New age constraints on metamorphism, metasomatism, and gold mineralisation at Plutonic Gold Mine, Marymia Inlier, Western Australia

<table>
<thead>
<tr>
<th>Journal</th>
<th>Australian Journal of Earth Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>TAJE-RES-2015-0083.R2</td>
</tr>
<tr>
<td>Manuscript Type</td>
<td>Research Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author</td>
<td>29-May-2016</td>
</tr>
<tr>
<td>Complete List of Authors</td>
<td>Gazley, Michael; CSIRO, CESRE Vry, Julie; Victoria University of Wellington, SGEES Millet, Marc-Alban; Cardiff University School of Earth and Ocean Sciences Handler, Monica; Victoria University of Wellington, SGEES du Plessis, Ettienne; Barrick (Australia Pacific) Limited, Porgera Gold Mine Baker, Joel; The University of Auckland, School of Environment</td>
</tr>
<tr>
<td>Keywords</td>
<td>Proterozoic, greenstone-hosted gold, geochronology, Pb isotope model ages, Rb-Sr ages, Capricorn Orogeny</td>
</tr>
</tbody>
</table>
New age constraints on metamorphism, metasomatism, and gold mineralisation at Plutonic Gold Mine, Marymia Inlier, Western Australia

M. F. Gazleya,b, J. K. Vryb, M.-A. Milletc, M. R. Handlerb, E. du Plessisd and J. A. Bakere

aCSIRO Mineral Resources, ARRC, PO Box 1130, Bentley, WA 6102, Australia
bVictoria University of Wellington, PO Box 600, Wellington, New Zealand
cSchool of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, United Kingdom
dBarrick (Australia Pacific) Limited, 6/621 Coronation Drive, Toowong, Qld 4069, Australia
eSchool of Environment, The University of Auckland, Auckland, New Zealand

Corresponding author: Michael.gazley@csiro.au

Editorial handling: A. E. Webster

Received 8 July 2015; accepted 4 July 2016

Abstract

The Plutonic Well Greenstone Belt (PWGB) is located in the Marymia Inlier between the Yilgarn and Pilbara cratons in Western Australia, and hosts a series of major Au deposits. The main episode of Au mineralisation in the PWGB was previously interpreted to have either accompanied, or shortly followed, peak metamorphism in the late Archean at ca 2650 Ma with a later, minor, event associated with the Capricorn Orogeny. Here we present new Pb isotope model ages for sulfides and Rb–Sr ages for mica, as well as a new $^{207}\text{Pb}/^{206}\text{Pb}$ age for titanite for samples from the Plutonic Gold Mine (Plutonic) at the southern end of the PWGB. The majority of the sulfides record Proterozoic Pb isotope model ages (2300–2100 Ma), constraining a significant Au mineralising event at Plutonic occurred >300 Ma later than previously thought. A Rb–Sr age of 2296 ± 99 Ma from muscovite in an Au-bearing sample records resetting or closure of the Rb–Sr system in muscovite at about the same time. A younger Rb–Sr age of 1779 ± 46 Ma from biotite from the same sample may record further cooling, or resetting during a late-stage episode of metasomatism in the PWGB. This could have been associated with the 1820–1770 Ma Capricorn Orogeny, or a late-stage hydrothermal event potentially constrained by a new $^{207}\text{Pb}/^{206}\text{Pb}$ age of 1725 ± 26 Ma for titanite in a chlorite–carbonate vein. This titanite age correlates with a pre-existing age for a metasomatic event dated at 1719 ± 14 Ma by U–Pb ages of zircon overgrowths in a sample from the Marymia Deposit. Based on the Pb-isotope data presented here, Au mineralising events in the PWGB are inferred to have occurred at ca 2630, 2300–2100 Ma, during the Glenburgh and Capricorn orogenies, and 1730–1660 Ma. The 2300–2100 Ma event, which appears to have been significant, based on the amount of sulfide of this age, correlates with the inferred age for rifting of the Marymia Inlier from the northern margin of the
Yilgarn Craton. The texturally-later visible Au may have been deposited during the Glenburgh and Capricorn orogenies.

Keywords: Proterozoic gold mineralisation; greenstone-hosted gold; geochronology; Pb isotope model ages; Capricorn Orogeny.

Introduction

One of the most significant episodes of Au mineralisation in the Yilgarn Craton (Figure 1) is recorded at ca 2650 Ma (2670–2600 Ma; e.g., Groves et al., 2000), including the richly mineralised Eastern Goldfields (ca 2640 Ma; e.g., Vielreicher, Groves, Snee, Fletcher, & McNaughton, 2010), as well as in parts of the Marymia Inlier (ca 2650 Ma; Vielreicher & McNaughton, 2002). Previously, the major episode of Au mineralisation in the Plutonic Well Greenstone Belt (PWGB) of the Marymia Inlier (Figure 1) was interpreted to have taken place at about the same time as elsewhere in the Yilgarn Craton, specifically the Eastern Goldfields (e.g., McMillan, 1996; Rowe, Awan, McCuaig, Sauter, & Vickery, 2002; Vickery, 2004). That interpretation was based on geochronological data from the Plutonic Gold Mine (Plutonic) and the wider Marymia Inlier (McMillan, 1996; Vickery, 2004; Vielreicher & McNaughton, 2002; Vielreicher, Ridley, & Groves, 2002), but included very little data that might specifically constrain the timing of Au mineralisation at Plutonic. Here we present fourteen Pb isotope model ages for pyrrhotite, arsenopyrite, pyrite and sphalerite, and two new Rb–Sr ages for muscovite and biotite, all from Au-bearing samples from Plutonic, as well as a Pb–Pb age for titanite from a late-stage chlorite vein. Our results suggest that a significant Au mineralisation event took place at 2300–2100 Ma and, although the host rocks at Plutonic are Archean in age, that the majority of Au mineralisation occurred during the Paleoproterozoic. These ages also provide new constraints on cooling after peak metamorphism and late-stage metasomatic events at Plutonic. The significance of Paleoproterozoic ages for Au mineralisation on the margins of the Yilgarn Craton was recently highlighted as Doyle et al. (2015) report Au mineralisation at the Tropicana deposit at ca 2520 Ma, while Kirland et al. (2015) report ca 2100 Ma ages for Au mineralisation in the Albany-Fraser Orogen (SE Yilgarn Craton).

Geological setting

Plutonic has a total endowment of ~10.5 million ounces of Au (Fallon, Porwal, & Guj, 2010), and is located ~800 km northeast of Perth, Western Australia (Figure 1). The Marymia Inlier is an Archean basement high located between the Pilbara and Yilgarn cratons and is surrounded by Proterozoic rocks. Dentith et al. (2014) argue that rift architecture preserved along the northern margin of the Yilgarn Craton suggests that the Marymia Inlier separated from the Eastern Goldfields Superterrane of the Yilgarn Craton during continental rifting and deposition of the Windplain Group of the Yerrida Basin (Figure 1), possibly at ca 2170 Ma (Woodhead & Hergt, 1997). The inlier was uplifted during the Paleoproterozoic Capricorn Orogeny (ca 1820–1770 Ma) (e.g., Occhipinti, Sheppard, Nelson, Myers, & Tyler, 1998a; Occhipinti, Swager, & Pirajno, 1998b; Pirajno, Jones, Hocking, & Hallisovic, 2004; Tyler & Thorne, 1990). The PWGB is a NE–SW-trending, ~50 km long, ~10 km wide granite–greenstone terrane in the Marymia Inlier. The southern end of the PWGB is significantly more structurally
complex than the northern end of the inlier; with significant structural complexity occurring late in its
tectonic history (Duclaux, Hough, Gazley, & de Beer, 2011; Duclaux, Hough, & Gazley, 2012).

Based on U–Pb sensitive high resolution ion microprobe (SHRIMP) analyses of zircon from samples
collected both at Plutonic and farther northeast in the belt, peak amphibolite-facies metamorphism
in the PWGB is dated at 2660–2630 Ma (McMillan, 1996; Vickery, 2004; Vielreicher & McNaughton,
2002). The main Au mineralising event was interpreted to have accompanied or shortly followed
peak metamorphism in the PWGB (McMillan, 1996; Rowe, Awan, McCuaig, Sauter, & Vickery, 2002;
Vickery, 2004; Vielreicher et al., 2002), although there is no geochronological evidence from Plutonic
to support this. The available data from Plutonic showed Pb isotope model ages of ca 2100 Ma for
pyrite in samples that were not associated with Au (Vielreicher et al., 2002), with ca 1730–1660 Ma
ages obtained from galena (McMillan, 1996; Vielreicher et al., 2002), both at Plutonic and elsewhere
in the PWGB.

