
This a short version of the paper

Understanding the decline of water storage across the Ramser-Lake Naivasha using satellite-based methods

Understanding the decline of water storage across the Ramser-Lake Naivasha using satellite-based methods

J.L. Awangea,c, E. Forootanb, J. Kuscheb, J.B.K. Kiemac, P.A. Omondid, B. Hecke, K. Fleminga,f, S.O. Ohanyac, R. M. Gonçalvesg

aWestern Australian Centre for Geodesy and The Institute for Geoscience Research, Curtin University, Perth, Australia
bInstitute of Geodesy and Geoinformation, Bonn University, Bonn, Germany
cDepartment of Geospatial and Space Technology, University of Nairobi, Nairobi, Kenya
dIGAD Climate Prediction and Applications Centre (ICPAC), Nairobi, Kenya
eGeodetic Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
fHelmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
gDepartment of Cartography Engineering, Federal University of Pernambuco (UFPE), Geodetic Science and Technology of Geoinformation Post Graduation Program, Recife, PE, Brazil

Abstract

It has been postulated that Lake Naivasha, Kenya, has experienced a rapid decrease (and fluctuations) in its spatial extent and level between the years 2002 to 2010. Many factors have been advanced to explain this, with horticultural and floricultural activities, as well as climatic change, featuring prominently. This study offers a multi-disciplinary approach based on several different types of space-borne observations to look at the problem bedeviling Lake Naivasha, which is a Ramsar listed wetland of international importance. The data includes: (1) Gravity Recovery and Climate Experiment (GRACE) time-variable gravity field products to derive total water storage (TWS) variations within a region covering the Lakes Naivasha and Victoria basins; (2) precipitation records based on Tropical Rainfall Measurement Mission (TRMM) products to evaluate the impact of climate change; (3) satellite remote sensing (Landsat) images to map shoreline changes and to correlate these changes over time with possible causes; and (4) satellite altimetry observations to assess fluctuations in the lake’s level. In addition, data from an in-situ tide gauge and rainfall stations as well as the output from the African Drought Monitor (ADM) model are used to evaluate the results. This study confirms that Lake Naivasha has been steadily declining with the situation being exacerbated from around the year 2000, with water levels falling at a rate of 10.2 cm/yr and a shrinkage in area of 1.04 km2/year. GRACE indicates that the catchment area of 4° × 4° that includes Lake Naivasha loses water at a rate of 1.6 cm/year for the period from August 2002 to May.

Email addresses: J.Awange@curtin.edu.au (J.L. Awange), forootan@geod.uni-bonn.de (E. Forootan)

Preprint submitted to Advances in Water Resources August 15, 2014
2006, and 1.4 cm/year for the longer period of May 2002 to 2010. Examining the ADM outputs also supports our results of GRACE. Between the time periods 2000-2006 and 2006-2010, the lake surface area decreased by 14.43% and 10.85%, respectively, with a corresponding drop in the water level of 192 cm and 138 cm, respectively, over the same periods. Our results show a correlation coefficient value of 0.68 between the quantity of flower production and the lake’s level for the period 2002-2010 at 95% confidence level, indicating the probable impact of anthropogenic activities on the lake’s level drop.

Key words: multi-disciplinary satellite data, lake hydrology, total water storage, Lake Naivasha, climate change, floriculture

1. Introduction

Lake Naivasha (Kenya, Figure 1) is the only freshwater lake in the Great Rift Valley of East Africa in an otherwise soda/saline lake series (Everard et al., 2002). In fact, it is the freshness of the water of Lake Naivasha that is the basis for its diverse ecology (Harper et al., 1990), and in 1995, it was declared as a Ramsar wetlands giving it an international status (see, e.g., Mekonnen et al. 2012). During the years 2002 to 2010, the lake has seen a rapid decline in its extent to the point where questions are being raised in the local media as to whether the lake is dying.

In the last decade, the level of Lake Naivasha has continued to drop with floriculture being blamed for excessive water extraction from the lake and aquifers, and the small holder farms in the upper catchment being blamed for nutrient loadings, leading to outcry in both the local and international media that this Ramsar site could be dying as a result of the very resource that it supports (see, e.g., ILEC, 2005; FWWCC, 2008; Mekonnen and Hoekstra, 2010). For example, Mekonnen and Hoekstra (2010) and Mekonnen et al. (2012) observed that the total virtual water exported in relation to the cut flower industry from the Lake Naivasha basin was 16 Mm3/yr during the period 1996-2005. This total virtual water (m3/yr) in relation to export cut flower and vegetables is obtained by multiplying the trade volumes (tones/yr) by their respective water footprint in Kenya (m3/ton), see e.g., Mekonnen et al., (2012). Other factors that have also been proposed as influencing Lake Naivasha’s water changes include irregular rainfall patterns (Harper et al., 1990), and trade winds (Vincent et al., 1979). All of these discussions, therefore, point to the need for the reliable mapping of the lake and its basin in order to properly understand its dynamics.

