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Abstract: In industry, one of the main catalysts typically employed for the selective oxidation of
methanol to formaldehyde is a multi-component oxide containing both bulk Fe;(MoOy)s and excess
MoO:;. It is thought that the excess MoO3 primarily acts to replace any molybdenum lost through
sublimation at elevated temperatures, therefore preventing the formation of an unselective Fe,O3
phase. With both oxide phases present however, debate has arisen regarding the active component
of the catalyst. Work here highlights how catalyst surfaces are significantly different from bulk
structures, a difference crucial for catalyst performance. Specifically, Mo has been isolated at the
surface as the active surface species. This leaves the role of the Fe in the catalyst enigmatic, with
many theories postulated for its requirement. It has been suggested that the supporting Fe molybdate
phase enables lattice oxygen transfer to the surface, to help prevent the selectivity loss which would
occur in the resulting oxygen deficit environment. To assess this phenomenon in further detail,
anaerobic reaction with methanol has been adopted to evaluate the performance of the catalyst under
reducing condjitions.

Keywords: methanol oxidation; active site; redox; formaldehyde synthesis; model catalysts; surface
specificity; XAFS; iron molybdate; spectroscopy; core-shell catalysts

1. Introduction

The selective oxidation of methanol to formaldehyde is a fundamental industrial reaction, reflected
by its global demand in excess of 30 million tonnes per annum [1]. Formaldehyde stands as the most
profitable aldehyde, heavily relied upon due to its diverse and widespread applications including as
a building block to the production of dyes, resins, and adhesives.

Since 1931 [2], the most commonly adopted catalyst employed industrially is an iron molybdate
based catalyst, Fe;(MoO4)3, to which an excess of MoOs is added to the chemical composition.
This mixed oxide catalyst is considered by many to be a more economical means of effecting partial
oxidation of methanol, compared to other oxides and Ag catalysts. Under this approach, formaldehyde
yields of 95% are reported, however in order to exploit this process further it is crucial that scientist’s
gain an understanding of the working catalyst, and the active site/s which dictate the chemistry.

The addition of excess MoOs to the catalyst is considered essential. Although the process
is operated at relatively low temperatures to discourage over-oxidation of methanol, at these
temperatures MoQOj is shown to sublime from the catalyst as a white residue [3]. This consequently
leaves a catalyst Fe rich in nature, which is detrimental to catalyst performance, directing selectivity
towards carbon oxide products [4,5]. With excess MoOj3 in the chemical make-up, catalyst lifetimes are
prolonged to last between 6 and 12 months.
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With both an excess of MoO3 and stoichiometric Fe;(MoOy); deemed necessary in the chemical
composition, debate has arisen between authors regarding which of these phases dominates as the
active species [6-10], or whether indeed there is a synergy between the two [11,12]. MoO3 is highly
regarded for its excellent selectivity to formaldehyde, due to its high capacity to increase oxygen
availablity at the catalyst surface. However, whilst MoO3 may be a highly selective system, the
conversion of methanol feedstock is poor. This is a consequence of its low surface area and anisotropic
structure [13], which reduces the availability of active sites for the reaction. Conversely, Fe;(M0QOy); is
isotropic in nature with an increased surface area, therefore making it a more suitable catalyst choice
in terms of activity. Nonetheless, Fe;(MoOy)3 does not present an analogous performance to MoOs in
terms of its’ selectivity, unable to compete with the almost 100% selectivity to formaldehyde reported
for the single phase oxide [14]. A recent study by Soderhjelm et al. [11] has highlighted that both phases
are required for optimized performance, emphasising that the MoQ3 is not simply there to replenish lost
Mo. Here they proposed a synergistic effect between MoOs and Fe;(M0QOy)s; implying that the active
phase may be Mo-rich, existing as an amorphous layer in octahedral co-ordination at the surface. Each
oxide plays its own specific role. Specifically, MoOj is believed to enable dissociation of molecular Op
to atomic oxygen, whilst Fe;(MoQOy); utilises this atomic oxygen to oxidise methanol to formaldehyde.
The theory postulated arises from initial studies involving MoS; /CoySg. Here it was suggested that
the promotion of one phase occurs at the junction of the two phases, modifying the electronic density
of the catalytic active phase. This is in line with the remote control theory [15], which is applied to
catalysts with two oxide phases. One acts as an acceptor phase (in this instance Fe;(Mo00Q4)3), whilst
the other is the donor (MoO3). Fe;(M0QOy)3 enables HC activation, acting independently with limited
activity. MoOs as the donor phase has a role in providing oxygen activation at a high rate, to spill over
and accelerate the overall catalytic cycle. Routray et al. more recently propose a further hypothesis [12].
Work also highlighted a possible synergy between the two oxides. The addition of excess crystalline
MoO; to the crystalline Fe;(MoOy)3 phase significantly increased the overall steady-state catalytic
performance toward HCHO formation. The enhanced catalytic performance of the bulk catalyst in the
presence of excess MoO3 was attributed to the formation of third species, a segregated surface MoOy
monolayer. The role of the excess crystalline MoO3; was identified to replenish the surface MoOy lost
by volatilization during methanol oxidation. Work herein exploits this theory, with the challenging
aim to unravel the nature of the active site in commercial Fe;(M0QOy)s catalysts, through use of model
MoOy /Fe;O5 catalysts. Also questioned is the role of Fe in the catalyst.

2. Mo Segregation

Although the exact nature of the active species in iron molybdate based systems remains unknown,
it is now frequently reported [7,10,12,16-20] that Mo surface-segregation readily occurs in iron
molybdate systems. XPS studies of bulk iron molybdate have revealed that annealing at 400 °C
facilitates the migration of molybdenum to the catalyst surface [21], even when present at low bulk
levels. The majority of surface investigations however have exploited electron microscopy studies.
Work by Bowker et al. has used aberration corrected scanning transmission electron microscopy
(acSTEM) [22], to show that the surface of these catalysts are enriched with Mo. EDX line scans
showed a clear dominance of the surface region by Mo, to the detriment of Fe. In support of
this, Holmberg et al. [11] have focused on the surface of FeMo catalysts, specifically the origin of
the improved catalytic performance of bulk iron molybdate catalysts with extra crystalline MoOs.
Low-energy ion scattering (LEIS) analysis of the outermost surface layer revealed that the molybdate
catalysts possessed a monolayer of surface MoOy species, onto which surface CH;OH and CH30O were
shown to be present by IR spectroscopy. The enhanced catalytic performance of bulk Fe;(MoOy)s3
catalysts in the presence of excess MoO3 was attributed to this surface MoOy, monolayer. HRTEM
imaging proved an amorphous surface structure on the edges of the crystals. A similar structure was
observed by Gai and Labun [23], when focussing on bulk structures and their reduction. The EDS
data showed that the amorphous structure on the fresh catalyst was rich in Mo, whereas for the post
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reaction sample there was a lower Mo content. The link between ageing and composition implied that
the active material was the amorphous structure at the surface.

