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Toward anticancer gold-based compounds targeting PARP-1: a 

new case study 

A. Citta,
a,
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 a,
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b
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c
 M. Wenzel,

c
 A. Folda,

a
 M.P. Rigobello,

a,
* E. 

Meggers
b
 and A. Casini

c,d,
* 

A new gold(III) complex bearing a 2-((2,2’-bipyridin)-5-yl)-1H-

benzimidazol-4-carboxamide ligand has been synthesized and 

characterized for its biological properties in vitro. In addition to 

showing promising antiproliferative effects against human cancer 

cells, the compound potently and selectively inhibits the zinc 

finger protein PARP-1, with respect to the seleno-enzyme 

thioredoxin reductase. The results hold promise for the design of 

novel gold-based anticancer agents disrupting PARP-1 function 

and to be used in combination therapies.   

Gold compounds have recently gained increasing attention in 

the design of new metal-based anticancer therapeutics,
1-4

 

including gold(III) complexes with multidentate N-donor or 

cyclometalating ligands, gold(III) dithiocabamates, gold(I) N-

heterocyclic (NHC) carbenes, as well as gold(I) alkynyl 

complexes.
1, 5-7

 

Concerning the possible mechanisms of action, early work 

suggested DNA as the anticancer target for gold complexes. 

However, later studies showed that actually the inhibition 

properties of different proteins and enzymes by gold 

compounds play major roles,
8, 9

 whereas interactions with 

nucleic acids appear to be markedly less relevant, with a few 

exceptions.
10, 11

 For example, thiol-containing enzymes such as 

gluthathione reductase (GR), gluthathione-S-transferase,
12

 

cysteine proteases,
13

 protein tyrosine phosphatases (PTP), and 

deubiquitinases (DUBs)
14

 were shown to be potently inhibited 

by gold complexes. Interestingly, recently the water and 

glycerol membrane channels termed aquaporins (AQPs) have 

also been reported to be selectively targeted by certain 

families of gold(III) complexes,
15-17

 which could also been used 

to unravel the roles of AQPs in cancer cell proliferation.
18

 

In this context, among the most studied and recognized 

targets for gold compounds, the seleno-enzyme thioredoxin 

reductase (TrxR) has been widely investigated.
19

 Human TrxR 

contains a cysteine-selenocysteine redox pair at the C-terminal 

active site, and the solvent-accessible selenolate group, arising 

from enzymatic reduction, constitutes a likely target for “soft” 

metal ions such as gold. Thus, a number of mono and 

dinuclear, as well as heteronuclear, gold(I) and gold(III) 

complexes have shown good correlation between cytotoxic 

activity and TrxR inhibition properties.
20-29 In addition, 

mitochondria and the endoplasmic reticulum
30

 have been 

proposed as potential targets for anticancer gold complexes. 

 

 Pursuing the search of novel protein targets for anticancer 

gold compounds, some of us reported on the inhibitory effects 

of different cytotoxic gold-based complexes with phosphine or 

bipyridyl ligands, towards the zinc finger (ZF) enzyme poly 

(adenosine diphosphate (ADP)-ribose) polymerase 1 (PARP-

1).
31, 32

 Interestingly, Au(III) coordination complexes were 

among the most efficient in inhibiting PARP-1, at a nM level, 

followed by Au(I) compounds.  

 It is worth mentioning that PARPs are considered “the 

guardian angels” of DNA playing a key role in its repair by 

detecting DNA strand breaks and catalyzing poly (ADP-

ribosylation).
33

 Therefore, PARP inhibitors can be used in 

combination with conventional anticancer agents that act by 

damaging DNA, such as cytotoxic chemotherapy and 

radiotherapy, as the PARP inhibitors block the DNA-repair 

mechanisms that cancer cells use to resist destruction.
34

   

 Concerning the molecular mechanisms of PARP-1 inhibition 

by metal complexes, gold ions in either oxidation state 3+ or 

1+ are able to induce zinc substitution in ZF models, leading to 

the formation of the so-called gold fingers.
31, 35, 36

 Damage of 

the ZF domain responsible for DNA recognition leads to PARP-

1 inhibition. 
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  Here, we report on the synthesis of a new gold(III) 

complex (2) bearing the bidentate N-donor ligand (1). Notably, 

the 1H-benzimidazole-4-carboxamide fragment of 1 has been 

designed as PARP-1 inhibitor acting on the catalytic site of the 

protein, and not on its ZF DNA binding domain by forming 

hydrogen bonds between the carboxamide and Ser904 as well 

as Gly863 within the catalytic site.
37

 Ideally, the resulting gold 

complex should show enhanced properties as PARP-1 targeted 

agent profiting of the synergic inhibitory effects of both the 

Au(III) ions and the organic ligand. Thus, 1 and 2 were tested 

for their PARP-1 inhibition properties in vitro directly against 

the purified enzyme as well as in protein extracts from human 

cancer cells, against which the compounds also showed 

antiproliferative properties. Gold finger formation was 

observed by high-resolution ESI MS upon treatment of the 

PARP-1 zinc finger model with 2. 

In this context, where multiple protein targets have been 

identified for cytotoxic gold compounds, it is absolutely 

necessary to promptly assess selectivity of new families of 

complexes in order to avoid side-effects, and to construct solid 

and reliable structure-activity relationships which should 

orient the design of targeted chemotherapic agents. 