Known economic concentrations of Au at Plutonic occur mainly within the Mine Mafic Package,
which is predominantly comprised of amphibolite-facies metabasaltic rocks that are typically high Fe-
to high Mg-tholeiite in composition (Gazley, 2011; Morgan, 2004). Minor and thin (typically < 1 m)
discontinuous units within the metabasalt sequence include the metamorphosed equivalents of
silica- and sulfide-rich sediments, and rock types that are interpreted as having been derived from
sediments with relatively mafic bulk compositions. These minor rock types can be interlayered on a
cm- to dm-scale. The metabasaltic rocks preserve pillow structures in low-strain areas,
demonstrating that deposition of the Mine Mafic Package occurred in a subaqueous environment.

Granitoid plutons surrounding the greenstone belt are dated at ca 2720 Ma (U–Pb dating of zircons;
Vielreicher & McNaughton, 2002), and appear to have been overthrust onto the generally NE-dipping
greenstone sequence. The entire sequence is cross-cut by at least two generations of sub-vertical
dolerite dykes (Gazley, Tutt, Brisbout, Fisher, & Duclaux, 2014a). Based on U–Pb dating of zircons
from a narrow, cross-cutting felsic porphyry, deposition of the volcano-sedimentary package
occurred before 2680 Ma (McMillan, 1996; Vickery, 2004).

The Mine Mafic Package varies in thickness from <20 to >300 m, and is for the most part overturned
(e.g., Gazley, Vry, du Plessis, & Handler, 2011a). Evidence for overturning of the Mine Mafic Package
can be found in komatiitic textures in the ultramafic rocks that overlie and underlie the Mine Mafic
Package, and variation in elemental concentrations in sections through the Mine Mafic Package
(Gazley, 2011; Gazley et al., 2011a; Vickery, 2004). Recently compiled geochemical cross-sections
through the Mine Mafic Package show that there is no significant structural duplication of the
package within the current mine workings (Gazley, 2011; Gazley et al., 2011a, 2012).

Peak metamorphic conditions were ~8 ± 2 kbar and ~600 ± 50°C (Gazley, Vry, & Boorman, 2011b;
Gazley, Vry, & Pearce, 2014b), based on results of both hornblende–plagioclase
geothermobarometry and petrological forward modelling using the computer programs THERMOCALC
(revised version of Powell & Holland, 1988) and Theriak/Domino (de Capitani & Brown, 1987; de
Capitani & Petrakakis, 2010). The metamorphism formed hornblende–plagioclase–titanite–quartz–
edipode assemblages in the mafic rocks (Gazley et al., 2011b). Prograde ilmenite and rare traces of
rutile can be preserved in titanite, whereas prograde actinolite and cummingtonite can be preserved
in the cores of hornblende, and variable amounts of carbonate, chloride and epidote were introduced
during retrogression. The development of these textures is consistent with their formation in a
single, major metamorphic episode that reached amphibolite-facies conditions in the Plutonic area.
Gold mineralisation

Gold mineralisation is typically confined to well-defined, narrow (1–3 m wide), biotite-bearing lodes, commonly referred to as “brown lodes” (Vickery, 2004), which are sub-parallel to the dominant foliation within the Mine Mafic Package and tend to be near-parallel to the original stratigraphy as marked by the rare metasedimentary horizons (Bagas, 1998, 1999). Representative underground and polished hand sample photographs are presented in Figure 2. The Au lodes are localised into a north-trending zone ca 1 km wide and 3 km long. In the north of the deposit, drag on a large thrust fault has folded the Mine Mafic Package to create an upright limb in an otherwise overturned sequence. A series of large, steep, normal faults that trend northeast cross-cuts the deposit, offset Au-bearing lodes by up to a few tens of metres. These faults do not appear to be a dominant control on Au mineralisation, although local increases in Au grade are evident in their vicinity, with visible Au commonly observed.

Brown lodes (Figure 2a–d) contain Au in association with quartz–biotite–amphibole–titanite–epidote–carbonate–tourmaline–arsenopyrite–pyrrhotite ± chalcopyrite ± scheelite. Brown lodes are typically siliceous, very fine-grained, and laminated on a sub-mm scale; biotite tends to define a foliation parallel to the laminations. In overall appearance, the brown lode can resemble a metamorphosed banded chert (Figures 2c), with individual laminae differing in the proportions and grain sizes of biotite, quartz and sulfides, and in the nature of the sulfide minerals present. Arsenopyrite is typically the dominant sulfide, though in some lodes, pyrrhotite is dominant. The arsenopyrite is preferentially situated in fine-grained, quartz-rich laminae, and is generally too fine-grained to separate from the rock for analysis. Arsenopyrite crystals are for the most part euhedral and not strongly oriented. Blebs of visible Au are common and appear to be associated with both calc-silicate alteration, and chloritisation of biotite, which overprint the earlier fabrics and at least one generation of arsenopyrite (Duclaux et al., 2013; Gazley, Duclaux, Fisher, Hough, & Pearce, 2015; Pearce et al., 2015). Pyrrhotite can be texturally later than the arsenopyrite (Figure 3a,c). Large-scale geochemical datasets show that Au/As varies widely across the deposit, but that generally Au is strongly associated with As (Gazley et al., 2012, 2014c).

Other styles of Au mineralisation are also present at Plutonic in lesser amounts. These include shear-hosted lodes, rare muscovite-rich lodes (Figure 2f), and low- to marginally-economic Au grades that are associated with the late-stage quartz–carbonate ± pyrrhotite ± chalcopyrite ± sphalerite ± galena that infills some faults.

Sample descriptions

MG801: This sample is of an early quartz–tourmaline–arsenopyrite–Au vein. The Au is concentrated near the edges of the vein and infills fractures that cross-cut the tourmaline. Some of the arsenopyrite appears to be texturally later than the vein as a coarse, early, generation of arsenopyrite was cross-cut by later arsenopyrite with quartz veining and abundant visible Au (Duclaux et al., 2013).

MG034: This sample is of muscovite-rich lode that is rare within the deposit (Figure 2f); grades of 15–30 g/t are common for this mineralisation style. The rock is dominated by very fine-grained crenulated matrix of green muscovite, with lesser amounts of arsenopyrite, biotite, tourmaline and rare, late pyrrhotite. The arsenopyrite crystals have a random habit, and tend to grow in clusters that

URL: http://mc.manuscriptcentral.com/taje
radiate out from a central point and overprint the pre-existing crenulation. Visible Au is present as <10 μm blebs on the margins of arsenopyrite grains or as inclusions within it (Figure 3a).

MG233: This sample is of brown lode, but the sulfide mineral assemblage is pyrrhotite-dominated (quartz–biotite–chlorite–amphibole–titanite–epidote–pyrrhotite ± arsenopyrite ± chalcopyrite ± scheelite ± Au; Figure 3f). The fine laminations that characterise typical brown lode are lacking, and there is comparatively more textural evidence of deformation, in the form of a fabric defined by biotite that wraps around the pyrrhotite crystals, in places forming biotite and chlorite wings on pyrrhotite. Amphiboles are early and over-printed by the sulfide, mica and Au (similar to textures in sample MG222; Figure 3c), and chloritisation of biotite is common (see lower centre of Figure 3f). Gold (~400 g/t in this sample) is common as small blebs up to several hundred microns across, both disseminated within the calc-silicate groundmass and along the edges of pyrrhotite crystals.

MG354: This sample is of a thin (mm-scale), late-stage, chlorite–carbonate vein with calcite crystals that have their largest dimensions (up to ~1 cm) in the plane of the vein. This vein is undeformed and cross-cuts all other features and fabrics. Euhedral to subhedral titanite crystals in this vein are pale pink to orange in colour and up to ~3 mm in length. No sulfides or Au are present in this sample.

MG039: This sample is of metamorphosed ultramafic rock located close to the contact between the metabasaltic Mine Mafic Package and the overlying ultramafic rocks (Figure 3b). Large dravite crystals and massive pyrrhotite are not uncommon on the contact, and in this sample are associated with low Au grades of ~2 g/t. The sample consists primarily of acicular actinolite, with Fe-rich chlorite, talc, and minor feldspar and calcite.

