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[1] An adaptive finite element procedure is presented for improving the quality of solutions to convection-
dominated problems in geodynamics. The method adapts the mesh automatically around regions of high
solution gradient, yielding enhanced resolution of the associated flow features. The approach requires the
coupling of an automatic mesh generator, a finite element flow solver, and an error estimator. In this study,
the procedure is implemented in conjunction with the well-known geodynamical finite element code
ConMan. An unstructured quadrilateral mesh generator is utilized, with mesh adaptation accomplished
through regeneration. This regeneration employs information provided by an interpolation-based local
error estimator, obtained from the computed solution on an existing mesh. The technique is validated by
solving thermal and thermochemical problems with well-established benchmark solutions. In a purely
thermal context, results illustrate that the method is highly successful, improving solution accuracy while
increasing computational efficiency. For thermochemical simulations the same conclusions can be drawn.
However, results also demonstrate that the grid-based methods employed for simulating the compositional
field are not competitive with the other methods (tracer particle and marker chain) currently employed in
this field, even at the higher spatial resolutions allowed by the adaptive grid strategies.
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1. Introduction mine a priori and, even if their location is identi-
fied, with current methods it is often impossible to

[2] Over recent decades, numerical modeling hagasolve localized features. The net result is that
stirred significant interest in the geodynamica@chieving accurate solutions is a very demanding
community, leading the way in studies of numertask for the analyst. Indeed, one of the most
ous geological processes. This interest is due to tfdallenging problems currently facing geodynam-
fact that analytical solutions to the various pheiCists is the accurate solution of such “multi-scale”

nomena are normally unavailable, while experiflows.

mental methods are sometimes time-CcoNSUMING] Thjs issue of accuracy must be balanced with
and often have limitations. The numerical methodg ompntational considerations. An accurate solution
that have been employed have generally beegqyires that one properly resolves the active
based upon finite-difference [e.gicKenzie et featyres in the simulation. Resolution, in turn, is
al., 1974; Bodri and Bodrj 1978; Matyska and rg|ated to the number of nodes employed. Obvi-
Yuen 2001] and, occasionally, finite-volume tech-q,,q}y one could generate a solution of high accu-
niques Tackley 1996, 1998;Ratcliff et al, 1998; racy by employing an extremely fine mesh
Albers and Christenser2001], although recently, tproughout the computational domain. However,
the finite element method has become more estaf;q larger the number of nodes, or degrees of
lished [e.g.,Baumgardner 1985; Farnetani and  greedom, the greater the demands on computational
Richards 1995;Sidorin et al, 1998;Zhong 2000, memory and processing power. Finding the right
2006]. Methods based upon the f'n'te'elemenaﬁalance betweeaccuracyand computationagffi-
approach are attractive since they lead to generglioncyis therefore a difficult task. Ideally, what is
purpose computer codes. However, it is not thigieeded is a method capable of yielding an accurate

feature_that has been_largely responsible for th§o|ution, while employing as few degrees of free-
recent interest shown in the method, but the facﬂlom as possible.

that it, as indeed is the finite volume method, is
based upon an integral formulation and hence if] Standard methods have attempted to achieve
readily implemented on arbitrary discretizationsthis by utilizing nonuniform grids generated a
i.e., unstructured grids. This final point is centralpriori, with the user exploiting previous experience
to our study. to define the grid [e.g.Davies and Stevenspn

) 1992; Scott 1992]. Such methods, however, are
[3] 1t is a well known fact that even the use of hot gpplicable to unsteady problems, since the
sophisticated computational models can give inaGycive regions within the solution domain are
curate results, if the numerical grid upon which th&qnsantly mobile and predicting their location at
model is based is unable to capture the S|gn|f|cargny given time is an impossible task. The major-
features of the problem. Indeed, for the large-scalg "ot nrevious studies have overcome this issue
problems encountered in geodynamics, 'nadequag employing a uniformly fine grid throughout
grid resolution has become a major concem. Thie computational domain, as described above
majority of phenomena studied (e..g., subductio e.g., Oldham and Davigs2004; Bunge et al.
zone and mid-ocean ridge magmatism) are charagpgs). This ensures that, as the simulation
terized by the interaction of complex geometriese, g\ es active regions are continually in zones
complex material properties and complex boundangs fine resolution and solution accuracy is main-
conditions. Such a combination often yields unpregaineq. Other methods have also been utilized,
dictable and intricate solutions, with narrowgiihough more rarely, including both Lagrangian
regions of high solution gradient frequently found, 4 Arbitrary Lagrangian-Eulerian (ALE) formu-
embedded in large areas where the solution varigsiions Fullsack 1995]. However, over time, it
slowly_. It is these high gradient regio_ns that presentas become apparent that theée methodé have
a serious challenge for computational methodsyeir own restrictions and, consequently, a major
their location and extent is very difficult to deter- 504 of research in the field of geodynamics is the
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generation of numerical models that accuratelyi1] As expected, results show that adapted grids
portray the nature of the problem, while main-yield large improvements over regular, uniform
taining computational efficiency. grids, generating less diffusive results while reduc-
ing the number of degrees of freedom. However,
results also demonstrate that grid-based methods,
even when coupled with the AFEM, are not
competitive with the other methods currently
employed for the tracking of compositional heter-
ggeneities.

[e] Here, we introduce grid adaptivity, which is a
method commonly employed within the field of
engineering [sedBabuska and Rheinboltl978;
Lohner et al. 1985; Peraire et al, 1987;Pelletier
and llinca 1995; Nithiarasu and Zienkiewicz
2000]. Since we demonstrate the method in th
context of finite elements it is termed the Adaptive[12] The remainder of this paper will provide an
Finite Element Method (AFEM). The method pro-overview of the test problems that are studied, a
vides a powerful approach for treecurateand summary of the numerical techniques employed
efficientsolution of the complex problems encoun-(an appendix is included with a more detailed
tered in geodynamics. Grid points are automaticallgnalysis) and a comparison of the results obtained.
clustered in regions of rapid solution variation toThese demonstrate the applicability of grid adap-
improve accuracy, leading to a “multi-resolution” tivity to the modeling of mantle dynamics.

solution, with the highest resolutions being analo-

gous to zones of high solution gradient. In simple2 Problem Description

terms, the method automatically increases or

decreases grid resolution where required, Ieadir1g3] We consider two dimensional thermal and
to more accurate solutions, while employing feweknermochemical convection in an isoviscous, infi-
degrees of freedom. nite Prandtl number Cartesian box. The equations
[7] In this study, the method is applied to infinite (i dimensionless, vector form) describing such
Prandtl number thermal and thermochemical coricompressible convection are the equations of
vection in 2-D Cartesian geometry, to investigate

its potential benefits within the field of geodynam-Momentum

ics. We begin by investigating a benchmark ther- s

mal convection problem, with results illustrating u p Ralk 1

that the method is highly successful, improving

solution accuracy while increasing computationaf-Ontinuity (mass)

efficiency. I 5
[s] The method is then applied to a more challeng-

ing thermochemical benchmark problem, employEnergy

ing a grid-based method to solve for the

compositional field. Our reasons for selecting a _I u T 21 3

grid-based method are simple. Recent work [e.g.,
van Keken et al.1997; Tackley and King2003] '\ here y is the dimensionless velocity; is the

has highlighted the fact that such methods suffeg§inensionless temperaturejs the dimensionless
from numerical diffusion, leading to greater entrainy, o jithostatic pressurd, is the unit vector in the
ment rates in numerical simulations when comparege ica| direction and is the dimensionless time.
to marker chain and tracer particle methods. Thig, this form, all material properties are combined

numerical diffusion is predominantly caused byin«, one dimensionless parameter, the Rayleigh
insufficient resolution, a factor that is naturally ,,mper:

addressed by the AFEM. Consequently, two hy-

potheses are tested: ng bropTe
[s] 1. The greater resolution endorsed by the km

AFEM will reduce artificial diffusion.