Therefore, the activity of the compounds as TrxR inhibitors 

was also tested on both purified enzyme and cell extracts, in 

comparison to auranofin, the gold(I) anti-arthritic drug with 

cytotoxic properties in vitro,
38

 used here as the benchmark 

inhibitor of TrxR.
39

 

 To further characterize the mechanisms of anticancer 

action of the gold(III) complex 2, the study of its effects on the 

intracellular redox state was conducted measuring the total 

and oxidized glutathione content in cancer cells. Moreover, its 

effects on the mitochondrial membrane potential were also 

assessed in cancer cells, in comparison to ligand 1. The 

obtained results allowed evaluating the selectivity of 2 for 

PARP-1 vs TrxR, with implications for the design of improved 

gold-based targeted agents.  

 

Results and Discussion 

 

A practical synthesis of ligand 1 was developed starting from 4-

bromo-2,2’-bipyridine through reductive carbonylation
40

 

providing 2,2’-bipyridine-4-carbaldehyde
41

 in 96% yield, 

followed by condensation with 2,3-diaminobenzamide
42

 in 

93% yield. Compound 2 was then synthesized adapting 

procedures used for previously reported Au(III) complexes 

with bidentate N-donor ligands
43

 (Scheme 1) and characterized 

via different methods as described in the Experimental section 

(see Supplementary Information Available). Thus, 2-((2,2’-

bipyridin)-5-yl)-1H-benzimidazol-4-carboxamide (50 mg, 0.16 

mmol) in suspension in ethanol (0.5 mL) was reacted with 

hydrogen tetrachloroaurate (1 eq, 54 mg, 0.16 mmol), also 

dissolved in ethanol (0.5 mL), in a round-bottom flask 

equipped with a condenser. The reaction mixture was refluxed 

overnight during which time a brown precipitate was formed. 

After cooling down, the precipitate was collected by filtration 

and washed twice with diethylether (68% yield). The product 

was characterized by various techniques including 
1
H and 

13
C 

NMR spectroscopy, mass spectrometry and elemental analysis 

(see Supplementary Information for details). 

 

 

 

 

 

 

 

 

 

Scheme 1 – Synthesis of ligand 1 and of the related Au(III) complex 2. 

Initially, the stability of the gold(III) complex 2 was evaluated in 

PBS buffer (pH 7.4) using UV-visible spectrophotometry. The 

compound exhibits an intense transition in the 300-400 nm 

range, characteristic of the gold(III) chromophore, that may be 

straightforwardly assigned as LMCT bands (Fig. S1, 

supplementary information). Spectral changes are slowly 

observed with time that might be related to the occurrence of 

partial hydrolysis processes. In any case, the gold(III) complex 

is the dominant species in buffered aqueous solutions after 

several hours incubation. 

The stability of 2 toward biologically occurring reducing agent 

glutathione (GSH) was also evaluated. Results show that GSH, 

present at a 2:1 molar ratio with respect to 2, does not 

markedly affect the evolution of the main LMCT band of the 

complex with respect to its normal hydrolysis (Fig. S2). 

However, formation of soluble gold(I) thiolate species as a 

major product of gold(III) reduction, cannot be excluded. 

Afterwards, the antiproliferative properties of the new gold 

complex 2 and ligand 1 were studied by monitoring their 

ability to inhibit cell growth using the MTT assay (see 

Experimental section). Cytotoxic activity of the compounds 

was determined after exposing for 72 h the human ovarian 

cancer A2780 cell line, and its cisplatin resistant variant 

(A2780cisR), the human ovarian cancer SKOV3 cell line, as well 

as the human non-small cell lung carcinoma A549 line, in 

comparison to cisplatin and auranofin (AF). The results are 

summarized in Table 1. The IC50 values of 2 towards all tested 

cell lines are lower in comparison to the free ligand 1. This may 

implicate that the gold(III) center plays an important role in 

the still unknown mechanism(s) of cytotoxic action. The IC50 

values towards the cisplatin resistant A2780cisR cell line is for 

1 comparable to cisplatin, but 2 is markedly more effective. 

This observation support the idea that in general gold(III) 

complexes do not have the same mechanism of action as 

cisplatin, as discussed in the introduction. Both 1 and 2 are 

poorly toxic against the A549 cell. The greatest difference in 

IC50 value between 1 and 2 is found against the SKOV3 cell line 

(2 is ca. 4-fold more potent than 1). Such discrepancy in the 

cytotoxic effects may be due to several factors, including 

different transport mechanisms (uptake and efflux) of complex 

2 with respect to ligand 1 in the selected cancer cells, which 

may lead to decreased intracellular accumulation of 1. Finally, 
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AF is certainly the most potent among the tested drugs; 

however, it is also the most unselective, again demonstrating 

differences of mechanisms of activity among different families 

of gold compounds. 

 

Table 1 - IC50 values of the Au complexes described in this study against 

human ovarian carcinoma cell lines SKOV3, cisplatin sensitive (A2780) and 

resistant (A2780cisR) and lung cancer cells (A549) compared to cisplatin and 

auranofin (AF). 

 

  IC50 (µM)
a
 

Compound SKOV3 A2780 

 

A2780cisR 

 

A549 

 

 

1 84.4 ±7.6 9.70±3.06 33.1±5.9 46.7±17.5  

2 22.7 ±2.9 4.80±2.35 13.0±2.7 35.0±6.5  

AF 1.8± 0.4 1.25± 0.5 1.5± 0.3 2.5± 0.7  

cisplatin 13.2 ±3.5 5.2±1.9 35.0±5.9 10.8±2.8  
a
 Data are the mean ± SD of at least four experiments. 

 

Compounds 1-2 were then tested against purified PARP-1 

using an established protocol.
31

 As expected, potent PARP-1 

inhibition was observed with both compounds: 1 has an IC50 = 

5.0 ± 2.1 nM, and 2 has IC50= 6.0 ± 1.3 nM, in the same range 

as previously reported cytotoxic gold(III) complexes.
31

  

Afterwards, PARP-1 activity was evaluated on cell extracts 

from A2780, A2780cisR and SKOV3 cells. Thus, incubation of 

protein cell extracts with the compounds for 24 h at room 

temperature was followed by PARP-1 activity determination. 

