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Simultaneous measurement of nanoscale electric
and magnetic optical fields
B. le Feber1*, N. Rotenberg1, D. M. Beggs1,2 and L. Kuipers1*

Control of light–matter interactions at the nanoscale has
advanced fields such as quantum optics1, photovoltaics2 and
telecommunications3. These advances are driven by an
improved understanding of the nanoscale behaviour of light,
enabled by direct observations of the local electric fields near
photonic nanostructures4–6. With the advent of metamaterials
that respond to the magnetic component of light7,8, schemes
have been developed to measure the nanoscale magnetic
field9–12. However, these structures interact not only with the
magnetic field, but also with the electric field of light. Here,
we demonstrate the essential simultaneous detection of both
electric and magnetic fields with subwavelength resolution.
By explaining our measurements through reciprocal consider-
ations, we create a route towards designing probes sensitive
to specific desired combinations of electric and magnetic field
components. Simultaneous access to nanoscale electric and
magnetic fields will pave the way for new designs of optical
nanostructures and metamaterials.

For over 20 years, near-field scanning optical microscopy
(NSOM) has improved our understanding of the flow and behaviour
of light in and around nanophotonic structures13. Although the
interaction of light with nanoscopic structures typically populates
all six components of the electromagnetic near-field, maps of two
components of the local optical electric fields have been sufficient
to clarify and uncover exciting phenomena such as control of
surface plasmon polaritons4,14, field enhancements near nano-
antennas5,15 and polarization singularities16. The recent advent of
metamaterials has sparked research in the nanophotonic structures
that couple strongly not only to the electric field but also to the mag-
netic field of light17, with the potential to cloak objects18, show giant
nonlinear optical activity19 or exhibit a negative refractive index20.
Consequently, a measurement of the complete nanoscale electro-
magnetic field vector is a powerful way to drive advances in the
field of metamaterials, and to elucidate the interplay between optical
behaviour and geometry that underpins these phenomena.

An ideal measurement would allow for the simultaneous
mapping of both electric and magnetic fields in and around nano-
photonic structures. In principle, using Maxwell’s equations, it is
possible to derive the full electromagnetic field vector if three of
its components are known (in both amplitude and phase) in a
three-dimensional space with sufficient accuracy for the derivatives
to be taken. However, although such an approach is at the heart of
many numerical simulations, the experimental equivalent has not
been demonstrated at the nanoscale where all components are typi-
cally present. That is, to date, no more than two field components
have been measured simultaneously5,11,15,16. Consequently,
Maxwell’s equations can only be exploited on certain planes of sym-
metry11 and not in general.

Here, we demonstrate a direct mapping of all in-plane electro-
magnetic near-fields with a conventional, symmetric aperture

probe (Fig. 1a), which has traditionally been assumed to detect
either the electric fields16 or only the in-plane magnetic field9,21.
We show that the ratio of the efficiencies with which the magnetic
field and the electric field are collected is between 0.3 and 2.5, and
we also explain and predict this relative sensitivity through recipro-
cal considerations22,23.

We image the evanescent fields above a photonic-crystal wave-
guide (PhCW) using a homebuilt, polarization-sensitive NSOM.
A PhCW is an ideal structure for studying near-field detection, as
the electromagnetic field distribution of its modes is well understood,
while not being trivial24. Our PhCW is a 220 nm thin silicon slab
perforated by a hexagonal lattice of holes with radii of 120 nm.
One row of missing holes acts as a waveguide for the 1,570 nm
transverse electric (TE) polarized light. A two-dimensional field
map is created by raster scanning an aperture probe in the x–y
plane above the nanophotonic structure (Fig. 1b). We ensure that
all light resulting from an x-oriented electric field above the
PhCW, Ex, is collected by detector Lx , and likewise Ey is detected
by Ly. Any light that might arise from an x-oriented magnetic field,
Hx , would be detected by Ly, and Hy would be picked up by Lx.

The three-dimensional structure of the PhCW allows us to use
measurements at increasing heights h above the crystal to differen-
tiate between E‖ and H‖. In the x–y plane of symmetry, inside the
silicon membrane, only TE components (Ex , Ey, Hz) of the electro-
magnetic field are non-zero. However, away from this symmetry
plane, all six components can be found24,25. Furthermore, these pro-
files have an intricate subwavelength structure, as reflected by our
calculations of the fields 20 nm above the waveguide (Fig. 1c–e),
which assists in the identification of the different field components.
The corresponding measurements for Lx and Ly (Fig. 1f,g) are in
excellent agreement with the calculated, in-plane components of
the mode (Fig. 1c,d). Note that we show half the field profile of
each mode, because the symmetry of the waveguide enforces
mirror symmetry in x of the field amplitude of the mode. This
data not only shows the good polarization separation of our
system, but it also highlights that the fields mapped at the surface
of the PhCW could equally be Ex and Ey (ref. 16) or Hy and Hx.

