
Publishers page: http://dx.doi.org/10.1051/0004-6361/201629102

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
LETTER TO THE EDITOR

The Close AGN Reference Survey (CARS)

Mrk 1018 returns to the shadows after 30 years as a Seyfert 1

R. E. McElroy1,2, B. Husemann3,*, S. M. Croom1,2, T. A. Davis4, V. N. Bennett5, G. Busch6, F. Combes7, A. Eckart6,8, M. Perez-Torres9, M. Powell10, J. Scharwächter11, G. R. Tremblay10,† T. Urrutia12

1 Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia e-mail: rmcelroy@physics.usyd.edu.au
2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
3 European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85478 Garching b. München, Germany, * ESO Fellow
4 School of Physics & Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA, UK
5 Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
6 I. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
7 LERMA, Observatoire de Paris, Collège de France, PSL, CNRS, Sorbonne Univ., UPMC, F-75014 Paris, France
8 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
9 Instituto de Astrofísica de Andalucía (IAA), Glorieta de la Astronomía, s/h, ES-18008 Granada, Spanien
10 Yale Center for Astronomy and Astrophysics, Yale University, 52 Hillhouse Ave., New Haven, CT 06511, USA, † Einstein Fellow
11 Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI, 96720, USA
12 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

Draft as of September 16, 2016

ABSTRACT

We report the discovery that the known ‘changing look’ AGN Mrk 1018 has changed spectral type for a second time. New VLT-MUSE data taken in 2015 as part of the Close AGN Reference Survey (CARS) shows that the AGN has returned to its original Seyfert 1.9 classification. The CARS sample is selected to contain only bright type 1 AGN, but Mrk 1018’s broad emission lines and continuum, typical of type 1 AGN, have almost entirely disappeared. We use spectral fitting of the MUSE spectrum and previously available spectra to determine the drop in broad line flux and the Balmer decrement. We find that the broad line flux has decreased by a factor of 4.75 ± 0.5 in Hβ since an SDSS spectrum was taken in 2000. The Balmer decrement has not changed significantly implying no enhanced reddening with time, but the remaining broad lines are more asymmetric than those present in the type 1 phase. We posit that the change is due to an intrinsic drop in flux from the accretion disk rather than variable extinction or a tidal disruption event.

Key words. Galaxies: individual, Seyfert

1. Introduction

The various spectral classes of active galactic nuclei (AGN) have been unified based on the inclination of the accreting black hole (BH) to the line of sight (see Antonucci 1993). Under this scheme type 1 AGN, distinguished by their extremely broad permitted optical emission lines, are inclined to the observer such that we have a direct view onto the accretion disk. Type 2 AGN, devoid of these broad emission lines, possess only narrow lines suggesting that radiation from their accretion disks is blocked by what is commonly assumed to be a dusty torus. Intermediate objects complicate this simple dichotomy and are labelled as type 1.2, 1.5, 1.8, or 1.9 depending on the breadth and relative flux of narrow and broad emission lines (Osterbrock & Krolik 1976).

Mrk 1018, a late-stage merger at z = 0.043 (see Figure 1), was one of the earliest examples of a ‘changing look’ AGN, changing from a type 1.9 to 1 over the course of < 5 years (Cohen et al. 1986). Since then a number of galaxies have been found to change type optically (e.g. Aretxaga et al. 1999; Denney et al. 2014) or in the X-ray domain (e.g. LaMassa et al. 2015; Ricci et al. 2016). A much smaller sample of AGN have changed spectral type not once, but twice. Only a few galaxies have been observed to undergo this full cycle. Mrk 590 was observed to change from a type 1.5 to 1.0 from 1973 to 1989, then to gradually lose all evidence of broad lines until 2014 when it appeared as a type 2 AGN (Osterbrock 1977; Denney et al. 2014). Similarly NGC 4151, originally classified as a Seyfert 1.5, lost then regained its broad emission lines (Osterbrock 1977; Antonucci & Cohen 1983; Shapovalova et al. 2010).

Recent work on accretion timescales suggests that AGN flicker on short timescales, ~ 105 years, rather than remaining at a constant luminosity (Schawinski et al. 2015). Elitzur et al. (2014) posit that AGN may not be statically type 1 or type 2 throughout their lifetimes, and can change type as they increase or decrease in luminosity. AGN that have changed type can help us to understand the accretion physics and associated timescales.