In addition to characterization, reactivity data has proved a key tool in providing evidence of
Mo segregation [14]. Fe,Oj itself is a highly unselective catalyst for methanol oxidation, producing
a formate intermediate leading to CO, through complete combustion. However, with low loadings of
Mo (just 0.25 monolayers present), iron oxide exhibits a significantly different selectivity, apparent by
the identification of CO and HyCO in the reaction profile. The change in selectivity is reflective
of the dominance of Mo at the surface. This has also been seen through TPD (Temperature
Programmed Desorption) analysis. TPD of Methanol on MoO3; and Fe;(MoO,); are remarkably
similar (Figures 1 and 2), albeit a slight difference in the ratio of formaldehyde production due to
the difference in activity of these two materials. This infers a similar terminating layer in these bulk
materials, a surface rich in Mo. Mo has been concluded to be dominant at the surface of iron molybdate
based catalysts, existing in its active and selective form, Mo (VI). Mo under this oxidation state is
deemed crucial to optimal catalyst performance. Confirmation derives from experiments carried out to
determine the activity profile of the other main oxidation state of Mo, which is Mo (IV) [22,24]. During
reaction, the active Mo (VI) briefly exists as reduced Mo (IV), which can readily use gas phase oxygen
to re-oxidise back to Mo (VI). The identification of the specific conformation of the active site, however,
remains elusive.

Mass 31

— Mass 30

Mass Spec Response (Arbitrary Units)

T T T T T T T 1
0 50 100 150 200 250 300 350 400 450

Sample Temperature ( "C)

Figure 1. TPD profile for MeOH adsorbed onto the surface of MoO3 For these experiments, MeOH
was adsorbed onto the surface of the catalyst, through injection into a flow of He over the catalyst.
MeOH was adsorbed to saturation, after which the catalyst was ramped to 400 °C under He, whilst
monitoring the products of desorption through mass spectrometry.
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Figure 2. TPD profile for MeOH adsorbed onto the surface of Fep(MoO,);. Method as in Figure 1.
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3. Model Catalysts for Surface Science Investigations

Although the active species in iron molybdate based systems remains unclear, it is however
unanimously agreed that the topmost layer of any heterogeneous catalyst is crucial to the efficiency
of that material. This paves the way for a more surface science type of approach, utilizing thin layer
model catalysts.

The mechanistic understanding obtained from model catalyst studies has become influential in
creating better catalysts. The initial drive for a surface science approach to studying heterogeneous
catalysts dates back to the pioneering work of Langmuir in the 1910s, in which he studied the
adsorption of gases on catalyst surfaces [25]. Since then, surface science studies have been influential
in improving catalyst design

Model catalysts have been important for the identification of the stability of Mo at the exterior of
Fe containing supports [20]. Surface science experiments with single crystals have shown Mo is stable
at the surface of Fe; O3 single crystals, even after heating to well above normal calcination temperatures
(~400 °C). The driving force for this segregation however, remains unclear.

4. Making XAFS Surface Sensitive

Characterisation of bulk FeMo catalysts has been possible through a number of techniques, most
commonly through Raman, FT-IR, DRIFTS, XRD and XPS [14,22,26-29]. The structures of MoOj3 and
Fe;(MoOy); are reasonably well understood, however there still remains some doubt in how they react
with methanol, and which phase is predominantly involved in the reaction. There is a requirement to
turn to more surface sensitive techniques to probe the uppermost layers in these catalysts. The use of
X-ray absorption spectroscopy (XAS) has been the primary focus of our group.

The use of XAS to probe bulk Fe;(M0QOy)3 has so far been limited in the literature. Due to the
significance of the surface layer, XAS as a bulk technique has not been highly considered. There are
however a few examples of surface Mo studies [30]. Sarti et al. [31] have investigated the structural
and morphological characterization of Mo coatings for high gradient accelerating structures on Al,Os.
XAS experiments were performed at the Mo K-edge, to determine the chemical status of the Mo
atoms. Mo was discovered to exist as a slightly disordered structure at the surface. Hu et al. [32] have
also studied the surface structures of supported MoOj catalysts by Raman and Mo L-edge XANES.
Supported MoOjs catalysts on TiO;, Al,O3, ZrO,, and SiO,, were prepared through incipient-wetness
impregnation. At high surface coverages of MoQOj3, for TiO,, the Mo species was shown to form
in octahedral coordination, whereas for Al,O3 there was a mixture of tetrahedral and octahedral
co-ordinated species. On SiO; the Mo oxide showed an isolated structure, which resembles a mixed
coordination between tetrahedral and octahedral formation.

Most recent work of the author group has turned to studying model materials of the
type MoO,/Fe;O3 [7,16,27], in order to gain knowledge into the active surface Mo species.
Brookes et al. [16] have confirmed Mo segregation in these core-shell structures, through exploitation
of TEM-EDX studies. Inspecting EDX line profiles, Mo was demonstrated to be populated at the
surface to the detriment of Fe (Figure 3). Reactivity data supported this, with a stark difference in
methanol reactivity between in the absence of Mo (CO; and H,O dominant products) and with Mo
present (H,CO and CO dominant products), inferring the Mo to play a key role in adsorbing the
incoming MeOH at surface. Since Mo is present only at the surface, this enables the use of XAFS,
which is normally a bulk averaging technique, to be exploited in a surface sensitive approach when
tuned to the Mo K-edge.

Initial work involved dosing three monolayers (3ML) of Mo onto the surface of Fe; O3, since this
gave good sensitivity for spectroscopy techniques, most importantly for XANES. The interpretation of
the Mo XANES spectra included the assignment of the pre-edge peak at ca. 19,995 eV, and the peak at
20,010 eV. The first is attributed to the dipole-forbidden/quadrupole-allowed 1s—-4d transition [33],
associated primarily with tetrahedral geometry, but it is also present, albeit weaker, in structures
with distorted octahedral geometry. The peak at 20,010 eV is assigned to the dipole-allowed 1s-5p
transition and is a characteristic feature of Mo species with octahedral/distorted octahedral geometry.
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The XANES spectrum of the dried 3ML MoOy /Fe;O3 sample (120 °C) is shown in Figure 4. Comparing
this with bulk MoOj3 (Figure 4 also), it was found that the dried phase showed a much weaker pre-edge
feature at 19,995 eV, associated with the distorted octahedral structure of this initial phase. Differences
were also evident in the intensity of the peak at 20,010 eV.

EXAFS interpretation (Figures 5 and 6) was also assessed to clarify differences between the dried
phase and commercial MoOs. The k?-weighted x data showed a similar phasing and amplitude for the
two samples at values of low k. However, the discrepancy at higher k inferred a lack of long range
order for the dried sample, also supported by the radial distribution plot which showed an absence
of a secondary coordination shell (Mo-Mo) as seen for MoOj3 (Figure 6). This was indicative of the
fewer high Z neighbours associated with the dried phase, and its overall lack of dimensionality.
For this reason the dried phase was referred to as MoOy, since it could not be indexed to any known
phase of Mo.
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Figure 3. TEM image of a particle from 3ML MoOy/Fe,O3 after a calcination at 500 °C with
accompanying EDX line scan (right). Image adapted from C. Brookes et al., ACS Catal., 2014, 4 (1),
pp. 243-250 [16].
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Figure 4. Normalised XANES spectra of dried 3ML MoOy /Fe;O3 (120 °C), MoOs3, and Fe;(MoOy)s;
Image adapted from C. Brookes et al. ACS Catal., 2014, 4 (1), pp. 243-250 [16].
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Figure 5. k2-weighted data and (6) Fourier transform (non phase-corrected) for 3SML MoO, /Fe;O3
(120 °C) and MoOs. Image adapted from C. Brookes et al. ACS Catal., 2014, 4 (1), pp. 243-250 [16].
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Figure 6. Fourier transform (non phase-corrected) for 3ML MoOy /Fe;O3 (120 °C) and MoOs. Image
adapted from C. Brookes et al. ACS Catal., 2014, 4 (1), pp. 243-250 [16].

