used to run the models. Elevation by itself is not often 

an important parameter for occurrence of slope movements, or can even seldom be 

considered in this type of exercise, simply because it can be represented by the input of other 

variables in the models. The fact that elevation is the variable that most contributes to the 

models can be related to multiple factors such as local geology - different lithological facies 

that can be present in different elevations to favour to the occurrence of MTDs, which cannot 

be proved due to missing detailed lithological data. Salt tectonics is another important 

phenomenon playing an important role in shaping the Espírito Santo Basin. Overburden 

accommodation space is responsible by the sediment remobilisation and deposition, which 

can be more frequent in specific elevation sets due the location of the fault or week 

sedimentological layers.  
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Another reason that can explain the results obtained for the elevation variable is the influx of 

sediments coming from the shelf edge, acting as an 'external' force on the slope or 

constituting a weak layer prone to glide when triggered by an external factor.  Hühnerbach 

and Masson (2004) documented, in the western Canary Islands, that the greatest number of 

submarine landslide headwalls occurs on the mid-slope, with a peak at 1000 – 1300 m water 

depth, rather than at the shelf edge or upper slope as one might be expect. The results of 

predictive models obtained in this thesis for the Espírito Santo Basin are in line with 

Hühnerbach and Masson (2004) findings - the headscarp of the interpreted MTDs are located 

roughly at the same depth (Figure 7.9).  The last explanation that can be pointed out is related 

to a marked structural control of the salt and raft tectonics, as mentioned in chapter 4.  

In onshore, slope gradient exerts a significant influence on mass movement’s distribution. 

Indeed  slope gradient or slope angle has been proved to be the predisposing factor that more 

contribute to the occurrence of mass movements onshore (Zêzere et al., 2008, Piedade et al., 

2010, Pereira et al., 2012, Guillard and Zezere, 2012). In the three models developed in the 

thesis, Slope gradient is the second variable that contributes more to the predictive models 

(Table 7.1). Compared to elevation, the AUC of Slope gradient is significantly reduced. 

Nevertheless, in the literature slope gradient is not the factor considered the most important 

for the occurrence of MTDs in offshore environments. Masson et al. (2006) refer that the 

largest submarine landslides occur in areas where specific aspects of the local geology and 

morphology are placed together to trigger slope failure. Continental slopes on which mass 

movements occur are typically of low gradients (1° to 5°) and gentle topography (Wilson et 

al., 2004, Hühnerbach and Masson, 2004, Masson et al., 2006). In the models presented in 

chapter 6, the slope gradient where most MTDs occur varies between 1° to 6°, and can be 

considered of low gradient. Model 3 achieved the best goodness of fit (Table 6.4), in which 

the headwall scarp domain of the MTD has a slope angle of 6o. However, when the others two 

models are considered the favourability scores for slope gradient are extended to areas of 

lower slope gradients. This is explained by the fact that the models with larger area and length 

(Models 1 and 2) are already modelling part of the run-out areas of the MTDs (Model 2) or 

even the total area of run-out (Model 1).    

Flow direction appears in third as a key parameter in the three models. Considering Table 6.6, 

the flow direction variable increases the predictive capacity of the models (Model 3 in the 
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Table 6.6.). However, adding more variables to the models does not increase its predictive 

rate, meaning that the set of variables including elevation, slope gradient and flow direction 

is the most appropriate to assess the spatial distribution of MTDs in the study area.  

The other variables used in the model are showing a very little contribution for the final 

prediction values. The Figure 7.10a illustrates how this contribution is given. Figure 7.10b 

shows the variables of Model 3. It still clear that Elevation provides the greater contribution 

by the curve trend. The slope over ratio does not give any contribution to the model, been 

the worse variable within Model 3.  

 

  

Table 7.1 – Area under the curve (AUC) corresponding to each variable in Model 1, Model 2 and Model 3. The 
scores in bold are the three highest ones for each model.  

 

Variable Model 1 - AUC Model 2 - AUC Model 3 - AUC 

Elevation 0.636 0.737 0.832 

Slope gradient 0.537 0.584 0.616 

Flow direction 0.555 0.559 0.584 

Plan curvature 0.514 0.528 0.542 

Profile curvature 0.335 0.531 0.534 

Flow accumulation 0.504 0.526 0.537 

Slope over area ratio 0.512 0.495 0.493 
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Figure 7.10 – a) conceptual representation of the success curve-rate. The red line represent the AUC of 0.50; 
b) representation of the success rates obtained for each variable for used to compute Model 3. 

 

 

7.3.5. Triggering factors   

Neither chapter 5 or 6 the triggering factors where brought into the analyses of predisposing 

factors for the occurrence of MTDs. In hazard assessment, there is clear and evident 

separation between the predisposing factors (the natural conditions of a given area that 

favours the event occurrence) and the triggering factors, which are actually, the latter factor 

that initiate the slope movement in a last instance. Nevertheless, even if they were not 

considered in the models (chapter 6) the literature has pointed out some of the most common 

triggering factors affecting continental slopes worldwide. Emphasising the importance of local 

triggers (e.g. Sultan et al., 2004), the most common triggering factors were pointed out in 

chapter 1and are summarized in Figure 7.11.  