where g is the acceleration due to gravity, is
[10] 2. This reduced diffusion, in turn, will see density,b is the coefficient of thermal expansion,
grid-based methods yielding results that are corBT is the temperature drop across the dontis,
sistent with those achieved using tracer particle anghe domain lengthk is the thermal diffusivity and
marker chain methods. mis the dynamic viscosity.
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T =0 (Fixed) formulation. The energy equation is solved using
z(")fgree Slip a streamline upwind Petrov Galerkin (SUPG)
= method Hughes and Brooks1979], with time
stepping accomplished by means of a second order
explicit predictor-corrector algorithm.
T = Insulating T = lInsulating
V(x)=0 V(x)=0 [17 A grid-based method, identical to that used for
V(y) = Free Slip |, V(y) = Free Slip solving the energy equation, is utilized for model-
L ing the compositional field. A small chemical
0 X diffusivity is assumed and a filtering scheme is
T =1(Fixed) employed to remove spurious numerical overshoot
V(x) = Free Slip and undershoot features, common with advection
Viy)=0 diffusion problems of this nature. This filter con-

Figure 1. The boundary conditions utilized when S€rves mass by design and has been shown to work

V(x), and\(y) represent temperature and the velocitieiumerical errors (seenardic and Kaulg1993]
in the x andy directions, respectively. for further details).

[14] In thermochemical simulations, a second ad2.1. Case 1: Thermal Convection in a
vection-diffusion equation is solved for composi-Square Cavity

tion: . . .
[15] The first example considered is buoyancy-
c 1, driven flow in an iso-chemical square cavity. The
4 Y © g °C 5 cavity is filled with a material of constant viscosity

and there are no internal heat sources. Boundary
where C represents composition arice is the conditions are summarized in Figure 1. This prob-
Lewis number, the ratio of thermal diffusivity to lem is solved at Ra = #p10°, and 16, initially on
chemical diffusivity. The desired limit approachesuniform, structured meshes, and subsequently, on
infinite Le; however, for numerical reasons, a finiteadapted, unstructured meshes.
Leis often assumed. The momentum equation als

differs from equation (1) and is now taken in theﬁg] The following data or sets of data are calcu-

lated during the simulations:

form
[200 1. The Nusselt Number, i.e., the mean surface
U p RaT RbCk 6  temperature gradient:
Here,Rbis the compositional Rayleigh number: .
. Nu By Xy 1dx 8
Rrp Drod 7 0

km

_ _ _ wherel is the length (= 1).
where Dr is the density difference between the _ _
dense € = 1) and light C = 0) material. [22] The nondimensional Root-Mean-Square

_ _ . éRMS) velocity:

[15] These equations are solved using a modifie

version of the widely used 2D geodynamics finite 1

element program ConMan. A brief overview of the Veus U 2 9
code is provided here; however, a more detailed v

description is given b¥ing et al.[1990].

: whereV is the area of the computational domain.
[1] The momentum and energy equations form a

coupled set of differential equations, although th¢22] 3. Nondimensional temperature gradients at
coupling is not strong since the density, is domain corners:
constant, other than in the buoyancy term of the

momentum equation (Boussinesq approximation).

The incompressibility (continuity) equation is trea-

ted as a constraint on the momentum equation,

with incompressibility enforced using a penaltyWith dp atx=0,y = 1; andqz atx =y = 1.

— 10
y
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T =0 (Fixed) Additionally, entrainment rates have been calcu-
Vi) - Froa i lated in previous studies [e.gian Keken et al.
V(y)=0 1997; Tackley and King2003], and hence direct
comparisons can be made with ease.

¢ :ﬂzlf,lgtt';% c ;',22‘1‘1';22% [2s5] Before providing a summary of the adaptive

V(x)=0 Y V(x)=0 strategies employed, we should point out that the

Viy) = Free siip | [y Vly)=FreeSlip w0 cases presented above not only allow a means

0 T -1 (Fixed) 2 to test the appliqability of th_e AFEM to thermal

C = lnsulating and thermochemical convection problems, but they
V(x) = Free Slip also allow us to test the AFEM in both steady state
Viy)=0 (Case 1) and unsteady (Case 2) situations. Both are

Figure 2. The boundary conditions utilized when common within the field of geodynamics.
studying the entrainment of a thin dense layer, in an
aspect ratio 2 box, through thermochemical simulations3. Adaptive Methodology
T, C, V(X), andV(y) represent temperature, composition,
and the velocities in theandy directions, respectively. [26] As is clear from the introduction, the methods

. ) employed in modeling thermal and thermochemi-
2.2. Case 2: Entrainment of a Thin Dense  cal convection must provide an adequate definition
Layer Through Thermochemical of the problem, in a computationally efficient
Convection manner. In other words, the methods must be adept
jat resolving narrow regions of high gradients that
IHequently occur and are normally found embedded
In large areas where the flow variables vary slowly.
g%'nce the exact location of these high gradient
regions are not always known to the analyst a
priori, particularly with unsteady problems, it is
apparent that adaptive mesh methods, with a pos-
eriori error estimators, could have an important

[23] The second example considered is a wel
established thermochemical benchmark proble
from van Keken et al[1997]. We model the
entrainment of a deep-seated, thin (0.025), den
layer in an aspect ratio 2 box of unit height. This
layer is prescribed a compositional valde= 1,
while the overlying, lighter material has a value of

C=0. This problem is analogous to the entrainmen : LS .
of a compositionally dense layer in the Rgion at role to play in the development of efficient solution

the Core-Mantle boundary. Results are computeffcnidues for such problems. At present, a wide
for 10Le = 10 ©. The thermal Rayleigh Number, variety of adaptive procedures are being utilized

Ra is setto 3 10°, the compositional Rayleigh yvithin the engineering community. Broadly speak-

Number,Rh, is set to 4.5 10°, while the viscosity ing, these fall into two categories:

is assumed to be constant. Boundary conditions afe;] 1. h-refinement, in which the same class of
summarized in Figure 2. As an initial condition, anelements continue to be used but are changed in
analytical expression of the temperature based ize, in some locations made larger, and in others
boundary layer theory is taken [sean Keken et made smaller, to provide the maximum economy in
al.,, 1997, Appendix A]. Once again, this problemreaching the desired solution.

is solved initially on uniform, structured meshes,

and subsequently, on adapted, unstructured mesh&s] 2. p-refinement, in which the same element
size is utilized, but the order of the polynomial is

[24 For this case, the relative entrainmeet i§  increased or decreased as required (e.g., linear
calculated as a function of time, from shape functions are “adapted” to quadratic or

higher order).
1 |
T Cdv 11 [29] A variant of theh-method, known as “adap-

° tive remeshing,” is employed in this study. It
wherel is the aspect ratio of the box (= 2}, is provides the greatest control of mesh size and
the thickness of the dense layer addis an grading to better resolve the flow features. In this
arbitrarily chosen height (= 0.2 here). We focus oufmethod, for steady state simulations, the problem is
attention on the relative entrainment as opposed &P/ved initially on a grid fine enough to roughly
other parameters, such as RMS velocity, since thgapture the physics of the flow. Remeshing then
rate of entrainment provides an excellent means t@volves the following steps:
track the evolution of a thermochemical simulation.
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[so] 1. The solution is analyzed through some kindperhaps with some of the advantages commonly
of error estimation procedure, to determine locaassociated with Lagrangian schemes.

