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INTRODUCTION

Crustal structure, which can vary greatly over relatively short
length scales depending on the tectonic setting, has the potential
to significantly influence the data used to infer the deeper fea-
tures of the Earth. In particular, commonly implemented tele-
seismic methods are sensitive to crustal velocity structure but are
invariably incapable of resolving it. Moho depth has a first-order
effect on travel-time residuals of teleseismic body waves (>1 s
variation; e.g.,Waldhauser et al., 2002); and, for typical Rayleigh-
wave periods of <150 s, the crust can contribute 50% or more
to the surface-wave-derived velocity variations (Ritsema et al.,
2004; Artemieva, 2011). Crustal structure can also significantly
affect the correct extraction of radial anisotropy in surface-wave
studies (Ferreira et al., 2010; Panning et al., 2010). The use of a
high-resolution crustal model thus has the potential to markedly
enhance studies of the mantle.

There are a number of global crustal models in circulation,
for instance CRUST5.1 (Mooney et al., 1998), CRUST2.0
(Bassin et al., 2000), and CRUST1.0 (Laske et al., 2013). These
may lack the resolution required for detailed local seismic studies,
especially where there are significant lateral variations in crustal
structure across short length scales (e.g., at ocean–continent tran-
sitions; Marone and Romanowicz, 2007). Moreover, global com-
pilations often require assumptions regarding local geology to
extrapolate structure to regions of poor coverage.

The goal of this contribution is to present a unified 3D
crustal model of the Canadian shield. The new model pre-
sented here, CAN-HK, utilizes new passive broadband deploy-
ments in the region (Eaton et al., 2005; Bastow, Kendall, et al.,
2011; Bastow et al., 2015). For several key tectonic features of
the Canadian shield (Fig. 1), CAN-HK shows striking devia-
tions in crustal thickness (>10 km) and predicted teleseismic
body-wave travel times (up to 1.5 s) compared to CRUST1.0.
CAN-HK can thus be used either as part of a regional starting
model or as a crustal correction for a variety of studies from the
crust to upper and lower mantle. The model is particularly ap-
posite because the footprint of the Transportable Array com-

ponent of USArray is adjacent to, and in places overlapping
with, our study region. The model can therefore be incorpo-
rated into detailed, continent-wide investigations of the whole
of North America.

DATA AND METHOD

We combine broadband seismic data from the Portable
Observatories for Lithospheric Analysis and Research Investi-
gating Seismicity (POLARIS) network (Eaton et al., 2005), the
Canadian High Arctic Seismic Monitoring Experiment
(CHASME; Darbyshire, 2003), and the Canadian National
Seismic Network (CNSN). Data from temporary deployments
associated with the Hudson Bay Lithospheric Experiment
(HuBLE) (e.g., Thompson et al., 2010, 2011; Bastow, Kendall,
et al., 2011; Bastow, Thompson, et al., 2011; Pawlak et al.,
2011; Steffen et al., 2012; Bastow et al., 2015) are also used.
In total, 134 broadband seismic stations contribute to the
CAN-HK crustal model, providing unparalleled coverage and
resolution for the Canadian shield (Fig. 1). The results pre-
sented in this study are all new measurements performed in a
uniform manner, removing potential bias from amalgamating
the results of previous studies using differing processing flows
or parameters.

Receiver functions (RFs) are produced using the extended
time multitaper approach of Helffrich (2006) with a low-pass
cos2 taper that is equal to zero above 1 Hz. After RFs were
visually inspected to check for signal causality and instances
of unstable deconvolution were removed, a total of 7175 make
up the final dataset.

The H!κ stacking method (Zhu and Kanamori, 2000), a
simple and commonly used technique for determining crustal
properties, is implemented to determine the thickness (H ) and
bulk VP=V S ratio (κ). The method involves a grid search over
plausible values of H and VP=V S for a layer over a half-space,
stacking amplitude along predicted moveout curves for the
directMoho Ps phase and subsequent reverberations (PpPs and
PpSs" PsPs; Fig. 2) using all data from a given station. The
parameters that provide the best fit to the data lead to a maxi-
mum in stacking amplitude. Results in this study assume a
crustal VP of 6:5 km=s, a common value for cratonic studies
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such as this (e.g., Nair et al., 2006; Thompson et al., 2010),
with amplitudes being stacked linearly along predicted move-
out curves using weights of 0.5, 0.3, and 0.2 for the Ps, PpPs,
and PpSs" PsPs, respectively (Zhu and Kanamori, 2000;
Thompson et al., 2010). Models produced with a range of as-
sumed crustal P-wave velocities (6:3–6:7 km=s) and with dif-
ferent weights (0.7, 0.2, and 0.1) are also provided (see Ⓔ
electronic supplement to this article). These results can be
combined to form different models if required, but we prefer
to present results with a uniform crustal VP .

