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Summary

The work presented in this thesis is a study of homogenisation problems in electromag-

netics and elasticity with potential applications to the development of metamaterials.

In Chapter 1, I study the leading order frequency approximations of the quasi-static

Maxwell equations on the torus. A higher-order asymptotic regime is used to derive a

higher-order homogenised equation for the solution of an elliptic second-order partial differ-

ential equation. The equivalent variational approach to this problem is studied which leads

to an equivalent higher-order homogenised equation. Finally, the derivation of higher-order

constitutive laws relating the fields to their inductions is presented.

In Chapter 2, I study the governing equations of linearised elasticity where the periodic

composite material of interest is made up of a “critically” scaled “stiff” rod framework

with the voids in between filled in with a “soft” material which is in high-contrast with the

stiff material. Using results from two-scale convergence theory, a well posed homogenised

model is presented with features reminiscent of both high-contrast and thin structure

homogenised models with the additional feature of a linking relation of Wentzell type. The

spectrum of the limiting operator is investigated and the establishment of the convergence

of spectra from the initial problem is derived.

In the final chapter, I investigate briefly three additional homogenisation problems.

In the first problem, I study a periodic dielectric composite and show that there exists

a critical scaling between the material parameter of the soft inclusion and the period of

the composite. In the second problem, I use of two-scale convergence theory to derive a

homogenised model for Maxwell’s equations on thin rod structures and in the final problem

I study Maxwell’s equations in R3 under a chiral transformation of the coordinates and

derive a homogenised model in this special geometry.
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Introduction

0.1 Motivation

The motivation for the work presented in this thesis is the relatively new innovation of

metamaterial science. Where conventional materials usually possess properties due to the

molecules from which they are constructed, metamaterials owe their properties to the

man-made structures which replace the role of the molecules. Depending on the purpose

of the metamaterial, these structures can range from being a few millimeters to a few

nanometers in length (Pendry [57]). The hope in creating metamaterials is to develop

materials with properties not usually found in nature. A property of particular interest is

that of negative refractive index. From Maxwell’s equations (Jackson [39]) it can be seen

that the refractive index n is given by the formula n = ±
√
ε̂(ω)µ̂(ω) where ε̂ is the electric

permittivity, µ̂ is the magnetic permeability and ω is the propagation frequency. The sign

of n is determined by the signs of the real parts of the permittivity and permeability.

If both Re(ε̂) < 0 and Re(µ̂) < 0 then materials will exhibit a negative refractive index

(Demetriadou & Pendry [27]).

Materials possessing a negative refractive index are desirable since it has been shown

through experiments that materials possessing such a property can exhibit characteristics

of cloaking (Demetriadou & Pendry [27]). Originally motivated by the work of Pendry,

Schurig & Smith [58] and Leonhardt [46], the cloaking of a region of space is (generally)

done in one of two ways; a material with prescribed properties “guides” waves around it

(passive cloaking) or wave sources (either inside or outside the cloaking region) negate the

field which is scattered from this region. For example, Parnell & Shearer [56] discuss the

passive cloaking of materials from so called antiplane elastic waves by means of a spatial

transformation. Another example of passive cloaking can be seen in DJ Colquitt, et al. [25]

where the authors consider also a spatial transformation in two dimensions for a square

domain. Further theory regarding the construction and developments of metamaterials

possessing cloaking properties can additionally be found in Milton, Briane & Willis [49].

One way in which the mathematical theory of metamaterials is being developed further
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is through the theory of homogenisation of Maxwell’s equations under a ‘chiral’ transfor-

mation of the variables. To paraphrase Lord Kelvin [42], a figure or group of points is

said to be chiral if its image in a plane mirror cannot be brought to coincide with itself. It

has been suggested (Pendry & Demetriadou [27]) that electromagnetic waves propagating

through a domain with non-symmetry (chirality) will lead to a negative refractive index.

This avenue of research is briefly explored in the work presented. The study of twisted

electrostatic problems has been considered by Nicolet, Movchan, Guenneau & Zolla [52]

and Nicolet, Zolla & Guenneau [53] where the latter work is motivated by the study of

photonic crystals. Photonic crystals are periodic dielectric nanostructures which can effect

the propagation of electromagnetic waves (see Yablonovitch [80]). The use of homogenisa-

tion theory in the study of photonic crystals has been an active research area for some time

now (see for example Bouchitté, Guenneau & Zolla [15] and Guenneau, Zolla & Nicolet

[38]) and now due to the recent developments, authors have been using homogenisation

theory to gain insight into the effective (or averaged) properties of metamaterials also. The

small scale periodic nature of metamaterials makes the use of homogenisation theory a

practical tool for their study. For example, see Ouchetto, Ouchetto, Zhoudi & Sekkaki [55]

and Martini, Sardi & Maci [47] for some recent developments in the use of homogenisation

theory for the study of metamaterials.

Homogenisation theory is a well grounded subject and a short review of this rather

broad subject will now be presented.

0.2 A Brief Review of Homogenisation Theory

This brief discussion on the origins and methods of homogenisation theory are based

mostly on the sources and works which have been of particular relevance and inspiration

to the completion of the presented thesis. It is acknowledged that homogenisation theory

as a subject is both vast and diverse and so the review here should be regarded in no way

thorough and will be predominantly confined to the periodic setting.

It is regarded by most that homogenisation theory has its origins in the work of De

Giorgi and Spagnolo [36] wherein the authors proved a result on passing to the limit in

partial differential equations which contain a uniformly elliptic, rapidly oscillating coef-

ficient. This result was proven using the technical notion of G-convergence which was

introduced and examined by Spagnolo [71] in the context of symmetric linear partial

differential equations. It was not too long after this publication that the method of com-

pensated compactness was used to directly prove the homogenisation theorem. Indeed,

it was Tartar [72] who initially used the so-called energy method which, in conjunction
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with the classical compactness lemma, takes a special class of chosen test functions in the

variational formulation of the problem in question before then passing to the limit.

The solution of homogenisation problems via the method of asymptotic expansions is

a well established theory. In 1974, Sanchez-Palencia [63] made use of a two-scale asymp-

totic expansion to construct a homogenised model for his equation but it was in 1975

that Bakhvalov [5] showed that the limit function was indeed the limit of the solutions

to the original heterogeneous problems as the period went to zero. Asymptotic theory is

a powerful tool in its own right (see for example Erdélyi [28] for its wide reaching appli-

cations) but in the context of homogenisation, the use of asymptotic methods in dealing

with problems involving multiple scales is invaluable. Using asymptotic methods to solve

problems in homogenisation can not only provide valuable insight into the structure of

solution but also the whole method can often be made rigorous through the bounding of

the relative error incurred between the true solution and a truncated asymptotic solution

by a small parameter (often the period of the material of study). Numerous applications

of the theory to a variety of physical problems can be found in the books of Bakhvalov

& Panasenko [6], Benoussan, Lions & Papanicolaou [9], Sanchez-Palencia [64] and, more

recently, in the book of Chechkin, Piatnitski & Shamaev [19].

A major development of the homogenisation theory is the introduction of the method of

two-scale convergence. Originally introduced by Nguetseng [51] and then further developed

by Allaire [1], two-scale convergence methods acknowledge the existence of a non-classical

limit as the solution to classes of homogenisation problems. Indeed, utilisng a variation of

the two-scale compactness lemma, a function which depends on a “microscopic” variable as

well as on a “macroscopic” variable can be shown to be the limit of some homogenisation

problems. Moreover, this scheme in turn recovers previously established results when

applied to equivalent variational formulations of partial differential equations containing

a rapidly oscillating coefficient.

The class of homogenisation problems for which two-scale analysis can be used with is

vast. In particular, high-contrast problems which exhibit a loss of uniform ellipticity may

be dealt with. A composite material is said to be in high-contrast if there is a sufficient

contrast between the material parameters in the constitutive material components. A

further class of problems which two-scale convergence handles well are problems on thin

structures with junctions. It was Zhikov [81] who extended the method of two-scale

convergence to a broader setting where more general spaces with arbitrary measures could

be considered. This approach has since been applied to problems on thin networks with

junctions by Zhikov [82] and by Zhikov & Pastukhova [84].

The treatment of homogenisation theory has been applied to a vast number physical
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problems, most often in the mathematical literature to elasticity theory (see also Oleinik,

Shamaev & Yosifian [54]) but in more recent history, it has become a growing trend

to apply this theory to the governing equations of electromagnetics. Homogenisation of

Maxwell’s equations with periodic rapidly-oscillating coefficients has been discussed in

brief in Bakvalov & Panasenko [6] and Sanchez-Palencia [64] but not in any extensive

detail. It might be argued that the application of homogenisation theory to a periodic

dielectric medium is analogous to the application of homogenisation theory to a periodic

composite structure, however, a number of significant technicalities arise in the analysis of

Maxwell’s equations which are not necessarily found in elasticity. One such difference in

the study of Maxwell’s equations is the nontrivial kernel of the curl operator in domains

which are not simply connected. The dependence of the kernel of the curl operator on the

geometry of bounded non-simply connected domains is addressed in Dautray & Lions [26,

Chapter IX] where it was shown that elements of this kernel will solve a particular problem

on domains called“cuts”. These cuts can be potentially complicated surfaces to identify

which can make finding a solution to this problem on the cuts difficult to find. Moreover,

this theory does not address the case of unbounded non-simply connected domains which

may also be of interest.

In the classical literature available [6, 9, 40, 64], the discussions on the homogenisa-

tion of Maxwell’s equations have been relatively brief when compared with the extensive

literature available on the homogenisation of the governing equations of elasticity theory.

However, in recent years, thanks to the development of the theory of photonic crystals and

the development of metamaterial science, a deeper and broader theory is being developed

for the homogenisation of Maxwell’s equations. In Wellander [75], the method of two-scale

convergence as introduced by Nguetseng [51] is extended to homogenise Maxwell’s equa-

tions with inhomogeneous initial conditions and prove corrector type results. Following on

from this paper, Wellander [76] used similar techniques to homogenise Maxwell’s equations

in a heterogeneous medium where the electric conductivity is nonlinear. This leads to the

development of new compactness results and corrector results are proved which are impor-

tant to numerical implementation. Other avenues of investigation into the homogenisation

of Maxwell’s equations include: the study of bianisotropic materials (Barbitis & Stratis

[7], and Bossavit, Griso & Miara [12, 13]); the study of random elliptic systems (Bar-

batis, Stratis & Yannacopoulos [8]) and the study of different techniques to homogenise

Maxwell’s equations including the use of Bloch waves (Sjöberg, et. al. [67]), and the

use of a singular value decomposition (Sjöberg [66]). More recently, Cherednichenko &

Cooper [23] proved results with regards a high-contrast problem wherein, the technicalities

regarding Maxwell’s equations are made even more apparent with regards the kernel of
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the operator of study. Moreover, the application of homogenisation theory to problems

involving metamaterials has been explored recently by Fernandes, Ottonello & Raffetto

[31] and Serrano [65].

0.3 An Overview of the Work Presented

In the broadest sense, the work presented in this thesis is a selection of problems from the

theories of electromagnetism and elasticity where a variety of techniques from homogeni-

sation theory are used to further understand and solve the problems in question. The first

chapter regards the derivation of “higher-order” homogenised equations for the quasistatic

system of Maxwell equations in a periodic medium via the method of two-scale asymptotic

expansions. The second chapter concerns the two-scale analysis of a high-contrast elastic-

ity problem on so-called “critically” scaled thin structures. In the final chapter, a selection

of problems are presented which all concern the homogenisation of Maxwell’s equations;

one as an extension to the work discussed in the first chapter of this thesis and two other

problems in which the geomtery plays an important role in the analysis. The treatment of

such problems requires deep mathematical notions including, e.g. homogenisation theory,

variational methods, tensor analysis, multiple-scale convergence methods, spectral theory,

etc.

In Chapter 1, higher-order homogenised equations are derived for Maxwell’s equations

on a three-dimensional torus T = [0, T ]3, T > 0 with period cells Q of size ε such that

T/ε is a positive integer.

In Section 1.1, the vector problem is formulated and a two-scale asymptotic expansion

is given a priori for the solution of this problem. Initially, considerations are restricted

to a medium where the electric permittivity is constant and the magnetic permeability is

rapidly oscillating. The governing equation describes the behaviour of the electric field

in a periodic medium subject to some known external source of current density f . The

problem studied is to find a T-periodic solution to the second-order elliptic equation

curl
(
Âε(x)curluε(x)

)
= f(x), x ∈ T,

divuε = 0,

∫
T
uε(x) dx = 0.

The 3 × 3 matrix Âε(x) = A(x/ε) represents the inverse of the magnetic permeability

of the medium. The permeability matrix is symmetric, Q-periodic and uniformly elliptic

where Q = [0, 1]3 is the associated unit cell of the problem. It is assumed that there is

some external source of current density f which is divergence free, has zero average over

T and is T-periodic.
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The asymptotic expansion used is

uε(x) = v(x, ε) +
∞∑
j=1

εj
{
∇y
{
K(j)(y)∇jxv(x, ε)

}
+∇x

{
K(j−1)(y)∇j−1

x v(x, ε)
}

+N (j)(y)∇j−1
x curlxv(x, ε)

}∣∣∣
y=x

ε

,

(0.3.1)

where

v(x, ε) = v0(x) +
∞∑
k=1

εkvk(x). (0.3.2)

This expansion is similar to the expansions used for the classical homogenisation of the

governing equations of linearised elasticity (see Bakhvalov & Panasenko [6]) with the

noticeable difference that there are additional “gradient” terms added on. These extra

terms appear due to the non-trivial kernel associated with the curl operator on T. The

derivation of the homogenised equation is achieved using well established means seen in, for

example, Sanchez-Palencia [64]. The derivation of the higher-order homogenised equation

follows a similar path to that of Smyshlyaev & Cherednichenko [69]. The homogenised

equation of infinite-order takes the form

curl ĥ(2)curlv +
∞∑
j=1

εjcurl ĥ(j+2)∇jcurlv = f ,

where ĥ(j+2), j = 1, 2, . . . are the higher-order homogenised coefficients. It is also shown

that a truncation of (0.3.1) to order O(εK), denoted uK , is a good approximation to the

solution of the original problem as ε → 0. This is done via a rigorous justification which

involves taking uK with a truncation of series (0.3.2) to order O(εK) substituted in and

bounding the error incurred between this series and the true solution by a constant times

εK−1. This section is concluded with an example where the matrix A is piecewise constant

and the results of the calculation of the first higher-order term (which is of order O(ε2))

of the higher-order homogenised equation are given.

In Section 1.2 the same problem is considered from a variational stand point. The

perturbative nature in which the higher-order homogenised equations are constructed via

the method of asymptotic expansions means that, should the expansion be truncated at

some finite-order, then the resulting operator may not be elliptic which can be an issue

with regards to numerical implementation. This difficulty is overcome however by using a

combination of asymptotic methods and variational techniques. The equivalent variational

formulation considered is

I(ε,f) = min
u

∫
T

(1

2
Âεcurlu · curlu− f · u

)
, (0.3.3)

where the minimisation is taken over those T-periodic functions u with zero average and

zero divergence over T. Problem (0.3.3) possesses the same unique solution as the original

problem which leads to an alternative expression for I(ε,f) only involving an integral of
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uε · f . Variational asymptotics are established by substituting the asymptotic expansions

(0.3.1) and (0.3.2) into this new expression. Motivated by the want to remove the effect

of the rapid oscillations from the asymptotic expansion (0.3.1), consideration is given

to a new family problems, equivalent to the original problem but with the matrix Âε

replaced by the matrix Âεζ(·) := Âε(·+ ζ). This in turn leads to the consideration of the

equivalent family of variational problems where making use of averaging properties with

respect to the variable ζ, brings about another homogenised equation of infinite order but

this time achieved via variational means. The final part of Section 1.2 is then dedicated

to illustrating that the two homogenised equations of infinite-order coincide to all orders

via a tensor symmetrisation process which is picked with the purpose of maintaining the

structure of the “curl curl” operator.

In Section 1.3 a brief overview of Maxwell’s equations is given and its relation to

the work presented in the first two sections is outlined. The section then goes on to

explore the constitutive relations and develop homogenised expansions of infinite-order

for said constitutive relations. To conclude the chapter, consideration is then given to

the homogenisation of the full system of Maxwell equations where details of the changes

needed to be made to the already established theory are documented.

In the second chapter of this thesis, the analysis of a periodic composite is presented

where the constitutive components of the composite comprise of a “stiff” thin structure

with the gaps inbetween filled in with a different “soft” material. The periodic rod frame-

work in question comprises of rods of thickness a = a(ε) > 0 where ε > 0 is the period

of the rod framework and, moreover, a → 0 as ε → 0. The rod framework in question is

scaled such that a/ε2 → θ > 0. This scaling is referred to as “critical” in the literature

(Zhikov [82]). Moreover, it is assumed that the ratio of the material stiffness of the soft

component to the stiff component is of order O(ε2). For the purposes of the analysis of

Chapter 2, it is more convenient to deal with the scaled rod length h := a/ε so that h→ 0

and h/ε→ θ as ε→ 0.

In Section 2.1, the problem of study is introduced along with the tools essential to the

derivation of the associated homogenised problem. The domain of consideration Ω is a

bounded Lipschitz domain in R2 and is split into two subdomains Ωε,h
1 and Ωε,h

0 where

Ωε,h
1 is the set of all stiff inclusions (rods) contained in Ω and Ωε,h

0 is the set of all soft

inclusions contained in Ω. For each ε, h > 0 and each fh,ε ∈ [L2(Ω, dµhε )]2, the problem
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studied is to find uhε ∈ [H1
0 (Ω)]2 such that the following integral equation is satisfied:

∫
Ωε,h1

A1e(u
h
ε ) · e(ϕ) dµhε + ε2

∫
Ωε,h0

A0e(u
h
ε ) · e(ϕ) dµhε+

+

∫
Ω
uhε ·ϕ dµhε =

∫
Ω
fh,ε ·ϕ dµhε , ∀ϕ ∈ [H1

0 (Ω)]2.

Here e(·) denotes the symmetric gradient, A1 and A0 are constant, positive definite ma-

trices and dµhε is a composite measure comprised of the Lebesgue measure and a periodic

normalised measure concentrated on the stiff component. For each fixed ε and each fixed h,

the above problem is shown to posses a unique solution. Following the establishment of the

problem, details of the main definitions and results from the theory of two-scale analysis

are presented, including a result on two-scale compactness (see Allaire [1] or Zhikov [81])

which is key to proving the existence (up to possibly taking a subsequence) of a weak two-

scale limit. This is then briefly followed by a subsection containing definitions pertaining

to the theory of periodic rigid displacements which play a key role in the analysis.

In Section 2.2, it is shown that the sequences uhε , e(uhε ), εe(uhε ) are bounded in

[L2(Ω,dµhε )]2, [L2(Ωε,h
1 ,dµhε )]3 and [L2(Ωε,h

0 ,dµhε )]3 respectively and therefore by the two-

scale compactness lemma, they possess weakly two-scale convergent subsequences. The

remainder of the section is devoted to proving results pertaining to the structure of the

two-scale limits. Amongst these results, it is shown that the weak two-scale limit of the

sequence uhε when restricted to the stiff component is in fact the trace of the two-scale

limit of uhε . This is a new result and moreover, when combined with the already known

results presented in Zhikov [82] and Zhikov & Pastukhova [84], it is shown further that

this trace satisfies a fourth-order differential equation on each link of the limiting singular

structure. This type of condition is referred to as a Ventcel’ (Wentzell) boundary condition

(Ventcel’ [74]).

In Section 2.3, the homogenised problem for the high-contrast, critically scaled model

is derived which uniquely determines all the unknowns of the problem. This homogenised

problem can be expressed as a system of three partial differential equations; a macroscopic

equation, an equation on the period cell and an equation on the trace function. Following

this, the main homogenisation theorem is proven by taking the limit of various integral

functionals with different test functions which exhaust the so called energy space. This

proof involves several technicalities which take into account the shrinking rod structure to

the singular structure as well as the expanding soft regions.

In Section 2.4 a full description of the spectrum of the limiting problem is given and the

convergence of spectra is established which once again takes into account the intricacies

involved in the dimension reduction of the rod structure.
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In the final chapter of this thesis, results from three separate problems are presented

which all pertain to the homogenisation of Maxwell’s equations.

In Section 3.1, a modification of the problem presented in Chapter 1 is demonstrated

where the unit cell Q now comprises two given materials on two non-intersecting subdo-

mains: the stiff matrix Q1 and the soft inclusion Q0. The problem is to examine this

periodic dielectric medium when the magnetic permeability is of the form

A(y) := Aδ(y) =


δI, if y ∈ Q0,

I, if y ∈ Q1,

δ > 0.

In this study, it is shown that there exists a “critical” scaling between the contrast pa-

rameter δ and the period ε. This scaling is considered to be critical since the behaviour

of the asymptotic expansion for the solution of the problem of consideration is signifi-

cantly different from the behaviour of the asymptotic expansion for the solution of the

problem under consideration when any other scaling is chosen. The results of this section

are obtained using a combination of the asymptotic methods described in Chapter 1 and

additionally expanding the unit cell solutions N (j), j = 1, 2, . . . described in Section 1.1.2

and Section 1.1.3 in asymptotic series of the contrast parameter δ.

In Section 3.2, Maxwell’s equations on rod structures are studied and the homogenised

equation in the case when the rods are “thin” is given. This work makes use of the two-

scale convergence theory described in Chapter 2 to prove the existence of weak two-scale

limits to sequences bounded in particular L2-spaces. Forming a suitable energy space, the

homogenised equation is obtained by taking the limit of various integral identities against

suitable test functions. At the end of this section, the many possible extensions of this

work are briefly discussed.

In Section 3.3, Maxwell’s equations are studied under a transformation of coordinates

and a system of homogenised equations are derived. This problems separates itself from the

other problems studied in this thesis as it is the only one to be studied on an unbounded,

multiply connected domain which makes certain aspects of the analysis more tricky to

deal with and the results more complicated.
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Chapter 1

Full Two-Scale Asymptotic

Expansion and Higher-Order

Constitutive Laws in the

Homogenisation of the System of

Quasi-static Maxwell Equations

Introduction

In the following chapter, a higher-order homogenised system of equations for the solutions

to periodic problems with period ε > 0 in a dielectric medium are derived. The homogeni-

sation theory of second-order periodic elliptic equations (see Bakhvalov & Panasenko [6],

Bensoussan, Lions & Papanicolaou [9], Sanchez-Palencia [64]), has amongst its crowning

results the derivation of the homogenised (or “averaged”) equation which captures the

effective behaviour of the original problem independently of the small scale structure in-

trinsic to the original problem. A higher-order homogenised equation, while retaining in

some sense the homogenised equation structure to leading order, has higher-order terms

present in increasing orders of magnitude of the period size. It has been suggested in the

theory of elasticity (see Smyshlyaev & Fleck [70]) that these higher-order effects or strain-

gradient effects can account for a variety of scale effects observed in multiply scaled media

when said scales are not “too widely separated” (Cherednichenko [21]). The role of strain

gradients in the theory of elasticity has been explored by the likes of Fleck & Willis [33],

Smyshlyaev & Fleck [70] and Smyshlyaev & Cherednichenko [69]. As a part of this work,

the strain-gradient theory associated with the homogenised elasticity problems discussed
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in the aforementioned works will be explored in the context of a dielectric medium.

Homogenisation via the method of asymptotic expansions has been used to explore

the role of higher-order effects in periodic media by Boutin [16] and Triantafyllidis &

Bardenhagen [73] wherein, the authors expect the solution in the form of a two-scale

asymptotic expansion of the small parameter ε which is a ratio of the period cell size to

the domain size. The unknown function coefficients in the expansion are sought to depend

on the macroscopic (slow) variable, usually denoted x and the microscopic (fast) variable,

usually denoted y := x/ε. Using some formal “averaging” process, a homogenised equation

is derived with this process made rigorous by bounding the difference between the true

solution and some finite truncation of the asymptotic expansion for the solution by some

power of ε. Using this theory, Boutin [16] and Triantafyllidis & Bardenhagen [73] justify

asymptotic expansions for higher-order stress-strain relations and note that this process

may breakdown close to the boundary of the domain under consideration. However, this

issue is rectified by considering an infinite periodic medium with a fixed large period T such

that the ratio T to the unit cell size ε is a positive integer and, moreover, provided the body

force f is T -periodic, the theory of Bakhvalov & Panasenko [6] can be applied throughout

the domain with remainder estimates guaranteed everywhere. The work carried out in

this chapter considers such a geometrical setup and indeed yields remainder estimates on

the whole domain.

The asymptotic approach has the advantage that it provides a rigorous way (in the

sense that the error incurred is small when ε is small) in which to gain insight into the

effect of strain gradients. However, there are two notable disadvantages which arise when

considering the problem from the perspective of potential applications. First of all, the

higher-order expansions for the homogenised solutions and higher-order constitutive rela-

tions are “perturbed” in the sense that by the addition of terms in increasing powers of

the period ε, the expansion is only expected to be accurate if ε is sufficiently small and

so can’t be expected to retain the same level of accuracy if a larger period cell is desired.

One other disadvantage of the asymptotic procedure lies in the fact that a truncation of

the higher-order constitutive relations at some order of magnitude of the period may lead

to a loss of ellipticity of the corresponding operator obtained. This can be a complication

from both the point of view of numerical simulations and from the view point that the

truncated problem may even be ill-posed. Although for the Maxwell problem no example

is presented illustrating this loss of ellipticity, in Cherednichenko [21] when the elastic-

ity tensor takes the form A(y) = a(y2)I where a(y2) = 2 + sin(2πy2) it was found that

the fourth-order truncation led to a loss of ellipticity of the governing operator. It has

been confirmed that if the same matrix is taken for the inverse of the permittivity in the
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Maxwell system, there too is a loss of ellipticity.

One way to overcome these difficulties is via a combination of asymptotics and vari-

ational calculus. Inspired by the similar considerations of Smyshlyaev & Cherednichenko

[69] where the authors derived higher-order homogenised solutions for an elastic body un-

der an “anti-plane” shear force, both an asymptotic approach and variational approach

are considered in combination during the analysis of a periodic composite. The use of vari-

ational asymptotics allows them to construct higher-order homogenised equations which

do retain their ellipticity and, moreover, the authors show that the homogenised solution

is “close” to the true solution in some variational sense. A further acknowledgment the

authors make is the fact that, by considering the energy functional for the problem, they

can show that not only does this functional converge to the homogenised energy (as ε→ 0)

but also that the higher-order asymptotics for the energy functional are determined solely

by the higher-order terms in the homogenised solution. All these observations carry over

to the equivalent considerations for the homogenisation of Maxwell’s equations.

Another consideration of the aforementioned authors is to cancel the effect of the

rapid oscillations in higher-order terms via the (ensemble) averaging of another family of

problems. This family of problems is given via a shift in the fast variable of the original

problem by a parameter which, in other words, is all possible realisations of the periodic

medium. This process does indeed remove all the rapid oscillations from terms of all orders

and moreover yields a higher-order homogenised solution whose truncation provides rigor-

ous asymptotics for the homogenised solution obtained through the asymptotic approach.

This all carries over to the considerations of this work wherein Maxwell’s equations are

studied. It is noted however that more care must be taken with the manipulation of the

formulae derived and higher-order homogenised tensors.

The solution of the problem of consideration is unique and moreover, the asymp-

totic and variational methods presented in this chapter are both rigorous and equivalent.

However, proving that the higher-order homogenised solutions derived via these two ap-

proaches are the same is not so straight forward. Indeed, a more involved tensor analysis

is required in order to establish this equality. In terms of differences between the ho-

mogenisation procedure carried out by Smyshlyaev & Cherednichenko [69] and the work

presented forthcoming, the full system of Maxwell equations is a much more involved sys-

tem than the linearised elasticity equation and constitutive stress-strain relation. Indeed,

the system of Maxwell equations considered in this work consists of six coupled first-order

equations; two field (curl) equations, two continuity (div) equations and two linear con-

stitutive laws which are then expressed (after substitution) as two second-order equations

for the fields plus the two continuity equations. Section 1.1-Section 1.2 are devoted solely
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to the consideration of one pair of equations which govern the behaviour of the electric

field when the electric permittivity is constant. The same consideration can be made for

the remaining pair of equations for the magnetic field intensity (now with the electric

permittivity rapidly oscillating and the magnetic permeability constant) however, a com-

plication arises in formulating the second-order equation. Indeed, the current density term

on the right-hand side of the equation now rapidly oscillates also meaning extra care must

be taken to yield a higher-order homogenised equation (this is detailed in Section 1.3.4).

The consideration of the full system of Maxwell equations (now with both the electric

permittivity and magnetic permeability rapidly oscillating) is then carried out requiring

a handful of modifications to be made to the analysis laid out for the individual systems.

The system of equations separates completely into two systems for the electric field and

the magnetic field intensity respectively as might be expected meaning that the procedure

carried out can be applied to a wide variety of problems, e.g. problems in the absence of

electric fields but still in the presence of a rapidly oscillating electric permittivity and a

rapidly oscillating magnetic permeability.

The system of Maxwell equations studied are restricted to the time harmonic formu-

lation and then further considered in the quasistatic approximation. In Carey & O’Brien

[18], the quasi-static limit (the limit as the frequency goes to zero) is described as being

“the physically interesting situation in which a wave process degenerates into a diffusive

process”. For the purposes of the work presented, if the electric field E = E(x, t), is written

in time harmonic form and the quasistatic approximation is then applied, it is assumed

that

E(x, t) = Eω(x)eiωt, where Eω(x) = E0(x) + iωE1(x) + (iω)2E2(x) + . . . .

The quasistatic approximation entails considering the amplitudes/phasors of the respec-

tive fields being expanded in asymptotic expansions of the small but fixed frequency ω. In

essence, taking the quasistatic approximation means that it is assumed that the sources

in the problem vary sufficiently slowly such that the problem can be considered to be

static. Quasistatic theory can also be considered as an intermediary theory between the

static theory and the full Maxwell system (Larsson [43]). Rapetti & Rousseaux [59], have

considered quasistatic models of Maxwell’s equations in their work, however, where as

Rapetti & Rousseaux consider the dependence of the non-dimensional Maxwell equations

on the “small parameters” involved for some physical examples, the quasistatic approxi-

mation presented here considers the leading order governing equations obtained when the

frequency is small but finite.

With regards to notation, throughout Chapter 1 vectors will be written in boldface

20



italics. All vectors will be three-dimensional and all higher-order tensors of order K will

contain 3K entries. The three-dimensional periodic torus is denoted T and the period cell

is denoted Q := [0, 1]3. Averages over T and Q are denoted 〈 · 〉T and 〈 · 〉 respectively.

Throughout Section 1.1 and Section 1.2, uε is used to denote the electric field, Âε(·) :=

A(·/ε) will denote the inverse of the magnetic permeability and f will denote the source

of current density. In Section 1.3 the standard notation for the vector fields for Maxwell’s

equations will be written in a calligraphic font where as the amplitudes (or phasors) will

be written in usual boldface roman lettering. With regards the notation for the function

spaces, they will be denote in the form [Xk(D)]3
n

where n denotes the tensor order of the

object in question. Predominantly, n will be equal to 1. Note however that the norms will

be denoted ‖ · ‖Xk(D) without reference to the order of the tensor.

1.1 Solution of the Problem by Asymptotic Expansion

In the following chapter, all vectors and domains will be three dimensional. Considera-

tion is given solely to the second-order linear partial differential equation which must be

satisfied by the electric field (denoted in this section as uε) in the absence any magnetic

fluxes.

The highlights of this section include the formulation of the problem of interest, the

statement of a full two-scale expansion for the solution and the derivation of an infinite-

order homogenised equation. The analysis will then be justified by means of asymptotically

bounding the error incurred between the true solution and the truncation of the infinite-

order solution.

1.1.1 Formulation of the Problem

It is first noted that no regard is given to boundary effects in this text and so the domain

of consideration is that of a three-dimensional torus denoted T = [0, T ]3, T > 0 where

the cell of periodicity is denoted Q = [0, 1]3. Let the following notational conventions be

introduced for the averages over T and Q respectively:

〈f〉T :=
1

|T|

∫
T
f(x) dx, 〈g〉 :=

1

|Q|

∫
Q
g(y) dy.

Consider the following vector equation:

(Lεu
ε)(x) ≡ curlA

(x
ε

)
curluε(x) = f(x), x ∈ T, ε > 0, T/ε ∈ N. (1.1.1)

The coefficient matrix A, with entries denoted αij is Q-periodic, symmetric:

αij(y) = αji(y), ∀y ∈ Q, i, j = 1, 2, 3,
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bounded and uniformly elliptic:

∃ν > 0 : ν|ξ|2 ≤ αij(y)ξiξj ≤ ν−1|ξ|2, ∀ξ ∈ R3, y ∈ Q.

The notation Âε(·) := A(·/ε) will be used to denote matrix functions with the above

properties. Right-hand sides f ∈ [C∞per(T)]3 are assumed to have zero average on T and

to be divergence free. Equation (1.1.1) is a second-order equation satisfied by the electric

field in the quasistatic approximation (see Section 1.3). Here, the quantities A, uε and f

represent the inverse of the magnetic permeability µ̂, the electric field Eε
1 and the current

density −J0 respectively at each point x ∈ R3(mod T).

Weak solutions uε to equation (1.1.1) belong to the space1 X(T) ⊂ H1
curl(T), where

X(T) =
{
u ∈ [L2(T)]3 | divu = 0, 〈u〉T = 0

}
∩H1

curl(T).

For uε ∈ X(T), the following identity holds:∫
T
Âεcurluε · curlϕ =

∫
T
f ·ϕ, ∀ϕ ∈ [C∞(T)]3. (1.1.2)

When X(T) is equipped with the H1
curl-norm

‖u‖H1
curl(T) = ‖u‖L2(T) + ‖curlu‖L2(T), (1.1.3)

it is a Sobolev space.

Consider the following problem: given f ∈ [C∞per(T)]3 ∩X(T), a solution is sought to

the problem

(Lεu
ε)(x) = f(x), uε ∈ X(T). (1.1.4)

For all ε > 0, problem (1.1.4) is well posed as shown by the following theorem.

Theorem 1.1.1. For all f ∈ [C∞(T)]3 ∩X(T), there exists a unique solution of problem

(1.1.4).

Proof. Define a bilinear form B(u,ϕ) on X(T) by the formula

B(u,ϕ) =

∫
T
Âεcurlu · curlϕ, u,ϕ ∈ X(T).