Lack of reliable basin mapping techniques has hampered the proper monitoring of its changes, while also not allowing accurate predictions of the likely future situation, despite modelling methods being used to calculate its water balance (see e.g., Becht and Harper, 2002). The situation is compounded by the fact that Lake Naivasha has no surface outlet that could assist in hydrological monitoring, and that changes in its water level occur rapidly, over the order of several meters over just a few months, shifting the shoreline by several meters (Becht et al., 2005).
The emergence of satellite-based methods offers the possibility of providing a broader and more integrated analysis of the lake and its basin. Using time-variable gravity field products of the Gravity Recovery and Climate Experiment (GRACE) mission (T apley et al., 2004), variations in the total water storage (TWS) of the region extending from the Lake Naivasha basin to Lake Victoria is assessed in this study, to determine whether the changes are climatic or human induced. GRACE-TWS products are then compared with soil moisture and separated into its compartments (i.e., precipitation and evaporation) using the African Drought Monitor (ADM) model. Changes in precipitation are further examined by analysing monthly products of the Tropical Rainfall Measurement Mission (TRMM), as well as four in-situ rainfall stations (Naivasha, Narok, Nakuru, and Kisumu), allowing us to determine the proportion of the fluctuations in Lake Naivasha that are related to changes in precipitation during a long-term period (1960 to 2010) and the study period (2002 to 2010). Note that analysing long-term precipitation variations also evaluates the impact of climate variability such as the dominant El Niño-Southern Oscillation (ENSO) phenomenon on the hydrological compartments of TWS variations within the region of study (Omondi et al., 2012; 2013a,b).

The fluctuations in the water level of Lake Naivasha are determined using both ground-based tide-gauge observations and satellite altimetry data (TOPEX/Poseidon and Jason-1). These results are then related to the use of satellite imagery (e.g., Landsat) and change detection techniques to map the shoreline changes of Lake Naivasha, analysing the trend of changes over the study period of interest, and correlating shoreline changes to the proposed causes. Therefore, this study pioneers the use of both space-borne and ground-based observations for monitoring Lake Naivasha.

2. Study Area

Lake Naivasha (00° 40’ S - 00° 53’ S, 36° 15’ E - 36° 30’ E) is the second largest fresh water lake in Kenya with a maximum depth of 8 m. It is situated in the Eastern African Rift Valley at an altitude of 1890 m above sea level and is approximately 80 km northwest of the Kenyan capital, Nairobi. Its basin (Figure 1) lies within the semi-arid belt of Kenya with mean annual rainfall varying from about 60 cm at the Naivasha township to some 170 cm along the slopes of the Nyandarua mountains, with open water evaporation estimated to be approximately 172 cm/year (Becht et al., 2005). Mount Kenya and the Nyandarua Range capture moisture from the monsoon winds, thereby casting a significant rain shadow over the Lake Naivasha basin (Becht et al., 2005). Unlike Lake Victoria which has its highest rainfall during the March-April-May (MAM) wet season (e.g., Awange et al., 2008a, b), the Lake Naivasha basin experiences its highest rainfall period during April-May-June (AMJ). There is also a short rainy season from October to November. The lake’s levels, therefore, follow this seasonal pattern of rainfall cycle, with changes of several meters possible over a few months. Superimposed upon this seasonal behaviour are longer-term
trends, for example, there has been a change in the lake’s water level of 12 m over the past 100 years (Becht et al., 2005).

FIGURE 1

The lake is fed by three main river systems: Gilgil, Malewa and Karati, the last of which only flows during the wet season (see Figure 2). Becht et al. (2005) observed that whereas a small portion of the groundwater evaporates and escapes in the form of fumaroles in the geothermal areas, the remaining water flows into Lakes Magadi and Elmentaita, taking thousands of years to reach them. The basin’s water balance has been calculated from a model based upon long-term meteorological observations of rainfall, evaporation and river inflows (Becht and Harper, 2002). This model reproduced the observed level from 1932 to 1982 with an accuracy of 95% of the observed monthly level, differing by 0.52 m or less (ILEC, 2005). This pattern was, however, noticed to deviate after 1982 and by 1997, the differences had reached 3-4 m (Becht et al., 2005). In fact, the onset of this reduced ability to model the lake’s level coincided with the increase in horticultural and floricultural activities.

In general, three contemporary global water issues can be identified as occurring in this region, namely water scarcity/availability, water quality, and water security. While the focus of this study is on water scarcity/availability, several previous works have focused on the problem of water quality and competition for water resources within the study area (see e.g., Kitaka et. al 2002; Becht, 2007). Although water security issues are a reality in the Lake Naivasha basin, few studies have been done to better understand the underlying conditions. For example, Carolina (2002) asserts that the area of the Lake Naivasha basin is of high economic and political importance to Kenya, and presents a wide variety of economic activities based around the water resources, with many different stakeholders often competing for the water resources.

The flower industry in Kenya has experienced a phenomenal growth, maintaining an average growth rate of 20% per year over the last decade. It is an industry that is the second largest export earner for Kenya, employing 50,000 - 60,000 people directly and 500,000 others indirectly through affiliated services (KFC, 2011). Although flowers are now grown in many areas with temperate climate and an altitude above 1,500 m in Kenya, the region around Lake Naivasha still remains the nation’s main floriculture farming center. The foremost categories of cut flowers exported from Kenya include roses, carnations, statice, alstromeria, lilies and hypericum. Indeed, Kenya is arguably the largest exporter for flowers in the world, supplying over 35% of cut flowers to the world’s largest market - the European Union (KFC, 2011).