Because of the remote nature of the stations producing little
cultural noise and the low attenuating characteristics of cratons
in general, data quality is excellent and theH!κ results obtained
from the data are particularly well constrained. The method em-
ployed and subsequent models accurately match the travel times
of the crustal seismic phases, both direct (Ps) and multiply rever-
berated phases (PpPs and PpSs" PsPs); this can be seen clearly
in the stacked RFs for each station in Figure 3. This validates the
fact that CAN-HK can provide accurate crustal travel-time cor-
rections for both P and S waves at typical teleseismic slownesses
and that the results are robust.

Point estimates of crustal thickness and VP=V S ratio for
each station are used to produce a smoothed surface defined
every 1° laterally using the Generic Mapping Tools (GMT;
Wessel and Smith, 1995). All models are provided both as
plain text files and GMT-compatible grid files (seeⒺ the elec-
tronic supplement to this article).

RESULTS

CAN-HK Features
Western Churchill Craton
The H!κ results for the Western Churchill craton have been
presented previously by Thompson et al. (2010). Distinct var-
iations in both crustal thickness and VP=V S ratio were ob-
served across several crustal subdomains of the northern
Hudson Bay region. The thickest crust (∼43 km) is seen be-
neath central and southern Baffin Island; and whereas the crust
of the Western Churchill is of relatively uniform thickness
(∼37 km), contrasts in VP=V S ratio can be seen between
the Hearne domain (>1:75) and the Rae domain (<1:73).
These results suggest a secular change in crustal formation
processes from nonplate tectonic prior to 3.0 Ga toward fully
developed plate tectonics at 1.8 Ga. See Thompson et al.
(2010) for a more in-depth discussion on the implications
and variability of crustal structure in the northern Hudson
Bay region.

Slave Craton
Previous estimates of crustal thickness from within the Slave
craton show a northwest–southeast pattern, with a thickening
trend from ∼37 km in the northwest to ∼42 km in the south-
east (Bank et al., 2000; Davis et al., 2003). A similar pattern is
also evident from the new estimates of crustal thickness
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▴ Figure 1. Key tectonic features of the Canadian shield, includ-
ing Archean crustal domains (Slave, Rae, Hearne, and Superior,
including the Abitibi Greenstone belt, Wyoming), Proterozoic
orogens (Trans-Hudson, Taltson-Thelon, New Quebec, Torngat,
Grenville) and the Mid-Continent rift (MCR). Triangles are the
broadband seismic stations incorporated into the CAN-HK model.
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▴ Figure 2. (a) Simplified ray diagram of crustal phases used in
the H!κ stacking method. (b) Schematic receiver function for the
simple crustal model.

2 Seismological Research Letters Volume 86, Number 5 September/October 2015

SRL Early Edition



presented here (Fig. 4). Mean crustal thickness is 39.1 km across
the Slave craton, consistent with the previous studies. The
crustal thickness estimates provided here are also in good
agreement with constraints from Lithoprobe active source ex-
periments (LITH5.0; Perry et al., 2002). Previous crustal thick-
ness estimates were based purely on controlled-source P-wave
observations or on the arrival time of the Moho Ps phase with-
out taking into account the reverberated phases. Hence, the bulk
VP=V S ratio results presented here are some of the first for the
Slave craton. The mean VP=V S ratio is 1.738, typical for
cratonic crust in general due to it lying below the continental

average (1.768; Christensen, 1996). The northwest–southeast
pattern present in the crustal thickness does not appear to mani-
fest itself strongly in the VP=V S ratios, although some of the
lowest VP=V S ratios (<1:72) do lie toward the southeast of
the Slave network (Fig. 4).

Superior Craton and Environs
Significant variations in both crustal thickness and VP=V S
ratio are evident from within the Superior craton itself and its
adjacent geological terranes (Fig. 5; Grenville orogen, Appala-
chian orogen, Kapuskasing structural zone, Keweenawan
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▴ Figure 3. Stacked receiver functions for each of the stations used in the study grouped by region and plotted in ascending order with
respect to the predicted arrival time of the Moho Ps phase. Black lines are the stacked traces, and only amplitudes above the 2σ
confidence limit are plotted. The number associated with each station is the number of receiver functions contributing to the stacks;
stations that were removed from the final crustal model are labeled with an X in place of the number of receiver functions. The predicted
arrival times of the three crustal phases determined using the best-fitting H and V P = V S ratio for each station are labeled on each trace
using short vertical lines. All stations used in the final model have excellent agreement between the data and predicted times from the
model, highlighting the fact that the CAN-HK model can accurately predict body-wave travel times within the crust for typical teleseismic
slownesses. Ⓔ A color version of this figure is available as Figure S1 in the electronic supplement.
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midcontinent rift). Eaton et al. (2006) and Darbyshire et al.
(2007) presented results using a version of the H!κ method
modified to include semblance-weighted stacking for the Supe-
rior region. Crustal thickness varied from ∼34 to ∼44 km