A unique solution to the problem

B(uε,ϕ) =

∫
T
f ·ϕ , ∀ϕ ∈ X(T),

1H1
curl(T) is defined as the closure of the space of continuously differentiable functions [C∞(T)]3 with

respect to the norm defined by (1.1.3). More concisely, H1
curl(T) = {u ∈ [L2(T)]3 | curlu ∈ [L2(T)]3} (see

for example Jikov, Kozlov & Oleinik [40]).
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exists by the Lax-Milgram Lemma (see Gilbarg & Trudinger [35, p. 83]). Indeed, coercivity

of B follows by the ellipticity of the matrix A as follows:

B(u,u) =

∫
T
Âεcurlu·curlu ≥

∫
T
ν|curlu|2 ≥ 1

2
ν

∫
T
|curluε|2dx+

1

2
ν

∫
T
|curluε|2dx.

Using a Maxwell inequality (see Neff, Pauly & Witsch [50] or Appendix 1.A for further

details) and noting that divuε = 0, for some positive constant C ∈ R which depends on

|T|

B(uε,uε) ≥ 1

2
ν

∫
T
|curluε|2dx+

1

2
νC

∫
T
|uε|2dx ≥ C1‖uε‖2H1

curl(T),

where C1 = min{ν/2, νC/2}.

The continuity of B(·, ·) follows by the boundedness of A and the Cauchy-Schwarz

inequality:

B(u,ϕ) =

∫
T
Âεcurlu · curlϕ

≤
(∫

T
|Âεcurlu|2

)1/2(∫
T
|curlϕ|2

)1/2

≤ Ĉν−1
(∫

T
|curlu|2

)1/2(∫
T
|curlϕ|2

)1/2

≤ Ĉν−1‖uε‖H1
curl(T)‖ϕ‖H1

curl(T),

for Ĉ > 0.

Remark. Note that in some circumstances, the following equation may want to be studied

as opposed to equation (1.1.1):

curlÂεcurluε + λuε = f , λ > 0.

This equation arises if consideration is given to the frequency dependent Maxwell equations

as opposed to the quasistatically approximated equation being studied here (see Section

1.3.1. It is further noted that in the consideration of the equation above, it suffices to

consider uε ∈ H1
curl(T).

1.1.2 Asymptotic Expansion of the Solution of Equation (1.1.1)

A solution of equation (1.1.1) is sought in the form of a two-scale power series in powers

of ε, i.e., a solution is sought in the form

uε(x) =

∞∑
j=0

εjuj

(
x,
x

ε

)
, x ∈ T.
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A particular form in the coefficients uj arises upon substitution of the above into (1.1.1).

Namely:

uε(x) = v(x, ε) +

∞∑
j=1

εj
{
∇y
(
K(j)(y)∇jxv(x, ε)

)
+∇x

(
K(j−1)(y)∇j−1

x v(x, ε)
)
+

+N (j)(y)∇j−1
x curlxv(x, ε)

}∣∣∣
y=x/ε

. (1.1.5)

The divergence-free vector field v ∈ [C∞per(T)]3 is sought in a power series:

v(x, ε) = v0(x) +

∞∑
k=1

εkvk(x), x ∈ T, (1.1.6)

where the vk do not depend on ε, k = 1, 2, . . . . The coefficients K(j) are tensors of order

(j + 1), j = 0, 1, . . . whose components belong to the space { g ∈ H2
per(Q) | 〈g〉 = 0 }

and the coefficients N (j) are divergence-free tensors of order (j + 1), j = 1, 2, . . . whose

components belong to the space { g ∈ H1
per(Q) | 〈g〉 = 0, }. Note that the coefficient K(0)

is assumed to be constant.

Remark. The following remark lists some technicalities regarding the tensors described

above.

1. The tensor products in (1.1.5) are evaluated in the following way:

K(j)∇jxv = K
(j)
i1i2...ij+1

vij+1,i1...ij ,
2

N (j)∇j−1
x curlxv = N

(j)
i1i2...ij+1

(curlxv)ij+1,i2...ij ,

for ik = 1, 2, 3, k = 1, 2, . . . , j+1, where the Einstein summation convention is being

used for repeated indices and indices following a comma denote differentiation.

2. The divergence of a tensor of order (j + 1) is a tensor of order j and is evaluated in

the following way:

(divN (j))i1i2...ij = N
(j)
si1i2...ij ,s

.

Similarly, the curl of a tensor of order (j + 1) is a tensor of order (j + 1) and is

evaluated in the following way:

(curlN (j))i1i2...ij+1 = εi1stN
(j)
ti2...ij+1,s

.

In what follows, series (1.1.5) is formally substituted into equation (1.1.1) where the slow

variables x = (x1, x2, x3) and the fast variables y = (y1, y2, y3) are treated independently,

2The notation ∇j is used to represent the repeated use of the gradient operator: ∇jx = Dα
x =

∂|α|/∂α1
x1 ∂

α2
x2 ∂

α3
x3 where α = (α1, α2, α3) ∈ N3

0 is a multi-index and |α| := α1 + α2 + α3 = j.
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so that in particular ∇ = ∇x+ε−1∇y, curl = curlx+ε−1curly. Note also the following

identities

curlx(∇x(·)) = curly(∇y(·)) = 0, curlx(∇y(·)) = −curly(∇x(·)). (1.1.7)

The arguments x and y will be omitted from the subsequent manipulations for brevity.

Performing the afore mentioned substitution yields

curlxA curlxv + ε−1curlyA curlxv +
∞∑
j=1

εj
{

curlxA curlx(N (j)∇j−1
x curlxv)

}
+

∞∑
j=1

εj−1
{

curlyA curlx(N (j)∇j−1
x curlxv) + curlxA curly(N

(j)∇j−1
x curlxv)

}
+

∞∑
j=1

εj−2
{

curlyA curly(N
(j)∇j−1

x curlxv)
}

= f . (1.1.8)

All terms involving the tensors K(j) have cancelled with one another as a result of identities

(1.1.7) except for one term curly∇x(K(0)(y)v(x, ε)). This term vanishes by observing that

the vector K(0) is constant. In equation (1.1.8), the coefficients of ε are equated and hence

O(ε−1) : curlyA
{

curly(N
(1)curlxv) + curlxv

}
= 0. (1.1.9)

O(ε0) : curlyA curly(N
(2)∇xcurlxv) = f − curlxA curlxv

− curlyA curlx(N (1)curlxv)− curlxA curly(N
(1)curlxv). (1.1.10)

Equation (1.1.9) should be satisfied for all admissible vectors v and hence N (1) satisfies

the so-called unit cell equation

curlAcurlN (1) = −curlA, ⇐⇒
〈
A
(
curlN (1) + I

)
curlφ

〉
= 0, ∀φ ∈ [C∞per(Q)]3.

The matrix N (1) is determined uniquely under the conditions that it is Q-periodic and

has zero average.

Viewing (1.1.10) as an equation for N (2), applying the condition of solvability (see

Lemma 1.1.1 for full details) yields

curl ĥ(2)curlv = f , v ∈ X(T), ĥ(2) =
〈
A
(
curlN (1) + I

)〉
. (1.1.11)

Equation (1.1.11) is referred to as the homogenised equation (c.f. Bakhvalov & Panasenko

[6] for the scalar homogenised equation and Wellander [75] for the Maxwell homogenised

equation) and ĥ(2) is referred to as the homogenised matrix. The homogenised equation

captures properties of the original problem (1.1.4) in the limit as ε→ 0. In the next section,

the infinite-order homogenised equation will be derived. This equation will describe the

original problem in the case when a small but finite value for ε is considered.
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1.1.3 Infinite-Order Homogenised Equation

Denote by Hj = Hj(x,y) the expression for the coefficient of εj , j = 0, 1, . . . in the

expansion (1.1.8). Explicitly

H0 = curlxA curlxv + curlyA curlx(N (1)curlxv)+

+ curlxA curly(N
(1)curlxv) + curlyA curly(N

(2)∇xcurlxv), (1.1.12)

Hj = curlxA curlx(N (j)∇j−1
x curlxv) + curlyA curlx(N (j+1)∇jxcurlxv)+

+curlxA curly(N
(j+1)∇jxcurlxv) + curlyA curly(N

(j+2)∇j+1
x curlxv), j = 1, 2, . . . .

(1.1.13)

The aim is to write Hj(x,y) in the form h(j+2)(y)∇j+1
x curlxv(x) by commuting all

x-derivatives through to the right-hand sides of the tensors N (j) in expressions (1.1.12)-

(1.1.13). This is accomplished by introducing tensors M (j) = M (j)(y) and L(j) = L(j)(y)

of order (j + 1), such that the following operator identities hold for all j = 2, 3, . . . :

M (1) = I, M
(j)
i1...ij+1

=
(
εN (j−1)

)
i1...ij+1

= εi1i2sN
(j−1)
si3...ij+1

, (1.1.14)

L
(j)
i1...ij+1

=
(
εA
{
curlN (j−1) +M (j−1)

})
i1...ij+1

= εi1i2sAst
{
curlN (j−1) +M (j−1)

}
ti3...ij+1

.

(1.1.15)

In essence, these tensors commute derivatives in x through the tensors N (j), i.e.

M (j)∇x = curlxN
(j−1), L(j)∇x = curlxA

{
curlN (j−1) +M (j−1)

}
, ∀j = 2, 3, . . . .

Utilising definitions (1.1.14)-(1.1.15), the expression for Hj , j = 0, 1, . . . is rewritten as

Hj(x,y) = h(j+2)(y)∇j+1
x curlxv(x),

where

h(j+2) = curlA curlN (j+2) + curlAM (j+2) + L(j+2). (1.1.16)

Formally, the left-hand side of equation (1.1.1) may be written as

(Lεu
ε)(x) =

∞∑
j=0

εjh(j+2)(y)∇j+1
x curlxv(x).

By analogy with the matrix ĥ(2), the tensors h(j+2) are asked to be independent of the

fast variable y. The system of equations (1.1.16) can be used to recursively determine the

tensors N (j+2), h(j+2) j = 0, 1, . . . , uniquely as shown by the following lemma.

Lemma 1.1.1. Let F (j) be a tensor field of order (j + 1) whose components are differ-

entiable and Q-periodic. Furthermore, assume that A is a positive definite, Q-periodic
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matrix. The divergence-free, Q-periodic tensor field N (j) with zero average over Q solves

the equation

curlAcurlN (j) = F (j), (1.1.17)

if and only if

divF (j) = 0, 〈F (j)〉 = 0. (1.1.18)

Proof. Taking the divergence and the average of both sides of equation (1.1.17) and noting

that both A and N (j) are Q-periodic yields one half of the desired result. Since the operator

curlAcurl on X(Q) is self-adjoint, then it suffices that the right-hand side of (1.1.17) is

L2(Q)-orthogonal to all elements of the kernel of the left-hand side, namely3∫
Q
F (j)(y) · ∇w(j−1)(x,y) dy = 0,

∫
Q
F (j)(y) · c(j)(x) dy = 0,

for all smooth tensor fields w(j−1) of order (j − 1) and for all constant tensor fields c(j) of

order j. The result immediately follows by (1.1.18).

Therefore, by Lemma 1.1.1, the following equation must hold:〈
− curlAM (j+2) − L(j+2) + h(j+2)

〉
= 0 ⇒ h(j+2) =

〈
L(j+2)

〉
.

Hence, it follows that

h(j+2)∇j+1curlv(x, ε) =
〈
L(j+2)

〉
∇j+1curlv(x, ε)

= curl

〈
A

{
curlN (j+1) +M (j+1)

}〉
∇jcurlv(x, ε).

The “infinite-order homogenised equation” for uε takes the form

curl ĥ(2)curlv(x, ε) +

∞∑
j=1

εjcurl ĥ(j+2)∇jcurlv(x, ε) = f(x), x ∈ T, (1.1.19)

where

ĥ(j+2) =

〈
A

{
curlN (j+1) +M (j+1)

}〉
, (1.1.20)

are the higher-order homogenised coefficients. These higher-order coefficients ĥ(j+2) are

related to the tensors h(j+2) via the relation curl ĥ(j+2) = h(j+2)∇.

All the calculations so far have been formal and it will be shown in Section 1.1.5

that the asymptotic expansion for the solution of (1.1.4) is “close” to the true solution

in a certain sense. Before doing so, a brief discussion on the system of equations which

determine the tensors K(j) will follow. These equations arise as a result of taking the

divergence of the asymptotic expansion (1.1.5).

3The operation of convolution denoted · is defined as follows; if F (j) and G(j) are two tensors of order

j, then F (j) ·G(j) = (F (j))i1i2...ij (G
(j))i1i2...ij .
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1.1.4 Recurrence Relations for K(j), j = 2, 3, . . .

The tensors K(j), j = 0, 1, . . . are determined by a system of recurrent relations which

arise in the consideration of the solvability condition that divuε = 0. Indeed, taking the

formal divergence of the asymptotic expansion (1.1.5) yields

divuε =
∞∑
j=1

εj
{

∆xy(K
(j)∇jxv) + ∆x(K(j−1)∇j−1

x v) + divx(N (j)∇j−1
x curlxv)

}
+

+

∞∑
j=1

εj−1
{

∆y(K
(j)∇jxv) + ∆xy(K

(j−1)∇j−1
x v)

}
= 0,

where

∆x =
∂2

∂xi∂xi
, ∆y =

∂2

∂yi∂yi
, ∆xy =

∂2

∂xi∂yi
.

Comparing terms with equal powers of ε, in the above expression yields the following

system of recurrence relations

∆y(K
(1)∇xv) = 0, (1.1.21)

∆y(K
(l+1)∇l+1

x v) + 2∆xy(K
(l)∇lxv) + ∆x(K(l−1)∇l−1

x v) + divx(N (l)∇l−1
x curlxv) = 0,

(1.1.22)

for l = 1, 2, . . . . The Q-periodic solution K(1) of equation (1.1.21) which has zero average

over Q is identically zero. Hence the first non-trivial tensor is the third-order tensor K(2)

which satisfies the equation

∆y(K
(2)∇2

xv) = −divx(N (1)curlxv),

for admissible vector v. Substituting series (1.1.6) into the system of equations (1.1.22)

above yields

∑
j+k=l

j∈N, k∈N0

{
∆y(K

(j+1)∇j+1
x vk) + 2∆xy(K

(j)∇jxvk) + ∆x(K(j−1)∇j−1
x vk)+

+ divx(N (j)∇j−1
x curlxvk)

}
= 0, l = 1, 2, . . . . (1.1.23)

This system of equations will be pertinent to establishing a bound on divuε and in turn,

a bound on the remainder of the asymptotic series (1.1.5).

1.1.5 Rigorous Justification

The infinite-order homogenised equation (1.1.19) was obtained via a formal calculation in

which the infinite-order series (1.1.5) was substituted in to equation (1.1.1). It will now

be shown that series (1.1.5) considered is indeed close in the L2(T) sense to the exact

solution of problem (1.1.4).
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Theorem 1.1.2. Let K be a positive integer and define a remainder RK by the relation

RK(x, ε) = uε(x)− u(K)(x, ε), (1.1.24)

where

u(K)(x, ε) = v(K)(x, ε) +

K∑
j=1

εj
{
∇y(K(j)(y)∇jxv(K)(x, ε)) +∇x(K(j−1)(y)∇j−1

x v(K)(x, ε))+

+N (j)(y)∇j−1
x (curlxv

(K)(x, ε))
}∣∣∣
y=x/ε

, (1.1.25)

and

v(K)(x, ε) = v0(x) +
K∑
k=1

εkvk(x). (1.1.26)

Then

(i) ‖curlRK‖L2(T) ≤ C
(K)
1 εK−1,

(ii) ‖divRK‖H−1(T) ≤ C
(K)
2 εK ,

(iii) ∀M, |〈RK〉T| ≤ C
(K)
M εM ,

where the constants C
(K)
1 , C

(K)
2 , C

(K)
M are independent of ε but may depend on f.

Proof. (i) Substitution of series (1.1.6) into the homogenised equation (1.1.19) yields

the following sequence of recurrence relations on the coefficients on series (1.1.6):

curl ĥ(2)curlv0 = f ,

curl ĥ(2)curlvl +
∑
j+k=l

j∈N, k∈N0

curl ĥ(j+2)∇jcurlvk = 0, l = 1, 2, . . . (1.1.27)

vk ∈ X(T), k = 0, 1, . . . . (1.1.28)

Lemma 1.1.2. The matrix ĥ(2) is symmetric and positive definite. Hence for any

given right-hand sides f ∈ [C∞per(T)]3∩X(T), there exists a unique solution sequence

vk, k = 0, 1, . . . to equations (1.1.27)-(1.1.28).

Proof. Recall that ĥ(2) is given by the formula in (1.1.11). By equation (1.1.9), it

follows by the periodicity of A that〈(
AcurlN (1) +A

)
curlφ

〉
= 0, ∀φ.

In particular, for φ = N (1), it follows that

ĥ(2) =
〈
A
{

curlN (1) + I
}

+
(
AcurlN (1) +A

)
curlN (1)

〉
=
〈
A
{(

curlN (1) + I
)(

curlN (1) + I
)}〉

.

Since A is symmetric and positive definite, so is ĥ(2). Applying the Lax-Milgram

Lemma to each problem (1.1.27)-(1.1.28) yields the result.
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Evaluating the expression for Lεu
(K) explicitly yields

Lεu
(K) = curlxĥ

(2)curlxv
(K) +

K−2∑
j=1

εjcurlxĥ
(j+2)curlxv

(K) + εK−1θ1(v(K); ε,K),

(1.1.29)

where

θ1(·; ε,K) = εcurlxA curlx

(
∇y
(
K(K)∇Kx ·

)
+N (K)∇K−1

x curlx·
)

+

+ curlyA curlx

(
∇y
(
K(K)∇Kx ·

))
+
(
curlyAM

(K+1) + L(K+1)
)
∇Kx curlx · .

Substituting the expansion (1.1.26) into equation (1.1.29) yields

Lεu
(K) = curlxĥ

(2)curlxv0 +
K∑
k=1

εkcurlxĥ
(2)curlxvk+

+

K−2∑
j=1

K∑
k=0

εj+kcurlxĥ
(j+2)∇jxcurlxvk + εK−1

K∑
k=0

εkθ1(vk; ε,K),

In view of the set of equations (1.1.27), the above can be shown to reduce to

Lεu
(K) = f + εK−1θ2(x, ε,K),

where

θ2(x, ε,K) :=
2K−2∑

j+k=K−1

εj+k−K+1curlxĥ
(j+2)∇jxcurlxvk +

K∑
k=0

εkθ1(vk; ε,K),

for 0 ≤ j ≤ K − 2, 0 ≤ k ≤ K. It can be shown that |θ2(x, ε,K)| ≤ c1(f) for all

x ∈ T where c1 is independent of ε. Noting that uε satisfies the relation Lεu
ε = f

yields

LεRK(x, ε) = −εK−1θ2(x, ε,K). (1.1.30)

Taking the scalar product of both sides of equation (1.1.30) with RK and integrating

over T yields ∫
T

curlA
(x
ε

)
curlRK ·RK dx = −εK−1

∫
T
θ2 ·RK dx.

Integrating by parts on the left-hand side and using the Cauchy-Schwarz inequality

on the right-hand side leads to the following inequality∫
T
A
(x
ε

)
curlRK · curlRK dx ≤ εK−1‖θ2‖L2(T)‖RK‖L2(T)

⇒ ν‖curlRK‖2L2(T) ≤ εK−1‖θ2‖L2(T)‖RK‖L2(T).

Using a Maxwell inequality yields

ν‖curlRK‖2L2(T) ≤ ε
K−1C(T)‖θ2‖L2(T)

(
‖curlRK‖L2(T) + ‖divRK‖L2(T)

)
,
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where C(T) > 0. It will be shown in the proof of (ii) that ‖divRK‖L2(T) ≤ C2ε
K .

Hence

‖curlRK‖2L2(T) ≤
C(T)‖θ2‖L2(T)

ν
εK−1‖curlRK‖L2(T) +O(ε2K−1),

⇒ ‖curlRK‖L2(T) ≤C
(K)
1 εK−1,

as required.

(ii) Note that divuε = 0 and so divRK = −divu(K). Denote by U l the coefficient of

εl in the asymptotic expansion (1.1.25) once the series (1.1.26) has been substituted

in, i.e.

U0 = v0, U l =
∑
j+k=l
1≤j≤K
0≤k≤K

{
∇y(K(j)∇jxvk) +∇x(K(j−1)∇j−1

x vk) +N (j)∇j−1
x curlxvk

}
,

l = 1, 2, . . . . Hence

−divRK =
2K∑
l=1

{
εldivxU l + εl−1divyU l

} ∣∣∣
y=x/ε

.

The vectors vk satisfy the system of equations (1.1.23) and thus

−divRK = εKθ3(x, ε,K), θ3(x, ε,K) =

{
2K∑
l=K

εl−KdivxU l +
2K∑

l=K+1

εl−K−1divyU l

}∣∣∣∣∣
y=x/ε

.

Notice that U l is a finite sum of terms of the form U(y)V (x) for some tensors U

with elements in H1(Q) and tensors V with elements in C∞per(T). Furthermore, since

divyU l|y=x/ε = εdiv(U l|y=x/ε)− εdivxU l|y=x/ε,

it follows that θ3 is a finite sum of terms of the form Ũ(y)Ṽ (x) for some tensors

Ũ with elements in L2(Q) and Ṽ with elements in C∞per(T). Using a version of the

theorem proven in Smyshlyaev & Cherednichenko [69], (see Appendix 1.B) it follows

that the L2(T)-norm of θ3 is bounded by a constant independent of ε, C
(K)
2 say.

Hence

‖divRK‖L2(T) ≤ εK‖θ3‖L2(T) ≤ C2ε
K .

(iii) Noting the Q-periodicity of K(j) and the T-perioddicty of v, integrating (1.1.25) over

T yields ∫
T
u(K)(x) dx =

∫
T

{ K∑
j=1

εjN (j)(x/ε)∇j−1
x (curlxv

(K)(x))
}

dx.

The result follows by once again using the theorem in Appendix 1.B.
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Corollary 1.1.1. For RK as defined by relation (1.1.24), the following estimate holds:

‖RK‖L2(T) ≤ C
(K)
3 εK−1, ‖RK‖H1

curl(T) ≤ C
(K)
4 εK−1,

where C
(K)
3 , C

(K)
4 are independent of ε but may depend on the function f .

Proof. This result is an immediate consequence of the previous theorem and the Maxwell

inequality (1.A.1).

This concludes the construction of the infinite-order homogenised equation which has

now been made rigorous. It is worth noting however that truncating of (1.1.19) at some

finite order of ε may not be the most suitable choice for the higher-order homogenised

equation as the corresponding operator may not be elliptic. One way in which to avoid

this loss of ellipticity is via the use of a variational approach which will be discussed in

Section 1.2.

The theory described above will now be illustrated with an example where the matrix

A is given by the formula A(y) = α(y2)I and where α is piecewise constant.

1.1.6 Example in a Two-Layered Medium

Consider the matrix A(y) defined as

A(y) = α(y2)I, α(y2) =

 α1, 0 ≤ y2 ≤ l1,

α2, l1 < y2 ≤ 1,
0 < l1 < 1, α1, α2 ∈ R+.

A higher-order homogenised expansion for the equation (1.1.1) will now be derived. As

already seen, this higher-order expansion takes the form of (1.1.19):

Lεu
ε = curl ĥ(2)curlv + εcurl ĥ(3)∇curlv + ε2curl ĥ(4)∇2curlv +O(ε3).

The first three tensors ĥ(j), j = 2, 3, 4 will now be derived for the two-layered medium.

For the term of order O(1), the matrices of interest are calculated as

N (1) =


0 0 −N

0 0 0

N 0 0

 , ĥ(2) =


〈α−1〉−1 0 0

0 〈α〉 0

0 0 〈α−1〉−1

 ,

where N = N(y2) satisfies the differential equation −(αN ′)′ = α′ and the prime notation

denotes differentiation with respect to y2. Furthermore, it is straightforward to see that

〈α−1〉−1 = {α−1
1 l1 + α−1

2 (1− l1)}−1, 〈α〉 = (α1l1 + α2(1− l1)).
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For the term of order O(ε), the related tensors are calculated as

N
(2)
ijk =



M, ijk = {123},

−M, ijk = {321},

L, ijk = {132},

−L, ijk = {312},

0, otherwise,

ĥ
(3)
ijk =


a, ijk = {112, 332},

b, ijk = {211, 233},

0, otherwise,

where M = M(y2) satisfies the ODE (αM ′)′ = (αN)′, L = L(y2) satisfies the ODE

(αL′)′ = 〈α〉 − α, and a = −〈αL′〉, b = −〈αN〉.

It can be confirmed that a = −b (see Appendix 1.C) and as a consequence the term

of order O(ε) in the higher-order expansion vanishes. Thus, the first non-trivial higher-

order term in the infinite-order homogenised equation is the term of order O(ε2) where

the relevant tensors in this case are calculated to be

N
(3)
ijkl =



P, ijkl = {1232},

−P, ijkl = {3212},

Q, ijkl = {1223},

−Q, ijkl = {3221},

R, ijkl = {1311, 1333},

−R, ijkl = {3111, 3133},

0, otherwise,

ĥ
(4)
ijkl =



c, ijkl = {1212, 3232},

d, ijkl = {2121, 2323},

e, ijkl = {2112, 2332},

f, ijkl =

1111, 1133

3311, 3333

 ,

0, otherwise,

where P = P (y2) satisfies the ODE −(αP ′)′ = a + αL′ + (αL)′, Q = Q(y2) satisfies

the ODE −(αQ′)′ = (αM)′, R = R(y2) satisfies the ODE (αR′)′ = b + αN and c =

−〈αP ′ + αL〉, d = 〈αQ′〉, e = 〈αL〉, f = −〈αR′〉.

It can be shown that the constants c, d, e and f are given by the formulae

c =
1

12
l21l

2
2[α−1

1 l1 + α−1
2 l2]−1(1− β1)(β2 − 1),

d =
1

12
l21l

2
2[α−1

1 l1 + α−1
2 l2]−1(β1 − 1)(β2 − 1),

e =
1

12
l21l

2
2(α−1

1 l1 + α−1
2 l2)(α1 − α2)2,

f =
1

12
l21l

2
2[α−1

1 l1 + α−1
2 l2]−2(1− β1)(1− β2)(α−1

2 l1 + α−1
1 l2),

where l1 + l2 = 1, and β1 = α1
α2

= β−1
2 . Note that it can also be shown (see Appendix

1.C) that c = −d in the case when A(y) = α(y2)I. Hence the infinite-order homogenised
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equation takes the form

Lεu
ε =


〈α−1〉−1(v2,12 − v1,22)− 〈α〉(v1,33 − v3,13)

〈α−1〉−1(v3,23 − v2,33 − v2,11 + v1,12)

〈α〉(v1,13 − v3,11)− 〈α−1〉−1(v3,22 − v2,23)

+

+ ε2


f(v3,1223 − v1,2233)− e(v1,1133 − v3,1113 + v1,3333 − v3,1333)

0

−f(v3,1122 − v1,1223) + e(v1,1113 − v3,1111 + v1,1333 − v3,1133)

+O(ε3).

Remark. It was shown in Smyshlyaev & Cherednichenko [69], that in the case of a

scalar equation, all terms with odd powers of ε are absent from the corresponding infinite-

order homogenised equation. The above two-layered case provides an example where, in

particular, there is a non-trivial term of order O(ε3) in the homogenisation procedure for

the Maxwell system. The relevant tensors for the term of order O(ε3) are calculated as

N
(4)
ijklm =



N1, ijklm = {12232},

−N1, ijklm = {32212},

N2, ijklm = {13121, 13323},

−N2, ijklm = {31121, 31323},

N3, ijklm = {13332, 13112},

−N3, ijklm = {31332, 31112},

N4, ijklm = {12311, 12333},

−N4, ijklm = {32111, 32133},

N5, ijklm = {12223},

−N5, ijklm = {32221},

N6, ijklm = {23212},

−N6, ijklm = {21232},

N7, ijklm = {23111, 23133},

−N7, ijklm = {21311, 21333},

0, otherwise,

ĥ
(5)
ijklm =



h1, ijklm = {12212, 32232},

h2, ijklm =

11121, 11323

33121, 33323

 ,

h3, ijklm =

11112, 11332

33112, 33332

 ,

h4, ijklm = {21212, 23232},

h5, ijklm = {21221, 23223},

h6, ijklm =

21111, 21133

23311, 23333

 ,

h7, ijklm =

12111, 12133

32311, 32333

 ,

0, otherwise.

The functions Ni = Ni(y2), i = 1, . . . , 7, satisfy the ODEs

−(αN ′1)′ = (αP )′ + αP ′ + αL+ c, −(αN ′2)′ = αM + d, −(αN ′3)′ = αL− e,

−(αN ′4)′ = (αR)′ + αR′ + f, −(αN ′5)′ = (αQ)′, −(αN ′6)′ = αP ′ + αL+ c,

−(αN ′7)′ = αR′ + f,

and the constants hi, i = 1, . . . , 7 are

h1 = −〈αN ′1 + αP 〉, h2 = −〈αN ′2〉, h3 = −〈αN ′3〉,

h4 = 〈αP 〉, h5 = 〈αQ〉, h6 = 〈αR〉, h7 = −〈αN ′4 + αR〉.
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It can be shown that h1 = −h5, h2 = −h7 and h3 = −h6 and hence the term of order

O(ε3) in the infinite-order homogenised equation for a two-layered medium is
−h4(v1,11233 − v3,11123 + v1,23333 − v3,12333)

0

h4(v1,12333 − v3,11233 + v1,11123 − v3,11112)

 ,

where h4 6= 0.

1.2 Variational Approach

The work in the following section is driven towards the minimisation of the functional

Eε(u,f) over all admissible functions u. The energy functional of interest is defined as

Eε(u,f) :=

∫
T

(1

2
Âεcurlu · curlu− f · u

)
,

and the class of admissible functions are those T-periodic functions with zero average over

T and zero divergence. Consider the following minimisation problem:

I(ε,f) = min
u
Eε(u,f), (1.2.1)

Equation (1.1.1) is the Euler-Lagrange equation for the minimisation problem (1.2.1) and

therefore there exists a unique solution uε ∈ X(T) which coincides with the solution found

in Section 1.1. Hence, since uε satisfies equation (1.1.2), it follows that

I(ε,f) = −1

2

∫
T
Âεcurluε · curluε = −1

2

∫
T
f · uε. (1.2.2)

1.2.1 Variational Asymptotics

In light of equation (1.2.2), variational asymptotics for I(ε,f) will be established. Similarly

to (1.2.1), the solution of the homogenised equation (1.1.11) also minimises the functional

E0(v,f) :=

∫
T

(1

2
ĥ(2)curlv · curlv − f · v

)
,

over all divergence-free, T-periodic functions with zero average over T. Define

I0(f) := min
v(x)

E0(v,f). (1.2.3)

It is well known (see for example Jikov, Kozlov & Oleinik [40]) that in scalar homogeni-

sation theory, the energy functional converges to the homogenised energy functional as

ε → 0. This is true too for the vector homogenisation presented here, i.e., as ε → 0, for

any function f it follows that I(ε,f) → I0(f). This result will now be extended to all

finite orders of ε.
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Remark firstly that substitution of uε = u(K) +RK into (1.2.2) yields

I(ε,f) = −1

2

∫
T
f · u(K) dx+ R̃K(x, ε), |R̃K | ≤ C̃K(f)εK . (1.2.4)

Proposition 1.2.1. For any T-periodic function f ∈ [C∞(T)]3 and any positive integer

K, there exists a constant ĈK(f) such that∣∣∣∣I(ε,f) +
1

2

∫
T
f(x) · v(K)(x, ε) dx

∣∣∣∣ ≤ ĈK(f)εK .

Proof. Substituting series (1.1.25) into (1.2.4) yields

I(ε,f) = −1

2

∫
T
f(x) · v(K)(x, ε) dx+

∑
1≤j≤K
0≤k≤K

εj+k
∫
T
N (j)(x/ε)Fjk(x)dx+ R̃K(x, ε),

(1.2.5)

where Fjk = ∇j−1
x curlxvk ∗ f are infinitely smooth and T-periodic. As the N (j) are Q-

periodic and have zero mean, the second term in (1.2.5) will decay as ε → 0 faster than

any power of ε (see Appendix 1.B), i.e.∣∣∣∣∫
T
N (j)(x/ε)Fjk(x)dx

∣∣∣∣ ≤ CKjkεK ,
for any K, j and k and for some constants CKjk. Hence the result.

As a result of the above proposition, the following asymptotic expansion for the energy

holds:

I(ε,f) ∼ I0(f) +
∞∑
k=1

εkIk(f), (ε→ 0), Ik(f) := −1

2

∫
T
f · vk, k = 0, 1, . . . . (1.2.6)

1.2.2 Infinite-Order Homogenised Solution

In this section, the effect of the rapid oscillations in the tensors N (j) in the asymptotic

expansion (1.1.5) is removed by considering the solutions of another family of problems.

More precisely, for all ζ ∈ Q, define Aζ(y) = A(y + ζ), y ∈ Q and consider the family of

equations

(Lζεu)(x) ≡ curl Âεζ(x)curlu(x) = f(x), x ∈ T, (1.2.7)

under the same assumptions on f and subject to the same conditions on the solution u

seen in Section 1.1. For any ζ ∈ Q, (1.2.7) is equivalent to (1.1.1) and when ζ is fixed,

equation (1.2.7) admits a unique solution in X(T) which will be denoted uεζ . Denote by

〈 · 〉ζ the average over Q with respect to ζ, i.e.

ūε(x) := 〈uεζ〉ζ =
1

|Q|

∫
Q
uεζ(x) dζ, x ∈ T.

This averaging process with respect to ζ is analogous to “ensemble averaging” in proba-

bility, when the underlying probability measure is uniform over Q. The following result
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illustrates how this translation averaging eliminates the oscillations due to the tensors N (j)

and in fact shows that the asymptotics for ūε are given by series (1.1.6).

Proposition 1.2.2. For a given T-periodic function f , the series (1.1.6) provides asymp-

totics for ūε in the sense that for any positive integer K, there exists a positive constant

CK(f) such that ∫
T
|ūε − v(K)|2dx ≤ CK(f)ε2K .

