
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/94 7 2 1/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Ce r u t ti, Fed e rico , Valla ti, M a u ro a n d Giaco min, M a s si miliano 2 0 1 7. An efficien t java-

b a s e d solve r for a b s t r a c t a r g u m e n t a tion fr a m e wo rks: jArgS e m SAT. In t e r n a tion al

Jour n al on Artificial In t ellige nc e Tools 2 6 (2) , 1 7 5 0 0 0 2.

1 0.1 1 4 2/S 02 1 8 2 1 3 0 1 7 5 0 0 0 2 6

P u blish e r s p a g e: h t t p://dx.doi.o rg/10.11 4 2/S 0 2 1 8 2 1 3 0 1 7 5 0 0 0 2 6

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

An Efficient Java-Based Solver for Abstract Argumentation

Frameworks: jArgSemSAT

Federico Cerutti

School of Computing Science & Informatics

Cardiff University,

Queen’s Buildings, 5 The Parade

Cardiff, CF24 3AA, United Kingdom

CeruttiF@cardiff.ac.uk

Mauro Vallati

School of Computing and Engineering

University of Huddersfield, Queensgate

Huddersfield, HD1 3DH, United Kingdom

m.vallati@hud.ac.uk

Massimiliano Giacomin

Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Brescia

Brescia, 25123, Italy

massimiliano.giacomin@unibs.it

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Dung’s argumentation frameworks are adopted in a variety of applications, from
argument-mining, to intelligence analysis and legal reasoning. Despite this broad spec-
trum of already existing applications, the mostly adopted solver—in virtue of its

simplicity—is far from being comparable to the current state-of-the-art solvers. On the
other hand, most of the current state-of-the-art solvers are far too complicated to be

deployed in real-world settings. In this paper we provide and extensive description of
jArgSemSAT, a Java re-implementation of ArgSemSAT. ArgSemSAT represents the best

single solver for argumentation semantics with the highest level of computational com-
plexity. We show that jArgSemSAT can be easily integrated in existing argumentation
systems (1) as an off-the-shelf, standalone, library; (2) as a Tweety compatible library;
and (3) as a fast and robust web service freely available on the Web. Our large exper-
imental analysis shows that—despite being written in Java—jArgSemSAT would have
scored in most of the cases among the three bests solvers for the two semantics with
highest computational complexity—Stable and Preferred—in the last competition on

computational models of argumentation.

Keywords: Abstract Argumentation; Argumentation Semantics; Off-The-Shelf Solver.

1

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

2 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

1. Introduction

Dung’s theory of abstract argumentation1 is a unifying framework able to encom-

pass a large variety of specific formalisms in the areas of nonmonotonic reasoning,

logic programming and computational argumentation. It is based on the notion of

argumentation framework (AF), that consists of a set of arguments and an attack

relation between them. Different argumentation semantics introduce in a declarative

way the criteria to determine which arguments emerge as “justified” from the con-

flict, by identifying a number of extensions, i.e. sets of arguments that can “survive

the conflict together”. In Dung’s paper1 three “traditional” semantics are intro-

duced, namely grounded, stable, and preferred semantics, as well as the auxiliary

notion of complete extension, to highlight the linkage between grounded and pre-

ferred semantics. Other literature proposals include semi-stable2, ideal3, and CF2 4

semantics.

The preferred semantics represents one of the main contributions in Dung’s

theory1 and is widely adopted—among other areas—in decision support systems5

and in critical thinking support systems6, as it allows multiple extensions (differ-

ently from grounded semantics), the existence of extensions is always guaranteed

(differently from stable semantics), and no extension is a proper subset of another

extension. The investigation on alternative argumentation semantics is an active

research area since two decades7.

Many problems associated to preferred, but also to stable, semantics turn to be

at the high levels of the polynomial hierarchy8. In this paper we will focus on four

problems, namely credulous and skeptical acceptance of an argument with respect

to a given argumentation framework and a given semantics and enumeration of

all or some semantics extensions given an argumentation framework. Those are

the problems considered in the first International Competition on Computational

Models of Argumentation (ICCMA2015) that determined the state-of-the-art of the

current implementations for addressing the above problems with respect to the three

aforementioned semantics (plus the complete extensions).

Surprisingly, the winner of ICCMA2015—CoQuiAASa 9—never scored in the

first two positions with respect to the most computationally expensive semantics,

namely stable and preferred semantics. Indeed, CoQuiAAS performed very well on

grounded semantics—where each problem is polynomial—thanks to a very efficient

unit propagation mechanism, as well as on the tracks associated to complete ex-

tensions problems. The interested reader is referred to the competition summary10

and to the competition websiteb for an overview of the results.

Instead, ArgSemSAT is the best single solver when facing semantics with an high

level of computational complexity. It is constantly either first or second placed in

each track associated to stable and preferred semantics—except one due to an im-

ahttp://www.cril.univ-artois.fr/coquiaas/
bhttp://argumentationcompetition.org/2015/

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 3

plementation bug discovered after the competitionc. Despite this bug, ArgSemSAT

scored second—at one single Borda count point from CoQuiAAS—and the over-

head in solving problems associated to grounded semantics is—on average—of 3.88

seconds from CoQuiASS. Therefore, this difference is neglectable in most real-world

situation, when ultimately a human user will consume the result of argumentation-

based reasoning procedures.

Building on top of the success of ArgSemSAT, we introduced jArgSemSAT that

is specifically designed for being easily integrated within existing argumentation

systems. Indeed, ArgSemSAT—as well as many other solvers that participated in

ICCMA2015—is written in C++ and requires an external SAT solver as an np or-

acle. This can hardly be considered an off-the-shelf system, as most of the current

tools using argumentation technology are based on existing Java approaches (such as

Dung-O-Matic11, adopted e.g. in CISpaces6), or on the Tweety libraries for knowl-

edge representation and reasoning12, or use a web-service interface as ArgTech13. We

developed jArgSemSAT in Java, with a specific focus on being compatible with Dung-

O-Matic, Tweety, and with a web-service interface in turn compatible with ArgTech.

A large experimental analysis confirms that jArgSemSAT—despite being written in

Java—would have been one of the best solvers for most of the ICCMA2015 tracks

associated to the two semantics with highest computational complexity. Therefore,

not only ArgSemSAT is compatible with existing technology, but it is also among

the best solvers for stable and preferred semantics.

This paper is an extension of the short report from the field work presented at the

15th Conference on Principles of Knowledge Representation and Reasoning14 with

substantial additional material, including: (i) a complete description of jArgSemSAT

which includes a thorough description of the implemented algorithms and processes;

(ii) a significantly extended experimental analysis, that considers a comparison with

the state of the art—including solvers which took part in ICCMA2015—on several

problems associated to stable and preferred semantics; and (iii) an extensive dis-

cussion of the benefits of employing jArgSemSAT within CISpaces6.

The rest of the paper is organised as follows. Section 2 provides the required back-

ground on abstract argumentation; Section 3 gives an overview of the jArgSemSAT

system, while Section 4 focuses on system design; Section 5 reports our experimen-

tal results; finally, conclusions and discussions of the benefits of jArgSemSAT are

given in Section 6.

cDetails can be found in http://downloads.sourceforge.net/project/argsemsat/ArgSemSAT-1.

0rc3/ArgSemSAT_1.0rc3.zip

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

4 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

2. Background

2.1. Argumentation frameworks and semantics

An argumentation framework1 consists of a set of argumentsd and a binary attack

relation between them.

Definition 2.1. An argumentation framework (AF) is a pair Γ = 〈A,R〉 where

A is a set of arguments and R ⊆ A × A. We say that b attacks a iff 〈b,a〉 ∈ R,

also denoted as b → a. The set of attackers of an argument a will be denoted

as a− , {b : b → a}, the set of arguments attacked by a will be denoted as

a+ , {b : a → b}. We also extend these notations to sets of arguments, i.e. given

E ⊆ A, E− , {b | ∃a ∈ E,b → a} and E+ , {b | ∃a ∈ E,a → b}.

An argument a without attackers, i.e. such that a− = ∅, is said initial. Moreover,

each argumentation framework has an associated directed graph where the vertices

represent the arguments, and the edges represent the attacks.

The basic properties of conflict–freeness, acceptability, and admissibility of a set

of arguments are fundamental for the definition of argumentation semantics.