tions where the mesh fails to provide an adequatf For a more detailed description of the mesh
definition of the problem. This can mean that eithet*? FOr ption (¢
eneration process, the error estimation procedure

additional grid points are needed, or indeed, tha? . )
there are tgo m%ny grid points at certain location&"d the adaptive strategy, please refer to Appendix A.
flow chart summarizing the essential stages

within the domain. An interpolation-based local: volved is also included in Fiaure 3
error estimator is employed in this study, based 9 :

upon nodal solution gradients and curvatures. .
P g 3.1. Remeshing Procedure for Case 1:

[ 2. The information yielded by this error esti- Steady-State Adaptivity
mation process is utilized to generate an improve
mesh through an automatic mesh generator.
variant of the so-called advancing front techniqu
is utilized here, being capable of generating mesh
that conform to a user prescribed spatial distribu
tion of element size. Elements can locally increas&’
or decrease in size as required, leading to what
term an “optimal” mesh.

38] A steady-state solution is achieved here.
emeshing is therefore a simple task, being per-
grmed when the solution converges to a steady
state on a given grid. The process is terminated
hen an optimal mesh has been produced, i.e., the
lution does not improve with the remeshing
procedure. The error estimator employed in this
case is based upon nodal temperature gradients and
[s2] 3. The original solution is interpolated betweencurvatures.
meshes using higher-order cubic interpolation

[Nielson 1979;El Hachemi et a].2003]. 3.2. Remeshing Procedure for Case 2:
[ 4. The solution procedure continues on the! €Mporal Adaptivity
new mesh. [3 The results presented are based upon simula-

éions with a remeshing frequency of 2000 time
steps. This value was selected after a series of tests,
both visual and analytical, tracing the temporal
[3s] For unsteady problems, the process is almostvolution of the model. Ideally, the remeshing
identical; however, it is fundamental that the initialprocedure would be linked to the dynamics (i.e.,
mesh is suitably defined. If the mesh is inadequatét should be tied to some measure of how much the
the errors generated during the calculation’s earlgolution has changed or whether derivatives in the
stages propagate through the computational domaimesh exceed a certain tolerance). Nonetheless, we
generating misleading results. To ensure such erronave verified, through tests at various remeshing
do not arise in our simulations, we generate afrequencies, that for this simulation, the remeshing
optimal initial mesh. This process is straightforwardfrequency selected (i.e., 2000 time steps) does not
The initial condition is set up on a structured grid. Indegenerate the results.

the same way as is described in points 1-4 above, the . L
data from this structured grid is analyzed to determink®l_The €rror estimator employed is similar to that
where the mesh needs modification. This informatiof]! €aS€ 1; however, itis based upon a combination
is then used to regenerate the mesh, and the solutigh l€mperature and composition, as opposed to
(i.e., the initial condition) is transferred onto the new/cMPerature alone. Nodal solution derivatives are
mesh using cubic interpolation. Consequently, th%aICUIaFed for both the temperature and composi-
initial grid naturally provides an optimal definition of Uonal fields. The highest values yielded are then
the problem. With unsteady problems, the remeshingt/ected as derivatives for that particular node.
procedure can be continued indefinitely as the sim=UCh @ scheme engenders high resolving power
ulation evolves. The remeshing “loop” is activated at the density interface, as well as sufficient reso-

after a user-defined time interval, or dynamically,'r:ﬂIon to _fac(;:l#]atte:)r/]_solve bthet_therma}Id field. We
upon the basis of an approximation to the error. ~ "'@v€ Verilied that this combination yi€ids superior
results to simulations employing a combination of

[3¢] It is important to point out that although the the composition and velocity variables.
process seems similar to Lagrangian formulation%s

[s4] The remeshing process is repeated until
desired level of accuracy has been achieved.

(the computational mesh appears to follow th 41] The remeshing strategy is slightly different to

solution), it is indeed an Eulerian formulation, Natin Case 1. Rather than simply refining zones of
high solution gradient, we also allocate fine reso-
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Table 1. Results Obtained on Various Uniform, Structured Meshes for Simulations of Thermal Convection in a
Square Cavity aRa= 10° @

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 Benchmark Uncertainty
Elements 256 1024 4096 7225 10000 16384 ok kk
Nu 7.8757 9.6838 10.3361 10.4453 10.4712 10.5058 10.5341 0.00001
Vrms 197.4998 194.2366 193.4223 193.3222 193.2968 193.2787 193.2145 0.0001
ot 11.8004 16.5079 18.3362 18.6467 18.7641 18.8861 19.0794 0.00004
Oz 1.4204 0.9397 0.7754 0.7529 0.7445 0.7358 0.7228 0.00002

The benchmark results &lankenbach et a[1989] are included for comparison, together with their uncertainties.

lution to neighboring regions. This is done byverge to the benchmark solutions Biinkenbach
ensuring that the transition from fine to coarseet al.[1989].

elements is extremely gradational. In the steady-

- s 45] By calculating the percentage error for each
state cases, we specify that a minimum of u%utput analyzed (i.e., meavu, RMS velocity,

elements is required to make this transition. How- ndgy) and subsequently taking the mean of these

ever, in our thermochemical, unsteady simulation bur percent we have determined the discren-
this value is set to 30. In this way, fine regions of ur percentages, we have dete €d the discrep

the mesh are always surrounded by relatively fin&"¢Y: I-€- the solution error, between uniform mesh
zones. Accordingly, as the simulation evolves>0utions and benchmark solutions at various Ray-
accuracy is maintained, since zones of high sol _elglh numbers. Our results are summarized in
tion gradient have not departed the fine grid able 4.

regions before the next remeshing. Such a schenjg] Clearly, as convection intensifies, the solution
allows a greater time interval between remeshingsrror becomes more prominent, as would be
and was a key consideration when selecting thexpected. At higher Rayleigh numbers {100°),
remeshing frequency. RMS velocities, mean Nusselt numbers, and corner
temperature gradients lie far beyond the realms of
, _ - : : : .« uncertainty of the benchmark solution. Even at
element sizedk,in) permitted in our simulations is Ra= 10" solutions fail to achieve a suitable level

0.002 which yields localized resolution equiva—Of accuracy. However. as we show next. with the
lent to that achieved during a uniform mesh sim- Y. ' §

ulation of 1000 500 elements, in a box of aspectYS€ Of adaptive, unstructured meshes, solution
ratio 2. accuracy is greatly enhanced.