MG025/MG201: Both these samples are from a quartz–pyrrhotite–chalcopyrite ± carbonate ± Au vein from within the Bintang Fault zone, which is confined to the Mine Mafic Package in the northern part of the deposit. The fault zone (up to several metres wide) generally dips to the northwest at ~50°, and has strike and dip lengths on the order of 100s of metres. It is interpreted to have formed during the Capricorn Orogeny by Vickery (2004). The average Au grade of this structure is ~4.3 g/t.

MG800: This sample is of a quartz–carbonate–galena–sphalerite ± Au vein that infills dilational zones in a large fault in the northeast of the deposit. Outside of sparse occurrences in metasedimentary units, this fault (and associated splays) is the only occurrence of galena or sphalerite in the deposit. The fault is near-vertical and dips towards the WNW; it has km-scale strike continuity through the deposit. Low Au grades are locally associated with this fault.

MG218/MG340: These two samples come from small, flat-lying (<30° dip) quartz–carbonate–pyrrhotite–chalcopyrite ± Au veins. Carbonate is more abundant than quartz.

MG802: In this sample, Au is intergrown with pyrite in a quartz–pyrite vein that cross-cuts a cherty brown lode. This is a very rare style of Au mineralisation at Plutonic, as pyrite is uncommon and seldom associated with Au. Figure 2e shows late-stage Au associated with carbonate over-printing a cherty brown lode from a few metres further along the lode from where this sample was collected. Pyrrhotite is the dominant sulfide in the brown lode while pyrite is absent there.

MG222/MG224: These two samples are of the brown lode mineralisation (e.g. Figure 2d), that occurs in an overturned limb of the Mine Mafic Package where deformation is more pervasive, and the package is thinner than elsewhere in the deposit. Both samples consist mainly of quartz, carbonate
and amphibole, but are overprinted by abundant epidote and chlorite, with lesser biotite, and very rare titanite (e.g. Figure 3c, d). Pyrrhotite is the dominant sulfide, and arsenopyrite is very rare. The pyrrhotite and Au are late-stage as they overprint the texturally early amphibole crystals.

Methods

Electron microprobe

Electron probe microanalyses (EPMA) were obtained using wavelength-dispersive methods at Victoria University of Wellington, New Zealand, using a JEOL JXA-733 SuperProbe. The accelerating voltage was 15 kV, and the sample current was 12 nA. Spot sizes of 1–20 µm were utilised depending on the volatile and/or alkali content of the mineral being analysed and the grain size. Back-scatter electron (BSE) images of samples were collected for identification of zoned sulfides, while biotite was analysed to determine its phlogopite composition.

Scanning electron microscopy

Energy dispersive spectroscopy (EDS) elemental maps were collected using a Phillips XL40 scanning electron microscope (SEM) at the Australian Resources Research Centre, Perth, Australia. The resulting maps are a combination of the BSE image (showing variations in atomic mass) and EDS signal. This method provides a high-spatial resolution map of the elemental variation in the mapped area.

Rb–Sr dating of biotite and muscovite

Mica-bearing rock samples were lightly crushed in a steel percussion mortar, sieved, and 15–70 mg separates of biotite and muscovite were hand-picked for acid digestion. Whole rock samples were ground in a tungsten carbide TEMA ring mill until fine and a 50–60 mg sub-sample was digested. The mica separates and whole rock powders were digested using HF–HNO₃ acid at 120°C in 7 mL Savillex™ Teflon™ beakers. After complete dissolution, each sample was taken up in 3 M HNO₃, and a 0.2 mL aliquot was taken for ⁸⁷Rb/⁸⁶Sr ratio determinations. The Sr was separated from the remaining solution using 3 M HNO₃ on ~5 mm Sr-SPEC™ resin beds in columns made from 1 mL Eppendorf™ pipette tips. Rb/Sr ratios were measured on an Agilent™ 7500cs inductively coupled plasma mass spectrometer (ICP-MS) using a 1 ppb 1:1 Rb:Sr solution as a standard. ⁸⁷Sr/⁸⁶Sr ratios were measured relative to SRM 987 using a Nu Plasma multi-collector (MC-)ICP-MS at Victoria University of Wellington (VUW), New Zealand. Standard reference materials BHVO-2 and BCR-2 were processed through the same sample preparation as the unknown samples and yielded ⁸⁷Sr/⁸⁶Sr = 0.703467 ± 0.000008 and ⁸⁷Sr/⁸⁶Sr = 0.705029 ± 0.000008, respectively, which are in excellent agreement with reference values for BHVO-2 of ⁸⁷Sr/⁸⁶Sr = 0.703467 ± 0.000017 and for BCR-2 of ⁸⁷Sr/⁸⁶Sr = 0.705000 ± 0.000030 (Jochum et al., 2005).

Pb–Pb dating of titanite

Titanite was analysed in situ using laser ablation ICP-MS at VUW, New Zealand. A rock chip containing titanite was mounted in epoxy with a shard of the homogeneous glass reference standard NIST610, and the surface prepared by grinding with wet 400–4000 µm grit SiC paper, followed by successive lap polishing using 3 and 1 µm diamond suspensions. The titanite crystals were analysed using an Agilent 7500cs ICP-MS coupled to a New Wave 193 nm (deep UV) solid-state laser ablation system. The titanite was ablated with a static laser beam (35 µm diameter) at 5 Hz and 65% power,
with analyses acquired over \(~30\) s, or until the laser had ablated through the crystal. The reference Pb isotope data of Baker, Peate, Waight, & Meyzen (2004) for the NIST610 standard were used to correct the raw titanite Pb isotopic data for instrumental mass bias. Glass standard analyses bracketed every five sample analyses. The magnitude of the mass bias correction was typically 0.35\% per atomic mass unit and instrumental mass bias typically drifted \(<0.05\%\) per atomic mass unit between standard analyses. Typical internal precisions for the $^{206}\text{Pb}/^{204}\text{Pb}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ ratios were 0.5\% and ±0.5\% (2 se), respectively. Lead isotopic data for the titanite samples were corrected for common Pb using the measured ^{204}Pb counts and a common Pb composition of $^{206}\text{Pb}/^{204}\text{Pb} = 15.5$ and $^{207}\text{Pb}/^{204}\text{Pb} = 15.5$ (Cumming & Richards, 1975). The final calculated age is the mean of the individual $^{207}\text{Pb}/^{206}\text{Pb}$ ages calculated for the five most radiogenic titanite analyses. The uncertainty quoted on this age is the two standard deviation of the five individual $^{207}\text{Pb}/^{206}\text{Pb}$ ages and, in principle, includes all of the potential sources of error quoted above (i.e. mass bias correction, common Pb correction and internal errors on the Pb isotope ratios).

Pb isotope model ages

Samples selected for Pb-isotope analyses came in one of two forms, either thin-section billets, where the corresponding thin-section could be examined to ensure there was no zonation within the sulfide minerals, or polished blocks, in which the sulfides were examined *in situ* using BSE techniques to ensure there was no zonation. In the case of the thin-section billets, the billet was crushed for picking, while in the case of polished blocks, the block was crushed; for those samples that were not entirely consumed in this process, SEM EDS maps are presented in Figure 3. Samples weighing 7–55 mg of either arsenopyrite or pyrrhotite were hand-picked under a binocular microscope from crushed samples. Separates were dissolved with HBr, HF and HNO$_3$ in 7 mL Savillex™ Teflon™ beakers. Lead was separated from each solution using conventional HCl–HBr anion exchange procedure. Lead isotope ratios were measured on a Nu Plasma MC-ICP-MS at VUW, New Zealand, by sample–standard bracketing with SRM981. To document the reproducibility of measurements, SRM981 was analysed five times at the start of each analytical session. The average of these SRM981 analyses was

$^{208}\text{Pb}/^{204}\text{Pb} = 36.7216 ± 0.0027$, $^{207}\text{Pb}/^{204}\text{Pb} = 15.4988 ± 0.0011$, and $^{206}\text{Pb}/^{204}\text{Pb} = 16.9402 ± 0.0011$, which are in excellent agreement with reference values of $^{208}\text{Pb}/^{204}\text{Pb} = 36.7262 ± 0.0031$, $^{207}\text{Pb}/^{204}\text{Pb} = 15.5000 ± 0.0013$, and $^{206}\text{Pb}/^{204}\text{Pb} = 16.9416 ± 0.0013$ (Baker et al., 2004). Error correlations with respect to Pb isotope data were not considered, given that the uncertainties associated with the model ages are orders of magnitude larger. Varying the Pb isotope ratios for the oldest model ages (ca 2630 Ma) by the reported error (<0.05\%) results in a variation in the model age of ca 30 kyr, which is negligible compared to the ± 50 Ma error ascribed to Pb isotope model ages in this study.

