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PURPOSE. Myopia, or nearsightedness, is a common ocular
genetic disease for which over 20 candidate genomic loci have
been identified. The high-grade myopia locus, MYP3, has been
reported on chromosome 12q21–23 by four independent
linkage studies.

METHODS. We performed a genetic association study of the
MYP3 locus in a family-based high-grade myopia cohort (n ¼
82) by genotyping 768 single-nucleotide polymorphisms
(SNPs) within the linkage region. Qualitative testing for high-
grade myopia (sphere � �5 D affected, > �0.5 D unaffected)
and quantitative testing on the average dioptric sphere were
performed.

RESULTS. Several genetic markers were nominally significantly
associated with high-grade myopia in qualitative testing,
including rs3803036, a missense mutation in PTPRR (P ¼ 9.1
3 10�4) and rs4764971, an intronic SNP in UHRF1BP1L (P ¼
6.1 3 10�4). Quantitative testing determined statistically

significant SNPs rs4764971, also found by qualitative testing
(P ¼ 3.1 3 10�6); rs7134216, in the 30 untranslated region
(UTR) of DEPDC4 (P ¼ 5.4 3 10�7); and rs17306116, an
intronic SNP within PPFIA2 (P < 9 3 10�4). Independently
conducted whole genome expression array analyses identified
protein tyrosine phosphatase genes PTPRR and PPFIA2, which
are in the same gene family, as differentially expressed in
normal rapidly growing fetal relative to normal adult ocular
tissue (confirmed by RT-qPCR).

CONCLUSIONS. In an independent high-grade myopia cohort, an
intronic SNP in UHRF1BP1L, rs4764971, was validated for
quantitative association, and SNPs within PTPRR (quantitative)
and PPFIA2 (qualitative and quantitative) approached signifi-
cance. Three genes identified by our association study and
supported by ocular expression and/or replication,
UHRF1BP1L, PTPRR, and PPFIA2, are novel candidates for
myopic development within the MYP3 locus that should be
further studied. (Invest Ophthalmol Vis Sci. 2013;54:2076–
2086) DOI:10.1167/iovs.12-11102

Myopia is the most common ocular disorder.1 Recent
studies estimate 41.6% of the United States population

has some form of myopia.2–4 High-grade myopia, the most
extreme manifestation in the refractive error spectrum, has a
prevalence of 2% to 3% in the United States, Western Europe,
and Australia.2 Although criteria for high-grade myopia vary
between studies, a corrective lens of �5.00 diopters (D) or
more in the better of the two eyes with onset prior to 12 years
of age is one commonly used criterion.5 Sphere (SPH),
measured in D, determines the amount of optical correction
needed in the axis meridian. Spherical equivalence (SE; sphere
þ cylinder/2) is also measured in D and is used to determine
the optical correction needed to compensate for axial length in
addition to curvature of the cornea and/or the lens. The more
severe the myopia is, the higher the risks of retinal
detachment, glaucoma, cataract, myopic degeneration, and
other ocular morbidities.2,6 As the prevalence of high-grade
continues to increase, so does its overall contribution to vision
loss.2

Emmetropization, an active childhood regulatory process of
ocular growth, aims to match the optical power of the cornea
and lens to the axial length of the eye.7 Animal models have
demonstrated that visual cues interpreted by the retina and
signaled through the choroid and sclera locally control the
shape and size of the eye.8–11 Failure of emmetropization in
postnatal ocular development results in refractive error.7

Myopic refractive error is characterized by a focal point of
parallel light rays converging in front of the retinal fovea plane,
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resulting in blurred vision, frequently caused by increased axial
length.2 In high-grade myopia the axial elongation is localized
primarily to the posterior or central pole of the globe,
suggesting that changes in those tissues (central retinal, retinal
pigment epithelium [RPE], and scleral) are responsible for
myopic development.12

Linkage studies have identified over 20 loci for myopia and
high-grade myopia, most with candidate gene screenings of
limited success.13,14 Relatively few association studies have
been performed for these linkage peaks, especially for the
larger intervals, such as the high-grade myopia locus on
chromosome 12, MYP315 (MIM 603221). Young et al.15 first
established the MYP3 locus for familial high-grade nonsyn-
dromic myopia. Using microsatellite markers with a maximum

logarithim of odds (LOD) score of 3.8, a linkage study involving
a single, large, multigenerational family of German/Italian
descent mapped the MYP3 locus to chromosome 12q21–
23.15 The MYP3 locus was replicated by Farbrother et al.16

using 51 British myopia families with a maximum LOD score of
2.54. Nürnberg et al.17 replicated the MYP3 locus using a
single high-grade myopia family of German descent with a
maximum LOD score of 3.9. Most recently, Li et al.18

performed a whole genome SNP linkage scan using 254 high-
grade myopia families in an international cohort with a peak
LOD score of 3.48 for MYP3. The four independent linkage

peaks in the 12q region from these studies are shown in Figure
1. Although the linkage peaks do not exactly overlap with one
another, linkage is often an imprecise tool and the origin of the

FIGURE 1. Overlap of linkage studies implicating MYP3. Four linkage studies, indicated by horizontal bars, have found linkage of the MYP3 locus
on chromosome 12.15–18 (adapted from Nürnberg et al. 200817).
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signal may be found anywhere within megabases of the most
linked markers.