[42] It is important to note that the minimum

4.1.2. Adapted Meshes

[4] The results obtained &a= 10%, 10° and 16
4.1. Thermal Convection in a Square alon_gside their final adapted mesh_es are displayed
Cavity in Figure 5. They are also summarized in Tables 5,
6, and 7. For completeness, the sequence of meshes
4.1.1. Uniform Structured Meshes employed aRa = 10> are displayed in Figure 6,

_ _ together with the corresponding temperature con-
[43] The results obtained for uniform mesh calcu-tours. Once again, results for bd&a = 10* and

lations atRa = 10° are displayed in Table 1. The

results at bottRa = 10* (Table 2) andRa = 10°

(Table 3) demonstrate a comparable relationshifable 2. 1Results Obtained on Uniform Meshes for
and consequently only one set of results are presimulations of Thermal Convection in a Square Cavity

4. Results and Discussion

sented fully. atRa= 10

[44] Figure 4 displays the relationship between the um® Benchmark Uncertainty
number of elements in a mesh and the RM& g ents 16384 p— p—
velocity and mean Nusselt Number, respectivelyny 4.8952 4.8844 0.00001
The figures illustrate that a large number of eleVrus 42.8713 42.8649 0.00002
ments (i.e., >4000) is required before results begif: 8.0457 8.0594 0.000003

to show some sort of consistency. Even moré? 0.5905 0.5888 0.000003
elements are required before results begin to con- UM, uniform mesh.
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Table 3. Results Obtained on Uniform Meshes for Table 4. Solution Errors Obtained on a Uniform Mesh
Simulations of Thermal Convection in a Square Cavityof 16384 Elements (128 128 Elements), at Various

atRa= 1¢° Rayleigh Numbers, for Thermal Convection in a Square
Cavity
UM Benchmark Uncertainty
Elements 16384 . . Rayleigh Number Solution Error, %
Nu 21.3773 21.9725 0.00002 10* 0.2
Vrms 834.9486 833.9898 0.0002 10° 0.9
01 43.3217 45.9673 0.0003 10° 4.9
(o3 0.9737 0.8772 0.00001

values of the generation parametelgi{, dviax.
10° display a comparable relationship, and, conseSvax andC) defined in Appendix A. It is important
quently, only one set of results is presented fullyto note that for consistency, the generation param-
The characteristics of each mestRat= 10° are eters displayed in Table 8 are also utilized in our
summarized in Table 8, which shows the numbesimulations aRa = 10" andRa = 10°. It should

of quadrilateral elements and nodal points, and thalso be noted that we have intentionally restricted
the number of elements to less than 16,500, to

allow a simple comparison between adapted and
uniform structured meshes.

(@ [4s] As seen, the proposed procedure has refined
198 1 locations of thermal boundary layers, wherever
they are strong. Consequently, when compared to
uniform structured meshes, the majority of results
show far superior concurrence with the benchmark
solution, in spite of a reduction in the number of
elements (Table 9). As noted previously,Rat =
10°, a uniform mesh of more than 16,000 elements
SRR OO SRR S, is required for a reasonably well-resolved solution,
i.e., within 1% of the benchmark results. Ra =
192 : : ‘ ‘ 10P, extrapolating from a series of uniform mesh
0 5000 10000 15000 20000 simulations, we expect that more than 50,000
Elements elements would be required before results converge
to within 4% of the benchmark solution. More
(b) accurate results are inaccessible with the lower-
1 - order, serial configuration of ConMan. However,
with the proposed adaptive procedure this is not the
case. AtRa = 10, solutions within 0.1% of the
benchmark are achieved on a mesh df5,700
elements and aRa = 10°, results converge to
within 1% on a mesh of 16,200 elements. Using
the AFEM, the number of elements required for
adequate solution varies with Rayleigh number, but
is always significantly less than that of a uniform
mesh for a specified precision.

-

O

[e)]
I

RMS Velocity
©
N

Nusselt Number
©

0 5000 10000 15000 20000 [49] It is important to point out that the benefits of
Elements this technique become more noticeable when con-

. o vection is intense, an mperature gradients ar

Figure 4. The relationship between the number Ofg(raecztitoer ZtR;e: Si%4 e(l)nc:ytg rﬁgdztgt?a %?rcégs(tasir? e

elements in a mesh and (a) RMS velocity and (b) meal . .
Nusselt Number. The results represent thermal convegceuracy Is observeq between adapted and uniform
eshes, for approximately the same number of

tion in a square cavity, on uniform, structured meshes an !
Ra = 10°. Benchmark values are represented byelements (solution error decreases by a factor of
horizontal dashed lines. 3, from 0.2% to 006%) However, dRa= 106,
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Figure 5. Final adapted meshes and corresponding temperature contours for purely thermal convection in a square
cavity atRa= 10%, 10°, and 16. Red is hot T = 1), blue is cold T = 0), and the contour spacing is 0.02.

results display a superior concordance with the single processor would be highly impractical, at
benchmark solution on adapted meshes (the soliRa= 1(C°.

tion error decreases by a factor of 5, frord% to . .
1%). Indeed, on fully uniform meshes with linear[s?l Other conclusions can be drawn by analyzing
shape functions, obtaining an accurate solution o€ 4 outputs individually. The remeshing process
clearly has a positive effect on the global measures
(i.e.,VrmsandNu). However, the procedure seems

Table 5. Results Obtained After Each Remeshing for
Simulations atRa = 10* on Nonuniform, Adapted Table 6. Results Obtained After Each Remeshing at

Meshes Ra= 10°

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Benchmark Mesh 1 Mesh 2 Mesh 3 Mesh 4 Benchmark
Elements 412 1977 6474 14972 ok Elements 412 2390 7321 15722 ko
Nu 4.2687 4.8565 4.8683 4.8790 4.8844 Nu 7.9675 10.0967 10.4380 10.5278 10.5341
Vkrms 40.8536 42.9019 42.8792 42.8679 42.8649 Viyus 184.8429 193.5598 193.3056 193.2456 193.2145
O1 7.2917 8.0345 8.0479 8.0538 8.0594 q; 13.1450 18.9078 19.0353 19.0518 19.0794
02 0.6366 0.5887 0.5886 0.5885 0.5888 > 1.2687 0.7301 0.7195 0.7216 0.7228
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Table Z)6 Results Obtained After Each Remeshing at4.1.3. AFEM and Processing Efficiency
Ra=1

[51] We have demonstrated that the number of
Mesh 1 Mesh 2 Mesh 3 Mesh 4 Benchmark nodes and elements required for accuracy is less
Elements 412 2733 7681 16195  +==  With the AFEM. Consequently, the AFEM is more

Nu 11.6429 18.5597 20.9920 215077 21.9725 e€fficient in terms of memory requirements. How-
Vrms ~ 809.9980 841.9425 835.1100 834.7003 833.9898 ever, is the AFEM economical in terms of compu-
(o[} 12.3555 38.3885 44.7377 45.601 45.9643 tgtional processing time?

O 2.6031 0.9379 0.9038 0.8694 0.8772

[s2] Figure 7 illustrates the relationship between

. olution error and the time taken in obtaining these
to have a more dramatic effect on the accuracy Qfq) tions on both uniform and adapted meshes (at
the heat flux at domain cornersy(and da),  yarious Rayleigh numbers). It should be noted that
particularly at higher Rayleigh numbers. This iSy,q timings displayed for the adaptive cases include

easy to understand; the heat flux at these cornersyss time allocated for remeshing. The main points
strongly influenced by the resolution achieved in

: . arising are summarized below:
the upper thermal boundary layer. Since this
boundary layer is characterized by high temperassl 1. In general, aRa = 10%, the AFEM is less
ture gradients, the remeshing procedure refines thadficient than uniform meshes for a prescribed level
grid significantly in these regions. Accordingly, theof accuracy. However, when a solution error of less
corner solutions yielded by adapted meshes are fétan 0.2% is required, the AFEM becomes more
superior to those yielded on uniform structuredeconomical.

meshes. Global measures on the other hand, 5(3] 2 At Ra= 10° andRa = 16 the AFEM is
not influenced by these boundary layers to such a
extent. Consequently, the improvement observed i
global measures between adapted and unifor
grids is less dramatic.

