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T-cell receptor (TCR) therapy has arrived as a realistic treatment option for many human
diseases. TCR gene therapy allows for the mass redirection of T-cells against a defined
antigen while high affinity TCR engineering allows for the creation of a new class of sol-
uble drugs. However, deciding which TCR blueprint to take forward for gene therapy or
engineering is difficult. More than one quintillion TCR combinations can be generated by
somatic recombination and we are only now beginning to appreciate that not all are func-
tionally equal. TCRs can exhibit high or low degrees of HLA-restricted cross-reactivity and
alloreact against one or a combination of HLA alleles. IdentifyingTCR candidates with high
specificity and minimal cross-reactivity/alloreactivity footprints before engineering is obvi-
ously highly desirable. Here we will summarize what we currently know aboutTCR biology
with regard to immunoengineering.
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BACKGROUND
The αβ T-cell receptor (TCR) is one of the most variable proteins
known to science (1) with the human V(D)J recombination sys-
tem capable of generating hundreds of trillion of unique αβ TCR
molecules (2). This incredibly vast receptor reserve is our immune
systems’ core defense against the torrent of hypervariable microor-
ganisms and pathogenic challenges encountered over the course
of life. During thymopoiesis, the TCR recombination machin-
ery uses “cut-and-paste” transposition to incise and rearrange 174
variable (TRAV and TRBV), diversity (TRBD), joining (TRAJ and
TRBJ), and constant (TRAC and TRBC) TCR gene segments on
chromosomes 7 (TRB loci) and 14 (TRA loci) into around seven-
and-a-half million distinctive gene combinations (2). This chro-
mosomal recombination process generates only around 10% of
total TCR diversity with the remaining 90% of diversity generated
through further exonuclease activity and the addition of random,
non-template-dependent nucleotides (N-nucleotides) across the
V(D)J junction by the enzyme terminal deoxynucleotidyl trans-
ferase (TdT) (3). The collective sum of this recombination event
is a theoretical 1015–1020 structurally unique αβ TCR molecules (1,
4, 5). Due to size constraints (2), the human immune system only
houses an infinitely small slice of the full repertoire. In an adult
human, this equates to 1012 T-cells (6, 7) bearing around 2.5× 106

unique αβ TCR structures (6), with the upper bounds comprising
108–1011 unique αβ TCR structures per individual (6, 7).

The αβ TCR is a glycosylated, membrane-integral surface pro-
tein comprising one α-chain and one β-chain (2). The two chains
fold and fuse via cysteine–cysteine disulfide linkers to produce a
single, functional heterodimeric receptor (8, 9). The outward fac-
ing and solvent-exposed edge of the heterodimer bears six highly
flexible complementarity determining region (CDR) loops. The
CDR1 and CDR2 loops are encoded by the germline TRAV and

TRBV genes and generally function to fix the TCR to the major his-
tocompatibility complex (MHC) platform. Conversely, the CDR3
loops are encoded by the somatically hypervariable V(D)J junction
and classically function to engage the peptide (p) cradled in the
MHC groove (8, 9), although variations on CDR binding geometry
have been noted (9).

A TCR engages its cognate pMHC as a single, composite ligand,
and docks in an approximately diagonal fashion that slightly varies
in pivot and tilt from complex to complex (9, 10). One steady
constant of TCR/pMHC engagement is that the CDR3α loop is
positioned toward the direction of the peptide N-terminus and
the CDR3β loop is positioned toward the direction of the peptide
C-terminus and variation in this geometry has not been seen to
date (9, 10), however extreme terminal focusing has been recently
observed (11). The TCR/pMHC docking process can be very fluid
and conformational changes to the TCR, peptide, and MHC have
all been observed suggesting that both interfaces often adjust to
each other to find a compatible binding solution (9). Biophysical
data show that TCR binding is stratified based on function. TCRs
that engage pMHC class-I (pMHC-I) targets bind strongly with a
mean affinity three time stronger than TCRs that engage pMHC
class-II (pMHC-II) targets (8). Likewise, TCRs are further strati-
fied based on whether the antigen target is of self or foreign origin,
with foreign-reactive TCRs binding cognate pMHC with a mean
affinity 10 times stronger than TCRs that bind self pMHC (8).