For those samples for which there was sufficient material available, U/Pb ratios were also measured. Separates were dissolved with HF, HNO$_3$ and HCl in 7 mL Savillex™ Teflon™ beakers. Uranium and Pb concentrations were measured on a Thermo Scientific Element2 sector-field ICP-MS, at VUW, New Zealand. The data were calibrated using BHVO-2, at four dilutions to create a calibration curve across the concentration range. The reported errors include propagated analytical uncertainties from the standard calibration and from the sample analysis.

Results

New Rb–Sr age data for biotite and muscovite separates and whole rock powders are presented in Table 1 from an Au-bearing sample (MG034), from which Pb isotope model ages for sulfides were
also obtained (Table 2; U–Pb data, Table 3). A three-point isochron age of 2296 ± 99 Ma was obtained from two muscovite separates and the whole rock. This approach takes advantage of inter-crystal variations in mica Rb/Sr ratios to calculate ages and, although it is possible that these could be due to small inclusions of other minerals such as apatite within the mica samples that would affect the measured Rb/Sr ratios, none were observed during BSE imaging and EPMA of the biotite (phlogopite, Mg / (Mg + Fe$_T$) = 0.77–0.79). The two-point biotite–whole rock isochron yielded an age of 1779 ± 46 Ma.

Pb isotopic data yields a calculated 207Pb/206Pb age for five most radiogenic titanite crystals from sample MG354 (Table 4) of 1725 ± 26 Ma. This age has a reasonably strong common Pb correction that may affect its reliability; however, it closely correlates with a pre-existing age for a metasomatic event dated at 1719 ± 14 Ma by U–Pb ages of zircon overgrowths in a sample from the Marymia Deposit in the north of the PWGB (Vielreicher & McNaughton, 2002).

Pb isotope model ages for ten pyrrhotite, three arsenopyrite, one sphalerite, and one pyrite separate(s) are presented in Table 2 and Figure 4. 207Pb/206Pb model ages are calculated using the Cumming & Richards (1975) Model III for $t_{1/2}$ ages, with Stacey & Kramers (1975) model ages for the same samples presented for comparison. Three groups of Cumming & Richards (1975) model ages were obtained; the oldest grouping from five pyrrhotite–bearing, one arsenopyrite-bearing and one pyrite-bearing sample(s) at ca 2300–2100 Ma, with later ages at ca 1960 Ma, ca 1830 Ma and ca 1730–1660 Ma (Table 2). In addition, an early, coarse arsenopyrite crystal in a quartz vein (sample MG801), yields a model age of 2628 Ma. The sulfides from all the samples analysed have uniformly low U/Pb with the highest value of 0.02 being recorded for MG233 (Table 3). These low U/Pb mean that the Pb isotope model ages presented in Table 2 likely represent ages of crystallisation and are unaffected by radiogenic Pb produced from U decay.

Discussion

Dating methods that do not directly analyse an Au-bearing phase rely on geological field evidence such as cross-cutting relationships and petrographic textural evidence to support the argument that the mineral that was dated grew or was isotopically reset at the time of Au mineralisation. At Plutonic, Au is not texturally associated with commonly used silicate or phosphate geochronometers, but instead typically occurs in textural equilibrium with sulfides (e.g. pyrrhotite, Figure 3c, d, f), or contained within them (e.g. arsenopyrite).

Peak metamorphic conditions

The results of U–Pb dating of zircon have constrained the timing of peak metamorphism within the PWGB at 2660–2630 Ma (McMillan, 1996; Vielreicher & McNaughton, 2002 (belt-wide); Vickery, 2004 (Plutonic area)). This is consistent with the timing of metamorphism in the Yilgarn Craton (e.g., Czarnota et al., 2010; Goscombe, Blewett, Czarnota, Groenewald, & Mass, 2009; Groves et al., 2000). We identified no minerals or mineral assemblages that would enable to further constrain the timing of this major metamorphic episode.

Temperatures

At Plutonic the maximum peak metamorphic temperatures were ~600°C, based on hornblende–plagioclase geothermobarometry and phase equilibria modelling (Gazley et al., 2011b, 2014b). This is
higher than the closure temperatures (T_c) for the Rb–Sr system in micas, so the Rb–Sr ages will record cooling or resetting following the metamorphic peak. Depending on grain size, muscovite has a closure temperature of 500–550°C (Willigers, Mezger, & Baker, 2004). As the muscovite within the studied sample is rather fine grained (~200 µm), it is probable that the closure temperatures were at the lower end of this range, and that the temperature at 2296 ± 99 Ma was ~500°C. The closure temperature for the Rb–Sr system in biotite (~400–450°C) is sensitive to both grain size and composition, with higher phlogopite (Mg/(Mg + Fe$_T$)) contents being associated with higher closure temperatures (Vry & Baker, 2006; Willigers et al., 2004). As the biotite in MG034 is very fine-grained and has an Mg / (Mg + Fe$_T$) = 0.77–0.79, the biotite age of 1779 ± 46 Ma most likely represents closure of the Rb–Sr system during cooling through ~400°C.

Our new Rb–Sr ages may be indicative of slow cooling from peak temperatures of ~600°C at ca 2630 Ma to ~400°C at 1779 ± 46 Ma, giving an average cooling rate of 0.23°C/Ma for ca 850 Ma. This is an extremely slow cooling rate (cf. rates in slow-cooled, deep crustal granulites of ≤1–2°C/Ma; e.g., Ashwal, Tucker, & Zinner, 1999). The rocks could have remained buried until exhumed by a later event, such as the Paleoproterozoic orogenies that affected the PWGB (Glenburgh 2005–1950 Ma and Capricorn 1820–1770 Ma orogenies; e.g. Johnson et al., 2011, 2013; Occhipinti et al., 1998a, b; Pirajno et al., 2004; Sheppard, Bodorkos, Johnson, Wingate, & Kirkland, 2010). This interpretation is consistent with that proposed by Muhling (1988, 1990) who suggested that granulite facies metamorphism commenced in the Narryer Gneiss Complex of the northern Yilgarn Craton at ca 3300 Ma but it was not uplifted until during the formation of the Capricorn Orogen at <2000 Ma. It is also conceivable that these ages are associated with resetting of the Rb–Sr system during later metasomatism (and potentially Au mineralisation).

Timing of Au mineralisation

Ideally, a geochronometer that produced ages that were not model dependent would be used to date Au mineralisation. As discussed previously, Rb–Sr ages will record cooling, or resetting, following the peak metamorphism and are thus not ideal for constraining the age of Au mineralisation. Options for dating sulfide minerals include the Re–Os system or Pb isotopes. However, the closure temperature for the Re–Os system in sulfide minerals is, like the Rb–Sr system in biotite, at ~400–450°C (e.g., Cherniak, 2010). As such, Re–Os ages on sulfide minerals from Plutonic would likely yield ages of ca 1800 Ma, even if the sulfides crystallised near the metamorphic peak (2660–2630 Ma when temperatures were ~600°C), and would not yield meaningful insights into the timing of Au mineralisation.