ore efficient than uniform structured meshes,
Hecreasing computational processing time while
riﬂcreasing solution accuracy. Indeed, the lower

Figure 6. The series of meshes employedRat= 10° along with corresponding temperature contours. Red is hot
(T =1), blue is cold T = 0), and the contour spacing is 0.02.
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Figure 6. (continued)

graph in Figure 7Ra= 1(F) suggests that solution number of remeshing loops employed during each
errors of less than 4% cannot be obtained on simulation is constant (i.e., 3), it is apparent that
uniform meshes. With the AFEM this is not theremeshing will take a smaller fraction of the

case; far superior results are attained, although dwalculation time at higher Rayleigh numbers (since
to the lower order nature of ConMan, minor errorghe calculation time as a whole is greater). Regard-
persist. less of this point, the main conclusion to be drawn
from the data is that the remeshing procedure is

] ; ; u(Somputationally inexpensive, expending only a
lation time taken' by the remeshlng procedu_reSma" percentage of the calculation time.
compared to the time spent solving the governing

equations. It is important to note that althoughss] In summary, in the context of purely thermal
remeshing appears more efficient at higher Rayeonvection, the number of degrees of freedom
leigh numbers, this is not strictly true. At higherrequired for accuracy on uniform structured
convective vigors, simulations take longer to conmeshes is greater than that required for adapted
verge toward a steady state solution. Since thmeshes. Thus, for the same precision, the number
of nodes and elements is reduced when the adap-
tive procedure is used. Additionally, the remeshing

Table 8. Sequence of Meshes Employed for the

Problem of Buoyancy-Driven Flow in a Square Cavity

atRa= 10° Table 9. Solution Errors Yielded by Nonuniform
Adapted Meshes at Various Rayleigh Numbers

Mesh Elements Nodes d wmin dmax S Max

Rayleigh Number Elements Solution Error, %
1 412 453 0.05 0.05 1.0 -
2 2390 2493 0.009 0.05 5.0 0.6 10" 14972 0.06
3 7321 7469 0.0045 0.030 50 03 10° 15722 0.09
4 15722 15961 0.0025 0.025 50 0.2 10° 16195 1
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entrainment decreases with increased resolution.

—_
Q
=

0.6 - As a quantitative example, entrainmenttat
S . 0.02 decreases from a value of 0.4 on a grid of
5 04 - v 64 64 elements, to a value of 0.08 on a grid of
& S 256 256 elements. This large reduction can be
§ 02 . ... easily understood; grid-based methods suffer from
% ' numerical diffusion, which smears density interfa-
¢ ces over several grid spacings. Consequently, with

coarser grids, material at the density interface itself
becomes easier to entrain. As one increases grid
Time (Seconds) resolution, grid spacings decrease, leading to less
artificial diffusion and hence reduced entrainment.

0 5000 10000 15000 20000

—_
(=3
~—

[59] Perhaps a more fundamental point to note
from Figure 8, however, is that even after this
significant increase in resolution, wherr 0.01,
and indeed for a high percentage of the calculation,
the grid-based method displays almost an order of
magnitude greater entrainment than the other meth-
0 40000 80000 120000 ods currently employed in this field. The marker
chain results produced by Christensen, Neumeister
and Dion fromvan Keken et al[1997] are dis-
played for comparison. The reader should note that
8 the tracer particle studies dlackley and King
[2003] are consistent with these results. Clearly,
there is no resemblance between the grid-based
. methods and these results, particularly during the
S early stages of the simulation. At first glance, it
DAL does appear that wherr 0.02, the results yielded
‘ ‘ ) by grid-based simulations are reasonably consistent
0 100000 200000 300000 with those of previous particle studies. Closer
Time (Seconds) analysis, however, reveals that this is misleading.
] ] . The drastic difference in entrainment during the
Figure 7. The time taken to converge on various aarly development of these models means that, by
solution errors W|tr_1 both uniform (continuous line) andthis time, both simulations have evolved into
adapted (daShEid line) meshes aRay- 10", (b) Ra= completely different problems. Consequently, the
10°, and (c)Ra= 1(°. . . .
apparent consistent relationship between both
methods is purely coincidental. This point is rein-
forced when studying the visual patterns; there is
procedure is computationally inexpensive andonly a poor resemblance between Figure 9 here,
consequently, particularly at highRa (>10°), the  which shows the temporal evolution of the com-
AFEM allows one to attain a desired solution inpositional field, and equivalent Figures 8 and 10 of

Solution Error (%)
L

Time (Seconds)

—_
(2)
~

Solution Error (%)
SN
/—-

less processing time. van Keken et a[1997] and Figure 3 ofackley and
King [2003]. The similarities also diminish as the
4.2. Thermochemical Convection simulation evolves. The main differences include

[s71 Having demonstrated the applicability andthe position of the dense pile after reorganization

benefits of the AFEM for thermal convection, we

move on to thermochemical simulations. Table 10. Percentage of Computational Time Taken by

the Remeshing Process at Various Rayleigh Numbers

4.2.1. Uniform Structured Meshes % Time
[s5] Curves illustrating the entrainmer) ielded ~ Rayleigh Number Remeshing
by uniform mesh simulations at various grid reso- 10" 4
lutions are displayed in Figure 8. The results are ﬁ é-;

consistent with previous work in that relative
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Figure 8. (a) Relative entrainmeng)(against time on a series of uniform meshes. The “best” results ¥eom
Keken et al[1997] (CND Markerchain) are also displayed for ease of comparison. (b) An enlargement of the results
in Figure 8a for time 0.02.

into a two cell pattern and the amount of materiathose yielded with tracer particle and marker chain
trapped at the stagnation point. An importantmethods; however, entrainment rates remain sig-
observation to make here is that, during the latenificantly higher. Next, we will attempt to answer
stages of the calculation, diffusion dominates andyhether this is the case when the AFEM is
by t = 0.07, the dense layer has virtually disap-employed or does the method provide sufficient
peared. This is not the case when tracer particle andsolution to resolve these discrepancies?

marker chain methods are employed, as has been

pointed out byvan Keken et al[1997]. 4.2.2. Adapted Unstructured Meshes

[eq] It is clear from the simple tests performed[s] The generation parametertvf, Ovax Swax
here, on uniform meshes, that increased grid res@nd C) utilized within these models are summa-
lution reduces entrainment. Results move towaréized in Table 11. Unlike those previously defined
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Table 11. Mesh Parameters Employed for
Thermochemical Entrainment Simulations

win Oviax Smax C
0.002 0.02 5 0.1

for the purely thermal case (Table 8), the values
remain constant throughout the simulation. There
is a simple explanation for this. Since the problem
under study does not converge to a steady-state
solution, one must ensure that not only is the error
equally distributed spatially, but also temporally.
By fixing the generation parameters over time, one
guarantees that this is the case.

[62] Entrainment curves from these simulations are
displayed in Figure 10. The result obtained from a
uniform mesh simulation on a grid of 256 256
elements is also displayed for ease of comparison,
along with the “best” results ofan Keken et al.
[1997].

[63] Plots are displayed from simulations employ-
ing linear (AM-Linear) and cubic (AM-Cubic)
interpolation between grids. The accuracy of this
interpolation process is of fundamental importance
during unsteady problems of this nature. With
steady state problems, the solution always con-
verges toward a certain end member. Consequently,
minor errors arising due to inaccurate interpolation
can be overcome. However, with unsteady prob-
lems, errors arising during the interpolation process
propagate through the computational domain, lead-
ing to a solution that is unrepresentative of the true
problem. In essence, the solution emerging from
the remeshing procedure must be exactly that
which enters. Otherwise, the simulation evolves
falsely.