Proof. It is first noted that for all ζ ∈ Q, the solution uεζ of (1.2.7) can be written as an

analogous asymptotic expansion to that of the series given by (1.1.5) with the tensors K(j)

and N (j) replaced by the translated tensors K
(j)
ζ (·) = K(j)(·+ζ) and N

(j)
ζ (·) = N (j)(·+ζ)

respectively. Moreover, remainder estimates similar to those seen in Section 1.2.1 will all

hold. In particular,

‖uεζ − u
(K)
ζ ‖L2(T) ≤ C̄K(f)εK ,

where C̄K(f) is independent of ζ and u
(K)
ζ denotes the Kth-order truncated asymptotic

expansion of uεζ similar to (1.1.25). Since K
(j)
ζ and N

(j)
ζ are Q-periodic and have zero

average over Q, it follows that

ūε(x)− v(K)(x, ε) =

∫
Q

(
uεζ(x)− u(K)

ζ (x, ε)
)

dζ.

Therefore ∫
T

∣∣ūε(x)− v(K)(x, ε)
∣∣2dx ≤

∫
T

(∫
Q

∣∣uεζ(x)− u(K)
ζ (x, ε)

∣∣dζ)2

dx

≤
∫
Q

∫
T

∣∣uεζ(x)− u(K)
ζ (x, ε)

∣∣2dxdζ ≤ CK(f)ε2K ,

as required.

1.2.3 Higher-Order Variational Problems

In this section, consideration is given to the equivalent family of variational formulations

for the family of equations (1.2.7). By analogy with Section 1.2, the “translated” energy

functional is defined as:

Eε,ζ(u,f) =

∫
T

(1

2
Âεζcurlu · curlu− f · u

)
. (1.2.8)

Define also

Iζ(ε,f) := min
u(x)

Eε,ζ(u,f).

Obtained in exactly the same way, it can be shown that the asymptotics for Iζ(ε,f) are

analogous to the asymptotics (1.2.6) and that these asymptotics are independent of the

parameter ζ.
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Define the averaged functional to be Ī(ε,f) := 〈Iζ(ε,f) 〉ζ . Hence

Ī(ε,f) =

∫
Q

(
min
u(x)

Eε,ζ(u,f)
)

dζ = min
u(x,ζ)

Ēε(u,f), (1.2.9)

where

Ēε(u,f) =

∫
Q
Eε,ζ(u,f) dζ. (1.2.10)

It is obvious that Ī(ε,f) also retains the asymptotics given in (1.2.6).

The variational problem (1.2.9) has as its minimiser the function u(x, ζ) = uεζ(x)

where uεζ(x) is the solution of (1.2.7). Recall that uεζ can be expanded asymptotically in

a series analogous to (1.1.5). The idea now is to construct a higher-order homogenised

variational problem in light of such a series expansion for uεζ . Fixing ε > 0, define UK to

be the set of trial fields u(x, ζ):

UK =

{
u(x, ζ)

∣∣∣ u(x, ζ) = v(x) +
K∑
j=1

εj
{
∇y(K(j)

ζ (y)∇jxv(x)) +∇x(K
(j−1)
ζ (y)∇j−1

x v(x))+

+N
(j)
ζ (y)∇j−1

x (curlxv(x))
}∣∣∣
y=x/ε

for some v

}
. (1.2.11)

Here, v belongs to the set of smooth, T-periodic, divergence-free vector fields with zero

average over T. Consideration is now given to the same minimisation problem (1.2.9) but

over the restricted set UK . Directly substituting a trial field from the set (1.2.11) into

equation (1.2.10) yields

Ēε(u,f) =

∫
T

{
K∑
j=0

K∑
k=0

1

2
εj+kh̃jk∇j(curlv)∇k(curlv)− f · v

}
, (1.2.12)

where h̃jk is a tensor of order (j + k + 2) given explicitly by the formula

h̃jk =
〈
A
(
curlN (j+1) +M (j+1)

)(
curlN (k+1) +M (k+1)

)〉
(1.2.13)

Whenever u and v are related by the expression in UK , set

Ēε(u,f) =: EK(v,f , ε),

so that

IK(f , ε) := min
v
EK(v,f , ε) = min

u(x,ζ)∈UK
Ēε(u,f), v ∈ [C∞per(T)]3 ∩X(T).

Moreover, for all ε, any f and for any finite K, the functional EK(·,f , ε) is convex with

respect to v as a result of the ζ-averaging of the convex functional Eε,ζ .

Denote by vK(x, ε)4 the minimiser of IK(f , ε). The following proposition demonstrates

that vK is in fact the best choice of a truncated approximation in a variational sense.

4The minimiser vK can be shown to exist and to be unique up to an arbitrary constant provided

f ∈ [C∞(T)]3. This result can be shown by, for example, using the Fourier transformation along with the

equation for EK . A proof for the scalar homogenisation can be found in Cherednichenko [21].
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Proposition 1.2.3. For K ≥ 2 and all functions v it follows that

EK(v,f , ε) ≥ EK(vK ,f , ε) ≥ Ī(ε,f). (1.2.14)

Moreover

EK(vK ,f , ε)− Ī(ε,f) ≤ cK(f)ε2K , (1.2.15)

for some positive constant cK(f).

Proof. Inequalities (1.2.14) follow by observing that vK is the minimiser of IK(f , ε) and

ĪK(ε,f) ≥ Ī(ε,f) where the latter inequality follows since ĪK(ε,f) is considered over a re-

stricted set. To obtain inequality (1.2.15), substitute uεζ(x) = u
(K)
ζ (x, ε)+RK(x, ζ, ε) into

(1.2.8) and integrate by parts. The remainder RK(x, ζ, ε) satisfies estimates analogous to

those proven for RK in Theorem 1.1.2 and hence

0 ≤ Eε,ζ(u
(K)
ζ ,f)− Iζ(ε,f) ≤ cK(f)ε2K .

Averaging the last inequality over Q with respect to ζ and once again using the fact that

vK is a minimiser yields the desired results.

Remark. In formula (1.2.13), the expression for the tensor is evaluated as follows:

h̃jki1...ij+k+2
=
〈
Ast
(
curlN (j+1) +M (j+1)

)
si1...ij+1

(
curlN (k+1) +M (k+1)

)
tij+2...ij+k+2

〉
.

Note also that h̃jk can be represented in an alternative way. Using integration by parts,

for j = 1, 2, . . . , the following formula can be shown to hold:〈
A
(
curlN (j+1) +M (j+1)

)
curlφ

〉
= −

〈
L(j+1)φ

〉
, ∀φ, such that 〈φ〉 = 0.

Hence

h̃jk =
〈
A
(
curlN (j+1) +M (j+1)

)
M (k+1)

〉
−
〈
L(j+1)N (k+1)

〉
, (1.2.16)

where (
L(j+1)N (k+1)

)
i1...ij+k+2

= L
(j+1)
si1...ij+1

N
(k+1)
sij+2...ij+k+2

.

1.2.4 Infinite-Order Variational Homogenised Equation

For each non-negative integer K, the functional EK admits a unique minimiser vK . Con-

structing the Euler-Lagrange equation for functional (1.2.12) yields

∫
T

{
1

2

K∑
j,k=0

εj+kh̃jk
(
∇j(curlϕ)∇k(curlvK) +∇j(curlvK)∇k(curlϕ)

)
− f ·ϕ

}
= 0, (1.2.17)
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for all ϕ ∈ C∞per(T)3. When K = 0, the following identity is obtained:∫
T

(
1

2
h̃00curlϕ · curlv0 +

1

2
h̃00curlv0 · curlϕ− f ·ϕ

)
= 0, ∀ϕ ∈ [C∞per(T)]3.

Writing the above in a differential formulation yields

curl h̃00curlv0 = f .

By considering the formula (1.2.13) for hjk, it is seen that h̃00 coincides with ĥ(2). Fur-

thermore, the minimiser v0 coincides with the leading order homogenised solution also

denoted v0.

Consider now when K = 1. In this case, the Euler-Lagrange equation reads

curl h̃00curlv1 + εcurl
˜̃
h1∇curlv1 + ε2curl h̄2∇2curlv1 = f ,

where

˜̃
h1
ijk =

1

2

{
h̃01
ijk − h̃01

kji − h̃10
jik + h̃10

jki

}
, h̄2

ijkl = −
{
h11
jikl + h11

ljki

}
. (1.2.18)

In Section 1.2.5, it will be shown that the third-order tensor in (1.2.18) coincides with

the third-order tensor ĥ(3) seen in the infinite-order homogenised equation (1.1.19). The

fourth-order tensor is in a sense “incomplete” since it does not include all the fourth-order

tensors hjk in its formula. When values of K are chosen, these tensors will be included.

Remark. For higher-order expressions, it is possible to have two different constant tensors

producing the same term at equal orders, i.e., in the case of third-order tensors, it can

happen that

curlh1∇curlv = curlh2∇curlv, ∀v,

where h1 6= h2. A simple example where this happens is

(h1)ijk =

 1, ijk = {121, 323},

0, otherwise,
(h2)ijk =

 −1, ijk = {222},

0, otherwise.

This will be considered further in Appendix 1.D.

Consider formally when K = ∞ in equation (1.2.17) and denote the corresponding

minimiser by v(∞). Remark that

min
v
E∞(v,f , ε) = min

u(x,ζ)
Eε(u,f) = Ī(ε,f),

where the minimiser u(x, ζ) = uεζ(x). Hence v(∞) = ūε. After a series of manipulations,

it follows that the Euler-Lagrange equation takes the form

curl h̃00curlv(∞) +
∞∑
n=1

εncurl
˜̃
hn∇ncurlv(∞) = f , (1.2.19)
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where

˜̃
hni1...in+2

=
1

2

∑
j+k=n,
j,k∈N0

{
(−1)j h̃jkij+1i2...iji1ij+2...ij+k+2

+ (−1)kh̃jkij+1i2...ijij+k+2ij+2...ij+k+1i1

}
. (1.2.20)

The infinite-order homogenised equation (1.1.19) will be shown to coincide with the vari-

ational infinite-order homogenised equation (1.2.19) in Section 1.2.5.

Remark. In order to interpret the change of indices in equation (1.2.20) correctly, it

should be observed that the n+ 2 = j + k + 2 indices are split into two groups of length

j + 1 and k + 1 respectively:

i1i2 . . . ij+1︸ ︷︷ ︸
j + 1 indices

ij+2 . . . ij+k+2︸ ︷︷ ︸
k + 1 indices

.

So, for example, the term multiplying the factor (−1)j has had indices i1 and ij+1 swapped

and this should be interpreted as swapping the first index from the first group of (j + 1)

indices with the last index from the first group of (j + 1) indices.

The concluding proposition concerns showing that the minimiser vK of IK(ε,f) ap-

proximates the infinite-order homogenised solution v(∞) to all orders in ε.

Proposition 1.2.4. Let K ≥ 2 be a positive integer. Then for any function f , there

exists a positive constant ĉK such that∫
T

∣∣v(∞)(x, ε)− vK(x, ε)
∣∣2dx ≤ ĉKε2K .

Proof. Let u
(K)
ζ denote the vector with associated v(K) from the set UK given in formula

(1.2.11). Define RK(x, ζ) to be the remainder

RK(x, ζ) = uεζ(x)− u(K)
ζ (x, ε).

Clearly

EK(vK ,f , ε) = Ēε(u
(K)
ζ ,f) =

∫
Q
Eε,ζ(u

(K)
ζ ,f) dζ

=

∫
Q

∫
T

(1

2
Âεζcurlu

(K)
ζ · curlu

(K)
ζ − f · u(K)

ζ

)
dxdζ

=

∫
Q

∫
T

(1

2
Âεζcurluεζ · curluεζ −

1

2
Âεζcurluεζ · curlRK−

− 1

2
ÂεζcurlRK · curluεζ +

1

2
ÂεζcurlRK · curlRK − f · uεζ + f ·RK

)
dxdζ.

Since uεζ solves (1.2.7), by integrating by parts, it can be seen that

EK(vK ,f , ε) = Ī(ε,f) +

∫
Q

(∫
T

1

2
ÂεζcurlRK · curlRK dx

)
dζ.
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Using the positive definiteness of the matrix Aζ∫
Q

(∫
T

1

2
ÂεζcurlRK · curlRK dx

)
dζ ≥ ν

2

∫
Q

(∫
T
|curlRK |2 dx

)
dζ

≥ ν

2

∫
T

(∫
Q
|curlRK |2dζ

)
dx

≥ ν

2

∫
T
|curl (ūε − vK)|2dx.

Invoking the remainder estimate (1.2.15) from Proposition 1.2.3 yields∫
T
|curl (ūε − vK)|2 dx ≤ 2cK

ν
ε2K .

Making use of a Maxwell inequality (and noting that div ūε = divvK = 0) yields the

result.

The last two propositions establish that the order K homogenised solution vK which

minimises IK(ε,f) is also the best approximation of the infinite-order homogenised so-

lution v in the sense of the functional asymptotics (Proposition 1.2.3) and furthermore

recovers the asymptotics for v to all orders of ε for sufficiently large K.

The final part of this section looks to address the equality of the two series expansions

for the two infinite-order homogenised equations (1.1.19) and (1.2.19). It was already

shown that the solution to the original problem is unique and so these series must coincide

but proving so requires the introduction of a symmetrisation procedure individual to the

operator in question.

1.2.5 Tensor Analysis of the Infinite-Order Homogenised Equations

Before proceeding to show that ĥ(n+2) and
˜̃
hn are equal after applying a symmetrisation

procedure, it will be confirmed that the two third-order tensors labeled ĥ(3) and
˜̃
h1 appear-

ing in the respective infinite-order homogenised equations coincide. Recall the following

formulae:

˜̃
h1
ijk =

1

2

{
h̃01
ijk − h̃01

kji − h̃10
jik + h̃10

jki

}
, ĥ

(3)
ijk = 〈Ais(curlN (2) +M (2))sjk〉,

where

h̃01
ijk =〈Ast(curlN (1) + I)si(curlN (2) +M (2))tjk〉,

h̃10
ijk =〈Ast(curlN (2) +M (2))sij(curlN (1) + I)tk〉.

The latter two tensors satisfy the symmetry property h10
ijk = h01

kij , and moreover it can

be shown that ĥ
(3)
ijk is expressible in terms of h̃01

ijk and h̃10
ijk. Indeed, using the definitions

(1.1.14) and (1.1.15) and relation (1.2.16) yields

ĥ
(3)
ijk = h̃01

ijk − h̃10
jik.
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Hence,

(ĥ(3) − ˜̃
h1)ijk = h̃01

ijk − h̃10
jik −

1

2

{
h̃01
ijk − h̃01

kji − h̃10
jik + h̃10

jki

}
= h̃01

ijk − h̃01
kji −

1

2

{
h̃01
ijk − h̃01

kji − h̃01
kji + h̃01

ijk

}
= 0.

A symmetrisation process will now be introduced in order to prove that the two infinite-

order homogenised equations obtained are equivalent. A standard symmetrisation proce-

dure can be seen in Wrede [79, p.309] however, this method of symmetrisation proved

unsuccessful in proving the desired result in this work.

Definition 1.2.1. For n ≥ 2, the partial symmetrisation of a tensor hik1...knj , denoted

hi(k1...kn)j , is defined by the relation:

hi(k1...kn)j :=
1

n!

∑
(k1,k2,...,kn)

hik1...knj ,

where the summation is over all permutations of the indices k1, k2, . . . , kn. The indices i

and j are known as the fixed indices.

Partial symmetrisation arises under consideration of the operator curl ĥ(n+2)∇ncurl

which appears in the infinite-order homogenised equations. Indeed, if the partial sym-

metrisation of this operator is considered, then the structure of the operator remains

unchanged.

Recall the expression for the tensor appearing in the infinite-order homogenised ex-

pansion derived via the variational approach:

˜̃
hnik1...knj =

1

2

∑
p+q=n,
p,q∈N0

{
(−1)ph̃pqkpk1...kp−1ikp+1...kp+qj

+ (−1)qh̃pqkpk1...kp−1jkp+1...kp+qi

}
. (1.2.21)

Partially symmetrising the above expression gives

˜̃
hni(k1...kn)j =

1

2(n!)

∑
(k1,...,kn)

∑
p+q=n,
p,q∈N0

{
(−1)ph̃pqkpk1...kp−1ikp+1...kp+qj

+ (−1)qh̃pqkpk1...kp−1jkp+1...kp+qi

}
.

(1.2.22)

In order to show that (1.2.22) is equal to the tensor obtained via the asymptotic approach

when symmetrised, the following lemma is needed.

Lemma 1.2.1. Let h̃pq be a tensor of order (p+ q + 2) satisfying the symmetry property

h̃pqik1...kpkp+1...kp+qj
= h̃qpkp+1...kp+qjik1...kp

. (1.2.23)

Then

1

n!

∑
(k1,...,kn)

∑
p+q=n,
p,q∈N0

(−1)ph̃pqkpk1...kp−1ikp+1...kp+qj
=

1

n!

∑
(k1,...,kn)

∑
p+q=n,
p,q∈N0

(−1)qh̃pqkpk1...kp−1jkp+1...kp+qi
.
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Hence

˜̃
hni(k1...kn)j =

1

n!

∑
(k1,...,kn)

∑
p+q=n,
p,q∈N0

(−1)ph̃pqkpk1...kp−1ikp+1...ip+qj
.

Proof. Consider the four terms appearing in equation (1.2.21) with upper indices pq and

qp:

(−1)ph̃pqkpk1...kp−1ikp+1...kp+qj
, (−1)qh̃pqkpk1...kp−1jkp+1...kp+qi

,

(−1)qh̃qpkqk1...kq−1ikq+1...kp+qj
, (−1)ph̃qpkqk1...kq−1jkq+1...kp+qi

.

Making use of the symmetry property (1.2.23), the four terms above can be written as

(−1)ph̃pqkpk1...kp−1ikp+1...kp+qj
, (−1)qh̃pqkpk1...kp−1jkp+1...kp+qi

,

(−1)qh̃pqkq+1...kp+qjkqk1...kq−1i
, (−1)ph̃pqkq+1...kp+qikqk1...kq−1j

.

Comparing the positions of the fixed indices in the above, the terms with i and j in the

same positions can be “matched”. Hence, when (1.2.21) is symmetrised, a summation

over all index permutations will occur and so all terms in the first half of the sum will

“double up” with those terms in the second half of the sum. Hence the result.

It was shown that the third-order tensor labeled ĥ(3) could be expressed in terms of

a sum of the third-order tensors h̃01 and h̃10 in some combination. In much the same

way, it can be shown that ĥ(n+2) can be expressed in terms of the (n+ 2)th order tensors

h̃0,n, h̃1,n−1, . . . , h̃n,0. The construction requires the use of a recurrent procedure making

use of the definitions of these tensors, equations (1.1.14)-(1.1.15) and relation (1.2.16).

Omitting the details, it can be shown that

ĥ
(n+2)
ik1...knj

= h̃n,0k1...knji − h̃
n−1,1
k2...knjk1i

+ h̃n−2,2
k3...knjk2k1i

− h̃n−3,3
k4...knjk3k2k1i

+ · · · −

− (−1)nh̃1,n−1
knjkn−1kn−2...k1i

+ (−1)nh̃0,n
jknkn−1...k1i

.

Partially symmetrising the above and using the symmetry properties (1.2.23) yields

ĥ
(n+2)
i(k1...kn)j =

1

n!

∑
(k1,...,kn)

{
h̃n,0k1...knji − h̃

n−1,1
k2...knjk1i

+ · · ·+ (−1)nh̃0,n
jknkn−1...k1i

}
=

1

n!

∑
(k1,...,kn)

{
h̃0,n
ik1...knj

− h̃1,n−1
k1ik2...knj

+ · · ·+ (−1)nh̃n,0knkn−1...k1ij

}
=

1

n!

∑
(k1,...,kn)

∑
p+q=n,
p,q∈N0

(−1)ph̃pqkpk1...kp−1ikp+1...ip+qj
=

˜̃
hni(k1...kn)j

Hence the following result is established (c.f.[p. 1357][69], for the scalar case):

Theorem 1.2.1. Let ĥ(n+2) and
˜̃
hn be the tensors given by expressions (1.1.20) and

(1.2.20) respectively. Then

ĥ
(n+2)
i(k1...kn)j =

˜̃
hni(k1...kn)j .
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Furthermore, since the infinite-order homogenised equations (1.1.19) and (1.2.19) obtained

via the asymptotic and variational approaches respectively are invariant under partial sym-

metrisation, the two series expansions coincide.

The following section is devoted to discussions on Maxwell’s equations in general and

the derivation of higher-order constitutive laws. This work will then be complemented by

a discussion on the homogenisation of the full system of Maxwell equations.

1.3 Higher-Order Homogenised Constitutive Laws for the

System of Maxwell Equations

1.3.1 Maxwell’s Equations and the Quasistatic Approximation

The well known system of equations which govern the effects of electromagnetics are

Maxwell’s equations (see Jackson [39] for full details). Maxwell’s equations are derived

from conservation laws and can be formulated in two different ways; either in an inte-

gral formulation or, after applying Gauss’ Divergence Theorem and Stokes’ Theorem (see

Widder [77, Chapter 7]) to the integral formulation, in a differential formulation. In their

differential form, assuming the charge density (denoted ρ) is zero, Maxwell’s equations are

given by the following system:

curlE(x, t) = −∂B
∂t

(x, t), curlH(x, t) =
∂D

∂t
(x, t) + J(x, t), (1.3.1)

div

(
∂

∂t
D(x, t)

)
= −divJ(x, t), divB(x, t) = 0, (1.3.2)

B(x, t) = µ̂(x)H(x, t), D(x, t) = ε̂(x)E(x, t). (1.3.3)

The vector fields E and B denote the electric field and magnetic field respectively while

the vector fields D and H denote the electric field displacement and the magnetic field

intensity respectively. The matrices µ̂ and ε̂ represent the magnetic permeability and

the electric permittivity respectively and the vector field J represents a source of current

density. The equations themselves represent a variety of physical laws also. Equations

(1.3.1) represent Faraday’s law of induction and Ampère’s law of circuitry respectively,

equations (1.3.2) are consistency equations known also as Gauss’ law and Gauss’ law for

magnetism respectively and equations (1.3.3) are referred too as the constitutive laws

which relate the fields to their respective field intensities.

The following assumptions will now be made:

• The unknowns E,B,D,H in Maxwell’s equations depend on the domain period

ε > 0. These unknowns will now be denoted Eε,Bε,Dε,Hε,
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• The matrices µ̂ and ε̂ will be symmetric, uniformly elliptic and depend periodically

on the variable x/ε. The permeability and the permittivity will now be denoted µ̂ε

and ε̂ε respectively,

• For Aε ∈ {Eε,Bε,Dε,Hε} and some frequency ω ∈ R,

Aε(x, t) = Aω,ε(x)eiωt,

• (The Quasistatic Approximation) Each amplitude Aω,ε can be expanded in a power

series of the form

Aω,ε(x) = Aε
0(x) + (iω)Aε

1(x) + (iω)2Aε
2(x) + . . . , (1.3.4)

where Aε
i : T→ R3, for all i ∈ N0.

• The current density J is assumed independent of ε but expressible in a time harmonic

form with amplitude denoted Jω. This amplitude may be expanded in an analogous

series to series (1.3.4) with it’s coefficients independent of ε.

Written in time harmonic form, Maxwell’s equations are given by the following system:

curlEω,ε = −iωBω,ε, curlHω,ε = iωDω,ε + Jω, (1.3.5)

iωdivDω,ε = −divJω, divBω,ε = 0, (1.3.6)

Bω,ε = µ̂εHω,ε, Dω,ε = ε̂εEω,ε. (1.3.7)

The following pair of second-order equations can be derived from system (1.3.5)-(1.3.7):

curl (µ̂ε)−1 curlEω,ε = ω2ε̂εEω,ε − iωJω, (1.3.8)

curl (ε̂ε)−1 curlHω,ε = ω2µ̂εHω,ε + curl((ε̂ε)−1 Jω). (1.3.9)

Substituting in the frequency expansions (1.3.4) into equations (1.3.8)-(1.3.9), terms of

equal powers of ω, are compared. The system is said to satisfy the quasistatic approxi-

mation if equations of equal orders of ω are satisfied. For small frequencies ω, the leading

order equations are
curl (µ̂ε)−1 curlEε

1 = −J0,

div(ε̂εEε
1) = −divJ2,


curl (ε̂ε)−1 curlHε

1 = curl((ε̂ε)−1 J1),

div(µ̂εHε
1) = 0.

(1.3.10)

Note that the following first-order equations are satisfied:

curlEε
0 = 0, curlHε

0 = J0, divJ i = 0, for i = 0, 1 . . . .
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The zero divergence condition on the current density coefficients J i is justified by the

continuity equation divJω = −∂ρ
∂t . Since the charge density ρ was assumed to be zero,

divJω = 0 and hence divJi = 0, i = 1, 2, . . . .

The main focus of the work presented in Sections 1.1 and 1.2 is the first equation in

the system (1.3.10) where Eε
1 = uε, (µ̂ε)−1 = Âε and −J0 = f . Note also that under the

assumption that ε̂ε = I, it follows that divuε = 0.

Remark. The form of the second-order equation for the magnetic field intensity is some-

what different to that of the second-order equation for the electric field. Indeed, the

dependence of the right-hand side on the permittivity matrix ε̂ε means dependence on ε.

A modified approach which deals with magnetic field intensity equation is described in

Section 1.3.4.

1.3.2 Energy Considerations

For a more detailed account about electromagnetic energy, including a discussion on Poynt-

ing’s Theorem, see Bleaney & Bleaney [11, p.232-234].

For the system of equations (1.3.5)-(1.3.7), the electric and magnetic energies are

defined as

uω,εelec :=
1

2

∫
T

(
Eω,ε · (Dω,ε)∗

)
, uω,εmag :=

1

2

∫
T

(
Bω,ε · (Hω,ε)∗

)
, (1.3.11)

where the star notation denotes complex conjugation and the total energy uω,ε is defined as

the sum of the electric energy and the magnetic energy. Substituting equations (1.3.5) and

equations (1.3.7) into expressions (1.3.11) yields the following expressions for the electric

and magnetic energies:

uω,εelec =
1

2ω2

∫
T

(
(ε̂ε)−1

(
curlHω,ε − Jω

)
·
(
curlHω,ε − Jω

)∗)
, (1.3.12)

uω,εmag =
1

2ω2

∫
T

(
µ̂ε)−1curlEω,ε · (curlEω,ε)∗

)
. (1.3.13)

Substituting the formal power series for Eω,ε into the magnetic energy integral (1.3.13)

yields the following:

1

2

∫
T
Bε

0 ·Hε
0 +O(ω2) =

1

2ω2

∫
T
(µ̂ε)−1curlEε

0 · curlEε
0+

+
1

2

∫
T
(µ̂ε)−1curlEε

1 · curlEε
1 +O(ω2).

Noting that curlEε
0 = 0, the leading order energy from the quasistatic approximation is

1

2

∫
T
Bε

0 ·Hε
0 =

1

2

∫
T
(µ̂ε)−1curlEε

1 · curlEε
1. (1.3.14)
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Hence, the energy functional which was minimised in Section 1.2 was a representation of

the leading order magnetic energy in the quasistatic approximation.

The next section will see the discussions on Maxwell’s equations in the last two sections

used in conjunction with the work derived in Section 1.1 and Section 1.2 to develop a

higher-order constitutive relation between Hε
0 and Bε

0. This relation will be derived

in two separate ways which will be shown to coincide using the partial symmetrisation

procedure developed in Section 1.2.5.

1.3.3 Higher-Order Constitutive Relations

In Section 1.3.1, it was noted that the constitutive laws (1.3.3) relate the electric field and

magnetic field to the electric field displacement and magnetic field intensity respectively.

In this section, a higher-order expression between the ζ-averaged magnetic field intensity

H̄
ε
0 and the ζ-averaged magnetic field B̄

ε
0 will be derived.

Let µ̂ε be a Q-periodic, symmetric, elliptic matrix. Consider the following equation

curl (µ̂ε)−1curlEε
1 = f ,

where f = −J0 ∈ [C∞per(T)]3 ∩X(T). Seeking a solution Eε
1 ∈ X(T) leads to the consid-

eration of series (1.1.5). In turn, this yields a homogenised equation akin to (1.1.19).

Recall that Bε
0 satisfies the equation Bε

0 = −curlEε
1. Hence the magnetic field can

formally be expressed as

Bε
0(x) = −

∞∑
j=0

εj
{

curlyN
(j+1)(y) +M (j+1)(y)

}∣∣∣
y=x/ε

∇jxcurlxv(x).

Consider the family of problems seen in Section 1.2.2. To this end, let the parameter ζ

represent a shift in the microscopic variable and a suitable change in notation be reflected

by this shift, µ̂εζ , E
ε,ζ
1 , etc. Note the following averages with respect to ζ:

D̄
ε
1 = Ē

ε
1 = v, 〈curlEε,ζ

1 〉ζ = curlxv. (1.3.15)

where the bar notation once more represents averaging over Q with respect to ζ. The

main result of this chapter is now presented where a higher-order constitutive law for the

ζ-averaged magnetic field intensity H̄
ε,ζ
0 is derived.

−H̄ε
0 := −〈Hε,ζ

0 〉ζ = 〈(µ̂εζ)−1curlEε,ζ
1 〉ζ (by Maxwell’s equations)

=

∞∑
j=0

εj ĥ(j+2)∇jcurlv (making use of expansion (1.1.5))

=

∞∑
j=0

εj ĥ(j+2)∇j〈curlEε,ζ
1 〉ζ (by (1.3.15))

=

∞∑
j=0

εj ĥ(j+2)∇j〈−Bε,ζ
0 〉ζ (by Maxwell’s equations).
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Hence

H̄
ε
0 =

∞∑
j=0

εj ĥ(j+2)∇jB̄ε
0. (1.3.16)

The higher-order constitutive law (1.3.16) is of the form H̄
ε
0 = (µeff)−1B̄

ε
0, where µeff is

the “effective permeability operator”.

An alternative expression for the higher-order constitutive law will be derived using

the energy integral (1.3.14). All of the results of Section 1.2 hold but in particular when

substituting a trial field into (1.3.14), the averaged magnetic energy functional is given by

the following formula

ūεmag =
1

2

∫
T

∞∑
j,k=0

εj+kh̃jk∇j(curlv)∇k(curlv), (1.3.17)

where h̃jk is the same tensor given by expression (1.2.13) with A = µ̂−1. Hence, integrating

the expression given in (1.3.17) by parts and using an appropriate rearrangement of indices

yields

ūεmag =
1

2

∫
T
H̄
ε
0 · B̄

ε
0, H̄

ε
0 :=

∑
j+k=n
j,k∈N0

εn(−1)kh̄jk∇nB̄ε
0, (1.3.18)

where

h̄jki1i2...ij+k+2
:= h̃jkij+1i2...ijij+k+2ij+2...ij+k+1i1

.

It can be shown by making use of the partial symmetrisation procedure described in Section

1.2.5 along with Lemma 1.2.1, that the two expressions (1.3.16) and (1.3.18) obtained for

the magnetic field intensity coincide to all orders.

Similar results will now be illustrated for the second-order equation which governs the

magnetic field intensity with the amendments which have to be made being highlighted.

1.3.4 The Magnetic Field Intensity Equation

Assume that µ̂ε ≡ I and that ε̂ε is Q-periodic, symmetric and uniformly elliptic. For

J1 ∈ [C∞per(T)]3 ∩X(T), a solution is sought of the following:

curl(ε̂ε)−1curlHε
1 = curl

(
(ε̂ε)−1J1

)
, Hε

1 ∈ X(T). (1.3.19)

Most of what is discussed in Section 1.1 is still valid, subject to a modification to the

asymptotic expansion (1.1.5). The expansion of consideration for Hε
1 is the following:

Hε
1(x) = w(x, ε) +

∞∑
j=1

εj
{
∇y(S(j)(y)∇jxw(x, ε)) +∇x(S(j−1)(y)∇j−1

x w(x, ε))+

+ T (j)(y)∇j−1
x

(
curlxw(x, ε)− J1(x)

)}∣∣∣
y=x/ε

,
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where w ∈ [C∞per(T)]3 is divergence-free and may be expanded in an asymptotic series:

w(x, ε) = w0(x) +
∞∑
k=1

εkwk(x), x ∈ T.

Where S(j) plays the role of K(j) and T (j) plays the role of N (j), all the same properties

as seen in Section 1.1.2 are satisfied by these tensors. Applying the same procedure seen

in Section 1.1 the homogenised equation is found to be

curl k̂(2)curlw = curl k̂(2)J1, (1.3.20)

and where the infinite-order homogenised equation is found to be

∞∑
j=0

εjcurl k̂(j+2)∇jcurlw(x, ε) =
∞∑
j=0

εjcurl
(
k̂(j+2)∇jJ1(x)

)
,

where

k̂(j+2) =

〈
ε̂−1

{
curlT (j+1) +R(j+1)

}〉
,

and R(j) plays the role of M (j). A similar theorem to that of Theorem 1.1.2 regarding

the rigorous justification of the asymptotic procedure can be proven with analogous error

estimates.

The analogous variational considerations of Section 1.2 will now be presented. Re-

call the expression for the electric energy given by formula (1.3.11). Upon applying the

quasistatic approximation, the leading order energy is given by the expression

uεelec :=
1

2

∫
T
(Eε

0 ·Dε
0) =

1

2

∫
T
(ε̂ε)−1

(
curlHε

1 − J1

)
·
(
curlHε

1 − J1

)
.

Expanding the dot product under the integral on the right-hand side yields

uεelec =

∫
T

(1

2
(ε̂ε)−1curlHε

1 · curlHε
1 − curl((ε̂ε)−1J1) ·Hε

1

)
+

+
1

2

∫
T
(ε̂ε)−1J1 · J1. (1.3.21)

The first integral in equation (1.3.21) is the functional whose Euler-Lagrange equation is

(1.3.19) where as the integral on the right of equation (1.3.21) is something extra which

is independent of Hε
1. Hence, the minimiser of the functional Eε(H,J1) defined as

Eε(H,J1) =
1

2

∫
T
(ε̂ε)−1

(
curlH − J1

)
·
(
curlH − J1

)
, (1.3.22)

will coincide with Hε
1 ∈ X(T), the solution of (1.3.19). Hence, all the same conclusions

made in Section 1.2 will hold and furthermore an infinite-order homogenised equation can

be obtained via these variational considerations. This infinite-order homogenised equation
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is obtained by considering the minimisation of functional (1.3.22) over restricted trial fields,

i.e., by considering the minimisation of functionals of the kind

ĒK(w,J1, ε) :=

∫
T

{
K∑

j,l=0

1

2
εj+lk̃jl∇j(curlw − J1)∇l(curlw − J1)

}
,

where k̃jl is a tensor of order (j + l + 2) defined by the following formula:

k̃jl =
〈
ε̂−1
(
curlT (j+1) +R(j+1)

)(
curlT (l+1) +R(l+1)

)〉
.