Fig. 1 shows the residual PARP-1 activity in protein extracts 

treated with the complexes at a fixed concentration (10 µM). 

Attractively, both compounds can induce PARP-1 inhibition to 

a similar extent in A2780 and A2780cisR cell lines, while a 

marked difference could be detected in the case of SKOV3 

cells, where 2 is able to inhibit PARP-1 until ca. 10% of its 

residual activity. Instead, 1 is practically ineffective on these 

cells, in line with the scarce anticancer effects observed above. 

Furthermore, PARP-1 activity was evaluated on protein 

extracts obtained from SKOV3 cells pre-treated with non-

cytotoxic doses of each compound for 48 hours. Afterwards, 

the protein extracts were collected and analyzed for PARP-1 

activity. Preliminary results indicate that only the gold complex 

2 (20 µM) was able to induce ca. 70% reduction of PARP-1 

activity, while ligand 1 was poorly effective.  

 

 

 

 

 

 

 

 

 

 

Figure 1 - PARP-1 activity levels in human ovarian cancer cellular extracts. PARP-1 

activity was measured in homogenates (50 µg of protein) treated with the compounds 

(10 µM) over 24 h at room temperature. Data are the mean ± SD of at least three 

experiments each performed in triplicate. 

In order to assess formation of adducts between the gold 

complex and the zinc finger domain of PARP-1, a peptide 

model corresponding to the N-terminal ZF domain sequence of 

PARP-1 was reacted with 2 and the sample was monitored by 

high-resolution ESI MS as described in the Experimental 

section. Figure S3 in the supplementary material shows the 

broadband mass spectrum of the 2-ZF adduct. In agreement 

with previously reported studies on other Au(III) complexes, 

when 2 was incubated with the ZF domain in a 3 : 1 ratio for 10 

min, partial displacement of Zn
2+

 from the ZF by gold ions leads 

already to formation of the so-called ‘‘gold-finger’’ adduct. 

 Afterwards, to evaluate if the different cytotoxic effects of 

2 were related to differences in intracellular Au accumulation, 

ICP-MS analysis of cell extracts out of A2780 and SKOV3 cells, 

pre-treated with the gold compound for 24 h, demonstrated 

that the cytotoxicity is somehow proportional to the gold 

uptake, and the strongest antiproliferative effects correspond 

to higher values of intracellular gold concentration. In fact, the 

concentration of Au [pmol Au/10
6
 cells] measured in A2780 

and SKOV3 cells is 1802 ± 209 and 1087 ± 322, respectively. 

Nevertheless, in spite the reduced accumulation of 2 in SKOV3 

cells, the inhibition of PARP-1 activity is more pronounced than 

in the case of A2780 cells (Fig.1). 

 

Since TrxR is also a potential target for gold complexes, in vitro 

inhibition of purified rat TrxR by the two compounds was 

studied using established protocols as described in the 

Experimental section. The results are summarized in Table 2 

and Figure S4. Complex 2 inhibits cytosolic thioredoxin 

reductases (TrxR1) in the same range as auranofin (IC50 = 14.32 

± 1.62 nM vs IC50 = 6.88 ± 1.25 nM, respectively). Conversely, 

ligand 1 is completely ineffective, as expected since it is 

deprived of the Au(III) centre able to bind the selenol groups 

(Figure S1, supplementary information). Further studies 

demonstrated that 2 is also able to inhibit the TrxR closely 

related, but selenium-free, enzyme glutathione reductase (GR) 

with IC50 = 0.40 ± 0.06 µM, about 28-fold less efficiently than 

in the case of TrxR (Table 2). 

 

Afterwards, the effect of compounds on TrxR and GR activities 

was evaluated in cell lysates. For this purpose, SKOV3 cells 

where the two compounds showed markedly different 

cytotoxic effects, were pre-treated for 48 h with 20 and 40 µM 

of 1 and 2, respectively. The obtained results show that 1 does 

not affect enzymes activities, while 2, causes ca. 50% TrxR 

inhibition and a slight decrease of GR activity at 40 µM (Fig. 2). 

In addition, similar experiments were conducted in the A2780 

cells, and the obtained results showed no statistically 

significant inhibition of TrxR at the tested compounds’ 

concentrations (Figure S5). Notably, these latter results further 

corroborate the hypothesis of alternative pharmacological 

targets for the reported compounds. 
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Overall, the obtained results on both PARP-1 and TrxR 

activities, indicate that the cytotoxic gold complex 2 may 

operate via inhibition of PARP-1, whereas TrxR is only 

moderately affected. Concerning the observed differences in 

PARP-1 inhibition by 1 and 2, it may be suggested that the 

ligand is not so selective for binding to PARP-1 as the gold 

complex 2, once in the presence of other intracellular 

components. Nevertheless, in terms of the overall cytotoxic 

potency, differences in the uptake mechanisms and cellular 

accumulation between the two compounds should also be 

taken into account. 

 

Table 2 IC50 values of the inhibition of TrxR1 and GR on the isolated 

enzymes.  