The effect of annealing temperature on the nature of the Mo within these samples was also
investigated. Assessing through XANES (Figure 7), analysis showed there were no changes observed
between the dried material and that calcined to 300 °C. The k?>-weighted X spectrum of the 400 °C
annealed sample however, indicated that the sample began to show features associated with MoOj3
phase formation. With further annealing to 500 °C, large amounts of Mo began to be incorporated

into a tetrahedral Fe,(MoQOy); phase, depicted through a distinctive rise in the pre-edge feature at
19,995 keV (Figure 7).
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Figure 7. XANES spectra of 3ML MoOy /Fe; O3 catalysts annealed to different temperatures. Image
adapted from C. Brookes et al., ACS Catal., 2014, 4 (1), pp. 243-250 [16].

Table 1 details the phase compositions calculated through linear combination fittings (LCF’s)
for various anneal temperatures between 120 and 600 °C. LCF’s were performed using the initial
dried at 120 °C phase (M0Oy), MoO3 and Fe;(MoQOy)3 as references. For a theoretical understanding,
Figure 8 displays a simplified schematic with the associated summary of these initial findings. It is
shown that at temperatures above 400 °C, most of the Mo converted to Fe;(MoO,)3, with Mo from
the surface reacting with the Fe,O3 core to form a tetrahedral structure. Below this temperature,
nanocrystalline MoO3 was present in the sample, forming at 400 °C. Crucially, Raman was only able to
prove the existence of these two Mo oxide phases (Figure 9), being MoO3 and Fe;(Mo0QOy)3;, whereas
XAFS revealed a third component, MoOy, present under all heat treatments employed. This is much
in line with the opinions of Routray et al. [12]. Interestingly, despite the differing Mo oxide phases
between the samples dried at 120 °C, 400 and 500 °C, all of these catalysts showed a similar activity
(Figure 10, reactivity dominated by H,CO and CO formation for all catalysts) [16]. For this reason,
the octahedral MoOy surface layer present for all temperatures between 120 and 600 °C, was deemed
the active and selective overlayer for formaldehyde synthesis. The material was both activated and
improved in selectivity due to the dominance of the methoxy species on this Mo-doped material, in
contrast to the stable formate which is seen to form on Fe,O3 [4].

'BYNA'

Figure 8. The evolution of the surface structure of the 3ML catalyst, as a function of annealing
temperature. (Left) Structure at 120 °C. Fe;O;3 (red), with an amorphous layer of MoOy (blue);
(Middle) Structure at 400 °C. MoO3 nanocrystallites (green) at the surface of the catalysts, and
the surface of MoOy present; (Right) Structure at 500 °C, MoO3 nanoparticles have converted to
Fey(MoOy)3 (yellow), which is an underlayer to the topmost and active layer O, MoOs.
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Figure 9. Raman spectra of 3ML MoO, /Fe,O3 for dried 120 °C, 300, 400, 500, 600 °C and their reference
spectra Fe; O3, MoO3 and Fep(MoO,)3. Image adapted from C. Brookes et al. ACS Catal., 2014, 4 (1),

pp. 243-250 [16].
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Figure 10. TPD data obtained for 1, 3 and 6ML’s MoOy /Fe, O3, after calcining at 500 °C for 24 h
and dosing with methanol at ambient temperature, with noticeable reduction in CO production.

Subtractions have been made for the various cracking fragmentations of each product. All monolayer

coverages show a very similar reactivity profile, albeit a slight different in the ratio of HyCO:CO
formation. Image adapted from C. Brookes et al., J. Phys. Chem. C, 2014, 118 (45), pp. 26155-26161 [7].

Table 1. XANES LCF fittings for 3ML MoOy /Fe,Oj3. Fittings were performed using the initial dried
3ML MoOy /Fe;O3 material, Fe;(MoOy)3 produced in-house, and commercial MoOs.

Reference Standards

Sample
M003 (O/o) MOOx/F8203 (0/0) Fez(MoO4)3 (0/0)
3ML MoO, /Fe;O5 (400 °C) XANES fit 14 86 -
3ML MoO, /Fe;O5 (400 °C) chi fit 25 75 -
3ML MoOy /Fe,O3 (500 °C) XANES fit - 38 62

3ML MoOy /Fe,05 (600 °C) XANES fit - 40 60
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To extend from this study, further monolayer coverages were investigated by Brookes et al. [7].
It was discovered that just one monolayer of Mo on iron oxide alone was successful in producing
formaldehyde, albeit with a slight increase in CO production due to the inability to form a complete
monolayer coverage over the Fe;O3 core. This lack of coverage subsequently leaves a surface with
exposed Fe sites, which are detailed by Bowker et al. to be responsible for CO production through direct
methanol dehydrogenation [8,27]. Fe;O3 coverage is considered crucial in dictating the selectivity of
the reaction. Work by Huang et al. [34] has investigated the influence of thermal spreading of MoO3 on
the surface of Fe; O3, and the solid-state reaction that produces Fe;(MoO,); during heat treatment. XPS,
SEM and Mossbauer spectroscopy were used to characterize the evolution of the surface. It was found
that a small amount of MoOj3 can be dispersed onto the surface of Fe;Oj3 relatively easily by simple
grinding of the two oxides. In addition, the thermal spreading of MoO3 is facilitated at around 400 °C.
Further thermal spreading and the solid-state reaction yield a shell of Fe;(MoOy); encapsulating the
remaining Fe,O3 grains, but a small amount of MoOj3 remains on the external surface of the resulting
Fe;(MoQy);3 shell.

In support of this, Brookes et al. [16] have demonstrated the benefits of calcination time, comparing
the effects of both a 2 and 24 h treatment on various monolayer catalysts of MoOy /Fe;O3 calcined at
500 °C. Catalysts across the monolayer range all demonstrated a significantly improved selectivity
towards formaldehyde with a longer calcination time, with the 1ML catalyst showing the most
significant improvement. For 1ML dosed, a clear production of CO, was observed though TPD
analysis after a two hour calcination. This is in stark contrast to the performance after a 24 h heat
treatment, which only disclosed CO and H,CO to desorb from the surface. This is reflective of the
improved spread of the Mo at the surface, although no characterization has been performed to support
this. The work highlighted the importance of investigating the evolution of the surface state during
the preparation of a catalyst.

With an ongoing interest in this active amorphous overlayer of Mo, focus turned to studying
the IML MoO, /Fe;O3 catalyst more thoroughly through spectroscopy techniques [7]. Both Raman
and XANES data revealed a uniform absorption spectrum across the calcination range for 1ML
MoO, /Fe;O3 treated between 120 C and 600 °C (Figure 11), also analogous to the dried 3ML
MoO,/Fe;O3 phase previously discussed. It was therefore recognized that for a monolayer (or
sub-monolayer) amount of a species (labelled MoOy), the molybdenum remains segregated at the
surface of the Fe;O3, with complete Oy, geometry under all calcination conditions (Figure 11).