FIGURE 2

3. Datasets and Methodology

In Table 1, a complete set of data set used in this study are presented. Data description is presented in our paper.
Table 1: Summary of the data sets used in this study.

<table>
<thead>
<tr>
<th>Data</th>
<th>Period</th>
<th>Time steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRACE</td>
<td>2002.8 - 2010</td>
<td>monthly and 10-days</td>
</tr>
<tr>
<td>Altimetry</td>
<td>1992 - 2003</td>
<td>10-days</td>
</tr>
<tr>
<td>ADM</td>
<td>2002 - 2012</td>
<td>monthly</td>
</tr>
<tr>
<td>TRMM</td>
<td>2002 - 2012</td>
<td>monthly</td>
</tr>
<tr>
<td>In-situ rainfall</td>
<td>1960 - 2010</td>
<td>monthly</td>
</tr>
<tr>
<td>Tide gauge</td>
<td>1985 - 2010</td>
<td>monthly</td>
</tr>
<tr>
<td>Flower export</td>
<td>1990 - 2010</td>
<td>yearly</td>
</tr>
</tbody>
</table>

4. Results and Discussions

4.1. Lake Level Analysis

The computed time series of level changes for Lake Naivasha derived from the T/P observations and in-situ measurements are shown in Figure 4. The T/P observation cover only the period between 1992 and 2003. The calculated satellite altimetry results were noisy at the first step, which may be related to the shallow depth of the lake (i.e., 8 m). To reduce this noise, the altimetry derived levels were smoothed using a moving average filter and interpolated according to the tide gauge time steps. As Figure 4 illustrates, the smoothed monthly altimetry derived levels are comparable to the available tide gauge measurements. We found a significant correlation coefficient of 0.69 between smoothed altimetry data and tide gauge observations (Figure 4,(Bottom)). Figure 4,(Top) confirms that although the lake level has been fluctuating both annually and seasonally over time up to around the year 2000, thereafter, a general downward trend at a rate of -10.2 cm/year before the onset of the 2007 ENSO rains is visible.

4.2. GRACE Analysis

Next, we estimated the changes in water mass over the Lake Naivasha basin as derived from GRACE observations. Because the GRACE-TWS results have a low spatial resolution, we compare two segments, one centred over Lake Victoria (to the west of Lake Naivasha) and the other centred over Lake Naivasha, as shown in Figure 5. The black boxes mark the areas where the GRACE-TWS and TRMM-total rainfall values were inferred. We chose a $4^\circ \times 4^\circ$ degree window as this is the limit to what can be confidently resolved from GRACE. Whereas GRACE is appropriate for areas the size of Lake Victoria (see section 3.1), our intention was to determine if it could still provide some information when comparing the variation of water within the basins of Lakes Naivasha and
Victoria, which in turn may be compared to TRMM data in order to infer the influence of climatic change to the region around Lake Naivasha.

FIGURE 5

Figure 6 (a) shows the TWS changes as described by the three GRACE products considered; CSR, CNES/GRGS and GFZ. Evidently, all GRACE solutions indicate water loss in both Lakes Naivasha and Victoria regions from 2002 to late 2006. The increase in late 2006 is attributable to the ENSO effect, with water loss continuing again after an increase in late 2006-early 2007. Previous studies have demonstrated that the fall in Lake Victoria during that period was due to anthropogenic factors such as the expanded Nalubale dam (see, e.g., Awange et al., 2008a,b; Swenson and Wahr, 2009). Similar findings are shown by the cumulated water as illustrated in Figure 6 (b). The cumulative annual TWS of the Naivasha catchment lost water at a rate of 72 cm/yr from 2003 to May 2006. From January 2007 to December 2009, this loss was 41 cm/yr.

GRACE-TWS (as computed in Section 3) consists of a summation of terrestrial water storage (WS), i.e., related to the catchment, and surface WS, i.e., related to the lake itself. To enhance the interpretation of the GRACE’s results in Figure 6, Lake Naivasha’s surface WS changes are computed using its surface area, as shown with the solid-blue line in Figure 7 (top). To compute the blue line, the surface level changes (Figure 4) are transformed to the spherical harmonic domain and used to generate the surface WS changes time series (e.g., as done in Swenson and Wahr (2009) for the derivation of hydrological trend of the East African lakes). The red line of Figure 7 (top) shows the time series computed for the GFZ GRACE products for the Naivasha region (i.e., Figure 5; the right-hand-side box). Note that the leakage caused by Lake Victoria fluctuations is already removed from the red line, following Swenson and Wahr (2009). The catchment signal (terrestrial WS), shown on the bottom part of the figure as a black line, is the difference between GRACE-TWS (red line) and surface WS (blue line).