Definition 2.2. Given an AF Γ = 〈A,R〉:

• a set S ⊆ A is a conflict–free set of Γ if ∄ a,b ∈ S s.t. a → b;

• an argument a ∈ A is acceptable with respect to a set S ⊆ A of Γ if ∀b ∈ A

s.t. b → a, ∃ c ∈ S s.t. c → b;

• the function FΓ : 2A → 2A such that FΓ(S) = {a | a is acceptable w.r.t. S}

is called the characteristic function of Γ;

• a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and

every element of S is acceptable with respect to S, i.e. S ⊆ FΓ(S);

• a set S ⊆ A is a complete extension of Γ if S is an admissible set of Γ such

that it contains each argument acceptable with respect to S, i.e. S = FΓ(S).

An argumentation semantics σ prescribes for any AF Γ a set of extensions,

denoted as Eσ(Γ), namely a set of sets of arguments satisfying the conditions dictated

by σ. Here we need to recall the definitions of grounded (denoted as GR), stable

(denoted as ST), and preferred (denoted as PR) semantics only.

Definition 2.3. Given an AF Γ = 〈A,R〉:

• a set S ⊆ A is the grounded extension of Γ, i.e. S ∈ EGR(Γ), iff S is the

least fixed point of FΓ;

• a set S ⊆ A is a stable extension of Γ, i.e. S ∈ EST(Γ), iff S is a conflict-free

set of Γ and S ∪ S+ = A;

dIn this paper we consider only finite sets of arguments: see Ref. 15 for a discussion on infinite
sets of arguments.

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 5

• a set S ⊆ A is a preferred extension of Γ, i.e. S ∈ EPR(Γ), iff S is a maximal

(w.r.t. set inclusion) admissible set of Γ.

The notion of complete extension has been introduced1 as a linkage between

preferred and grounded semantics. Given an AF Γ = 〈A,R〉, a set S ⊆ A is a

complete extension of Γ iff S is a conflict-free set of Γ and S = FΓ(S). The auxiliary

notion of complete extension provides a mean for re-defining the grounded extension

as the minimal (with respect to set inclusion) complete extension, and a preferred

extension as a maximal (w.r.t. set inclusion) complete extension.

Each extension S implicitly defines a three-valued labelling of arguments: an

argument a is labelled in iff a ∈ S; is labelled out iff ∃ b ∈ S s.t. b → a; is labelled

undec if neither of the above conditions holds. In the light of this correspondence,

argumentation semantics can be equivalently defined in terms of labellings rather

than of extensions16,7.

Definition 2.4. Given a set of arguments S, a labelling of S is a total function

Lab : S −→ {in, out, undec}. The set of all labellings of S is denoted as LS . Given

an AF Γ = 〈A,R〉, a labelling of Γ is a labelling of A. The set of all labellings of Γ

is denoted as L(Γ).

In particular, complete labellings can be defined as follows.

Definition 2.5. Let Γ = 〈A,R〉 be an argumentation framework. A labelling Lab ∈

L(Γ) is a complete labelling of Γ iff it satisfies the following conditions for any a ∈ A:

• Lab(a) = in ⇔ ∀b ∈ a−Lab(b) = out;

• Lab(a) = out ⇔ ∃b ∈ a− : Lab(b) = in;

The grounded, stable, and preferred labelling can then be defined on the basis

of complete labellings.

Definition 2.6. Let Γ = 〈A,R〉 be an argumentation framework. A labelling Lab ∈

L(Γ) is

• the grounded labelling of Γ if it is the complete labelling of Γ maximising

the set of arguments labelled undec;

• a stable labelling Γ if it is a complete labelling of Γ and there is no argument

labelled undec;

• a preferred labelling of Γ if it is a complete labelling of Γ maximizing the

set of arguments labelled in.

In order to show the connection between extensions and labellings, let us recall7

the definition of the function Ext2Lab, returning the labelling corresponding to a

conflict–free set of arguments S.

Definition 2.7. Given an AF Γ = 〈A,R〉 and a conflict–free set S of Γ, the

corresponding labelling Ext2Lab(S) is the labelling of Γ Lab where

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

6 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

• Lab(a) = in ⇔ a ∈ S

• Lab(a) = out ⇔ ∃ b ∈ S s.t. b → a

• Lab(a) = undec ⇔ a /∈ S ∧ ∄ b ∈ S s.t. b → a

There is a bijective correspondence between the complete, grounded, sta-

ble, preferred extensions and the complete, grounded, stable, preferred labellings,

respectively.16

Proposition 2.1. Given an an AF Γ = 〈A,R〉, Lab is a complete (grounded,

stable, preferred) labelling of Γ if and only if there is a complete (grounded, stable,

preferred) extension S of Γ such that Lab = Ext2Lab(S).

2.2. Computational Problems in Abstract Argumentation

Table 1. Computational complexity of cred-
ulous and skeptical acceptance in finite afs
w.r.t. the three semantics introduced by
Dung.

Semantics σ

GR ST PR

DC-σ in p np-compl. np-compl.

DS-σ in p conp-compl. Πp

2-compl.

Credulous and skeptical acceptance of an argument are the two most studied

decision problems in argumentation theory (see Ref. 8).

An argument a is credulously accepted with respect to a given semantics σ and

a given AF Γ iff a belongs to at least one extension of Γ under σ: ∃E ∈ Eσ(Γ) s.t.

a ∈ E. We denote such a problem as DC-σ. An argument a is skeptically accepted

with respect to a given semantics σ and a given AF Γ iff a belongs to each extension

of Γ under σ: ∀E ∈ Eσ(Γ) a ∈ E. We denote this problem as DS-σ.

The complexity of DC-σ and DS-σ when σ is the stable or preferred semantics

lies at the first or second level of the polynomial hierarchy, as shown in Table 1 (see

Ref. 8).e

In addition to credulous and skeptical acceptance, the following two problems

are worth considering and have been included in ICCMA2015:

• given an AF , determine some extension (SE) of a given semantics;

• given an AF , determine all extensions (EE) of a given semantics.

eComputational complexity for credulous and skeptical acceptance w.r.t. admissible sets, as well as
w.r.t. complete extensions can easily been identified, cf. Ref. 8. In particular, credulous acceptance

w.r.t. admissible and complete extensions is equivalent to credulous acceptance w.r.t. preferred
semantics, skeptical acceptance w.r.t. admissible sets is trivial, and skeptical acceptance w.r.t.
complete extensions is equivalent to acceptance w.r.t. grounded semantics.

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 7

Table 2. First three places in ICCMA2015 with re-
spect to stable and preferred semantics.

Semantics σ

ST PR

DC-σ 1.ASPARTIX-D 1.ArgSemSAT

2.ArgSemSAT 2.LabSATSolver

3. LabSATSolver 3. CoQuiAAS

DS-σ 1. ASPARTIX-D 1. ArgSemSAT

2. LabSATSolver 2. Cegartix

3. CoQuiAAS 3. LabSATSolver

SE-σ 1. ASPARTIX-D 1. Cegartix

2. ArgSemSAT 2. ArgSemSAT

3. LabSATSolver 3. LabSATSolver

EE-σ 1. ASPARTIX-D 1. Cegartix

2. ArgSemSAT 2. ArgSemSAT

3. CoQuiAAS 3. CoQuiAAS

As shown in Table 2, ArgSemSAT is always in the first two positions both in the

case of stable and preferred semantics, except for DS-ST due to an implementation

bug discovered after the competition.

ArgSemSAT scored second considering the Borda count across all tracks of IC-

CMA2015f , at one point of distance from CoQuiAAS, which scored at most third in

the tracks associated to stable and preferred semantics, but was constantly the best

for grounded semantics. For this semantics, CoQuiAAS uses an efficient unit prop-

agation mechanism, while ArgSemSAT searches for it via a maximisation process in

the space of complete labellings. Despite this massive difference in the approaches,

the difference of execution times between CoQuiAAS and ArgSemSAT over the

competition benchmark and with respect to the four tracks related to grounded

semantics is of 3.88 seconds on average (standard deviation 5.89).

3. Overview of jArgSemSAT

jArgSemSAT and ArgSemSAT enumerate preferred extensions by multiple calls to a

SAT solver17. A propositional formula over a set of Boolean variables is satisfiable

iff there exists a truth assignment of the variables such that the formula evaluates

to True. Checking whether such an assignment exists is the satisfiability (SAT)

problem. jArgSemSAT and ArgSemSAT exploit an encoding of complete extensions

as a propositional formula in Conjunctive Normal Form (CNF) and apply a filtering

fhttp://argumentationcompetition.org/2015/results.html

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

8 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

procedure over the space of complete extensions to select the maximal ones, i.e. the

preferred extensions.