In spite of the large number of TCR receptor “options” avail-
able in the naive repertoire, T-cell repertoires deployed against
pMHC antigens often exhibit ordered and predictable TCR gene
architecture [reviewed (2, 12)]. This phenomenon, termed TCR
bias, can result in residue-identical memory clonotypes being
found across multiple individuals sharing a common MHC allele.
The mechanisms behind the appearance of these “public” T-cell
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responses are still being determined (2) but is thought to involve
both biases in recombination during thymopoiesis (13) and some
optimal, structural-based, filtering event during antigen-driven
selection (14–20). For this filtering event, it appears the pep-
tide is the determining factor during repertoire formation (21)
with TCR repertoire assembly not dependent on antigen source,
presenting MHC allele or immunodominance hierarchy. Once a
memory T-cell repertoire is established, it appears to remain rela-
tively consistent both in terms of clonotype stability and clonotype
frequency over decades of life (22, 23).

Adoptive cell therapy (ACT) using antigen-specific T-cells has
proven to be a remarkably effective experimental treatment option
for Epstein–Barr virus malignancies (24), cytomegalovirus infec-
tion (25), and melanoma (26). Given these promising results,
many groups have turned toward TCR gene transfer as a simpler,
faster, and more homogeneous technique for generating ACTs.
Here, antigen-specific αβ TCR genes are delivered into recipient
T-cells using a γ-retroviral vector, lentiviral vector, or transposon
[reviewed (26)]. Another parallel approach for TCR therapy is to
engineer high affinity mutants from natural αβ TCR “blueprints”
using yeast display (27) or phage display (28). These TCR mutants
can have their binding affinities amplified logarithmically to the
low pM K D range (28) while still retaining high specificity for anti-
gen (28, 29). Affinity enhanced TCR can be used in two ways. First
the mutants can be gene transferred into T-cells to increase anti-
gen sensitivity and polyfunctionality (30). Second, the mutants
can be used in soluble form to deliver therapeutic payloads to cells
bearing the appropriate pMHC targets (31). Importantly, before
considering a receptor for therapeutic ends, a number of parame-
ters should be considered regarding the genetics and biology of
the human TCR.

CONSIDERATION ONE: CROSS-REACTIVITY
The first parameter to considering when applying TCR therapy is
the cross-reactivity profile of the candidate receptor. A theoretical
proposal (32) predicted that the αβ TCR must intrinsically encode
a high degree of cross-reactivity in order to provide sufficient
coverage against the huge constellation of pMHC complexes that
could be encountered in nature. Through the use of combinatorial
peptide libraries (CPLs), that comprise almost all possible peptides
of a particular length, this theory was recently tested experimen-
tally and proven (33, 34). In the context of a single MHC, a single
αβ TCR can recognize over one million different peptides as well or
better than its cognate ligand (34). Whether this is the case for all
TCRs is under active investigation. Very recent CPL data suggests
that TCRs have sliding cross-reactive intensities (35) and, at least
for pMHC-I-specific TCRs, an explicit preference for peptides of
defined length. Thus, cross-reactivity for peptides outside a TCRs
“programmed length preference” is unlikely.

Given the intrinsic cross-reactivity of TCRs, it is tempting to
select for TCR that engage multiple target pMHC. Indeed, this
“multiple birds with one stone”approach could dramatically boost
therapeutic efficacy of a candidate TCR in vivo. However, caution
is advised in this pursuit as it has recently been shown that multi-
pMHC specific TCR can result in serious side effects (36). Here, a
therapeutic TCR that recognized multiple MAGE-derived peptides
resulted in neurological toxicity when administered to melanoma
patients as TCR gene therapy. Off-target toxicity was thought to

be due to one of the MAGE peptides being expressed in the brain.
This localized expression profile was not previously known.

Another parameter to consider (on top of the large num-
bers of proteogenic peptides T-cells can recognize) is the issue
of “transformed self.” It is known that αβ T-cells can engage
proteogenic peptides containing post-translational modifications,
such as phosphorylation (37), glycosylation (38), citrullination
(39), and dimerization (40). Whether a given αβ TCR also cross-
recognizes large numbers of modified peptides is yet to be deter-
mined. In addition to classical pMHC-I and pMHC-II targets,
αβ TCR are also now known to bind a growing list of classical
and non-classical MHC molecules which cradle an extraordinary
diverse array of organic and inorganic compounds (41). TCR lig-
ands can include proteogenic peptides in HLA-E (42), lipids in
the cluster of differentiation 1 (CD1) molecule (41, 43), vitamin
metabolites in MHC-I related (MR1) molecules (44), small mol-
ecule drugs in MHC-I (45), and the empty platform of human
hemochromatosis protein (HFE) (46).