However, as h increases, not only do the relative amplitudes of
the electric and magnetic fields change, but so do their spatial pro-
files. This divergence of the different field profiles occurs because a
given mode is composed of a superposition of many Bloch harmo-
nics, each of which decays differently in z (ref. 26). Furthermore,
because E and H are related through their spatial derivatives, each
field profile shows a different height dependence. This is reflected
in Fig. 2a,b, which depicts the calculated amplitudes of Ex (and
Hy) and Ey (and Hx), respectively, for different values of h.
Notably, for h . 250 nm, Ex has minima along the centre of the
waveguide, whereas Hy has maxima (arrows, Fig. 2a). In addition,
at these large heights, the amplitude at the side of the waveguide
of Hx is clearly larger than that of Ey (arrows, Fig. 2b).
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The left panels of Fig. 2c,d depict how the measured field pat-
terns evolve with height. Surprisingly, we observe that, as the
height increases, the measurements correspond to neither the calcu-
lated E‖ nor H‖ profiles. For Lx we observe a minimum along the
centre of the waveguide that is reminiscent of Ex (arrow, Fig. 2c).
In contrast, for Ly we measure the enhanced side lobes expected
for Hx. Yet, the response at the centre of the waveguide appears sup-
pressed (arrow, Fig. 2d). These observations suggest that we measure
a superposition of E‖ and H‖. By fitting the amplitude of the super-
position of the two calculated complex fields to our data,

Lx r( ) = axEx r( ) + bxHy r( ) (1a)

and

Ly r( ) = ayEy r( ) + byHx r( ) (1b)

where r¼ (x, y) represents the position at which we measure the
fields, we find ax,y and bx,y that are complex scalars that quantify
the sensitivity of our system to the electric and magnetic in-plane
fields, respectively. We chose our unit system such that the electric
and magnetic fields are in the same units, so if |a|¼ |b|, the probe is
equally sensitive to the electric and magnetic fields.

The right panels of Fig. 2c,d depict fits to measurements obtained
at different heights for each detector. For all heights we find that the
fit of the in-plane fields excellently reproduces all the features in the
data. Importantly, we use only the four complex fit parameters, ax,y
and bx,y, to fit all nine heights ranging from 20 nm to 380 nm
simultaneously. For this particular probe, with a 218 nm diameter,
we find that |bx|/|ax|¼ 0.5(2) and that |by|/|ay|¼ 0.9(3). These
values indicate that we detect roughly equal amounts of the electric
and magnetic near-fields. In stark contrast to previous work that
assumed that either the electric16 or the magnetic9,27 fields are
detected, we show that we can simultaneously detect nanoscale
electric and magnetic fields.

Our results are supported by recent work28,29 that not only shows
that single subwavelength holes in a metal have both a magnetic and
an electric polarizability of comparable magnitude, but also highlights
the hole-size dependence of the ratio of these polarizabilities.
Therefore, we investigate the sensitivity to E‖ and H‖ of probes
with different diameters. Figure 3a depicts a plot of the relative sen-
sitivity (|b|/|a|) for the two detectors Lx and Ly. This figure shows
that probes of all diameters detect both E‖ and H‖. Owing to the
cylindrical symmetry of our probe, we expect the relative sensitivities
of Lx and Ly to overlap, which they do to within experimental error
(see Methods). We attribute the experimental error to a contribution
of the finite width of the probe, fabrication imperfections, tilt in probe
orientation and/or height drift. For example, a slightly elliptical rather
than circular aperture could break the symmetry between Lx and Ly.

To expand our understanding, we compare our measurements to
the expected signals, calculated using the reciprocity theorem for
electromagnetism, which effectively states that the detected signal
from a source will be the same when source and detector are
exchanged. This theorem enables us to relate the fields picked up
by our probe to the fields transmitted through it when a (dipole)
source is placed at the position of the detector22. Mathematically,
the expected signal (Li , where i¼ x, y) can then be expressed as
(see Supplementary Information)

Li r( )/
∫

S
Ephc × Hi

rec r( ) − Ei
rec r( ) × Hphc

( )
· dS (2)

where we take S to be in the x–y plane (dS¼ zdS) and we neglect any
back-action from the probe. Here, r is the position of the tip above the
crystal, Ephc indicates the calculated E-fields above the waveguide, and
Erec indicates the fields under the tip resulting from an x- or y-oriented
electric dipole placed at the detector position. We immediately
recognize that the reciprocal magnetic field determines the sensitivity
of the probe to the electric field (a/