There are therefore three main components within jArgSemSAT and ArgSemSAT:

(1) a propositional formula for complete labelling—cf. Definition 2.5; (2) an np-

oracle in the form of a SAT solver; and (3) a filtering process.

3.1. Propositional formulae for complete labellings

Given an AF Γ = 〈A,R〉 we identify a propositional formula ΠΓ such that each

satisfying assignment of the formula corresponds to a complete labelling. Such for-

mula is based on Definition 2.5, which however admits several logically equivalent

propositional encodings that lead to severely different performance17.

As a first step to explore alternative encodings, the conditions in Definition 2.5

can be redundantly expressed as a conjunction of 6 terms, i.e. C→in ∧ C←in ∧ C→out ∧

C←out ∧ C→undec ∧ C←undec, where

• C→in ≡ (Lab(a) = in ⇒ ∀b ∈ a−Lab(b) = out);

• C←in ≡ (Lab(a) = in ⇐ ∀b ∈ a−Lab(b) = out);

• C→out ≡ (Lab(a) = out ⇒ ∃b ∈ a− : Lab(b) = in);

• C←out ≡ (Lab(a) = out ⇐ ∃b ∈ a− : Lab(b) = in);

• C→undec ≡ (Lab(a) = undec ⇒ ∀b ∈ a−Lab(b) 6= in ∧ ∃c ∈ a− : Lab(c) =

undec);

• C←undec ≡ (Lab(a) = undec ⇐ ∀b ∈ a−Lab(b) 6= in ∧ ∃c ∈ a− : Lab(c) =

undec).

Moreover we define C↔in ≡ C→in ∧ C←in , C
↔
out ≡ C→out ∧ C←out, C

↔
undec ≡ C→undec ∧ C←undec.

We identify17 5 non redundant strict subsets of the above six terms that equiv-

alently characterize complete extensionsg, namely: (i) C↔in ∧C↔out, (ii) C
↔
out ∧C↔undec,

(iii) C↔in ∧ C↔undec, (iv) C
→
in ∧ C→out ∧ C→undec, (v) C

←
in ∧ C←out ∧ C←undec.

SAT solvers require such constraints in conjunctive normal form (CNF). Letting

k = |A| we define a bijection φ : {1, . . . , k} 7→ A (the inverse map is denoted as

φ−1). φ is an indexing of A: for sake of brevity we might refer to the argument φ(i)

as “argument i.” For each argument i we define three Boolean variables, Ii, Oi,

and Ui, with the intended meaning that Ii (resp Oi, Ui) is True when argument i

is labelled in (resp. out, undec), False otherwise. Given Γ = 〈A,R〉 we define the

corresponding set of variables as V(Γ) , ∪1≤i≤|A|{Ii, Oi, Ui}.

The conjunction of the following formulae in CNF format is equivalent to C↔in ∧

C↔out ∧ C↔undec:

gC↔

in ∧C↔

out and C→

in ∧C→

out∧C→

undec correspond to the alternative definitions of complete labellings
in Ref. 18, where a proof of their equivalence is provided.

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 9

∧

i∈{1,...,k}

(Ii ∨Oi ∨ Ui) ∧ (¬Ii ∨ ¬Oi)

∧(¬Ii ∨ ¬Ui) ∧ (¬Oi ∨ ¬Ui)

(1)

∧

{i|φ(i)−=∅}

Ii ∧ ¬Oi ∧ ¬Ui (2)

∧

{i|φ(i)− 6=∅}

∧

{j|φ(j)→φ(i)}

¬Ii ∨Oj (3)

∧

{i|φ(i)− 6=∅}

Ii ∨
∨

{j|φ(j)→φ(i)}

(¬Oj) (4)

∧

{i|φ(i)− 6=∅}

¬Oi ∨
∨

{j|φ(j)→φ(i)}

Ij (5)

∧

{i|φ(i)− 6=∅}

∧

{j|φ(j)→φ(i)}

¬Ij ∨Oi (6)

∧

{i|φ(i)− 6=∅}

∧

{j|φ(j)→φ(i)}

¬Ui ∨ ¬Ij

∧ ¬Ui ∨
∨

{j|φ(j)→φ(i)}

Uj

(7)

∧

{i|φ(i)− 6=∅}

∧

{k|φ(k)→φ(i)}

Ui ∨ ¬Uk ∨
∨

{j|φ(j)→φ(i)}

Ij (8)

where (1) ∧ (3) ≡ C→in ; (1) ∧ (2) ∧ (4) ≡ C←in ; (1) ∧ (5) ≡ C→out; (1) ∧ (6) ≡ C←out;

(1) ∧ (7) ≡ C→undec; (1) ∧ (8) ≡ C←undec.

Users can choose the desired encoding of complete labellings, i.e. the formula ΠΓ,

by specifying a sequence of 6 Boolean values—0 for ⊥ and 1 for ⊤, corresponding to

the sequence 〈C→in , C
←
in , C

→
out, C

←
out, C

→
undec, C

←
undec〉. For instance, the sequence 101010

identifies C→in ∧ C→out ∧ C→undec. Incorrect configurations that do not correspond to

encodings of complete labellings—e.g. 000000—are discarded and the user receives

an error message.

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

10 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

3.2. SAT solvers

The second component of jArgSemSAT and ArgSemSAT is an np-oracle in the form

of a SAT solver, whose efficiency can be very sensible to the chosen encoding17.

Following the experience of ArgSemSAT, jArgSemSAT allows the user to choose any

desired SAT solver—whose full path must be provided—that supports the DIMACS

format, accepts a CNF from the STDIN, and returns a model to the STDOUT. For

instance, jArgSemSAT can—as ArgSemSAT does—use GLUCOSE19 as an external

SAT solver.

In order to provide an off-the-shelf solver, jArgSemSAT also integrates as a library

Sat4j20. Sat4jh is an open source library which allows Java programmers to access

cross-platform SAT-based solvers. The Sat4j library project started in 2004 as an

implementation in Java of the MiniSAT specification21. It has been developed with

the spirit to keep the technology easily accessible to a newcomer. For instance, it

allows the Java programmer to express constraints on objects and hides all the

mapping to the various research community input formats from the user.

By default, jArgSemSAT utilises Sat4j with the encoding 111100—equivalent to

C↔in ∧ C↔out—that on average performs best on MiniSAT-based approaches17.

3.3. Filtering process

Computing grounded, stable and preferred labellings is then a question of imple-

menting efficient filters of complete labellings (see Definition 2.6) that can be com-

puted as a SAT assignment of a propositional formula ΠΓ variables.

Stable labellings—i.e. complete labellings with no undec arguments—are the

solutions to the formula Π′Γ := ΠΓ ∧
∧

a∈A ¬Uφ−1(a). Each time the SAT solver

finds a solution sol , the formula Π′Γ is updated to Π′Γ ∧ ¬sol and the SAT solver is

called on Π′Γ in order to find an additional stable labelling. The process is iterated

until the SAT solver returns no solution, thus enumerating all stable labellings.

Preferred extensions are computed as per Algorithm 1, that is an—

unpublished—evolution of the algorithm presented in previous work17.

Algorithm 1 consists of two nested loops. The external one—lines 5–22—iterates

over a (sub)set of complete labellings to identify preferred labellings, while the in-

ternal one—lines 8–17—performs an optimisation procedure on a complete labelling

to maximise the set of in-labelled arguments. Algorithm 1 uses four auxiliary func-

tions. SatS refers to a SAT solver able to prove unsatisfiability too: it accepts as

input a CNF formula and returns a variable assignment satisfying the formula if

it exists, ε otherwise. I-ARGS (resp. O-ARGS, U-ARGS) accepts as input a vari-

able assignment concerning V(Γ) and returns the corresponding set of arguments

labelled as in (resp. out, undec).

There are two variables that play a pivotal role in Algorithm 1: cnf and cnfdf .