[62] The results involving linear interpolation are

therefore only presented for completeness; the
method fails to accurately interpolate features at
the density interface. At certain locations, the
density jumps from a value of 0 to 1 within a

single element. Linear interpolation is not capable
of resolving such a feature and, consequently, the
remeshing process employing linear interpolation
generates diffusive and nonconservative results.
The cubic interpolation strategy employed, however

Figure 9. Seven figures, at regular time intervals of
0.01, illustrating the evolution of the compositional
field, modeled on a uniform mesh of 256 256
elements. Red represents dense mateial 1), while
blue represents lighter materiél € 0).
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Figure 10. (a) Relative entrainment (e) against time on adapted, unstructured meshes. The results obtained on a
256 256 element uniform mesh are also displayed, as well as the “best” resultvdroikeken et al[1997].
(b) An enlargement of the results in Figure 10a for tinte02.

[Nielson 1979;El Hachemi et a).2003], accurately and 11). As was noted earlier, with a uniform mesh
captures such features, being both locally and glotsimulation on a grid of 256 256 elements, by
ally conservative. t = 0.07, the dense pile has almost completely
diffused. This is not the case with simulations
%mploying the AFEM; the dense pile remains
extremely coherent until this time. It is clear
pared to uniform mesh simulations. This point i”}'herefore that the higher resolution permitted by
' the AFEM leads to decreased artificial diffusion

reinforced by making a comparison of the longev-,

ity of the dense pile in the visual output (Figures gand, consequently, results that provide a more

precise representation of the problem.

[s] The results demonstrate that in general, th
AFEM leads to a significant reduction in artificial
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Figure 11. Evolution of (left) the compositional field and (right) the temperature field on (middle) a series of
adapted grids. The grids are adapted around temperature and compositional solution gradients. Additionally, a region
of fine resolution is generated adjacent to zones of high solution gradient. Consequently, as the simulation evolves,
high gradient zones remain in regions of high resolution, leading to less numerical error.
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[6¢] It is important to point out that, in addition to regions of high solution gradient, yielding en-
yielding superior results, our adaptive grid simu-hanced resolution of the associated flow features.
lations are computationally more efficient, both in

terms of memory and processing time, when com5.1. Applicability to Thermal Convection
pared to uniform mesh simulations. The number of Th its obtained f th | i
elements utilized in this simulation varies with timeL%] The results obtained from thermal convective
between 40,000 and 58,000, depending upon simulations are extremely positive. The error esti-
the configuration of the calculation. Additionally, Mator presented has proven reliable and the adap-
the generation of a new optimal mesh is al’:Fve procedure is shown to be robust. Predictions

inexpensive procedure, typically taking betwee or heat transfer agree well with benchmark sol-

15 and 20 time steps, compared to the time takefions, suggesting that the technique is valid and

for one time step with a nonchanging meshaccurate.

(although the time expended in remeshing can b . . :
decreased significantly by specifying a Iargerg'z' Applicability to Thermochemical

err_max - the remeshing tolerance; see Appendix ACONvection

section A2.2). Obviously, this gain in computa-[7] The results obtained from thermochemical sim-
tional efficiency is only valid provided one does ylations are somewhat less conclusive. However,
not set the minimum element sizéyin, 10 an  two major conclusions can be drawn:
unreasonably small value. Our experience suggests _ ,

that simulations withdm, < 0.002 are highly [72] 1. The AFEM provides a suitable means for
impractical, due to the tradeoff between minimunjncreasing grid resplutlpn in Ioca]lzed regions. This
element size and time stepping, dictated by thé&ads to a reduction in numerical diffusion and
Courant-Friedrichs-Levy condition. Of course, thishence entrainment rates, provided that the interpo
situation could be remedied by employing a locafation employed during the remeshing procedure
time stepping algorithm; however, this was beyon@ccurately captures all underlying features. Our
the scope of our study. It should be noted that th&esults suggest that an extension of this work to
efficiency of the method as a whole depends ofOth tracer particle and marker chain methods
how often it is necessary to remesh, which depeng¥ould be a worthwhile exercise, with the higher
on how time-dependent the simulation is. MestsPatial resolution yielded leading to the more
adaptivity therefore becomes less efficient foccurate tracking of particles (or the marker chain),
highly time-dependent cases needing frequerénerating results of greater accuracy.

remeshing. [2] 2. Even using the AFEM, grid-based meth-

[67] Although the results presented demonstrat@ds fail to achieve results that are consistent
the benefits of the AFEM, grid-based thermochemWith other methods. Consequently, we conclude
ical methods, even when coupled with the AFEM that the method, at least in its current format,
yield results that are beyond the realms of uncef€quires unrealistically high resolution to limit

tainty of those achieved via tracer particle andrtificial diffusion and accurately track chemical

marker chain methods. The method remains paf€terogeneities.

ticularly diffusive, yielding erroneous entrainment[73] In summary, the number of degrees of freedom
rates, even at the extremely fine resolutions pelequired for accuracy on uniform structured
mitted in our simulations. Once again, these findmeshes is greater than that on adapted unstructured
ings are reinforced by the visual patterns, withneshes. Thus for the same, or often superior
Figure 11 displaying only a marginal resemblancgyrecision, the number of degrees of freedom is
to Figures 8 and 10 ofan Keken et al1997] and  yeduced when the present adaptive procedure is
Figure 3 ofTackley and Kind2003]. This resem- sed. However, perhaps the most important advan-

blance, however, is stronger than that observegiges of the AFEM are the following:
with our uniform mesh simulations (Figure 9).

[74] 1. The unstructured nature of the technique
5. Conclusions allows its use when modeling many of the complex
' geometries encountered on Earth.

[es] An adaptive finite element procedure has beellrs] 2. Nodes automatically cluster around zones of
presented for solving convective heat transfehighest solution gradient, without the need for

problems within the field of geodynamics. Thecomplicated a priori mesh generation.
method adapts the mesh automatically around
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of high solution gradient, be it in temperature,
composition, pressure or velocity, that are found
embedded in large, “passive” regions, whose loca-
tion is difficult to determine a priori. It is clear
therefore that adaptive grid methods, with a poste-
riori error estimators, should have an important role
to play in the development of efficient solution
techniques for such problems. This development
should not be restricted to the method described
here (i.e., adaptive remeshing), but to adaptive pro-
cedures as a whole. Due to its flexibility, numerical
modeling will undoubtedly continue as a primary
tool in helping us to understand various geological
processes. The AFEM and the “multi-resolution”
solutions yielded, should, for the moment at least,
ensure that progress is not unnecessarily restricted by
computer power.

Appendix A: Mesh Generation and
Adaptive Remeshing Procedure

Al. Mesh Generation

[7s] The algorithmic procedure to be described for
the mesh generation process is based upon the
method originally proposed b¥eraire et al.
[1987]. The advocated approach is regarded as a
Figure Al. An illustration of the advancing front v_arlant of the so-called “adva_ncmg frpn_t” te(:h'
teghnique. The figure shows different stages guring thpique [George 1971;Lo, 1985] with the distinctive
triangulation process. eature that elements and nodes are generated
simultaneously. This technique is capable of gener-
ating meshes that conform to an externally pre-

[7] 3. The reduction in the number of degrees ofscribed spatial distribution of element size. The
freedom leads to a decrease in computationd@bility to generate meshes that are locally stretched
processing time and memory use (both in termglong prescribed directions is also included, leading

of disk space and RAM), meaning that complexto highly efficient definition of one-dimensional
problems can be solved efficiently. flow features. For simplicity, triangular elements

are generated initially. These are subsequently

[77] To date, successful goal-orientated/error-guidedompined or subdivided to form quadrilaterals,
grid adaptation techniques have, to our knowledgqne elements utilized by ConMan.

not been utilized in the field of geodynamics.