Closure temperatures for U and Pb diffusion in sulfides are not known; however, major elements in sulfides, particularly in pyrrhotite, are widely regarded as being susceptible to low-temperature re-equilibration (e.g., Cherniak, 2010; Hagemann, Brown, Ridley, Stern, & Fournelle, 1998). Even so, the observation that many of the sulfide Pb isotope model ages from Plutonic cluster at ages (2300–2100 Ma) that are older than the Rb–Sr ages for biotite (T_c ~ 450–400°C; e.g., Willigers et al., 2004), suggests that the T_c for Pb diffusion in both pyrrhotite and arsenopyrite may be higher than 400°C. It is possible that the T_c for Pb diffusion in arsenopyrite is even higher, as the texturally older generation of arsenopyrite in MG801 returned a Pb isotope model age of 2628 Ma, and the inferred metamorphic temperatures at that time were ~600°C (at 2660–2630 Ma; Gazley et al., 2011b, 2014b; Vielreicher & McNaughton, 2002).
Previous studies have indicated that Pb isotope model ages for sulfides from mineral deposits compare well with those obtained using conventional geochronometers (e.g., Ho McNaughton, & Groves, 1994; McNaughton & Dahl, 1987; McNaughton & Groves, 1996). However, the age of sulfides as determined by Pb isotope model ages is highly model dependent. The Stacey and Kramers (1975) model returns ages for the oldest sulfides of ca 2800 Ma (Table 5), which are older than the probable age of the host rocks and significantly pre-date peak metamorphism. Accordingly, we prefer the model of Cumming and Richards (1975), as this model gives oldest ages that are around the age of peak metamorphism at ca 2660–2630 Ma and another age population ca 1730–1660 Ma, around the age of a metasomatic event dated by Pb–Pb and U–Pb dating at ca 1720 Ma (Vielreicher & McNaughton 2002; this study). It is interesting to note that Hawke et al. (2015) preferred the Stacey and Kramers (1975) model for their Pb isotope study of mineralisation at the DeGrussa Cu deposit, located ~30 km away from Plutonic, and associated mineralisation in the Proterozoic basins in the Capricorn Orogen. However, for the reasons outlined above, we consider the Cumming and Richards (1975) model to be more appropriate for the Marymia Inlier.

Given that only very minor galena and pyrite are present at Plutonic, the choice of minerals that can be analysed to constrain the timing of Au deposition is restricted. Arsenopyrite and pyrrhotite can in places reliably preserve initial Pb isotope compositions (McNaughton & Groves, 1996), even though their Pb isotope ratios may not plot on the mantle growth curve, due to the tendency of these minerals to incorporate small amounts of U and Th into their crystal structures (McNaughton, 1987). In sulfides other than galena or pyrite, the sample with the least radiogenic Pb in a suite of samples from the same mineralisation event is most likely to represent the best estimate for the initial Pb (Ho et al., 1994; McNaughton & Groves, 1996). McNaughton and Dahl (1987) showed that Pb isotope model ages for syngenetic galena and Fe-sulfides from elsewhere in the Yilgarn Craton possibly over-estimate the age of formation by up to ca 70 Ma. Addition of our samples to the data from Vielreicher et al. (2002), the ages derived from the projection of arrays back to the growth curve are 2666 Ma and 1773 Ma (Figure 4). These ages are consistent with the individual Pb isotope model ages for sulfide minerals of ca 2630 Ma and 1730–1660 Ma since these individual ages have an error of ± 50 Ma (Cumming & Richards, 1975).

Data from different sulfide minerals will reflect natural variations in Pb isotope ratios and subsequent re-equilibration of the sulfides, even if the sulfides all crystallised during the same event (c.f. Ho et al., 1994). Our data has been obtained from different sulfide minerals (pyrrhotite n = 9; pyrite n = 1; arsenopyrite n = 3; sphalerite n = 1), collected from within different lithologies and parts of an Au mineralising system, and so are likely to have natural variation in their Pb isotope compositions. Indeed, in sample MG034, two separates of arsenopyrite picked from the same sample yields an age of 2124 Ma and 2039 Ma, while a pyrrhotite separate from the same sample yields an age of 1919 Ma. The difference between two separates of the same mineral are 85 Ma apart and are within the ±50 Ma error we suggest is appropriate for these age determinations. The younger pyrrhotite age may reflect a lower Tc for Pb diffusion in pyrrhotite, but it is close to within error of the younger arsenopyrite age. Samples MG201 and MG025 both come from the Bintang Fault, which Vickery (2004) suggested formed during the Capricorn Orogeny (1820–1770 Ma); the ages for these samples are 1962 Ma and 1833 Ma, respectively. These ages are outside a ±50 Ma error of each other, but given the Pb-isotope heterogeneity in sample MG034 where two separates of the same mineral were picked from the same sample, the measured Pb-isotope signatures may reflect the same event. A better interpretation may be that the Bintang Fault started to form during the Glenburgh Orogeny.

URL: http://mc.manuscriptcentral.com/taje
(2005–1950 Ma) and continued to be active during the Capricorn Orogeny (1820–1770 Ma). This Glenburgh age may also correlate to the 1919 Ma age of pyrrhotite in sample MG034.

Lead isotope data for sulfides from the PWGB are presented in Table 5 (Vielreicher et al., 2002; references therein), which help to constrain the timing of Au mineralisation. Similar to this study, Vielreicher et al. (2002) reported three main clusters of Pb isotope model ages in the PWGB at ca 2650, ca 2100 and ca 1730–1660 Ma. Previous studies interpreted the main Au mineralisation event at Plutonic to be syn- to slightly post-peak metamorphism (2660–2630 Ma; e.g., Rowe et al., 2002; Vickery, 2004; Vielreicher et al., 2002), although the only Pb isotope model ages of sulfides of this age that are demonstrably associated with Au mineralisation are from the Triple P and Marymia deposits >30 km north of Plutonic (e.g., Vielreicher et al., 2002). The oldest age that we derived was from an early, coarse, arsenopyrite crystal in a quartz vein (sample MG801), which yields a model age of 2628 Ma. Microtextures suggest that two generations of arsenopyrite are present and that no visible Au is associated with the older generation, where the coarse grained arsenopyrite was broken, with abundant visible Au infilling these fractures and a younger generation of arsenopyrite (Duclaux et al., 2013). The 2628 Ma for arsenopyrite is confirms there was early sulfide deposition on the Plutonic at conditions close to peak metamorphism, but the textures argue that significant Au mineralisation occurred later.

The southern end of the PWGB is significantly more structurally complex than the north of the inlier; and there are structures that were active (and Au mineralised) late during the tectonic evolution of Plutonic (e.g. Duclaux et al., 2011, 2012). This late-stage structural history that is not evident at the north of the PWGB may account for the larger spread of Pb isotope model ages at Plutonic than the northern parts of the belt. The largest cluster of Pb isotope model ages for sulfides that either host or are in textural equilibrium with Au (e.g. samples MG034, MG222, MG224, MG233) are at ca 2300–2100 Ma (Tables 2). Free Au typically appears to be texturally late (Figure 3a, c–f), and thus could have been deposited during at either 2300–2100 Ma (this study) or 1730–1660 Ma (Vielreicher et al., 2002). All of the available evidence supports the interpretation that if there was an early ca 2650 Ma Au mineralisation event, it was either not strongly developed in the Plutonic region, or it was overprinted by later Au mineralisation to such an extent that a ca 2650 Ma Pb isotope signature can no longer be discerned. It is possible that an apparent age of 2300–2100 Ma could be obtained if a sulfide sample contained approximately equal proportions of sulfides that crystallised in two different events (e.g., ca 2650 and ca 1770 Ma), and if the ages from the earlier event were not reset (as indicated by the star on Figure 4). However, on the basis of observed textures, most of the samples that record the 2300–2100 Ma event only contain a single generation of sulfides, making a mixing hypothesis improbable (e.g. samples MG034, MG222, MG224, MG233; Figure 3a, c–f).

Our new results from Au-bearing samples from Plutonic predominantly record Paleoproterozoic ages at 2300–2100 Ma (Table 2). They complement and reinforce earlier evidence from Pb isotope model ages (Table 5) for pyrite from the region (McMillan, 1996; Vielreicher & McNaughton, 2002). The Paleoproterozoic ages post-date the inferred timing of amphibolite-facies peak metamorphism at ca 2660–2630 Ma by >300 Ma, and plot between a Yilgarn-like cluster of ages ca 2650 Ma, and younger ages attributable to effects of younger orogenies; the 2005–1950 Ma Glenburgh Orogeny and 1820–1770 Ma Capricorn Orogeny. Taken together, all the available evidence supports the interpretation that a major episode of Au mineralisation affected the Plutonic area and adjacent parts of the PWGB in the Paleoproterozoic. A ca 2300–2100 Ma age of Au mineralisation is consistent with the ca 2100 Ma age for Au mineralisation on the margin of the Yilgarn in the Albany-Fraser Orogen (Kirkland et
al., 2015). Significantly, Dentith et al. (2014) argue that rift architecture preserved along the northern margin of the Yilgarn Craton suggests that the Marymia Inlier separated from the Eastern Goldfields Superterrane of the Yilgarn Craton during continental rifting and deposition of the Windplain Group of the Yerrida Basin (possibly ca 2170 Ma; Woodhead & Hergt, 1997). Dentith et al. (2014) note that this was at the same time as a significant phase of Au mineralisation occurred at Plutonic based on the Pb-isotope ages presented in Gazley (2011). It is possible that the tectonism associated with the separation of the Marymia Inlier from the Yilgarn Craton was responsible for metasomatism and Au mineralisation within the Marymia Inlier itself.