From Figure 7, we computed the slope of the blue line from August 2002 to 2010 to determine the trend, obtaining a declining trend of 1.9 cm/year, while the period from May 2006 to 2010 saw a decline of 1.8 cm/year. After removing the signals of Lake Naivasha, the catchment area (black line in Figure 7 (bottom)) loses water at a rate of 1.6 cm/year for the period from August 2002 to May 2006 and 1.4 cm/year from May 2006 to 2010, thus signifying that not only is water lost from the Lake Naivasha but also from its catchment. The loss of water in the catchment could be attributed to floricultural and horticultural activities, and also boreholes providing water to the population that largely depends on the floricultural industry. In the next section, the use of ADM is employed to further enhance the GRACE results.

FIGURE 6

FIGURE 7
4.3. ADM Analysis

The red line in Figure 8 (top) shows the output of the ADM model derived from the right hand side of Eq. ?? compared to GFZ GRACE-TWS, averaged over the Lake Naivasha basin (i.e., Figure 7 (top), the red line). The mean of P for the years 2002 to 2012 was 103.7 mm and the standard deviation was 90.8 mm (maximum P was 645.8 mm). For E, ADM estimated a mean of 62.4 mm with a standard deviation of 20.1 mm (maximum E was 112.7 mm). The ADM-derived P and E are considerably smaller than what Becht et al. (2005) report, i.e., P of between 600 and 1700 mm/year and E of 1700 mm/year. Since the runoff parameter is not available after the year 2000 for Lake Naivasha (see also Ayenew and Becht, 2008) and the fact that Ojiambo et al. (2001) suggest that yearly R is negligible for the lake, we did not include it in our computations.

From the derived patterns, one can see that the ADM model responds more quickly to climatic variations such as ENSO in 2006 (red line in Figure 8 (A)) than the observed GRACE outputs (black line in Figure 8 (A)). Computing a correlation coefficient at 95% level of confidence shows a value of 0.68 between the two outputs, thus giving a reasonable level of agreement (Figure 8 (B)).

Visually comparing GRACE-derived terrestrial WS changes (shown by the black line in Figure 7 (Bottom)) with ADM-integrated soil moisture layers (Figure 8 (C)) reveals a similar pattern. The amplitude of the soil moisture signal is one third of the GRACE terrestrial WS changes. The reason for this inconsistency requires further research. Fitting a linear trend to the soil moisture results shows a TWS loss of 1.4 cm/year for the period from August 2002 to May 2006, and 0.6 cm/year from May 2006 to 2010.

Comparing the modeled precipitation (the green line in Figure 8 (D)) with in-situ precipitation (the cyan line in Figure 8 (D)), shows some inconsistencies, mainly in terms of the differences in the amplitudes between the modeled and in-situ values. A phase difference of one month is also evident between the two data sets. The dark-blue line in Figure 8 (D) represents the amount of evaporation changes for the period of July 2002 to 2012 showing almost steady range when compared to precipitations and soil moisture changes. As a result, one can see that the water capacity corresponding to soil moisture layers and rainfall is declining within the basin.

FIGURE 8

4.4. Rainfall Analysis

From the in-situ rainfall observations, the rainfall regime over the Naivasha basin has seen a downward trend since 1960 (see Figure 9). For instance, Figure 9 (bottom) shows a time series of the annual total (the black line), March-May (MAM, the blue line), June-August (JJA, the red line) and October-December (OND, the green line) rainfall seasons over Naivasha. In this study, we employed both graphical and statistical methods (described in WMO, 1966) to superficially test the significance of the observed trends (see also discussions in Wilks (1995) and Omondi et al. (2012; 2013a)). The data were analysed for
trends using linear regression, and the significance of trends was tested using
the non-parametric Mann-Kendall tau test (Sneyers, 1990). An overview of
the total amount of annual rainfall variation derived from the four stations is
summarized in Figure 9, while their corresponding linear rates are reported on
each graph. However, although the derived long-term linear trend values were
negative, they were not large enough to pass the tau test (see also Omondi et
al., 2013b).

There is also a high degree of variability, within both the wet periods (during
strong El Niño years) and dry periods (during strong La Niña years). Several
studies have investigated the relationship between eastern Africa rainfall and
evolutionary phases of ENSO, and have shown strong relationship. Therefore,
ENSO plays a significant role in determining the monthly and seasonal rainfall
patterns in the East African region (e.g., Ogallo, 1988; Janowiak, 1988; Indeje,
the trends from the rain-gauge stations shown in Figure 9 suggests that the
prolonged rainfall decrease over the catchment during the period 1960 to 2010
might contribute to the drop in the lake’s level. Note that the linear trends for
the period 2002-2010 (Figure 9, bottom) shows sharper decreasing values in all
seasons and in the annual total rainfall than for 1960 to 2010. The result is in
agreement with the variation in TWS as shown by GRACE analysis (Figure 7)
and ADM (Figure 8). In Figure 11, the total amount of rainfall from the in-situ
stations is compared to the GRACE TWS and the soil moisture WS from ADM.