across most of the region, with anomalously thick crust
(∼44 km) in the region of the Kapuskasing structural zone.
The VP=V S ratio also correlates well with regional geology,
elevated values (>1:80) being associated with areas expected
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▴ Figure 4. Results from the H!κ stacking analysis for the Slave craton. Filled circles are the point estimates from individual stations
(stations with crustal thickness of below 35 km or with a V P # V S ratio < 1:75 are drawn with a white line, black line otherwise) and the
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thickness estimates from the LITH5.0 crustal model (Perry et al., 2002). (right) V P = V S ratio. THO, Trans-Hudson orogen.Ⓔ A color version
of this figure is available as Figure S2.
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▴ Figure 5. Results from the H!κ stacking analysis for the Superior craton region. Geological terranes are the same as those plotted in
Figure 1. Plotting convention follows Figure 4, except that the triangles are USArray stations. Ⓔ A color version of this figure is available
as Figure S3.
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to have a greater mafic component throughout the crust (i.e.,
regions affected by continental rifting or within the Abitibi
Greenstone belt; Figs. 1 and 5). The patterns observed in this
study using the linear H!κ method are broadly consistent
with the findings of the Eaton et al. (2006) and Darbyshire
et al. (2007). The results are also in agreement with data from
the Teleseismic Western Superior Transect (TWiST) experi-
ment, in which crustal thickness estimates range from 38 to
47 km (Angus et al., 2009), and also the LITH5.0 model
of Perry et al. (2002). Stations in the Superior subset from this
study exhibit a mean crustal thickness of 39.9 km, with values
ranging between 32 and 45 km. Thicker crust (>40 km) ap-
pears to be associated with either Proterozoic orogeny (Grenville
orogen) or the midcontinent rift (Fig. 5). The mean VP=V S
ratio is elevated compared to the Slave and Rae domains at
1.758, but it is identical to the Hearne domain, which, much
like the Superior craton, exhibits widespread granite-and-green-
stone geology (Thompson et al., 2010). As in previous studies,
the highest values (>1:80) appear to be associated with the Abi-
tibi Greenstone belt, the Keweenawan midcontinent rift, and

the Central Gneiss belt of the Grenville orogen (exhumed lower
crustal rocks; Eaton et al., 2006; Darbyshire et al., 2007). Away
from these areas, theVP=V S ratio is comparatively low (<1:75),
typical of felsic-to-intermediate cratonic crust.

Comparison with CRUST1.0
CRUST1.0 (Laske et al., 2013), the latest global model provid-
ing estimates of crustal thickness and velocity structure at 1°
intervals, is currently the highest resolution compilation avail-
able. The model incorporates crustal thickness estimates from
previous active and passive-source seismic experiments; and,
where these constraints are unavailable, gravity measurements
are used (Laske et al., 2013). In regions where the CAN-HK
model has good data coverage, CRUST1.0 is also defined by
previous seismic experiments. Despite this, significant discrep-
ancies in crustal thickness remain (Fig. 6). Where the crust is at
its thinnest within the Superior Province, the deviation from
CRUST1.0 is as much 10 km (Fig. 6). Across the majority of the
Slave domain, deviations from CRUST1.0 are less than 5 km.
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2009). Ⓔ A color version of this figure is available as Figure S4.
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The only exception to this is the very southeast of the network,
where CAN-HK crustal thicknesses lie ∼7 km thicker.

Differences in S-wave travel time at each seismic station
incorporated into this study between the CAN-HK model and
the nearest grid point of the CRUST1.0 model, assuming uni-
form Earth structure beneath the crust, are also plotted in Fig-
ure 6. Any discrepancy in S-wave arrival time between the two
models would mean that different crustal corrections would be
derived depending on the choice of model. Figure 6 shows that
differences in the S-wave travel time from a deep teleseismic
event (410 km depth, 65° distance) can be as high as 1 s (Crot-
well et al., 1999). This is significant because previous studies of
the Canadian shield have found travel-time residuals on the
order of $2:5 s (e.g., Frederiksen et al., 2001). Histograms
showing the differences between the models are shown in Fig-
ure 7. Incorrect crustal correction could therefore contaminate
mantle structure in body-wave tomographic inversions and also
lead to incorrect mapping of energy to depth in migration-
based seismic techniques.