The reduction of effective stress and resulting seafloor strength are crucial factors in slope 

instability (Masson et al, 2012). As described in chapter 1, predisposing factors are the long-

term slope natural conditions and the triggering factors are relatively short events that 

destabilize the submarine slope. Rodríguez-Ochoa et al. (2015) stated that, depending on the 

environment of the slope, the trigger has little importance if the predisposing factors are 

ruling the stability of the slope. The trigger is considered an external stimulus that initiates 

the slope instability process (Sultan et al., 2004).  
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The main challenge for a complete understanding of submarine slope failure is the 

incorporation of triggering factors into the models of hazard assessment, which was not 

addressed in this thesis. Firstly, because in a given phenomenon of trigger it is very difficult 

to find features reflecting past triggers, or even record the trigger events themselves. Even 

more difficult is to spatially represent the triggers over affected areas, assessing their 

frequency and intensity.   

 

 

Figure 7.11 – Frequency of slope failures triggering mechanisms on continental margins worldwide based on 
the literature. See Hance (2003).  
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7.3.6. Are future submarine slope events possible to predict? 

The workflow for hazard assessment is very complex even when applied to onshore mass 

movements. It is particularly challenging to reduce the uncertainties of the vast 

methodologies that have been used to achieve it (van Westen et al., 2006). Nevertheless, the 

consideration of offshore hazard assessment has started to take consistent steps, even if 

started less than a decade ago. There is a wide range of methods and contributions to offshore 

hazard assessment that have significantly improved risk analyses on submarine slopes (Nadim 

and Locat, 2005, Nadim, 2006, Hough et al., 2011, Gilbert et al., 2013, Dan et al., Rodríguez-

Ochoa et al., 2015, Haneberg et al., 2015). Mostly of these studies were developed due to the 

necessity of predicting hazards associated to offshore exploration, and were later applied to 

assess seafloor instabilities.  

The main questions raised about submarine hazards are the same as for onshore studies: i) 

where did the mass movement occur and where will it occur in the future? ii) How frequently 

will the mass movements occur?; (iii) What are the triggering mechanism(s) of the mass 

movements? (iv) What is the influence of the present and past mass movements on future 

instabilities? and (v) Can a previous failure be reactivated? (Locat and Lee, 2002, Nadim, 

2006). These questions are transversal to onshore hazard assessments, where even actual 

knowledge is far from what has been recorded offshore. During the last decade, background 

knowledge on offshore slope instabilities significantly improved following the development 

of techniques for submarine data acquisition. Great effort has also been done to improve 

hazard assessment on submarine slopes. Nadim (2006) pointed out a state-of-the-art 

methodology to understand submarine slides and identified a long list of applications with 

the ultimate aim of keeping the focus of research on the development of new techniques and 

methods. Since then, important steps have been taken, mainly in data acquisition, submarine 

slope characterisation and slope movement characterisation (e.g. Posamentier and Kolla, 

2003, Moscardelli and Wood, 2008, Alves and Cartwright, 2009, Mosher et al., 2010, Vanneste 

et al., 2014, O’Brien et al., 2015, Moscardelli and Wood, 2015, Pope et al., 2015).  

The work presented in this thesis did not intend to complete a hazard assessment for offshore 

Espírito Brazil (see conceptual model of risk assessment in chapter 1). However, the 

methodology tested in chapter 6 was successfully applied to offshore environments, 
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providing an important tool for the practical application of risk assessment workflows. 

According to this methodology, favourability scores and their respective predictive maps can 

be used as a susceptibility map in offshore risk analyses. The bivariate statistic Informative 

Value integrated a set of data, and allowed for the computation of predictive maps. These 

maps provide per se an answer for the first question highlighted above: where did mass 

movement occur in the past and where will they occur in the next future? The use of an 

inventory with the precise location of submarine mass movements correlated with reliable 

topographic information (DTM) can greatly contribute for the improvement of offshore risk 

assessment. Thus, this thesis proves that statistic methods together with spatial analysis can 

be applied and used as reliable tools in slope susceptibility analyses, which constitute one of 

the first steps for the risk assessment workflow.   

To provide an answer for the further question the triggering factors for MTDs occurrence 

need to be incorporate in the models (e.g. Dai et al., 2002, Glade and Crozier, 2005, Cees J. 

van Westen, 2008, van Westen et al., 2008).  
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7.4. Conclusions 

The main conclusion from this thesis are provided below:  

Chapter 4 - Structural styles of Albian rafts recording tectonic reactivation and late 

halokinesis in offshore Espírito Santo Basin, (SE Brazil).  

- Six tectonic rafts recorded late deformation in the Espírito Santo Basin. Raft were imaged in 

3D and described considering their relationship with the salt layer below and overburden 

strata above.  

- Aptian salt was withdraw below the Albian rafts in parts of the study area. This promoted a 

series of salt welds between rafts and pre-salt units. Salt accumulated into salt pillows and 

rollers.  

- Raft deformation and compartmentalisation included the following: 

‐ (i) Rolling-over and internal strata growth in rafts that were displaced in the Albian-

Cenomanian; (ii) Fragmentation in the form of sub-tabular rafts whenever they were 

'passively' translated on the continental slope; (ii) Collapse of rafts' flanks due to salt 

withdrawal from beneath them; (iv) Tilting and fragmentation of raft on the flanks of growing 

salt rollers.  