In addition to evidence for linkage with the qualitative trait
of high-grade myopia, quantitative trait linkage analyses also
revealed nominally significant LOD scores in the MYP3 locus
for SPH.15–19 The region implicated by the independent linkage
studies, MYP3, spans nearly 44 Mb (Fig. 1), making candidate
sequencing studies impractical in narrowing the region. Finer
mapping, such as SNP association, may help to prioritize
candidates within the region. MYP3 may contain variants that
associate with high-grade myopia as well as those with
quantitative traits used to measure the degree of refractive
error. However, the size of this linkage peak limits the number
of SNPs that can be cost- and resource-effective. Thus, further
prioritization of candidate genes after association is necessary.

To fine-map the chromosome 12 linkage peak, MYP3, we
conducted a peakwide SNP qualitative and quantitative
association mapping study in our high-grade myopia family
cohort. Additionally, independently collected expression data
were used as supporting evidence of association (F. Haw-
thorne, S. Feng, E. St. Germain, M. Wang, T. Young, and R.
Metlapally, unpublished observations, 2012). Genes that were
within 100 kb of the most significantly associated SNPs were
assessed for differential expression during and after growth in
the central retina, RPE, choroid, and sclera of normal
individuals.

MATERIALS AND METHODS

Family-Based Genetic Association Analyses

Patient Cohort. The cohort consisted of Caucasian families of

three or more individuals previously collected by T. L. Young and used

in whole genome linkage analyses replicating the MYP3 locus.18

Phenotypic information was collected for each family member

included in the study by ocular examination. Affected individuals were

characterized with high-grade nonsyndromic myopia using the same

criteria as in linkage analyses (dioptric SPH measurement of less than

or equal to�5.00 in the better of two eyes and an onset by 12 years of

age).18 Families with highly myopic phenotypes were preferentially

selected and they were included in the analyses on the exclusive basis

of the presence of at least one high-grade myopia family member. The

average SPH for the individuals in the cohort was �4.78 D (affected:

�10.44 D; others: �1.36 D). Patients with ophthalmologic conditions

that might predispose them to high-grade myopia or syndromic

disorders, such as Stickler, Ehler-Danlos, or Marfan syndromes, were

excluded from this study. Previous evidence of positive linkage to

MYP3 was not considered when choosing families. The cohort

consisted of 530 (affected¼ 235) individuals from 67 multigeneration

families of various sizes with at least two affected individuals per family.

The average family size was 7.91 individuals, with a range of 3 to 35

individuals per family. The cohort was composed of an equal number

of males and females (n ¼ 265 each). The cohort was composed

entirely of self-reported Caucasians to reduce ethnic stratification

issues. All participants provided written informed consent that was

approved by Duke University’s Institutional Review Board and adhered

to the tenets of the Declaration of Helsinki guidelines. The patient

cohort description is summarized in Table 1.

SNP Selection. A list of all potential SNPs was generated by genetic

analysis research (Illumina; San Diego, CA) upon submission of the

requested 44 Mb region. The region was covered using nonuniform

SNP density. In all, 768 SNPs were distributed across the region at a

base density of one SNP every 60 kb with regions of a higher density

SNP placement of one every 40 kb. The regions of higher density SNP

placement were: (1) the region of overlap between Young et al.15 and

Nürnberg et al.17; (2) the region of overlap between Young et al.15 and

Farbrother et al.16; and (3) the highest peak region of Li et al.18 (Fig. 1).

SNPs were selected using the following criteria: (1) location (as

described above); (2) minor allele frequency (MAF)> 0.05; (3) Illumina

designability score > 0.7 (with preference to higher scores); (4)

location relative to genes (coding nonsynonymous [n ¼ 36] > coding

synonymous [n¼38] > UTR [n¼48] > intronic [n¼207] > intergenic

[n ¼ 439]).

Genotyping and Quality Control. Genomic DNA was extracted

from each individual from either blood or saliva as previously

described.20 Family members were genotyped using custom-designed

768-plex Oligo Pool Assay (OPA; GoldenGate Universal 32 Beadchip

Kits; Illumina). Samples were directly hybridized to the chips and

detected by array-based genetic analysis (Illumina iScan system). The

genotyping assays (GoldenGate; Illumina) were run with 672 samples

on seven 96-well plates that included 28 quality controls. These

samples included an additional 114 individuals from 15 families of

Hispanic, Latino, Asian, or African American descent that were

excluded from these analyses but are included in the supplementary

materials (see Supplementary Material, http://www.iovs.org/lookup/

suppl/doi:10.1167/iovs.12-11102/-/DCSupplemental). Each genotyping

plate included two Centre d’Etude du Polymorphisme Humain (CEPH)

DNA samples as well as two internal replicates with masked identity

during analysis. The internal replicates were selected from samples in

the cohort, which had sufficient quantities of DNA for duplicate

genotyping. The CEPHs and internal replicate genotypes were checked

for concordance. The data were cleaned using a commercial system

(GenomeStudio; Illumina). Mendelian inconsistencies and relationships

within families were screened using a program for identification of

genotype incompatibilities in linkage analysis (PedCheck; Division of

Statistical Genetics, University of Pittsburgh, PA).21 Samples with a call

rate below 95% and parent-to-child Mendelian errors above 1% were

removed (n¼59 and 12, respectively) from further analyses. SNPs with

TABLE 1. Patient Cohort Description

Number of patients 530 Affected 235

Unaffected or unknown 295

Males 265

Females 265

Number of families 67 Average size 7.91

Size range 3 to 35

Family type Multigenerational

Self-reported ethnicity Caucasian

Affection criteria Spherical diopters (D) Affected ��5 D (both eyes)

Unaffected ‡�0.50 D (both eyes)

Unknown All others

Average SPH �4.78 D Affected �10.44 D

Unaffected �1.36 D

Range �32.00 D to þ9.25 D

Median �3.25 D
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a call rate below 95% (n¼ 15) and Mendelian errors over 95% (n¼ 3)

were also removed from further analyses. Deviations from Hardy-

Weinberg equilibrium (HWE) were checked using genetic data

analysis.22 Markers were removed from analyses if the control

population deviated from HWE (P < 0.05) (n ¼ 32). Pairwise linkage

disequilibrium (LD) within the population was checked using graphical

overview of linkage disequilibrium (GOLD) and LD Select.23,24 The

final number of SNPs (n¼ 702) was used to calculate the significance

threshold (for all association analyses) after correction for multiple

testing of 7.12 3 10�5.