A significant amount of the Au is late-stage (Figure 3f), associated with calc-silicate alteration that overprints both sulfide textures and chloritisation of biotite (e.g. Figure 3f). If the Au were early (i.e. pre-metamorphic peak) the textural association with chloritisation of biotite would not be preserved. Indeed, recent work by Pearce et al. (2015) argues that nanostructure in the Au grains of samples from Plutonic are consistent with very late stage deposition of the Au and post-dates any deformation. These mineralogical observations are consistent with our new geochronology.

Late-stage metasomatism

Our new ²⁰⁷Pb/²⁰⁶Pb age determination for vein-hosted titanite records an age of 1725 ± 26 Ma (Table 4). Based on the biotite Rb–Sr results (cooling through ~400°C at 1779 ± 46 Ma), the temperature of the host rock into which the chlorite–carbonate–titanite vein was emplaced was likely to be ≤ 400°C. As the Tc for Pb diffusion in titanite is considerably higher than that (~600°C; Willigers, Baker, Krogstad, & Peate, 2002), we interpret the age as dating titanite crystallisation and vein emplacement. It is likely that our titanite ²⁰⁷Pb/²⁰⁶Pb age records the same metasomatic event that was dated at 1719 ± 14 Ma by U–Pb ages of zircon overgrowths in a sample from Marymia (Vielreicher & McNaughton, 2002). Based on the strong temporal relationship between the ca 1720 Ma metasomatic event (recorded in unmineralised samples) and the 1730–1660 Ma Au mineralising event recorded by Vielreicher et al. (2002)’s Pb isotope data, it is probable both represent the same event, which was relatively widespread throughout the PWGB. The youngest Pb-isotope age that we determined was 1516 Ma from sample MG039; this sample is located on the contact between the mafic and ultramafic packages, contains massive pyrrhotite and minor Au (~2 g/t). This age supports the argument for late-stage Au mineralisation (or at least mobility) associated with fluid flow along the margin of these two units late in the tectonic history of the deposit.

Conclusions

The new geochronology data presented in this paper, coupled with previous constraints (e.g., McMillan, 1996; Vickery, 2004; Vielreicher & McNaughton, 2002; Vielreicher et al., 2002), record a geological history that is related, but intrinsically different, to other Au deposits within the PWGB and the majority of other deposits elsewhere in the Yilgarn Craton.

The rocks of the Plutonic area were affected by amphibolite-facies metamorphism at high pressures (≥ 8 kbar at ~600°C) at ca 2660–2630 Ma. Subsequently, there were a number of Au mineralisation events during a long period of cooling. The Rb–Sr data from a muscovite is that it represents a cooling age at 2296 ± 99 Ma as T cooled through ~500°C, and a younger biotite age at 1779 ± 46 Ma may reflect either further cooling or perturbation of the Rb–Sr isotopic system during metasomatism associated with the Capricorn Orogeny at 1820–1770 Ma. It is unclear whether this age correlates to a further metasomatic event that occurred at ca 1720 Ma as dated by both U–Pb dating of zircon
overgrowths (McMillan, 1996; Vielreicher & McNaughton, 2002), and Pb–Pb dating of titanite (this study). This metasomatic event may be associated with late-stage Au mineralisation, as the projection of arrays back to the growth curve yields Pb isotope ages for sulfides at ca 1773 Ma.

On the basis of the Pb-isotope data from Au-associated sulfides, Au mineralising events are inferred to have occurred at ca 2630, 2300–2100 Ma, during the Glenburgh and Capricorn orogenies, and 1730–1660 Ma in the PWGB. A major Au mineralising event is inferred to have occurred at 2300–2100 Ma, >300 Ma later than previously interpreted for Plutonic, the PWGB, or the Yilgarn Craton (e.g., Groves et al., 2000; McMillan, 1996; Vielreicher et al., 2002, 2010). Dentith et al. (2014) argue that the Marymia Inlier rifted off the northern margin of the Yilgarn Craton, separating from the Eastern Goldfields Superterrane, at ca 2170 Ma. It is possible that the tectonism associated with the separation of the Marymia Inlier from the Yilgarn Craton was responsible for metasomatism and Au mineralisation within the Marymia Inlier itself, as this corresponds to the cluster of 2300–2100 Ma Pb-isotope model ages for Au-associated sulfides at Plutonic.

Acknowledgements

This paper comprises part of MFG's PhD at Victoria University of Wellington, New Zealand. Funding for the research, and permission to publish this paper, comes from Barrick Australia Pacific Limited. Discussions with K. Cassidy, G. Duclaux, R. Hough and A. Pocock have greatly improved this manuscript. The input of G. Carr is gratefully acknowledged with respect to interpreting the Pb isotope data. We are grateful for the comprehensive reviews of N. Phillips, S. Johnson and an anonymous reviewer.

References

URL: http://mc.manuscriptcentral.com/taje

understanding Precambrian gold deposits. Geology Department and University Extension, University of Western Australia, Publication 11.

Figure and table captions

Figure 1. Simplified location and geological map for Plutonic Gold Mine modified after Gazley et al. (2014a). (a) Distribution of Archean basement rocks in Western Australia. Note the presence of a series of Archean Inliers in the Capricorn Orogen, between the large Yilgarn and Pilbara cratons. (b) Simplified geological map of the Archean Marymia Inlier, surrounding Proterozoic basins, North Yilgarn Craton, along with major mapped structures and active Au mines and deposits. The geological features have been extracted from online GSWA data (http://geodownloads.dmp.wa.gov.au/datacentre/datacentreDb.asp). Proterozoic basin ages are defined in Martin and Thorne (2002), Occhipinti et al. (1997) and Pirajno et al. (2004).

Figure 2. Representative underground and polished hand samples of mineralisation at Plutonic. (a, b) Typical brown lode in underground faces; (c) cherty lode with late-stage Au; (d) pyrrhotite-rich brown lode with abundant chlorite, (e) thin metachert with abundant late-stage Au and pyrrhotite in the more mafic wall rock, and (f) muscovite-rich green lode.

Figure 3. Representative SEM EDS maps of mineralised samples from Plutonic; mineral abbreviations after Kretz (1983); amph = amphibole. Elements included in the map as indicated. (a) MG034, muscovite-rich lode, predominantly a quartz–muscovite–arsenopyrite rock with Au associated with the boundaries of arsenopyrite grains or as inclusions therein; (b) MG039, massive pyrrhotite on the mafic–ultramafic boundary, minor chalcopyrite associated with pyrrhotite; (c–e) MG222/MG224, brown lode with late-stage pyrrhotite associated with visible Au overprinting metamorphic amphibole, Au is typically associated with biotite or calc-silicate alteration; and (f) MG233, sheared brown lode, Au is associated with pyrrhotite and may be disseminated through the quartz and calc-silicate alteration as per panel (e), biotite is commonly chloritised.
Figure 4. Concordia diagram showing $^{206}\text{Pb}/^{204}\text{Pb}$ and $^{207}\text{Pb}/^{204}\text{Pb}$ isotope ratios for sulfide minerals from the Plutonic Well Greenstone Belt from this study (MG), and Vielreicher et al. (2002) (NV). Mineral abbreviations after Kretz (1983). The grey shaded field represents Pb isotope ratios from the Peak Hill area (after Vielreicher & McNaughton, 2002, and references therein). The star indicates a theoretical Pb isotope composition derived from approximately equal proportions of sulfides that crystallised in two different events at ca 2650 and ca 1720 Ma. Location abbreviations: Marymia = Marymia Gold Mine; PPP = Triple P deposit; Plutonic = Plutonic Gold Mine.

Table 1. $^{87}\text{Rb}/^{86}\text{Sr}$ and $^{87}\text{Sr}/^{86}\text{Sr}$ ratios for biotite- and muscovite-bearing samples from Plutonic.

Table 2. Lead isotope compositions of sulfides from samples from Plutonic samples.

Table 3. Uranium and lead concentrations of sulfides from samples from Plutonic.

Table 4. Pb isotope ratios for the five most radiogenic titanite in a late-stage chlorite–carbonate vein from Plutonic.