A few hypotheses are used to explain why AGN change spectral type. Variable obscuration of the nuclear region or a patchy torus would allow for the same object to be viewed as a type 1 or type 2 AGN over time (Elitzur 2012). In this scenario, the intervening absorption along our line of sight is changing and not the intrinsic luminosity. An alternative option is that a drop (or increase) in the accretion rate onto the BH leads to a different AGN classification. Merloni et al. (2015) discuss how tidal dis-
rupture events (TDE) of stars close the central BH cause AGN to flare and dramatically increase their luminosity leading to their classification as changing look AGN.

In this paper, we present the serendipitous discovery that Mrk 1018 has changed type again. New data show that Mrk 1018 presents spectral signatures typical of a type 1.9 AGN once more, with drastically dimmed broad lines and continuum.

2. Observations and data analysis

2.1. MUSE 3D spectroscopy

We observed Mrk 1018 with the Multi-Unit Spectroscopic Explorer (MUSE, Bacon et al. 2010) at the Very Large Telescope on 2015 Jan 11 as part of the Close AGN Reference Survey (CARS, cars-survey.org). CARS aims to provide a detailed multi-wavelength view of 40 nearby \((0.01 < z < 0.06)\) type 1 AGN.

Mrk 1018 was observed under clear sky conditions at an average seeing of 0′′.2 and split into two 400 s exposure with a rotation of the FoV by 90′. We reduced the data with the ESO-MUSE pipeline v1.2.1 (Weilbacher et al. 2012) using the standard calibrations. The sky background was estimated and subtracted from the object free signal in the large 1′×1′ field of view (FoV) of MUSE using the pipeline. The final cubes are sampled at 0′′.2 per spaxel and cover a wavelength range of 4750–9300Å with a spectral resolution of 2.4Å (FWHM).

Mrk 1018 shows spectral features of a type 1.9 AGN (see Fig. 1) with a nearly undetectable broad Hβ line. However, several previous spectroscopic observations (listed in Table 1) are consistent with a type 1 AGN. Thus, our new MUSE observations show that Mrk 1018 has changed optical spectral type again after ~30 years of being a luminous unobscured AGN.

2.2. Continuum and emission line analysis

We take the SDSS spectrum (Table 1) to be representative of Mrk 1018’s bright state. We extract an equivalent MUSE spectrum and correct for absolute flux calibration offsets by matching the strength of stellar absorption lines. The MUSE spectrum has weaker AGN continuum and broad emission lines allowing us to model the stellar continuum by fitting a super-position of Indo-U.S. Library of Coudé Feed Stellar Spectra (Valdes et al. 2004) excluding regions with emission lines. The MUSE spectrum and the best-fit continuum model are shown on the bottom right of Fig. 1. We subtract this stellar contribution from the MUSE and SDSS spectra.

A faint broad Hβ emission line is clearly recovered in the MUSE data after continuum subtraction. We fit both the narrow and broad emission lines as a super-position of Gaussians and an additional local power-law continuum for the SDSS spectrum. The light travel time to the narrow line region (NLR) is likely hundreds of years. As such, no significant change in flux is expected within ten years, which is consistent with the data. For accurate Hα and Hβ emission line fluxes we must rely on the extrapolated stellar continuum model, which is made up of a subset of the stellar templates. Uncertainty due to template mismatch is simulated by selecting a random subset of 16 templates from the 504 in the full Indo-U.S. library and repeating the fitting 100 times. We then measure the variance of the output fluxes.

From the emission-line modelling we obtain broad Hβ line fluxes of \((3.3 \pm 0.1) \times 10^{-15} \text{erg s}^{-1} \text{cm}^{-2}\) and \((7.0 \pm 0.2) \times 10^{-14} \text{erg s}^{-1} \text{cm}^{-2}\) for the SDSS and MUSE spectra, respectively, corresponding to a flux decrease of a factor of 4.79 ± 0.3. Here we adopt \(H_0 = 70 \text{km s}^{-1} \text{Mpc}^{-1}\), \(\Omega_m = 0.3\), and \(\Omega_{\Lambda} = 0.7\).

Table 1. Available spectra for Mrk 1018.