�
SEphc × Hrec

i . dS) and vice
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Figure 1 | NSOM measurements of a PhCW. a, SEM image of the apex of a typical near-field probe. This consists of a 218-nm-wide glass core coated with

200-nm-thick aluminium cladding. Scale bar, 500 nm. b, Schematic of the NSOM set-up. Lx and Ly represent two photodetectors coupled to lock-in

detectors. The dark blue and green arrows indicate the polarization of the reference and signal branches, respectively. The two cubes are polarizing

beamsplitter cubes, and l/2(2) and l/4 are used to orient the polarization of the light such that light from Ex ends up on Lx and Ey on Ly, and l/2(1) is used

to split the reference branch equally over the detectors. c–e, Calculations of the transverse fields. Left: electric field along x, y and z, respectively. Right:

magnetic fields along y, x and z, respectively. f,g, Measurements taken 20 nm above the sample on Lx (f) and Ly (g). Panels c–g all show amplitudes, and are

scaled to their respective maxima. All panels are 3 × 3 unit cells and for clarity are stretched in the x-direction.
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versa (b/
�

SEphc × Hrec
i . dS), and that only the in-plane components

of Ephc and Hphc contribute to the detected signal.
We can draw another subtle, yet important conclusion from

these expressions. The reciprocity theorem tells us that our sensi-
tivity is determined by the fields associated with both the sample
and the probe. That is, what is detected depends not only on the
probe used in the measurement, but also on the fields that are
being measured. The reciprocal fields associated with the probe
(Erec , Hrec) have nanoscopic structure (see Supplementary Section
‘Reciprocity’), as do the near-fields of nanophotonic structures
such as our photonic crystal (Ephc, Hphc, Fig. 2). Furthermore, as
we know from the reciprocity theorem, what we detect is a
product of both fields. In essence, the Erec and Hrec act like a
spatial filter and, consequently, the sensitivity of the probe is depen-
dent on which parts of Ephc and Hphc are allowed through.

Figure 3b,c compares the calculated, predicted signals and the
measured signals 300 nm above the PhCW. We find that the fields cal-
culated with this ab initio approach closely match the measured field
patterns. To extract a theoretical value for |b|/|a| (grey line, Fig. 3a), we
compute the ratio of the signal from the electric field to the signal from
the magnetic field. We average over a unit cell, all heights and over the
two detectors (see Supplementary Section ‘Relative sensitivity to E and
H’). The excellent agreement of these calculations with the measured
ratio (close to one) confirms that aperture probes of all radii are sensi-
tive to both E‖ and H‖. Furthermore, the reciprocal framework not
only explains our data, but can also be used for future probe designs
that selectively detect certain electromagnetic field components.

In conclusion, we have demonstrated the simultaneous detection
of the electric and magnetic optical fields at the nanoscale. We show
that a symmetric aperture probe measures all four in-plane com-
ponents of the electromagnetic field at once. The superposition of
electric and magnetic fields that we detect can be extended to a
full vectorial map using Maxwell’s relations in combination with
additional constraints; these can be provided by the symmetry prop-
erties of the sample or, alternatively, by measurements with different
probes. These auxiliary measurements could be performed with a
split-ring probe that is known to measure Hz (ref. 30), or a scatter-
ing-type NSOM that detects Ez (ref. 15). Our current work, coupled
with the aforementioned techniques, and in conjunction with the
use of reciprocity to inspire novel probe designs, provides a route
to a full mapping of the electromagnetic fields at the nanoscale.
This will open up new avenues towards the understanding and
smart design of photonic nanostructures, such as split-ring resona-
tors, that manipulate electric and magnetic fields. Concurrently, this
work paves the way for studies of fundamental processes such as, for
example, a molecule undergoing a magnetic dipole transition10.

Methods
Three-dimensional near-field scanning microscopy above a PhCW. To avoid
introducing artefacts into the measurements as a result of probe imperfections, we
imaged each probe with a scanning electron microscope (SEM) both before and after
each measurement. Each probe appeared circular to within the image resolution, as
shown in Fig. 1a. We also ensured, in our measurements, that our probe was optimally
normal to the PhCW. When measuring above this PhCW, we detected both a forward
and a backward propagating Bloch mode due to a reflection from the end facet of the
PhCW. In this Letter, we show only the forward-travelling waves, which we obtained by
Fourier filtering out the backward-travelling Bloch wave16. We distinguished between
the forward- and backward-propagating modes with the use of the phase information
of the light, which we obtained with a heterodyne detection scheme (Fig. 1), by shifting
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Figure 2 | Slices in the x–y plane at height h above the surface. a,b, Calculations of the evanescent field above the crystal. In a, the left column shows Ex left