Precisely mapping the complete cross-reactive profile of a
therapeutic TCR candidate across the thousands of classical and
non-classical MHC alleles which present a combined universe of
organic and inorganic compounds is currently possible but dif-
ficult. Basic approaches are available for assessment (Table 1).
For instance, scanning a group of candidate TCRs across a CPL
library can quickly rule out receptors with extensive pMHC cross-
reactivity footprints. From these select receptors, blasting the raw
CPL data across the human proteome may identify self peptides
which could drive off-target activity in vivo. Candidate TCR with
minimal cross-reactivity footprints as suggested by CPL scanning
could then advance to in vitro testing on multi-cell subsets. Here,
various cell types (monocytes, DCs, T-cells, B-cells, fibroblasts,
epithelial cells, etc.) that express the HLA restriction allele of
interest could be used as target cells to determine potential TCR
cross-reactivity with self pMHC molecules. Target cells could be
derived from primary sorted cells and/or cell lines.

CONSIDERATION TWO: ALLOREACTVITY
As mentioned above, a significant degree of degeneracy in peptide
recognition likely evolved to ensure that the TCR repertoire has the
capacity to recognize the enormous variety of foreign peptides that
are encountered throughout life. Furthermore, broadly reactive
T-cells may aid primary and memory responses where memory
T-cells for one pathogen are reactivated by a different infectious
agent (47). However, limited specificity of self-MHC-restricted T-
cells is also the basis of the alloresponse and its associated clinical
problems.

T-cell allorecognition occurs when the immune system is pre-
sented with MHC molecules of a different allotype to that of
the host. Alloreactivity becomes clinically significant in the case
of solid-organ grafts or bone marrow transplants in which mis-
matched MHC molecules can potentially result in organ graft
rejection or graft versus-host disease (GVHD). This response can
be either direct, in which the T-cells mount an immune response
to the foreign-pMHC, or indirect, a chronic self-MHC restricted
response resulting from polymorphism in the processed antigen
that can include peptides from allogeneic MHC molecules (48). It
is estimated that up to 0.1–1% of T-cells are alloreactive toward a
given allogeneic MHC molecule (49). However, the probability of
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Table 1 | Pre-clinical testing options for therapeuticTCR candidates.

Parameter to consider when choosing a candidate

TCR for therapy

Testing option/s

Could the candidate TCR cross-react with a peptide

presented by an autologous classical and non-classical

MHC molecule?

Scan the candidate TCR across different primary cell subset targets (monocytes, DCs, B-cells,

T-cells) sorted from prospective patients.

Scan the candidateTCR across PBMC and cell lines (monocytes, DCs, B-cells,T-cells, fibroblast,

epithelial) from a library of HLA allele matched healthy donors.

Scan the candidate TCR across peptide length-matched CPL to establish a metric of cross-

reactivity potential.

Could the candidate TCR alloreact with a peptide

presented by a mismatched MHC molecule?

Scan the candidate TCR across an extensive, fully HLA haplotyped cell line library. The cell line

library should contain HLA alleles found at high frequency in the target population.

Are the germline sequences for the candidate TCR

donor/patient matched?

Compare the TRAV, TRAJ, TRBV, and TRBJ sequences of the candidate TCR with patient TR

loci. Polymorphisms in these genes may alter the effectiveness of the therapeutic TCR in vivo.

Additionally, if the donor/patient TR alleles do not match, or if the patient has a key TR allele

deleted, there is a possibility that a patient-derived immune response could be mobilized against

the “foreign” TCR.

Could the candidateTCR steer functional phenotype of

recipient T-cells when used in gene therapy?

Transduce the candidate TCR in naive T-cells in vitro or into mice with human immune system

components. Prime the cultures with differing concentrations of cognate Ag and monitor cell

fate decisions. Note temporal and final ratios in effector, memory and Tfh differentiation.