 IC50 (nM)  

Complexes TrxR1 GR 

   

1  >100 >10000 

2  14.32 ± 1.62 400 ± 60 

AF 6.88 ± 1.25 >10000 

 

 

The glutathione redox pair (GSH/GSSG) is another fundamental 

component of the cell redox regulation in cisplatin resistant 

cells.
44

 Therefore, our study continued with the analysis of 

total glutathione content (reduced + oxidized) and of the 

GSH/GSSG ratio in SKOV3, after treatment with the two 

compounds for 48 h in comparison to AF. The obtained results 

are shown in Figure S6 in the Supplementary material 

available. It can be observed that for all tested compounds no 

statistically significant variation of the total GSH content, as 

well as of the GSH/GSSG ratio occur, again made exception for 

2, which causes a slight increase of GSSG content at 40 µM, in 

accordance with the compound’s above-mentioned inhibition 

effect of glutathione reductase. This behavior suggests that 

GSH does not particularly influence the cytotoxic potency of 

the gold complex, as for cisplatin in the case of certain 

resistant cancer cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Effect of the compounds 1 and 2 on thioredoxin reductase and glutathione 

reductase activities in cell lysates. SKOV3 cells were treated for 48 h with 20 and 40 µM 

of 1 and 2, respectively. *= p<0.01 

 

Mitochondrial membrane potential (MMP), a consequence of 

the electrochemical proton gradient maintained for the 

purpose of ATP synthesis, is an important indicator of 

functional mitochondria. Previously reported studies showed 

that gold(III) complexes are able to determine the decrease of 

MMP depending on the ligands. As an example, gold(III) 

Porphyrin 1a induced apoptosis by mitochondrial death 

pathways related to reactive oxygen species.
45

 Similarly, 

gold(III)-dithiocarbamato derivatives were shown to alter 

mitochondrial parameters, such as causing a drop of the 

mitochondrial membrane potential (MMP).
46

 

MMP evaluation was conducted monitoring the fluorescence 

of tetramethylrhodamine methyl esters (TMRM) according to 

established protocols (see Experimental for details). Thus, it 

was possible to determine if the complexes are able to induce 

a quick drop in mitochondrial membrane potential (Δψm), 

detectable as a decline in the fluorescence intensity of 

TMRM.
47

  

Therefore, MMP of SKOV3 cells treated for 18 h with 

compounds 1 and 2 was measured by cytofluorometric 

analysis in comparison to auranofin (AF) and CCCP (Fig. 3). 

Cells were incubated with 25 nM TMRM for 20 min and then 

analyzed by flow cytometry utilizing an argon laser at 585 nm, 

as described in the Experimental section. 
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Figure 3 - Percentage of cells with a low and high mitochondrial membrane 

potential. Mitochondrial membrane potential of SKOV3 cells treated for 

18 h with compounds 1 and 2 was measured by a cytofluorometric 

analysis. Cells were incubated with 25 nM TMRM for 20 min and then 

analyzed by flow cytometry utilizing an argon laser at 585 nm. Bars 

represent mean percentages ± S.D. (n=3) of SKOV3 cells whose 

mitochondria maintained a high (gray) or low (dark gray) TMRM 

fluorescence, that correspond to their mitochondrial membrane 

potential. 

From the obtained results it has been possible to determine 

that, at variance with AF and the classical uncoupling agent 

CCCP (Carbonyl cyanide m-chlorophenyl hydrazone), both 

complexes 1 and 2 do not affect the MMP values with respect 

to the controls, as it has instead been reported for gold(III) 

porphyrins and dithiocarbamato complexes.  

 

Finally, since overexpression of PARP in cancer cells has been 

linked to drug resistance and PARP-1 inhibition has been 

shown to sensitize tumor cells to chemotherapeutic agents 

including platinum compounds, we decided to evaluate the 

cytotoxic effect of cisplatin administered in combination with 

different concentrations of 2. Initial data were obtained for 72 

h co-administration of cisplatin (7.5 µM) and 2 at different 

concentrations (10-20-30 µM) in SKOV3 cells (see 

experimental for details). In Table S1 (supplementary material) 

a comparison of the predicted survival rates (defined as the 

expected cell viability if the combined activities of the 

compounds are additive) and the experimentally determined 

values (the observed viabilities) is reported. Unfortunately, the 

observed survival rates for the combinations of 2 with cisplatin 

are similar to those predicted on the basis of an additive 

effect, ruling out the synergism. Further studies will be 

necessary to investigate possible synergic effects in different 

cancer cell types and to validate the possibility of using 2 in 

combination therapy. 

Conclusions 

We have reported here on the potent PARP-1 inhibition properties 

of a new cytotoxic gold(III) complex with a bidentate N-donor 

ligand. A series of biological and biochemical assays has shown that 

the compound targets preferentially PARP-1 with respect to the 

seleno-enzyme thioredoxin reductase, and in doing so it is more 

effective than the free ligand. The absence of effects of the gold(III) 

compound on both MMP and intracellular glutathione redox state 

demonstrate that different mechanisms of action are in place for 

different families of gold-based cytotoxic agents, which holds 

promise for the design of targeted anticancer metallodrugs. 

Notably, inhibition of PARP potentiates the activity of DNA-

damaging agents, such as alkylators, platinum compounds, 

topoisomerase inhibitors, and radiation in in vitro and in vivo 

models. Thus, clinical development to date has focused on 

PARP inhibitors potential role in combination with DNA-

damaging chemotherapy, where efficacy has been limited by 

enhanced normal tissue toxicity. 