Taking different values of K yields higher-order homogenised equations as seen in Section

1.2.4. In particular, when K = 0, it can be shown that

curl k̃00curlw(0) = curl k̃00J1.

This equation coincides with the homogenised equation (1.3.20). Considering the case

when K =∞ leads to the infinite-order homogenised equation

curl k̃00curlw(∞) +

∞∑
n=1

εncurl
˜̃
kn∇ncurlw(∞) =

∞∑
n=0

εncurl
˜̃
kn∇nJ1,

where

˜̃
kni1...in+2

=
1

2

∑
j+l=n,
j,l∈N0

{
(−1)j k̃jlij+1i2...iji1ij+2...ij+l+2

+ (−1)lk̃jlij+1i2...ijij+l+2ij+2...ij+l+1i1

}
.

Applying the partial symmetrisation procedure of Section 1.2.5 once more yields that the

infinite-order expansions coincide to all orders.

The final consideration of this section concerns the derivation of a higher-order con-

stitutive law between Eε
0 and Dε

0. See Section 1.3.3 for full details but by considering the

ζ-shifted family of problems and averaging over Q with respect to ζ yields a higher-order

constitutive law of the following form:

Ē
ε
0 =

∞∑
j=0

εj k̂(j+2)∇jD̄ε
0.

Applying then the ζ-averaging to the equivalent family of ζ-shifted variational problems

also yields a higher-order homogenised equation:

Ē
ε
0 :=

∑
j+l=n
j,l∈N0

εn(−1)lk̄jl∇nD̄ε
0, k̄jli1i2...ij+l+2

:= k̃jlij+1i2...ijij+l+2ij+2...ij+l+1i1
.

Note that D̄
ε
0 = curlw − J1. Once more, these two higher-order constitutive laws are

shown to coincide to all orders by making use of the partial symmetrisation procedure of

Section 1.2.5 and Lemma 1.2.1.

In the concluding section of this chapter, it will be shown that the full system of

Maxwell equations can be homogenised and in turn that infinite-order homogenised equa-

tions for the electric field and magnetic field intensity can be derived simultaneously.
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1.3.5 Homogenisation of the Full System of Maxwell Equations

Assume that both the permittivity ε̂ε and the permeability µ̂ε are periodic, symmetric

and uniformly elliptic. Moreover, consider the following space:

VÂε(T) :=
{
ϕ ∈ [L2

per(T)]3
∣∣∣ divyÂ(y)∇yϕ(y) = −divyÂ(y), y =

x

ε

}
, Â ∈ {ε̂, µ̂}.

Given f ,J1 ∈ [C∞(T)]3 ∩X(T), a solution is sought of
curl(µ̂ε)−1curlEε

1 = f ,

div
(
ε̂εEε

1

)
= 0,


curl(ε̂ε)−1curlHε

1 = curl((ε̂ε)−1J1),

div
(
µ̂εHε

1

)
= 0,

where

Eε
1,∈ {u ∈ [L2

per(T)]3 | curlu ∈ [L2(T)]3, u ⊥ Vε̂ε(T)},

Hε
1 ∈ {u ∈ [L2

per(T)]3 | curlu ∈ [L2(T)]3, u ⊥ Vµ̂ε(T)}.

For the problem presented, the asymptotic expansions that should be considered for the

electric field and magnetic field intensity respectively are

Eε
1(x) =

(
∇yK(0)(y) + I

)∣∣∣
y=x/ε

v(x, ε) +
∞∑
j=1

εj
{
∇y(K(j)(y)∇jxv(x, ε))+

+∇x(K(j−1)(y)∇j−1
x v(x, ε)) +N (j)(y)∇j−1

x (curlxv(x, ε))
}∣∣∣
y=x/ε

,

Hε
1(x) =

(
∇yS(0)(y) + I

)∣∣∣
y=x/ε

w(x, ε) +
∞∑
j=1

εj
{
∇y(S(j)(y)∇jxw(x, ε))+

+∇x(S(j−1)(y)∇j−1
x w(x, ε)) + T (j)(y)∇j−1

x

(
curlxw(x, ε)− J1(x)

)}∣∣∣
y=x/ε

.

The following amendments are made to the assumptions presented in Section 1.1:

1. The tensors K(0) and S(0) satisfy the equations

div ε̂∇K(0) = −div ε̂, div µ̂∇S(0) = −div µ̂. (1.3.23)

2. For all j ∈ N0, the elements of the tensors K(j), S(j) belong to H1
per(Q).

Noting the above amendments, the majority of the work presented in the previous sections

holds. Amongst the differences is the work in Section 1.1.4 where the equations satisfied

by the tensors K(j) will now be slightly modified to accommodate the amended divergence

conditions. It is also noted that it is not the Maxwell inequality (1.A.1) that is used to

establish uniqueness of the solution of the full system of equations but the more general

Maxwell inequality (1.A.2).
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Carrying out a procedure analogous to that seen in Section 1.1, the following ho-

mogenised system is obtained for the full system of Maxwell equations:
curl ĥ

(2)
−1curlv +

∞∑
j=1

εjcurl ĥ
(j+2)
−1 ∇jcurlv = f ,

div(k̂(2)v) +

∞∑
j=1

εjdiv(k̂(j+2)∇jv) = 0,

(1.3.24)


curl k̂

(2)
−1curlw +

∞∑
j=1

εjcurl k̂
(j+2)
−1 ∇jcurlw =

∞∑
j=0

curl (k̂
(j+2)
−1 ∇jJ1),

div(ĥ(2)w) +

∞∑
j=1

εjdiv(ĥ(j+2)∇jw) = 0,

(1.3.25)

where

ĥ
(j+2)
−1 =

〈
µ̂−1

(
curlN (j+1) +M (j+1)

)〉
, k̂

(j+2)
−1 =

〈
ε̂−1

(
curlT (j+1) +R(j+1)

)〉
,

ĥ(2) =
〈
µ̂
(
∇S(0) + I

)〉
, ĥ(j+2) =

〈
µ̂
(
∇S(j) + R̃(j+1)

)
+Q(j+1)

〉
,

k̂(2) =
〈
ε̂
(
∇K(0) + I

)〉
, k̂(j+2) =

〈
ε̂
(
∇K(j) + M̃ (j+1)

)
+ P (j+1)

〉
.

Here

P
(j+1)
i1i2...ij+2

= (ε̂∗K(j−1))i1i2...ij+2 = ε̂i1i2K
(j−1)
i3...ij+2

, Q
(j+1)
i1i2...ij+2

= (µ̂∗S(j−1))i1i2...ij+2 = µ̂i1i2S
(j−1)
i3...ij+2

.

M̃
(j+1)
i1i2...ij+2

= N
(j)
i1...ijs

εsij+1ij+2 , R̃
(j+1)
i1i2...ij+2

= T
(j)
i1...ijs

εsij+1ij+2 .

Proposition 1.3.1. The four homogenised tensors ĥ(2), k̂(2), ĥ
(2)
−1, k̂

(2)
−1 satisfy the rela-

tions

ĥ(2) =
(
ĥ

(2)
−1

)−1
, k̂(2) =

(
k̂

(2)
−1

)−1
.

Proof. Recall that N (1) satisfies equation (1.1.9). Hence, it follows that

µ̂−1
(
curlN (1) + I

)
= ∇ψ + C,

where ψ is periodic and satisfies the equation div[µ̂(∇ψ + C)] = 0. It is also clear that

C = ĥ
(2)
−1. Multiplying the above equation on both sides by µ̂ and taking the average yields

I =
〈
µ̂
(
∇ψ + ĥ

(2)
−1

)〉
.

By comparing the equation satisfied by ψ with the equation satisfied by S(0) in equation

(1.3.23), it is shown that ψ = ĥ
(2)
−1S

(0). Hence, noting that ĥ
(2)
−1 is symmetric yields

I =
〈
µ̂
(
∇S(0) + I

)〉
ĥ

(2)
−1 = ĥ(2)ĥ

(2)
−1,

as required. An analogous proof holds for the other pair of homogenised tensors.
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This concludes discussions on the higher-order homogenisation of Maxwell’s equations.

In comparison with the homogenisation of scalar elliptic equations via the method of

asymptotic expansions, homogenisation of Maxwell’s equations can be handled in much

the same way but it is clear that care must be given if true physical phenomena want

to be understood. In particular, if considerations are given to the second-order equation

for the magnetic field intensity, then the right-hand side of this equation must take an

appropriate form. Moreover, due to the more complicated form of the operator, attention

must be given to the two different constructions of the infinite-order homogenised equations

and the associated tensors involved in both cases.

54



Appendices

1.A Maxwell Inequality

In order to prove that the solution of equation (1.1.4) was unique, the following inequality

was used:

‖v‖2L2(T) ≤ C(T)(‖curlv‖2L2(T) + ‖divv‖2L2(T)). (1.A.1)

where C(T) is a constant which depends on the size of the domain T. It is noted that

inequality (1.A.1) is only required in the context of periodic domains but that more com-

plicated domains can be considered and Maxwell inequalities derived in for these domains

(see Neff, Pauly & Witsch [50]).

Lemma 1.A.1. Let v ∈ [L2
per(T)]3. If curlv ∈ [L2(T)]3, divv ∈ L2(T) and 〈v〉T = 0

then inequality (1.A.1) holds.

Proof. As v ∈ [L2(T)]3, 〈v〉T it can be written in a Fourier series:

v(x) =
∑

k∈Z3\{0}

ckeik·x,

where ck = (ck1 , ck2 , ck3) ∈ C3 are the Fourier coefficients and k = (k1, k2, k3) ∈ Z3. Note

that for a constant vector k, it can be shown that

curl(ckeik·x) = i(k × ck)eik·x, div(ckeik·x) = i(k · ck)eik·x.

Assuming that curlv ∈ [L2(T)]3, divv ∈ L2(T), by Parseval’s Identity (see Gasquet &

Witomski [34, Chapter 4]) and Lagrange’s Identity5 it follows that

‖v‖2L2(T) = C(T)
∑

k∈Z3\{0}

|ck|2

≤ C(T)
∑

k∈Z3\{0}

|k|2|ck|2

= C(T)
∑

k∈Z3\{0}

(|k × ck|2 + |k · ck|2)

= C(T)(‖curlv‖2L2(T) + ‖divv‖2L2(T)),

5Any two vectors u,v ∈ R3 satisfy Lagrange’s Identity: |u|2|v|2 = |u× v|2 + |u · v|2.
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as required.

The following result is a Maxwell inequality pertinent to the study of the full system

of Maxwell equations in the quasistatic limit.

Lemma 1.A.2. Let v ∈ [L2
per(T)]3 have zero average on T and let A be some bounded,

measurable, uniformly elliptic matrix field. If curlv ∈ [L2(T)]3, div(Av) ∈ L2(T) then

the following inequality holds:

‖v‖2L2(T) ≤ C(T)(‖curlv‖2L2(T) + ‖div(Av)‖2L2(T)). (1.A.2)

Proof. Let v be expressed as a sum v0 + v1 + v2 where v0 ∈ C3, v1 is curl free and Av2

is divergence free. The ability to write v as such a sum is guaranteed by a version of

de Rham’s theorem (see Amrouche, Ciarlet & Mardare [3] for further details). Note that

since 〈v〉T = 0 it immediately follows that v0 = 0.

Consider the T-periodic functions ϕ and ψ which solve the following problems:
curlA−1curlϕ = curlv,

divϕ = 0,


divA∇ψ = div(Av),

〈ψ〉 = 0,

Considering the above equations in their weak form and using ellipticity estimates and

the Cauchy-Schwarz inequality, the following estimates are obtained:

‖A−1curlϕ‖L2(T) ≤ C1‖curlv‖L2(T), ‖∇ψ‖L2(T) ≤ C2‖div(Av)‖L2(T),

where the constants C1, C2 depend on the size of T and the ellipticity and boundedness

constants for the matrix field A. Hence,

‖v‖2L2(T) ≤ ‖v1‖2L2(T) + ‖v2‖2L2(T) = ‖∇ψ‖L2(T) + ‖A−1curlϕ‖L2(T)

≤ C(T)
(
‖curlv‖2L2(T) + ‖div(Av)‖2L2(T)

)
,

as required.

1.B Proof of Theorem 1.1.2 (iii)

The result presented in this appendix completes the proof presented in Section 1.1.5. An

analogous proof of this result can be found in Smyshlayaev & Cherednichenko [69] for the

scalar homogenisation.

Theorem 1.B.1. Let M(x/ε) ∈ [L2(T)]j
3

be a Q-periodic tensor of order j whose com-

ponents have zero average over Q and let g(x) be a smooth, T-periodic tensor of order

j − 1. Then there exists a constant Cr such that∣∣∣∣∫
T
M(x/ε)g(x) dx

∣∣∣∣ ≤ Crεr, ∀r ∈ N. (1.B.1)

56



where

(
M(x/ε)g(x)

)
i1

= M(x/ε)i1i2...ijg(x)i2i3...ij .

Proof. Each element of M(x/ε) can be represented as a convergent Fourier series, i.e., for

N ∈ N, as N →∞

(
MN (x/ε)

)
i1i2...ij

:=
N∑
|k1|=0

N∑
|k2|=0

N∑
|k3|=0

(ck)i1i2...ij exp(ik · x/ε)→
(
M(x/ε)

)
i1i2...ij

,

where k = (k1, k2, k3) ∈ Z3 and ck are the Fourier coefficients. Note that since M has

zero average over Q it follows that c0 = 0. Let Qpε, p = 1, . . . , (T/ε)3, denote the period

cells of T. Hence for all p and any ε > 0, all elements of MN (x/ε) converge:

∫
Qpε

MN (x/ε)g(x) dx→
∫
Qpε

M(x/ε)g(x) dx, (N →∞).

Omitting all fixed subscript indices, fixing all repeated indices of M and g and fixing

N ∈ N, p and ε > 0 yields

∣∣∣∣∫
Qpε

MN (x/ε)g(x) dx

∣∣∣∣ =

∣∣∣∣∣
N∑
|k1|=1

c(k1,0,0)

∫
Qpε

g(x) exp(ik1x1/ε)dx+

+
N∑
|k2|=1

c(0,k2,0)

∫
Qpε

g(x) exp(ik2x2/ε)dx+
N∑
|k3|=1

c(0,0,k3)

∫
Qpε

g(x) exp(ik3x3/ε)dx+

+
N∑

|k1|,|k2|=1

c(k1,k2,0)

∫
Qpε

g(x) exp(i(k1x1 + k2x2)/ε)dx+

+

N∑
|k1|,|k3|=1

c(k1,0,k3)

∫
Qpε

g(x) exp(i(k1x1 + k3x3)/ε)dx+

+

N∑
|k2|,|k3|=1

c(0,k2,k3)

∫
Qpε

g(x) exp(i(k2x2 + k3x3)/ε)dx+

+

N∑
|k1|=1

N∑
|k2|=1

N∑
|k3|=1

ck

∫
Qpε

g(x) exp(ik · x/ε)dx

∣∣∣∣∣.

Integrating by parts an appropriate number of times in the above and adopting the nota-
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tion ∂r,s,tg(x) = ∂r+s+tg(x)
∂rx1∂sx2∂tx3

, for any r ∈ N, it follows that

∣∣∣∣∫
Qpε

MN (x/ε)g(x) dx

∣∣∣∣ =

∣∣∣∣∣
N∑
|k1|=1

c(k1,0,0)
(iε)r

kr1

∫
Qpε

∂r,0,0g(x) exp(ik1x1/ε)dx+

+
N∑
|k2|=1

c(0,k2,0)
(iε)r

kr2

∫
Qpε

∂0,r,0g(x) exp(ik2x2/ε)dx+
N∑
|k3|=1

c(0,0,k3)
(iε)r

kr3

∫
Qpε

∂0,0,rg(x) exp(ik3x3/ε)dx+

+
N∑

|k1|,|k2|=1

c(k1,k2,0)
(iε)2r

kr1k
r
2

∫
Qpε

∂r,r,0g(x) exp(i(k1x1 + k2x2)/ε)dx+

+
N∑

|k1|,|k3|=1

c(k1,0,k3)
(iε)2r

kr1k
r
3

∫
Qpε

∂r,0,rg(x) exp(i(k1x1 + k3x3)/ε)dx+

+

N∑
|k2|,|k3|=1

c(0,k2,k3)
(iε)2r

kr2k
r
3

∫
Qpε

∂0,r,rg(x) exp(i(k2x2 + k3x3)/ε)dx+

+

N∑
|k1|=1

N∑
|k2|=1

N∑
|k3|=1

ck
(iε)3r

kr1k
r
2k
r
3

∫
Qpε

∂r,r,rg(x) exp(ik · x/ε)dx

∣∣∣∣∣

≤ εr
( ∑
k∈Z3

c2
k

)1/2( 3∑
i=1

∑
ki∈Z

1

k2r
i

+
1

2

3∑
i,j=1
i 6=j

∑
ki,kj∈Z

1

k2r
i k

2r
j

+
∑
k∈Z3

1

k2r
1 k

2r
2 k

2r
3

)1/2
×

×
(

max
x∈T
|∂r,r,rg(x)|+ max

x∈T
|∂r,r,0g(x)|+ max

x∈T
|∂r,0,rg(x)|+ max

x∈T
|∂0,r,rg(x)|+

+ max
x∈T
|∂r,0,0g(x)|+ max

x∈T
|∂0,r,0g(x)|+ max

x∈T
|∂0,0,rg(x)|

)
|Qpε|

≤ Crεr+3,

for any p, ε > 0 and any r ∈ N. Hence∣∣∣∣∫
T
M(x/ε)g(x) dx

∣∣∣∣ ≤ (T/ε)3∑
p=1

∣∣∣∣∫
Qpε

M(x/ε)g(x) dx

∣∣∣∣ ≤ Crεr,
as required.

1.C Example in Section 1.1.6

It will now be shown that a = −b where a, b are the constants from the example considered

in Section 1.1.6.

Consider the differential equation and solvability conditions for L = L(y2):

−(αL′)′ = α− 〈α〉, L(0) = L(1), 〈L〉 = 0.

Solving explicitly yields

L(y) =

∫ y

0
α−1(t)

∫ t

0
(〈α〉 − α(s))dsdt−

− 〈α−1〉−1
(∫ y

0
α−1(t)dt

)(∫ 1

0

1

α(t)

∫ t

0
(〈α〉 − α(s))dsdt

)
+ const,
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where the constant is chosen such that 〈L〉 = 0. Therefore

a = −〈αL′〉 =

∫ 1

0

∫ y

0
(α(t)− 〈α〉)dtdy − 〈α−1〉−1

∫ 1

0

1

α(y)

∫ y

0
(α(t)− 〈α〉)dtdy

=

∫ 1

0
(1− 〈α−1〉−1α−1(y))

∫ y

0
(α(t)− 〈α〉)dtdy. (1.C.1)

Consider now the differential equation and solvability conditions for M = M(y2):

(αM ′)′ = (αN)′, M(0) = M(1), 〈M〉 = 0.

Again, solving explicitly yields

M(y) =

∫ y

0
N(t)dt−

∫ 1

0

∫ y

0
N(t)dtdy,

and, moreover, using the explicit formula for N , it can be shown that

b = −〈αM ′〉 =

∫ 1

0
1−α(y)

∫ y

0
(〈α−1〉−1α−1(t))dtdy−〈α〉

∫ 1

0

∫ y

0
(1−〈α−1〉−1α−1(t))dtdy

=

∫ 1

0
(α(y)− 〈α〉)

∫ y

0
(1− 〈α−1〉−1α−1(t))dtdy.

Changing the order of integration in (1.C.1) and renaming t as y and vice versa yields

a =

∫ 1

0
(α(y)− 〈α〉)

∫ 1

y
(1− 〈α−1〉−1α−1(t))dtdy.

Hence

a+ b =

∫ 1

0
(α(y)− 〈α〉)

∫ 1

0
(1− 〈α−1〉−1α−1(t))dtdy = 0.

Hence a = −b as required.

It was also stated in Section 1.1.6 that the two constants labeled c and d were related

via the equality c = −d. This will also now be illustrated for completeness. Recall that

c = −〈αP ′ + αL〉, d = 〈αQ′〉 = −〈αM〉.

Recall also that the following differential equations and solvability conditions are satisfied:

−(αN ′)′ = α′, N(0) = N(1), 〈N〉 = 0

−(αP ′)′ = a+ αL′ + (αL)′, P (0) = P (1), 〈P 〉 = 0.

Consider the differential equation for P = P (y2). Both sides of this equation will be

multiplied by N and then both sides will be averaged over [0, 1]. Using integration by

parts multiple times and noting the 1-periodicity and zero average of N, M, L, and P
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yields the following argument:

− 〈(αP ′)′N + (αL)′N〉 = 〈αNL′〉

⇐⇒ 〈(αP ′)N ′ + (αN ′)L〉 =− 〈(αN)′L〉 (Using the ODE for M)

⇐⇒ − 〈P (αN ′)′ − (αN ′)L〉 =− 〈(αM ′)′L〉 (Using the ODE for N)

⇐⇒ 〈α′P + (〈α−1〉−1 − α)L〉 =− 〈(αL′)′M〉 (Using the ODE for L)

⇐⇒ − 〈αP ′ + αL〉 =〈(α− 〈α〉)M〉

⇐⇒ c =〈αM〉 = −d.

1.D Zero Class of Order n for Equations of Maxwell Type

As an alternative approach to the symmetrisation procedure described in Section 1.2.5, a

discussion on the zero class of order n will be laid out with the goal in mind of showing that

the infinite-order expansions (1.1.19) and (1.2.19) are equal to all orders. The work which

follows was originally motivated by the the absence of the O(ε) term from the higher-order

homogenised equation presented in the example in Section 1.1.6.

Consider those non-zero partially symmetrised tensors h(n) which appear in the kernel

of the operator

Hv ≡ curlh(n)∇n−2curlv,

for fixed vector v. Two non-trivial tensors h1 and h2 of order n are equivalent, denoted

h1 ∼ h2, if

curlh1∇n−2curlv = curlh2∇n−2curlv, ∀v.

Equivalently, this may be written curlh(n)∇n−2curlv = 0, where h(n) = h1−h2. To this

end, the idea is to show that the homogenised tensors ĥ(n) and
˜̃
hn−2 are equivalent.

Consider those tensors h(n) which belong to the set

σn :=
{
h(n) ∈ Rn

3
∣∣∣ curlh(n)∇n−2curlv = 0, ∀v

}
. (1.D.1)

This set is called the zero class of order n. When n = 3, it has already been shown that σ3

is non-trivial (see Section 1.2.4) but recall that there equality of the tensors ĥ(3) and
˜̃
h1.

A further interest is to highlight the general structure of a constant tensor belonging to σ3

and in particular determine how many independent constants they depend on. Consider

the equation

curlh(3)∇curlv = 0, ⇐⇒ (εpi1sh
(3)
si2t

εti3q)∂i1∂i2∂i3vq = 0p, ∀p.

Taking the Fourier transform of the above expression over T and integrating by parts

yields

(−i)3Hpi1i2i3qξi1ξi2ξi3(Fvq)(ξ) = 0p, (1.D.2)
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where Hpi1i2i3q := εpi1shsi2tεti3q and

(Fvq)(ξ) =

∫
T
vq(x)e−iξ·x dx,

Hence, equation (1.D.2) is satisfied if and only if Hpi1i2i3qξi1ξi2ξi3 = 0, for all p, q. For

fixed p, q, this expression may be treated as a non-commuting polynomial in the variables

ξ1, ξ2, ξ3, i.e., for example, where ξ1ξ2ξ1 and ξ2
1ξ2 are treated as different objects. Only

polynomials where the total power in the product is 3 will be considered, i.e., polynomials

of the form ξαi1ξ
β
i2
ξγi3 where α+ β + γ = 3, α, β, γ ∈ N0 are considered.

Denote the space of non-commuting polynomials in three variables by V 3
nc and denote

the space of commuting polynomials in three variables by V 3
c . Define a mapping L : V 3

nc →

V 3
c in the natural way. Hence

L(Hpi1i2i3qξi1ξi2ξi3) = H̃p(i1i2i3)qξ
α1
1 ξα2

2 ξα3
3 ,

where H̃p(i1i2i3)q denotes the summation over all tensor entries with α1 1’s, α2 2’s, α3 3’s

and α1 +α2 +α3 = 3. Hence, it may be concluded that equation (1.D.2) is satisfied if and

only if

H̃p(i1i2i3)q = 0, ∀p, q, and ∀(α1, α2, α3) such that α1 + α2 + α3 = 3.

In order to find the structure of those tensors for which (1.D.2) is satisfied, the above

argument demonstrates that a system of linear equations on the tensor entries must be

fulfilled. In the case when the tensors are third-order, solving this system leads to the

following structure:

h
(3)
ijk =



a1, ijk = {122, 133},

a2, ijk = {221, 331},

a3, ijk = {211, 233},

a4, ijk = {112, 332},

a5, ijk = {311, 322},

a6, ijk = {113, 223},

a1 + a2, ijk = {111},

a3 + a4, ijk = {222},

a5 + a6, ijk = {333},

0, otherwise,

where ai, i = 1, . . . 6 are independent constants.

Remark. It is noted that by the dimension theorem of linear algebra:

dim(V n
nc) = dim(ker(L)) + dim(Img(L)).
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Since the mapping L is surjective dim(Img(L)) = dim(V n
c ), and hence

dim(ker(L)) = 3n −

n+ 2

2

 = 3n − 1

2
(n+ 1)(n+ 2).

The formula above gives some guidance as to the structure for the formula desired to

describe how many constants a tensor in the set (1.D.1) depends on.

Developing the idea of the zero class to the next order it can be shown that ĥ(4) ∼ ˜̃
h2,

i.e., (ĥ(4) − ˜̃
h2) belongs to σ4. Moreover, where tensors from σ3 were found to depend on

six independent constants, it can be shown (directly via calculation) that partially sym-

metrised tensors from σ4 depend on seventeen independent constants. Without providing

all the details, the relevant equations satisfied by the tensor entries in the 4th order zero

class are 

hijji = hijjk = hi(jk)i = 0,

2hi(jk)j = hikkk, 2hi(ji)k = hjjjk,

hijjj + hjjji = 2hi(ij)i,

2hi(ji)j + 2hj(ji)i = hiiii + hjjjj ,

hiiii + 2hj(jk)k = 2hi(ik)k + 2hj(ji)i

i, j, k ∈ [3], i 6= j 6= k.

Likewise, it can be shown that symmetrised tensors of order 5 which belong to σ5 depend

on thirty-three independent constants and satisfy the following system of equations:

hijjji = hijjjk = hi(jjk)i = 0,

hijjjj = 3hi(jjk)k, hiiiij = 3hk(iik)j ,

hijjjj + hjjjji = 3hi(ijj)i,

hi(jjk)j = hi(jkk)k, hi(iij)k = hj(jji)k,

3hi(ijj)i = hijjjj + 3hk(jjk)i, 3hi(ijj)i = hjjjji + 3hi(kjj)k,

hi(ijj)i = hi(kjj)k + hk(kjj)i, i, j, k ∈ [3], i 6= j 6= k.

3hi(ijj)j + 3hj(ijj)i = hjjjjj + 3hi(jii)i,

hi(jkk)k + hk(jkk)i = 2hi(ijk)i, hi(jkk)k + hj(kjj)i = 2hi(ijk)i,

hiiiii + 6hj(ijk)k = 3hi(iik)k + 3hj(iij)i,

hi(iij)i + hj(jjk)k = 2hi(ijk)k + hj(ijj)i, hi(iij)i + hk(kjj)j = 2hk(ijk)i + hi(ijj)j ,

2hi(ijk)k + 2hk(ijk)i = hi(jii)i + hk(jkk)k,

It is of interest to generalise the considerations to the zero class of order n to try and

determine the number of independent constants which tensors from σn depend on. Al-
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though confirming that the difference between the tensors ĥ(n) and
˜̃
hn−2 belongs to σn is

not necessarily possible from this viewpoint, investigation into this point is still of interest.

What is understood about the n-th order zero class σn will now be presented. To

determine the elements of the class, consider the equation in the set in (1.D.1) in index

notation:

(εpi1th
(n)
t(i2...in−1)sεsinq)∂i1∂i2 . . . ∂in−1∂invq = 0 (1.D.3)

As before, conditions are sought on the constant elements of the now n-th order tensor

such that the above equation is satisfied for all vectors v. Even for the third and fourth

order cases, this is a computationally challenge feat, however a number of things may be

determined in general by reposing the problem combinatorially.

Let i = (i1, i2, . . . , in) ∈ [3]n be an ordered n-tuple where [3] = {1, 2, 3}. Furthermore,

define an ordered pair (2-tuple) j = (p, q) ∈ [3]2 with the obvious use of notation used to

coincide with the index notation used in (1.D.3). In the following, only tuples where i1 6= p

and in 6= q will be considered. This constraint is necessary since the permutation symbol

εijk takes value zero whenever any two of its indices are the same. It is not too difficult

to see that there are 4 × 3n−2 possible tuples of consideration. A further observation is

made; for any n-th order tensor h(n) satisfying curlh(n)∇n−2curlv = 0, ∀v, the twelve

entries

h
(n)
ij...ji, i 6= j, h

(n)
ij...jk, i 6= j 6= k, n ≥ 2,

are zero. This follows by choosing all entries of i equal and then considering the four

different valid pairs j.

The following proposition addresses the construction of a formula for Pnj (i ;α1, α2, α3),

the number of permutations of i such that i1 6= p, in 6= q and such that i contains α1 1’s,

α2 2’s and α3 3’s. Note that the cases j = (p, p) and j = (p, q), p 6= q are considered

separately.

Proposition 1.D.1. Let i = (i1, . . . , in) ∈ [3]n be an n-tuple (n ≥ 3) containing αp p’s,

αq q’s and αr r’s with p 6= q 6= r. Denote by Pnj (i ;αp, αq, αr) the number permutations

of i such that j 6= (i1, in). Then

1. if j = (p, p)

Pnj (i ;αp, αq, αr) = (n− αp)(n− αp − 1)
(n− 2)!

αp!αq!αr!
,

2. if j = (p, q)

Pnj (i ;αp, αq, αr) = [αr(n− 1) + αpαq]
(n− 2)!

αp!αq!αr!
.
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Proof. It is well known that the total number of permutations of an n-tuple containing α1

1’s, α2 2’s and α3 3’s, α1 + α2 + α3 = n is given by the multinomial coefficient n

α1, α2, α3

 =
n!

α1!α2!α3!
.

To then incorporate the constraint that i1 6= p, in 6= q, the number of permutations which

start with a p or end with a q are subtracted off the above multinomial coefficient.

1. When j = (p, p), the number of permutations starting or ending with p is given as

(2n− αp − 1)
(n− 2)!

(αp − 1)!αq!αr!
, αp ≥ 1.

Note that the case when αp = 0 is excluded here but it is clear that the end result

works for all αp ∈ [n]. Hence

Pnj (i ;αp, αq, αr) =
n!

αp!αq!αr!
− (2n− αp − 1)

(n− 2)!

(αp − 1)!αq!αr!

=
(
n(n− 1)− αp(2n− αp − 1)

) (n− 2)!

αp!αq!αr!

= (n− αp)(n− αp − 1)
(n− 2)!

αp!αq!αr!
,

as required.

2. For the case when j = (p, q), p 6= q, the same idea is applied; the number of

permutations which start with p or end with a q is

(
(αp + αq)(n− 1)− αpαq

) (n− 2)!

αp!αq!αr!
.

Hence

Pnj (i ;αp, αq, αr) =
n!

αp!αq!αr!
−
(

(αp + αq)(n− 1)− αpαq
) (n− 2)!

αp!αq!αr!

= [n(n− 1)− (αp + αq)(n− 1) + αpαq]
(n− 2)!

αp!αq!αr!

= [(n− 1)(n− αp − αq) + αpαq]
(n− 2)!

αp!αq!αr!

= [αr(n− 1) + αpαq]
(n− 2)!

αp!αq!αr!

as required.

The final result that can be proven regards the number of equations which will turn

up in the consideration of this problem.
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Proposition 1.D.2. A symmetrised tensor depends on
9

2
n(n−1) entries and the number

of linear equations Nn associated with the equation curlh(n)∇n−2curlv = 0 is

Nn = 9W (n, 3)− 21 =
3

2
(3n2 + 9n− 8), n ≥ 3,

where W (n, 3) denotes the number of weak compositions6of n into 3 parts.

Proof. Let α = (α1, α2, α3) be a 3-tuple which denotes the number of 1’s, 2’s and 3’s

respectively in the n-tuple i. Clearly α represents a weak composition of n into 3 parts.

Hence there will be a number of equations equal to the number of weak compositions

of n into 3 parts minus the number of cases which are excluded by the constraint that

i1 6= p, in 6= q. When p = q there are 3 cases to be excluded and that when p 6= q there

are 2 cases to be excluded. Denoting the number of weak compositions of n into 3 parts

by Wn(3), the total number of equations Nn is

Nn = 6(W (n, 3)− 2) + 3(W (n, 3)− 3) = 9W (n, 3)− 21.

The total number of weak compositions of n into m parts is given by

W (n,m) =

n+m− 1

n

 .

Hence

Nn = 9×

n+ 2

n

− 21 =
9

2
(n+ 2)(n+ 1)− 21 =

3

2
(3n2 + 9n− 8),

as required.

The determination of how many of the Nn equations are linearly independent remains

unclear. The following conjecture is proposed:

Conjecture. Let h(n) ∈ σn be an n-th order symmetrised tensor. Then the number of

linearly independent equations Ln associated with obtaining the general structure of h(n)

increases quadratically in n. Hence

Ln = 2n2 + 2n− 3

Moreover, tensors belonging to σn depend on at most Cn constants where

Cn =
1

2
(5n2 − 13n+ 6) =

1

2
(5n− 3)(n− 2).

6A composition of a positive integer n into m parts is an m-tuple (a1, a2, . . . , am) such that ai ∈ N, i =

1, 2, . . . ,m and a1+a2+. . . am = n. A weak compoisition has the same definition except with the alteration

ai ∈ N0. For more details, see Riordan [60].
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The work of this appendix is superfluous to the considerations discussed on partial

symmetrisation, however, the work has presented an alternative viewpoint to the sym-

metrisation procedure which has in turn led to an overlap with an otherwise unrelated

field. It is hypothesised that the there is a link between the proof of the above conjecture

and the number of integer partitions of n of length less than or equal to 3. An integer

partition of n is a multiset such that the elements of the set sum to n. As of yet, no closed

formula is known for the number of integer partitions of an arbitrary integer n but it is

hypothesised that the answer to the above conjecture may lead to a partial result for the

number of integer partitions.
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Chapter 2

Homogenisation of High-Contrast

Composites with Periodic

Frameworks of Critical Thickness

Introduction

According to Milton [48], composites are “materials that have inhomogeneities on length

scales that are much larger than the atomic scale [. . . ] but which are essentially homo-

geneous at macroscopic length scales”. As the name might suggest, composite materials

constitute two or more material components with the overall material possessing proper-

ties inherent to the constitutive materials. An example of such a composite is reinforced

concrete with the constitutive materials being concrete which is poured around a thick

steel wire frame. Reinforced concrete is primarily made up of the cheaper and lighter

concrete but with the strength of steel. The study of composite materials is of interest in

the mathematical sciences due to such desirable properties.