- In contrast to previous literature, the post-raft overburden thickness does not show 

influence on raft deformation. 

- Salt withdraw and raft tectonics reactivation/deformation triggered a set of fault families 

developed above the Aptian salt and Albian rafts (roller, rollover, keystone, reactivated and 

concentric faults), which affect the post-raft overburden units.  

 

Chapter 5 - Palaeogeomorphology as a control on mass-transport deposits offshore Espírito 

Santo Basin (SE Brazil). 

- Two types of MTDs were identified: Confined (MTD A) and Unconfined (MTD B), within the 

same stratigraphic package (Sequences N20 to N60 - Early Miocene to Holocene).  Their 

differences are expressed in the form of distinct kinematic indicators and dimensions.  
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- MTDs morphology and run-out distances in these two examples were controlled by the local 

geomorphology of the Depositional surface underneath the MTDs.  The slope gradient are 

very low across the entire Depositional surface, nevertheless where kinematic indicators such 

as headscarp are located, the slope gradient is higher.  

- Despite visible differences in the MTDs morphology that were acquired though mapping and 

GIS techniques, there is some lack of information in this study related to sedimentation and 

erosion patterns, together with local geology. Detailed geological information is not available 

for this study as well as seismological data from nearby stations.    

 

Chapter 6: Favourability scores for Mass-Transport deposits (MTD) occurrence, offshore 

Espírito Santo Basin, (SE Brazil). 

- A bivariate statistic method was revealed to be applicable to the study area. 

- Using the same MTDs inventory, three models were performed with different MTDs areas. 

The best predictive model performance was recorded with the reduced inventory (Model 3), 

which obtained an AUC of 0.862. Elevation appear as the predisposing factor with higher 

predictive capacity.  

- The models were validated using the success-rate (the same inventory was used to model 

and to validate). Although with good validation results, the success-rate curve was not able 

to validate the favourability maps as a susceptibility assessment. The AUC measures the 

goodness of fit assuming the model is correct, based on the comparison the prediction map 

and the dataset used to build the model.  

 

General conclusions:  

- Three-dimensional (3D) seismic reflection data was used as a source of information and 

imported into Geographic Information Systems (GIS). It proved to be a valid tool to study the 

morphometric attributes of submarine slope movements and surrounding areas.  

- The identification of two types of MTDs, Confined and Unconfined was complemented by 

the exploitation of extensive literature, which pointed out kinematic indicators that were 

observed in this study. Nevertheless, to relate their morphology to the local topography is a 
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valid contribution that needs to be further exploited when studying submarine slope 

movements.   

- The application of statistic bivariate models to return favourability models to slope instability 

occurrence has proven to be a valid methodology. The predictive maps as outputs constitute 

an initial step that can be incorporated in risk assessment in offshore environments.   

- Despite the good results from this academic exercise, this piece of information must be 

considered in geohazards analysis and integrated in future drilling plan activities, in order to 

understand where continental slopes are prone to fail.  

7.5. Data limitations  

Three-dimensional (3D) seismic interpretations can provide information on palaeogeographic 

settings which were not possible to analyse using another technique, providing 

palaeogeologic information about the stratigraphic and morphological expression of geologic 

bodies.  

This thesis has benefited from a set of high resolution 3D seismic data, which made possible 

the methodological application presented in this thesis.  

Despite the high quality of the seismic volume, the validity of the seismic attributes and its 

valid combination with GIS, there is still a large set of uncertainties, due the process of 

converting the data source suitable to GIS analysis. 

The first limitation relates to the absence of well data to calibrate the seismic data and to 

constrain the geology. For this thesis, well data from ODP Site 516 (located in the Santos 

Basin) was used and information extrapolated into Espírito Santo Basin. That calibration was 

done with a high degree of confidence. Nevertheless, in operations related to volume 

calculation and depth-time to true time, further well data was needed for the study area. 

Another limitation related to the seismic data was related to the base of the salt and raft were 

not visible thought out the entire area. This fact, did not allow to full characterise raft 5 and 

6 (chapter 4) 
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Specifically to chapter 5 and 6, the mainly limitations are related to the degree of detail of the 

seismic data. Even with a high resolution, one should consider that some important 

geomorphologic details can be beyond the resolution of seismic resolution data. The 

inexistence of horizontal lithological information was another limitation for the models.  

França et al. (2007) presented information about the regional stratigraphy (chapter 2). 

Nevertheless, information from one well was not enough to create spatial information about 

lithology in the study area. For that reason, only topographic information was used into the 

model, which could be computed from the topographic information created from seismic 

mapping (Depositional surface). The information on accurate lithology and geology needs to 

be considered in further analyses. Statistic models applied in chapter 6 will certainly gain 

accuracy if lithological and geological data can be considered. The results showed in chapter 

5 also can be improved with well data because the lithological data is crucial do understand 

slope movement fail and run-out distances.    

Another data limitation of this work is related to the inventory of MTDs used in chapter 6. The 

population of four (4) MTDs is consistent enough to be uses in the models. Nevertheless, it is 

not big enough for data partition whereby the same inventory was used to modelling and to 

validation. In case of a larger population of MTDs, one can use one part of the dataset for 

modelling and another part for the independent validation of the models by computing 

predictive-curves. The computation of the predictive-rate curve is the key strategic element 

to interpret the MTD prediction on ESB and to advanced further on hazard studies.  