The former, cnf , keeps track of the complete labellings already visited, and thus af-

hhttp://www.sat4j.org/

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 11

Algorithm 1 Enumeration of Preferred Extensions

1: Input: Γ = 〈A,R〉

2: Output: Ep ⊆ 2A

3: Ep := ∅

4: cnf := ΠΓ ∧
∨

a∈A Iφ−1(a)

5: repeat

6: cnfdf := cnf

7: prefcand := ∅

8: repeat

9: aCompl := SatS (cnfdf)

10: if aCompl 6= ε then

11: prefcand := aCompl

12: if U-ARGS(aCompl) 6= ∅ then

13:

cnfdf := cnfdf ∧
∧

a∈I-ARGS(aCompl)

Iφ−1(a) ∧
∧

a∈O-ARGS(aCompl)

Oφ−1(a) ∧
∨

a∈U-ARGS(aCompl)

Iφ−1(a)

14: end if

15: cnf := cnf ∧
∨

a∈A\I-ARGS(aCompl)

Iφ−1(a)

16: end if

17: until (aCompl 6= ε ∧U-ARGS(aCompl) 6= ∅)

18: if prefcand 6= ∅ then

19: Ep := Ep ∪ {I-ARGS(prefcand)}

20:

cnf := cnf ∧ ¬





∧

a∈I-ARGS(prefcand)

Iφ−1(a) ∧
∧

a∈O-ARGS(prefcand)

Oφ−1(a) ∧
∧

a∈U-ARGS(prefcand)

Uφ−1(a)





21: end if

22: until (prefcand 6= ∅)

23: if Ep = ∅ then

24: Ep = {∅}

25: end if

26: return Ep

fects both loops. The latter, cnfdf , keeps track of the search within the optimisation

process, thus affecting the inner loop only.

At first, cnf is initialised (l. 4) to ΠΓ ∧
∨

a∈A Iφ−1(a): ∅ is excluded since it is

always admissible. At l. 6 cnfdf is initialised to the value of cnf and, after entering

the inner loop, the SAT solver is called over cnfdf returning a complete labelling

aCompl (l. 9). This is a candidate to become a preferred labelling until either (i)

a “bigger” complete labelling containing aCompl is found; or (ii) it is proven that

there are no further complete labellings containing aCompl . To search for (i), at

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

12 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

line 13 each in-labelled (out-labelled) argument in aCompl is forced to be labelled

in (out) until a preferred labelling is found, and to guide future searches towards

a strictly bigger labelling at least one more argument is enforced to be labelled in.

The inner loop is exited when either (i) SatS returns no solution (ε); or (ii)

I-ARGS(aCompl)∪O-ARGS(aCompl) = A. In the first case, the prefcand preferred

labelling candidate found at the previous iteration cannot be extended to a complete

labelling including a greater set of in-labelled arguments, thus it is a preferred

labellingi. In the second case, this is due to the fact that there are no undecided

arguments.

Once a preferred labelling is found, the set of preferred extensions is enriched

(l. 19) with I-ARGS(prefcand) and ¬prefcand is added as a further constraint (line

20) within cnf before executing the external loop once again.

The implemented procedure for computing the grounded labelling is analogous,

with the difference that the set of undec-labelled arguments—instead of the set of

in-labelled arguments—is maximised in the inner loop.

As per checking the credulous acceptance of an argument x w.r.t. the:

• grounded semantics: jArgSemSAT checks whether x is in the set of in-

labelled arguments of the grounded labelling;

• stable semantics: jArgSemSAT checks whether there is a solution to the

formula Π′Γ ∧ Iφ−1(x);

• preferred semantics: jArgSemSAT checks whether there is a solution to ΠΓ∧

Iφ−1(x), which implies that there is a maximum labelling—i.e. a preferred

labelling—containing that argument.

As per checking the skeptical acceptance of an argument x w.r.t. the:

• grounded semantics: since the grounded extension is unique, it is equivalent

to check the credulous acceptance of x;

• stable semantics:

(1) if there is a solution to the formula Π′Γ ∧ Oφ−1(x) (equivalent to

the question: does a stable labelling where x is out exist?) then

jArgSemSAT returns False;

(2) at this point, if there is a solution to the formula Π′Γ (i.e. there exists

at least a stable extension), then x belongs to the in-labelled sets

for each stable labellings, and jArgSemSAT returns True (otherwise it

returns False);

• preferred semantics: jArgSemSAT checks within Algorithm 1 whether x is

not in the set of in-labelled arguments of a found preferred labelling and

returns False in this case. jArgSemSAT returns True otherwise.

iIn the case this happens at the first execution, it means that ∅ is the only preferred extension, cf.
lines 23–24.

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 13

4. System design

jArgSemSAT is a mature application that now exists in four different versions:

(1) Stand-alone application: this guarantees compatibility with the Probo in-

terface for the International Competition on Computational Models of Ar-

gumentation (ICCMA)22;

(2) Dung-O-Matic (DoM)11 compatible library: this ensures compatibility for

works already using DoM such as CISpaces6;

(3) Tweety compatible library12: we proudly support the Tweety project whose

aim is to provide a general framework for implementing and testing knowl-

edge representation formalisms;

(4) ArgTech 13 compatible web-service: we created a Tomcat web-service ex-

porting jArgSemSAT with ArgTech-compatible RESTful interfaces.

jArgSemSAT is freely (MIT licence) available on SourceForgej and as Maven

projects directly accessible from the central repositoryk. It is composed by two jar

files and a war file.

jArgSemSAT-VERSION.jar provides both the stand-alone application compatible

with the Probo interface and the DoM compatible library: we chose not to distribute

the library without the Probo interface to facilitate future experiments also from

different research groups and to improve the awareness in the community of the

ICCMA competition.

Figure 1 depicts the UML graph of the main classes included in the

net.sf.jargsemsat.jarsemsat.alg, namely those implementing the algorithms

for computing complete, grounded, preferred, stable, and semi–stablel extensions.

In particular, two methods are particularly important in CompleteSemantics class:

basicComplete and satlab.

basicComplete computes—depending on the parameter Encoding passed to

it—the propositional formula for complete labellings among all those introduced in

Section 3.1. Instead, satlab is the method which deals with SAT solvers: it requires

as input an object of type SATFormulae, an empty Labelling to store the result

of the computation, and a DungAF.m It returns true if a satisfiable assignment is

found, false otherwise.

jArgSemSATTweety-VERSION.jar is a self-contained, Tweety-compatible, li-

brary: it includes jArgSemSAT-VERSION.jar and provides a Tweety-compatible in-

terface.

jhttps://sourceforge.net/projects/jargsemsat/
khttp://search.maven.org/
lsemi–stable semantics implementation is still experimental and, as such, not described in this
document.
mSATFormulae, Labelling, and DungAF belong to the package
net.sf.jargsemsat.jargsemsat.datastructures.

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

14 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

CompleteSemantics

#basicComplete(af:DungAF,

 encoding:Encoding): SATFormulae

#satlab(cnf:SATFormulae,lab:Labelling,

 af:DungAF): boolean

+extensions(ret:Vector,af:DungAF,

 enc:Encoding,arg:String,

 firstonly:boolean): boolean

+credulousAcceptance(arg:String,

 af:DungAF,

 enc:Encoding,

): boolean

+skepticalAcceptance(arg:String,

 af:DungAF,

 enc:Encoding,

): boolean

+someExtension(ret:Labelling,

 af:DungAF,enc:Encoding,

): boolean

SemiStableSemantics

+extensions(ret:Vector,af:DungAF,

 enc:Encoding,arg:String,

 firstonly:boolean): boolean

+credulousAcceptance(arg:String,

 af:DungAF,

 enc:Encoding,

): boolean

+skepticalAcceptance(arg:String,

 af:DungAF,

 enc:Encoding,

): boolean

+someExtension(ret:Labelling,

 af:DungAF,enc:Encoding,

): boolean

GroundedSemantics

+extensions(ret:Vector,af:DungAF,

 enc:Encoding,arg:String,

 firstonly:boolean): boolean

+credulousAcceptance(arg:String,

 af:DungAF,

 enc:Encoding,

): boolean

+skepticalAcceptance(arg:String,

 af:DungAF,

 enc:Encoding,

): boolean

+someExtension(ret:Labelling,

 af:DungAF,enc:Encoding,

): boolean

PreferredSemantics

+extensions(ret:Vector,af:DungAF,

 enc:Encoding,arg:String,

 firstonly:boolean): boolean

+credulousAcceptance(arg:String,

 af:DungAF,

 enc:Encoding,

): boolean

+skepticalAcceptance(arg:String,

 af:DungAF,

 enc:Encoding,

): boolean

+someExtension(ret:Labelling,

 af:DungAF,enc:Encoding,

): boolean

StableSemantics

+extensions(ret:Vector,af:DungAF,

 enc:Encoding,arg:String,

 firstonly:boolean): boolean

+credulousAcceptance(arg:String,

 af:DungAF,

 enc:Encoding,

): boolean

+skepticalAcceptance(arg:String,

 af:DungAF,

 enc:Encoding,

): boolean

+someExtension(ret:Labelling,

 af:DungAF,enc:Encoding,

): boolean

Fig. 1. UML diagram of the core components of jArgSemSAT

jArgSemSATWeb-VERSION.war is a self-contained Tomcatn web-service archive

compatible with ArgTecho specifications. This web-service is also available free-of-

nhttp://tomcat.apache.org/
ohttp://ws.arg.tech/

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 15

charge—with best effort SLA—at http://cicero.cs.cf.ac.uk/jArgSemSATWeb/

restapi/argtech/ . Its source code is also freely available.