Potential applications of the method are wide-po1.1. Generation of the Initial Mesh
ranging and specific elements of the method could

even be applied alone in certain situations. Folel The underlying process in the advancing front
example, the error-guided remeshing proceduré€chnique is illustrated in Figure A1 (seraire et
would prove extremely useful in Lagrangian simu-2l- [1987, 1990] for further discussion). The
lations, when large distortions of the computationaPoundary of the domain is discretized first. Nodal
domain necessitate a total regridding. Within the field@0ints are placed on the boundary curves in such a
of geodynamics applications of the AFEM would Way j[hat the dlstan_ce between ther_n is as cI_ose as
include studies into subduction zone dynamics, pPossible to the desired mesh spacing. Contiguous
and its interaction with the post-perovskite phas@0des on the boundary curves are joined by
transition, upper mantle phase transitions, mid-oceat{raight-line segments and assembled to form the
ridge magmatism and plume dynamics. These phérJI'FIa| generation front._ At this stage, the_: triangu-
nomena have one thing in common: “active” regions'at'on loop begins. A side from the front is chosen
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Hachemi et al[2003] for a detailed description of
this interpolation process).

[s2] In general, for the initial mesh, the location of
one-dimensional features is not known. Conse-
quently a value ofs = 1 (i.e., no stretching) is
specified. The node spacings also defined to be
uniform, although a variation af can be achieved
(by suitable construction of the background grid) if
it is apparent that increased mesh resolution is
required in certain regions of the flow domain.
Note that ifd is required to be uniform initially and
no stretching is to be specified, then the back-
ground grid need only consist of a single element,

Figure A2. The definition of the mesh parameters ~ Which completely covers the solution domain.
s, andd. ]
Al.3. Boundary Representation

_ _ _ _[s3] The boundary of the solution domain is rep-
and a triangle is generated that will have thigesented by closed loops of oriented piecewise
selected side as one edge. In generating thisypic spline curves. For simply connected
new triangle an interior node may be created ofomains, these boundary curves are orientated in
an EX|St|ng node in the front may be chosen. Afteh counter-clockwise sense, while for multi-
generating the new element the front is conveconnected regions the exterior boundary curves
niently updated in such a way that it alwaysare given a counter-clockwise orientation and all
contains the sides that are available to form gterior boundary curves are orientated in a clock-
new triangle. The generation is complete when nqyise sense (Figure A3). This means that, as the

sides are left in the front. boundary curve is traversed, the region to be
meshed always lies to the left.

Al.2. Mesh Control: The Background _ _

Mesh [sa] When these boundary curves are discretized,

] ] ~ the boundary edges forming the initial front are
[so] The inclusion of adequate mesh control is &rientated in the same fashion. In this study, the
key ingredient in ensuring the generation of a mesRrientation of a boundary edge is defined by the
of the desired form. Control over the characteristicg der in which the two nodes of the edge are listed
is obtained by the specification of a spatial distriin the front. The orientation of the edge is impor-

bution of mesh parameters by means of a backgnt as it identifies the area of the plane in which a
ground mesh. The background mesh is used for

interpolation purposes only and is made up of
triangles.

[s1] To control the elements generated, the user

defines the node spacirdjthe value of a stretching

parameters, and a direction of stretchirg. The

generated elements will then have a typical length

sdin the direction parallel ta, and a typical length

din the direction normal ta (Figure A2). Thus, at

each node on the background grid, the nodal values

of d, s, anda must be specified. These values are

dependent upon the solution gradients and curva-

tures yielded by the error estimation process

(described further in sections A2.1 and A2.2). Local

values of these quantities are then obtained during

the generation process by cubic interpolation, over

the triangles of the background grid, between the

specified nodal values (sééelson[1979] andEl  Figyre A3. Orientation of the boundary. The domain
of interest is shaded.
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consistency requirement, i.e., the two newly created
edges do not cross any of the existing edges in the
front.

[¢2 7. Update the front by removing the edge AB,
and adding the appropriate number of new edges
with the correct orientation.

Al1l.5. Quadrilateral Element Generation
Using an Existing Triangular Mesh

[¢s] Since ConMan can only handle quadrilateral

grids, the triangular meshes generated by the pro-
cedures described above must be altered into
guadrilaterals. This can be done by doing the

following:

[94] 1. Combine two triangles together to form a
quadrilateral. However, this method comes unstuck
when an odd number of triangular elements exist in

e IDEAL POINT the original mesh.
X HELP POINTS [es] 2. Generate mid-side nodes on triangles and
o POINTS IN THE FRONT one in the center, and interconnect them, generat-

ing three quadrilaterals.

Figure A4. Generation of a new triangle. . ..
g g [9¢] In this study, a combination of the two meth-

valid triangle can be created using that edge as @S is employed (Figure AS5):

base. [e7] 1. The triangles of the mesh are combined in
pairs to give quadrilaterals.

Al.4. Triangle Element Generation _ _ _

. _ L918] 2. Since there may be several triangles remain-
[es] The generation of a regular triangular elemen,q o) elements, triangular and quadrilateral, are
of sized is illustrated in Figure A4. The process gpit into quadrilaterals by placing new nodes at the
involves the following steps: mid-sides, and one in the middle of each element.

[s] 1. Select an edge AB from the generationThis ensures the generation of an all-quadrilateral
front. mesh.

[71 2. Using the orientation of the edge, determinded] It should be pointed out that in order to
the position of a point C which lies at a distana ~ Produce a mesh with desired element stzethe
from A and B.

[ss] 3. Determine all points in the front that lie
inside a circle of radiusl and center at € Let
these points be denoted by, @here the subscript
varies between 0 and the number of “front” points
inside the circlei(= 2 in Figure A4).

[ss] 4. Determine the positions of the equally
spaced points £ C3, C4 and G on the line joining
C, and the mid-sideM) point of AB.

[e0] 5. Form a list containing all the points deter-
mined in step 3 as well as points, C,, C;, C, and
Cs. The points in this list will then be ordered
according to their distance from the point C

[¢1 6. Create an element with nodes A, B and the
first point in the list which satisfies the mesh Figure A5. Agglomeration of triangles.
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. ¢ A duce the bandwidth of sparse symmetric matrices)
is utilized to renumber elements and nodesthill
° and McKee 1969]. This process speeds up the
c b 5 b calculation and reduces memory requirements,
& since the resulting solution matrices are far more
compact, with reduced bandwidth.
c A . :
A2. Error Indicator and Adaptive Strategy
[104 Having obtained an approximation to a solu-
c D 5 o tion for a given problem, one can improve the

accuracy of this solution by adaptively refining the
Figure A6. Diagonal swapping procedure. mesh. In this study, mesh adaptation is achieved by
using the computed solution to determine “opti-
mum” nodal values fod, s, anda. The mesh is
spacing of the triangles generated originally musthen regenerated with the initial computational
be . mesh acting as a background grid.