As last, due the small population of MTD, the models in chapter 6 did not consider separately 

the different types of MTDs identified in the study area. In onshore studies, different types pf 

slope movements have been modelled separately based on the assumption that different 

slope movements are caused by different natural conditions . As it was identified in chapter 

5, this work identified two types of MTDs, which in future works, and with larger populations, 

need to be modelled separately in order to improve the predictive results.  
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7.6. Future work 

The work developed in this thesis provided a number of new techniques that are novel in their 

applicability to offshore instabilities. The study of buried surfaces and MTDs into the 

methodology presented in the chapter 5 and 6 in future will benefit from data that was not 

available for this thesis. In this sense, the future work proposed is related to the integration 

of new dataset, which can provide detailed information and its integration in the models, such 

as, lithology, viscosity, more accurate velocity values for depth conversation, etc. The aim is 

two introduce variables into the models that are known as good predictors while studding 

slope instabilities and at the same time, reducing the uncertainties by the introduction of 

geological layers and data that are more accurate.  As a future work is proposed the input of 

a range of new dataset that can be spatial represented in raster format, testing new variables 

and decrease the importance of layers exclusive originated from the DTM.  

The question how the water pressure is acting as a slope instability trigger comes as an aim 

to answer in the future work. Is know that overpressure sediments and slope inclination lead 

to increased likelihood of instability at the seabed and at depth, but how acts in the Espírito 

Santo Basin concerning slope instability is not yet pointed out in the literature. It could be 

very interesting to understand how thickness of water column can trigger slope movements 

in the seafloor and even at depth, whereby needs to be also considered the overburden 

strata.  

Looking further, the application of the presented methodology to a seafloor dataset promise 

to archive great results, using high accurate bathymetric data will add detail describing 

kinematic features of the mass-movements but also introducing new predisposing factors. 

The combination of bathymetric seismic profiles and lithology data, constitute a robust piece 

of information that can improve considerable the models. Doing so, the susceptibility models 

of offshore natural hazards can be considered into coastal management or offshore 

exploration risk assessment as a valid and accurate tool.  

The availability of a larger population of mass movements will also increase the quality of the 

models, whereby in a future work the use of a dataset contain a larger population of mass 

movements will be an asset to archive higher scientific validation for the obtained results.   
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This thesis provided great advance for risk assessment of submarine slope movements and 

the application of this methodology to other geologic settings, such as convergent margin or 

even lakes, will be interesting and useful. Nevertheless, in the future it requires identification 

and analysis if relevant failure scenarios, understanding the slope natural condition to fail 

(predisposing factors) but going a bit further to understand triggering sources and related 

failures consequences for a step further in the risk assessment direction in submarine 

environments.    
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Appendix I:  

Seismic acquisition and processing parameters of BES-100 

survey 
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Acquisition parameters 

Vessel: CGG Harmattan 

Source: Airgun Dual 

Shotpoint Interval: 25m flip-flop 

CMP xline: 25 metres 

Group spacing: 12.5 m 

Streamers: 6 x 5700 m 

Record length: 8.0 sec 

Sample interval: 2ms 

 

Processing Sequence 

Reformat from SEGD 

Navigation/seismic merge 

Resample from 2ms to 4ms with anti-alias filter 

Spherical divergence correction 

“SPARN” – signal preserving attenuation of random noise and swell noise 

Zero phase conversion using modeller far field signature  

Q phase only compensation (referenced to water bottom) 

FX shotpoint interpolation and radon multiple attenuation  

3D Kirchhoff Bin centring DMO 

3D V (c) pre-stack time migration using Stolt algorithm 

0.5 km grid Final velocity analysis 

Full offset stack 
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Post stack demigration  

Crossline FX trace interpolation 

Zhimming Li Steep dip one pass 3D time migration 

 

*Final Product* 

Raw stack in SEGY format 

Raw migration in SEGY format 

Final stacking velocities in VelTape format 

Final migration velocities in VelTape format 

Migrated bin centre position in UKOOA P1/90 format 

Final report
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Appendix II:  

Informative value method calculations 

Calculations of Informative Value Method of Model 1, Model 2 and Model 3 in support 

to chapter 6 
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Model 1 

Slope gradient  

Slope  
Class  
Code 

  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

0 - 1 17426 43565000 108560 271400000 53525 133812500 303524 758810000 0.16052 0.176345198 0.16052 0.176345 0.910257 -0.09403 

1 - 2 26337 65842500 131386 328465000 53525 133812500 303524 758810000 0.200455 0.176345198 0.200455 0.176345 1.13672 0.128147 

2 - 3 6982 17455000 39530 98825000 53525 133812500 303524 758810000 0.176625 0.176345198 0.176625 0.176345 1.001589 0.001587 

3 - 4 1641 4102500 12232 30580000 53525 133812500 303524 758810000 0.134156 0.176345198 0.134156 0.176345 0.76076 -0.27344 

4 - 5 677 1692500 5377 13442500 53525 133812500 303524 758810000 0.125907 0.176345198 0.125907 0.176345 0.713978 -0.3369 

5 - 6 325 812500 2751 6877500 53525 133812500 303524 758810000 0.118139 0.176345198 0.118139 0.176345 0.66993 -0.40058 