4.1. Stand-alone application

jArgSemSAT exports the same command line interface of ArgSemSAT, which is a

superset of the Probo interface. In addition to the options discussed in previous

work22, jArgSemSAT allows the user to choose (1) the SAT solver to be used—Sat4j

is the default; and (2) the encoding to use—111100, equivalent to C↔in ∧C↔out, is the

default.

4.2. Dung-O-Matic (DoM) compatible library

jArgSemSAT exports methods whose signature are compatible with Dung-O-

Matic11: those methods encapsulate the code for calling jArgSemSAT with the de-

fault configurations, and on data-structures that reside on memory instead on a

file.

Therefore, the following snippet code:

Vector<String> args

= new Vector<String>();

args.add("a");

args.add("b");

Vector<String []> atts

= new Vector<String []>();

atts.add(new String []{"a", "b"});

new DungAF(args, atts).getStableExts();

is valid if either DoM or jArgSemSAT library is imported.

4.3. Tweety compatible library

Tweety libraries12 implement abstract argumentation reasoning procedures in the

package net.sf.tweety.arg.dung. For instance, Figure 2 depicts a simple piece of

code for creating a Dung’s argumentation framework with two arguments, a, and b,

where a attacks b, and for enumerating its preferred extensions using the Tweety

libraries.

In order to guarantee the full compatibility with the Tweety libraries12, and to

reduce the burden on programmers already using them, jArgSemSATTweety ex-

tends the net.sf.tweety.arg.dung.GroundReasoner,

net.sf.tweety.arg.dung.PreferredReasoner,

and net.sf.tweety.arg.dung.StableReasoner, overriding only the method

computeExtensions in each of them. Therefore, by importing jArgSemSATTweety

and using net.sf.jargsemsat.jArgSemSATTweety.PreferredReasoner instead of

net.sf.tweety.arg.dung.PreferredReasoner, the software will automatically

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

16 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

DungTheory at = new DungTheory ();

at.add(new Argument("a"));

at.add(new Argument("b"));

at.add(new Attack(a,b));

PreferredReasoner r = new PreferredReasoner(at);

System.out.println(r.getExtensions ());

Fig. 2. Creating a simple Dung’s Argumentation Framework using Tweety libraries and enumer-

ating its preferred extensions.

use Algorithm 1 for enumerating preferred extensions. As for the DoM compati-

ble library, jArgSemSAT uses the default configurations only.

4.4. ArgTech compatible web-service

As presented in http://ws.arg.tech/, the ArgTech web-service solver13 for ab-

stract argumentation problems requires a POST message with the following fields:

• arguments, type String Array, e.g. ["A","B", "Arg_1"];

• attacks, type String Array, e.g. ["(A,B)", "(B,Arg_1)"];

• semantics, type String, one of grounded, preferred, stable,

semistablep.

For instance, the following JSon structure

{"arguments":["a","b"],

"attacks":["(a,b)"],

"semantics":"stable"}

is a valid POST request for jArgSemSATWeb. jArgSemSAT is then invoked with the

default configurations only.

5. Evaluation

In this section, we present the result of a large experimental analysis comparing the

performance of jArgSemSAT with respect to ArgSemSAT23, Dung-o-Matic11 and

top ICCMA2015 solvers of tracks related to preferred and stable semantics: namely,

ASPARTIX-D24, Cegartix25, CoQuiAAS9, and LabSATSolver26. To complete the

picture, we also include an analysis on complete extensions in Appendix A.

The aim of this section is to provide a good overview of the performance gap be-

tween the Java-based proposed system and the more efficient C++ implementations

commonly exploited in competitions and academic studies. Moreover, the compar-

ison with Dung-o-Matic (hereinafter DoM), helps to compare the performance of

pTo ensure full compatibility, jArgSemSAT contains an experimental implementation of an algo-
rithm for enumerating semi-stable extensions, see Section 6.

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 17

jArgSemSAT with a Java-based tool that is currently exploited in research-grade

prototypes such as those presented in Refs. 13, 6. Among those, CISpaces6 is now

under analysis for transitioning into commercial products.

5.1. Experimental Setup

The experiments were performed on a cluster with computing nodes equipped with

2.4 Ghz Dual Core AMD OpteronTM processors, 4 GB of RAM and Linux operating

system. A cutoff of 600 seconds (10 minutes) —as in ICCMA2015— was imposed

for solving each problem on a single AF .

jArgSemSAT can exploit any SAT solver that supports the DIMACS format. In

the current version, it comes with the Java-based SAT solver Sat4j20 integrated.

This guarantees the maximum portability of the proposed system, and minimises

the overhead due to external system calls. Therefore, Sat4j is the SAT solver used

by jArgSemSAT in this experimental analysis, unless differently specified. For the

solvers selected according to their ICCMA2015 performance, the latest available ver-

sion has been considered in this analysisq. DoM has been provided with a Probo com-

patible command line interface by reusing part of the code wrote for jArgSemSAT.

For each solver we recorded the overall result: success, crashed, timed-out or ran

out of memory.

Experiments have been conducted on the ICCMA2015 benchmark, which is a

set of 192 randomly generated AF s. They have been generated considering three

different graph models, in order to provide different levels of complexity. More details

can be found on the ICCMA website. Here we considered credulous acceptance

DC-σ, skeptical acceptance DS-σ and extensions enumeration EE-σ problems for

σ ∈ {stable, preferred}, as they are the most computationally difficult problems

among those included in the competition.

Performance are measured in terms of IPC score and Penalised Average Run-

time. The IPC score, borrowed from the planning communityr, is defined as follows.

For each AF , each system gets a score of 1/(1+ log10(T/T
∗)), where T is its execu-

tion time and T ∗ the best execution time among the compared systems, or a score

of 0 if it fails in that case. Runtimes below 1.0 sec get by default the maximal score

of 1.

The Penalised Average Runtime (PAR score) is a real number which counts

(i) runs that fail to solve the considered problem as ten times the cutoff time

(PAR10) and (ii) runs that succeed as the actual runtime. PAR scores are com-

monly used in automated algorithm configuration, algorithm selection, and portfo-

lio construction28 because using them allows runtime to be considered while still

placing a strong emphasis on high instance set coverage.

qSolvers have been retrieved in September 2015 from the corresponding websites, provided in
Ref. 27.
rhttp://www.icaps-conference.org/index.php/Main/Competitions

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

18 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

5.2. Comparison with the State of the Art of Abstract

Argumentation Solvers

Table 3. Performance achieved by jArgSemSAT, and the top three participants of
the corresponding ICCMA2015 tracks on preferred semantics. Results are shown
in terms of IPC score (maximum achievable is 192.0), PAR10 and percentages of
success, and ordered according to PAR10. ICCMA15 ranking is also reported.

DC-PR

Solver ICCMA15 Rank IPC score PAR10 % Success

ArgSemSAT 1 164.7 3.2 100.0

LabSATSolver 2 167.9 3.4 100.0

jArgSemSAT 135.4 30.7 100.0

CoQuiAAS 3 186.4 63.6 98.9

DS-PR

Solver ICCMA15 Rank IPC score PAR10 % Success

ArgSemSAT 1 171.2 5.9 100.0

Cegartix 2 161.2 7.9 100.0

LabSATSolver 3 171.0 12.6 100.0

jArgSemSAT 136.9 40.4 100.0

EE-PR

Solver ICCMA15 Rank IPC score PAR10 % Success

Cegartix 1 157.8 15.2 100.0

ArgSemSAT 2 147.7 66.1 99.5

jArgSemSAT 122.7 194.2 97.9

CoQuiAAS 3 172.9 218.2 96.9

This set of experiments focuses on assessing the performance gap between the

proposed jArgSemSAT, ArgSemSAT and the top three solvers of the ICCMA2015

stable and preferred semantics tracks.