Qualitative Association Testing. The association in the presence

of linkage test (APL)25 was used in qualitative association tests because

it infers absent parental genotypes using estimates of identity by

descent, allowing for single and multilocus haplotype analysis.

Individuals were classified as affected for high-grade myopia if both

of their eyes were ��5 spherical D; individuals with ‡�0.50 spherical

D in both eyes were classified as unaffected; all other individuals

including those with missing phenotype data were classified as

unknown affection status. Consistency of the data was checked with

the same affection status classifications using the additional non-

Caucasian individuals (used in previous linkage analyses18 but excluded

from these association tests) as well as with another common

biometric parameter used in determining myopic refraction, SE (see

Supplementary Material and Supplementary Fig. S1, http://www.iovs.

org/lookup/suppl/doi:10.1167/iovs.12-11102/-/DCSupplemental). Ad-

ditionally, consistency of the data was checked using �5 D and �6 D

affection status cutoffs (see Supplementary Material and Supplemen-

tary Fig. S1, http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.

12-11102/-/DCSupplemental).

Quantitative Association Testing. The quantitative trait linkage

disequilibrium test (QTLD)26 in sequential oligogenic linkage analysis

routines (SOLARs)27 was conducted by treating refractive errors as

quantitative traits. Quantitative tests were run using the SPH

phenotype by taking the average (avg) of the two eyes. The same

affection status classifications using the additional non-Caucasian

individuals as well as SE were again tested for consistency (see

Supplementary Material and Supplementary Fig. S1, http://www.iovs.

org/lookup/suppl/doi:10.1167/iovs.12-11102/-/DCSupplemental). The

QTLD tests were run using the default model, including identity by

descent calculations of our study population. The QTLD test

calculations of identity by descent were obtained using SOLAR.27

Independent Validation Cohorts. Five (DNA quantities prohib-

ited additional candidate screening; refer to Results section for

selection criteria) of the most significantly associated SNPs from

qualitative and quantitative testing were genotyped in an independent

collection of Caucasian high-grade myopia pedigrees recruited from

four international collection sites. These pedigrees have been

described previously.18 Genotyping was performed using allelic

discrimination assays (Taqman; Foster City, CA), with quality control

measures as previously described (see Supplementary Material and

Supplementary Table S2, http://www.iovs.org/lookup/suppl/doi:10.

1167/iovs.12-11102/-/DCSupplemental).28 Qualitative and quantitative

tests, described above, for SPH were used for each SNP.

Qualitative and quantitative tests for SPH were previously carried

out in a cohort comprised of a sample of twins (UK Twin Study) that

were not recruited on the basis of their refractive error.29 These test

results were used as a second independent validation cohort. As

described,29 this cohort of twins had been SNP genotyped at high

density across the entire genome. All of the SNPs selected for the

discovery association tests, including some of our most significantly

associated candidates, were not genotyped in this cohort. All of the

most significantly associated SNPs from both the qualitative and

quantitative discovery analyses were screened in the twin test results.

SNPs in high linkage disequilibrium with the most significantly

associated SNPs not genotyped in the cohort were also screened, but

none was genotyped in the cohort.

Ocular Tissue Expression

Whole Genome Expression Analysis. Independently designed,

collected and reported ocular expression data (F. Hawthorne et al.,

unpublished observations, 2012) were used to prioritize candidate

genes from association testing. Genes that were within 100 kb of the

most significantly associated SNPs in MYP3 were screened and

prioritized by differential ocular expression. Given that myopia can

be considered a failure of normal growth, genes involved in normal

growth were considered likely candidates, and those with differential

expression in central retina, RPE, choroid, and/or sclera between fetal

and adult eyes were prioritized.

To compare gene expression between rapidly growing and fully

grown ocular tissue types, normal samples from two age groups were

used: fetal eyes and adult eyes. The group of fetal eyes consisted of late

prenatal fetal eyes of approximately 24-weeks gestational age from

elective abortions with no known defects or abnormalities. Nine fetal

donor eyes (four male and five female samples), and six fully grown

adult donor eyes (three of each sex) were used for microarray analyses.

Whole globes were preserved (RNAlater; Qiagen, Hilden, Germany)

within 6.5 hours of collection and shipped overnight on ice for

immediate tissue isolation (Table 2). The retina, RPE, and choroid and

scleral tissues were isolated at the posterior pole using a circular,

double-embedded technique using round 7 and 5 mm biopsy punches

to reduce contamination of retina to the other tissue samples. RNA was

extracted from each tissue sample using a total RNA extraction kit

(mirVana; Ambion, Austin, TX) following the manufacturer’s protocol.

RNA samples were hybridized (HumanHT-12 v4 Expression BeadChips;

Illumina), following the manufacturer’s protocol recommendations.