In the study of periodic composite materials, the theory of two-scale convergence is a

useful tool. In 1989 Nguetseng [51] proposed the multi-scale extension of the notion of

the weak L2-limit. In Allaire [1] a theorem on the two-scale compactness of L2-bounded

sequences was proven which in turn led to the establishment of a corrector-type result

for the uniformly elliptic periodic homogenisation problem. Not only do two-scale conver-

gence methods have the ability to recover “classical” homogenisation results but also these

methods have the ability to deal with homogenisation problems of composite media with

more complicated geometries on the period cell. Indeed, in some homogenisation problems

where there is no strong L2-limit, e.g., problems with degeneracies, see Smyshlyaev [68],

two-scale convergence techniques will capture the multi-scale limit structure by providing
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a suitable notion of strong convergence. As opposed to the uniformly elliptic case where

the limit function only depends on the macroscopic variable and which is the solution

of a single boundary-value problem, the multi-scale limit for degenerate homogenization

problems satisfy a system of coupled equations for the macroscopic and microscopic parts

of the limit solution. This is the case when this theory is applied to thin structures.

h

 

d=2: The ‘‘matrix’’ 
and its ‘‘skeleton’’

Figure 2.1: Example of a periodic network and unit cell.

A thin structure is defined as an arrangement of rods of thickness a > 0 which meet

at junctions points (“nodes”) as seen in Figure 2.1. This figure shows not only the thin

structure on the left-hand side but also the limiting “singular” structure on the right

which is obtained by taking the midlines of the rods. In the literature, the study of the

equations of elasticity on rod frameworks has been considered when the rod thickness a is

treated as a parameter depending on some typical rod length. In the context of periodic

homogenisation problems, rod frameworks are arranged periodically with period ε and

the limit behaviour of the structure is studied as ε→ 0 by studying the various two-scale

limits of the sequences involved.

The use of two-scale techniques for the study of thin structures has been proposed

by Zhikov [81, 82] and Bouchite & Fragala [14]. In [81], the work of Nguetseng [51] and

Allaire [1] on two-scale analysis was extended to the setting of general Borel measures with

the conditions on the measure necessary and sufficient for passing to the two-scale limit

determined. Additionally, it was shown that the spectrum of the “double-porosity model”

where the components of the composite have contrasting properties, is close to a band

spectrum, the complement of which is an infinite set of disjoint intervals (“gaps”). This

property is possessed by the homogenised operator derived in the work presented. In [82]

it was established that if the thickness of the rods is a = a(ε), and a→ 0 as ε→ 0, then the

limit of the homogenisation problem depends on the assumptions made on the ratio a/ε2.

In particular, in the case when a/ε2 → θ > 0, the sequence of symmetric gradients are,

in general, not compact with respect to strong two-scale convergence. Consequently, the

equation describing the limit energy balance is no longer obtained by setting the the test
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function equal to the solution of the homogenised equation for the corresponding singular

structure found by considering the midlines of the rods with the measure induced by the

thin structure. This problem was rectified in 2003 by Zhikov & Pastukhova [84] where

the correct form of the missing part of the energy equality was determined and in turn

the limiting system of equations which describe the homogenised problem was derived.

A number of works follows the afore mentioned publication which included works on the

analysis of Sobolev spaces for a variable measure [83, 84], work on Korn inequalities for

periodic frames [86] and a study of the gaps in the spectrum of the elasticity operator on a

high-contrast periodic structure [87] with non-vanishing volume fraction of the components

as ε→ 0. In [87], viewed as an extension of the results of Zhikov [81], the band-gap nature

of the spectrum of this operator is analysed and, moreover, it is shown that their is

convergence of the spectra of the heterogeneous problems to the limit spectrum. It was

first observed in Zhikov & Pastukhova [85] that the spectrum of the limit problem for

thin structures in the critically scaled regime bears a remarkable similarity to the limit

spectrum of the high-contrast, fixed-volume fraction case of the problem presented in [87].

Reasons for this similarity have been found in the more recent work of Cherednichenko &

Kiselev [24] where operator-theoretic tools are used to show that the resolvents of both

models are close in the operator-norm sense to a limit Konnig-Penney model of the so

called “δ-type”.

In the work presented in this chapter, the works of Zhikov & Pastukhova [84, 87] are

extended for the study of an elasticity problem on a two-component periodic composite

where the region occupied by the main material (“matrix”) has the form of a framework

with a/ε2 → θ > 0, and the complementary part of the space, consisting of disjoint

“inclusions”, is filled with a less rigid material so that the ratio between the stiffness of the

inclusions and the matrix is of order O(ε2). In other words, in addition to the assumption

of high-contrast, it is assumed that the stiff component is a thin structure constructed

such that its volume fraction is of order O(ε). While the analysis presented uses elements

of multi-scale approaches to thin structures as utiliised in [81, 84] and elements of high-

contrast composite theory as seen in [81, 87], new tools are developed to prove the main

results (the homogenisation theorem (Theorem 2.3.1) and spectral convergence (Theorem

2.4.1) which link the behaviour of the solutions of the original sequence of problems with

rapidly oscillating coefficients on the stiff component and on the inclusions. Moreover,

the limit functions for the restrictions of the solutions to each of the two components are

coupled together (see Section 2.3.1) and lead to a new kind of homogenised system of

equations.

With regards notation, all vectors will again be denoted in bold face text and will be
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2-dimensional. Matrices will all be 2 × 2 and symmetric and therefore have 3 distinct

elements which will be reflected in the notation of the function spaces they belong to.

Moreover, 〈 · 〉 will be used to denote the average over Q with respect to the composite

measure µ and 〈 · 〉λ will be used to denote the average over Q with respect to the singular

measure λ.

2.1 Analytical Tools and Two-Scale Convergence

2.1.1 The Problem of Consideration

Consider a periodic rod framework (the “stiff” component of the composite) filled in with

a different material (“soft” component). An example of such a structure can be seen in

Figure 2.2. It will be assumed that the rod thickness a = a(ε) > 0 is a function of the

period ε > 0 in the setting where limε→0 a/ε
2 = θ > 0. This particular scaling is referred

to as “critical” in the literature. It is also assumed that the ratio of the elastic moduli

of the soft and stiff components is of order O(ε2). Let F h1 denote the domain occupied

by the scaled rods of thickness h = h(ε) := a/ε in the scaled structure of period 1 and

let F1 denote the corresponding thin structure obtained as h → 0. The periodicity cell

is denoted by Q := [0, 1)2 where Q1 := Q ∩ F1 and Q0 := Q\Q1. Define further the

“contraction” F h,ε1 := εF h1 of the framework F h1 . The soft component R2\F h1 and its

contraction ε(R2\F h1 ) are denoted F h0 and F h,ε0 respectively. Denote by χ1, χ
h
1 , χh,ε1 and

χ0, χ
h
0 , χh,ε0 the characteristic functions on the sets F1, F

h
1 , F h,ε1 and (R2\F1), F h0 , F h,ε0

respectively.

1

ε

Ω Q

Q0

Q1

h

h

h

Figure 2.2: Periodic network with high-contrast. Note that Qh1 = Q∩F h1 and Qh0 = Q∩F h0 .
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Let Ω ⊂ R2 be a bounded Lipschitz domain and denote by Ωε,h
1 := Ω ∩ F h,ε1 the set

of all stiff inclusions contained in Ω and denote by Ωε,h
0 := Ω ∩ F h,ε0 the set of all soft

inclusions contained in Ω.

In what follows, the equations of two-dimensional elasticity in R2 are considered where

these equations arise from the full three-dimensional system of linearised elasticity equa-

tions when there is a direction, say x3, along which material properties are constant and

when it is assumed that the displacement does not depend on x3. At each point x ∈ R2,

the fourth-order tensor for the elastic moduli of the medium is given by

Aε = ε2χh0(·/ε)A0 + χh1(·/ε)A1

where A0 and A1 are constant positive definite matrices1:

cjξ
2 ≤ Ajξ · ξ ≤ c−1

j ξ2, cj > 0, j = 0, 1, ∀ξ ∈ Sym2,

where Sym2 is the set of all 2×2 symmetric matrices. Consider the measures λ, λh defined

by

λ(B) =
H1(B ∩ F1)

H1(Q ∩ F1)
, λh(B) =

H2(B ∩ F h1 )

H2(Q ∩ F h1 )
, (2.1.1)

for all Borel sets B ⊂ Q, where H1, H2 are the one-dimensional and two-dimensional

Hausdorff measures, see Evans & Gariepy [30]. These measures are extended to R2 by Q-

periodicity. Moreover, define the composite measures µ := 1
2dx+ 1

2λ and µh := 1
2dx+ 1

2λ
h

where dx is the plane Lebesgue measure2. Finally, the “scaled” measures λhε and µhε :=

1
2dx + 1

2λ
h
ε are introduced such that λhε (B) = ε2λh(ε−1B) for all Borel sets B ⊂ R2.

Moreover, there are convergences λh ⇀ λ as h → 0 (hence µh ⇀ µ as h → 0) and

µhε ⇀ dx as ε→ 0 in the sense that

lim
h→0

∫
Q
ϕ dλh =

∫
Q
ϕ dλ, ∀ϕ ∈ [C∞per(Q)]2,

lim
ε→0

∫
Ω
ϕ dµhε =

∫
Ω
ϕ dx, ∀ϕ ∈ [C∞0 (Ω)]2.

The first of these convergences can be shown by taking a Taylor’s expansion of ϕ in a

neighbourhood of F h1 and acknowledging that higher-order terms are of order O(h). The

second result follows by a similar arguement to that presented in Appendix 2.B, taking

a Bloch transform of ϕ and then using the same argument as for the first convergence

above.

1The scalar product of two symmetric matrices ξ = {ξij} and η = {ηij} is defined by ξ · η = ξijηij . In

particular, ξ2 = ξ · ξ. The product of the fourth-order elasticity tensor A with a symmetric matrix ξ is

defined as Aξ = aijklξkl and thus Aξ · ξ = aijklξijξkl.
2Here, dx is used to denote the plane Lebesgue measure as well as the element of integration.
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The space [H1
0 (Ω)]2 is understood to be the closure of the space [C∞0 (Ω)]2 with respect

to the norm (
∫

Ω

(
|ϕ|2 + e(ϕ)2

)
dµhε )1/2 where the matrix e(ϕ) := 1

2

{
∇ϕ+ (∇ϕ)T

}
is

referred to as the symmetric gradient.

For ε, h > 0 and fh,ε ∈ [L2(Ω,dµhε )]2, the problem at hand is to find a vector-valued

function uhε ∈ [H1
0 (Ω)]2 satisfying the identity∫

Ωε,h1

A1e(u
h
ε ) · e(ϕ) dµhε + ε2

∫
Ωε,h0

A0e(u
h
ε ) · e(ϕ) dµhε+

+

∫
Ω
uhε ·ϕ dµhε =

∫
Ω
fh,ε ·ϕ dµhε , ∀ϕ ∈ [H1

0 (Ω)]2. (2.1.2)

Theorem 2.1.1. Define a bilinear form Bh
ε (·, ·) and a linear form Lhε (·) by the following

relations:

Bh
ε (u,v) :=

∫
Ωε,h1

A1e(u) · e(v) dµhε + ε2

∫
Ωε,h0

A0e(u) · e(v) dµhε +

∫
Ω
u · v dµhε ,

Lhε (v) =

∫
Ω
fh,ε · v dµhε .

The bilinear form Bh
ε (·, ·) is both coercive and continuous and the linear form Lhε (·) is

continuous on [H1
0 (Ω)]2. Hence, by the Lax-Milgram Lemma (see Evans [29, Chapter 6]),

a unique solution uhε ∈ [H1
0 (Ω)]2 exists to problem (2.1.2).

The proof of this result is a routine use of ellipticity estimates and the Cauchy-Schwarz

inequality as seen in Chapter 1, Section 1.1.1.

In the work which follows, a description of the structure of the limiting problem for

the weak two-scale limit of the function uhε as ε → 0 will be derived. In general, the

structure of the homogenised problem depends on the way in which the ratio h/ε goes

to zero as ε → 0. However, from the general theory of homogenisation on periodic rod

structures (see Zhikov [82], Zhikov & Pastukhova [84]), when A0 is formally replaced by

zero in (2.1.2) and Theorem 2.1.1 the following results hold regardless of the limit of the

ratio h(ε)/ε:

1. There exists a vector function u(x,y) ∈ [L2(Ω, L2(Q,dλ))]2 such that for all ϕ ∈

[L2(Ω, L2(Q,dµ))]2:

(a)
1

|Ωh,ε
1 |

∫
Ωh,ε1

uhε (x) ·ϕ(x,x/ε) dx→
∫

Ω

∫
Q
u(x,y) ·ϕ(x,y) dλ(y)dx, (ε→ 0),

(b)
1

|Ωh,ε
1 |

∫
Ωh,ε1

|uhε (x)|2 dx→
∫

Ω

∫
Q
|u(x,y)|2 dλ(y)dx, (ε→ 0).

2. The vector u(x, ·) is a “periodic rigid displacement” (see Definition 2.1.4):

u(x,y) = u0(x) + χ(x,y), a.e. x ∈ Ω, λ-a.e. y ∈ Q ∩ F1,

where u0 ∈ [H1
0 (Ω)]2 and χ(x, ·) is a periodic transverse displacement (see equation

2.1.13).
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3. The “macroscopic” equation

−div(Ahom
λ e(u0)) + 〈u〉λ = 〈f〉λ,

is satisfied where Ahom
λ is the “λ-homogenised tensor” (see (2.2.9)) and where f is

the weak two-scale limit of the sequence fh,ε (see Section 2.1.2)

The main result of this chapter, Theorem 2.3.1, illustrates that in the case of a critical

scaling between the rod thickness a and the period ε, as ε → 0, the solutions uhε of

problem (2.1.2) where h = a/ε converge in the appropriate sense of two-scale convergence

(see Section 2.1.2) to a function u(x,y), x ∈ Ω, y ∈ Q. Moreover, it will be shown

that the trace of u(x,y) on Q ∩ F1 is a periodic rigid displacement and, in addition, the

function u(x, ·)− u0(x) =: U(x, ·), x ∈ Ω belongs to the space [H1
per(Q)]2 for a.e. x ∈ Ω

and is the solution to an elliptic equation which couples the equation for u0.

Let τ , ν be unit tangent and unit normal vectors respectively to any link I of the thin

network F1 such that they form a positively orientated system. Any vector v ∈ R2 can

be written in the form v = v(τ)τ + v(ν)ν where v(τ) = (v · τ ) and v(ν) = (v · ν). Then,

where the trace of u is denoted χ, the vectors U and χ are shown to satisfy differential

equations of the form

A0U + u = f , Lτχ
(ν) + TνU

(ν) + u(ν) = f (ν), (2.1.3)

where A0 is a second-order differential operator in Q expressed in terms of the tensor A0

only, Lτ is a fourth-order differential operator “acting” in the tangential direction τ and Tν

is a first-order differential operator “acting” in the transversal direction ν corresponding

to each link I. In particular, the system of equations is obtained when the tensor A0 is

isotropic is demonstrated in Section 2.3.1. By isotropic tensor, it is understood that for a

symmetric matrix ξ,

A0ξ = 2M0ξ + L0(tr ξ)I, (2.1.4)

where, M0, L0 > 0 are the Lamé constants. Note further that the Lamé constants are

denoted this way rather than with λ and µ to save confusion with the measures used in

this chapter.

2.1.2 Overview of Two-Scale Convergence

In problems involving interacting length scales, the theory of two-scale convergence is a

natural tool for the analysis of such problems since these techniques can capture the “non-

classical” limiting behaviour of the weak two-scale limit as a function of two variables. The

results presented below are those necessary to carry out the analysis of equation (2.1.2).
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It will be assumed throughout that the sequence uhε is bounded in [L2(Ω,dµhε )]2:

lim sup
ε→0

∫
Ω
|uhε |2 dµhε <∞. (2.1.5)

Before introducing the definition of weak two-scale convergence, the definitions of weak

and strong convergence are recalled along with the so called mean value property of weak

convergence.

Definition 2.1.1 (Weak & Strong Convergence). Let uh be a bounded sequence in

[L2(Q,dµh)]2. The sequence uh converges:

1. weakly to u ∈ [L2(Q,dµ)]2, denoted uh ⇀ u, if

lim
h→0

∫
Q
uh ·ϕ dµh =

∫
Q
u ·ϕ dµ, for each ϕ ∈ [C∞per(Q)]2. (2.1.6)

2. strongly to u ∈ [L2(Q,dµ)]2, denoted uh → u, if

lim
h→0

∫
Q
uh · vh dµh =

∫
Q
u · v dµ. (2.1.7)

for any sequence vh ∈ [L2(Q,dµh)]2 converging weakly to v ∈ [L2(Q,dµ)]2.

Lemma 2.1.1 (Mean Value Property). Let Ω be a Jordan measurable set and let uh ⇀ u

in [L2(Q,dµh)]2. Then

lim
ε→0

∫
Ω
ϕ(x) · uh(x/ε) dµhε =

∫
Ω

∫
Q
ϕ(x) · u(y) dµdx, ∀ϕ ∈ [C(Ω)]2.

Definition 2.1.2 (Weak Two-Scale Convergence). Let uhε ∈ [L2(Ω, dµhε )]2 be a bounded

sequence. The function u(x,y) ∈ [L2(Ω×Q,dx× dµ)]2 is said to be the weak two-scale

limit of uhε , denoted uhε
2
⇀ u, if

lim
ε→0

∫
Ω

Φ(x,x/ε) · uhε (x) dµhε =

∫
Ω

∫
Q

Φ(x,y) · u(x,y) dµdx, ∀Φ ∈ [L2(Ω, Cper(Q))]2.

(2.1.8)

The following proposition on two-scale compactness forms an essential part of the

theory of two-scale convergence. With this result, it is possible (up to possibly taking a

subsequence) to pass to the limit of a bounded sequence.

Proposition 2.1.1. If a sequence uhε is bounded in [L2(Ω,dµhε )]2, then it is relatively

compact with respect to weak two-scale convergence.

The proof of this result can be found in, for example Allaire [1] but the proof presented

here is a version of the proof found in Zhikov [81].
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Proof. Define Γ to be a set of test functions which is a dense countable subset of functions

of the form

Φ(x,y) = ϕ(x)b(y), ϕ ∈ C∞0 (Ω), b ∈ [C∞per(Q)]2.

Then a subsequence εk → 0 is extracted such that

lim
εk→0

∫
Ω

Φ(x,x/ε) · uhε (x) dµhε =: Lε(Φ), (2.1.9)

exists for any Φ ∈ Γ. This limit is defined and by the Cauchy-Schwarz inequality,(∫
Ω

Φ(x,x/ε) · uhε (x) dµhε

)2
≤
∫

Ω
|uhε |2 dµhε

∫
Ω
|Φ|2 dµhε ≤ C

∫
Ω
|Φ|2 dµhε .

Since Lε is bounded, by the Banach-Alaoglu Theorem (see Rudin [61]), it possesses a

weak-∗ convergent subsequence and limit L. Moreover, making use of the mean value

property

|L(Φ)|2 ≤ C
∫

Ω

∫
Q
|Φ|2 dµdx.

By the Riesz Representation Theorem (see Brezis [17]), the linear functional L(Φ) has a

representation of the form

L(Φ) =

∫
Ω

∫
Q

Φ(x,y) · u(x,y) dµdx, [u ∈ L2(Ω×Q,dx× dµ)]2.

The linear span of test functions is a dense set in [L2(Ω × Q,dx × dµ)]2. Hence, the

function u is uniquely defined.

The following is a statement on lower semi-continuity.

Proposition 2.1.2. Let uhε be a bounded sequence in [L2(Ω, dµhε )]2 and let uhε
2
⇀ u where

u ∈ [L2(Ω×Q,dx× dµ)]2. Then

lim inf
ε→0

∫
Ω
|uhε |2 dµhε ≥

∫
Ω

∫
Q
|u|2 dµdx. (2.1.10)

Analogous to the notion of strong convergence, there is a notion of strong two-scale

convergence.

Definition 2.1.3 (Strong Two-Scale Convergence). Let uhε be a bounded sequence in

[L2(Ω, dµhε )]2 and let vhε be such that vhε
2
⇀ v. The function u = u(x,y) ∈ [L2(Ω ×

Q,dx× dµ)]2 is called the strong two-scale limit of uhε , denoted uhε
2→ u, if

lim
ε→0

∫
Ω
uhε (x) · vhε (x) dµhε =

∫
Ω

∫
Q
u(x,y) · v(x,y) dµ(y)dx. (2.1.11)

Strong convergence implies weak convergence (simply take vhε (x) = Φ(x,x/ε) in the

above definition) and moreover setting vhε = uhε yields

lim
ε→0

∫
Ω
|uhε |2 dµhε =

∫
Ω

∫
Q
|u|2 dµdx. (2.1.12)

The next proposition, also proven in Zhikov & Pastukhova [84], shows that the converse

also holds.
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Proposition 2.1.3. Let uhε be a bounded sequence in [L2(Ω, dµhε )]2 and u ∈ [L2(Ω ×

Q,dx× dµ)]2. If uhε
2
⇀ u and convergence (2.1.12) holds, then uhε

2→ u.

In the following section, further tools commonly associated with the analysis of thin

structures will be acknowledged.

2.1.3 Some Auxiliary Tools for Thin Structures

Of particular importance to the study of thin structures, the concepts of periodic rigid

displacement and transverse displacement will now be introduced.

Definition 2.1.4 (Periodic Rigid Displacements). A vector function u ∈ [L2(Q,dλ)]2

is called a periodic rigid displacement (with respect to the measure λ) if there exists a

smooth sequence {un}n∈N ∈ [C∞per(Q)]2 such that

un → u, in L2(Q,dλ)2, e(un)→ 0, in [L2(Q,dλ)]3.

The set of all periodic rigid displacements is denoted R and is equipped with the [L2(Q,dλ)]2-

norm.

I1

I4

I3

I2
I1

I2

I3
I4

a) b)

Figure 2.3: a) Square framework; b) Diagonal framework

Example. Examples of periodic rigid displacements will be demonstrated.

Consider firstly a square framework (see Figure 2.3a)) with links aligned with the axes

and bottom left node at the origin. Solving the equation e(u) = 0, is not simple since the

link in question plays a key role. For example, on I1,

u(y) =

y2α
′(y1)

−α(y1)

 ,

with α ∈ H2
per(I1) and α(0) = 0 satisfies the equation e(u) = 0 as y2 = 0 on I1. Vectors of

a similar form can be found which are periodic rigid displacements on each of the links.
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For the diagonal framework (see Figure 2.3b)) with incline from the y1-axis of π/4, in

a similar fashion it can be shown that on the link I1 that

u(y) =

(1
2y

2
1 − y2)α(y2)

(y1 − 1
2y

2
2)α(y1)


with α ∈ H1

per(I1) is a periodic rigid displacement. Similar expressions can be found on

the remaining links.

It is shown, see e.g. Zhikov [82], that any vector u ∈ R has a unique representation of

the form

u(y) = c+ χ(y), y ∈ Q, (2.1.13)

where c ∈ R2 and χ is a periodic transverse displacement, i.e., on each link of the singular

network F1, it is orthogonal to the link. Denoting the set of all transverse displacements by

R̂ it follows that R = R2⊕ R̂. The following definition characterises the class of transverse

displacements which appear in the study of rod networks which are critically scaled.

Definition 2.1.5. Let ν, τ be normal and tangent to each link I of the periodic network

F1 such that they form a positively orientated frame and denote by I1, . . . , In the links

which share an arbitrary node O. Then the set R̂0 ⊂ R̂ denotes the set of all transverse

displacements χ satisfying the following conditions:

1. The function χ(νj)|Ij , j = 1, 2, . . . , n, is square integrable and has square integrable

first and second derivatives on Ij , denoted χ(νj) ∈ H2(Ij).

2. Equality of the first derivatives at each node3:

(χ(ν1))′|O = (χ(ν2))′|O = · · · = (χ(νn))′|O,

3. Fastening at each node: χ|O = 0.

The norm in R̂0 is defined as the sum of the H2-norms of χ(ν) over all the links.

Definition 2.1.6 (Potential & Solenoidal Matrices). Let κ be a Borel measure on Q.

The space of κ-potential matrices, denoted V κ
pot, is defined to be the closure of the set

{ e(u) | u ∈ C∞per(Q)2 } in [L2(Q,dκ)]3. A symmetric matrix v ∈ [L2(Q,dκ)]3 is said to be

κ-solenoidal if ∫
Q

(
v · e(u)

)
dκ = 0, for all u ∈ [C∞per(Q)]2.

The set of κ-solenoidal matrices is denoted V κ
sol and moreover [L2(Q,dκ)]3 = V κ

pot ⊕ V κ
sol.

3In what follows, (χ(ν))′, denotes the derivative in the tangential direction: (χ(ν))′ := dχ(ν)

dτ
= (τ ·∇)χ(ν).
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Denote by L2(Ω, V κ
pot) the closure in [L2(Ω×Q,dx×dκ)]3 of the linear span of matrices

we(u), w ∈ C∞0 (Ω), u ∈ [C∞per(Q)]2 and denote by L2(Ω, V κ
sol) the closure in [L2(Ω ×

Q,dx× dκ)]3 of the linear span of matrices wv, w ∈ C∞0 (Ω), v ∈ V κ
sol. Then, it is shown

(see Zhikov [82]) that [L2(Ω × Q,dx × dκ)]3 = L2(Ω, V κ
pot) ⊕ L2(Ω, V κ

sol). When κ is the

Lebesgue measure on Q these spaces are denoted Vpot and Vsol.

Definition 2.1.7 (Natural Extension). Let b ∈ L2(Q,dλ) be periodic and let I1, . . . , In

be the links of the singular network F1 which meet at a single node O. Denote the rod of

thickness h with midline Ij by Ihj , j = 1, 2, . . . , n. On each link Ij , define bhj (y) = b(y∗)

whenever y is within a h-neighbourhood of Ij and |y − y∗| = dist(y, Ij), y
∗ ∈ Ij and

bhj (y) = 0 otherwise. The sum over all rods meeting at the node O is called the natural

extension of b and is denoted [b]h.

2.2 Two-Scale Structure of Solution Sequences

In this section, the structure of the various two-scale limits on the stiff and soft components

will be established. To achieve this, the limit as ε → 0 will be passed to in the integrals

seen in (2.1.2) with suitably chosen test functions ϕ.

2.2.1 Two-Scale Compactness of solutions to (2.1.2)

Consider equation (2.1.2) with ϕ = uhε :∫
Ωε,h1

A1(·/ε)e(uhε ) · e(uhε ) dµhε + ε2

∫
Ωε,h0

A0(·/ε)e(uhε ) · e(uhε ) dµhε+

+

∫
Ω
|uhε |2 dµhε =

∫
Ω
fh,ε · uhε dµhε .

Using ellipticity estimates on the left-hand side and the Cauchy-Schwarz inequality on the

right-hand side followed by the inequality

√
ab ≤ 1

2α
a+

α

2
b, ∀α ∈ R+, (2.2.1)

it follows that

c1‖e(uhε )‖2
L2(Ωε,h1 ,dµhε )

+ c0ε
2‖e(uhε )‖2

L2(Ωε,h0 ,dµhε )
+

1

2
‖uhε‖2L2(Ω,dµhε ) ≤

1

2
‖fh,ε‖2L2(Ω,dµhε ).

Hence the following a priori bounds hold:

Proposition 2.2.1. Let uhε be a sequence in [L2(Ω, dµhε )]2 of solutions of equation (2.1.2).

Then there exists C > 0 such that the following bounds hold:

‖uhε‖L2(Ω,dµhε ) ≤ C, ‖e(uhε )‖
L2(Ωε,h1 ,dµhε )

≤ C, ε‖e(uhε )‖
L2(Ωε,h0 ,dµhε )

≤ C.

78



By Proposition 2.1.1, the following weak two-scale convergences hold up to the con-

sideration of a suitably chosen subsequence:

uhε
2
⇀ u(x,y) ∈ L2(Ω×Q,dx× dµ)2, in [L2(Ω,dµhε )]2, (2.2.2)

χh,ε1 uhε
2
⇀ û(x,y) ∈ L2(Ω×Q,dx× dλ)2, in [L2(Ωε,h

1 , dλhε )]2, (2.2.3)

χh,ε1 e(uhε )
2
⇀ p(x,y) ∈ L2(Ω×Q,dx× dλ)3, in [L2(Ωε,h

1 ,dλhε )]3, (2.2.4)

εχh,ε0 e(uhε )
2
⇀ p̃(x,y) ∈ L2(Ω×Q,dx× dy)3, in [L2(Ωε,h

0 , dµhε )]3. (2.2.5)

Note that [L2(Ω×Q,dx× dy)]3 is treated as a subspace of [L2(Ω×Q,dx× dµ)]3.

2.2.2 Convergence on the Stiff Component

The first investigation yields a relationship between u(x,y) and û(x,y). Convergence on

the unit cell of functions dependent on the rod thickness h is now introduced.

Definition 2.2.1. Let the sequence ψhε := ψh(·/ε) where ψh ∈ [L2(Q,dµh)]2 be extended

to R2 by Q-periodicity. Then for some bounded domain Ω, it is said that

1. the sequence ψhε weakly converges to ψ ∈ [L2(Q,dµ)]2, denoted ψhε
µhε⇀ ψ, if

1

|Ω|

∫
Ω
ψhε · ξ

( ·
ε

)
dµhε →

∫
Q
ψ · ξ dµ, ∀ξ ∈ [C∞per(Q)]2,

where ξ is extended to R2 by Q-periodicity.

2. the sequence ψhε strongly converges to a function ψ ∈ [L2(Q,dµ)]2, denoted ψhε
µhε−→

ψ if
1

|Ω|

∫
Ω
ψhε · ξh

( ·
ε

)
dµhε →

∫
Q
ψ · ξ dµ, if and only if ξhε

µhε⇀ ξ.

Remark. Note that if such an Ω exists then it can be replaced by any other such domain

Ω and therefore the definition above is independent of the choice of Ω.

Proposition 2.2.2. Assume that uhε (x)
2
⇀ u(x,y) in [L2(Ω,dµhε )]2 and that ψhε

µhε−→ ψ.

Then ∫
Ω
uhε ·ψhεϕdµhε →

∫
Ω

∫
Q
u(x,y) ·ψ(y)ϕ(x) dµ(y)dx, ∀ϕ ∈ C∞0 (Ω).

Proof. Since ψhε
µhε−→ ψ, it follows that for all ζ ∈ [Cper(Q)]2

lim
h→0

∫
Q

∣∣∣ψh − ζ∣∣∣2 dµh =

∫
Q
|ψ − ζ|2 dµ

Lemma 2.1.1⇐⇒ lim
ε→0

∫
Ω

∣∣∣ψhε − ζ ( ·ε)∣∣∣2 dµhε = |Ω|
∫
Q
|ψ − ζ|2 dµ.

(2.2.6)

Moreover, by Hölder’s inequality, it follows that∣∣∣∣∫
Ω
uhε ·

(
ψhε − ζ

( ·
ε

))
ϕdµhε

∣∣∣∣ ≤ max
Ω
|ϕ|‖uhε‖L2(Ω,dµhε )

(∫
Ω

∣∣∣ψhε − ζ ( ·ε)∣∣∣2 dµhε

) 1
2
.
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Hence, by the weak two-scale convergence of uhε and relation (2.2.6), it is concluded that

lim sup
ε→0

∣∣∣ ∫
Ω
uhε ·ψhεϕdµhε −

∫
Ω

∫
Q
u(x,y) · ζ(y)ϕ(x) dµ(y)dx

∣∣∣
= lim sup

ε→0

∣∣∣ ∫
Ω
uhε ·ψhεϕdµhε−

∫
Ω
uhε ·ζ

( ·
ε

)
ϕdµhε

∣∣∣ ≤ C(∫
Q
|ψ−ζ|2 dµ

) 1
2
, ∀ζ ∈ [Cper(Q)]2.

Choosing a suitable approximation sequence ζk such that ζk → ψ in [L2(Q,dµ)]2 yields

the result.

Theorem 2.2.1. The function û is the trace of u on F1, in the sense that u(x,y) =

û(x,y), a.e. x ∈ Ω, λ-a.e. y ∈ F1, i.e.,

χ1(y)u(x,y) = û(x,y) a.e.. y ∈ F1.

Proof. The set F1 ∩Q, (F h1 ∩Q) consists of a finite number of links Ij , (rods of thickness

h, Ihj ), j = 1, 2, . . . ,m. Let ψ̂ ∈ [L2(Q,dλ)]2 and for any such ψ̂, define

ψ(y) :=


ψ̂(y), y ∈ F1 ∩Q,

0, y ∈ Q\F1,

[ψ]h(y) :=


m∑
j=1
ψhj (y), y ∈ F h1 ∩Q,

0, y ∈ Q\F h1 ,
(2.2.7)

where [ψ]h is the natural extension of ψ̂(y) on the thin structure with the functions ψhj

defined as in Definition 2.1.7. Observe that for all ϕ ∈ C∞0 (Ω)∫
Ω
uhε · [ψ]hεϕdµhε =

∫
Ω
uhεχ

h
1

( ·
ε

)
· [ψ]hεϕdµhε +

∫
Ω
uhεχ

h
0

( ·
ε

)
· [ψ]hεϕdµhε . (2.2.8)

Lemma 2.2.1. There is convergence [ψ]hε
µhε−→ ψ.

Proof. Let the periodic cell Q contain M nodes Oi, i = 1, 2, . . . ,M . For sufficiently

small h > 0, some subset of the m rods whose associated links share a common node Oi

will“overlap” in a small δh-neighbourhood of Oi where it is clear that as h → 0, δh → 0.

Denote this region of overlap by Bδh(Oi) for each i = 1, 2, . . . ,M . Consider the following

integral:

Ψh,ε :=

∫
Q

[ψ]h
(x
ε

)
· ξh
(x
ε

)
dµhε , ξh(·/ε) µ

h
ε⇀ ξ.