Table 3 shows the results, in terms of IPC score, PAR10 and percentage of

successfully analysed frameworks, of the performed comparison on the preferred

semantics tracks. Results of stable semantics tracks are reported in Table 4.

According to results shown in Table 3 and Table 4, we can safely state that

jArgSemSAT is an off-the-shelf and ready-to-use efficient solver for computationally

complex abstract argumentation problems. In terms of AF s successfully analysed,

jArgSemSAT shows performance that are very similar to ArgSemSAT and to the

winner of the considered tracks, though it is slower according to PAR10 and IPC

score. Tables 3 and 4 also allow one to identify the performance gain given by the

C++ implementation. Admittedly, ArgSemSAT is faster than jArgSemSAT; however,

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 19

the performance gap is not critical.

Table 4. Performance achieved by jArgSemSAT, ArgSemSAT, and the top three
participants of the corresponding ICCMA2015 tracks on stable semantics. Results
are shown in terms of IPC score (maximum achievable is 192.0), PAR10 and

percentages of success, and ordered according to PAR10. ICCMA15 ranking is
also reported. The provided ordering and the ICCMA15 ranking differ for DC-ST,
due to close performance and a slightly different hardware configuration; and for

DS-ST due to a bugfix.

DC-ST

Solver ICCMA15 Rank IPC score PAR10 % Success

ASPARTIX-D 1 183.2 1.7 100.0

LabSATSolver 3 186.7 1.7 100.0

ArgSemSAT 2 172.5 2.7 100.0

jArgSemSAT 138.1 30.3 100.0

DS-ST

Solver ICCMA15 Rank IPC score PAR10 % Success

ASPARTIX-D 1 173.3 2.6 100.0

ArgSemSAT 7 150.8 11.2 100.0

LabSATSolver 2 138.0 18.6 100.0

jArgSemSAT 125.1 42.0 100.0

CoQuiAAS 3 180.2 65.7 99.0

EE-ST

Solver ICCMA15 Rank IPC score PAR10 % Success

ASPARTIX-D 1 172.6 5.4 100.0

ArgSemSAT 2 144.7 51.3 99.5

jArgSemSAT 122.9 82.9 99.5

CoQuiAAS 3 184.1 135.0 97.9

According to the results shown in Tables 3 and 4, jArgSemSAT is comparable

with the state of the art of solvers for abstract argumentation problems. Only in

the DC-ST and DS-PR tracks jArgSemSAT is not among the best three considered

solvers.

5.3. Comparison with the State of the Art of Off-the-Shelf Solvers

This analysis aims at comparing jArgSemSAT with the only available Java-based,

off-the-shelf solver DoM.

Compared to the existing off-the-shelf implementation, DoM, jArgSemSAT sta-

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

20 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

Table 5. Performance achieved by jArgSemSAT and DoM on the cor-
responding ICCMA2015 tracks. Results are shown in terms of IPC
score (maximum achievable is 192.0), PAR10 and percentages of suc-
cess. “–” indicates that the solver does not support the considered
problem for the given semantic.

Track IPC score (192.0) PAR10 % Success

jArg DoM jArg DoM jArg DoM

DC-PR 192.0 – 30.7 – 100.0 –

DS-PR 192.0 – 40.4 – 100.0 –

EE-PR 187.7 31.5 194.2 4332.1 97.9 28.1

Track IPC score (192.0) PAR10 % Success

jArg DoM jArg DoM jArg DoM

DC-ST 192.0 – 30.3 – 100.0 –

DS-ST 192.0 – 41.9 – 100.0 –

EE-ST 190.0 31.6 82.9 4331.6 99.5 28.1

tistically significantly outperformss DoM in both considered EE-σ problems in terms

of runtime (WSRT, p < 0.05), cf. Table 5. It is also noticeable the fact that DoM

is able to successfully analyse a small number of benchmark AF s. Interestingly, we

observed that DoM is the only system—among considered—that does not show a

statistically significant difference (WSRT, p = 0.90) in the CPU-time required for

enumerating stable and preferred extensions of a given AF . Moreover, it is worth

noting that DoM demonstrated to be very sensitive to the structure of the AF s

to solve. Specifically, it did not solve—with respect to the considered enumeration

problems—any of the graphs generated by using the “GroundedGenerator”. Such

graphs are characterised by a very large grounded extension and a large number of

nodes.

5.4. Importance of the SAT Solver

This analysis investigates the impact of different SAT solvers on the performance

of jArgSemSAT. Specifically, we considered the Java-based SAT solver Sat4j—which

guarantees high portability and easy usage— and glucose3.019 that is written in

C++. It should be noted that Sat4j can keep the learned constraints between two

satisfiability checks, in order to exploit the gained knowledge in subsequent calls on

very similar CNFs. For the sake of modularity, and for providing a more objective

comparison, this feature is not exploited in the jArgSemSAT framework.

We are aware that the exploitation of a C++ software can pose some strong

portability issues, mainly due to compilers and libraries, but C++ solvers are gen-

sIn the following we rely on the Wilcoxon Signed-Rank Test (WSRT) as a paired difference test
to establish statistically significant difference29.

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 21

Table 6. Performance achieved by jArgSemSAT ex-
ploiting either Sat4j or glucose3.0 on the ICCMA2015
benchmark. For the sake of comparison, also the per-
formance of ArgSemSAT are provided. Results are
shown in terms of IPC score (maximum achievable
is 192.0), percentages of success, percentages of AF s

in which the system has been the fastest and PAR10.
Values in bold indicate the best results.

jArgSemSAT ArgSemSAT

Sat4j glucose3.0

IPC score 151.2 146.0 184.4

% success 97.9 99.5 99.5

% best 13.5 9.9 65.6

PAR10 194.2 81.7 66.1

erally believed to be faster than corresponding Java-based systems. Therefore, here

we are interested in measuring such performance gap, in order to make jArgSemSAT

users aware of the importance of the solver. However, it should be noted that Sat4j

has been included in the overall jArgSemSAT framework, while glucose3.0 has to be

executed through PIPE communication system among processes.

For stressing the importance of SAT solvers, thus obtaining a better understand-

ing of their impact on jArgSemSAT performance, we considered the empirically most

computationally expensive tasks. According to the results shown in Table 3 and Ta-

ble 4, the problem of enumerating the preferred extensions (EE-PR) of a given AF

requires the largest amount of CPU-time. This can be easily derived by the PAR10

scores and the percentage of successfully analysed AF s by the considered solvers.

Table 6 shows the results of the comparison between jArgSemSAT exploiting the

Java-based Sat4j solver and jArgSemSAT using the C++ glucose3.0 SAT solver.

For the sake of comparison, also the performance of the ArgSemSAT system are

shown. Interestingly, results shown in Table 6 seem to indicate that the use of glu-

cose3.0 does not provide a remarkable performance improvement. In particular, the

exploitation of the external C++ solver has a detrimental effect on the performance

of jArgSemSAT in terms of IPC score and number of times the approach has been

the fastest. However, when a closer look to the observed performance is taken, an in-

teresting pattern emerges. Surprisingly, the performance of considered SAT solvers

are not directly related to the number of preferred extensions, i.e. there is no direct

relation between the number of times the solver is called by jArgSemSAT and the

runtime. Furthermore, Sat4j improves the performance of jArgSemSAT on AF s that

can be solved in less than—approximately—50 CPU-time seconds; on more com-

plex AF s, the use of glucose3.0 is usually beneficial. Mainly because of that, the

Wilcoxon test indicates that the performance of the compared systems are signifi-

cantly different (WSRT, p = 0.01). The ability of glucose3.0 to handle empirically

complex AF s, is confirmed by the fact that the use of glucose3.0 allows jArgSemSAT

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

22 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

to solve, within the given time, a few more AF s from the considered ICCMA2015

benchmark.