Olaparib, a highly potent PARP inhibitor, has recently been 

approved for ovarian cancer therapy by the FDA and European 

commission, in patients with platinum-sensitive, recurrent, 

high-grade serous ovarian cancer with BRCA1 or BRCA2 

mutations.
48

  

Within this frame, gold(III) complexes such as 2 may constitute 

an alternative strategy to PARP-1 inhibition, acting on both the 

zinc finger DNA binding domain of the protein via gold binding, 

and on its catalytic domain; therefore, having enhanced 

efficacy. Further studies are necessary to fully validate this 

hypothesis and to design compounds with selectivity for PARP-

1 with respect to other zinc finger proteins. 
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Experimental Section 

 

Synthesis 

 

2,2’-bipyridine-5-carbaldehyde 

5-Bromo-2,2’-bipyridine (5.0 g, 21.3 mmol) was dissolved in DMF (29.0 ml). Na2CO3 (2.24 g, 21.2 

mmol), triethylsilane (7.0 ml, 43.8 mmol) and 1,3-bis(diphenylphosphino)propane (263 mg, 638 µmol) 

were added. After purging the solution with nitrogen for 10 min, tris(dibenzylideneacetone)dipalladium(0) 

(390 mg, 426 µmol) was added, the autoclave charged with CO (30 bar), and the reaction stirred at 90 

°C for 19 h. After cooling to room temperature and releasing the CO, the black reaction mixture was 

suspended in water (40 ml) and extracted with Et2O (4 x 50 ml). The organic phase was concentrated 

and subjected to silica gel chromatography (n-hexane / ethyl acetate 9:1, Rf = 0.31) to provide 2,2’-

byridine-5-carbaldehyde (376 g, 20.4 mmol, 96%) as a white solid. 
1H-NMR (300 MHz, CDCl3) δ = 10.16 (s, 1H, H11), 9.11 (dd, 4JH10,H8 = 2.1 Hz, 5JH10,H7 = 0.7 Hz, 1H, 

H10), 8.72 (ddd, 3JH1,H2 = 4.8 Hz, 4JH1,H3 = 1.7 Hz, 5JH1,H4 = 0.9 Hz, 1H, H1), 8.60 (d, 3JH7,H8 = 8.2 Hz, 

1H, H7), 8.55−8.47 (m, 1H, H4), 8.27 (dd, 3JH8,H7 = 8.2 Hz, 4JH8,H10 = 2.2 Hz, 1H, H8), 7.93−7.81 (m, 

1H, H3), 7.38 (ddd, 3JH2,H3 = 7.5 Hz, 3JH2,H1 = 4.8 Hz, 4JH2,H4 = 1.2 Hz, 1H, H2). 13C-NMR (75 MHz, 

CDCl3) δ = 190.7 (C11), 160.8 (C6), 154.9 (C5), 151.8 (C10), 149.6 (C1), 137.3 (C3), 137.0 (C8), 

131.2 (C9), 124.9 (C2), 122.4 (C4), 121.4 (C7). FT-IR (Film)  = 1697 (CO), 1584, 1553, 1448, 1360, 

1249, 1203, 1142, 1084, 1034, 997, 841, 790, 738, 698, 626, 396. HR-MS ESI (+) m/z = 207.0531 

(207.0529 calculated for C11H8N2ONa, [M + Na]+). 

  
 

2-((2,2’-bipyridin)-5-yl)-1H-benzimidazol-4-carboxamide 

2,2’-bipyridine-5-carbaldehyde (800 mg, 4.34 mmol) and 2,3-diaminobenzamide (722 mg, 4.78 mmol) 

and Ce(NH4)2(NO396 (360 mg, 0.66 mmol) were carfully mixed. H2O2 (30% aqueous solution, 4.0 ml, 

39.2 mmol) was added. Caution: the reaction is strongly exothermic and proceeds under gas evolution 

for several minutes. After cooling to room temperature, the brown reaction mixture was suspended in 

water (100 ml), the water was removed and the solid again washed with water (100 ml). Afterwards, the 

solid was washed with acetone (50 ml) and the ligand 1 obtained as a brown solid (1.17 g, 3.81 mmol, 

88%). 
1H-NMR (300 MHz, DMSO-d6) δ = 13.68 (s, 1H, H1), 9.52 (s, 1H, H19), 9.30 (s, 1H, H8), 8.74 (d, J = 

5.3 Hz, 2H, H18/H11), 8.59 (d, 3JH12,H11 = 8.3 Hz, 1H, H12), 8.48 (d, 3JH15,H16 = 7.9 Hz, 1H, H15), 8.09–

7.96 (m, 1H, H16), 7.92 (d, 3JH3,H4 = 7.5 Hz, 1H, H3), 7.88–7.67 (m, 2H, H5/H1), 7.51 (dd, 3JH17,H16 = 

6.8 Hz, 3JH17,H18 = 5.0 Hz, 1H, H17), 7.40 (t, J = 7.8 Hz, 1H, H4). 13C-NMR (75 MHz, DMSO-d6) δ = 

166.0 (C1), 156.4 (C13 oder 14), 154.4 (C14 oder 13), 149.5 (C18), 149.3 (C9), 147.6 (C19), 141.4 

(C6), 137.5 (C16), 135.4 (C11), 135.3 (C10), 125.3 (C7), 124.7 (C17), 123.3 (C4), 122.9 (C3), 122.7 

(C2), 120.9 (C15), 120.6 (C12), 115.2 (C5). FT-IR (Film)  = 3184, 1662, 1597, 1503, 1458, 1412, 

1352, 1316, 1250, 745, 585, 558. HR-MS ESI (+) m/z = 338.1011 (338.1012 calculated for 

C18H13N5ONa, [M + Na]+). Elemental Analysis, Calculated: C, 68.56; H, 4.16; N, 22.21; Experimental: C, 

68.53; H. 4.14; N, 22.24. 
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[{2-((2,2’-bipyridin)-5-yl)-1H-benzimidazol-4-carboxamide} AuCl2]Cl [LAuCl2]Cl 

A round-bottom flask equipped with a condenser, was charged with 2-((2,2’-bipyridin)-5-yl)-1H-

benzimidazol-4-carboxamide (50 mg, 0.16 mmol) in suspension in ethanol (0.5 mL). HAuCl4.H2O (1 eq, 