Since ψh is defined only on the rod structure in Q, Ψh,ε may be rewritten as

Ψh,ε =
1

2

M∑
i=1

∫
Q∩Bδh (Oi)

[ψ]h
(x
ε

)
· ξh
(x
ε

)
dλhε +

1

2

m∑
j=1

∫
Ĩhj

[ψ]h
(x
ε

)
· ξh
(x
ε

)
dλhε ,

where Ĩhj := Ihj \
⋃M
i=1Bδh(Oi). Since |ψh| ≤ max

y∈Bδh (Oi)
|ψ̂(y)|, the first integral can be

bounded above by Cδh where the constant C is independent of h and hence this integral
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vanishes in the limit as h→ 0. For the second integral, noting the definition of ψh given

by (2.2.7), the following is obtained

Ψh,ε =
1

2

m∑
j,k=1

∫ h

−h

{∫
Ĩj

ψ̂
(x
ε

)
· ξh
(x
ε

)
dτk

}
dνk +O(δh),

where Ĩj = Ij\
⋃M
i=1Bδh(Oi) and dτk = d(τ k · y), dνk = d(νk · y). Passing to the limit as

ε→ 0, it is clear that by Definition 2.2.1, the following convergence holds:

lim
ε→0

Ψh,ε =
1

2

∫
Q∩F1

ψ̂ · ξ dλ =

∫
Q
ψ · ξ dµ,

as required.

By the above lemma, in the limit as ε→ 0, the left-hand side converges and it’s limit

takes the form∫
Ω
uhε · [ψ]hεϕdµhε →

∫
Ω

∫
Q
u(x,y) ·ψ(y)ϕ(x)dµ(y)dx =

1

2

∫
Ω

∫
Q
u(x,y) ·ψ̂(y)ϕ(x) dλdx.

Similarly for the first integral on the right-hand side of equation (2.2.8), it follows that∫
Ω
uhεχ

h
1

( ·
ε

)
· [ψ]hεϕdµhε →

∫
Ω

∫
Q
û(x,y) · ψ̂(y)ϕ(x) dλdx.

Hence, it only remains to be shown that the second integral on the right of equation (2.2.8)

goes to zero as ε→ 0. This follows immediately since uhεχ
h
0(·/ε)) 2

⇀ u(x,y)χ0(y). Hence

the result.

The proofs of the following two theorems are omitted since analogous theorems are

found [82] with similar proofs up to the notation the results are presented in. The first

theorem concerns the structure of the two-scale limit of the function uhε on the stiff compo-

nent and the second theorem concerns the structure of the limit of the sequence χh,ε1 e(uhε ).

Theorem 2.2.2. Suppose that χh,ε1 uhε (x)
2
⇀ û(x,y), and that εχh,ε1 e(uhε ) → 0. Then

û(x,y) ∈ [L2(Ω,R)]2.

Theorem 2.2.3. Define the λ-homogenised tensor Ahom
λ by the relation

Ahom
λ ξ · ξ = min

v∈V λpot

∫
Q
A1(ξ + v) · (ξ + v) dλ, ∀ξ ∈ Sym2, (2.2.9)

Suppose that the homogenised tensor is non-degenerate, periodic rigid displacements take

the form (2.1.13) and that χh,ε1 uhε (x)
2
⇀ û(x,y). Then

1. û(x,y) = u0(x) + χ(x,y), ∀x ∈ Ω, λ-a.e. y ∈ F1 where u0 ∈ [H1
0 (Ω)]2 and

χ ∈ [L2(Ω, R̂)]2.

2. χh,ε1 e(uhε )
2
⇀ e(u0(x)) + v(x,y), v ∈ L2(Ω, V λ

pot).
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3. Suppose that

lim
ε→0

∫
Ω
A1e(u

h
ε (x)) · ey(w(x/ε))ϕ(x) dλhε = 0, ∀ϕ ∈ C∞0 (Ω), w ∈ [C∞per(Q)]2.

Then χh,ε1 A1(·/ε)e(uhε ) ⇀ 〈A1 {e (u0(x)) + v(x,y)}〉λ = Ahom
λ e(u0) where A1 {e (u0) + v} ∈

L2(Ω, V λ
sol).

Proof. 1. By the decomposition (2.1.13), it immediately follows that û(x,y) = u0(x)+

χ(x,y), ∀x ∈ Ω, λ-a.e. y ∈ F1 with χ ∈ [L2(Ω, R̂)]2. The fact that u0 ∈ [H1
0 (Ω)]2

follows by part 2).

2. See Zhikov [82, Theorem 9.5] for full details.

3. See Zhikov [82, Theorem 9.6] for full details.

Remark. The unknown potential matrix v is determined via the following problem

v ∈ V λ
pot,

∫
Q
A1(e(u0) + v) · ϕdλ = 0, ∀ϕ ∈ V λ

pot, ⇐⇒ div (A1(e(u0) + v)) = 0.

From this last equality, it follows by definition that A1(e(u0) + v) ∈ V λ
sol.

2.2.3 Convergence in the Soft Component

The next structure theorem regards the form of the two-scale limit of the sequence

εχh,ε0 e(uhε ), denoted p̃(x,y), on the soft inclusions.

Theorem 2.2.4. Let {uhε} ⊂ [H1(Ω)]2 such that uhε
2
⇀ u(x,y) and εχh,ε0 e(uhε )

2
⇀ p̃(x,y)

in [L2(Ωε,h
0 , dµhε )]3. Then u ∈ [L2(Ω, H1(Q))]2 and p̃(x,y) = ey (u(x,y)) for a.e. x ∈

Ω, y ∈ Q.

Proof. For each δ > 0, let Qδ be a C∞-domain such that Q ∩ F 2δ
0 ⊂ Qδ ⊂ Q ∩ F δ0 . Define

Xδ to be the set of all matrices b ∈ C∞(Qδ)
3 such that bn|∂Qδ = 0 where n is the unit

outward pointing normal to ∂Qδ. For b ∈ Xδ, a = div b in Qδ and consider the functions

ã(y) :=


a(y), y ∈ Qδ,

0, y ∈ Q\Qδ,
b̃(y) :=


b(y), y ∈ Qδ,

0, y ∈ Q\Qδ,

which are extended to R2 by Q-periodicity. Picking ε > 0 to be sufficiently small (recalling

that h→ 0 as ε→ 0), the following identity holds:

ε

∫
Ωε,h0

b̃
( ·
ε

)
· e(ψ) dµhε = −

∫
Ωε,h0

ã
( ·
ε

)
·ψ dµhε , ∀ψ ∈ [H1

0 (Ω)]2.
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Setting ψ = ϕuhε , ϕ ∈ C∞0 (Ω), yields

ε

∫
Ωε,h0

b̃
( ·
ε

)
ϕ·e(uhε ) dµhε+ε

∫
Ωε,h0

b̃
( ·
ε

)
·1
2

(uhε⊗∇ϕ+∇ϕ⊗uhε ) dµhε = −
∫

Ωε,h0

ã
( ·
ε

)
·ϕuhε dµhε .

Passing to the limit as ε → 0 and noting that ã and b̃ vanish on Q\Qδ, the following

equality is obtained:∫
Ω

∫
Qδ

p̃(x,y)ϕ(x) · b(y) dydx = −
∫

Ω

∫
Qδ

u(x,y)ϕ(x) · a(y) dydx.

As ϕ ∈ C∞0 (Ω) is arbitrary, it follows that∫
Qδ

p̃(x,y) · b(y) dy = −
∫
Qδ

u(x,y) · a(y) dy, a.e. x ∈ Ω.

For divergence-free fields b ∈ Xδ, it is deduced that (see Dautray & Lions [26]) that there

exists v ∈ [L2(Ω, H1(Qδ))]
2 such that p̃(x,y) = ey (v(x,y)), y ∈ Qδ. This in turn implies

that ∫
Qδ

u(x,y) · a(y) dy =

∫
Qδ

v(x,y) · a(y) dy, a.e. x ∈ Ω,

where the latter equality holds for all vectors a in the set

{div b | b ∈ Xδ} =

{
a ∈ C∞(Qδ)

∣∣∣ ∫
Qδ

a = 0

}
.

Since vector functions a with the above representation are dense in [L2(Qδ)]
2 with zero

mean, u(x,y) and v(x,y) differ by a constant for y ∈ Qδ and hence p̃ = ey(v) = ey(u)

for a.e. y ∈ Qδ. Since δ > 0 was arbitrary, it is concluded that p̃ = ey(u) for a.e. y ∈ Q

as required.

By the theorems presented in Section 2.2.2 and Section 2.2.3, it may be concluded

that the difference u(x,y)− u0(x) =: U(x,y) is in [L2(Ω, H1(Q))]2 with u0 ∈ [H1
0 (Ω)]2.

Moreover p̃(x,y) = ey(U(x,y)) andU(x,y) = χ(x,y), a.e. x ∈ Ω, λ-a.e. y ∈ Q∩F1, χ ∈

[L2(Ω, R̂)]2.

It can also be concluded that U(x, ·) ∈ [H1
per(Q)]2 by a similar argument to the one

presented in [81, Theorem 4.5]. In order to show that χ ∈ [L2(Ω, R̂0)]2, several results

presented in [84, Section 3] need to be used. These results are presented (without proof)

in Appendix 2.A. Using these results, the following theorem holds:

Theorem 2.2.5. In the formula û(x,y) = u0(x) + χ(x,y), the periodic transverse dis-

placement χ is an element of the space [L2(Ω, R̂0)]2.

2.3 Homogenisation Theorem

In this section, the proof of the homogenisation theorem for a critically scaled, high-

contrast thin structure is presented.
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2.3.1 Homogenised System of Equations

The space of limiting functions, also known as the “energy space” is denoted V and is

defined as follows:

Definition 2.3.1. Define V to be the energy space which consists of all vectors of the

form

u(x,y) = u0(x) +U(x,y), u0 ∈ [H1
0 (Ω)]2, U ∈ [L2(Ω, H1

per(Q))]2,

U(x,y) = χ(x,y), a.e. x ∈ Ω, λ-a.e. y ∈ Q ∩ F1, χ ∈ [L2(Ω, R̂0)]2.

The vector u ∈ V is called the solution of the homogenised problem if the following

integral identity is satisfied for all test functions ϕ(x,y) = ϕ0(x) + Φ(x,y) ∈ V :

∫
Ω
Ahom
λ e(u0) · e(ϕ0) dx+

θ2

6

∫
Ω

∫
Q
K1χ

′′ ·Φ′′ dλdx+
1

2

∫
Ω

∫
Q
A0ey(U) · ey(Φ) dydx+

+

∫
Ω

∫
Q

(
u0 +U

)
· (ϕ0 + Φ) dµdx =

∫
Ω

∫
Q
f · (ϕ0 + Φ) dµdx, (2.3.1)

where Ahom
λ is given by equation (2.2.9), where K1 = (A−1

1 η · η)−1, η = −τ ⊗ τ and τ is

a direction along the link.

The homogenised equation (2.3.1) is equivalent to a system of partial differential equa-

tions which are obtained by considering various classes of the test functions ϕ in (2.3.1).

For simplicity, it will be assumed that the tensor A0 is isotropic (see equation (2.1.4)).

By considering test functions of the form ϕ(x,y) = ϕ0(x), the following macroscopic

equation is obtained:

−divAhom
λ e(u0) + u0 + 〈U〉 = 〈f〉, u0 ∈ [H1

0 (Ω)]2. (2.3.2)

In fact, by a standard result (see Evans [29]), u0 ∈ [H2
0 (Ω)]2. Two other restrictions of

the test function ϕ are now considered. Consider the test functions of the form ϕ(x,y) =

ϕ(x)Ψ(y) (i.e. ϕ0 ≡ 0) where ϕ ∈ C∞0 (Ω), Ψ ∈ Ṽ where the space Ṽ consists of

functions in [H1
per(Q)]2 whose trace on F1 ∩ Q coincides with a rigid body motion λ-a.e.

(see Definition 2.1.4). Taking first Ψ ∈ [C∞0 (F0 ∩Q)]2 yields

−
{
M0∆U + (M0 + L0)∇(div U)

}
+ u = Pvf , U(x, ·) ∈ [H1

per(Q)]2, x ∈ Ω, (2.3.3)

U(x,y) = χ(x,y) ∈ [L2(Ω, R̂0)]2, x ∈ Ω, λ-a.e. y ∈ Q ∩ F1, (2.3.4)

where Pv is the orthogonal projection from [L2(Ω×Q,dx×dµ)]2 onto [L2(Ω×Q,dx×dy)]2.

Furthermore, if an arbitrary function Ψ ∈ Ṽ is chosen, an additional equation which

couples the framework F1∩Q and the inclusion F0∩Q is obtained. Indeed, for example, on
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those links parallel to the y2-axis, the “linking” equation is (see the paragraph containing

equation (2.1.3) for notation)

θ2K1

3
∂4

2χ
(e1) + (L0 + 2M0)∂1U

(e1) +
(
u

(e1)
0 + χ(e1)

)
= Pv⊥f

(e1), (2.3.5)

where Pv⊥ is the orthogonal projection from [L2(Ω×Q,dx× dµ)]2 onto [L2(Ω×Q,dx×

dλ)]2. For a general periodic framework F1 where to each link I there is an associated

pair of positively orientated vectors τ , ν with τ pointing along the link and ν orthogonal

to the link, equation (2.3.5) is replaced by

θ2K1

3
∂4
τχ

(ν) + (L0 + 2M0)∂νU
(ν) + u(ν) = f (ν), (2.3.6)

where ∂τ denotes differentiation along the links and ∂ν denotes differentiation in the di-

rection normal to the links. See Appendix 2.C for more details.

Before proving the main result (Theorem 2.3.1 below), some auxiliary results pertinent

to the proof of the homogenisation theorem will be presented.

2.3.2 Extensions of functions defined on F1 to functions defined on F h
1

A description of a class of functions and several results which were first demonstrated

in [84, Section 4.1] is now given which extend periodic rigid displacements in R̂0 on the

framework F1 to the rod network F h1 .

Definition 2.3.2. Let D denote the space of functions g ∈ R̂0 such that

1. g is infinitely smooth outside a neighbourhood of the nodes of the network F1,

2. In a neighbourhood Bδ(O) := {y | |y − O| < δ} of each node O, g takes the form

g(y) = C(ω(y)− ω(O)), y ∈ F1 where C is a constant and ω(y) = (−y2, y1).

The above equality actually means that g(y) ·νi = C(ω(y)−ω(O)) ·νi for each normal

νi orthogonal to the links meeting at the node O with the constant C fixed. The following

result shows in fact that functions in R̂0 are approximable by functions in D.

Proposition 2.3.1. The set D is dense in R̂0 with respect to the norm of [L2(Q,dλ)]2.

The next result concerns the extension functions needed to prove the homogenisation

theorem at the end of this section.

Lemma 2.3.1. For each g ∈ D, there exists an extension gh = gh(y) to the network F h1

such that

1. The symmetric gradient ey(g
h) is zero in a neighbourhood Bδj (Oj) of each node Oj

of F1 ∩Q.
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2. The following asymptotic expansion in h holds on (F h1 ∩Q)\(∪jBδj (Oj))

A1ey(g
h) = h[(g · ν)′′K1]hσh +O(h2), h→ 0, (2.3.7)

where for each h > 0 and for each link Ik of F1 ∩Q, σh is defined by relation

σh(y) = (τ ⊗ τ )
ν · (O− y)

h
, y ∈ Ihk \

(
∪jBδj (Oj)

)
,

where τ , ν are unit tangent and unit normal to the link Ik, Ihk is the h-neighbourhood

of Ik and O is either node of the link in question. Note further that [(g · ν)′′K1]h is

the natural extension of the function (g · ν)′′K1 on F h1 .

3. There exists a constant C > 0 independent of h such that ‖gh − g‖L2(Q,dµh) ≤ Ch.

2.3.3 Convergence of Solutions

The main result is now presented.

Theorem 2.3.1. Let uhε solve the integral identity (2.1.2) and suppose that h/ε→ θ > 0

as ε→ 0.

1. If fh,ε
2
⇀ f then up to a suitable subsequence uhε

2
⇀ u and u satisfies the homogenised

equation (2.3.1).

2. If fh,ε
2→ f then up to a suitable subsequence uhε

2→ u and in addition there is also

convergence of the elastic energies:

lim
ε→0

{∫
Ωε,h1

A1e(u
h
ε ) · e(uhε ) dµhε + ε2

∫
Ωε,h0

A0e(u
h
ε ) · e(uhε ) dµhε

}
=

=

∫
Ω
Ahom
λ e(u0) · e(u0) dx+

θ2

6

∫
Ω

∫
Q
K1χ

′′ · χ′′ dλdx+
1

2

∫
Ω

∫
Q
A0ey(U) · ey(U) dydx.

Proof. 1) Consider the integral identity (2.1.2) restated here for convenience:∫
Ωε,h1

A1e(u
h
ε ) · e(ϕ) dµhε + ε2

∫
Ωε,h0

A0e(u
h
ε ) · e(ϕ) dµhε +

∫
Ω
uhε ·ϕdµhε =

∫
Ω
fh,ε ·ϕdµhε ,

(2.3.8)

which is satisfied for all ϕ ∈ V . Setting ϕ = ϕ0(x) ∈ [H1
0 (Ω)]2 and using Theorems

2.2.3 and 2.2.4 yield the following as ε→ 0:∫
Ω
Ahom
λ e(u0) · e(ϕ0) dx+

∫
Ω

∫
Q
u ·ϕ0 dµdx =

∫
Ω

∫
Q
f ·ϕ0 dµdx. (2.3.9)

The second integral in (2.3.8) vanishes in the limit as ε→ 0 since ϕ0 is independent of

the microscopic variable.

Let G ∈ [C∞per(Q)]2, and g ∈ D be such that G(y) = g(y) for λ-a.e. y ∈ F1 ∩Q. Then

G is approximated by a sequence of functions Gh ∈ [C∞per(Q)]2 such that Gh = gh on
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F h1 ∩Q and where gh is the extension described in Lemma 2.3.1. This approximation

is achieved, for example, by setting Gh = Gχh + ḡh(1− χh) where

ḡh =


0, in F h0 ∩Q,

g2h, in F 2h
1 ∩Q,

, χh =


1, on F 2h

0 ∩Q,

0, on F h1 ∩Q,

ϕh, on (F 2h
1 \F h1 ) ∩Q.

The function χh is a cut-off function on Q where ϕh ∈ C∞(F 2h
1 \F h1 ) and ϕh is con-

structed via a suitable sum of convolutions of the charateristic functions χ
3h/2
0 and

(1− χ3h/2
1 ) with a smooth function v : R2 → R with supp v ⊂ {x | |x| ≤ 1

8}. It will be

shown that ‖Gh −G‖H1(Q) → 0.

Consider those test functions

ϕ = ϕhε = wGh
( ·
ε

)
, w ∈ C∞0 (Ω). (2.3.10)

Hence plugging a test function of the form (2.3.10) into equation (2.3.8) yields after

simplification:

ε−1

∫
Ωε,h1

A1e(u
h
ε ) · ey(gh)

( ·
ε

)
w dµhε +

∫
Ωε,h1

A1e(u
h
ε ) · (Gh

( ·
ε

)
⊗∇w) dµhε+

+ ε

∫
Ωε,h0

A0e(u
h
ε ) · ey(Gh)

( ·
ε

)
w dµhε + ε2

∫
Ωε,h0

A0e(u
h
ε ) · (Gh

( ·
ε

)
⊗∇w) dµhε =

=

∫
Ω

(fh,ε − uhε ) ·Ghw dµhε , (2.3.11)

Let the four integrals on the left-hand side of equation (2.3.11) be labeled as I1(ε), . . . , I4(ε)

respectively. By the fact that A1(e(u0) + v) is pointwise orthogonal to the matrix

Gh ⊗ ∇w (see [82, Lemma 5.3]) and the L2-boundedness of the sequence εe(uhε ), it

follows that integrals I2(ε) and I4(ε) tend to zero as ε → 0. By Theorem 2.2.4, it

follows that

lim
ε→0

εI3(ε) = lim
ε→0

1

2

∫
Ωε,h0

A0

(
εe(uhε )

)
·ey(G)w dy+lim

ε→0

1

2

∫
Ωε,h0

A0

(
εe(uhε )

)
·ey(Gh−G)w dy =

=
1

2

∫
Ω

∫
Q
A0ey(u) · ey(G)w dydx.

For the integral I1(ε), it follows by the properties of the extension functions gh and

results in Appendix 2.A that

lim
ε→0

I1(ε) =
θ2

6

∫
Ω

∫
Q
K1χ

′′ · g′′w dλdx. (2.3.12)

To complete the proof, consider the following lemma:

Lemma 2.3.2. There is convergence Gh → G in [H1(Q)]2 as ε→ 0.
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Proof. Recall that Gh = G on F 2h
0 . Note further that since G,Gh, gh ∈ [C∞per(Q)]2 and

g ∈ D, these vector functions are bounded in L2-norm by constants and therefore on

F h1 and F 2h
1 \F h1 , their norms are of order O(h) as h→ 0. Hence, ‖Gh −G‖L2(Q) → 0

as h→ 0.

Consider now ‖e(Gh −G)‖L2(Q). Since Gh −G = (G − ḡh)(χh − 1) and the vectors

a sufficiently smooth, ‖(χh − 1)e(G − ḡh)‖L2(Q) → 0 as h → 0 by the same argument

as above. The difficulty is in the term ‖(G − ḡh)e(χh − 1)‖L2(Q) since on F 2h
1 \F h1

e(χh) = O(h−1). Firstly

‖(G− ḡh)e(χh − 1)‖L2(Q) = ‖(G− ḡh)e(χh − 1)‖L2((F 2h
1 \Fh1 )∩Q),

since χh = 0 on F h1 . Noting that for sufficiently small h, G(y) ∼ g2h(y) for any

y ∈ F 2h
1 , it follows that by expanding G in a Taylor’s expansion about a point y′ ∈

(F 2h
1 \F h1 ) ∩Q) that

G(y) ≈ g2h(y′) +∇G(y′)(y − y′), (h→ 0).

Since for y,y′ ∈ F 2h
1 \F h1 , |y − y′| = O(h) it therefore it follows that

‖(G− ḡh)e(χh − 1)‖L2((F 2h
1 \Fh1 )∩Q) ≤ Ch

−1‖g2h(y′)− g2h(y)‖L2((F 2h
1 \Fh1 )∩Q)+

+ C‖∇G(y′)‖L2((F 2h
1 \Fh1 )∩Q)).

Hence by boundedness e(g2h) and ∇G, the result follows.

Hence passing to the limit in (2.3.11), the following equation holds:

θ2

6

∫
Ω

∫
Q
K1χ

′′ ·g′′w dλdx+
1

2

∫
Ω

∫
Q
A0ey(u)·ey(G)w dydx =

∫
Ω

∫
Q

(f−u)·Gw dµdx,

(2.3.13)

Define Φ = Gw and note that the linear span of test functions of the form G(y)w(x)

is dense in [L2(Ω, H1
per(Q))]2. Hence, adding the two integral identitiess (2.3.9) and

(2.3.13) together and denoting by ϕ(x,y) = ϕ0(x) + Φ(x,y), it follows that the

homogenised equation (2.3.1) holds.

2) Assume that fh,ε
2→ f . Let vhε ∈ [H1

0 (Ω)]2 solve the following problem: gh,ε, i.e.,

consider the problem

∫
Ωε,h1

A1e(v
h
ε ) · e(ϕ) dµhε + ε2

∫
Ωε,h0

A0e(v
h
ε ) · e(ϕ) dµhε+

+

∫
Ω
vhε ·ϕ dµhε =

∫
Ω
gh,ε ·ϕ dµhε , ∀ϕ ∈ H1

0 (Ω)2, (2.3.14)
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where gh,ε ∈ [L2(Ω, dµhε )]2 is an arbitrary sequence with weak two-scale limit g. Setting

ϕ = uhε in the above and ϕ = vhε in (2.3.8) and then subtracting one from the other

yields ∫
Ω
uhε · gh,ε dµhε =

∫
Ω
vhε · fh,ε dµhε . (2.3.15)

As gh,ε
2
⇀ g, it follows that vhε

2
⇀ v where v solves the homogenised equation with

right-hand side g. Hence, it follows that

lim
ε→0

∫
Ω
uhε · gh,ε dµhε = lim

ε→0

∫
vhε · fh,ε dµhε =

∫
Ω

∫
Q
v · f dµdx =

∫
Ω

∫
Q
u · g dµdx.

Since gh,ε is arbitrary, the strong two-scale convergence uhε
2→ u is established.

To show the convergence of energies, making use of the two-scale convergence result

(2.1.12), it is seen that

lim
ε→0

{∫
Ωε,h1

A1e(u
h
ε ) · e(uhε ) dµhε + ε2

∫
Ωε,h0

A0e(u
h
ε ) · e(uhε ) dµhε

}
=

∫
Ω

∫
Q
|f |2−|u|2 dµdx.

=

∫
Ω
Ahome(u0) · e(u0) dx+

θ2

6

∫
Ω

∫
Q
K1χ

′′ ·χ′′ dλdx+
1

2

∫
Ω

∫
Q
A0ey(U) · ey(U) dydx

as required.

2.4 Convergence of Spectra

In the following section the convergence of the spectrum of the operators associated with

problem (2.1.2) to the spectrum given by the limit problem (2.3.1) will be established.

2.4.1 Spectrum of the Limit Operator

Consider the bilinear forms (c.f. (2.3.1))

Bmacro(u0,ϕ0) =

∫
Ω
Ahome(u0) · e(ϕ0) dx, u0,ϕ0 ∈ [H1

0 (Q)]2, (2.4.1)

Bmicro(U ,Φ) =
θ2

6

∫
Q
K1χ

′′ ·Φ′′ dλ+
1

2

∫
Q
A0ey(U) · ey(Φ) dy, U ,Φ ∈ Ṽ , (2.4.2)

where, recall that, Ṽ is the space of [H1
per(Q)]2 functions whose trace on Q∩ F1 coincides

with a rigid-body motion λ-a.e. The associated spectral problem for (2.3.1) can be written

as 
Bmacro(u0,ϕ0) = s〈u0 + 〈U〉,ϕ0〉L2(Ω), ∀ϕ0 ∈ [H1

0 (Ω)]2,

Bmicro(U ,Φ) = s〈u0 +U ,Φ〉L2(Q,dµ), ∀Φ ∈ Ṽ .
(2.4.3)
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Let {φn}n∈N be an orthonormal set of eigenvectors with non-zero average for the

bilinear form Bmicro with corresponding set of eigenvalues {ωn}n∈N:

Bmicro(φn,Φ) = ωn 〈φn,Φ〉L2(Q,dµ) , ∀Φ ∈ Ṽ . (2.4.4)

The existence of such a set of eigenvalues and eigenfunctions is guaranteed by Lax [44,

Chapter 28, Theorem 3] which essentially states that a compact, symmetric operator

mapping a Hilbert space into itself has a discrete spectrum and an orthonormal set of

eigenfunctions. Note that Bmicro may also have a set of eigenvalues {ω′n}n∈N corresponding

to those eigenfunctions {φ′n}n∈N with zero average.

Using the above observations, the function U(x,y) will now be expressed as a linear

combination of the eigenfunctions {φn}n∈N. Note that the 2× 2 identity matrix, denoted

I, may be written as the following expansion of the eigenfunctions {φn}n∈N:

I =
∞∑
n=1

(φn ⊗ cn), cn := 〈φn〉.

Let b = b(y, s) be the matrix such that the vector b̂ := bu0 satisfies the equation

Bmicro(b̂,Φ) = s〈b̂,Φ〉L2(Q,dµ) + 〈u0,Φ〉L2(Q,dµ). (2.4.5)

Then b has representation

b(y, s) =
∞∑
n=1

φn ⊗ cn
ωn − s

. (2.4.6)

Indeed, assume formally that the vector b̂ has the following expansion:

b̂(x,y) =

∞∑
n=1

bn(x)φn(y).

Substituting this expansion and the expansion for the identity matrix into equation (2.4.5)

yields

∞∑
n=1

bnBmicro(φn,Φ) =
∞∑
n=1

{
sbn〈φn,Φ〉L2(Q,dµ) + 〈(φn ⊗ cn)u0,Φ〉L2(Q,dµ)

}
⇐⇒

∞∑
n=1

{bnωn − sbn − (cn · u0)} 〈φn,Φ〉L2(Q,dµ) = 0.

Hence, for s /∈ σ(Bmicro)

bn(x) =
cn · u0(x)

ωn − s
.

Plugging this expression back into the expansion for b̂ yields

b̂ =

∞∑
n=1

cn · u0

ωn − s
φn =

∞∑
n=1

φn ⊗ cn
ωn − s

u0,

and thus the result. Therefore, U admits a representation of the form

U(x,y) = s
∞∑
n=1

cn · u0(x)

ωn − s
φn(y)
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Substituting the expansion for U(x,y) into the first equation given in (2.4.3) yields

Bmacro(u0,ϕ0) = 〈β(s)u0,ϕ0〉L2(Ω) , (2.4.7)

where β(s) is defined as

β(s) := s

(
I + s

∞∑
n=1

(cn ⊗ cn)

ωn − s

)
. (2.4.8)

Versions of the function β can be found in the studies of scalar Zhikov [81] and vector

(Smyshlyaev [68], Zhikov & Pastukhova [85, 87]) homogenisation problems. The following

is a straightforward modification of a result seen in [85]:

Lemma 2.4.1. Denote by V the closure in [L2(Ω × Q,dx × dµ)]2 of the energy space

V and consider the operator U whose domain consists of all solution pairs (u0,U) to the

identity

Bmacro(u0,ϕ0) +Bmicro(U ,Φ) = 〈f ,ϕ0 + Φ〉L2(Ω×Q,dx×dµ), ∀ϕ0 + Φ ∈ V, (2.4.9)

as the right-hand side f runs over all elements of V and defined by the relation f =

U(u0 +U) holds if and only if (2.4.9) holds.

Then the resolvent set ρ(U) of the operator U, is given by the set

ρ(A) = ρ(Bmicro) ∩ { s | all eigenvalues of β(s) belong to ρ(Bmacro) }, (2.4.10)

where ρ(Bmicro) denotes the resolvent set of the operator generated by the form Bmicro in

the closure4 of Ṽ in [L2(Q)]2 and ρ(Bmacro) is the resolvent set of the operator generated

by the form Bmacro.

Proof. Suppose that s belongs to the set on the right-hand side of (2.4.10). Consider the

problem 
Bmacro(u0,ϕ0)− s〈u0 + 〈U〉,ϕ0〉L2(Ω) = 〈f ,ϕ0〉L2(Ω),

Bmicro(U ,Φ) − s〈u0 +U ,Φ〉L2(Q,dµ) = 〈f ,Φ〉L2(Q,dµ).

(2.4.11)

Then this problem has a solution for every f ∈ V. Indeed, Since s /∈ σ(Bmicro), it follows

that U = b (su0 + f) solves the second equation in (2.4.11) where b is the matrix given by

equation (2.4.6). Substituting this into the first equation given in system (2.4.11) yields

Bmacro(u0,ϕ0)− 〈β(s)u0,ϕ0〉L2(Ω) = 〈(I + s〈b〉)f ,ϕ0〉L2(Ω), (2.4.12)

Since all the eigenvalues of β(s) belong to ρ(Bmacro), the operator induced by the bilinear

form on the left-hand side is invertible and thus (2.4.12) is uniquely solvable.

4Note that the domain of this operator is dense in this closure
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To prove the converse, note that ρ(U) ⊂ ρ(Bmacro) and assume that s ∈ ρ(U). In this

case, β(s) has no eigenvalues in σ(Bmicro) for otherwise problem (2.4.11) would not be

uniquely solvable for every f ∈ V.

It is noted (see [87]) that all points of nontrivial spectrum for the periodic problem

induced by the bilinear form Bmicro are at those points s where the matrix β(s) is singular.

The trivial spectral points are ω = 0 which corresponds to constant eigenfunctions and

those ω′ ∈ σ(Bmicro) such that the corresponding eigenfunctions have zero average. Let

{ω′n}n∈N be the set of such eigenvalues.

It is noted that when the periodic framework F h1 is the model framework from Figure

2.2, then the matrix β is proportional to the identity matrix I. Indeed, if the set F1 ∩Q

is invariant with respect to a rotation R, i.e. F1 ∩Q = {Ry | y ∈ F1 ∩Q }, then for the

eigenfunction φ of the bilinear form Bmicro, the vector Rφ is an eigenvector with the same

eigenvalue and hence, in view of the definition of the matrix β, Rβ(s)R−1 = β(s). Taking

R to be a rotation through π/2 yields the claim that β(s) = b(s)I for some scalar function

b.

Let {γn}n∈N denote the increasing sequence of zeros of the function b and let {δn}n∈N
denote the increasing sequence of eigenvalues in the set {ωn}n∈N which counts multiple

eigenvalues only once. Hence, the spectrum of the limit operator U has the “band” form:

σ(U) =

(⋃
n∈N
{s ∈ (γn, δn) | b(s) ∈ σ(Bmacro)}

)
∪ {δn}n∈N ∪ {ω′n}n∈N,

The intervals (δn, γn+1), n ∈ N are “gaps” in the spectrum, which do not have common

points with σ(U), except, possibly, for elements of the set {ω′n}n∈N.

2.4.2 Proof of Spectral Convergence

It will be shown that the spectra of the operators associated with the original problem

(2.1.2) converges in the sense of Hausdorff to the spectra of the limit problem (2.3.1).

Definition 2.4.1 (Hausdorff Convergence). A sequence of sets Xε ⊂ R, ε > 0 converge

in the sense of Hausdorff to X ⊂ R if the following two statements hold:

(H1) for ω ∈ X, there exists ωε ∈ Xε such that ωε → ω,

(H2) for ωε ∈ Xε such that ωε → ω ∈ R, it follows that ω ∈ X.

Definition 2.4.2 (Strong Two-scale Resolvent Convergence). The family of operators

Aε in [L2(Ω, dµhε )]2 is said to be strongly two-scale resolvent convergent as ε → 0 to the

operator A in [L2(Ω×Q,dx× dµ)]2, denoted Aε
2−→ A, if for all f in the range R(A) of
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the operator A and for all sequences fhε ∈ [L2(Ω, dµhε )]2 such that fhε
2→ f , the two- scale

convergence (Aε + I)−1fhε
2→ (A + I)−1f holds.

The following argument shows that given the strong two-scale resolvent convergence

of operators, then property (H1) holds.

Let Tε = (Aε + I)−1 and let T = (A + I)−1. If s ∈ σ(A) then t = (1 + s)−1 ∈ σ(T ).