6 - 7 87 217500 1651 4127500 53525 133812500 303524 758810000 0.052695 0.176345198 0.052695 0.176345 0.298819 -1.20792 

7 -8 23 57500 898 2245000 53525 133812500 303524 758810000 0.025612 0.176345198 0.025612 0.176345 0.145241 -1.92936 

> 8 27 67500 1139 2847500 53525 133812500 303524 758810000 0.023705 0.176345198 0.023705 0.176345 0.134424 -2.00676 

 53525 133812500 303524 758810000           

 

 

 

 

 



Appendix II        

251 
 

Flow accumulation 

Flow 
Accumulation 

Class 
  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

0 12069 30172500 67875 169687500 53525 133812500 303524 758810000 0.177812 0.176345 0.177812 0.176345 1.008319 0.008284 

1 8711 21777500 49210 123025000 53525 133812500 303524 758810000 0.177017 0.176345 0.177017 0.176345 1.003809 0.003802 

1 - 10 22254 55635000 126086 315215000 53525 133812500 303524 758810000 0.176499 0.176345 0.176499 0.176345 1.00087 0.000869 

10 - 100 8085 20212500 46277 115692500 53525 133812500 303524 758810000 0.174709 0.176345 0.174709 0.176345 0.990721 -0.00932 

100 - 1000 2074 5185000 12739 31847500 53525 133812500 303524 758810000 0.162807 0.176345 0.162807 0.176345 0.92323 -0.07988 

< 1000 332 830000 1337 3342500 53525 133812500 303524 758810000 0.248317 0.176345 0.248317 0.176345 1.408131 0.342263 

  53525 133812500 303524  758810000                  

 

Profile curvature 

Profile  
Curvature 

Class 
  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

Convex 755 47187500 4151 259437500 2132 133250000 12150 759375000 0.181884 0.175473 0.181884 0.175473251 1.036533 0.035882 

Flat 600 37500000 3827 239187500 2132 133250000 12150 759375000 0.156781 0.175473 0.156781 0.175473251 0.893474 -0.11264 

Concave 777 48562500 4172 260750000 2132 133250000 12150 759375000 0.186242 0.175473 0.186242 0.175473251 1.061368 0.059558 

  2132 133250000 12150  759375000                  
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Plan curvature 

Plan 
Curvature 

Class 
  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

Concave  1013 63312500 5556 347250000 2132 133250000 12150 759375000 0.182325 0.175473 0.182325 0.175473 1.03905 0.038 

Flat 130 8125000 959 59937500 2132 133250000 12150 759375000 0.135558 0.175473 0.135558 0.175473 0.772527 -0.258 

Convex 989 61812500 5635 352187500 2132 133250000 12150 759375000 0.17551 0.175473 0.17551 0.175473 1.000211 0.0002 

  2132 133250000  12150  759375000                  

 

Elevation 

Elevation 
Class (m) 

Unstable area  Total area Total unstable area Total area  

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

0 - 100 137 342500 9721 24302500 53525 133812500 303524 758810000 0.014093 0.176345 0.0140932 0.176345198 0.079918 -2.527 

100 - 200 15581 38952500 48435 121087500 53525 133812500 303524 758810000 0.321689 0.176345 0.3216889 0.176345198 1.8242 0.601 

200 - 300 15722 39305000 66999 167497500 53525 133812500 303524 758810000 0.23466 0.176345 0.2346602 0.176345198 1.330687 0.286 

300 - 400 5612 14030000 52189 130472500 53525 133812500 303524 758810000 0.107532 0.176345 0.1075322 0.176345198 0.609783 -0.495 

400 - 500 9073 22682500 57874 144685000 53525 133812500 303524 758810000 0.156772 0.176345 0.1567716 0.176345198 0.889004 -0.118 

500 - 600 7400 18500000 53176 132940000 53525 133812500 303524 758810000 0.139161 0.176345 0.1391605 0.176345198 0.789137 -0.237 

600 - 700 0 0 15130 37825000 53525 133812500 303524 758810000 0 0.176345 0 0.176345198 0 #NUM! 

 53525 133812500 303524 758810000          
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Flow direction 

Flow 
Direction 

Class 

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

FD1 12632 31580000 86791 216977500 53525 303524 758810000 0.145545 0.176345 0.145545 0.176345 0.825342 -0.19196 

FD2 15015 37537500 86456 216140000 53525 303524 758810000 0.173672 0.176345 0.173672 0.176345 0.984842 -0.01527 

FD3 11964 29910000 53672 134180000 53525 303524 758810000 0.22291 0.176345 0.22291 0.176345 1.264052 0.234323 

FD4 3968 9920000 13530 33825000 53525 303524 758810000 0.293274 0.176345 0.293274 0.176345 1.663069 0.508665 

FD5 1701 4252500 7613 19032500 53525 303524 758810000 0.223434 0.176345 0.223434 0.176345 1.267024 0.236671 

FD6 724 1810000 3839 9597500 53525 303524 758810000 0.188591 0.176345 0.188591 0.176345 1.069441 0.067136 

FD7 2271 5677500 14827 37067500 53525 303524 758810000 0.153167 0.176345 0.153167 0.176345 0.868561 -0.14092 

 FD8 5250 13125000 36796 91990000 53525 303524 758810000 0.142679 0.176345 0.142679 0.176345 0.809087 -0.21185 

  53525 133812500 303524 758810000              

 