54 mg, 0.16 mmol) dissolved in ethanol (0.5 mL) was added to the suspension of the ligand. The 

reaction mixture was refluxed overnight during which time a brown precipitate was formed. After cooling 

down, the precipitate was collected by filtration and washed twice with diethylether. The product was 

obtained as a brown powder (67 mg, 68 % yield). 
1
H NMR (DMSO-d6, 500.13 MHz): 7.44 (broad s, 1 H, 

H
9
), 7.66 (broad s, 1 H, H

2
), 7.80 (broad s, 1 H, NH2), 7.85 (d, JH-H = 6.0 Hz, 1 H, H

8
), 7.93 (d, JH-H = 6.0 

Hz, 1 H, H
10

), 8.18 (broad s, 1 H, H
3
), 8.58 (d, JH-H = 6.0 Hz, 1 H, H

4
), 8.63 (d, JH-H = 6.0 Hz, 1 H, H

5
), 

8.80 (broad s, 1 H, H
1
), 8.82 (broad s, 1 H, H

5
), 9.07 (broad s, 1 H, NH2), 9.57 (broad s, 1 H, H

7
). 

13
C{

1
H} 

NMR (DMSO-d6, 125.76 MHz):  116.7 (s, CH
8
), 121.7 (s, CH

5
), 122.4 (s, CH

4
), 122.7 (s, C

11
), 123.8 (s, 

CH
9/10

), 124.1 (s, CH
9/10

), 125.6 (s, C
12

), 125.9 (s, CH
2
), 136.3 (s, C

15
), 136.9 (s, CH

3
, CH

6
), 140.2 (s, 

C
13

), 148.5 (s, CH
7
), 148.6 (s, C

14
), 149.5 (s, CH

1
), 153.1 (s, C

16/17
), 155.0 (s, C

16/17
), 166.7 (s, C=O). 

(DMSO/MeOH), positive mode exact mass for [C18H13N5OAuCl2]
+
 (582.01572): measured m/z 

582.01794 [M-Cl]
+
. Elemental Analysis, Calculated: C, 34.95; H, 2.12; N, 11.32; Experimental: C, 34.90; 

H, 2.10; N, 11.36. 

 
 

 

UV-Visible Absorption Spectroscopy 

 

The absorption spectra of the complex 2 in the UV-Visible region were recorded on a Cary 5000 UV-

Visible NIR spectrophotometer. The hydrolysis experiments were carried out with a solution of 

compound 2 10
-4

 M (from a 10 mM stock solution in DMSO) in PBS buffer (pH 7.4) at room temperature 

by monitoring the electronic spectra of sample over 24 hours. In another experiment, 2 equivalents of 

GSH (from a 100 mM stock solution in milliQ water) were added to the same solution (ca. 10
-4

 M 

complex 2) in PBS buffer (pH 7.4), and the sample was monitored over 24 h at room temperature. 

 

Cell lines 

The human lung cancer A549 and human ovarian cancer cell lines SKOV3, A2780 and A2780cisR 

(resistant to cisplatin) (obtained from the European Centre of Cell Cultures ECACC, Salisbury, UK) were 
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cultured respectively in DMEM (Dulbecco’s Modified Eagle Medium) or RPMI containing GlutaMaxI 

supplemented with 10% FBS and 1% penicillin/streptomycin (all from Invitrogen), at 37º C in a 

humidified atmosphere of 95% of air and 5% of CO2 (Heraeus, Germany). 

 

Cell growth inhibition studies 

Cell viability was evaluated by using a colorimetric method based on the tetrazolium salt MTT ([3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), which is reduced by viable cells to yield purple 

formazan crystals. Cells were seeded in 96-well plates at a density of 7-10x10
3
 cells per well (200 µl). 

After overnight attachment, the medium was replaced by 200 µl of a dilution series of the compounds in 

the medium, and cells were incubated for further 72 h. Stock solutions of the complexes were prepared 

in DMSO, made exception for cisplatin which was dissolved in aqueous solution, and Auranofin in EtOH. 

The percentage of DMSO or ethanol in the culture medium did not exceed 0.2%. At the end of the 72 h 

incubation period the media was removed and cells were incubated with MTT (0.5 mg/mL in culture 

medium; 200 µl) for 3-4 h at 37 ºC and 5% CO2. The purple formazan crystals formed inside the cells 

were then dissolved in 200 µl of DMSO, and the absorbance was read at 570 nm, using a plate 

spectrophotometer (Power Wave Xs; Bio-Tek). Each test was performed with at least six replicates and 

repeated at least 4 times. The IC50 value is expressed as percentage of the surviving cells in relation to 

the control (cells with regular medium). 

 

Additive and Synergistic Cytotoxicity Analysis 

The combination index method of Chou and Talaly was used to determine whether the observed 

interactions between cisplatin and complex 2 were additive or synergistic [Chou, T. C.; Talalay, P. Adv. 

Enzyme Regulation 1984, 22, 27–55]. If the interaction was additive, the sum of the effects of the two 

drugs should be equal to the product of their fractional activities. The representative function defined as 

the expected cell survival rate corresponds to f(u)1,2 = f(u)1 3 f(u)2, where f(u)1 = the fraction 

unaffected by drug 1, f(u)2 = the fraction unaffected by drug 2, and f(u)1,2 = the fraction unaffected by 

drugs 1 and 2. The expected and observed cell survival rates obtained from a minimum of six replicates 

and of at least three repetitions were analyzed by the Student’s t test (p); p < 0.05 was viewed as 

significant. 