Background noise was subtracted from the intensity values prior to

exportation on log2 transformation (GenomeStudio program; Illumina).

Sample outliers were determined by principal component analyses

using the Hotelling T2 test30 (at 95% confidence interval) and removed

from further analyses. The data intensity was normalized by quantile

normalization followed by multichip averaging31 to reduce chip effects.

The exact Wilcoxon rank-sum test32 was used to identify differentially

TABLE 2. Donor Information for Adult Ocular Whole Globes Used in Tissue Expression Analyses

Individual Race Sex Age, y

Preservation Time

Interval, h Cause of Death

1658* Caucasian Male 71 5:05 Respiratory failure

1812* Caucasian Female 70 4:28 Liver failure

2809 Caucasian Female 76 4:00 Leukemia/acute myeloid leukemia

2835 Caucasian Female 55 4:55 Dementia

2828 Caucasian Male 80 5:20 Pneumonia

2834 Caucasian Male 56 5:22 Abdominal aortic aneurysm rupture/heart disease

2217 Caucasian Female 77 6:24 Chronic obstructive pulmonary disease/emphysema

2836 Caucasian Male 67 5:10 Heart disease

* Indicates samples that were used for RT-qPCR but not microarray analysis.
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expressed genes. Fetal ocular tissues were compared with their adult

counterparts, and assessed for relative fold changes per probe. Adult

retina and RPE samples were averaged for comparison to fetal retina/

RPE. The Benjamin and Hochberg False Discovery Rate33 (FDR)

procedure was applied, and FDR was controlled at 0.05 to determine

statistical significance for all comparisons.

Quantitative Real-Time PCR Validation. Candidate genes within

100 kb of the most significantly associated SNPs in the MYP3

association results were compared with genes identified by microarray

analysis as significantly differentially expressed. Genes of interest in the

expression analysis were determined by their relation to candidate

genes from the association analyses, their degree of differential

expression, concordance of probes within the same genes, and their

level of expression (see Supplementary Material and Supplementary

Table S1, http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.

12-11102/-/DCSupplemental). Genes that were the same or directly,

functionally related to candidate genes in at least one tissue type were

validated using RT-qPCR (Taqman) gene expression assays (see

Supplementary Material and Supplementary Table S2, http://www.

iovs.org/lookup/suppl/doi:10.1167/iovs.12-11102/-/DCSupplemental).

RT-qPCR for each gene was performed for all tissue types, rather than

just the tissue(s) of known overlap. Each gene was validated with four

biological replicates of each adult central and 24-week central tissue, in

addition to one nontemplate control. Each biological replicate

contained equal amounts of total RNA pooled from the tissue of two

individuals. In total, RNA from the tissue of eight individuals was used

for each gene per tissue type. Each biological replicate was carried out

in four technical replicates of RT-qPCR. Expressions of adult retina and

RPE were averaged and compared with 24-week retina/RPE since they

could not be separated. Each plate containing quantitative real-time

assays contained the two control genes GAPDH (MIM 138400) and 18S

for each biological replicate of each tissue type. Reverse-transcription

reactions were performed with a commercial reverse transcription kit

(Applied Biosystems [ABI] High Capacity cDNA RT kit (Carlsbad, CA)

per manufacturer’s protocol (Carlsbad, CA). RT-qPCR was carried out

using a commercial fast real-time PCR system (ABI 7900), per gene

expression assays protocol (Taqman). Fold changes and SD errors in

each tissue type were calculated by the 2�DDCT method with

normalization by the two housekeeping genes.34 Technical replicates

were removed if the SD was >0.5 and no biological replicates were

removed.

RESULTS

Qualitative Association

Testing for association with high-grade myopia status was
carried out classifying individuals with a dioptric SPH ��5 D as
affected and those with ‡�0.50 D as unaffected. After stringent
quality (refer to the Materials and Methods section) control,
702 SNPs remained. Although no SNPs passed Bonferroni
correction significance levels, the most associated SNPs were
evaluated as possible candidates (Fig. 2). Table 3 contains the
five SNPs with the lowest qualitative test P values (P < 6 3

FIGURE 2. APL and QTLD association results by�log(p). P values for each SNP are stacked in the same vertical position and indicated by separate
symbols. The blue triangles indicate average of two eyes (avg) SPH QTLD results. The red squares and square indicate the high myopia by SPH APL
results. The dashed line indicates the Bonferroni significance threshold by number of SNPs. Base-pair locations are given in human genome build
36.2, chromosome 12.
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10�3). The three SNPs with the highest probability of
association are located over 50 kb from the nearest genes:
rs741525 (P¼ 7.80 3 10�4), rs790436 (P¼ 5.09 3 10�4), and
rs1358228 (P ¼ 1.29 3 10�3). The two SNPs with the next
highest association probabilities are located within coding
genes: rs7134216 (P ¼ 2.74 3 10�3) is intronic to the
UHRF1BP1L gene (UHRF1 [MIM 607990] binding protein 1-
like isoform b), and rs3803036 (P ¼ 5.65 3 10�3), is a
nonsynonymous coding variant in the PTPRR gene (protein
tyrosine phosphatase receptor type R; MIM 602853).