Slope over area ratio 

Slope Area 
Ration 
Class 

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

SAR1 2086 5215000 9648 24120000 53525 133812500 301278 753195000 0.216211 0.17766 0.216211 0.17766 1.22 0.196382 

SAR2 7991 19977500 47399 118497500 53525 133812500 301278 753195000 0.16859 0.17766 0.16859 0.17766 0.95 -0.0524 

SAR3 17987 44967500 101146 252865000 53525 133812500 301278 753195000 0.177832 0.17766 0.177832 0.17766 1.00 0.000969 

SAR4 24974 62435000 138112 345280000 53525 133812500 301278 753195000 0.180824 0.17766 0.180824 0.17766 1.02 0.017655 

SAR5 487 1217500 4973 12432500 53525 133812500 301278 753195000 0.097929 0.17766 0.097929 0.17766 0.55 -0.59563 

  53525  133812500 301278  753195000                
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Model 2 

Slope gradient 

  
Slope 
Class  
Code 

  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

0 - 1 2653 6632500 108560 271400000 12085 30212500 303524 758810000 0.024438 0.0398156 0.024438 0.039816 0.613782 -0.48812 

1 - 2 5994 14985000 131386 328465000 12085 30212500 303524 758810000 0.045621 0.0398156 0.045621 0.039816 1.145814 0.136115 

2 - 3 2238 5595000 39530 98825000 12085 30212500 303524 758810000 0.056615 0.0398156 0.056615 0.039816 1.421935 0.352018 

3 - 4 584 1460000 12232 30580000 12085 30212500 303524 758810000 0.047744 0.0398156 0.047744 0.039816 1.199118 0.181586 

4 - 5 327 817500 5377 13442500 12085 30212500 303524 758810000 0.060815 0.0398156 0.060815 0.039816 1.527405 0.42357 

5 - 6 195 487500 2751 6877500 12085 30212500 303524 758810000 0.070883 0.0398156 0.070883 0.039816 1.780289 0.576775 

6 - 7 61 152500 1651 4127500 12085 30212500 303524 758810000 0.036947 0.0398156 0.036947 0.039816 0.92796 -0.07477 

7 -8 14 35000 898 2245000 12085 30212500 303524 758810000 0.01559 0.0398156 0.01559 0.039816 0.39156 -0.93762 

> 8 19 47500 1139 2847500 12085 30212500 303524 758810000 0.016681 0.0398156 0.016681 0.039816 0.418964 -0.86997 

 12085 30212500 303524 758810000           

 

 

 

 

 

Flow accumulation 
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Flow 
Accumulation 

Class 
  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

0 2373 5932500 67875 169687500 12085 30212500 303524 758810000 0.034961 0.039816 0.034961 0.039816 0.87808 -0.13002 

1 1808 4520000 49210 123025000 12085 30212500 303524 758810000 0.03674 0.039816 0.03674 0.039816 0.922766 -0.08038 

1 - 10 5332 13330000 126086 315215000 12085 30212500 303524 758810000 0.042289 0.039816 0.042289 0.039816 1.06211 0.060258 

10 - 100 1836 4590000 46277 115692500 12085 30212500 303524 758810000 0.039674 0.039816 0.039674 0.039816 0.996446 -0.00356 

100 - 1000 577 1442500 12739 31847500 12085 30212500 303524 758810000 0.045294 0.039816 0.045294 0.039816 1.137593 0.128915 

> 1000 159 397500 1337 3342500 12085 30212500 303524 758810000 0.118923 0.039816 0.118923 0.039816 2.986841 1.094216 

  12085 30212500 303524  758810000                  

 

Profile curvature 

Profile  
Curvature 

Class 
  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

Convex 161 10062500 4151 259437500 476 29750000 12150 759375000 0.038786 0.039177 0.038786 0.039176955 0.990017 -0.01003 

Flat 119 7437500 3827 239187500 476 29750000 12150 759375000 0.031095 0.039177 0.031095 0.039176955 0.793703 -0.23105 

Concave 196 12250000 4172 260750000 476 29750000 12150 759375000 0.04698 0.039177 0.04698 0.039176955 1.199171 0.18163 

  476 29750000 12150  759375000                  

 

 

Plan curvature 

Plan  Unstable area  Total area Total unstable area Total area           
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Curvature 
Class 

  

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

Concave 255 15937500 5556 347250000 507 31687500 12150 759375000 0.045896 0.041728 0.045896 0.041728 1.099882 0.0952033 

Flat 27 1687500 959 59937500 507 31687500 12150 759375000 0.028154 0.041728 0.028154 0.041728 0.674704 -0.393481 

Convex 225 14062500 5635 352187500 507 31687500 12150 759375000 0.039929 0.041728 0.039929 0.041728 0.956879 -0.044079 

 507 31687500 12150 759375000           

 

 

Elevation 

Elevation 
Class (m) 

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

0 - 100 0 0 9721 24302500 12085 30212500 303524 758810000 0 0.039816 0 0.039815632 0 #NUM! 

100 - 200 0 0 48435 121087500 12085 30212500 303524 758810000 0 0.039816 0 0.039815632 0 #NUM! 