<table>
<thead>
<tr>
<th>Source</th>
<th>Date</th>
<th>Rest λ-range (Å)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lick</td>
<td>1979 Sept 13</td>
<td>4500 - 8800</td>
<td>(1)</td>
</tr>
<tr>
<td>USCD/UMinn</td>
<td>1984 Jan 27</td>
<td>4500 - 6900</td>
<td>(2)</td>
</tr>
<tr>
<td>HST</td>
<td>1996 Oct 8</td>
<td>6200 - 9200</td>
<td>(4)</td>
</tr>
<tr>
<td>SDSS</td>
<td>2000 Sept 25</td>
<td>3600 - 8800</td>
<td>(3)</td>
</tr>
<tr>
<td>HES</td>
<td>2000 Dec 1</td>
<td>3400 - 8700</td>
<td>(4)</td>
</tr>
<tr>
<td>6df</td>
<td>2004 Aug 15</td>
<td>3700 - 7200</td>
<td>(5)</td>
</tr>
<tr>
<td>Keck</td>
<td>2009 Jan 22</td>
<td>3400 - 5300</td>
<td>(6)</td>
</tr>
<tr>
<td>MUSE</td>
<td>2015 Jan 11</td>
<td>4500 - 9000</td>
<td>(7)</td>
</tr>
</tbody>
</table>

References. (1) Osterbrock (1981); (2) Cohen et al. (1986); (3) Abaza-jian et al. (2009); (4) Wisotzki et al. (2000); (5) Jones et al. (2009); (6) Bennert et al. (2011); (7) This work.
0.7. Similarly, we obtain broad Hβ line fluxes of $(8.0 \pm 0.1) \times 10^{-14}$ erg s$^{-1}$ cm$^{-2}$ and $(2.2 \pm 0.2) \times 10^{-14}$ erg s$^{-1}$ cm$^{-2}$ corresponding to Hβ dimming of a factor of 3.57 ± 0.5. The Balmer decrement of Hα to Hβ is 3.3 ± 0.8 for the MUSE spectrum and 4.2 ± 0.4 for the SDSS spectrum. Extinction has not increased as new obscuration along the line of sight to the BLR would lead to an increased Balmer decrement.

The evolution of the Hβ and Hα emission line profiles are shown in Fig. 2 over the period 1996–2014. While the broad-line shape remains almost unchanged during the bright state, our most recent MUSE spectrum shows a drastically different profile. More flux is lost on the red wing, as shown by the difference between the SDSS and MUSE spectra (green lines) in Fig. 2. The residual is redshifted with respect to the systemic redshift. The Keck spectrum was the last one obtained during the bright state and the Hα line shows a decrease on the red side. We find broad Hα line width (FWHM) of 4000 ± 100 km s$^{-1}$ (SDSS) and 3300 ± 200 km s$^{-1}$ (MUSE). We expect the broad line width to increase as the AGN luminosity falls to preserve derived M_{BH} estimates (Ruan et al. 2015). However, following Woo et al. (2015) we infer single-epoch BH masses of log$(M_{BH}/M_\odot) = 7.9$ and log$(M_{BH}/M_\odot) = 7.4$ in the high and low states, respectively. This may suggest that the BLR is not in an equilibrium state or the virial factor has changed.

2.3. Photometry

We study the long-term variability of Mrk 1018 with archival observations in MIR and optical (u and r) bands. These include SDSS Stripe 82 (Abazajian et al. 2009), Palomar transient factory (PTF, Law et al. 2009), SWIFT UV-optical telescope (Roming et al. 2005), Liverpool telescope imaging (February 2016) in the optical, and WISE in the MIR (Wright et al. 2010).

It is crucial to decompose the AGN and host galaxy light to infer the intrinsic variability of the nucleus. We estimate the 2D surface brightness distribution of the host galaxy by fitting a simple two-component – PSF plus Sersić – to the deep u and r band co-added Stripe 82 images with GALFIT (Peng et al. 2002). The best-fit parameters for the Sersić model are slightly different with $r_e = 14.6^"$, $n = 2.23$ and $b/a = 0.56$ for the u band and $r_e = 9.9^"$, $n = 2.77$, and $b/a = 0.62$ for the r band. We then fit each individual image keeping those parameters fixed for the u and r band, and use an empirically constrained PSF from a bright unsaturated star close to Mrk 1018. Only integrated magnitudes can be reported for the WISE images.

The late evolution in the AGN light curve is shown in Fig. 3. The mean magnitude of the nucleus was 15.28 mag (AB) in the r band with a scatter of 0.15 dex (1σ) prior to the rapid decline. The constant host magnitude within 5" is 15.57 mag (AB), implying that the luminosity of the AGN has dropped from 1.3 to 0.3 times that of the host. The latest data point from Liverpool telescope indicates that the AGN brightness is still declining.