A1.6. Mesh Quality Enhancement [10s] To determine the values for the mesh param-
o y eters, it is necessary to use the current solution to

[100] Three post—proces_sing procedures are appliegive some indication of the error magnitude and
to enhance mesh quality. These procedures _do ndirection. A certain “key” variable must be iden-
alter the total number of points or elements in theified and then the error indication process can be
mesh: performed in terms of this variable. In this study,
[101] 1. Diagonal swapping: This techniquethe error indicator is based on the temperature

changes the connectivities among nodes in théa”able’T’ in purely thermal convective simula-

mesh without altering their position. This process ons, a_lnd a comblnat_lon dT and C, the compo-
ition, in thermochemical simulations. Of course,

require_s a loop over all the element side_s excludin her variables (e.g., pressure) or any combination
those sides on the boundary. For each side comm . g :
of variables (e.g., temperature and velocity

to the triangles ACD and BCD (see Figure A6), ... .
one considers the possibility of swapping CD by{rltllthlatrasu %cot?]O]) caglbe cho§enz dep?.”d'tf.‘g upon
AB, thus replacing the two triangles ACD and € nature ot the probiem under investigation.
BCD by the triangles ABC and ABD. The swap- _ ,
ping is performed if a prescribed regularity criteri-[10d The construction of the error estimator can
on is better satisfied by the new configuration thar{ake various forms depending upon the nature of the
by the existing one. In our implementation, theProblem. It is obvious from the large number of
swapping operation is performed if the minimumpubhpaﬂons available on error estimation and ad-
angle (formed by element edges at each elemeAPtVity [Lohner et al, 1986;Zienkiewicz and Zhu
node) occurring in the new configuration is larger:987;Lohner 1995;Hassan et al.1995;Fortin et
than in the original one. al., 1996_] that research in this area of computational
mechanics remains very active. However, as has
[109 2. Mesh smoothing: This alters the position ofbeen pointed out byithiarasu and Zienkiewicz
the interior nodes without changing the topology 0f2000], most of the well-known literature on error
the mesh. The element sides are considered astimates deals with self-adjoint problems [e.g.,
springs of stiffness proportional to the length ofzienkiewicz and Zhi987]. Fluid mechanics prob-
the side. The nodes are moved until the springems, which involve non self-adjoint operators, are
system is in equilibrium. The equilibrium positionsmore difficult concepts, and traditional methods
are found by iteration. Each iteration amounts t&uch as the “energy norm” are not always suitable
performing a loop over the interior points andfor measuring the error. For this reason, most of the
moving their coordinates to coincide with thosework in fluids utilizes local indicators, such as the

of the centroid of the neighboring points. Usuallylocal interpolation error, to refine the grid without
three to five iterations are performddassan and specifying a total error.
Probert 1999].

[109 3. Bandwidth reduction: A variant of the [107 Error indicators based upon the interpolation
“Cuthill-McKee” algorithm (an algorithm to re- theory make the following assumptions:
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[108] 1. The nodal error is zero. Whe_re denotes _absolute value. Sev_eral previous
. studies Pemkowicz et al.1984; Peraire et al,
[109 2. The solution is smooth. 1987; Nithiarasy 2000] have demonstrated that

[110] This allows one t@pproximatahe elemental eqL_Ii-diStribution Of.the element error leads to an
error by a derivative one order higher than theoPptimal mesh and in what follows we employ the
element shape function. We make use of thi§ame criterion. This requirement implies that
approach to refine the grid, by considering the 2
second derivatives (curvatures) Dand C. Note hz?
that for the remainder of this appendix we will

restrict our discussion to the solution variable where C denotes a positive constant. Finally, the

C A4

rather than refer t& and C explicitly. requirement of equation (A4) suggests that the
_ optimal spacingl on the new adapted mesh should

A2.1. Error Indicator be computed according to

[111] Consider a one-dimensional situation in

which the exact values of the key variableare e ¢ AS

approximated by a piecewise linear functiormhe X2

errorE is then defined as
Equation (A5) can be directly extended to the two-

E fx fx Al dimensional case by writing the quadratic form:

If the exact solution is a linear function xf this @ mbb  C A6
. . . . b Jiad g
error will vanish, as the approximation has been

obtained using piecewise linear finite elementynerep is an arbitrary unit vectod, is the spacing
shape functions. To a first order of approximationg|ong the direction ofb, and m; are the

the errorE can be evaluated as the differencecomponents of a 2 2 symmetric matrixm, of
between a quadratic finite element solutfoand ~ gecond derivatives defined by
the linear computed solution. To obtain a piecewise

guadratic approximation, one could obviously 2f
solve a new problem using quadratic shape M %

functions. This, however, would be costly and an o
alternative approach for estimating a quadratid Nese derivatives are computed at each node of the

approximation from the linear finite elementCUrrent mesh by using the two-dimensional
solution can be employed. Assuming that the nodeﬁqylvalent of the variational recovery procedure.
values of the quadratic and the linear approxima]-hls procedure allows one to recover the nodal
tions coincide, i.e., that the nodal valuestoare Values of second derivatives from the elemental
zero, a quadratic solution can be constructed opalues of the first derivatives of; refer to
each element, once the value of the seconfPpendix B for a detailed analysis of this
derivative is known (assuming that second derivaProcedure.

tives are constant over each element).

A7

A2.2. Adaptive Remeshing

[1231 The basic concept behind the adaptive
remeshing technique is to use the computed solu-
1 2 tion to provide information on the spatial distribu-
52 he z 2 A2 tion of the mesh parameters. This information will
be used by the mesh generator to generate a new
wherez denotes a local element coordinate apd adapted mesh in those areas where the values of the
denotes the element Iengﬂﬁﬁraire et al, 1987]. optimal mesh parameters differ from the values of
The root mean square Valﬁé Sof this error over the current mesh parameters by greater than a user

[119 The variation of the errdg within an element
e is then expressed as

Ee

the element is computed as prescribed amoungrr_max (set as 0.5% in this
study).
12
RS " E2 1, % [114 The optimal values for the mesh parameters
Ee h_edz _120he7 A3 are calculated at each node of the current mesh.
0 e The directionsa;; i = 1,2 are taken to be the

principal directions of the matrim. The corre-
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sponding mesh spacings are computed from thehere N are the appropriate shape functiorzlsh used.
eigenvalues ; of m, as The nodal values of the second derivativey%g,
can be obtained by using a similar approximation:

d 12 A8

Ci
I 2¢h 2Fh

f f
B2

The spatial distribution of the mesh parameters is * X
defined when a value is specified for the constant o . 2¢h L
The total number of elements in the adapted mesith similar expressions forz. The projection,
will depend upon the choice of this constant. The

magnitude of the stretching paramesegt noden, NT N iz i’;‘f_ dw 0 B3
is simply defined as the ratio between the two w X X
spacings: .
P g can be used to determine the nodal curvatures.
Thus
gl” A9
2n 2F T
7‘; M ! &X—';‘ dWF B4
whered,, is the spacing in principal direction 1, and w
d,, is the spacing in principal direction 2. where
[115] Inthe practical implementation of this method,
two threshold values are used: a minimum spacing M NTNdW B5
dmin, @and @ maximum spacirty,,,, with w
G & i 12 al0  Is the well-known mass matrix, which is lumped

for convenience. The contribution at any node thus

It is apparent that in regions of uniform flow, the involves only the elements surrounding it. Similar
computed values ofd, will be very large. expressions can be written f{% and—=.
Consequently, the user must specify a maximum Xy
allowable valued,,, for the local spacing on the Acknowledgments
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