200 - 300 1551 3877500 66999 167497500 12085 30212500 303524 758810000 0.02315 0.039816 0.0231496 0.039815632 0.58142 -0.54228 

300 - 400 3772 9430000 52189 130472500 12085 30212500 303524 758810000 0.072276 0.039816 0.0722758 0.039815632 1.815261 0.596229 

400 - 500 1672 4180000 57874 144685000 12085 30212500 303524 758810000 0.02889 0.039816 0.0288903 0.039815632 0.725603 -0.32075 

500 - 600 5090 12725000 53176 132940000 12085 30212500 303524 758810000 0.09572 0.039816 0.0957199 0.039815632 2.404078 0.877166 

600 - 700 0 0 15130 37825000 12085 30212500 303524 758810000 0 0.039816 0 0.039815632 0 #NUM! 

 12085 30212500 303524 758810000          

 

  

Flow direction 
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Flow 
 Direction 

Class 

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels   

FD1 2809 7022500 86791 216977500 12085 303524 758810000 0.032365 0.039816 0.032365 0.039816 0.812874 -0.20718 

FD2 4072 10180000 86456 216140000 12085 303524 758810000 0.047099 0.039816 0.047099 0.039816 1.18293 0.167994 

FD3 2638 6595000 53672 134180000 12085 303524 758810000 0.04915 0.039816 0.04915 0.039816 1.23445 0.210625 

FD4 271 677500 13530 33825000 12085 303524 758810000 0.02003 0.039816 0.02003 0.039816 0.503058 -0.68705 

FD5 146 365000 7613 19032500 12085 303524 758810000 0.019178 0.039816 0.019178 0.039816 0.481663 -0.73051 

FD6 124 310000 3839 9597500 12085 303524 758810000 0.0323 0.039816 0.0323 0.039816 0.811241 -0.20919 

FD7 525 1312500 14827 37067500 12085 303524 758810000 0.035408 0.039816 0.035408 0.039816 0.889308 -0.11731 

FD8 1500 3750000 36796 91990000 12085 303524 758810000 0.040765 0.039816 0.040765 0.039816 1.023852 0.023572 

  12085 30212500 303524 758810000              

 

 

 

 

 

 

 

Slope over area ratio 
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Slope Area  
Ration 
Class 

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

SAR1 324 810000 9648 24120000 12058 30145000 301278 753195000 0.033582 0.040023 0.033582 0.040023 0.84 -0.17546 

SAR2 1993 4982500 47399 118497500 12058 30145000 301278 753195000 0.042047 0.040023 0.042047 0.040023 1.05 0.049345 

SAR3 4114 10285000 101146 252865000 12058 30145000 301278 753195000 0.040674 0.040023 0.040674 0.040023 1.02 0.016136 

SAR4 5510 13775000 138112 345280000 12058 30145000 301278 753195000 0.039895 0.040023 0.039895 0.040023 1.00 -0.0032 

SAR5 144 360000 4973 12432500 12058 30145000 301278 753195000 0.028956 0.040023 0.028956 0.040023 0.72 -0.32366 

  12085  30212500 301278  753195000                 
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Model 3 

Slope gradient 

Slope 
Gradient  

Class 
  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

0 - 1 885 2212500 108560 271400000 4448 11120000 303524 758810000 0.008152 0.0146545 0.008152 0.014655 0.556291 -0.58646 

1 - 2 1918 4795000 131386 328465000 4448 11120000 303524 758810000 0.014598 0.0146545 0.014598 0.014655 0.996157 -0.00385 

2 - 3 911 2277500 39530 98825000 4448 11120000 303524 758810000 0.023046 0.0146545 0.023046 0.014655 1.572606 0.452734 

3 - 4 341 852500 12232 30580000 4448 11120000 303524 758810000 0.027878 0.0146545 0.027878 0.014655 1.902327 0.643078 

4 - 5 207 517500 5377 13442500 4448 11120000 303524 758810000 0.038497 0.0146545 0.038497 0.014655 2.626991 0.965839 

5 - 6 135 337500 2751 6877500 4448 11120000 303524 758810000 0.049073 0.0146545 0.049073 0.014655 3.348663 1.208561 

6 - 7 47 117500 1651 4127500 4448 11120000 303524 758810000 0.028468 0.0146545 0.028468 0.014655 1.942581 0.664017 

7 -8 4 10000 898 2245000 4448 11120000 303524 758810000 0.004454 0.0146545 0.004454 0.014655 0.303957 -1.19087 

> 8 0  1139 2847500 4448 11120000 303524 758810000 0 0.0146545 0 0.014655 0 #NUM! 