Quantitative Association

Quantitative tests were performed to test each SNP for
association with the average SPH endophenotype. Quantitative
traits were normally distributed and removal of phenotypic
extremes did not affect the results (data not shown). The
quantitative tests showed markers with overlapping signifi-
cance with the qualitative results. Figure 2 shows both the
qualitative and quantitative association results for the 702 SNPs
that passed quality control measures. The five most signifi-
cantly associated SNPs that met the Bonferroni threshold with
702 SNPs of P < 7.12 3 10�5 (a ¼ 0.05). The first and fourth
most significant SNPs, rs4764971 (P ¼ 2.25 3 10�7) and
rs7134216 (P¼ 4.49 3 10�5), are over 100 kb apart, although
not in LD (Table 3). The first SNP, rs4764971, is located in the
30 untranslated region (UTR) of the longest isoform of the gene
DEPDC4 (DEP domain containing 4) and is also intronic in
ACTR6 (actin-related protein 6), whereas rs7134216 is the
same intronic SNP located in the gene UHRF1BP1L as in APL
results. The second-best SNP intronic in PPFIA2 (PTPRF

interacting; MIM 603143), rs17306116 (P ¼ 2.65 3 10�5),
was also statistically significant. Although rs1520562 and
rs1558726 also withstood Bonferroni correction, they are in
regions that are at least 600 and 150 kb, respectively, from the
nearest genes. The region containing rs1520562 is conserved

in higher primates, rhesus, marmoset, and guinea pig, but not
in rats, mice, other mammals, or lower vertebrates (see
Supplementary Material and Supplementary Table S3, http://
www.iovs.org/lookup/suppl/doi:10.1167/iovs.12-11102/-/
DCSupplemental).

Validation of Variants in Two Independent Cohorts

Three candidate SNPs were selected from both the qualitative
and from the quantitative test results, one of which over-
lapped, giving five SNPs in total (Table 4). SNPs were selected
based on their association probabilities and overlap between
qualitative and quantitative test results. The SNPs selected from
qualitative test results were located in or near PTPRR,
UHRF1BP1L, and UTP20. The SNPs selected from quantitative
test results were located in or near DEPDC4, UHRF1BP1L

(same SNP from qualitative test results), and PPFIA2.
As in the discovery cohort, none of the SNPs tested in the

independent Caucasian, family-based, high-grade myopia co-
hort was significant in tests using the qualitative SPH trait
definition. One of the two SNPs in PTP genes approached
significance: rs17306116 intronic in PPFIA2 (P¼7.37 3 10�2).
In tests using the quantitative SPH trait definition, two SNPs
had values of P < 0.05, but only one survived multiple testing
correction criteria: rs7134216 in UHRF1BP1L (P ¼ 2.63 3

10�3). SNPs in/near the two PTP genes approached signifi-
cance: rs3803036 (PTPRR; 1.50 3 10�2) and rs17306116

(PPFIA2; 6.59 3 10�2).
We also sought evidence of replication of our most strongly

associated SNPs in an independent cohort of twins not
ascertained on the basis of refractive error, for whom
genomewide genotyping and imputation had previously been
carried out.29 As shown in Table 5, none of our SNPs
demonstrated evidence of replication in this cohort; however,
one of our most significantly associated quantitative SNPs that
was not selected for validation in the high-grade myopia

TABLE 3. The Most Significantly Associated SNPs from Qualitative and Quantitative Association Testing

Base Pair

Location SNP Gene Location MAF

Qualitative SPH

P Value

Quantitative SPH

P Value

69425930 rs3803036 Coding nonsyn. in PTPRR 0.258 5.65 3 10�3 9.39 3 10�3

71970854 rs1520562 >600 kb from nearest gene 0.271 0.875 3.51 3 10�5

76672201 rs1358228 76 kb upstream of NAV3 (MIM 611629) 0.415 1.29 3 10�3 2.22 3 10�2

80351222 rs17306116 Intronic PPFIA2 0.119 0.195 2.65 3 10�5

86528808 rs790436 >150 kb from nearest gene 0.425 7.80 3 10�4 2.12 3 10�3

96200365 rs1558726 >150 kb from nearest gene 0.108 4.86 3 10�2 6.36 3 10�5

97316149 rs741525 55 kb from SLC9A7P1 0.325 5.09 3 10�4 0.698

99043879 rs7134216 Intronic UHRF1BP1L 0.233 2.74 3 10�3 4.49 3 10�5

99155927 rs4764971 30 UTR of DEPDC4, intronic ACTR6 0.133 4.62 3 10�2 2.25 3 10�7

Values of P that withstood Bonferroni correction are in bold. Base pairs are based on human genome build 36.2, chromosome 12. MAF is for
Caucasians, the ethnicity used in association analyses.

TABLE 4. Validation of Candidate SNPs in an Independent Cohort

Base Pair

Location SNP Gene Location

Qualitative SPH

P Value

Quantitative SPH

P Value

69425930 rs3803036 Coding nonsyn. in PTPRR 0.881 1.50 3 10�2

80351222 rs17306116 Intronic PPFIA2 7.37 3 10�2 6.59 3 10�2

99043879 rs7134216 Intronic UHRF1BP1L 0.114 2.63 3 10�3

99155927 rs4764971 Exonic DEPDC4 0.555 0.172

100195248 rs824311 3 kb upstream UTP20 0.509 0.806

Base pairs are based on human genome build 36.2, chromosome 12.
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validation cohort, rs1520562, had SPH values of P¼2.4 3 10�2

for quantitative, 7.5 3 10�2 for qualitative testing, and was
directionally consistent with our discovery data.