=+ 1ML MoO,/Fe 0,300 ‘C/ 2 hours
——1 ML MoQ /Fe 0,600 "C/ 2 hours

Normalised Absorption

T T T T T T 1
19960 19980 20000 20020 20040 20060 20080 20100

Energy / eV

Figure 11. Normalised XANES spectra of IML MoOs3/Fe,O3 catalysts annealed to 300 and 600 °C.
Spectra are identical across the calcination range. Image adapted from C. Brookes et al., J. Phys. Chem. C,
2014, 118 (45), pp. 26155-26161 [7].
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A detailed EXAFS analysis was able to assess the local structure of this amorphous Oy, overlayer
in more detail. The non-phase-corrected Fourier transform of the k2-weighted EXAFS data for the
1ML MoOy /Fe,O3 sample annealed at 500 °C for 24 h is detailed in Figure 12, with obtained EXAFS
parameters in Table 2. EXAFS data exposed that the Oy, Mo units are bound to the Fe;O3 surface with
through a Mo-Fe interaction. The primary Mo Oy, environment was dominated by oxygen neighbors,
with the major contribution at low values of R in the Fourier transform. This was ascribed to a short
Mo-O (distance = 1.74 A) scattering path (Table 2). Also present was a longer Mo-O scattering path
(distance = 1.95 A), but with less impact on the EXAFS data as a consequence of the large disorder
associated with it. Further out in R space (after 2 A), Mo-Fe scattering paths dominated, albeit
weak in intensity due to their out of phase nature (See imaginary part, Figure 12). Computational
studies performed later in collaboration with David Mora Fonz of UCL, were in agreement with
the results obtained through EXAFS [7]. Modelling was undertaken to determine the nature of the
preferred adsorption site on the most stable surface (0001) of o-Fe;O3. The favoured adsorption site
was indicated to be where the Mo would have three Fe neighbors at approximately 3 A, in addition to
one shorter distance Fe neighbor. Figure 13 represents these findings [7].

Magnitude
Data
- —Fit

FTK y (R)/A®

Imaginary component
Data
- =Fit
Mo - O (i)
Mo - O (i)
-=-=--Mo-Fe (i)
weeeees Mo - Fe (i)

R/A

Figure 12. Magnitude and imaginary component of the k?-weighted Fourier transform (non
phase-corrected) for the EXAFS data of the IML MoOy/Fe,O3 catalyst calcined to 500 °C/24 h.
Associated scattering paths are included for the imaginary component. Image adapted from
C. Brookes et al., |. Phys. Chem. C, 2014, 118 (45), pp. 26155-26161 [7].

Table 2. EXAFS fitting parameters for the 1ML MoOy /Fe;Oj3 catalyst calcined to 500 °C Fitting
parameters: Sy? = 0.82 as deduced by MoOs standard: Fit range 2.6 <k <9.7, 1 < R <3.5; # of independent
points = 11. Where N = Co-ordination number, R = Bond distance/ A of the Absorber-Scatterer,
202 = Mean squared disorder, E¢ = Eo, Rpyctor = A statistic of the fit.

Abs. Sc. N R/IA 202/A2  EdeV  Riycior

Mo-O 3 (fixed) 174(2) 0.006(1) 7(3)  0.005
Mo-O 3 (fixed) 195(6)  0.03(1) - -
Mo-Fe 1 (fixed) 2.85(4) 0.009 (6) - -
Mo-Fe 3 (fixed) 3.10(3) 0.009 (3) - -
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In conclusion so far, the data have indicated a stable amorphous Oy, overlayer of Mo at the surface
of Fe; O3, present for a range of monolayer coverages and calcination temperatures. Catalyst screening
studies revealed a comparable performance for all levels of Mo dosed onto Fe;O3. Most significantly,
catalysts with just one monolayer coverage of molybdenum on Fe,O3 resulted in a very selective
catalyst for methanol oxidation to formaldehyde. It was proposed by Brookes et al. [16] that this
common surface overlayer present for all such catalysts, is also the active overlayer in bulk ferric
molybdate catalysts of the type used industrially.

Figure 13. (Left) side view of the x-Fe,O3 (0001) surface. The drawn plane marks the position of the
semi-transparent oxygen ions; Brown sphere = Fe, Red sphere = O, (Right) view along the hexagonal
axis of the x-Fe,O3 (0001) surface. Different initial adsorption sites (from A to E) for the MoOj3 unit are
shown; the rhombi represent the surface unit cell. Image adapted from J. Phys. Chem. C, 2014, 118 (45),
pp. 26155-26161 [7].

5. Initial Investigations into the Mechanism and Reaction Site of Methanol on FeMo Based
Catalysts

In highlighting the use of model MoO,/Fe;O3 catalysts to gain knowledge into the possible
surface terminations in bulk FeMo systems, the work of Brookes et al. [35] next exploited in situ
characterization, specifically to address the reaction mechanisms occurring with methanol. Although
widely valued for its efficacy in the reaction, there is a surprising lack of knowledge regarding the
catalyst surface layer in Fe;(M0Qy)3, and more importantly how it reacts with the incoming methanol
reactant under high pressure conditions. This has been a topic of great interest, with many authors able
to identify the phases which are formed through reduction and regeneration of the catalyst [3,36-38],
but unable to designate these intermediate phases to a defined reaction mechanism.

The mechanism of methanol adsorption and reaction on the surface of FeMo based catalysts has
been extensively researched, with the majority of authors recognizing that the Mars-Van Krevelen
mechanism applies [12,39]. Under this mechanism, methanol oxidation employs surface lattice
oxygen [40], inducing a temporary partial reduction of the surface to Mo (IV).

The reduction mechanism has been reported to occur as follows, resulting in a mixed phase
catalyst [38]:

CH30H + Fep (MOO4)3H2[5 — FeMoO,4 + MoO3; + HCHO + H,O (1)
This is then counteracted by a quick regeneration through gas phase oxygen to Mo (VI).
2FeMoO, + MoOs; + 1/202—>F€2 (MOO4)3 2)

House et al. [22,41] have exploited TPD and pulsed flow studies to investigate this reduction
phenomenon in more detail. The reaction and reduction of iron molybdate (Mo:Fe = 2.2:1) with
methanol feedstock under anaerobic conditions was adopted. The first pulse of methanol demonstrated
comparable conversion and selectivity to formaldehyde, as would be seen under aerobic conditions.
This indicated that gas phase oxygen is not directly required in the reaction, but is merely there to
re-oxidise the surface for continued use, again supporting the MVK mechanism. With further reduction
at low temperatures, the catalyst performance diminished, reflecting the significant loss of oxygen from
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the catalyst surface. However, contrary to this, as the temperature is elevated above 250 °C, the catalyst
was able to reinstate its previous activity, as bulk oxygen migrates to the surface at a higher rate to
enable the production of formaldehyde. With loss of bulk oxygen, further oxide phases inevitably
formed, with XRD evidencing -FeMoOy4, M0O,, and Mo04O1;. The study was informative not only
in providing information regarding these reduced phases, but also in preliminary investigating the
mechanisms occurring at the surface.

TPR studies performed by Zhang et al. [42] on Fe;(MoO,); with excess MoOs highlighted the
transformation of Fe;(MoQy); to B-FeMoO,4 and Mo4O11, MoO3 to MoO, and 3-FeMoO, to Fe;Mo3Og
and Fe30y. Beale et al. also describe their related work [38], specifically studying Fe;(MoQOy); using in
situ WAXS, XANES and UV- Vis. Under reducing conditions, they observed the reduction to produce
-FeMoO4 and MoOs3, which can further reduce to MoO;. It is thought from previous literature studies
of methanol oxidation over bulk Fe,(MoQy)3, that the formation of reduced «-FeMoOy occurs at lower
temperatures, whilst 3-FeMoO4 dominates at higher temperatures above 310 °C [43].

Due to its dominance of the surface layer of highly selective ferric molybdate catalysts, focus
has turned to studying methanol reaction on Mo surfaces, specifically MoOs. The crystallographic
planes in MoOs3 have been resolved by electron diffraction as the apical (001 + 101), side (100) and basal
(010) planes. The basal (010) plane was found to possess the lowest free energy, lying parallel to the
double layer. Ab initio quantum mechanical calculations performed by Allison et al. [44] supported
a multistep mechanism involving reaction of methanol with dual-dioxo catalytic sites. Since these dual
sites were shown to exist on the (010) face of MoOj3 (Figure 14), this face was deemed as the reactive
site [45]. However, this is not unanimously agreed, with several authors revealing that the (010) plane
exhibits especially low saturation, and any methanol adsorption occurring does not contribute to
formaldehyde production. The role of this face is still under investigation for selective methanol
oxidation [14,45].