6. Conclusion

In this paper we present jArgSemSAT, an efficient off-the-shelf solver for ab-

stract argumentation problems. In the previous sections we give evidence of how

jArgSemSAT not only is compatible with the current off-the-shelf solver, namely

Dung-O-Matic11, and with the Tweety libraries12; not only exists in a web-service

version compatible with ArgTech technologies13—and we made it freely available

at http://cicero.cs.cf.ac.uk/jArgSemSATWeb/restapi/argtech/—; but it is

among the best solvers in particular for most of the tracks of the ICCMA2015 com-

petition associated to the two semantics with highest computational complexity,

namely stable and preferred semantics. As discussed in Section 5.4, the choice of

the oracle can significantly impact the performance of a solver. This is true not only

for the proposed jArgSemSAT solver, but also for competitors. Indeed, as noticed by

one of the reviewers, it would be interesting how other systems such as CoQuiAAS

would perform with a more powerful MSS enumerator, such as the one proposed in

Ref. 30.

Currently, jArgSemSAT is used within CISpaces6 that has been our main use-

case. CISpaces (Collaborative Intelligence Spaces) is a tool mostly written in Java—

only the GUI is written in Python—to help analysts in acquiring, evaluating and

interpreting information. Indeed, the aim of intelligence analysis is to make sense of

information that is often conflicting or incomplete, and to weigh competing hypothe-

ses that may explain a situation. This imposes a high cognitive load on analysts, and

there are few automated tools to aid them in their task. CISpaces assists analysts

in reasoning with different types of evidence: analysts are supported in structuring

evidence using argumentation schemes, and in identifying plausible hypotheses via

the computation of preferred extensions.

By adopting jArgSemSAT, CISpaces now computes the preferred extensions of

average analysis almost instantaneously: before, using Dung-O-Matic, it required

60 seconds or more. This was becoming a serious impediment to the adoption of

CISpaces for training new analysts—its main goal—and it was listed as one of the

improvements needed to be addressed before moving the project towards a commer-

cial transition. After the excellent performance of ArgSemSAT at ICCMA2015, we

decided to re-code it in Java to ease the integration. This also satisfied the other re-

quirement to make it available as a replacement for Dung-O-Matic and integrate it

within the Tweety libraries—both written in Java. Finally, it also greatly simplified

the task of producing a web-service interface.

Moreover, jArgSemSAT allows CISpaces to use its probabilistic argumentation

engine in real analysis. Indeed, CIspaces includes a probabilistic argumentation

engine31,32 that heavily resides on preferred extensions computed on probabilistic

manipulation of AF s. Therefore, the preferred extension enumeration solver needs

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 23

to be invoked an exponential number of times.

As discussed in Section 3.3 of Li’s work32, when an argumentation frame-

work is analysed from a probabilistic standpoint, it is necessary to know the

semantics extensions of all the possible combinations of sub-graphs. Therefore,

for a simple argumentation framework with two arguments a, and b, this re-

quires to enumerate the semantics extensions of the frameworks: 〈∅, ∅〉, 〈{a}, ∅〉,

〈{b}, ∅〉, 〈{a,b}, ∅〉, 〈{a,b}, {〈a,b〉}〉, 〈{a,b}, {〈b,a〉}〉, 〈{a,b}, {〈a,b〉, 〈b,a〉}〉,

〈{a}, {〈a,a〉}〉, 〈{a,b}, {〈a,a〉}〉, 〈{a,b}, {〈a,a〉, 〈a,b〉}〉, 〈{a,b}, {〈a,a〉, 〈b,a〉}〉,

〈{a,b}, {〈a,a〉, 〈a,b〉, 〈b,a〉}〉, 〈{b}, {〈b,b〉}〉, 〈{a,b}, {〈b,b〉}〉,

〈{a,b}, {〈b,b〉, 〈a,b〉}〉, 〈{a,b}, {〈b,b〉, 〈b,a〉}〉, 〈{a,b}, {〈b,b〉, 〈a,b〉, 〈b,a〉}〉,

〈{a,b}, {〈a,a〉, 〈b,b〉}〉, 〈{a,b}, {〈a,a〉, 〈b,b〉, 〈a,b〉}〉,

〈{a,b}, {〈a,a〉, 〈b,b〉, 〈b,a〉}〉, 〈{a,b}, {〈a,a〉, 〈b,b〉, 〈a,b〉, 〈b,a〉}〉.

In order to compute the results for those probabilistic approaches, semantics

extensions must be computed exhaustively for all the possible sub-graphs. While

there is some work in the dynamics in abstract argumentation (e.g. Ref. 33) to pro-

duce efficient algorithms for reusing partially computed results, possibly exploiting

the concept of Input/Output multipoles34, efficient algorithms for computing such

results are surely needed.

In the case of CISpaces, while Dung-O-Matic limited the use of the probabilistic

argumentation engine to toy examples of less than ten arguments, and still requiring

between 30-90 seconds, jArgSemSAT makes it available for real analysis involving

up to 50/60 arguments with solutions within 10 seconds.

Therefore, jArgSemSAT has positively contributed to push the research grade

prototype CISpaces towards a plan for transitioning into a commercial product.

Indeed, jArgSemSAT helped CISpaces to receive positive qualitative feedback from

trained analysts chosen to evaluate it.

The future of jArgSemSAT, in our view, lays in supporting all the research com-

munity to build and exploit argumentation-based tools. That is the reason that

motivated us in providing a free-of-charge, but clearly with best-effort only SLA,

web-service interface to jArgSemSAT. From a technical perspective, we need to ulti-

mate the technical documentation and we plan to include support for the remaining

semantics, notably semi-stable2—that is already supported in an experimental, non-

optimised version.

We will also create a web-based interface for goal-driven manipulation and eval-

uation of AF s. Currently, most of the web-based interfaces to argumentation tools,

e.g. OVAt, TOASTu, Aspartixv, Conargw, allow a user first to prepare an argumen-

tation knowledge base, and then to run a solver on it. However, they do not provide

“versioning” support: a user needs to manually keep track of the correspondence

thttp://ova.arg-tech.org/
uhttp://toast.arg-tech.org/
vhttp://rull.dbai.tuwien.ac.at:8080/ASPARTIX/index.faces
whttp://www.dmi.unipg.it/conarg/

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

24 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

between its action on the knowledge base and the effects on the computed exten-

sions. Moreover, they do not provide “strategical” support: a user aiming at having

a specific argument accepted has no guidance on how to achieve such a goal. The

tool we plan to build will prove itself very useful for researchers on dynamics and

argumentation35,36,34 and more broadly for the entire argumentation community.

Acknowledgments

The authors thank (in alphabetical order) Prof. Chris Reed and Dr. Mark

Snaith—University of Dundee—for their support in ensuring compatibility be-

tween jArgSemSAT and existing technologies at ArgTech. Moreover, we thank

Dr. Matthias Thimm—Universität Koblenz-Landau—for his support in integrat-

ing jArgSemSAT with Tweety, and Dr. Alice Toniolo—University of Aberdeen—for

integrating jArgSemSAT within CISpaces.

The authors would like to acknowledge the use of the University of Huddersfield

Queensgate Grid in carrying out this work.

The authors also thank the anonymous reviewers for their helpful comments.

References

1. P. M. Dung, On the Acceptability of Arguments and Its Fundamental Role in Non-
monotonic Reasoning, Logic Programming, and n-Person Games, Artificial Intelli-
gence 77(2) (1995) 321–357.

2. M. Caminada, Semi-Stable Semantics, in Proceedings of the 1st International Confer-
ence on Computational Models of Arguments (COMMA 2006) (Liverpool, UK, 2006),
pp. 121–130.

3. P. M. Dung, P. Mancarella and F. Toni, A dialectic procedure for sceptical,
assumption-based argumentation, in Prooceedings of the 1st International Conference
on Computational Models of Arguments (COMMA 2006)2006, pp. 145–156.

4. P. Baroni, M. Giacomin and G. Guida, SCC-recursiveness: a general schema for argu-
mentation semantics, Artificial Intelligence 168(1-2) (2005) 165–210.

5. N. Tamani, P. Mosse, M. Croitoru, P. Buche, V. Guillard, C. Guillaume and
N. Gontard, An argumentation system for eco-efficient packaging material selection,
Computers and Electronics in Agriculture 113 (apr 2015) 174–192.