FIGURE 9

Figure 10 illustrates the total rainfall of the catchment and its accumulated
values as described by the TRMM 3B43 product over the 4 × 4 degree windows
defined in Figure 5. The larger rainfall over Lake Victoria is seen both in terms of
the time series, and also in the greater rate of increase in the accumulated values.
Comparatively, while there seems to have been an increase in the precipitation
rate over the Lake Victoria basin after late 2006, there seems to be little change
in the rainfall over the Lake Naivasha basin. Comparing the TRMM results in
Figure 10 with the GRACE results in Figure 6 for period 2002-2010, while no
significant change is visible in the TRMM results, those from GRACE show a
loss of water from the Lakes Naivasha and Victoria basins. This could therefore
mean that the drop in Lake Naivasha’s water level (as is the case for Lake
Victoria) may be more influenced by anthropogenic factors compared to climatic
factors.

FIGURE 10

4.5. Comparing TWS Changes Across Lake Naivasha with Rainfall

Figure 11 compares the accumulated annual TWS over the Naivasha catch-
ment derived from GRACE as well as soil moisture from ADM (Figure 7) with
the total annual rainfall variations derived from the four rainfall stations in Fig-
ure 9. To make the comparison easier, the values for 2003 are set to zero. As a
result, one can see that soil moisture and rainfall are decreasing between 2002 to 2010. For 2006, GRACE still shows that TWS is decreasing, while precipitation increased as a result of ENSO, and soil moisture stays almost steady. The sharper rate of change that the GRACE results exhibit for 2002-2006 might also be related to the correlation of the derived TWS over Naivasha to that of Victoria. After 2006, again all component exhibit declining trends, showing that the impact of the 2006 ENSO has subsided.

FIGURE 11

4.6. Image Analysis

Next, we present the approach undertaken to map the shoreline variations of Lake Naivasha, using satellite images.

Image classification: To validate the results obtained from using GRACE and TRMM data sets, satellite remote sensing and GIS analysis were performed. Landsat imagery of the study area acquired from different epochs was employed and different land use / land cover types were discriminated. The interpretation of Landsat imagery was undertaken using the minimum distance supervised classifier. The overall accuracy of the land use / land cover map was estimated to be 85.0% with a kappa statistic of 0.79. This meets the minimum threshold established by the United States Geological Survey (USGS) classification scheme (Anderson et al., 1976). As an example, the classification results for the first epoch (1989) are shown in Figure 12 (a). The classified image depicts a clear demarcation between land/vegetation and water, hence revealing a clear picture of the shoreline position. The red colour depicts water, yellow represents general vegetation cover while green represent general bare land. There is a significant intrusion onto the northern shoreline by vegetation, indicating a positional change of the shoreline. Figure 12 (b), showing the second epoch examined (1995) shows a significant departure from Figure 12 (a), especially in the north, where vegetation has significantly receded, leaving only scattered traces in contrast to the 1989 image that showed a thick vegetation cover around the same area. There is also a change around Crescent Bay (formerly Crescent Island, see Figure 2). While the 1989 image shows a near excision of the bay from the main lake, the situation is different in the 1995 image. This is because of the general increase in water volume caused by increased rainfall over the same period.

Figure 12 (c) shows that there is an increase in water volume in 2000, due to more rainfall, compared with the preceding maps in Figures 12 (a and b). Crescent Bay has swollen with the south eastern section joined to the main lake to form the original Crescent Island, indicating an increase in water volume. This increase is probably due to the 1997 ENSO rainfall (see also the satellite altimetry results in Figure 4). The traces of vegetation that had infringed the northern part of the lake have fully disappeared by 2000. However, there are some traces of vegetation at the centre of the lake. These might be due to the presence of water lillies in the lake or traces of leaves transported by run-off.
into the lake. Figure 12 (d) shows that the scattered traces of vegetation in
the middle of the lake that were part of the preceding images have disappeared.
However, the Crescent Bay has receded and a section of it is almost cut-off from
the main lake to form an independent lake. There is also a significant change
in the shape of the island when compared to the previous images. The amount
of grassland cover has also increased along the shoreline compared to the 2000
image, indicating a relationship between vegetation and the lake’s surface area.

FIGURE 12

Extraction: It is visually clear from the classified land cover maps above
that there is a perpetual shifting of the Lake Naivasha shoreline between dif-
ferent epochs. Due to the difficulty in quantifying the amount and rate of the
change, and in defining the actual trend through visual interpretation, the ac-
tual position of the shoreline in each epoch was extracted and then compared
to that obtained for the reference year, 1989. This allowed the actual change
and subsequently the rate of change to be estimated.

This was done by digitizing the shoreline from the respective classified images
in a Geographic Information System (GIS) environment using ArcGIS version
9.3. The shorelines from each epoch were then overlaid to reveal the general
change trend. To allow for a detailed analysis, the overlay result was further
divided into five segments as shown in Figure 13. In general, the results show
that there was an increase in water level in Lake Naivasha between 1989 and
1995. This increase continued until 2000, however, the 2006 shoreline shows
a decline in water level between 2000 and 2006. Detailed scrutiny shows that
there was a steady northern (outward) shift of the shoreline from 1989 to the
year 2000, indicating an increase in water level. This was followed by an inward
shift in 2006, indicative of a drop in water level. However, the magnitude of the
shoreline change is not uniform over the different epochs. The lack of uniformity
can be attributed to variations in the local terrain, resulting in, obviously, the
shoreline changing more in flatter terrain as opposed to steeper areas.