O\\\\M/O O\\M/o
\o/ ~ (010) Face

Figure 14. Proposed dual-dioxo catalytic sites on the 010 face of «-Mo0O3.

It has since been proposed that methanol adsorption occurs at the edge and defect sites of x-MoOj3,
since the uptake of methanol correlates accordingly with the number of active centres on these sites.
Edge planes are formed by the bond cleavage perpendicular to the MoO3 double-layers [46], exposing
co-ordinatively unsaturated molybdenum onto which adsorption can occur [47]. Non (010) faces
possess the required dual acid-base sites, as outlined in Figure 15. Pre-treatment of the surface with
pyridine has shown to inhibit methanol oxidation due to poisoning of the MoOj surface. This implies
Lewis acid sites, as proposed by Tatibouet et al. [47]. The Lewis acid character revealed by these
adsorption studies [48], facilitates substrate interactions.

(0] D (0]
I | I

—Mo—O0—Mo—O0—Mo——

+ CH;0H TH OCHs ﬁ

—Mo—O0—Mo—O0—Mo——

- CH;OH

Figure 15. Dissociative chemisorption of methanol on x-MoOj3 [49]. The dual acid-base sites are formed
from an unsaturated metal cation (O-Mo-0), and adjacent terminal oxygen (Mo = O) [47]. Methanol
can dissociatively chemisorb at these dual sites. The unsaturated Mo atom performs as a Lewis acid
centre, acting as the adsorption site for a methoxy intermediate. The basic M = O site abstracts a proton
simultaneously to form a hydroxyl. Both intermediates have been evidenced through IR studies [50,51].
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The steps which follow the methoxy adsorption, are dependent on the oxidation state of the Mo
active centre. If Mo exists as active and selective Mo (VI), the reaction proceeds via scission of the
C-H bond, considered to be the rate-determining step. The process yields formaldehyde and a proton,
which reacts with lattice oxygen to form a second hydroxide, which proceeds to be lost as water under
oxidative conditions [52]. If the oxygen level is insufficient, the produced hydrogen will be introduced
into the surface, creating a surface bronze denoted HyMoO3. With even further reduction, loss of
H occurs with subsequent MoO, formation, a known reduced state of MoOj3. The reactivity of iron
molybdate is comparable to that of the pure «-MoQOj in terms of selectivity [22], however, the activity
of this mixed phase oxide supersedes that of MoO3, due to the greater number of exposed catalytic
active sites present for isotropic Fe;(M0QOy)3 than for anisotropic MoOj3. Only the edge sites for MoOs
can carry out the catalysis, whereas all the exposed planes in Fep(M0QOy)3 can dissociatively chemisorb
CH3OH as well as oxidise methanol to formaldehyde.

It is agreed that during the reaction, partial surface reduction occurs, followed by a very rapid
regeneration using gas phase oxygen. It could be that Mo (IV) exists temporarily, agreeing with the
initial mechanisms of Bowker et al., however, it has not been possible to isolate this species under
normal oxidative reaction conditions.

Attempts have been made by our group to explore the nature of Mo during the oxidative reaction
with methanol [35]. In situ isothermal reaction studies were performed under transmission mode
XAFS coupled with mass spectrometry analysis, whilst maintaining the temperature at 250 °C. During
formaldehyde production (Mass 30, Figures 16 and 17), no obvious changes were observed in the Mo
speciation, inferred by the constant pre-edge position, and maintained T4 co-ordination throughout.
With a sustained Mo environment, this allowed for continued production of formaldehyde, as revealed
by the mass spectrometer data collected online during the experiment (Figure 17). Previous studies
have identified that surface oxygen is consumed in the reaction [7,16]. It is therefore shown from these
oxidative studies that any removal of surface oxygen and temporary Mo reduction is difficult to probe,
due to the rapid re-oxidation by gas phase oxygen to maintain the catalyst in its desired Mo (VI) state.
It could be that Mo (IV) exists momentarily under reactive conditions, but is unable to be seen due to
the time scale of these studies. This has proved a challenge for many researchers [24,45].

—120mins
——90 mins
—— 60 mins
——30 mins
——10 mins
—— 0 mins

Normalised Absorption / Arbitrary

T T T N T T T T T N T T T T 1
19800 19900 20000 20100 20200 20300 20400 20500
Energy/ eV

Figure 16. XANES data over a 120 min period for 6ML MoO, /Fe;O3; when reacted isothermally at
250 °C under a continuous flow of MeOH/O,.
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Figure 17. Online mass spectrometry data for experiment of Figure 16. Image adapted from
C. Brookes et al., Catal. Sci. Technol., 2016, 6, 722 [35].

Other authors have exploited alternative approaches to investigating the mechanisms on Mo
dominated catalysts.

Bowker et al. [22] have focussed the role of Mo in the selective oxidation of methanol, proposing
the terminating Mo = O as an initial single adsorption site for methanol oxidation (Figure 18) [22].
The majority of authors also identify this Mo = O site as a possible dehydrogenation centre for the
mild oxidation [7,22,37,47,49]. Trifiro et al. [53] have long maintained the opinion that Mo = O double
bonds are essential in oxidation catalysts, with dioxo centres at the core of the reactivity due to their
ability to extract both hydrogens from methanol. During the reaction proposed by Bowker et al., the
active Mo (VI) reduces to Mo (IV), which can readily use lattice or gas phase oxygen to re-oxidise back
to Mo®* Confirmation of this derives from experiments carried out to determine the activity profile of
the other main oxidation state of Mo, which is Mo (IV). From experimental observations the scheme
was proposed as:

1.  An acid-base type reaction occurs at the terminal Mo = O site, resulting in methoxy and OH
formation (g = gas phase, a = adsorbed species). The terminal oxygen is deemed the most stable
site for hydrogen adsorption.

CH30H, + O—CH;0, + OH, 3)

2. Attack of the bridging oxygen on the adsorbed methoxy yields adsorbed formaldehyde and
a hydroxyl. This C-H abstraction on methoxy occurs at much higher temperature, and is deemed
as the rate-determining step in formaldehyde formation. It is presumed that the step involves
bridging oxygen, since when Fe is present at the surface, high selectivity to CO occurs due
to the changed bonding energy of the Mo-O-Fe bridging oxygen which dehydrogenates the
methoxy intermediate.

CH30; + Op—H,COg + OH, 4)

3. OH recombination occurs to yield H,O from the catalyst [52]. The anion vacancy is re-oxidised
from the bulk (anaerobic) or gas phase (aerobic) oxygen.

ZOHaﬁHZOg + Os + Vs (5)



Catalysts 2016, 6, 92 15 of 27

Il v
-0- -0- Ol
H0.+0 O/M? o) +HROH
P e
OH ORH
OH \ /v
\w -0-Mo-0-
-0O-Mo-OH /\
\ 0oOo0
$ % R
OH OR
\ /w
-R=0 -O-/Mt\)-OH
(o]

Figure 18. The oxidative dehydrogenation of methanol on molybdenite catalysts as proposed by
Bowker et al. [22].

Once formed, formaldehyde can be further oxidised to CO or CO,. However, the high selectivity
of «-MoQ3 is derived from the presence of undissociated methanol and water blocking the adsorption
sites, which retards this further oxidation.