Therefore, for any δ > 0, there exists a vector f ∈ R(A) such that

‖f‖L2(Ω×Q,dx×dµ) = 1, ‖(T − t)f‖L2(Ω×Q,dx×dµ) ≤
δ

4
.

Consider a sequence fhε ∈ [L2(Ω,dµhε )]2 such that fhε
2→ f . Hence, using the definition of

strong two-scale resolvent convergence, it follows that

lim
ε→0
‖(Tε − t)fhε‖L2(Ω,dµhε ) = ‖(T − t)f‖L2(Ω×Q,dx×dµ) ≤

δ

4
.

Hence, ‖(Tε− t)fhε‖L2(Ω,dµhε ) ≤ δ
2 and ‖fhε‖L2(Ω,dµhε ) ≥ 1

2 for sufficiently small ε. Therefore,

the interval (−δ+ t, δ+ t) contains a point of the spectrum of the operator Tε. Moreover,

every interval centered at s contains a point of the spectrum of the operator Aε for small

enough ε. Hence the following result is proven:

Proposition 2.4.1. If Aε
2−→ A, then property (H1) holds with Xε = σ(Aε) and X =

σ(A).

Corollary 2.4.1. For the operators Uhε defined by the identity

Bh
ε (u,v) = Lhε (v),

where Bh
ε and Lhε are defined in Theorem 2.1.1, f = Uhεu and the operator U is defined in

Proposition 2.4.1, the property (H1) holds with Xε = σ(Uhε ), X = σ(U) and h = h(ε).

The property (H2) of the Hausdorff convergence does not hold for the spectra σ(Uhε ) in

general. This is due to the fact that the soft component may have non-empty intersections

with the boundary of Ω. Additionally, sequences of eigenfunctions of σ(Uhε ) may converge

to the κ-quasiperiodic eigenfunctions, κ ∈ [0, 2π)2 of the “Bloch spectrum” associated

with the bilinear form (2.4.2). However, a suitable version of (H2) holds for a modified

operator family where the corresponding elements of the soft component are replaced by

the stiff material. To be precise, for each ε, h, denote by Ûhε the operator defined in the

same way as Uhε but with Ωε,h
0 and Ωε,h

1 in (2.1.2) replaced by Ω̂h,ε
0 and Ω\Ω̂h,ε

0 respectively.

Here Ω̂h,ε
0 is the union over all k ∈ Z2 of sets ε(Q ∩ F h0 + k) such that ε(Q+ k) ⊂ Ω.

Theorem 2.4.1. Suppose that for all ε, h the vector fields uhε ∈ [H1
0 (Ω)]2 are eigenfunc-

tions of Ûhε with unit L2-norm:

Ûhεu
h
ε = ωεu

h
ε , ‖uhε‖L2(Ω,dµhε ) = 1. (2.4.13)
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If ωε → ω /∈ σ(Bmicro), then the eigenfunction sequence {uhε} is compact with respect to

strong two-scale convergence in [L2(Ω,dµhε )]2.

Proof. The eigenvalue problem (2.4.13) is understood in the sense that the identity∫
Ω\Ω̂h,ε0

A1e(u
h
ε )·e(ϕ) dµhε+ε2

∫
Ω̂h,ε0

A0e(u
h
ε )·e(ϕ) dµhε = ωε

∫
Ω
uhε ·ϕ dµhε , ∀ϕ ∈ [H1

0 (Ω)]2,

(2.4.14)

holds and in particular that∫
Ω\Ω̂h,ε0

A1e(u
h
ε ) · e(uhε ) dµhε + ε2

∫
Ω̂h,ε0

A0e(u
h
ε ) · e(uhε ) dµhε = ωε.

Hence, ‖e(uhε )‖
L2(Ω̂h,ε1 ,dµhε )

are uniformly bounded where Ω̂h,ε
1 denotes the union over all

k ∈ Z2 of sets ε(Q ∩ F h1 + k) such that ε(Q + k) ⊂ Ω. The claim is that for all ε and h

there exists ũhε such that

e(uhε ) = e(ũhε ) on Ω̂h,ε
1 , ũhε ∈ [H1

0 (Ω)]2, ‖e(ũhε )‖
L2(Ω̂h,ε0 ,dµhε )

≤ ‖e(uhε )‖
L2(Ω̂h,ε1 ,dµhε )

,

(2.4.15)∫
Ω̂h,ε0

A0e(ũ
h
ε ) · e(ϕ) dµhε = 0, ∀ϕ ∈ [H1

0 (Ω)]2 such that e(ϕ) = 0 in Ω̂h,ε
1 , (2.4.16)

where the constant C > 0 is independent of ε, h. To prove this claim, consider ũhε such

that zhε := uhε − ũ
h
ε solves the minimisation problem

min

{
1

2

∫
Ω̂h,ε0

A0e(v) · e(v) dµhε −
∫

Ω̂h,ε0

A0e(u
h
ε ) · e(v) dµhε

}
, (2.4.17)

where the minimisation is taken over all functions v ∈ [H1
0 (Ω)]2 whose restriction to Ω̂h,ε

1

is a rigid-body motion with respect to the Lebesgue measure, i.e., e(v) = 0 in Ω̂h,ε
1 . It is

clear that e(zhε ) = 0 in Ω̂h,ε
1 and moreover∫

Ω\(Ω̂h,ε0 ∪Ω̂h,ε1 )
A1e(u

h
ε ) ·e(ϕ) dµhε +

∫
Ω̂h,ε1

A1e(z
h
ε ) ·e(ϕ) dµhε +ε2

∫
Ω̂h,ε0

A0e(z
h
ε ) ·e(ϕ) dµhε−

− ωε
∫

Ω
zhε ·ϕ dµhε = ωε

∫
Ω
ũhε ·ϕ dµhε , ∀ϕ ∈ [H1

0 (Ω)]2, e(ϕ) = 0 in Ω̂h,ε
1 . (2.4.18)

The last equality is found by combining (2.4.14), (2.4.16) and the Euler-Lagrange equation

for (2.4.17). Using the bound (2.4.15), it follows that ũhε is compact with respect to strong

convergence in [L2(Ω, dµhε )]2, i.e., there exists ũ = ũ(x) such that, up to picking a suitable

subsequence, ũhε −→ ũ in [L2(Ω, dµhε )]2.

Lemma 2.4.2. Suppose that for each ε, h the function fhε belongs to the closure in

[L2(Ω)]2 of the set of smooth functions whose restriction to Ω̂h,ε
1 are rigid-body motions

with respect to the Lebesgue measure. Suppose further that fhε
2→ f ∈ V (see Lemma

2.4.1).
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For all ε and h consider the vector field vhε ∈ [H1
0 (Ω)]2 such that e(vhε ) = 0 in Ω̂h,ε

1 and

the following resolvent identity holds (see (2.4.18)):∫
Ω\(Ω̂h,ε0 ∪Ω̂h,ε1 )

A1e(u
h
ε ) ·e(ϕ) dµhε +

∫
Ω̂h,ε1

A1e(v
h
ε ) ·e(ϕ) dµhε +ε2

∫
Ω̂h,ε0

A0e(v
h
ε ) ·e(ϕ) dµhε−

− ωε
∫

Ω
vhε ·ϕdµhε =

∫
Ω
fhε ·ϕdµhε , ∀ϕ ∈ [H1

0 (Ω)]2, e(ϕ) = 0 in Ω̂h,ε
1 . (2.4.19)

Then vhε
2
⇀ v = v(x,y) ∈ [L2(Ω, Ṽ )]2 and

θ2

6

∫
Ω

∫
Q
K1χ

′′ ·Φ′′ dλ(y)dx+
1

2

∫
Ω

∫
Q
A0ey(v) · ey(ϕ) dydx− ω

∫
Ω

∫
Q
v ·ϕdµ(y)dx =

=

∫
Ω

∫
Q
f ·ϕ dµ(y)dx, ∀ϕ ∈ [L2(Ω, Ṽ )]2, ϕ(x,y) = Φ(x,y) a.e. x ∈ Ω, λ-a.e. y ∈ ∂Q,

(2.4.20)

where χ(x, ·) is there trace of v(x, ·) on F1 ∩Q for a.e. x ∈ Ω.

Proof. It is first shown that the spectra of the operators Û0
ε defined via the bilinear forms

(cf. 2.4.19)

b̂0ε(v,ϕ) =

∫
Ω\(Ω̂h,ε0 ∪Ω̂h,ε1 )

A1e(u
h
ε ) · e(ϕ) dµhε +

∫
Ω̂h,ε1

A1e(v
h
ε ) · e(ϕ) dµhε+

+ ε2

∫
Ω̂h,ε0

A0e(v
h
ε ) · e(ϕ) dµhε , v,ϕ ∈ H1

0 (Ω)2, e(v), e(ϕ) = 0 in Ω̂h,ε
1 ,

converges in the sense of Hausdorff as ε → 0 to σ(Bmicro). It is indeed the case that

Û0
ε

2−→ Û0 where the operator Û0 is associated with the bilinear form

b̂0(v,ϕ) =
θ2

6

∫
Q
K1χ

′′ ·Φ′′ dλ+

∫
Q∩F0

A0e(v) · e(ϕ) dµ, v,ϕ ∈ [L2(Ω, Ṽ )]2,

v(y) = χ(y), ϕ(y) = Φ(y), λ-a.e. y ∈ ∂Q.

Hence σ(Û0) ⊂ limε→0 σ(Û0
ε) by Proposition 2.4.1. On the other hand any sequence of

L2-normalised eigenfunctions of Û0
ε whose eigenvalues ω0

ε converge to ω0 ∈ R is compact

in the sense of two-scale convergence (see [82, Theorem 12.2]) and therefore ω ∈ σ(Û0).

Thus σ(Û0) = σ(Bmicro).

Whenever ωε in (2.4.19) converge to a point outside σ(Bmicro), the identity (2.4.19)

does not have non-zero solutions vhε for fhε = 0 and ωε can be replaced by any value in

some finite neighbourhood of the set {ωε}ε<ε0 for some ε0 > 0. Hence for an L2-bounded

sequence of right-hand sides fhε , the function vhε that satisfy (2.4.19) are uniformly bounded

in [L2(Ω, dµhε )]2 for ε < ε0.

Moreover, setting ϕ = vhε in (2.4.19) and noting that A0 is positive definite yields the

uniform estimate

ε‖χh,ε0 e(vhε )‖
L2(Ωε,h0 ,dµhε )

≤ C,
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for some positive constant C. Making use of the results established in Section 2.2.1 and

noting that Ω̂h,ε
0 ∪ Ω̂h,ε

1 → Ω as ε → 0, a subsequence is extracted from vhε which weakly

two-scale converges to v ∈ [L2(Ω, Ṽ )]2 and such that χh,ε0 e(vhε )
2
⇀ ey(v) in [L2(Ω, dµhε )]2.

Finally, in the limit as ε → 0 in identity (2.4.19), equation (2.4.20) is obtained. By

uniqueness, the whole sequence vhε weakly two-scale converges to v.

The preceding lemma implies that the sequence zhε is compact with respect to the

weak two-scale convergence and its two-scale limit z = z(x,y) is a rigid-body motion on

F1 and satisfies the weak problem

θ2

6

∫
Ω

∫
Q
K1q

′′ ·Φ′′ dλ(y)dx+
1

2

∫
Ω

∫
Q
A0ey(z) · ey(ϕ) dydx− ω

∫
Ω

∫
Q
z ·ϕ dµ(y)dx =

= ω

∫
Ω

∫
Q
ũ ·ϕ dµ(y)dx,

∀ϕ ∈ [L2(Ω, Ṽ )]2, z(x,y) = q(x,y), ϕ(x,y) = Φ(x,y) a.e. x ∈ Ω, λ-a.e. y ∈ ∂Q,

(2.4.21)

Setting ϕ = vhε in identity (2.4.18) and ϕ = zhε in (2.4.19) yields∫
Ω
zhε · fhε dµhε = ωε

∫
Ω
vhε · ũ

h
ε dµhε , ∀ε, h. (2.4.22)

Taking the limit of both sides of (2.4.22) and using the two-scale convergence properties

of vhε and ũhε yields

lim
ε→0

∫
Ω
zhε · fhε dµhε = ω

∫
Ω

∫
Q
v(x,y) · ũ(x) dµ(y)dx. (2.4.23)

Furthermore, by equation (2.4.20) with ϕ = z and equation (2.4.21) with ϕ = v yields

ω

∫
Ω

∫
Q
v(x,y) · ũ(x) dµ(y)dx =

∫
Ω

∫
Q
f(x,y) · z(x,y) dµ(y)dx. (2.4.24)

Finally, setting fhε = zhε in (2.4.23) and using (2.4.24), it is seen that the convergence

‖zhε‖L2(Ω,dµhε ) → ‖z‖L2(Ω×Q,dx×dµ). Therefore the sequence zhε strongly two-scale con-

verges to z.
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Appendices

2.A Technical Lemmas

The following appendix details several technical lemmas which are required to prove a

variety of results. In particular, the results presented pertain to proving the two-scale

convergence 2.3.12 and that χ ∈ [L2(Ω, R̂0)]2. All these results are found in Zhikov

& Pastukhova [84] and have only been modified as far as the notation they have been

presented in this thesis.

Let I be a line segment in the periodic network F1 which may contain a node. Assume

without loss of generality that this segment lies completely within a periodic cell Q. The

following lemma is restricted to the case when I lies on the y1-axis.

Lemma 2.A.1. Define J(ε) to be the following functional

J(ε) :=
h

ε2

∫
Ω
uhε (x) · b

(x
ε

)
α
(x1

ε

)
ϕ(x) dµhε =

h

ε2

∫
Ω

(uhε )1(x)β0

(x2

ε

)
α
(x1

ε

)
ϕ(x) dµhε ,

(2.A.1)

where b(y) = (β0(y2), 0), α(y1) ∈ C∞0 (I) is extended periodically into R2, ϕ ∈ C∞0 (Ω) and

β0(t) =


t

h
, |t| ≤ h,

0, |t| > h.

Then

lim
ε→0

J(ε) =
θ2

3

∫
Ω

∫
Q∩I

u2(x,y)α′(y1)ϕ(x) dλdx.

The above result is extended to the case when the interval I in question is in an

arbitrary direction τ . Let ν be normal to Ih such that τ , ν forms a positively orientated

frame and where Ih is the strip of thickness 2h with mid line I. Consider the function β

defined on Q given as

β(y) =


1
hν · (y − y0), on Ih,

0, on Q\Ih,
(2.A.2)

where y0 ∈ I and the function is continued periodically onto R2. Let α(y) be a smooth

function defined on Ih which depends only on the longitudinal component and vanishes

97



in the neighbourhood of the ends of the interval. Hence

lim
ε→0

h

ε2

∫
Ω
uhε (x) · τβ

(x
ε

)
α
(x
ε

)
ϕ(x) dµhε =

θ2

3

∫
Ω

∫
Q∩I

u(x,y) · ν ∂α
∂τ

(y)ϕ(x) dλdx,

for all ϕ ∈ C∞0 (Ω). In the case that the interval I lies on the y2-axis, τ = (0, 1), ν = (−1, 0)

and the above reduces to the result of Lemma 2.A.1.

The following results are needed to show that the limit function û satisfies the requirements

of Definition 2.1.5 so that χ(x, ·) ∈ R̂0.

Lemma 2.A.2. On each interval I of the network F1, the normal component û, denoted

u(ν), is an element of H2(I).

The result is proven by considering the limit of the following integral:

T (ε) = −h
ε

∫
Ω
e(uhε ) · (τ ⊗ τ )β

(x
ε

)
α
(x
ε

)
ϕ(x) dµhε .

Moreover, For an interval of general position, denote by w the weak two-scale limit of the

sequence

wε := −h
ε
e(uhε ) · (τ ⊗ τ )β

(x
ε

)
.

Consider the network F1 and on each link fix a point y0, a direction τ , and a normal ν.

Then, on F h1 , the matrix σ(y) is defined by setting

σ(y) = −(τ ⊗ τ )β(y), where β(y) =
ν · (y − y0)

h
on Ih.

Lemma 2.A.3. The following two-scale convergence holds:

h

ε
χh,ε1 e(uhε ) · σ(y)

2
⇀

θ2

3
χ1(y)(χ · ν)′′. (2.A.3)

The next results are used to show that properties 2) and 3) of Definition 2.1.5 are

satisfied by χ. Without loss of generality, consider two orthogonal links denoted I1 and I2

aligned with the horizontal and vertical axes respectively and meeting at a node denoted

O situated at the origin with each link of length 1/4. To avoid cumbersome notation, it

will be understood that if u is on I1 then u = u(x, y1) and similarly that if u is on I2

then u = u(x, y2)

Proposition 2.A.1. Consider the linear functional l(γ) defined as

l(γ) =
θ2

3

∫
Ω

∫
Q∩I1

u2(x,y)γ′′ (y1)ϕ(x) dλdx+
θ2

3

∫
Ω

∫
Q∩I2

u1(x,y)γ′′ (y2)ϕ(x) dλdx,

for a fixed function ϕ ∈ C∞0 (Ω). Then

|l|2 ≤ c(ϕ)

∫ 1
4

0
|γ|2 dt.
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Theorem 2.A.1. Let F1 be a connected singular network on the period torus. For h(ε)→

0 in an arbitrary manner, consider the sequence vhε satisfying

ε2

∫
Ω
|∇vhε |2 dµhε +

∫
Ω
|vhε |2 dµhε ≤ const <∞. (2.A.4)

Then, after a possible transition to a subsequence, it follows that

vhε (x)
2
⇀ v(x,y), v(x, ·) ∈ H1

per(Q,dλ) a.e. x ∈ Ω, ε∇vhε
2
⇀ ∇yv(x,y). (2.A.5)

In the application of this theorem, it is required that each component of the sequence

vector uhε satisfies inequality (2.A.4) where this inequality is a consequence of the results

presented in [84, Section 5]. With this result, it is concluded that each component of χ

belongs to the Sobolev space H1
per(Q,dλ) and moreover that χ|O = 0 for any node O.

2.B Additional Results Pertaining to the Derivation of the

Homogenised Equation

In this appendix, additional results will be presented for completeness of the work pre-

sented in this text.

In the scalar homogenisation [81], it is the property of ergodicity of the measure µ

which is essential to deriving an approximation theorem. However, it is the representation

(2.1.13) which plays the equivalent role in the vector homogenisation. For a ∈ [L2(Q,dλ)]2

and b ∈ L2(Q,dλ)3, the expression a = div b is understood in the following sense:∫
Q

(
b · e(u)

)
dλ = −

∫
Q

(a · u) dλ, for all u ∈ [C∞per(Q)]2. (2.B.1)

Theorem 2.B.1 (Approximation Lemma). Consider the set S of all vectors a ∈ [L2(Q,dλ)]2

which admit a representation a = div b for some b ∈ [L2(Q,dλ)]3. Then S is dense in R⊥.

The natural extension (see Definition 2.1.7) is used in proving several results on the

stiff component of the network. Several properties are preserved when considering the

natural extension, in particular if [b]h ∈ L2(Q,dλh) then∫
Q

[b]h dλh =

∫
Q
bdλ.

Moreover, it can be shown that if [b]h ⇀ b then

lim
h→0

∫
Q
|[b]h|2 dλh =

∫
Q
|b|2 dλ,

and hence [b]h −→ b, in L2(Q,dλh).
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Proposition 2.B.1. Let b ∈ V λ
sol be a λ-solenoidal matrix. Then the natural extension

[b]h is a λh-solenoidal matrix. Moreover, if [a ∈ L2(Q,dλ)]2 and a ∈ R⊥, then the exists

a symmetric matrix b ∈ [L2(Q,dλ)]3 such that a = div b and the natural extensions of b

and a satisfy [a]h = div [b]h in the sense of the measure λh:∫
Q

[a]h ·ϕ dλh = −
∫
Q

[b]h · e(ϕ) dλh, ∀ϕ ∈ [C∞per(Q)]2. (2.B.2)

It is also noted that a relation similar to (2.B.2) holds for test functions with compact

support on R2. Indeed the following identity holds:∫
R2

[a]h
(x
ε

)
·ϕ(x) dλhε = −ε

∫
R2

[b]h
(x
ε

)
· e ((ϕ(x)) dλhε , ∀ϕ ∈ [C∞0 (R2)]2.

To obtain the above result, divide R2 up into squares of side length ε and denote them by

εQj where Qj = [0, 1)2 + j, j ∈ Z2. Then

ε

∫
R2

[b]h
(x
ε

)
· e ((ϕ(x)) dλhε = ε

∞∑
j=1

∫
εQj

[b]h
(x
ε

)
· e ((ϕ(x)) dλhε

= ε
∞∑
j=1

∫
εQ

[b]h
(
x+ εj

ε

)
· e ((ϕ(x+ εj)) dλhε .

Note that [b]h is 1-periodic and denote ϕ̃(y) =
∑∞

j=1ϕ(ε(y + j)). Hence

ε
∞∑
j=1

∫
εQ

[b]h
(
x+ εj

ε

)
· e ((ϕ(x+ εj)) dλhε (x) =

∫
Q

[b]h (y) · ey (ϕ̃(y)) dλh(y).

The function ϕ̃ is periodic and hence relation (2.B.2) can be used to yield∫
Q

[b]h (y) · ey (ϕ̃(y)) dλh(y) = −
∫
Q

[a]h(y) · ϕ̃(y) dλh(y).

Reversing the procedure described above yields the result.

The following construction gives one possible way of extending solenoidal vectors de-

fined on the singular structure to solenoidal vectors defined on the rod structure. This

construction in particular makes clear what is done in a small neighbourhood of the nodes

where “overlap” of the rods may be a factor.

It can be shown that for b ∈ [Vsol(Q,dλ)]2, on each link I1, I2, . . . , Im adjoining a node

O, there are constants b1, b2, . . . , bm such that

b|Ij = bjτ j ,

m∑
j=1

bj = 0,

where τ j are unit vectors pointing along Ij away from the node. To construct a vector

bh ∈ Vsol(Q,dλ
h), an auxilliary problem is solved in a neighbourhood of each node O.

Define Qh to be the union of the disc of radius h centered at O and the m strips of
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width 2h and length 4h with midline Ij . The outer ends of these strips will be denoted

Γ1,Γ2, . . . ,Γm respectively. Consider the Neumann problem

div(∇w) = 0, in Qh,
∂w

∂n

∣∣∣
Γj

= bj , j = 1, . . . ,m,

∂w

∂n
= 0 on the remainder of the boundary of Qh,

where n is the unit outward pointing normal to Qh. This problem is soluable and moreover

it can be shown that ∫
Qh

|∇w|2 dx ≤ ch2.

Thus

bh :=


∇w, in Qh,

[b]h, outside Qh,

where [b]h is the natural extension of b. This definition of bh satisfies the requirements

that bh ∈ Vsol(Q,dλ
h) and that bh → b in L2(Q,dλh).

2.C Homogenised Equation for a General Periodic Frame-

work

In this appendix, the construction of limiting system of partial differential equations for the

homogenised equation will given in the case of a general periodic framework. In particular,

it will be shown that for a general periodic framework and an isotropic tensor A0 that the

equation on the singular structure is indeed given by equation (2.3.6).

Let τ and ν be the unit direction and unit normal respectively to any link of the thin

network F1 such that they form a positively orientated system. It can be shown (since the

geometry is two-dimensional) that if ν = (ν1, ν2), then τ = (ν2,−ν1).

Let the domain Q be divided up into sub-domains Qn, n = 1, . . . ,m, such that each

Qn is the maximal open connected set into which Q may be split by the singular network

F1. In other words,

Q\F1 =
m⋃
n=1

Qn.

Recall the bilinear form

Bmicro(U ,Φ) =
θ2

6

∫
Q
K1χ

′′ ·Φ′′ dλ+
1

2

∫
Q
A0ey(U) · ey(Φ) dy.

Integration by parts will be implemented in the second integral which leads to a boundary

integral over the singular structure being accumulated. Firstly note that for transverse

displacements U = (U1, U2), the following simplifications are made:

U = U (ν)ν, U1 = U (ν)ν1, U2 = U (ν)ν2,
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Ui,j = νi(τj∂τU
(ν) + νj∂νU

(ν)), i, j ∈ {1, 2}. (2.C.1)

Note that τ and ν will depend on which link of the network is being considered but that

on each individual link, τ and ν are constant. Consider the integral∫
Q
Ui,jΦk,l dy =

m∑
n=1

∫
Qn

Ui,jΦk,l dy.

Integrating by parts in the above by implementing the Gauss-Green formula (See Evans

[29, Appendix C]) yields∫
Q
Ui,jΦk,l dy =

m∑
n=1

(∫
∂Qn

Ui,jΦkν
(n)
l dλ−

∫
Qn

Ui,jlΦk dy

)
,

where ν(n) = (ν
(n)
1 , ν

(n)
2 ) is the outward pointing normal to the sub-domain Qn and ∂Qn ⊂

F1 is the thin network which forms the boundary ofQn. Hence, substituting in the relations

(2.C.1), the integral takes the form∫
Q
Ui,jΦk,l dy =

m∑
n=1

(∫
∂Qn

(
ν

(n)
j ∂νU

(ν) + τ
(n)
j ∂τU

(ν)
)

Φ(ν)ν
(n)
i ν

(n)
k ν

(n)
l dλ−

∫
Qn

Ui,jlΦk dy

)
.

(2.C.2)

The second integral on the right-hand side of Bmicro is a linear combination of integrals of

the form (2.C.2) and hence, it can be shown that upon integration by parts, the following

equation holds true:∫
Q
A0ey(U) · ey(Φ) dy = (L0 + 2M0)

m∑
n=1

{∫
∂Qn

∂νU
(ν)Φ(ν) dλ

}
−

−
∫
Q

(M0∆U + (M0 + L0)∇(div U)) ·Φ dy.

Hence

Bmicro(U ,ϕ) =

∫
F1∩Q

(
θ2

6
K1∂

4
τU

(ν) + (L0 + 2M0)∂νU
(ν)

)
Φ(ν) dλ−

− 1

2

∫
Q

(M0∆U + (M0 + L0)∇(div U)) ·Φ dy.

Thus the derivation of the system of partial differential equations in the setting of a general

periodic framework is achieved by a suitable restriction of test functions.
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Chapter 3

Further Aspects of

Homogenisation of Maxwell’s

Equations

Introduction

In the concluding chapter of this thesis, three additional problems related to homogeni-

sation theory will be presented along with relevant results. The problems in question all

involve the study of Maxwell’s equations in different geometries with the first problem

being the study of a high-contrast periodic dielectric medium, the second problem being

the study of Maxwell’s equations on “thin” rods and the final problem being an examina-

tion of a dielectric medium which has been “twisted” by a change of coordinates and the

effective properties possessed by this medium.

The study of high-contrast media has been of interest to the homogenisation commu-

nity for a number of years now ( see Figotin & Kuchment [32], Zhikov[81], Cherdantsev &

Cherednichenko [20], Zhikov & Pastukhova [87], Cherednichenko & Cooper [22, 23]). For

a given periodic problem with associated family of operators, the problem is said to be in

high-contrast if there is the loss of uniform ellipticity due to the ellipticity coefficients of

the operators vanishing as the period of the medium tends to zero. Such behaviour is seen

in the operators associated with the study of photonic crystals (Russell [62] and Guenneau

& Zolla [37]) and such behaviour is desirable due to the “band-gap” nature of the spectrum

associated with the corresponding operator families which can lead to the development

of “photonic crystal fibres” which allow for the propagation of electromagnetic waves of

a specific frequency to travel in specific directions with little to no interference from the

outside.
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The high-contrast terminology refers to the fact that there is contrast between the

different material components which constitute the composite dielectric material where the

contrast increases as the period becomes smaller. In literature on high-contrast periodic

media, if the period is ε > 0 and the contrast parameter is δ > 0, then the high-contrast

scaling is usually δ = ε2. This scaling is critical in the sense that problems with this scaling

behave significantly different asymptotically to problems where an alternative scaling is

chosen. In the work of Section 3.1, it will be shown that this critical scaling is indeed the

case when studying Maxwell’s equations on a three-dimensional torus with high-contrast

periodic cells comprising a stiff region with a soft inclusion.

Following on from the work of Chapter 2, a study of rod networks will be presented

now in the context of Maxwell’s equations and in the case when the scaling between the

rod thickness a > 0 and the period ε > 0 is such that a/ε2 → 0 (as ε→ 0). The study of

the governing equations of linearised elasticity on rod structures has been studied fully in

[81, 82, 84] but the equivalent study for Maxwell’s equations has yet to be detailed fully.

The desire for such a study stems from studies of the spectrum of so-called “quantum-

graphs”, structures of “zero thickness” (see Berkolaiko & Kuchment [10]). Using the

thoery of two-scale convergence (c.f. Section 2.2.1), a homogenised equation is found

which captures the effective behaviour of the model in the limit as the period tends to

zero.

The work presented on thin rod structures is just a small piece of research which can

be extended to many possible avenues of investigation including the study of rod structure

with alternative scalings between the rod thickness and the period and the study of high-

contrast problems.

The final piece of work of this thesis sees the study of a chiral transformation of

Maxwell’s equation in R3. This study is motivated by the significant developments made

in the physics (see Pendry [57], Pendry, Schurig & Smith [58], Demetriadou & Pendry[27])

and mathematical (see Nicolet, Zolla & Guenneau [53], Nicolet, Movchan, Guenneau &

Zolla [52], Willis [78]) communities on metamaterial science. In the paper of Demetriadou

& Pendry [27], a link is made between metamaterials exhibiting cloaking properties and

the “swiss roll” like structure of the material of study. The geometry of this problem

is what prompted the idea to study Maxwell’s equations under a change of coordinates

which “twists” the domain. Given the invariance of structure of Maxwell’s equations under

general transformations of coordinates (see [41], the study revolves around finding appro-

priate solutions to the usual system of Maxwell of equations but with unbounded electric

permittivity and unbounded magnetic permeability. The goal was to find a homogenised

system of equations and analyse the results to try and assess whether there were any
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links to the properties exhibited by metamaterials, e.g., a desirable property would be a

negative effective permeability and/or negative effective permittivity.

While this work has not succeeded in its initial goal, results which have been found

are acknowledged and presented with the possibility for this work to be continued and

extended.

3.1 The Existence of a Critical Scaling in the Study of Maxwell’s

Equations in a High-Contrast Periodic Dielectric Medium

3.1.1 Formulation of the Problem

In engineering communities, composite materials are of great interest for the reasons ex-

plained in the introduction to Chapter 2. It is important for engineers to understand how

the constitutive components of the material being constructed behave in relation to one

another as this will govern many properties of the composite in question. It is the ratio of

the material parameters of the constitutive components of the composite which indicate

the behaviour of the overall material and is a principle reason for the study of the problem

to follow. From the mathematical point of view, the study of the asymptotic behaviour

of the solution of some periodic elliptic partial differential equations (elasticity system,

Maxwell’s equations, etc.) can be siginificantly different depending on the behaviour of

the material parameters compared with the period of the composite. As backed by nu-

merical evidence, the leading order asymptotic behaviour of the solution can be shown to

depend not only on a function of a macroscopic variable but also on the derivatives of the

same function. This behaviour will be made apparant for a periodic dielectric medium

where the unit period cell is made of two contrasting materials when a particular scaling

of the material parameter is chosen.

In the following work, the problem (1.1.1) will be considered again but when the

periodic cell Q is now divided into two non-intersecting regions Q0 and Q1 which are in

contrast. It will then be shown that there is a “critical scaling” between the contrast

parameter δ > 0 and the period scale ε > 0 which leads to an asymptotic expansion for

the solution which behaves differently from the solution when no such contrast is present.

As in Chapter 1, consider the problem

curl Âεcurluε = f , uε ∈ X(T), (3.1.1)

where all the same notation and functions spaces as described in Section 1.1 applies.

Hence, a unique solution of this problem exists (Theorem 1.1.1) and such a solution can

be found in an asymptotic expansion of the period ε > 0 (as given in equation (1.1.5)).
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Let the unit cell Q := [−1
2 ,

1
2)3 be divided into two simply connected domains Q1 and

Q0 such that Q0 ∩ ∂Q = ∅. Let Γ denote the interface between the regions Q1 and Q0.

Denote by χ1 and χ0 the charaterstic functions on Q1 and Q0 respectively and denote

by 〈 · 〉Q1 and 〈 · 〉Q0 the integrals over the domains Q1 and Q0 respectively. The matrix

Âε(·) = A(·/ε) is redefined via the following equality:

A(y) := Aδ(y) =


δI, if y ∈ Q0,

I, if y ∈ Q1,

δ > 0. (3.1.2)

We now seek a solution to problem (3.1.1) but with Âε replaced with Aδ. While the

Q

Q0

Q1

Γ

Figure 3.1: Example of unit cell Q with inclusion Q0.

solution of this problem will still be a two-scale expansion of the form (1.1.5), the tensors

N (j), j = 1, 2, . . . , may now be dependent on the parameter δ. To this end, redefine the

N (j) in all relevant equations seen in Chapter 1 as N
(j)
δ . In turn, the tensors M (j) and L(j),

as defined in Section 1.1.3, are also now denoted M
(j)
δ and L

(j)
δ respectively. In addition,

suitable interface conditions are required on the surface Γ and to this end the following

jump conditions are introduced:
[
n ·N (j)

δ

]
Γ

= 0,[
n×Aδ

(
curlN

(j)
δ +M

(j)
δ

)]
Γ

= 0,

j = 1, 2, 3, . . . , (3.1.3)

where n denotes the unit outward pointing normal. Note that throughout this work, the

normal on Γ will be denoted n1 if the associated problem of consideration is on Q1 and

denoted n0 otherwise where at each point on the surface Γ, n1 = −n0.

3.1.2 Asymptotic Behaviour of N
(j)
δ , j = 1, 2, . . .

The asymptotic behaviour of the tensors N
(j)
δ j = 1, 2, . . . will be examined as δ → 0.

The matrix N
(1)
δ solves the following problem (c.f. equation (1.1.9)) where it is recalled
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that this equation is understood columnwise:
curlAδ

(
curlN

(1)
δ + I

)
= 0,

N
(1)
δ Q-periodic, 〈N (1)

δ 〉 = 0, divN
(1)
δ = 0,[

n ·N (1)
δ

]
Γ

= 0,
[
n×Aδ

(
curlN

(1)
δ + I

)]
Γ

= 0.