6. A. Toniolo, T. J. Norman, A. Etuk, F. Cerutti, R. W. Ouyang, M. Srivastava, N. Oren,
T. Dropps, J. A. Allen and P. Sullivan, Agent Support to Reasoning with Different
Types of Evidence in Intelligence Analysis, in Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015)2015, pp.
781–789.

7. P. Baroni, M. Caminada and M. Giacomin, An introduction to argumentation seman-
tics, Knowledge Engineering Review 26(4) (2011) 365–410.

8. P. E. Dunne and M. Wooldridge, Complexity of abstract argumentation, in Argumen-
tation in AI (Springer-Verlag, 2009) pp. 85–104.

9. J. Lagniez, E. Lonca and J. Mailly, Coquiaas: A constraint-based quick abstract ar-
gumentation solver, in 27th IEEE International Conference on Tools with Artificial
Intelligence, (ICTAI 2015)2015, pp. 928–935.

10. M. Thimm, S. Villata, F. Cerutti, N. Oren, H. Strass and M. Vallati, Summary report

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 25

of the first international competition on computational models of argumentation, AI
Magazine (2015).

11. M. Snaith, J. Devereux, J. Lawrence and C. Reed, Pipelining argumentation technolo-
gies., in Proceedings of the 3rd International Conference on Computational Models of
Arguments (COMMA 2010)2010, pp. 447–453.

12. M. Thimm, Tweety - a comprehensive collection of java libraries for logical aspects of
artificial intelligence and knowledge representation, in Proceedings of the 14th In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR’14)July 2014.

13. F. Bex, J. Lawrence, M. Snaith and C. Reed, Implementing the argument web, Com-
munications of the ACM 56 (oct 2013) p. 66.

14. F. Cerutti, M. Vallati and M. Giacomin, jargsemsat: An efficient off-the-shelf solver for
abstract argumentation frameworks, in Proceedings of The 15th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR) (AAAI, 2016).

15. P. Baroni, F. Cerutti, P. E. Dunne and M. Giacomin, Automata for Infinite Argumen-
tation Structures, Artificial Intelligence 203 (may 2013) 104–150.

16. M. Caminada, On the Issue of Reinstatement in Argumentation, in Proceedings of the
10th European Conference on Logics in Artificial Intelligence (JELIA 2006)2006, pp.
111–123.

17. F. Cerutti, P. E. Dunne, M. Giacomin and M. Vallati, Computing Preferred Extensions
in Abstract Argumentation: A SAT-Based Approach, in TAFA 2013 Lecture Notes in
Computer Science 8306 (Springer-Verlag Berlin Heidelberg, 2014) pp. 176–193.

18. M. Caminada and D. M. Gabbay, A Logical Account of Formal Argumentation, Studia
Logica (Special issue: new ideas in argumentation theory) 93(2–3) (2009) 109–145.

19. G. Audemard and L. Simon, Lazy clause exchange policy for parallel sat solvers, in
Theory and Applications of Satisfiability Testing–SAT 2014 2014 pp. 197–205.

20. D. Le Berre and A. Parrain, The Sat4j library, release 2.2 system description, Journal
on Satisfiability, Boolean Modeling and Computation 7(2010) (2010) 59–64.

21. N. Eén and N. Sörensson, An extensible sat-solver, in Theory and Applications of Sat-
isfiability Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure,
Italy, May 5-8, 2003 Selected Revised Papers2003, pp. 502–518.

22. F. Cerutti, N. Oren, H. Strass, M. Thimm and M. Vallati, A Benchmark Framework for
a Computational Argumentation Competition, in Proceedings of the 5th International
Conference on Computational Models of Argument (COMMA 2014)2014, pp. 459–460.

23. F. Cerutti, M. Giacomin and M. Vallati, ArgSemSAT: Solving Argumentation Prob-
lems Using SAT, in Proceedings of the 5th International Conference on Computational
Models of Argument (COMMA 2014)2014, pp. 455–456.

24. S. A. Gaggl and N. Manthey, Aspartix-d: Asp argumentation reasoning tool-dresden,
in System Descriptions of the First International Competition on Computational Mod-
els of Argumentation (ICCMA15)2015.

25. W. Dvorák, M. Järvisalo, J. P. Wallner and S. Woltran, Cegartix: A sat-based argu-
mentation system, in Pragmatics of SAT Workshop (POS)2012.

26. C. Beierle, F. Brons and N. Potyka, A software system using a sat solver for rea-
soning under complete, stable, preferred, and grounded argumentation semantics, in
KI 2015: Advances in Artificial Intelligence: 38th Annual German Conference on AI ,
eds. S. Hölldobler, M. Krötzsch, R. Peñaloza and S. Rudolph2015, pp. 241–248.

27. M. Thimm and S. Villata, System Descriptions of the First International Competition
on Computational Models of Argumentation (ICCMA’15), CoRR abs/1510.05373
(2015).

28. H. H. Hoos, Automated algorithm configuration and parameter tuning, in Autonomous

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

26 Federico Cerutti, Mauro Vallati, Massimiliano Giacomin

search (Springer, 2012) pp. 37–71.
29. F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin 1(6)

(1945) 80–83.
30. C. Menćıa, A. Previti and J. Marques-Silva, Literal-based MCS extraction, in Proceed-

ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 20152015, pp. 1973–1979.

31. H. Li, N. Oren and T. Norman, Probabilistic Argumentation Frameworks, in Theorie
and Applications of Formal Argumentation Lecture Notes in Computer Science 7132
(Springer Berlin Heidelberg, 2012) pp. 1–16.

32. H. Li, Probabilistic Argumentation, PhD thesis, U. Aberdeen2015.
33. C. Cayrol, F. D. de Saint-Cyr and M.-C. Lagasquie-Schiex, Change in abstract ar-

gumentation frameworks: Adding an argument, J. Artif. Int. Res. 38 (May 2010)
49–84.

34. P. Baroni, G. Boella, F. Cerutti, M. Giacomin, L. van der Torre and S. Villata, On the
Input/Output behavior of argumentation frameworks, Artificial Intelligence 217(0)
(2014) 144—-197.

35. B. Liao, L. Jin and R. C. Koons, Dynamics of argumentation systems: A division-based
method, Artificial Intelligence 175 (jul 2011) 1790–1814.

36. R. Baumann, Splitting an Argumentation Framework, in Proceedings of the 11th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR
2011)2011, pp. 40–53.

Appendix A. Experimental Evaluation for Complete Extensions

September 22, 2016 11:14 WSPC/INSTRUCTION FILE main

An Efficient Java-Based Solver for Abstract Argumentation Frameworks: jArgSemSAT 27

Table 7. Performance achieved by jArgSemSAT, ArgSemSAT, and the top three
participants of the corresponding ICCMA2015 tracks on complete extensions. Re-
sults are shown in terms of IPC score (maximum achievable is 192.0), PAR10 and
percentages of success, and ordered according to PAR10. ICCMA15 ranking is
also reported.

DC-CO

Solver ICCMA15 Rank IPC score PAR10 % Success

ArgSemSAT 1 179.0 2.5 100.0

LabSATSolver 3 182.0 2.8 100.0

ASPARTIX-D 2 171.2 3.1 100.0

jArgSemSAT 145.6 15.5 100.0

DS-CO

Solver ICCMA15 Rank IPC score PAR10 % Success

LabSATSolver 2 179.8 1.1 100.0

ASGL 1 191.5 2.3 100.0

ConArg 3 169.1 3.9 100.0

ArgSemSAT 4 161.0 4.5 100.0

jArgSemSAT 148.6 14.5 100.0

EE-CO

Solver ICCMA15 Rank IPC score PAR10 % Success

ASPARTIX-D 1 175.8 8.0 100.0

CoQuiAAS 3 181.3 46.1 99.4

jArgSemSAT 114.6 215.7 97.4

ArgSemSAT 2 131.2 254.0 96.4

Table 8. Performance achieved by jArgSemSAT and DoM on the cor-
responding ICCMA2015 tracks. Results are shown in terms of IPC
score (maximum achievable is 192.0), PAR10 and percentages of suc-
cess. “–” indicates that the solver does not support the considered
problem for the given semantic.

Track IPC score (192.0) PAR10 % Success

jArg DoM jArg DoM jArg DoM

DC-CO 192.0 – 15.5 – 100.0 –

DS-CO 192.0 – 14.5 – 100.0 –

EE-CO 180.1 39.3 215.7 4325.0 97.4 28.1