A recent paper from our research team reports a simple quantative model to describe the
behavior of bi-cationic systems [36], comparing selectivity as a function of Mo loading on Fe;O3
(Figures 19 and 20). Surface doped materials are commended for their use in learning about the active
configuration and its relationship to high selectivity. It was found that product distribution was highly
dominated by the distribution of dual and single sites of the two species (Mo and Fe) at the surface.
Mo is highly selectivity on its own to formaldehyde, and is proposed to be present in commercial
catalysts as an active Mo monolayer on top of ferric molybdate. Product yield was measured from
iron oxide, through to the stoichiometric catalyst, Fe;(MoQOy)3, considering various Mo doping levels.
CO;, was shown to be dominant at high Fe levels, while H,CO prevailed for low Fe content. However,
over a wide range of the intermediate concentrations, CO was the primary product (Figure 19). It was
postulated that double sites are important for the selective reaction. For formaldehyde production, it
was concluded that two Mo sites are required, whilst double Fe sites promote combustion on iron oxide
via formate adsorption. Where CO was the dominant product, a different active site was proposed,
requiring only one cation to be involved in the rate determining step. This appeared to show the
general trend of behaviour observed.
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Figure 19. The yields of the three main products of methanol oxidation seen in TPD, as a function of
the amount of Mo in the catalyst. A mole fraction of 0.6 corresponds with the stoichiometric materials
Fe;(MoOy)3. Image adapted from Catal. Struct. React., 2015,1, 95-100 [36].
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Figure 20. The variation of dual sites and single sites as a function of coverage of type B on the surface.
Image adapted from M. Bowker et al., Catal. Struct. React., 2015,1, 95-100 [36].

DRIFTS studies on 6ML (monolayers) MoOy /Fe;O3 calcined at 600 °C, have been carried out by
the authors of this review, in support of this theory (Figure 21). Studying model catalysts produced in
this way paves the way for a surface analysis approach, whilst also producing catalysts with higher
surface areas for maximised infrared signal. Upon dosing with MeOH at room temperature, the
formation of two methanol related surface species. The first species exists as a non-dissociatively
adsorbed O-H group of methanol, appearing at 3100-3500 cm ! with a second species is observed as
pair of bands at ~2955 and 2847 cm~! which can be indexed to the stretch and the first overtone of
the symmetric bend of methanol CHj, respectively [54]. By 100 °C, the DRIFTS spectrum (Figure 21)
could also distinguish the bands of methoxy on moderately Lewis-acidic oxides (2933 & 2835 cm™1),
differentiating them from the C-H vibrations of undissociated methanol on acidic surfaces at this
temperature (2959/2854 cm~1). It should be noted, whilst molecular methanol remains the dominant
surface species at low temperature, methoxy dominates at higher temperatures, shown through the
maintained intensity of methoxy compared to the loss of related MeOH bands. This would reflect the
stronger surface interactions of the methoxy. All associated bands diminished by 200 °C, as reactants
subsequently form products.

After 10 mins 250 °C
——After 10 mins 200 ° C 2955
After 10 mins 150 °C
After 10 mins 100 °C 28471

After 10 mins He RT
e After 10 mins He RT

Absorbance Arbitrary

S —

T T T T T
3400 3200 3000 2800 2600

Wavenumber /cm™

T T
3800 3600

Figure 21. In situ DRIFTS spectra for 6ML MoOy/Fe,O3 under TPD of MeOH/He. The catalyst
surface was saturated with MeOH pulses under He at room temperature, and two spectra were then
taken with one 10 min after the other (black and red curves). The temperature was then raised to
400 °C, monitoring the reaction products through TPD with simultaneous DRIFTS analysis of the
surface species.
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6. In Situ Investigations under MeOH/He to Provide Insights into the Reaction Mechanisms
under Methanol

Due to the difficulty in probing the active site under oxidative conditions, an alternative approach
has been advocated amongst the group of Brookes et al. [35], exploiting their core-shell structures of
Mo on Fe;O3 under MeOH /He. Reacting anaerobically enforced a reduction of the surface, which
could be analogous to the structural changes occurring momentarily under reaction with MeOH under
aerobic conditions. Specifically studying core-shell MoO, /Fe,Os catalysts enabled the use of in situ
XAFS as a surface sensitive analysis tool, exclusively probing the active topmost layers, without the
added complication of secondary phases such as MoO, and 3-FeMoO,4, which we are shown to be
produced during the reduction of bulk Fe;(MoOy)3 [42,55].

Figure 22 details the extent of reduction as a function of temperature for 1, 3 and 6 monolayer
loadings of Mo on Fe; O3, acquired through XANES analysis. Since it was not possible to source
appropriate references to perform satisfactory LCA, results were ascertained through observing the
move in edge position between Mo (VI) from the original post reduced catalyst, to Mo (IV) referenced
from MoO,, a known reduced state of Fe;(MoOy)3,. Observed was an edge shift of approximately
70% towards Mo (IV) for all coverages, implying MoO, itself did not form (Figure 23). Further
characterization through Raman and XRD was also unable to establish isolated MoO,, as is the case
for bulk Fe;(MoQOy)s.

To elucidate this reduction process further, EXAFS analysis was influential. The end state
kz—weighted Fourier transform data for the reduced samples of the 1 and 6ML MoO, /Fe,;O3 catalysts
are shown in Figure 24. The obtained fits were comprised of five scattering paths; one Mo-Mo,
2 Mo-O and 2 Mo-M, where M = Fe or Mo. Two oxygen scattering paths featured at 1.78 and 2.02 A,
indicative of reduced forms of Mo, as well as the distorted nature of the Mo octahedra. Significantly,
all monolayers displayed a strong contribution from an Mo-Mo distance at 2.6 A (Table 3). Literature
assigns this to a bonded distance indicating a Mo (V) dimer or Mo (IV) trimer [44]. This bond distance
is different from that in MoO,, which has a shorter distance of 2.5 A, and with a reduced average
co-ordination number.

Increasing Redugtion Temperature
RT->350°C N

Normalised Absorption / Arbitrary

—— Moo,

I ' I ! I ' I ! I ' 1
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Figure 22. Temperature programmed XAS showing the reduction of 6ML MoOy /Fe;O3 in MeOH/He
while heating from ambient temperature to 350 °C, together with MoO, reference (pale blue). A shift
in the absorption edge, to lower energy is seen with increasing temperature. Image adapted from
C. Brookes et al., Catal. Sci. Technol., 2016, 6, 722 [35].
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Figure 23. Oxidation state changes during in situ reduction of 1, 3 and 6ML MoOy, /Fe,O3 ascertained
through monitoring the change in absorption edge position from Mo (VI) to Mo (IV). Reduction was
carried out in a MeOH/He flow whilst heating to 350°C at a rate of 12 °C- min—! under atmospheric
pressure. XAFS spectra were collected throughout (~1 min per scan). IML = filled squares, 3ML = open
squares, 6ML = filled circles. Figure adapted from C. Brookes et al., Catal. Sci. Technol., 2016, 6, 722 [35].

This surface specific Mo-Mo bonded distance was an important finding, indicating the presence
of a reduced cluster of Mo after reduction under MeOH/He. The significance of these Mo clusters is
that the possible dimer unit could suggest a two centred Mo reaction site, which could be the reactive
site that temporarily forms on reaction with methanol (the reductant) before its quick and efficient
re-oxidation back to the original catalyst. This complements the results of Kikutani et al. [56] who
found that a 2.6 A Mo—Mo bond in fixed dimer catalysts as the most distinctive feature for unique
dimeric active sites. This proposal is now recognized by many, with evidence highly favouring this
dual site option. A study by Lopez et al. used density functional theory (DFT) to describe the unique
character of the Mo (VI)-Mo (IV) pairs as the most active and selective sites on the surface, to establish
the controlling factors of selectivity, and the role of dopants [57]. It has been suggested that iron
reduces the energy requirements of the redox Mo (VI)-Mo (IV) pair by acting as an electron reservoir.