 

Preparation of cell extracts for PARP-1 activity assays 

SKOV3 cells were grown in DMEM GlutaMaxI with 10% FBS (or 3% and 1% when indicated) and 

incubated with different doses of the compounds. After 48 h, cells were scraped in ice-cold PBS and 

centrifuged at 10000 g for 10 sec at 4° C. The pellet was re-suspended in 5-10 volumes of lysis buffer 

(PARP Buffer, Trevigen, Gaithersburg, MD, U.S.A.)) containing protease inhibitor cocktail (Roche, 

Basel, Switzerland), 0.4 M NaCl, and 1% Triton X-100). After 15 min on ice, lysates were centrifuged at 

14000 g for 10 min at 4° C to pellet the cellular debris and the supernatants removed for further use. 

The total protein content was determined by using the DC Protein Assay Kit (Biorad, Hercules, CA, 

U.S.A.). Alternatively, cell extracts were incubated with the compounds (different concentrations 

between 1-40 µM) for 24 hours at room temperature followed by determination of PARP-1 activity as 

described below. 

 

PARP-1 activity determinations 

PARP-1 activity was determined using Trevigen's HT Universal Colorimetric PARP Assay. This assay 

measures the incorporation of biotinylated poly(ADP-ribose) onto histone proteins in a 96 microtiter strip 

well format. Either recombinant human PARP-1 (High Specific Activity, purified from E.coli containing 

recombinant plasmid harboring the human PARP gene, supplied with the assay kit) or an aliquot of 

protein cell extracts (50 µg) was used as the enzyme source. 3-Aminobenzamide (3-AB), provided in the 

kit, was used as control inhibitor. Purified PARP-1 was incubated with various concentration of 
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compounds for 1 h at room temperature prior the assay, while cell extracts were either obtained from 

cancer cells pre-treated with the compounds (48 h), or directly treated with different amounts of gold 

complexes (24 h) as described above. Two controls were always performed in parallel: a positive activity 

control for PARP-1 without inhibitors, that provided the 100% activity reference point, and a negative 

control, without PARP-1 to determine background absorbance. The final reaction mixture (50 µL) was 

treated with TACS-Sapphire™, a horseradish peroxidase colorimetric substrate, and incubated in the 

dark for 30 min. Absorbance was read at 630 nm after 30 min. The data corresponds to means of at 

least three experiments performed in triplicate ± SD. 

 

ESI-MS experiments 

The PARP-1 model peptide (GRASCKKCSESIPKDSLRMAIMVQSPMFDGKVPHWYHFSCFWKV) was 

purchased from Peptide Specialty Laboratories GmbH (Heidelberg, Germany). The apo-zinc-finger 

peptide was dissolved in milliQ water to a stock solution of 1 mM. The disulphide bonds were reduced 

using 3 molar equivalents of dithiothreitol (DTT) for 2 hours at room temperature. The complex 2 stock 

solution (10 mM) was prepared in DMSO and stored at -20°C. A solution of 150 µM in milliQ water was 

then freshly prepared. Zn
2+

-reconstituted peptide-2 adducts were prepared by diluting 10 µL of the 

peptide stock solution (1 mM in water) with 200 µL of complex 2 (150 µM) in 1.790 mL of milliQ water. 

This allowed reaching of a gold compound:peptide ratio of 3:1 in each sample (5 µM peptide + 15 µM 2 

complex). After 10 minutes incubation, samples were analysed using a Waters Synapt G2-Si TOF mass 

spectrometer. The samples were infused directly into the MS at 5 µL/min in ES+ve mode. The source 

was set up at 3.2 kV with a nitrogen gas flux at a pressure of 6.5 bar (1000 L/h). Data analysis and 

isotope modelling were performed using the Mass Lynx software provided by Waters at a resolution 

setting of 31.000. 

 

ICP-MS studies 

For the evaluation of the cell uptake, cells were seeded in 6-well plates and grown to approximately 70% 

confluency and incubated with compound 2 at 70 µM for 24 h. At the end of the incubation period, cells 

were rinsed cells with 5 mL of PBS, detached by adding 0.4 mL enzyme free cell dissociation solution 

(Millipore) and collected by centrifugation. Cellular extracts were prepared according to established 

procedures.[ C. Bresson et al, Metallomics 2013, 5, 133-143] All samples were analysed for their protein 

content (to establish the number of cells per sample) prior to ICP-MS determination using a BCA assay 

(Sigma Aldrich). Samples were digested in ICP-MS grade concentrated hydrochloric acid (Sigma 

Aldrich) for 3 h at room temperature and filled to a total volume of 8 ml with ultrapure water. Indium was 

added as an internal standard at a concentration of 0.5 ppb. Determinations of total metal contents were 

achieved on an Elan DRC II ICP-MS instrument (Perkin Elmer, Waltham, M, U.S.A.). The ICP-MS 

instrument was tuned daily using a solution provided by the manufacturer containing 1 ppb each of Mg, 

In, Ce, Ba, Pb and U. External standards were prepared gravimetrically in an identical matrix to the 

samples (with regard to internal standard and hydrochloric acid) with single element standards obtained 

from CPI International (Amsterdam, The Netherlands). The results are expressed as mean ± SE of at 

least three determinations.  

 

Thioredoxin reductase and glutathione reductase inhibition studies in vitro  

Cytosolic thioredoxin reductase (TrxR1) was prepared from rat liver according to Luthman and 

Holmgren.
1
 The protein content of isolated enzyme was estimated according to Lowry et al..

2
 

Thioredoxin reductase activity was measured at 25 °C in 0.2 M Na, K-phosphate buffer (pH 7.4) with 5 

mM EDTA and 0.25 mM NADPH in presence of 1 and 2. Reaction was started by the addition of 1 mM 

DTNB (DNTB = 5,5'-dithiobis- (2-nitrobenzoic acid Ellman’s reagent) and followed 

spectrophotometrically at 412 nm. Yeast Glutathione reductase activity was measured in 0.2 M Tris-HCl 
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buffer (pH 8.1), 1 mM EDTA, 0.25 mM NADPH in presence of 1 and 2. The assay was initiated by the 

addition of 1mM GSSG and followed spectrophotometrically at 340 nm. 