Transduce the candidate TCR in memory T-cells in vitro. Prime the cultures with differing

concentrations of cognate Ag and monitor if cell fate is altered when compared to phenotype

pre-transduction.

a TCR reacting with any allogeneic MHC molecules is obviously
much higher due to MHC polymorphism, and this is a potential
problem for TCR therapy.

There are numerous reports of T-cell clones with dual speci-
ficity for an allo-MHC molecule and a nominal antigen com-
plexed with self-MHC (50). The best characterized example is
the response to the Epstein–Barr virus epitope FLRGRAYGL,
that binds to HLA-B8, in which CTL clones were isolated that
cross-reacted with one of three common alloantigens (HLA-
B44, B14, or B35) (51, 52). Interestingly, the HLA-B44 allore-
active TCR [which has also been shown to alloreact with HLA-
B∗5501 (53)] is a public TCR that dominates the response to
this viral epitope in most HLA-B8+ people (54, 55). By exam-
ining the response to this viral epitope in individuals who co-
expressed HLA-B8 and one of the alloantigen targets, subdom-
inant TCRs were identified that were not alloreactive (55, 56).
Such TCRs would be the obvious choice for use in TCR ther-
apy, and this approach could be used in other systems to identify
non-alloreactive TCRs for therapeutic use where the dominant
receptors are alloreactive.

Many other T-cell clones have been shown to cross-react with
alloantigens, and work from Frans Claas’s group has shown that
up to 45% of virus-reactive T-cell clones from humans are allore-
active (50). Allo-HLA cross-reactivity was shown from T-cell
clones raised against a range of viruses including cytomegalovirus,
varicella-zoster virus, and influenza (50). These included both
CD8+ and CD4+ clones alloreacting with MHC-I and MHC-II
molecules, respectively, and surprisingly, they also included two
distinct cytomegalovirus-reactive, MHC-I-restricted T-cell clones
that recognized allogeneic MHC-II molecules (57).

The obvious way to manage the problem of T-cell alloreactivity
in the context of TCR therapy is to perform preliminary in vitro
screens of the TCR for cross-recognition of cell lines expressing a
wide range of allo-HLA alleles. The limitation here is that it will
be near impossible to screen against the huge variety of HLA mol-
ecules, given there are over 6,000 known class-I alleles and over
1,000 class-II alleles. Furthermore, alloreactive T-cells are gener-
ally also specific for one or more “self”-peptides presented by the
allo-HLA molecule, and these may not be presented by cells from
all tissues, or they could be derived from polymorphic gene prod-
ucts and are therefore not presented by all individuals or cell lines.
For example, the EBV-reactive TCR described above is specific
for a “self”-peptide derived from an ATP binding cassette protein
ABCD3 which is presented by allo-HLA-B44 and shares only one
residue with the viral peptide (58). This peptide appears to be
presented at different levels in distinct tissues based on the recent
observation that these T-cells recognize HLA-B44+ lymphoid cells
but not epithelial and endothelial cells (59).

Although T-cell cross-reactivity with alloantigens has not
proven to be a major problem in adoptive T-cell transfer clinical
trials, it is an issue that should not be ignored in future trials of TCR
therapy. Testing for cross-reactivity with one or more alloantigens
is currently possible in vitro through target cell screening across
large allo cell libraries (50, 53).

CONSIDERATION THREE: POLYMORPHISM
As with vaccines that elicit T-cell responses against a limited num-
ber of epitopes,TCR-based therapeutic approaches need to address
the important issue of polymorphism in the genes involved in
antigen presentation and those encoding for the target peptide
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antigens. Viral antigens are particularly prone to accumulating
escape mutations, and so TCRs that recognize regions of viral
proteins that are critical for viral fitness and are therefore highly
conserved (60) should be favored for TCR therapy. Genetic insta-
bility is also a common feature of cancer cells, often resulting in the
selection of antigenic variants by T-cells which allow cancer cells to
escape destruction (61). The simultaneous administration of mul-
tiple TCRs that target different epitopes should circumvent these
problems to some extent. Another potential mechanism through
which human genetic polymorphism could create problems is if
a TCR, transferred into an unrelated recipient, cross-reacts with
a polymorphic self-peptide which it had not encountered during
thymic negative selection, leading to damage of healthy tissue.

