

Numerical Simulation using Ammonia/Methane blends in a Swirl Gas Turbine Combustor

Hua Xiao

Supervisors:

Prof. Bowen P.J. & Dr. Valera-Medina A.

l. Ammonia as a Sustainable Fuel

• Carbon-free fuel

PRIFYSGOL

- High hydrogen density
- Combustion process: NH₃+O₂=N₂+H₂O
- Easy to store, transport
- A high octane rate of 110–130

2. Research Plan

3D Large Eddy Simulation

Operating pressure		2bar
Oxidiser	O2	21%
(mol%)	N2	79%
Fuel (mol%)	CH4	38%
	NH3	62%
Mass flow		10.5g/s
Inlet Temperature		300K
Wall condition		Isothermal
Table1. Boundary conditions of combustor model		
Platform: OpenFOAM		
Turbulence: Smagorinsky model		
Reaction: Konnov's Mechanism		
Combustion: Partially Stirred Reactor (PaSR)		
SCHOOL OF ENGINEERING		

CAFRDY 3D LES Simulation Results

Fig.10. OH distribution in the flame (left-experiment, right-simulation)

Fig.11. Iso-surface of pressure

5. Future Work

- More accurate models for ammonia/methane will be developed to explore the good potential for power generation.
- More experimental and numerical studies will be conducted on a more *advanced annular combustor* to get a better combustion performance of ammonia.
- Cooperation with Limerick university will help develop new detailed chemical mechanisms particularly for ammonia combustion under the real gas turbine operation conditions.
- Ammonia with other green fuels like hydrogen will be investigated to enhance the combustion performance.