 4448 11120000 303524 758810000         
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Flow accumulation 

Flow 
Accumulation 

Class 
  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

0 872 2180000 67875 169687500 4448 11120000 303524 758810000 0.012847 0.014655 0.012847 0.014655 0.876667 -0.13163 

1 676 1690000 49210 123025000 4448 11120000 303524 758810000 0.013737 0.014655 0.013737 0.014655 0.937393 -0.06465 

1 - 10 2017 5042500 126086 315215000 4448 11120000 303524 758810000 0.015997 0.014655 0.015997 0.014655 1.091609 0.087653 

10 - 100 663 1657500 46277 115692500 4448 11120000 303524 758810000 0.014327 0.014655 0.014327 0.014655 0.977635 -0.02262 

100 - 1000 166 415000 12739 31847500 4448 11120000 303524 758810000 0.013031 0.014655 0.013031 0.014655 0.889203 -0.11743 

> 1000 54 135000 1337 3342500 4448 11120000 303524 758810000 0.040389 0.014655 0.040389 0.014655 2.756072 1.013807 

  4448 11120000 303524  758810000                  

 

 

 

Profile curvature 

Profile  
Curvature 

Class 
  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

Convex 60 3750000 4151 259437500 173 10812500 12150 759375000 0.014454 0.014239 0.014454 0.014238683 1.015146 0.015033 

Flat 48 3000000 3827 239187500 173 10812500 12150 759375000 0.012542 0.014239 0.012542 0.014238683 0.880872 -0.12684 

Concave 65 4062500 4172 260750000 173 10812500 12150 759375000 0.01558 0.014239 0.01558 0.014238683 1.094206 0.090029 
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  173 10812500 12150  759375000                  

Plan curvature 

Plan  
Curvature 

Class 
  

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

Concave 89 5562500 5556 347250000 173 10812500 12150 759375000 0.016019 0.014239 0.016019 0.014239 1.125014 0.1177955 

Flat 10 625000 959 59937500 173 10812500 12150 759375000 0.010428 0.014239 0.010428 0.014239 0.732338 -0.311513 

Convex 74 4625000 5635 352187500 173 10812500 12150 759375000 0.013132 0.014239 0.013132 0.014239 0.922291 -0.080894 

 173 10812500 12150 759375000           

 

Elevation 

Elevation 
Class (m) 

Unstable area  Total area Total unstable area Total area           

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

0 - 100 0 0 9721 24302500 4448 11120000 303524 758810000 0 0.014655 0 0.014654525 0 #NUM! 

100 - 200 0 0 48435 121087500 4448 11120000 303524 758810000 0 0.014655 0 0.014654525 0 #NUM! 

200 - 300 0 0 66999 167497500 4448 11120000 303524 758810000 0 0.014655 0 0.014654525 0 #NUM! 

300 - 400 1803 4507500 52189 130472500 4448 11120000 303524 758810000 0.034548 0.014655 0.0345475 0.014654525 2.357464 0.857586 

400 - 500 131 327500 57874 144685000 4448 11120000 303524 758810000 0.002264 0.014655 0.0022635 0.014654525 0.15446 -1.86782 

500 - 600 2514 6285000 53176 132940000 4448 11120000 303524 758810000 0.047277 0.014655 0.047277 0.014654525 3.2261 1.171274 

600 - 700 0 0 15130 37825000 4448 11120000 303524 758810000 0 0.014655 0 0.014654525 0 #NUM! 

 4448 11120000 303524 758810000          
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Flow direction 

Flow  
Direction 

Class 

Unstable area  Total area Total unstable area Total area  

Si Ni S N Si/Ni Si Ni S N Si/Ni 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

FD1 869 2172500 86791 216977500 4448 11120000 303524 758810000 0.010013 0.014655 0.010013 0.014655 0.68324 -0.38091 

FD2 1429 3572500 86456 216140000 4448 11120000 303524 758810000 0.016529 0.014655 0.016529 0.014655 1.127886 0.120345 

FD3 1165 2912500 53672 134180000 4448 11120000 303524 758810000 0.021706 0.014655 0.021706 0.014655 1.481175 0.392836 

FD4 113 282500 13530 33825000 4448 11120000 303524 758810000 0.008352 0.014655 0.008352 0.014655 0.569913 -0.56227 

FD5 78 195000 7613 19032500 4448 11120000 303524 758810000 0.010246 0.014655 0.010246 0.014655 0.699145 -0.3579 

FD6 80 200000 3839 9597500 4448 11120000 303524 758810000 0.020839 0.014655 0.020839 0.014655 1.422002 0.352066 

FD7 261 652500 14827 37067500 4448 11120000 303524 758810000 0.017603 0.014655 0.017603 0.014655 1.2012 0.183321 

 FD8 453 1132500 36796 91990000 4448 11120000 303524 758810000 0.012311 0.014655 0.012311 0.014655 0.84009 -0.17425 

  4448 11120000 303524 758810000  
 

            

 

Slope over area ratio 

Slope Area  
Ration 

Class (m) 

Unstable area  Total area Total unstable area Total area  

Si Ni S N Si/Ni S/N Si/Ni S/N VIVar VI 

#pixels m2 #pixels m2 #pixels m2 #pixels m2 #pixels m2   

SAR1 219 547500 9648 24120000 4448 11120000 301278 753195000 0.022699 0.014764 0.022699 0.014764 1.54 0.430145 

SAR2 631 1577500 47399 118497500 4448 11120000 301278 753195000 0.013313 0.014764 0.013313 0.014764 0.90 -0.10347 

SAR3 1372 3430000 101146 252865000 4448 11120000 301278 753195000 0.013565 0.014764 0.013565 0.014764 0.92 -0.08472 

SAR4 2175 5437500 138112 345280000 4448 11120000 301278 753195000 0.015748 0.014764 0.015748 0.014764 1.07 0.064543 

SAR5 51 127500 4973 12432500 4448 11120000 301278 753195000 0.010255 0.014764 0.010255 0.014764 0.69 -0.36437 

  4448  11120000 301278  753195000                 