The parameters provided in the CAN-HKmodel are inher-
ently dependent on the choice of bulk crustal VP . Variations in
crustal thickness for reasonable estimates of VP (our chosen
range of 6:3–6:7 km=s ) are on the order of $2 km from
our preferred value of 6:5 km=s, meaning that deviations from
CRUST1.0 are relatively insensitive to the assigned value of this
parameter (see Ⓔ the electronic supplement).

Comparison with Continental Scale Studies
New crustal models, herein referred to as the Kao13 and
NACr14 models, respectively, for the North American conti-
nent have been recently presented by Kao et al. (2013) and
Tesauro et al. (2014). The Kao13 model is an S-wave velocity
model produced using ambient noise observations, whereas the

NACr14 model is a P-wave velocity model that uses the U.S.
Geological Survey crustal structure database.

In Figure 8, the variations between the point estimates of
crustal thickness from each station derived in this study are
compared with the thickness of the crystalline crust at the clos-
est node provided in the NACr14 model. As with CRUST1.0,
many of the stations lie within 5 km of the NACr14 estimate
(Fig. 8). However, there are certain stations that again exhibit
significant deviations (10 km or greater).

Comparison with two parameters from the Kao13 model
are shown in Figure 9 (the 50% and 85% increase in VS between
the lower crust and mantle, Z50% and Z85%, respectively; Kao
et al., 2013). Almost all the values in Figure 9a lie above 0 km,
indicating that Z50% lies consistently shallower than our crustal
thickness estimates. As expected, Z85% values lie closer to the
CAN-HK crustal thickness estimates; Z85% values also lie closer
to crustal thickness estimates from CRUST1.0, a feature that
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Kao et al. (2013) uses to justify Z85% as representing the depth
to the ambient noise Moho. Also evident in Figure 9b is a subset
of stations that are centered at −15 km (i.e., Z85% is 15 km
deeper than the CAN-HK crustal thickness). Stations in this
subset are centered in the southeast Superior Province and the
Grenville orogen (see Figs. 1 and 5). It is intriguing that spatially
coherent discrepancies occur beneath these stations given the
high-quality nature of the data used in this study. We speculate
that this subset, not clearly observed in the Z50% comparison,
may well be associated with heterogenous shallow lithospheric
mantle structure, potentially creating complex increases in
S-wave velocity in the top 100 km. This may be in the form
of anisotropy (Levin and Park, 2000), a Hales discontinuity
(Hales, 1969; Lebedev et al., 2009), or the recently observed
Mid-Lithospheric discontinuity (Abt et al., 2010).

A recent study by Postlethwaite et al. (2014) of the entire
Canadian landmass provides estimates of crustal thickness and
VP=V S ratio using a different variant of theH!κ approach to
that used here (semblance-weighted stacking; Eaton et al.,
2006). Also different from the approach used for CAN-HK
(which provides a range of assumed VP values), Postlethwaite
et al. (2014) elect to use a single average value from the nearest
1° node of the CRUST1.0 model. Figure 10 shows the
differences in H and VP=V S ratio for concurrent stations.
All crustal thickness estimates lie within 5 km of each other,
with most stations having a discrepancy of less than 1 km.
Similarly, the VP=V S ratios are also very close (most stations

varying by less than 0.05, although some outliers exceed this).
Given that many of the same stations are incorporated into
these two studies, and the similarity between data analysis tech-
niques, it is unsurprising and reassuring that the single station
results from CAN-HK are in good agreement with those of
Postlethwaite et al. (2014).

CONCLUDING REMARKS

A new, unified a priori crustal model (CAN-HK) has been pro-
duced for the Canadian shield. The model provides compre-
hensive data coverage for the Canadian shield by incorporating
constraints from several passive-source seismic initiatives.
Noteworthy and consistent variations in both crustal thickness
and bulk crustal VP=V S ratio are evident across several key
tectonic features of the North American continent. Predicted
teleseismic body-wave travel-time residuals between CAN-HK
and CRUST1.0 can be as much as ∼1 s. In addition to this,
significant (∼10 km) deviations in crustal thickness between
existing global and continental scale models exist across the
Superior craton and its adjacent terranes. CAN-HK can be
used as a starting model to more detailed crustal investigation
or as correction for larger scale, lower frequency studies.

DATA AND RESOURCES

Portable Observatories for Lithospheric Analysis and Research
Investigating Seismicity (POLARIS), Canadian High Arctic
Seismic Monitoring Experiment (CHASME), and Canadian
National Seismograph Network (CNSN) data were obtained
through the Natural Resources Canada autodrm service
(http://www.earthquakescanada.nrcan.gc.ca/stndon/AutoDRM
/autodrm_req‑eng.php; last accessed June 2010). Data from the
temporary Hudson Bay Lithospheric Experiment (HuBLE)
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seismic deployment will be available through Incorporated
Research Institutions for Seismology in 2016.
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