FT K2((R)/A®

—— 1ML Reduced at 350 ° C Data
- = 1ML Reduced at 350 ° C Fit

—— 6ML Reduced at 350 ° C Data
— — 6ML Reduced at 350 ° C Fit

R A

Figure 24. Magnitude component of the k?-weighted Fourier Transform for the EXAFS data of the 1
and 6ML MoO, /Fe;Oj3 catalyst reduced.
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Table 3. EXAFS fitting parameters for the 1 and 6ML MoOy /Fe,O3 reduced under MeOH/He at 350 °C.
The Reyctor for the 1 and 6ML reduced MoOy /Fe,; O3 catalysts were 0.03 and 0.01 respectively. Where,
Abs. Sc. = Absorber-Scatterer atoms, N = Co-ordination number, R = Abs-Sc distance, 262 = Amplitude
reduction factor.

Sample Abs. Sc. N R/A 202/A2 E¢/eV Reactor
Mo-O 2(2) 1.76 (5) 0.012 (1)
Mo-O 40(1) 202(2)  0.003 (Fixed)
“VfiL Moolg/ dFe2g3 Mo-Mo 13 (Fixed)  2.68 (3) 0007(2)  —1(6) 003
end state Reduce Mo-Fe 2(2) 3.05(6)  0.007 (Fixed)
Mo-Fe 2(1) 336(2)  0.007 (Fixed)
Mo-O 15(1) 178 2) 0.007 (7)
Mo-O 3.4 (3) 203(1)  0.003 (Fixed)
61\’5; MO%C/dFeZ% Mo-Mo 13 (Fixed) 262 (2) 0.003 (1) 0(2) 0.01
end state Reduce Mo-Mo 25(1) 2.82(2) 0.01 (1)
Mo-Mo  4.0(2) 337 (2) 0.01 (1)

7. Investigating the Role of Fe in Fe;(M00O4);3

The redox ability of molybdenum based catalysts has been discussed [8,37,58,59], with the
oxidation state of the Mo considered a key contribution in catalyst reactivity. With extensive
investigations into the role of Mo in the selective oxidation of methanol, the requirement for Fe
in the active catalyst is still questioned, considering that it constitutes such a high proportion of the
commercially-used catalyst.

There have been many theories postulated for the necessity of the iron containing phase [6,10,60].
Firstly it yields a catalyst with improved surface area, bringing increased overall activity in the
oxidative reaction to formaldehyde. MoOj3 alone suffers from a very low surface area, therefore
making it inappropriate for commercial use. Secondly, although it cannot compete with MoQO3,
Fe;(MoOQy)3 demonstrates a satisfactory performance in the reaction to formaldehyde Moreover,
Fe;(MoQy)3 is thought to have superior properties such as its bulk lattice oxygen mobility, which
allows the catalyst to always ensure sufficient oxygen regeneration to the surface during reaction,
maintaining catalyst selectivity. The bulk reduction process of iron molybdate based catalysts has
been investigated by Mossbauer [61] measurements on pure Fe;(Mo0QOy)3. The reduction takes place
at temperatures above 230 °C, with the catalyst reducing to 3-FeMoOy. The process is shown to
be completely reversible under oxygen at temperatures above 270 °C, with the catalyst efficiently
reinstating its former Fe,(MoO4); structure.

Further investigation into the properties in Fe;(M0Oy); have been addressed by the authors
of this review, in an attempt to define the role of Fe in the industrially employed catalyst. MeOH
pulsing studies have been executed under anaerobic conditions. Catalysts were subjected to continual
MeOH pulsing, whilst being held isothermally at 350 °C under He. It was concluded that oxygen
mobility at this temperature was enabled in Fe;(MoOy)3, especially since the mixed oxide was able to
maintain selectivity to formaldehyde for the duration of the experiment (Figure 25, Mass 30), though it
also produced some CO (see Equation (7)). The presence of H,CO was indicative of the presence of
a methoxy intermediate at the surface. Methoxy has been proven to be present on MoOs [52,62].

CH30H + Os—H,CO + H,O Oxidative (6)

CH30H—CO + 2H; Non — Oxidative 7)
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Figure 25. Pulse flow data for Fep(M0QOy)3, Mo:Fe 1.5:1, under anaerobic conditions. MeOH pulsing
was applied to the catalyst under He at 350 °C. The mass 31 data is expanded in the inset.

An equivalent pulsing experiment was performed on commercial MoOs (Figure 26). The catalyst
was unable to match the performance of Fe;(MoOy)s, with the conversion of methanol (Mass 31)
occurring after approximately ten minutes into the pulsing regime, as opposed to the almost instant
conversion for Fe;(MoQOy)s. The selectivity of formaldehyde was not maintained for the duration,
with a significant drop in its production towards the end of the reaction. This is counterbalanced
by an increase in CO production and conversion, which is not seen so quickly for Fe;(MoOy)s.
This suggests that bulk oxygen diffusion is hindered in MoOj3, causing significant reduction in
the surface region (Equation (7)). Data suggests that Fe;(Mo0Oy)3 has properties other than simply
providing an improved activity of the catalyst; it can also ameliorate the extent of this surface reduction.
This corresponds well with other work in the literature [12,58,63]. A study by Ressler et al. [64]
investigated the reduction of MoQOj in propene, and the corresponding re-oxidation of MoO, by in
situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The results revealed crucial
information regarding solid-state kinetics of the processes, whilst also elucidating the structural
changes occurring. It is believed that at temperatures below ~600 K, the contribution of oxygen from
the MoOj3 bulk is negligible, leaving MoO, at the catalyst surface. A paper of Bowker et al. contrasts the
behaviour of MoO3; and MoO,, with the latter showing an overall worse selectivity with a significantly
higher proportion of CO produced [24]. It is not until 700 K that oxygen vacancy diffusion in the bulk
is enough to allow for a slow-moving redox mechanism to occur. Above 700 K it is believed that fast
oxygen diffusion permits the participation of a considerable amount of the lattice oxygen, and helps
maintain the surface oxidation level for a longer period of time.
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Figure 26. Pulsed flow data for MoO3 under anaerobic conditions at 350 °C, experimental as Figure 25.

To elaborate further on this phenomenon, the oxygen lattice mobility has been investigated for
Fe;(MoOy); and MoOs. It should be noted here that MoO3 was produced in-house via precipitation,
to produce the oxide with an equivalent surface area to that of Fe;(MoQO4)3. Although this area was
difficult to maintain after one reaction cycle, it provided a means of fairly comparing the oxygen
mobility in these two oxides (Figures 27 and 28). Following reduction in MeOH/He, catalysts
were subjected to pulses of 10% O,/He every 2 min at 350 °C. It was shown that for Fe;(MoO4)3
(Figure 26), it was not until approximately 60 min into stage one of the pulsing regime, that the Mass
32 (oxygen) signal appeared. Oxygen saturation is not accomplished until 180 min, as shown through
the consistency in peak area after this elapsed time. In an equivalent study on MoOs, (Figure 28),
a response for Mass 32 was seen after just 20 min into stage one of the pulsing regime, with a sharp
rise from 40 min. The catalyst became fully saturated with oxygen after just 120 min, with no further
uptake from this point. From these pulsing studies, it was revealed that Fe,(MoOy); has a greater
oxygen uptake than MoO3, implying that the catalyst was more reduced under the same reduction
regime. This therefore indicates a better redox activity of the catalyst. The study complements the
reactivity data reported for the two catalysts (Figures 25 and 26).