 

Thioredoxin reductases and glutathione reductase assays in SKOV3 cell lysates  

SKOV3 cells (6 × 10
5
) were incubated with 1 and 2 for 48 h with refresh after 24 h. After incubation cells 

were trypsinized and washed with PBS buffer. Each sample was lysed with a modified RIPA buffer 

containing 150 mM NaCl, 50 mM Tris-HCl (pH 7.4), 1 mM EDTA, 1% TRITON, 0.1% SDS, 0.5% DOC, 1 

mM NaF, 0.1 mM PMSF and an antiprotease cocktail (“Complete” Roche, Mannheim, Germany). After 

40 min of incubation at 0 °C, lysates were centrifuged at 14000 g for 5 min. The supernatants were 

tested for enzyme activities. Aliquots of lysates (50 µg) were subjected to thioredoxin reductase 

determination in a final volume of 250 µl of 0.2 M Na, K-phosphate buffer (pH 7.4) with 5 mM EDTA, 

containing 2 mM DTNB. After 2 min the reaction was started with 0.300 mM NADPH. Glutathione 

reductase activity (80 µg of cell lysates) was measured in 0.2 M Tris-HCl buffer (pH 8.1), 1 mM EDTA, 

and 0.25 mM NADPH. The assay was initiated by addition of 1 mM GSSG and followed 

spectrophotometrically at 340 nm as described above. 

 

Glutathione redox state estimation in SKOV3 cell lysates 

SKOV3 cells (5 x 10
5
) in complete medium were incubated for 18 h in presence of 1 and 2. Cells were 

trypsinized and washed twice with cold PBS and then lysed and deproteinized with 6% meta-phosphoric 

acid. After 10 minutes at 4° C, samples were centrifuged and supernatants were neutralized with 15% 

Na3PO4 and assayed for total glutathione.
3
 Sample aliquots were derivatized with 2-vinylpyridine in order 

to block reduced glutathione, and oxidized glutathione was then estimated.
4
 Protein concentration was 

determined by the Lowry et al. assay in deproteinized samples washed with 1 ml of ice-cold acetone, 

centrifuged at 11000 g, dried and then dissolved in 62.5 mM Tris-HCl buffer (pH 8.1) containing 1% 

SDS. 

 

Determination of mitochondrial membrane potential in cancer cells  

Mitochondrial membrane potential of SKOV3 cells was analyzed using flow cytometry. 5 x 10
5
 SKOV3 

cells in complete medium were incubated for 18 h with different concentrations of compounds 1 and 2. 

The changes of the membrane potential induced by the compounds were estimated with a 

FACSCanto™ II (Becton Dickinson) flow cytometer with an argon laser at 585 nm, using 

tetramethylrhodamine (TMRM) as a fluorescent dye. 
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Figure S1. Hydrolysis profiles of the gold(III) complex 2 dissolved in PBS, pH 7.4, over time at room 

temperature. Concentration of the complex is 9 x 10
-5

 M. 

 

Figure S2. Interaction of the gold(III) complex 2 dissolved in PBS, pH 7.4, with GSH 1:2 over time at room 

temperature. Concentration of the complex is 1 x 10
-4

 M. 

 

 

Abs 

nm 
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Figure S3. ESI Orbitrap mass spectrum of the ZF–2 adduct recorded after 5 min incubation with Zn
2+

 followed 

by 10 min incubation with 2.  
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Figure S4. A: Thioredoxin reductase inhibition by compounds 1, 2 and auranofin (AF). Aliquots of highly purified 

TrxR1 (60 nM) were incubated in the presence of increasing concentrations of compounds 1, 2 and AF (used as 

benchmark) and the reaction was followed at 412 nm, as indicated under experimental methods. 

B: GR (15 nM) was tested in presence of increasing concentrations of 1, 2 and AF. NADPH oxidation was 

followed at 340 nm. 
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Figure S5. Thioredoxin reductase (A) and glutathione reductase (B) activities in A2780 cell lysates after the 

treatment with 1 and 2. 6 x10
5
 cells were treated for 48 h with 25 µM 1 and 2, with a refresh after 24 h. 

 

 

 

 

 

  

Page 17 of 22 RSC Advances



Journal Name  COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx RSC Advances 2016, 00, 1-3 | 11  

Please do not adjust margins 

Please do not adjust margins 

 

 

Figure S6. Total glutathione and oxidized glutathione levels in the presence of 1 and 2. 

Total glutathione and oxidized glutathione were determined in SKOV3 cells, after incubation with the indicated 

concentrations of 1 and 2 for 48 h. 

Statistical Analysis. Multiple comparisons were made by one-way analysis of variance followed by the 

Tukey−Kramer multiple comparison test. *= p<0.05 
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Table S1. Comparison of the Expected Survival Rates (based on an assumption that the Combined Drug 

Activities are additive) and the Experimentally Determined Values after treating cells for 72 h with cisplatin (7.5 

µM) and different concentrations of 2 (10, 20, 30 µM). Calculation of the predicted survival rates is described in 

the Experimental Section. 

 

 

 Survival rate 

Drug treatment Expected Observed 

Cispt 7.5µM  0.55 
Cispt 7.5µM + 2 10µM 0.445 0.465 
Cispt 7.5µM + 2 20µM 0.24 0.36 
Cispt 7.5µM + 2 30µM 0.165 0.36 
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