Differential Expression in Fetal versus Adult
Ocular Tissues

Independently designed and performed whole genome expres-
sion analysis comparing normal rapidly growing fetal ocular
samples to normal fully grown adult samples revealed a
number of differentially expressed genes (Hawthorne F et al.,
unpublished observations, 2012). All candidate genes from
Table 3 were expressed in all tissues and age groups tested; as
such, none could be eliminated for lack of expression in the
relevant tissues. All fold changes are presented below as fetal
relative to adult expression. When filtered by candidate genes
from the qualitative and/or quantitative association results we
found only two genes (PPFIA2 and PTPRR) to select from for
validation by real-time quantitative PCR (RT-qPCR). Addition-
ally, the related gene, PTPRF (MIM 179590), which interacts
with PPFIA2, was also selected for validation. Fold changes for
all genes selected for validation are displayed in Figure 3 with
biological variation as error bars (SD of technical variation <
0.5; data not shown). All significant or nominally significant
SNPs were considered when creating lists of potential
candidate genes (genes within 100 kb of SNP). All genes from
the association under consideration were included on the
microarray but were not statistically significant for differential
expression.

The three genes selected for RT-qPCR validation (PTPRR,
PPFIA2, and PTPRF) were all PTP-related genes. Upon
validation using RT-qPCR, fold changes were generally consis-
tent with the microarray data, except in cases where the
expression was very low and/or fold changes were small (Fig.
3; also see Supplementary Material and Supplementary Table
S1, http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.
12-11102/-/DCSupplemental). In the retina/RPE and choroid
all three genes were found to be upregulated in fetal relative to
adult tissue-specific expression. In the sclera only PTPRF was
upregulated, whereas PTPRR and PPFIA2 were slightly
downregulated in fetal relative to adult expression. PTPRR, a
candidate from the qualitative high-grade myopia association
data, did not show expression in the adult RPE. As a result the
retina/RPE fold change could not be calculated. Instead a fold
change comparing only the adult retina to the fetal retina/RPE
is presented. The change for retina/RPE (without adult RPE)
was a 3.49-fold higher expression in fetal tissue; however, the
absence in adult RPE limits conclusions based on these data.
The fold change for the choroid was 3.22 higher expression in
the fetal tissue and the sclera showed a fold change in the
opposite direction of �1.49, where the adult was more highly
expressed. PPFIA2, a candidate gene from the quantitative SPH
association testing, showed a 2.48 higher expression fold
change in the fetal choroid relative to the adult, whereas the

�1.22 lower expression fold change in the fetal sclera was
opposite the direction of the array data (possibly explained by
the low overall level of expression and biological variation
between samples). The retina/RPE was not significant in array
data, but showed a 1.83 higher expression fold change in fetal
tissue in RT-qPCR. Interestingly, PTPRF, which interacts with
PPFIA2, showed larger fold changes: 4.20 higher expression in
fetal retina/RPE, 7.53 higher expression in fetal choroid, and
1.43 higher expression in fetal sclera. The retina/RPE fold
changes for PTPRF were much larger; however, the choroid
and sclera were consistent with the microarray data.

DISCUSSION

The discovery of qualitative high-grade myopia and quantitative
SPH analyses within the MYP3 locus both yielded potentially
interesting candidate SNPs. Although none of the SNPs in the
qualitative analyses was statistically significant after correction
for multiple testing, SNPs approaching significance were
further evaluated as candidates. The high number of significant
SNPs in quantitative analyses can likely be attributed to their
location in a well-established linkage region, as well as the
increased power of using quantitative data rather than
qualitative classifications. Strict affection status cutoffs and
consequently low numbers of affected individuals in the
qualitative data may have contributed to reduced power,
resulting in higher P values.

Validations

Independent validation, using a Caucasian high-grade myopia
cohort, of our most significant association SNPs for both
qualitative and quantitative testing, validated one quantitative
SNP, rs7134217 within UHRF1BP1L. The significance of this
SNP overlapped between both qualitative and quantitative
discovery cohort results, but was replicated for quantitative
association only in this second Caucasian high-grade myopia
validation cohort. One of the two PTP genes genotyped
approached significance in qualitative testing: rs71306116 in
PPFIA2. However, this SNP was not one of the most
significantly associated candidates in our qualitative association
and none of our qualitative results in the discovery cohort
reached statistical significance criteria. Both of the two SNPs in
PTP candidate genes had suggestive association in quantitative
association assessment in this high-grade myopia validation
cohort: rs3803036 (PTPRR) and rs1730611 (PPFIA2). Only
the SNP within PPFIA2 was statistically significant in the
discovery quantitative testing, although PTPRR did approach
statistical significance in our data as well. In total, three of the
five SNPs chosen for follow-up genotyping were nominally
significant or statistically significant in a second high-grade
myopia cohort, supporting their association with myopia.

In a second independent twin cohort that did not contain
data for all of our most significantly associated SNPs, one of the

TABLE 5. Validation of the Most Significantly Associated SNPs in a Previously Genotyped Independent Cohort