Table 5. Lead isotope compositions of sulfides from the PWGB.
Figure 1. Simplified location and geological map for Plutonic Gold Mine modified after Gazley et al. (2014a). (a) Distribution of Archean basement rocks in Western Australia. Note the presence of a series of Archean Inliers in the Capricorn Orogen, between the large Yilgarn and Pilbara cratons. (b) Simplified geological map of the Archean Marymia Inlier, surrounding Proterozoic basins, North Yilgarn Craton, along with major mapped structures and active Au mines and deposits. The geological features have been extracted from online GSWA data (http://geodownloads.dmp.wa.gov.au/datacentre/datacentreDb.asp). Proterozoic basin ages are defined in Martin and Thorne (2002), Occhipinti et al. (1997) and Pirajno et al. (2004).
Figure 2. Representative underground and polished hand samples of mineralisation at Plutonic. (a, b) Typical brown lode in underground faces; (c) cherty lode with late-stage Au; (d) pyrrhotite-rich brown lode with abundant chlorite, (e) thin metachert with abundant late-stage Au and pyrrhotite in the more mafic wall rock, and (f) muscovite-rich green lode.

Figure 2
Figure 3. Representative SEM EDS maps of mineralised samples from Plutonic; mineral abbreviations after Kretz (1983); amph = amphibole. Elements included in the map as indicated. (a) MG034, muscovite-rich lode, predominantly a quartz–muscovite–arsenopyrite rock with Au associated with the boundaries of arsenopyrite grains or as inclusions therein; (b) MG039, massive pyrrhotite on the mafic–ultramafic boundary, minor chalcopyrite associated with pyrrhotite; (c–e) MG222/MG224, brown lode with late-stage pyrrhotite associated with visible Au overprinting metamorphic amphibole, Au is typically associated with biotite or calc-silicate alteration; and (f) MG233, sheared brown lode, Au is associated with pyrrhotite and may be disseminated through the quartz and calc-silicate alteration as per panel (e), biotite is commonly chloritised.

Figure 3

URL: http://mc.manuscriptcentral.com/taje
Figure 4. Concordia diagram showing 206Pb/204Pb and 207Pb/204Pb isotope ratios for sulfide minerals from the Plutonic Well Greenstone Belt from this study (MG), and Vielreicher et al. (2002) (NV). Mineral abbreviations after Kretz (1983). The grey shaded field represents Pb isotope ratios from the Peak Hill area (after Vielreicher & McNaughton, 2002, and references therein). The star indicates a theoretical Pb isotope composition derived from approximately equal proportions of sulfides that crystallised in two different events at ca 2650 and ca 1720 Ma. Location abbreviations: Marymia = Marymia Gold Mine; PPP = Triple P deposit; Plutonic = Plutonic Gold Mine.

Figure 4
203x181mm (300 x 300 DPI)
Table 1: \(^{87}\text{Rb} /^{86}\text{Sr}\) and \(^{87}\text{Sr} /^{86}\text{Sr}\) ratios for biotite- and muscovite-bearing samples from Plutonic.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral</th>
<th>Mg/(Mg + Fe(_T))(^1)</th>
<th>(^{87}\text{Rb} /^{86}\text{Sr})(^2)</th>
<th>(^{87}\text{Sr} /^{86}\text{Sr})(^2)</th>
<th>Error (2(\sigma))</th>
<th>Age (Ma)(^3)</th>
<th>Initial (^{87}\text{Sr} /^{86}\text{Sr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG034</td>
<td>Muscovite</td>
<td>6.44</td>
<td>0.914396</td>
<td>0.000032</td>
<td>2296 ± 99</td>
<td>0.7145 ± 0.0013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muscovite</td>
<td>7.40</td>
<td>0.941446</td>
<td>0.000064</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole Rock</td>
<td>4.08</td>
<td>0.833367</td>
<td>0.000020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG034</td>
<td>Biotite</td>
<td>0.77–0.79</td>
<td>17.9</td>
<td>1.186878</td>
<td>0.000016</td>
<td>1779 ± 46</td>
<td>0.7291 ± 0.0037</td>
</tr>
<tr>
<td></td>
<td>Whole Rock</td>
<td>4.08</td>
<td>0.833367</td>
<td>0.000020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR(^4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHVO-2(^5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Phlogopite (Mg / (Mg + Fe\(_T\))) composition is shown where relevant as determined by electron probe microanalyses. \(^2\)An error of ±1% is attributed to \(^{87}\text{Rb} /^{86}\text{Sr}\) ratios and 2\(\sigma\) error as stated for \(^{87}\text{Sr} /^{86}\text{Sr}\) ratios. \(^3\)Isochron ages were calculated using a \(^{87}\text{Rb}\) decay constant of 1.42 \(\times 10^{-11}\) yr\(^{-1}\) (Steiger & Jäger, 1977). \(^4\)BCR-2 \(^{87}\text{Sr} /^{86}\text{Sr} = 0.705000 ± 0.000030\) (Jochum et al., 2005). \(^5\)BHVO-2 \(^{87}\text{Sr} /^{86}\text{Sr} = 0.703467 ± 0.000017\) (Jochum et al., 2005).
Table 2 Lead isotope compositions of sulfides from samples from Plutonic samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral</th>
<th>Description</th>
<th>$^{206}\text{Pb}/^{204}\text{Pb}$</th>
<th>$^{207}\text{Pb}/^{204}\text{Pb}$</th>
<th>$^{208}\text{Pb}/^{204}\text{Pb}$</th>
<th>Model age (Ma)3</th>
<th>Model age (Ma)4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG801</td>
<td>asp</td>
<td>Qtz–tur–asp–Au vein</td>
<td>33.646</td>
<td>14.856</td>
<td>13.851</td>
<td>2628</td>
<td>2731</td>
</tr>
<tr>
<td>MG802</td>
<td>py</td>
<td>Qtz–py–Au vein</td>
<td>34.264</td>
<td>14.987</td>
<td>14.398</td>
<td>2321</td>
<td>2374</td>
</tr>
<tr>
<td>MG340</td>
<td>po</td>
<td>Qtz–cal–po vein</td>
<td>34.147</td>
<td>15.068</td>
<td>14.553</td>
<td>2273</td>
<td>2353</td>
</tr>
<tr>
<td>MG233</td>
<td>po</td>
<td>Brown lode</td>
<td>34.242</td>
<td>15.020</td>
<td>14.533</td>
<td>2250</td>
<td>2296</td>
</tr>
<tr>
<td>MG222</td>
<td>po</td>
<td>Brown lode</td>
<td>34.346</td>
<td>15.046</td>
<td>14.589</td>
<td>2235</td>
<td>2284</td>
</tr>
<tr>
<td>MG218</td>
<td>po</td>
<td>Qtz–cal–po vein</td>
<td>34.475</td>
<td>15.096</td>
<td>14.724</td>
<td>2174</td>
<td>2237</td>
</tr>
<tr>
<td>MG224</td>
<td>po</td>
<td>Brown lode</td>
<td>34.513</td>
<td>15.146</td>
<td>14.873</td>
<td>2110</td>
<td>2180</td>
</tr>
<tr>
<td>MG034</td>
<td>asp</td>
<td>Ms-rich lode</td>
<td>34.704</td>
<td>15.081</td>
<td>14.778</td>
<td>2124</td>
<td>2163</td>
</tr>
<tr>
<td>MG034</td>
<td>asp</td>
<td>Ms-rich lode</td>
<td>35.071</td>
<td>15.101</td>
<td>14.922</td>
<td>2039</td>
<td>2064</td>
</tr>
<tr>
<td>MG201</td>
<td>po</td>
<td>Bintang Fault</td>
<td>34.743</td>
<td>15.217</td>
<td>15.170</td>
<td>1962</td>
<td>2029</td>
</tr>
<tr>
<td>MG034</td>
<td>po</td>
<td>Ms-rich lode</td>
<td>34.895</td>
<td>15.157</td>
<td>15.160</td>
<td>1919</td>
<td>1942</td>
</tr>
<tr>
<td>MG025</td>
<td>po</td>
<td>Bintang Fault</td>
<td>35.136</td>
<td>15.277</td>
<td>15.433</td>
<td>1833</td>
<td>1900</td>
</tr>
<tr>
<td>MG000</td>
<td>sp</td>
<td>Qtz–sp vein</td>
<td>35.468</td>
<td>15.376</td>
<td>15.711</td>
<td>1730</td>
<td>1827</td>
</tr>
<tr>
<td>MG039</td>
<td>po</td>
<td>Ultramafic</td>
<td>36.339</td>
<td>15.361</td>
<td>16.015</td>
<td>1,516</td>
<td>1561</td>
</tr>
</tbody>
</table>