3. Discussion

Our spectroscopic analysis shows that the Hα broad emission line flux in the MUSE spectrum (2015) is a factor of ~4.75 lower compared to the SDSS spectrum (2000) and has changed shape markedly. The multi-epoch photometry shown in Fig. 3 indicates that rather than peaking in luminosity before dimming to its cur-
rent state, Mrk 1018 had a relatively constant luminosity before dropping. Below we discuss the possible scenarios that could have led to the apparent dimming of the nucleus.

The tidal disruption of a massive star by the central BH can cause AGN to change spectral type due to a flare in accretion. A tidally disrupted star temporally provides fuel for the nucleus until it is destroyed or is too far away (Merloni et al. 2015). We calculate the mass accreted during the bright phase assuming that the luminosity remained constant. Our measurements of L_{44} and M_{BH} from the SDSS spectrum lead to a bolometric luminosity of $L_{bol} \approx 3.1 \times 10^{46}$ erg s$^{-1}$ and Eddington ratio of $L_{bol}/L_{Edd} = 0.03$. Taking the efficiency of an accretion disk to be 0.1, this gives a mass accretion rate of 0.055 M_\odot yr$^{-1}$ or a total mass accreted over the bright phase (\approx 30 years) of 1.65 M_\odot. Typically, \approx 50% of the disrupted star’s mass is accreted, requiring a 3.2 M_\odot star. While this could come from a single star, a TDE is characterised by a rapid increase in AGN luminosity, which then peaks before decreasing again over a maximum of several years (Guillenochon & Ramirez-Ruiz 2013). We see a 30-year plateau in Mrk 1018’s luminosity and no defined peak (only the last 10 years are shown in Fig. 3). To our knowledge, no TDE model predicts a bright phase this prolonged, which leads us to conclude that it is unlikely that a TDE caused Mrk 1018’s recent change.

Could Mrk 1018’s change be the result of a declining accretion rate? As the ionising radiation from an AGN falls, the broad line emission comes from faster moving BLR gas closer to the BH. Observationally, the BLR luminosity should drop, velocity dispersion should increase, and changed emission line shape. We lack the spatial resolution to resolve a hypothetical dual SMBH system, which can only be explored the possible causes of this change: a decline in accretion rate or lack of fuel, a TDE, obscuration, or disruption of the accretion disk. We reason that the length and consistency of Mrk 1018’s bright phase makes a TDE an unlikely explanation, but we cannot rule out a simple decline in accretion rate. The Balmer decrement between the Seyfert 1 and 1.9 phases implies that the obscuration along our line of sight has not increased, but a highly opaque column of gas selectively obscuring our view is still a possibility.

In light of this exciting discovery we were awarded Chandra, HST, and VLA director’s discretionary time to investigate how Mrk 1018 has changed since our MUSE observations. While the data presented in this paper cannot definitively tell us the nature of the change in Mrk 1018’s nucleus, these newer observations in the UV, X-ray, and radio bands will provide further constraints.

Acknowledgements. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 94.B-0345 and the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics, through project number CE110001020. GRT acknowledges support from NASA through Einstein Postdoctoral Fellowship Award Number PF-150128, issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. TAD acknowledges support from a Science and Technology Facilities Council Ernest Rutherford Fellowship. VNB gratefully acknowledges assistance from a NSF Research at Undergraduate Institutions grant AST-1312296. Findings and conclusions do not necessarily represent the views of the NSF. MAPT acknowledges support from the Spanish MINECO through grant AYA2015-63939-C2-1-P.

References

Antonucci, R. 1993, ARAA, 31, 473
Elitzur, M., Ho, L. C., & Trump, J. R. 2014, MNARS, 438, 3340
Merloni, A., Dwelly, T., Salvato, M., et al. 2015, MNARS, 452, 69
Schawinski, K., Koss, M., Benney, S., & Sartori, L. F. 2015, MNARS, 451, 2517
Software and Cyberinfrastructure for Astronomy II, 84510B

4. Conclusions

In this letter we presented evidence for the AGN Mrk 1018 returning to its Seyfert 1.9 state after ~30 years as a Seyfert 1. Using MUSE data from the Close AGN Reference Survey along-side archival spectroscopic and photometric observations we explored the possible causes of this change: a decline in accretion rate or lack of fuel, a TDE, obscuration, or disruption of the accretion disk. We reason that the length and consistency of Mrk 1018’s bright phase makes a TDE an unlikely explanation, but we cannot rule out a simple decline in accretion rate. The Balmer decrement between the Seyfert 1 and 1.9 phases implies that the obscuration along our line of sight has not increased, but a highly opaque column of gas selectively obscuring our view is still a possibility.