FIGURE 13

Shoreline change and variation: The surface area of the lake in each epoch
was computed in the GIS environment. A summary of the changes in the surface
area between different epochs for the different land cover classes, with 1989 as
the reference year, is shown in Table 2, which indicates a direct relationship
between the lake’s level and surface area. The increase in area in 1995 compared
to 1989 (i.e., 14.8%) is represented by an increase in water level (1.19 m). The
situation is even more apparent between 1989 and 2000 where there is an increase
of 20% in surface area and a corresponding increase of 2.33 m in water level.
There was a drop in surface area of the lake between 2000 and 2006 (i.e., a drop
of about 4.7%) and again this is shown by a drop of 1.92 m in the water level
during this period. This general trend is corroborated by results obtained from
both satellite altimetry and GRACE illustrated in Figures 4 and 7, respectively.
Table 2: Summary of the changes in the area of Lake Naivasha and the surrounding bare land and vegetation, with 1989 serving as the reference year (see Figures 12 and 14).

<table>
<thead>
<tr>
<th>Year</th>
<th>Lake area (km²)</th>
<th>Vegetation area (km²)</th>
<th>Bare land area (km²)</th>
<th>Mean Lake level (asl)</th>
<th>Lake area (%)</th>
<th>Vegetation area (%)</th>
<th>Bare land area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>113.67</td>
<td>95.35</td>
<td>174.18</td>
<td>1885.41</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1995</td>
<td>130.47</td>
<td>90.37</td>
<td>162.35</td>
<td>1886.60</td>
<td>14.78</td>
<td>-5.22</td>
<td>-6.89</td>
</tr>
<tr>
<td>2000</td>
<td>136.42</td>
<td>26.70</td>
<td>219.77</td>
<td>1887.74</td>
<td>20.01</td>
<td>-72.00</td>
<td>26.17</td>
</tr>
<tr>
<td>2006</td>
<td>130.07</td>
<td>48.44</td>
<td>204.12</td>
<td>1885.82</td>
<td>14.43</td>
<td>-49.20</td>
<td>17.19</td>
</tr>
<tr>
<td>2010</td>
<td>126.01</td>
<td>48.93</td>
<td>207.69</td>
<td>1884.44</td>
<td>10.85</td>
<td>-48.69</td>
<td>19.24</td>
</tr>
</tbody>
</table>

Figure 14 shows the variation of the surface area for the lake, vegetation, and bare land classes between 1989 and 2010.

From the above results, it is clear that Lake Naivasha has experienced shoreline variations over the last 17 years as indicated by the changes in surface area. There was a positive gain in area by 16.80 km² between 1989 and 1995 (i.e., 14.8%), with a further gain by the year 2000 of 5.95 km², due largely to the 1997 ENSO rainfall. However, there was a drastic decline in the surface area between 2000 and 2006, with the lake loosing 6.35 km² of its surface area (i.e., 4.7%), indicating a recession in its shoreline. The surface area of the lake in 2006 is comparable to that of 1995 (both ~ 130 km²). After 2006, the lake continued shrinking with a surface area of 126.01 km² in 2010 (i.e., a reduction of about 7.6%). In general, from these images, it was calculated that the lake’s area is shrinking at a rate of 1.04 km²/year. These findings agree with those of the satellite altimetry and tide gauge observations (see, e.g., Figure 4 in Sect. 4). The variation around the area shows that there is loss of vegetation around the lake as the lake surface area increases. There was a decline in the vegetation cover between 1989 and 1995, despite a gain in the surface area over this period. The same scenario was seen between 1995 and 2000. This can be attributed to the fact that the area around the lake is comprised of papyrus, which are normally swallowed by the increase in water level. There was, however, an increase in the vegetation cover between the years 2000 and 2006 as the lake receded and vegetation sprouted up along the shores of the lake.

4.7 Comparing Lake Levels with Rainfall and Flower Exports

In light of the previous results, the relationship between the decline of WS within the catchment, the lake itself, and the local and catchment precipitation were explored. To finalize this study, a simple comparison is made between the level of lake (one of the main water sources of the catchment) and other data sets considered in this work, including rainfall recorded by the Naivasha station (a representation of climate variability) and flower production (a representation of human use) (see Figure 15). Considering first rainfall and the lake’s levels.
(Figure 15 (A)), where we plot annual rainfall against annual average lake level, a correlation coefficient of -0.24 is obtained, suggesting no statistically significant correlation between these quantities. On the other hand, considering lake levels with flower production (Figure 15 (B)), where we have plotted tonnage of flower production against the annual averages of the lake levels for the years where the tonnage data were available, we find a strong statistically significant correlation, with a correlation coefficient of -0.68. This suggests strongly that flower exports could have influenced the reduction in Lake Naivasha’s water level. Finally, Figure 15 (C) shows an insignificant correlation coefficient of -0.19 between rainfall and flower production.