HLA polymorphism is also a major consideration that restricts
the potential value of individual TCRs to a limited subset of any
given population. As mentioned above, a huge number of HLA
alleles have now been identified and therefore TCR therapy will
need to be personalized to ensure recognition of epitopes pre-
sented by relevant HLA alleles. TCRs that recognize antigenic
peptides that are presented by multiple HLA alleles are also valu-
able candidates for TCR therapy. A degree of degeneracy in HLA-
peptide binding has been demonstrated whereby multiple class-I
alleles can share common sequence motifs due to homology of
amino acids within the major pockets of the peptide binding cleft,
and these groups of alleles are referred to as HLA supertypes. Based
on HLA structural similarities and overlapping peptide binding
motifs, nine major HLA supertypes have been proposed (62).
Examples of TCRs that have the capacity to recognize individ-
ual peptides bound to multiple members of an HLA supertype
have been described (63–66). These TCRs with promiscuous HLA
restriction can often accommodate differences in the exposed HLA
α-helix residues between the restricting MHC and foreign MHC
antigens that present the same peptide.

As with the MHC genes, allelic sequence variation is also a fea-
ture of the TCR and this issue needs to be addressed in the context
of TCR therapy. Several sequencing studies have revealed consid-
erable polymorphism within the TRAV and TRBV gene segments
(67, 68). In one study, the TCR loci from 40 individuals across four
ethnic groups were fully sequenced, and more than 550 SNPs were
found, with many being situated in coding/regulatory regions of
functional TCR genes and several causing null and non-functional
mutations. On average, the coding region of each TCR variable
gene contained two SNPs, with many more found in the 5′, 3′ and
intronic sequences of these segments. A total of 51 SNPs in the
TRA locus and 72 SNPs in the TRB locus were found to result in
amino acid changes (67, 68).

The extensive variability within the TCR gene segments raises
the interesting possibility that, unless the TCR genetics are
matched between donor and recipient, some TCR gene products
will be seen as foreign antigens and could elicit an immune
response that limits the efficacy of transferred TCRs. Particularly
strong immune responses could be expected in patients with dele-
tions or inactivating polymorphisms that prevent expression of
certain TRBV genes. There are seven frequently occurring inac-
tivating polymorphisms in functional TRBV gene segments and
a large (21.5 kb) insertion/deletion related polymorphism in the
TRB locus encompassing two V gene segments (67–70). In the lat-
ter case, two functional variable β genes, TRBV6-2/TRBV6-3 and
TRBV4-3, are frequently deleted in all major ethnic groups (68,
70, 71). TCRs that are encoded by V genes that include common
polymorphisms could perhaps be avoided for use in TCR therapy.

CONSIDERATION FOUR: FUNCTIONAL PHENOTYPE
Recent evidence suggests that different TCRs expressed by T-cell
clones of the same pMHC specificity can have different effects on
immune phenotype (72). When challenged with pathogen, clono-
typically distinct naive T-cells were observed to give rise to differing
ratios of Th1 and Tfh progeny. These alternate differentiation pro-
grams were dependent on pMHC dwell time and/or Ag density.
Interestingly, this data suggests that different TCR clonotypes of
the same pMHC specificity may impart differential effects on total
immune function through varying effects on macrophage activity
and antibody section by B-cells. An additional complexity in this
area is the observation that after priming, a single naive T-cell can
have multiple fates when proceeding down the cell differentiation
pathway (73, 74). Thus, determining exactly which differentiation
program a candidate TCR induces is an important parameter when
considering a receptor for therapeutic use.

CONCLUDING REMARK
The TCR is an extremely effective tool for targeting biologi-
cal and non-biological molecules and vast opportunity exists to
exploit these receptors therapeutically. However, TCRs are highly
polymorphic by nature and intrinsically encode a considerable
degree of differential functionality and cross-reactivity across a
number of MHC and MHC-like molecules. These factors require
that therapeutic TCR candidates are donor/patient matched and
undergo the most comprehensive in vitro cross-reactivity testing
we can perform with present technology. The goal of this test-
ing should be the identification of receptor candidates with pre-
dictable cell differentiation“programs” and minimal and traceable
cross-reactivity/alloreactivity footprints.
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