Base Pair

Location SNP Gene Location

Qualitative SPH

P Value

Quantitative SPH

P Value

69425930 rs3803036 Coding nonsyn. in PTPRR 0.73 0.15

71970854 rs1520562 >600 kb from nearest gene 0.075 0.024

76672201 rs1358228 76 kb upstream of NAV3 0.17 0.32

78976016 rs7315130 >100 kb from nearest gene 0.86 0.97

80351222 rs17306116 Intronic PPFIA2 0.82 0.99

The most significantly associated SNPs from our data not included in this table were not present in the independent data set. Base pairs are based
on human genome build 36.2, chromosome 12. Methods of this testing and cohort information have been previously published.29
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most significant SNPs from the discovery cohort showed
potentially interesting results. The SNP rs1520562 is not near
any known genes; however, it is in a region that is conserved
largely by higher mammals including primates. The conserva-
tion pattern suggests that the area should be thoroughly
screened for regulatory elements that may affect vision in this
subset of mammals. Since this second replicate cohort was not
collected with preferential selection for highly myopic
individuals (twin cohort average of �0.40 D compared with
discovery cohort average of�4.78 D) and used a higher cutoff
in qualitative testing (�6 D compared with our�5 D cutoff), it
is possible that this twin cohort lacked the power to identify
some of the variants from our study. Additionally, since these
data were previously collected, we were not able to screen all
of our candidate SNPs. Considering these limitations, it is
highly encouraging that this SNP nominally replicated in the
independent twin cohort. The overlap suggests that results
obtained in the discovery cohort may be representative of
others not tested.

PTPRR and PPFIA2 as Candidate Genes by Genomic
Convergence

Qualitative and quantitative analyses had some overlap in their
most associated SNPs (Table 3) and biological connections
between some candidate genes. The same intronic SNP located
in UHRF1BP1L was one of the most associated SNPs in both
tests. Four of the five most associated SNPs in the qualitative
analyses had values of P < 0.05 for the same SNPs in
quantitative analyses, including the SNP located in the PTP
gene PTPRR, which is functionally related to another most
associated SNP from the quantitative data, PPFIA2.

One of our candidate genes from the qualitative association
data, PTPRR, was found to be more highly expressed in the
rapidly growing fetal retina/RPE (not detected in adult RPE)
and choroid, although slightly more highly expressed in the
grown adult sclera. From our quantitative association data,
PPFIA2 and its namesake interacting gene, PTPRF, both were
found to be differentially expressed in fetal relative to adult
ocular tissues. Like PTPRR, PPFIA2 showed higher expression
in the rapidly growing fetal retina/RPE and choroid, and higher
expression in the adult sclera. PTPRF showed similar, although
more pronounced, patterns with retina/RPE and choroid
expression but showed higher expression in the rapidly
growing fetal sclera (Fig. 3). Overall, in the microarray data
and in all three PTP genes evaluated, the tissue with the
highest fold changes was the choroid. The lack of high fold
changes in the retina/RPE may have been caused by the
averaging methods used since the fetal tissues could not be
separated.

Insights into Possible Biological Mechanisms of
Refractive Error

Interestingly, the two MYP3 candidate genes from the
association data (one from the qualitative and one from the
quantitative) that were found to be differentially expressed in
ocular tissues, were both PTP-related genes. PTPs are enzymes
that remove a phosphate group from the amino acid tyrosine.
These proteins play a role in the regulation of signal
transduction by relaying signals from outside the cell that
regulate cell growth, division, maturation, and function.35,36

Although PTP genes seem ubiquitous, several studies have
implicated them in tissue-specific diseases and functions as

FIGURE 3. Fetal versus adult fold changes of real-time quantitative PCR validated genes. The columns from left to right (and darkest to lightest) for
each gene represent the retina/RPE, choroid, and sclera. Fold changes were calculated by the 2�DDCT method. Biological variation is shown by error
bars for each tissue/gene.
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well as various cancers.35–39 There has also been one PTP-
related gene previously associated with rapid ocular growth
that lies within the MYP3 locus; microarray work validated by
RT-qPCR of choroid/RPE expression in marmoset eyes under-
going lens treatment to induce rapid ocular growth showed
differential expression of PTP receptor type B (PTPRB; MIM
176882).40

PTPRR shares a gene symbol (considered synonymous)
with PTPRQ (MIM 603317) that, when overexpressed, inhibits
cell proliferation and induces apoptosis.41 PTPRQ has been
identified as belonging to a subgroup of PTP receptors, which
have different primary biological activities.41 This subgroup
acts as active phosphoinositide phosphatases that regulate cell
proliferation,41 making genes, such as PTPRR, an early and
frequent target of silencing in some forms of cancer.42 PTPRR

has also been shown to be a key negative regulator of MAPK

signaling in androgen-regulated expression.43 Ptprr in mice has
distinct localization of each of the isoforms, all of which
contain the kinase interacting motif necessary to bind and
inactivate MAPK by dephosphorylation.44 In mice, two of
these isoforms of Ptprr localize on the membranes of
endocytotic vesicles like those used for glutamate or other
cell signaling molecules.45,46 Mutations in PTPRR could be
involved in the development of high-grade myopia by a change
in its ability to bind to or dephosphorylate MAPK, leading to
increased MAPK growth signals. Increased expression of
PTPRR in rapidly growing fetal retina/RPE (not detected in
adult RPE) and choroid may be the result of normal
developmental or growth regulators, suggesting it plays a role
in reigning in ocular growth. Disruption of this protein
function may account for the rapid growth seen in highly
myopic individuals during early childhood that slows into
adulthood. As normal growth regulators slow, the need for this
protein would also decrease.