TPPFR (Temperature Programmed Pulsed Flow Reaction) with MeOH /O, has also been indicative
of surface oxygen removal. Bowker et al. [14,22] have demonstrated that surface oxygen is more
readily removed from Fe;(Mo00Qy)3, established through the lowered temperature of conversion and
formaldehyde production for this oxide The ease of reducibility has been shown by others to follow
as: FeyOs > Fep(MoQOy)3 > MoOj [65], suggesting that the mobility of the oxygen anions follows
the same order, with the highest mobility in Fe;O3; and lowest in MoOs3;. Not all agree however.
Beale et al. [38] recently published a study involving a combined multi-technique in situ approach
to probe the stability of Fep(MoO,); catalysts during redox cycling. According to these authors, the
Fey(MoOy)3 phase is the primary active phase, and that during standard reaction, a partial reduction
of this phase occurs, resulting in the formation of formaldehyde, inactive 3-FeMoO, and MoOs. The
FeMoOy phase is short lived, and is rapidly re-oxidised back to Fe;(MoQOy)3 by gas phase oxygen.
To probe this mechanism in more detail, the stoichiometric Fe;(MoOy)s catalyst has been studied
in harsher anaerobic conditions, to accelerate the changes occurring. The catalyst was first reduced
under MeOH/He, yielding formaldehyde. Post anaerobic treatment the catalyst was re-oxidised
under air to monitor the ability of the catalyst to regenerate. In situ combined wide-angle X-ray
scattering, X-ray absorption near edge spectroscopy and ultraviolet-visible spectroscopy with online
mass spectrometry were combined to study the structure-activity relationships under redox cycling.



Catalysts 2016, 6, 92 22 of 27

Under redox cycling, it was shown that the initial Fep(Mo0Qy)3 is partially regenerated, however with
subsequent re-oxidation, little regeneration occurs, and can only do after a long period of time.
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Figure 27. Oxygen pulsing study on reduced Fe;(MoOy); at 350 °C, Stages 1-2. Post reductio, catalysts
were subjected to pulses of 10% O,/He from a known sample loop volume every two minutes.
The uptake of oxygen was monitored through the change in peak integral of Mass 32. Each stage
consisted of 180 min of pulsing. By stage two, 100% O, saturation had occurred.
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Figure 28. Oxygen pulsing study on reduced MoOj at 350 °C, Stages 1-2 (Studies as for Fe;(MoOy)3
Figure 26).

8. Materials and Methods

8.1. Catalyst Synthesis

MoOy, /Fe;O3 catalysts were prepared by impregnating the desired number of ML equivalents of
Mo oxide, through ammonium heptamolybdate, on commercial Fe,O3 (Sigma Aldrich, St. Louis, MO,
USA, particle size <50 nm). A calcination of 500 °C for 3 h was employed for Fe,O3 in preparation for
its use as a support. Aqueous ammonium heptamolybdate (for 3SML MoOy /Fe;O3) was dosed onto
the surface of the Fe,O3 by incipient wetness impregnation during constant mixing. Samples were
subsequently dried at 120 °C for 24 h followed by annealing at different temperatures in air for 2 h.

Reference samples were prepared for comparison with the 3ML dosed materials. Iron molybdate
(Mo/Fe ratio of 1.5:1) was prepared using a conventional coprecipitation method; a solution of iron
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nitrate nonahydrate (Sigma Aldrich, >98%, St. Louis, MO, USA) was added dropwise to solution of
ammonium heptamolybdate (Fluka Analytical, New York, NY, USA, >99%) previously acidified to
pH 2 with dilute HNO3, under continuous stirring. The mixture formed was then heated to 90 °C for
approximately 1 h until a yellow sludge remained, which was air-dried overnight and then dried at
120 °C for 24 h, followed by calcination at 500 °C for 48 h.

8.2. Catalyst Characterisation

The morphology and homogeneity of the samples were determined by electron microscopy, with
both TEM and SEM used. TEM ensured catalysts were homogeneous. Materials were examined using
a model JEM 2100 EM (JEOL) and showed no discernable sign of particle clustering or agglomeration
at the surface. SEM EDX analysis was performed using a JEOL model JSM-6610LV.

BET surface areas were determined under nitrogen physisorption at 77 K using a Micromeretics
Gemini surface area analyzer (Micromeritics, Norcross, GA 30093, USA). Phase composition was
assessed using a range of techniques, including vibrational spectroscopy. A Renishaw (Gloucetershire,
UK) Raman microscope fitted with an 830 nm laser, was used to acquire Raman spectra. Measurements
typically used a 0.1% laser power, with four accumulations at 10 s exposure time for each. A Panalytical
X'pert pro analyzer with Cu K« radiation was used for to perform XRD measurements.

An ESCALAB 220 spectrometer (VG Scientific, UK) equipped with AlK« and MgKa sources, and
fitted with a fast entry lock for easy sample loading was used to acquire XPS spectra. AlK« (1486.6 eV)
irradiation was used, to prevent Fe Auger peaks overlapping with the Fe 2p1/2 and Fe 2p3/2 peaks.

Mo K-edge XAFS studies were carried out at the UK national synchrotron, Diamond Light Source,
on the B18 beamline (Rutherford Appleton Lab, Harwell, Oxfordshire, UK). Measurements used
a double crystal Si (111) monochromator [66,67] for EXAFS in the range of 19,800 to 21,500 eV. All pellet
(diluted with BN) samples of the as prepared materials and reference samples were collected in
transmission mode. XAFS data processing and EXAFS analysis were performed using IFEFFIT with
the Horae package (Athena and Artemis). The amplitude reduction factor, was derived from EXAFS
data analysis of the known Mo reference compound, MoOj3, and determined as 0.82, and used fixed
input parameter.

8.3. Catalyst Testing

A CATLAB reactor (Hiden Ltd., Warrington, UK) was used to assess the catalytic performance
of the materials via TPD and continuous pulse flow studies. For the continuous pulse flow studies

1 pL of methanol was injected into a flow of 10% O,/He every 2 min, at a flow rate of 30 mL min~'.

Products were determined by the online mass spectrometer. A temperature ramp of 12 °C min~! was
used during the studies. For TPD ~6 injections of 1 uL. methanol were dosed onto the catalyst at room
temperature in a flow of 30ML min? 1 of He. Subsequently the temperature was ramped to a maximum

of 400 °C at a rate of 8 °C min~!, monitoring the products of desorption through mass spectrometry.

9. Conclusions

The crucial factors which affect methanol selective oxidation on iron molybdate are the following.
Firstly, the surface is entirely dominated by Mo oxide, and any presence of Fe in the surface layers of
the catalyst are detrimental to selectivity. As a result, catalysts made by placing thin layers of Mo at
the surface of iron oxide work very well (but not quite as well) as iron molybdate. Secondly the ability
of the surface to display what we might call “structural redox flexibility” seems to be an important
factor in such catalysis. What we mean by this is that the material must tolerate a degree of oxygen
loss without permanent loss of structural integrity. This may be a reason for incorporating Fe into
these materials, notwithstanding its total oxidation characteristics. It does not appear in the crucial
surface layer, yet it enables easier subsurface diffusion of anion vacancies during oxygen starvation
periods, and easy re-oxidation during surplus.
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LCA Linear Combination Analysis
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SEM Scanning Electron Microscopy
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XAS X-ray Absorption Spectroscopy
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