1All mineral abbreviations after Kretz (1983). 2Errors on Pb isotope analyses are <0.05%. 3Pb isotope model ages calculated with multi-stage $t_{f/6}$ evolution model of Cumming and Richards (1975) and have an error of ± 50 Myr. 4Pb isotope model ages calculated with multi-stage $t_{f/6}$ evolution model of Stacey and Kramers (1975) and have an error of ± 50 Myr.
Table 3 Uranium and lead concentrations of sulphides from samples from Plutonic.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral</th>
<th>U (ppb) ± 1σ</th>
<th>Pb (ppm) ± 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG802</td>
<td>py</td>
<td>387 ± 16.1</td>
<td>148.56 ± 8.38</td>
</tr>
<tr>
<td>MG233</td>
<td>po</td>
<td>142 ± 7.06</td>
<td>8.16 ± 0.48</td>
</tr>
<tr>
<td>MG222</td>
<td>po</td>
<td>111 ± 5.08</td>
<td>17.87 ± 1.08</td>
</tr>
<tr>
<td>MG224</td>
<td>po</td>
<td>81.6 ± 3.48</td>
<td>19.52 ± 1.19</td>
</tr>
<tr>
<td>MG034</td>
<td>asp</td>
<td>41 ± 1.87</td>
<td>3.85 ± 0.21</td>
</tr>
<tr>
<td>MG201</td>
<td>po</td>
<td>0.11 ± 0.03</td>
<td>6.69 ± 0.38</td>
</tr>
<tr>
<td>MG025</td>
<td>po</td>
<td>1.57 ± 0.22</td>
<td>34.2 ± 2.01</td>
</tr>
<tr>
<td>MG039</td>
<td>po</td>
<td>1.01 ± 0.18</td>
<td>9.83 ± 0.67</td>
</tr>
<tr>
<td>MG039 dup.</td>
<td>po</td>
<td>4.09 ± 0.46</td>
<td>3.79 ± 0.25</td>
</tr>
</tbody>
</table>

1 All mineral abbreviations after Kretz (1983). 2 Ratios are corrected for blank concentrations.
Table 4 Pb isotope ratios for the five most radiogenic titanite in a late-stage chlorite–carbonate vein from Plutonic.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>206Pb/204Pb Raw</th>
<th>207Pb/206Pb Raw</th>
<th>207Pb/206Pb NIST610 corrected</th>
<th>207Pb/206Pb Common Pb corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG354(1)</td>
<td>270.76</td>
<td>0.15607</td>
<td>0.15661</td>
<td>0.10597</td>
</tr>
<tr>
<td>MG354(2)</td>
<td>174.27</td>
<td>0.18267</td>
<td>0.18331</td>
<td>0.10450</td>
</tr>
<tr>
<td>MG354(3)</td>
<td>354.71</td>
<td>0.14354</td>
<td>0.14404</td>
<td>0.10536</td>
</tr>
<tr>
<td>MG354(8)</td>
<td>335.46</td>
<td>0.14600</td>
<td>0.14651</td>
<td>0.10563</td>
</tr>
<tr>
<td>MG354(9)</td>
<td>407.03</td>
<td>0.13965</td>
<td>0.14014</td>
<td>0.10648</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>0.10559</td>
</tr>
</tbody>
</table>

\(^1\) 206Pb/204Pb ratios are corrected for fractionation using the NIST610 standard. \(^2\) Common Pb correction calculated using counts of 204Pb measured and 206Pb/204Pb = 15.5 and 207Pb/204Pb = 15.5 (Cumming & Richards 1975).
Table 5 Lead isotope compositions of sulfides from the PWGB.\(^1\)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral</th>
<th>(^{208})Pb/(^{204})Pb</th>
<th>(^{207})Pb/(^{204})Pb</th>
<th>(^{206})Pb/(^{204})Pb</th>
<th>Model age (Ma)(^4)</th>
<th>Model age (Ma)(^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marymia</td>
<td>gn</td>
<td>33.639</td>
<td>14.937</td>
<td>13.874</td>
<td>2670</td>
<td>2831</td>
</tr>
<tr>
<td>Marymia</td>
<td>gn</td>
<td>33.762</td>
<td>14.968</td>
<td>13.946</td>
<td>2639</td>
<td>2801</td>
</tr>
<tr>
<td>Marymia</td>
<td>gn</td>
<td>33.684</td>
<td>14.948</td>
<td>13.931</td>
<td>2636</td>
<td>2787</td>
</tr>
<tr>
<td>Marymia</td>
<td>gn</td>
<td>34.861</td>
<td>15.458</td>
<td>15.863</td>
<td>1698</td>
<td>1831</td>
</tr>
<tr>
<td>Marymia</td>
<td>gn</td>
<td>34.964</td>
<td>15.461</td>
<td>15.869</td>
<td>1697</td>
<td>1830</td>
</tr>
<tr>
<td>Marymia</td>
<td>gn</td>
<td>35.828</td>
<td>15.549</td>
<td>16.011</td>
<td>1677</td>
<td>1850</td>
</tr>
<tr>
<td>Marymia</td>
<td>gn</td>
<td>35.813</td>
<td>15.541</td>
<td>16.000</td>
<td>1658</td>
<td>1847</td>
</tr>
<tr>
<td>Marynia</td>
<td>py</td>
<td>34.395</td>
<td>15.214</td>
<td>14.865</td>
<td>2169</td>
<td>2289</td>
</tr>
<tr>
<td>Marynia</td>
<td>py</td>
<td>35.396</td>
<td>15.337</td>
<td>15.605</td>
<td>1767</td>
<td>1852</td>
</tr>
<tr>
<td>Marynia</td>
<td>py</td>
<td>35.656</td>
<td>15.459</td>
<td>15.926</td>
<td>1658</td>
<td>1784</td>
</tr>
<tr>
<td>Marynia</td>
<td>py</td>
<td>35.570</td>
<td>15.482</td>
<td>16.087</td>
<td>1573</td>
<td>1695</td>
</tr>
<tr>
<td>Triple P</td>
<td>gn</td>
<td>33.603</td>
<td>14.840</td>
<td>13.792</td>
<td>2660</td>
<td>2770</td>
</tr>
<tr>
<td>Triple P</td>
<td>gn</td>
<td>33.677</td>
<td>14.872</td>
<td>13.837</td>
<td>2650</td>
<td>2771</td>
</tr>
<tr>
<td>Plutonic</td>
<td>gn</td>
<td>35.465</td>
<td>15.374</td>
<td>15.714</td>
<td>1726</td>
<td>1821</td>
</tr>
<tr>
<td>Plutonic</td>
<td>gn</td>
<td>35.495</td>
<td>15.387</td>
<td>15.740</td>
<td>1720</td>
<td>1820</td>
</tr>
<tr>
<td>Plutonic</td>
<td>gn</td>
<td>34.919</td>
<td>15.455</td>
<td>15.844</td>
<td>1708</td>
<td>1841</td>
</tr>
<tr>
<td>Plutonic</td>
<td>gn</td>
<td>35.470</td>
<td>15.389</td>
<td>15.784</td>
<td>1692</td>
<td>1788</td>
</tr>
<tr>
<td>Plutonic</td>
<td>gn</td>
<td>35.643</td>
<td>15.424</td>
<td>15.887</td>
<td>1654</td>
<td>1761</td>
</tr>
<tr>
<td>Plutonic</td>
<td>py</td>
<td>34.853</td>
<td>15.163</td>
<td>14.937</td>
<td>2079</td>
<td>2149</td>
</tr>
<tr>
<td>Plutonic</td>
<td>py</td>
<td>34.377</td>
<td>15.178</td>
<td>14.945</td>
<td>2085</td>
<td>2165</td>
</tr>
</tbody>
</table>

\(^1\)Analyses from Vielreicher et al. (2002) and references therein. Data are reproduced here for convenience. \(^2\)gn = galena; py = pyrite. \(^3\)Errors on Pb isotope analyses are ± 0.15%. \(^4\)Pb isotope model ages calculated with multi-stage \(t_{1/2}\) evolution model of Cumming and Richards (1975) and have an error of ± 30 Myr (Vielreicher et al. 2002). \(^5\)Pb isotope model ages calculated with multi-stage \(t_{1/2}\) evolution model of Stacey and Kramers (1975)