Caution should be exercised, however, when one is interpreting the correlation results above. This is due to the fact that flower production, though it is a useful proxy for estimating water consumption in the Lake Naivasha region, and indeed constitutes the main cause of water consumption, depends on other factors unrelated to water withdrawal from the lake, e.g., in-put fertilizers. Therefore, an analysis of other factors that influence flower production, e.g., the amount of water withdrawn and used to irrigate the flowers, would be desirable. Along these lines, Mekonnen et al. (2012) quantified the water footprint within the Lake Naivasha Basin related to cut flowers and analysed the possibility of mitigating the footprint by involving cut-flower traders, retailers and overseas customers. Hagos (2008) assessed the possibility of using shallow and deep underground water, while Reta (2011) simulated a long term groundwater and lake water balance of Lake Naivasha in an attempt to establish the relationship between water consumption and water levels. Both Hagos (2008) and Reta (2011) highlighted the importance of underground water in the dynamics of Lake Naivasha’s water levels. Such influence has been investigated, e.g., by Becht et al. (2002) and Becht and Nyaoro (2005), who considered the influence of groundwater fluctuations on Lake Naivasha and found it to have an important effect on the water balance of the Lake. In fact, Becht and Nyaoro (2005) deduced that the interaction of the groundwater and the Lake dynamics introduces a degree of inertia to the lake groundwater system, resulting in delayed reactions to external (meteorological) stresses where the groundwater acts as an extra reservoir absorbing water during wet periods and releasing water during droughts. Evaporation also plays a key role in Lake Naivasha’s water balance as evident by the results of Farah et al., (2004), who obtained in-situ evaporation values at a grassland and woodland site in the Lake Naivasha basin for about a year. Another example of extraneous factors affecting Lake Naivasha’s water levels is presented, e.g., in Olago et al. (2009), who showed that the hydrology of the Rift Valley is controlled mainly by climate and water table variation, among other factors.
5. Conclusions

As a Ramsar wetland, Lake Naivasha is a very important area not only to
East Africa, but internationally. It supports a rich ecosystem with hundreds of
species of diverse flora and fauna. Moreover, being the only freshwater lake in
the Kenyan sector of the East African Rift, Lake Naivasha serves as the home of
the flower industry in Kenya and is one of the most important flower producing
regions world-wide. The results of this study have demonstrated that:

1. During the study period 1989 to 2010, Lake Naivasha experienced varia-
tion in its spatial extent and significant fluctuations in its level. However,
from around the year 2000, a steady decline in its spatial extent has been
observed with the lake receding at a rate of 1.41 km2/year, accompanied
by a corresponding drop in water level of about 33 cm/year.

2. Although the lake’s level has been fluctuating both annually and seasonally
over time in the past, there is a visible general downward trend observed
from around 2000. This coincides with the period during which the flower
exports from Kenya increased significantly. This is supported by the re-
sults of the linear regression analysis that gave a correlation coefficient of
-0.68 between Lake Naivasha’s water levels and the flower exports from
the region for the period 2000-2010. Since much of the irrigation water
used in the flower farms comes from Lake Naivasha, the recent decline
in the lake water level and spatial extend could feasibly be largely at-
tributed to adverse anthropogenic influences, with climatic factors such as
prolonged rainfall decrease of the catchment during 1960-2010 also having
a noticeable influence. A climatic influence is supported by the fact that
in-situ rain gauge stations for the annual rainfall totals clearly indicate
decreasing trends in the catchment area. The results support the find-
ings in Mekonnen et al. (2012), who established a relationship between
cut-flower production and level changes of Lake Naivasha.

3. Not only is the lake losing water, but also the catchment area of 4° × 4° that
includes Lake Naivasha as a whole is noticed to have lost water at a rate of
6.8 cm/yr from August 2002 to May 2008, and 1.7 cm/yr from May 2002
to 2010. The results are supported by the ADM output showing a decrease
in soil moisture content, although the magnitude of the changes was one
third of that shown by the GRACE results. While the long-term trend in
the changes in precipitation was considerably less than those associated
with soil moisture content and GRACE-TWS, the decline in the basin’s
water storage could possibly be related to the increased human use of
groundwater within the catchment for horticulture, subsistence farming
and domestic use.

These findings provide independent confirmation based on both ground and
space-based observations on what has long been suspected, that is, floriculture
has been exploiting the water resources of Lake Naivasha and the surrounding
basin at an unsustainable rate. As pointed out in Sect. 4.7, however, floricult-
ture may not be the sole cause of the decline of Lake Naivasha water levels.
Other factors, such as evaporation, fluctuation of groundwater level and climate among others, could also be contributing to the decline. Future studies on Lake Naivasha water levels should also include the effects of fluctuations of the Maleva and Gilgil rivers, especially the Maleva, which accounts for over 80% of inflows into the lake.

Remedial measures for the conservation and management of Lake Naivasha should thus be seriously considered before this Ramsar wetland becomes extinct. Already, the potential seriousness of the consequences arising from the decline of Lake Naivasha has finally been appreciated by the Government of Kenya, who has appointed an administrative body known as the Imarisha Lake Naivasha Management Board, for managing the Lake Naivasha Catchment Restoration Programme, whose aim is to restore Lake Naivasha and its catchment.