PPFIA2 is a member of the leukocyte common antigen-
related (LAR) PTP interacting protein family liprin. Liprins are
proposed to act as scaffolding proteins for recruitment and
anchoring of LAR PTPs.47 Vertebrates have four homologs of
liprin-a (1–4), each enriched in different synaptic and non-
synaptic cell populations.48 Liprin-as are thought to be
essential elements of the active zone at the presynaptic plasma
membrane by guiding synaptic vessels to their fusion sites and
regulating neurotransmitter releases.48 Liprin-a2 in the brain is
preferentially localized in excitatory synapses, like the
hippocampal mossy fiber nerve endings that release glutamate
via synaptic vesicles.48 PPFIA2 is a liprin-a2 known to be
downregulated by androgens in prostate cancer cell lines.49

Mutations in PPFIA2 could affect its ability to guide glutamate-
filled synaptic vesicles to their fusion sites, thereby disrupting
the signaling cascade throughout the retina and possibly onto
other ocular tissues. Alterations in the normal signaling
cascade may disrupt the normal process of emmetropization.
Converse to PTPRR, the function of PPFIA2 seems more likely
to be a positive regulator of cell growth that fits with its
moderate increase in expression in rapidly growing retina/RPE
and choroid.

Although this study focuses on qualitative high-grade
myopia determined by SPH measurements and the quantitative
trait SPH due to their relation to the ocular tissues discussed, it
should be noted that other tests were performed in the
discovery cohort, but not reported. Concordance was found in
our candidates selected for follow-up in qualitative association
using a higher affection criteria cutoff of �6 D (see
Supplementary Material and Supplementary Fig. S1, http://
www.iovs.org/lookup/suppl/doi:10.1167/iovs.12-11102/-/
DCSupplemental). In addition, SE qualitative high-grade
myopia as well as quantitative testing were performed.
Qualitative tests for SE revealed the same candidate SNPs and

genes as those in SPH tests (see Supplementary Material and
Supplementary Fig. S1, http://www.iovs.org/lookup/suppl/
doi:10.1167/iovs.12-11102/-/DCSupplemental). Quantitative
tests for SPH and SE were also concordant for both the average
of both eyes as well as the better of the two eyes, although
there was some shuffling of the order of most significantly
associated SNPs (data not shown). Because no SNPs in the
qualitative data were statistically significant, the additional tests
do not drop any SNPs from statistical significance. In the
quantitative testing, the SNPs in the candidate genes
UHRF1BP1L and PPFIA2 were both statistically significant
after correction for multiple testing including those not
reported (4212 tests, Table 3). Interestingly, in the complete
quantitative association results, a pattern was detected in SNPs
within functionally related PTP genes (PPFIA2, PPP1R12A

[MIM 602021], PTPRB, PTPRR, PTPRQ, DUSP6 [MIM 602748],
and DYRK2 [MIM 603496]), two of which are our candidate
genes. Whereas most of these SNPs were not individually
statistically significant, in the quantitative association testing
this subset of SNPs was significantly more likely to have values
of P < 0.5 than the rest (P ¼ 1.2 3 10�5) (see Supplementary
Material and Supplementary Fig. S2, http://www.iovs.org/
lookup/suppl/doi:10.1167/iovs.12-11102/-/DCSupplemental).
In addition to PTPRR and PPFIA2, some or all of these genes
may warrant further investigation into their possible roles in
the variation of traits associated with myopia. It is also
potentially interesting that many other known myopia loci
contain PTP-related genes (see Supplementary Material and
Supplementary Table S4, http://www.iovs.org/lookup/suppl/
doi:10.1167/iovs.12-11102/-/DCSupplemental), which may be
investigated further for insights into a possible pathway.

Although UHRF1BP1L was not directly supported by our
ocular expression data, it still may be an interesting candidate
gene. UHRF1BP1L binds to UHRF1, which regulates topo-
isomerase II alpha (TOP2A; MIM 126430) and retinoblastoma
(RB1; MIM 180200) gene expression,50 suggesting a possible
link to regulation of cell growth and proliferation within the
retina. In the independent expression array data, TOP2A had
significantly lower expression in the adult retina/RPE, choroid,
and sclera (�1.88-, �56.64-, and �5.43-fold changes, respec-
tively). UHRF1BP1L could be involved in myopic development
by regulating the expression of other genes that contribute to
axial growth. Pathway analysis of differentially expressed genes
may help uncover a more precise possible mechanism for this
gene’s role in myopic progression.

CONCLUSIONS

One of the largest limitations in our discovery cohort was the
SNP coverage, given the large size of the MYP3 locus. It is
possible that variants within the spacing of our coverage have
been missed; however, cost limitations prohibited higher
density coverage of the region. Our association data were also
limited by the number of samples in the discovery genotyping
cohort. Despite these limitations, quantitative association
testing yielded several strong candidates withstanding conser-
vative significance cutoffs. The expression data were limited by
the sample number and the tissues, which could not be
separated in fetal samples. Our estimation of tissues in a
complex compared with separate tissues is likely imprecise.
The low fold change differences we found in the retina/RPE
may be an artifact of our testing. Better tissue isolation
techniques will need to be developed for future expression
analyses. However, despite these limitations, two of our
candidate genes from the association data were supported by
the expression data. PTPRR, PPFIA2, and its namesake
interacting gene, PTPRF, were found to be differentially
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expressed in central ocular tissues. This overlap supports our
model of eye growth for myopic development and use of these
expression data both in other known myopia loci and also in
detailed pathway analyses to look for targets within the known
loci. However, our high-grade myopia validation cohort most
strongly supported UHRF1BP1L, which was not differentially
expressed in our data. Differential expression may have been
missed by the microarray data, or it may not be differentially
expressed. Although the expression data have been shown to
be useful in prioritizing candidates, we have shown that it
cannot be used to exclude candidates. Further validation and
refinement of these three novel MYP3 candidate genes is
necessary to make claims as to their involvement in myopic
progression.
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