of the symmetry plane and the right column shows Hy right of the symmetry plane. In b, the left and right columns show in-plane field profiles of Ey and Hx,

respectively. c, Left: fields measured on Lx. Right: fitted calculations. d, Left: fields measured on Ly. Right: fitted calculations. All plots show amplitudes of the
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All panels are 3 × 3 unit cells, and for clarity they are stretched in the x-direction. The axis orientation is show in the top Ex panel.
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the reference branch frequency by 40 kHz with two acousto-optic modulators (not
shown). The reference and signal branch were joined in a fibre splitter, which guided
the light to two lock-in detectors, as described in the main text. We used l/2(1) to
balance the intensity of the reference branch over the detectors, and l/2(2) and l/4
(sketched in Fig. 1a) to compensate for the birefringence of the probe fibre, which
would cause mixing of the signals between Lx and Ly. We exploited the symmetry of the
photonic-crystal fields (Fig. 1c,d) to ensure that Lx and Ly detected only the symmetric
and asymmetric signals, respectively. In essence, we ensured that the maximum on Lx
overlapped with the zero on Ly at the centre of the waveguide, and maximized the ratio
between them. Typically, we found ratios in excess of 50:1.

We used a force feedback loop to keep the probe at the sample when scanning the
surface of the photonic crystal. However, if h . 20 nm, we could no longer use the force
feedback, so we therefore switched to a quadrant-cell-based height feedback loop. In
this mode of operation we compared the position of the probe as measured with the
quadrant cell when it was scanning the surface of the sample. This meant there was now
no longer direct feedback for the probe–sample distance, so these measurements could
be affected by drift between the probe and the sample. We corrected for this possible
drift by matching the decay of the field above the photonic crystal to the decay of the
MIT photonic bands (MPB)25 calculations, by scaling the height at which the data were
computed. We found less than 10 nm h21 drift for the measurements presented in
this work.

Calculation of the waveguide eigenmodes and dispersion. The PhCW was a W1
waveguide, which was missing a row of holes in a 220-nm-thin silicon membrane
perforated with a hexagonal pattern of holes (Fig. 1c). Light was confined in the
plane of the waveguide by the photonic bandgap of the surrounding holes, and was
confined to the silicon slab by total internal reflection. Our waveguide had a hole
separation of a¼ 420 nm and a hole radius of r¼ 120 nm¼ 0.29a.

The waveguide eigenmodes Ek(r) and Hk(r) and eigenfrequencies v(k) were
calculated with the freely available MPB25, which determines the Bloch eigenmodes
of the structure using a plane-wave basis set and periodic boundary conditions.
We used a supercell of dimensions a × 11a

p
3 × 10h, where a is the lattice constant

of the photonic crystal and h is the thickness of the silicon slab. This supercell was
sufficiently large to avoid interactions between neighbouring supercells and the
calculations used a grid size of a/16, which ensured convergence of the eigenvalues
to better than 0.1%. The refractive index of silicon used was modelled to be 3.48,
which is suitable for wavelengths around 1,570 nm.

The dispersion of PhCW modes is well known. The waveguide mode forms a
continuous band within the photonic bandgap of the lattice. This band is interesting,
as it contains a wide variety of near-field profiles, which we can probe simply by
adjusting the frequency of the incident light. Here, we selected the waveguide mode
at a wavelength of 1,570 nm.

Fabricating the waveguides. The fabrication of the PhCW began with a silicon-on-
insulator wafer (SOITEC, 220 nm silicon layer/2 mm SiO2 buffer). Electron-beam
lithography was used to generate the required patterns in a resist (350 nm of ZEP
520-A, Zeon Chemicals), which were transferred directly into the silicon layer of the
wafer using reactive ion etching with an SF6/CHF3 gas mix. After removing the
remaining resist, the SiO2 buffer was selectively removed from beneath the PhCW
region using a dilute HF solution, thus forming a silicon membrane in the area of the
PhCW. The access waveguides feeding the PhCW were protected from the HF by a
layer of S1818 (Shipley), which was spun on before the HF step.

Error analysis. We identified the height drift (maximally 10% of height), the
uncertainty of the x–y position (30 nm in each direction) and our exact location on
the calculated dispersion relation of the PhCW as sources of error in our estimation
of |b|/|a|, for each probe. We then swept through this four-parameter space, and for
each permutation used the fitting procedure outlined in the text (equation (1)) to
find a value for ai and bi. In this manner, we obtained a spread of |b|/|a| values for
these ratios (Fig. 3a; standard deviation indicated as error bars). Possible errors in
our estimation of the probe diameter—tilt in probe orientation and fabrication
imperfections—effectively change the diameter of the probe. This uncertainty is
reflected in the error bars for D (Fig. 3a).
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