Acknowledgment

The authors are very grateful to the Editor Prof. G. Katul and the two anonymous reviewers for their comments, which helped to improve significantly the quality of the manuscript. J.L. Awange acknowledges the financial support of Alexander von Humboldt (Ludwig Leichhardt’s Memorial Fellowship), The Institute for Geoscience Research (TIGeR), and Curtin Research Fellowship. He is grateful for the warm welcome and the conducive working atmosphere provided by his host Prof. Heck at the Geodetic Institute, Karlsruhe Institute of Technology (KIT). E. Foorotan and J. Kusche would like to thank the German Research Foundation (DFG), under the project BAYES-G, for the financial support. K. Fleming acknowledges the Australian Research Council’s Discovery Projects funding scheme (project DP087738). The authors are grateful for the data sets used in this work, which were obtained from the following sources:

- Centre for Space Research (CSR) RL04 (http://www.csr.utexas.edu/grace/asdp.html).
- GFZ Information Systems and Data Center (http://isdc.gfz-potsdam.de).
- TRMM, Goddard Earth Sciences Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/precipitation).
- Landsat data, Global Land Cover Facility (GLCF), Maryland University, USA (http://www.landcover.org/data/landsat/).
- Tide-Gauge data. Lake Naivasha Riparian Association organization (http://web.ncf.ca/es202/naivasha/). Thanks to Mrs. Sara Higgins (the chair person of the Lake Naivasha Riparian Association) for providing these tide gauge data.
- Flower export data. Kenya Flower Council (http://www.kenyaflowercouncil.org/).
• Rainfall anomaly data. IGAD Climate Prediction and Application Centre, Nairobi, Kenya.
References

WMO, 1966. Climate change. WMO Tech. Note no. 79, Geneva
Figure 1: Location map of the Lake Naivasha Basin (Becht et al., 2005).
Figure 2: Lake Naivasha drainage system (Becht et al., 2005).
Figure 3: Annual flower exports from Kenya (KFC 2011).
<table>
<thead>
<tr>
<th>Lake Level Height [cm]</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>-500</td>
<td>1980</td>
</tr>
<tr>
<td>-450</td>
<td>1985</td>
</tr>
<tr>
<td>-400</td>
<td>1990</td>
</tr>
<tr>
<td>-350</td>
<td>1995</td>
</tr>
<tr>
<td>-300</td>
<td>2000</td>
</tr>
<tr>
<td>-250</td>
<td>2005</td>
</tr>
</tbody>
</table>

Tide-Gauge [cm]

T/P level [cm]

Correlation coefficient: 0.69
RMS: 4.7 cm

Figure 4: (Top) Time series of lake level height changes for Lake Naivasha as provided by satellite altimetry (T/P) and a tide gauge. (Bottom) Correlation between the lake level heights given by the tide gauge and the T/P altimetry.
Figure 5: The areas defined over the Lakes Naivasha and Victoria basins considered in the \textit{GRACE} and \textit{TRMM} analysis (see Figures 6 and 10). The red circle marks the location of Lake Naivasha.
Figure 6: Variations in stored waters (an integration of surface and terrestrial water storage changes) over Lakes Naivasha and Victoria derived from GRACE products. (a) Change in TWS and (b) accumulated changes of TWS in equivalent water volume (EWV) (see Figure 5, for the Victoria and Naivasha catchments).
Figure 7: Top, the red line shows the average TWS computed from the GFZ GRACE data (related to Figure 5, the black box on the right-side). The blue line is surface WS belonging only to Lake Naivasha. The catchment terrestrial WS signal is then obtained from the difference between GRACE-TWS signal (red line) and the Lake’s surface WS signal (blue), i.e., the bottom graph with the black line.
Figure 8: (A) A comparison between the calculated TWS from the ADM TWS and the GRACE TWS, (B) shows the GRACE TWS against ADM TWS changes, (C) a basin averaged soil moisture layers over Naivasha, and (D) a comparison between model-derived precipitation and in-situ measurements along with the temporal pattern of evaporation.
Figure 9: Annual rainfall time series over four stations in the region of Lake Naivasha. From top, Nakuru (0.28°S, 36.1°E), Narok (1.1°S, 35.9°E), Kismu (0.1°S, 34.8°E) and Naivasha (0.72°S, 36.4°E) stations. For Naivasha, MAM [blue], JJA [red] and OND [green] yearly values are also provided.
Figure 10: Rainfall over the Lakes Naivasha and Victoria basins (see Figure 5) as provided by the TRMM 3B43 product. Rainfall amounts are shown by the solid lines and the accumulated values are dashed.
Figure 11: Comparing annual total water storage variations derived from GRACE with annual soil moisture contents (from ADM) and annual rainfall (from in-situ stations).
Figure 12: Surface-type classification results for the considered Landsat images. (a) 1989, (b) 1995, (c) 2000 and (d) 2006.
Figure 13: Segmentation of the changes in the Lake Naivasha shoreline for the years 1989, 1995, 2000 and 2006.
Figure 14: Variation in the area of the different land types around Lake Naivasha.
Figure 15: Comparing annual average lake levels with (A) rainfall observed at the Naivasha station and (B) flower exports. (C) Comparing annual average rainfall of the Naivasha station and flower exports. The solid lines are fitted linear trends, along with the correlation coefficients.