(3.1.4)

Consider the following asymptotic series for N
(1)
δ :

N
(1)
δ = N

(1)
0 + δN

(1)
1 +O(δ2), δ → 0. (3.1.5)

Substituting this series expansion into problem (3.1.4) and equating equal powers of the

parameter δ, the following set of equations and boundary conditions become apparant:

curl (curl(χ1N
(1)
0 ) + I) = 0, in Q1, n1 ×

(
curl (χ1N

(1)
0 ) + I

)
= 0, on Γ,

curl (curl(χ0N
(1)
j ) + I) + curl (curl(χ1N

(1)
j+1) + I) = 0, ∀j = 0, 1, 2, . . . .

χ1N
(1)
j Q-periodic, 〈χ1N

(1)
j 〉Q1 + 〈χ0N

(1)
j 〉Q0 = 0, div (χ1N

(1)
j ) + div (χ0N

(1)
j ) = 0,

n0×
(
curl (χ0N

(1)
j ) + I

)
= n1×

(
curl (χ1N

(1)
j+1) + I

)
, n1·(χ1N

(1)
j ) = n0·(χ0N

(1)
j ), on Γ.

Firstly, define N
(1)
i,j := χiN

(1)
j to simplify the notation to follow. The first problem to

be solved is the following:
curl (curlN

(1)
1,0 + I) = 0, in Q1,

divN
(1)
1,0 = 0, in Q1, N

(1)
1,0 Q-periodic,

n1 × curlN
(1)
1,0 = −n1 × I, on Γ.

The solution to this problem can be found and is unique up to an unknown constant

by the results in Arfken [4, p.95-96] and in Zhou [88]. The next problem to be solved

involves the unknowns N
(1)
0,0 and N

(1)
1,1 and is a system of equations which must be solved

simultaneously. The system is the following:
curl (curlN

(1)
0,0 + I) = 0, in Q0,

divN
(1)
0,0 = 0, in Q0,


curl (curlN

(1)
1,1 + I) = 0, in Q1,

divN
(1)
1,1 = 0, in Q1,

N
(1)
1,1 Q-periodic, 〈N (1)

0,0 〉Q0 = −〈N (1)
1,0 〉Q1 ,

n0 · (N (1)
0,0 ) = n1 · (N (1)

1,0 ), n0 ×
(
curl (N

(1)
0,0 ) + I

)
= n1 ×

(
curl (N

(1)
1,1 ) + I

)
, on Γ.

This system determines N
(1)
0,0 and determines N

(1)
1,1 up to a constant. This unknown con-

stant can then be determined by solving the next system of equations which arises and so

on. Importantly, to leading order, the solution N
(1)
δ = O(1), δ → 0.
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Recall the problem for the third-order tensor N
(2)
δ :

curlAδ
(
curlN

(2)
δ +M

(2)
δ

)
= 〈L(2)

δ 〉 − L
(2)
δ ,

N
(2)
δ Q-periodic, 〈N (2)

δ 〉 = 0, divN
(2)
δ = 0,[

n ·N (2)
δ

]
Γ

= 0,
[
n×Aδ

(
curlN

(2)
δ +M

(2)
δ

)]
Γ

= 0.

(3.1.6)

where M
(2)
δ = εN

(1)
δ , L

(2)
δ = εAδ(curlN

(1)
δ + I) and ε is the permutation tensor:

εijk =


1, if ijk = {123, 231, 312},

−1, if ijk = {132, 213, 321},

0, otherwise.

Note that

〈L(2)
δ 〉 = 〈ε(curl (χ1N

(1)
δ ) + I)〉Q1 + δ〈ε(curl (χ0N

(1)
δ ) + I)〉Q0 .

Hence it is clear by the δ-asymptotics for N
(1)
δ that 〈L(2)

δ 〉 = h̃
(2)
1,0 + δ(h̃

(2)
0,0 + h̃

(2)
1,1) +O(δ2)

where h̃
(2)
i,j = 〈curlN

(1)
i,j + I〉Qi . Let the notation T

(k)
i,j := χiT

(k)
j be adopted for any tensor

T
(k)
j ∈ {N (k)

j ,M
(k)
j , L

(k)
j } with the index i ∈ {0, 1} and j ∈ N. Before writing N

(2)
δ in an

asymptotic expansion, observe that the following equations are satisfied on each of the

domains Q1 and Q0 respectively:

curl
(
curl (χ1N

(2)
δ ) + (M

(2)
1,0 + δM

(2)
1,1 )
)

+O(δ2) = h̃
(2)
1,0+δ(h̃

(2)
0,0+h̃

(2)
1,1)−(L

(2)
1,0+δL

(2)
1,1)+O(δ2)

(3.1.7)

δcurl
(
curl (χ0N

(2)
δ ) +M

(2)
0,0

)
+O(δ2) = h̃

(2)
1,0 + δ(h̃

(2)
0,0 + h̃

(2)
1,1)− δL(2)

0,0 +O(δ2) (3.1.8)

From equation (3.1.8), it is observed that dividing through by δ, leaves the right-hand side

of order O(δ−1). In light of this observation, write N
(2)
δ in δ-asymptotic expansion of the

form

N
(2)
δ := δ−1N

(2)
−1 +N

(2)
0 +O(δ).

Hence, substituting this expansion into equations (3.1.7)-(3.1.8) and the relevant boundary

conditions leads to a system of problems which are solved systematically and in tandem,

the first few of which a presented below:
curl curlN

(2)
1,−1 = 0, on Q1,

divN
(2)
1,−1 = 0, on Q1,

n1 × curlN
(2)
1,−1 = 0, on Γ,

N
(2)
1,−1 Q-periodic, (3.1.9)


curl curlN

(2)
0,−1 = h̃

(2)
1,0, on Q0,

divN
(2)
0,−1 = 0, on Q0,

n0 ·N (2)
0,−1 = n1 ·N (2)

1,−1, on Γ,

〈N (2)
0,−1〉Q0 = −〈N (2)

1,−1〉, (3.1.10)
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
curl (curlN

(2)
1,0 +M

(2)
1,0 ) = h̃

(2)
1,0 − L

(2)
1,0, on Q1,

divN
(2)
1,0 = 0, on Q1,

n1 × (curlN
(2)
1,0 +M

(2)
1,0 ) = n0 × curlN

(2)
0,−1, on Γ,

N
(2)
1,0 Q-periodic, (3.1.11)

The solution to problem (3.1.9) is unique up to a constant and takes the form

N
(2)
1,−1 = ∇ϕ1,−1 + C, (3.1.12)

where ϕ1,−1 ∈ [H1
per(Q)]3

2
is harmonic on Q1 and C is a constant tensor. Problems

(3.1.10)-(3.1.11) are solved simultaneously leading to the conclusion that N
(2)
δ = O(δ−1)

as δ → 0.

Recall the problem for N
(3)
δ :

curlAδ
(
curlN

(3)
δ +M

(3)
δ

)
= 〈L(3)

δ 〉 − L
(3)
δ ,

N
(3)
δ Q-periodic, 〈N (3)

δ 〉 = 0, divN
(3)
δ = 0,[

n ·N (3)
δ

]
Γ

= 0,
[
n×Aδ

(
curlN

(3)
δ +M

(3)
δ

)]
Γ

= 0.

(3.1.13)

This problem is solved in an analogous way as problem (3.1.6) is solved. Note that since

〈L(3)
δ 〉 = 〈ε(curl (δ−1N

(2)
1,−1 +N

(2)
1,0 ) +M

(2)
1,0 )〉Q1 + δ〈ε(curl (δ−1N

(2)
0,−1)〉Q0 +O(δ),

and curlN
(2)
1,−1 = 0, it follows that L

(3)
δ = O(1) and hence N

(3)
δ = O(δ−1).

The procedure above is carried out for all higher-order tensors N
(k)
δ and as a result,

the following asymptotic relations are obtained

N
(2j)
δ = N

(2j+1)
δ = O(δ−j), ∀j = 1, 2, . . . .

Recall the asymptotic expansion for uε (c.f. (1.1.5)). Neglecting the “gradient” terms

in the expansion, (it will be shown in Appendix 3.A that they have no impact on the

expansion below), the asymptotics for uε are of the form

uε ∼ v+εN (1)curlv+ε2δ−1Ñ (2)∇curlv+ε3δ−1Ñ (3)∇2curlv+ε4δ−2Ñ (4)∇3curlv+. . . .

A particular scaling between the contrast parameter δ and the period ε is observed from

the above which results in a “different kind” of asymptotic expansion. Indeed, for the

scaling δ = ε2, the above expansion will consist of terms of order O(1) and order O(ε)

only. This observation justifies the phrase “critical scaling” for the case when δ = ε2 since

it leads to a deviation from the classical asymptotics for the solution.

Further Discussions

The derivation of the homogenised equation in the case of a high-contrast periodic dielec-

tric medium was given for Maxwell’s equations in Cherenichenko & Cooper [23]. A further
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study of the work of this section would be to derive the homogenised equation in the case

of the critical scaling via asymptotic methods and compare the results with those found

in this paper, not only to check that the results agree, but also to find the higher-order

terms in the higher-order homogenised expansion.
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3.2 Homogenisation of Maxwell’s Equations on Thin Struc-

tures

3.2.1 Formulation of the Problem and Tools

In this section, the limiting homogenised problem for Maxwell’s equations on a rod struc-

ture will be outlined in the regime when the rods are “sufficiently thin”, i.e., when the rod

thickness a = a(ε) > 0 and the period ε > 0 are such that a/ε2 → 0 (as ε→ 0). The work

of this section will follow a similar vain to the work of Chapter 2 with a lot of the same

notation used.

Let F be a connected, 3-dimensional periodic singular structure. Denote by F h the

rod framework formed by replacing the line segments in F by cylindrical rods of diameter

h := a/ε wherein, the original line segments form the medians of the rods of F h. Let

Ω ⊂ R3 be a bounded Lipschitz domain and let Q = [0, 1)3 denote the period cell for the

network. Define λ and λh by the relations (c.f. (2.1.1)):

λ(B) =
H1(B ∩ F )

H1(Q ∩ F )
, λh(B) =

H3(B ∩ F h)

H3(Q ∩ F h)
,

for all Borel sets B ⊂ Q. Once more there is weak convergence λh ⇀ λ. Furthermore, the

measure λhε is introduced where λhε is concentrated on the contracted network F ε,h = εF h

and is defined by the relation λhε (B) = ε3λh(ε−1B), for every Borel set B ⊂ R3. Moreover,

the measure λhε , has period ε and∫
εQ

dλhε = ε3

∫
Q

dλh = ε3.

Note there is convergence λhε ⇀ dx as ε→ 0 also. The parameters h and ε are connected

via the relation h(ε) → 0, ε → 0. Throughout this work, it will be assumed that uhε is a

bounded sequence in [L2(Ω,dλhε )]3:

lim sup
ε→0

∫
Ω
|uhε |2 dλhε <∞.

The following subset of the space H1
curl(Ω, dλ

h
ε ) is introduced:

H1
curl,0(Ω, dλhε ) := {u ∈ [L2(Ω, dλhε )]3 | curlu ∈ [L2(Ω, dλhε )]3, Aεcurlu×n = 0 on ∂Ω},

where Aε is a uniformly elliptic, symmetric, periodic, 3 × 3 matrix and n is the unit,

outward pointing normal to the boundary of Ω.

The following equation is derived from Maxwell’s equations (c.f. Section 1.3.1) and

the problem is to find uhε ∈ H1
curl,0(Ω,dλhε ) such that

curlAεcurluhε − uhε = f ε. (3.2.1)
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The vector field f ε ∈ [L2(Ω,dλhε )]3. Remark also that Aε(·) = A(·/ε), f ε(·) = f(·, ·/ε).

Equivalently, equation (3.2.1) can be written in the weak form as∫
Ω
Aεcurluhε · curlϕdλhε −

∫
Ω
uhε ·ϕdλhε =

∫
Ω
f ·ϕ dλhε , ∀ϕ ∈ [C∞0 (Ω)]3 (3.2.2)

The behaviour of uhε will be examined when the thickness h = h(ε) is such that h/ε→ 0

as ε→ 0. In this scaling, the rods are described as being “sufficiently thin”.

In addition to the theory of two-scale analysis (c.f. Section 2.1.2), additional charac-

terisations of potential vectors and solenoidal vectors (c.f. Section 2.1.3) will be needed

for the analysis of this section.

Definition 3.2.1 (Potential & Solenoidal Vectors). The space of potential vectors (curl

free vectors), denoted Vpot is the closure of the set {∇ϕ | ϕ ∈ C∞per(Q)} in [L2(Q,dλ)]3. A

vector a ∈ [L2(Q,dλ)]3 is said to be solenoidal (or divergence free) if∫
Q

(
a · b

)
dλ = 0, for all b ∈ Vpot.

The set of all solenoidal vectors is denoted Vsol and moreover, the following orthogonal

decomposition holds [L2(Q,dλ)]3 = Vpot ⊕ Vsol.

It is also true that [L2(Ω×Q,dx×dλ)]3 = L2(Ω, Vpot)⊕L2(Ω, Vsol). It has been shown

(see Zhikov [82]) that L2(Ω, Vpot) is the closure in [L2(Ω×Q,dx×dλ)]3 of the linear span

of vectors w(x)∇ϕ, w ∈ C∞0 (Ω), ϕ ∈ C∞per(Q). Moreover, L2(Ω, Vsol) is the closure in

[L2(Ω×Q,dx× dλ)]3 of the linear span of vectors w(x)a(y), w ∈ C∞0 (Ω), a ∈ Vsol.

Alternatively (see Jikov, Kozlov & Oleinik [40]), a vector v(x,y) ∈ L2(Ω, Vpot) if and

only if

v(x,y) = κ(x) + π(x,y), κ ∈ [L2(Ω,dλ)]3, π(x, ·) ∈ L2
pot(Q), (3.2.3)

where L2
pot(Q) := {u ∈ [L2(Q,dλ)]3 | curlu = 0}.

Let a, b ∈ [L2(Q,dλ)]3. It is said that a = curl b if the following identity holds:∫
Q

(a ·ψ) dλ =

∫
Q

(b · curlψ) dλ, for all ψ ∈ [C∞per(Q)]3.

Theorem 3.2.1 (Approximation Lemma). Let T denote set of vectors a ∈ [L2(Q,dλ)]3

admitting the representation a = curl b, where b ∈ [L2(Q,dλ)]3. Then T is dense in Vsol.

Proof. Assume that there exists a vector h ∈ Vsol ∩ T⊥. Consider the following problem

for periodic u ∈ [H1
curl(Q)]3:∫

Q
(curlu · curlϕ+ u ·ϕ) dλ =

∫
Q
h ·ϕdλ, ∀ϕ ∈ [C∞per(Q)]3. (3.2.4)
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Setting ϕ = u yields ∫
Q

(
|curlu|2 + |u|2

)
dλ =

∫
Q
h · udλ.

By the Cauchy-Schwartz inequality and inequality (2.2.1), it follows that∫
Q
|u|2 dλ ≤

∫
Q

(
|curlu|2 + |u|2

)
dλ =

∫
Q
h · udλ ≤ 1

2

∫
Q
|h|2 dλ+

1

2

∫
Q
|u|2 dλ.

Hence, ∫
Q
|u|2 dλ ≤

∫
Q
|h|2 dλ. (3.2.5)

From equation (3.2.4), clearly (h − u) ∈ T and hence that (h − u) is orthogonal to h.

Thus, once again by the Cauchy-Schwarz inequality and inequality (2.2.1), it follows that∫
Q
|h|2 dλ =

∫
Q
h · udλ ≤

∫
Q
|u|2 dλ. (3.2.6)

Hence, by equations (3.2.5) and (3.2.6) it follows that∫
Q
|h|2 dλ =

∫
Q
|u|2 dλ.

Thus ∫
Q

(
|curlu|2 + |u|2

)
dλ =

∫
Q
h · u dλ =

∫
Q
|h|2 dλ, ⇒

∫
Q
|curlu|2 dλ = 0.

Therefore u ∈ Vpot and moreover, u = h ∈ Vpot and hence h = 0.

The extension of a function defined on the limiting structure F to the support of the

rod framework F h will be now be established. If I is a link of the singular structure F ,

then the corresponding rod on F h is Ih := I ×Dh where Dh is the disk of radius h. The

approximation of potential vectors outside a neighbourhood of the nodes of the singular

structure F is of particular interest. Let D ⊂ Vpot be a dense subset which contains

vectors compactly supported outside a neighbourhood of the nodes of F . Consider a link

I = [0, l]× {0} × {0} of F which lies on the horizontal axis with the corresponding rod of

F h denoted Ih = [0, l]×Dh(0). Next consider a smooth vector defined as

g(y) = (a′1(y1), 0, 0), y1 ∈ [δ, l − δ], 0 < δ < l.

Extending the vector g to the support of the measure λh on the rod [δ, l − δ] ×Dh(0) is

achieved by the following

gh(y) =
(

(1 + y2 + y3)a′1, y2a1, y3a1

)
,

and outside this rod gh(y) = 0. Hence, on the rod Ih

curl gh =
(

0, (1− y2)a′1(y1), (y3 − 1)a′1(y1)
)
,
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and curl gh = 0 otherwise. Moreover, it can be shown that∫
Q
|curl gh|2 dλh = O(h2),

∫
Q
|gh − [g]h|2 dλh = O(h2), (3.2.7)

where [g]h(y) is the natural extension (c.f. Definition 2.1.7) of gh(y). Therefore,

ε−2

∫
Ω
|curl gh(x/ε)|2 dλhε = O

((
h

ε

)2
)
, (3.2.8)

∫
Ω
|gh(x/ε)− [g]h(x/ε)|2 dλhε = O

((
h

ε

)2
)
, (3.2.9)

This approximation can be easily applied to an arbitrary rod of the network F . These

results will be used to prove the homogenisation theorem in Section 3.2.2 in the case when

the scaling h/ε→ 0 is considered.

3.2.2 Two-Scale Limits and Homogenisation Theorem

Note that it can be shown in much the same way as shown in Section 2.2 that the sequences

uhε and curluhε are bounded in [L2(Ω, dλhε )]3 and hence by the compactness lemma (c.f.

Proposition 2.1.1), they possess (upto possibly taking a suitable subsequence) a weak

two-scale limit.

Theorem 3.2.2. Suppose that
uhε (x)

2
⇀ u(x,y), in [L2(Ω,dλhε )]3,

εcurluhε → 0, in [L2(Ω,dλhε )]3.

(3.2.10)

Then u(x,y) ∈ L2(Ω, Vpot).

Proof. Let a ∈ [L2(Q,dλ)]3 and b ∈ [L2(Q,dλ)]3 be such that a = curl b. Then by

definition the following relation holds:

ε

∫
Ω
b
(x
ε

)
· curlψ dλhε =

∫
Ω
a
(x
ε

)
·ψ(x) dλhε , ∀ψ ∈ [C∞0 (Ω)]3.

Consider those vectors ψ(x) = ϕ(x)uhε (x) where ϕ ∈ C∞0 (Ω). Hence

ε

∫
Ω
b
(x
ε

)
ϕ(x) ·curluhε dλhε +ε

∫
Ω
b
(x
ε

)
·(∇ϕ×uhε ) dλhε =

∫
Ω
a
(x
ε

)
·ϕ(x)uhε (x) dλhε ,

(3.2.11)

where the relation curl(ϕuhε ) = ϕcurluhε +∇ϕ × uhε , has been utilised. Hence, passing

to the limit as ε → 0 on both sides and making use of the hypotheses of the theorem, it

can be seen ∫
Ω

∫
Q
ϕ(x)a(y) · u(x,y) dλdx = 0.

By the Approximation Lemma (Theorem 3.2.1), since a belongs to a set dense in Vsol it

follows that u(x,y) ∈ L2(Ω, Vpot) and hence the result follows.
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In what follows, the structure of the limit of curluhε will be established.

Theorem 3.2.3. Suppose potential vectors satisfy the decomposition (3.2.3) and that

curluhε (x)
2
⇀ p(x,y) in [L2(Ω, dλhε )]3. Then

1. u(x,y) = u0(x) + Π(x,y), where u0 ∈ H1
curl(Ω) and Π ∈ L2(Ω, Vpot).

2. where v(x,y) ∈ L2(Ω, Vsol), it follows that

p(x,y) = curlxu0(x) + v(x,y), (3.2.12)

Moreover, if uhε ∈ H1
curl,0(Ω) then u0 ∈ H1

curl,0(Ω).

Proof. The fact that u(x,y) = u0(x) + Π(x,y) follows by decomposition (3.2.3) with

u0 ∈ [L2(Ω,dλ)]3 and Π ∈ L2(Ω, Vpot). It will be established that curlxu0 ∈ [L2(Ω,dλ)]3

and hence that u0 ∈ H1
curl(Ω) in the following argument. For the proof of part 2), let

b ∈ Vpot, ϕ ∈ C∞0 (Ω). Then∫
Ω

curluhε · ϕ(x)b
(x
ε

)
dλhε = −

∫
Ω

[
∇ϕ× uhε

]
· b
(x
ε

)
dλhε .

Taking the limit as ε→ 0 and applying the theory of weak two-scale convergence yields∫
Ω

∫
Q
p(x,y) · ϕ(x)b(y) dλdx = −

∫
Ω

∫
Q

[
∇ϕ(x)× u(x,y)

]
· b(y) dλdx.

Writing u(x,y) = u0(x) + Π(x,y), and noting that 〈[∇ϕ(x) ×Π(x,y)] · b(y)〉 = 0 (see

Appendix 3.B), it follows that∫
Ω

∫
Q
p(x,y) · ϕ(x)b(y) dλdx = −

∫
Ω

∫
Q

[
∇ϕ(x)× u0(x)

]
· b(y) dλdx.

Using the fact that curlxu0 · 〈b〉 ∈ L2(Ω) in the distributional sense, it follows that∫
Ω

∫
Q
p(x,y) · ϕ(x)b(y) dλdx =

∫
Ω

curlxu0 · ϕ(x)〈b〉dx.

Hence, by a similar argument to the argument presented in Zhikov [82, Theorem 9.5],

curlxu0 ∈ [L2(Ω)]3 and therefore u0 ∈ H1
curl(Ω). Rewriting the above in the form∫

Ω

∫
Q

[
p(x,y)− curlxu0

]
· ϕ(x)b(y) dλdx = 0,

as vectors of the form ϕ(x)b(y) are dense in L2(Ω, Vpot) it follows that

p(x,y) = curlxu0(x) + v(x,y), v(x, ·) ∈ Vsol, (3.2.13)

as required.

Since it can be shown that both sequences uhε and curluhε are bounded in [L2(Ω,dλhε )]3,

it follows that uhε ∈ [H1
curl,0(Ω)]3. Let ũhε ∈ [C∞0 (Ω)]3, be a sequence which approximates
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uhε and extend this approximation by zero to some larger domain Ω̂ ⊃ Ω. It is obvious

that the two-scale limit of uhε in Ω̂ coincides with the extension by zero of the limit in Ω.

Thus, outside Ω, u0 is zero and u0 ∈ H1
curl(Ω). By the assumption that Ω has a Lipschitz

boundary, it follows that u0 ∈ H1
curl,0(Ω) (See Dautry & Lions [26, Page 204]).

One final convergence result of interest is the so called convergence of momenta. Define

the homogenised tensor (c.f. equation (2.2.9)) by the following minimisation problem:

Ahomξ · ξ = min
v∈Vsol

∫
Q
A(ξ + v) · (ξ + v) dλ. (3.2.14)

Note that alternative formulations for the homogenised tensor can be given in the case of

Maxwell’s equations (see Cherednichenko & Cooper [23]). The Euler-Lagrange equation

for the above minimisation problem is given as

v ∈ Vsol,

∫
Q
A(ξ + v) ·ϕ dλ = 0, ∀ϕ ∈ Vsol.

Equivalently:

curl (A(ξ + v)) = 0. (3.2.15)

Hence, A(ξ + v) ∈ Vpot and moreover, for v the solution to (3.2.15), it follows that

Ahomξ · ξ =

∫
Q
A(ξ + v) · (ξ + v) dλ =

(∫
Q
A(ξ + v) dλ

)
· ξ,

and so in conclusion,

Ahomξ =

∫
Q
A(ξ + v) dλ. (3.2.16)

Consider the following theorem.

Theorem 3.2.4. Suppose that

lim
ε→0

∫
Ω
Aε(x)curl uhε (x) · curlyw

(x
ε

)
ϕ(x) dλhε = 0, ϕ ∈ C∞0 (Ω), w ∈ [C∞per(Q)]3.

(3.2.17)

Then the following weak convergence follows:

Aεcurluhε ⇀ Ahomcurlxu0 in [L2(Ω, dλhε )]3.

Moreover, the vector v seen in equation (3.2.13) is the solution to the periodic problem

(3.2.15) for ξ = curlxu0. That is

curly (A(y)(curlxu0(x) + v(x,y)) = 0.

Proof. From the general theory of weak two-scale convergence, it immediately follows that

Aεcurluhε
2
⇀A(y)[curlxu0(x) + v(x,y)],

Aεcurluhε ⇀

∫
Q
A(y)[curlxu0(x) + v(x,y)] dλ.
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In particular, taking the weak two-scale limit of equation (3.2.17) yields∫
Ω

∫
Q
A(y)[curlxu0(x) + v(x,y)]ϕ(x) · curlyw(y) dλdx = 0.

As ϕ is arbitrary in a space dense in L2(Ω), it follows that∫
Q
A(y)[curlxu0(x) + v(x,y)] · curlyw(y) dλ = 0.

Thus, v(x, ·) solves the periodic problem (3.2.15) for ξ = curlxu0 and moreover, equation

(3.2.16) implies that∫
Q
A(y)[curlxu0(x) + v(x,y)] dλ = Ahomcurlxu0.

Thus by the convergence above, the theorem is proved.

Remark. Note that if the solution v to the problem (3.2.15) above is written in the

form v(x,y) = N(y)curlxu0(x) where N(y) is a 3 × 3 solenoidal matrix, then these

results would coincide with the analysis of Chapter 1. Moreover, since N is solenoidal, the

existence of a matrix N (1) is infered such that N(y) = curlyN
(1)(y) which leads to the

solution of the problem above exactly coinciding with the solution of equation (1.1.9).

The derivation of the homogenised equation will be presented but firstly, the energy

space V is defined.

Definition 3.2.2. The set V contains all those function ϕ = ϕ(x,y) such that

ϕ(x,y) = ϕ0(x) + Ψ(x,y), ϕ0 ∈ [H1
curl,0(Ω)]3, Ψ(x,y) ∈ L2(Ω, Vpot).

The following is the two-scale homogenised equation which captures the problem de-

scribed by (3.2.1):∫
Ω
Ahomcurlu0 · curlϕ dx−

∫
Ω

∫
Q

(u0 + Π) ·ϕdλdx =

∫
Ω

∫
Q
f ·ϕdλdx. (3.2.18)

In differential form, equation (3.2.18) may be written as the following system:

curlAhomcurlu0 − ω〈u0 + Π〉 = 〈f〉, (3.2.19)

u0 ∈ [H1
curl,0(Ω)]3, Π(x, ·) ∈ Vpot, divy(Π(x, ·) + f(x, ·)) = 0. (3.2.20)

It will now be proven that this is indeed the two-scale limit of the original problem.

Theorem 3.2.5. Let uhε solve the Dirichlet problem (3.2.1) and let f ε be bounded in

[L2(Ω,dλhε )]3 such that f ε(x)
2
⇀ f(x,y) (f ε(x)

2→ f(x,y)). Then

uhε
2
⇀ u(x,y) = u0 + Π(x,y), (uhε

2→ u0 + Π(x,y)),

curluhε
2
⇀ curlxu0 + v(x,y), (curluhε

2→ curlxu0 + v(x,y)),
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u0 ∈ [H1
curl,0(Ω)]3, Π(x, ·) ∈ Vpot.

The vector field u solves (3.2.19) and the vector v is the periodic solution to the cell

problem (3.2.15) with ξ = curlxu0. Moreover, if h/ε→ 0 as ε→ 0 then relation (3.2.20)

also holds

Proof. Consider the weak formulation (3.2.2). Using standard inequalities implies that the

sequences uhε and curluhε are bounded in [L2(Ω, dλhε )]3. Hence, without loss of generality,

it can be assumed that the convergences (3.2.10) and (3.2.12) hold. Take as test functions

from the energy space V , firstly ϕ(x,y) = ϕ0(x). Hence, in the limit as ε→ 0, equation

(3.2.2) tends to∫
Ω

∫
Q
A(y) (curlxu0 + v(x,y))·curlxϕ0(x) dλdx−

∫
Ω

∫
Q
u·ϕ0 dλdx =

∫
Ω

∫
Q
f ·ϕ0 dλdx.

By the convergence of momenta (which can be seen by taking test functions of the form

ψ(x) = εϕ(x)w(x/ε), with ϕ ∈ C∞0 (Ω) and w ∈ [C∞per(Q)]3 in equation (3.2.2)), it follows

that ∫
Ω
Ahomcurlu0 · curlϕ0 dx−

∫
Ω

∫
Q
u ·ϕ0 dλdx =

∫
Ω

∫
Q
f ·ϕ0 dλdx.

To obtain the relation (3.2.20), test functions of the form ϕ(x,y) = ψ(x)gh(y) will be

taken where ψ ∈ [C∞0 (Ω)]3 and gh is a sequence as seen in (3.2.7) which approximates a

potential vector g. Hence equation (3.2.2) now takes the form:∫
Ω
Aεcurluhε · (curl gh)ψ dλhε +

∫
Ω
Aεcurluhε · (∇ψ × gh) dλhε =

∫
Ω

(uhε + f ε) · ghψ dλhε ,

The first integral will vanish in the limit as ε → 0 by the approximation (3.2.8). The

second integral vanishes in the limit as ε → 0 since by convergence (3.2.9) and the fact

that the the natural extension [g]h converges to g, by a result in Zhikov [82, Lemma 5.3],

A(·)(curlxu0(x) + v(x, ·)) ⊥ (g(·) × ∇ϕ(x)). Therefore, in the limit as ε → 0 equation

(3.2.2) takes the form∫
Ω

∫
Q

(u(x,y) + f(x,y)) · g(y)ψ(x) dλdx = 0.

Hence the result.

Assume now that there is strong two-scale convergence f ε
2→ f . Substituting ϕ = uhε

into the weak formulation (3.2.2) yields∫
Ω
Aεcurluhε · curluhε dλhε −

∫
Ω
|uhε |2 dλhε =

∫
Ω
f · uhε dλhε .

Using the fact that there is weak two-scale convergence uhε
2
⇀ u and Proposition (2.1.2)
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it follows that:∫
Ω

∫
Q
A(y) (curlxu0 + v(x,y)) · (curlxu0 + v(x,y)) dλdx−

∫
Ω

∫
Q
|u|2 dλdx =

=

∫
Ω

∫
Q
f ·udλdx = lim

ε→0

∫
Ω
f ε·uhε dλhε = lim

ε→0

{∫
Ω
Aεcurluhε · curluhε dλhε −

∫
Ω
|uhε |2 dλhε

}
≥

≥
∫

Ω

∫
Q
A(y) (curlxu0 + v(x,y)) · (curlxu0 + v(x,y)) dλdx−

∫
Ω

∫
Q
|u|2 dλdx.

Therefore, by the Squeeze Theorem

lim
ε→0

∫
Ω
|uhε |2 dλhε =

∫
Ω

∫
Q
|u|2 dλdx, (3.2.21)

lim
ε→0

∫
Ω
Aεcurluhε ·curluhε dλhε =

∫
Ω

∫
Q
A(y) (curlxu0 + v(x,y))·(curlxu0 + v(x,y)) dλdx.

(3.2.22)

Weak two-scale convergence plus equality (3.2.21) imply the strong two-scale convergence

uhε (x)
2→ u(x,y) = u0(x) + Π(x,y). Finally, in light of the weak two-scale convergence

curluhε
2
⇀ curlxu0 + v, there is weak two-scale convergence

(Aε)1/2(x)curluhε (x)
2
⇀ A1/2(y)(curlxu0(x) + v(x,y)).

This convergence is made strong in light of the convergence (3.2.22) and hence by the

definition of strong two-scale convergence (see Definition 2.1.3), there is strong two-scale

convergence curluhε
2→ curlxu0 + v as required.

Remark. In the case of classical homogenisation of Maxwell’s equations, that is, the

homogenisation of Maxwell’s equations on a bounded domain with periodic structure but

no rod framework, the same conclusions can be made with regards the structure of the

homogenised equation.

Further Discussions

Many possible extensions of the above work can be carried out. Firstly, it may be of

interest to carry out the relevant analysis for rod structures which are sufficiently thick

(limε→0 a/ε
2 →∞) and for rod structures which are critically thick (limε→0 a/ε

2 → θ > 0,

c.f. Chapter 2) and derive the homogenised models for these problems. It is suspected

that these results will not be too different from the results presented in [82] and [84] for

the elasticity case.

A study of the spectrum for the curl Âεcurl operator on rod structures (of all cases

of limε→0 a/ε
2) is also a problem to be examined. Once again, it is suspected that the

analysis should follow similar lines to that of [81] but the non-trivial kernel of the curl

operator may provide minor hurdles to the analysis.
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Extending the rod structure problem further to a setting where the space between the

rods is filled with a soft material which is in high-contrast is also work to be carried out. In

[23], the authors investigate the nature of an electromagnetics problem for a high-contrast,

periodic dielectric medium but with no thin structure. It would be of interest to see what

similarities lie between the results of this work and also the corresponding results for rod

structures.

Electrodynamics problems depend sensitively on the geometry of the domain. In par-

ticular, the analysis of a stiff rod structure with soft inclusions will be different depending

on whether or not the rod structure leaves the soft inclusion simply connected or not and

it would be expected to yield a homogenised equation of a different nature in the case of

a multiply connected soft inclusion.
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3.3 Homogenisation of Maxwell’s Equations under a Chiral

Transformation

3.3.1 Change of Coordinates and Governing Equations

In this section, work related to the motivation of this thesis is presented. It has been

suggested that there is a connection between materials possessing a negative refractive

index and materials which a chiral geometry. In the work to follow, a chiral transformation

of the system of Maxwell equations will be followed by a homogenisation of the transformed

system to try and gain insight into this suggested link.

Let x = (x1, x2, x3) ∈ R3\{x1 = 0, x2 = 0} =: R̃3 denote the Cartesian coordinates

and let ξ = (ξ1, ξ2, ξ3) ∈ R̃3 be the chiral coordinates which are given by the following

transformation:
ξ1 = x1 cos(αx3)− x2 sin(αx3),

ξ2 = x1 sin(αx3) + x2 cos(αx3),

ξ3 = x3,


x1 = ξ1 cos(αξ3) + ξ2 sin(αξ3),

x2 = −ξ1 sin(αξ3) + ξ2 cos(αξ3),

x3 = ξ3,

where α is a parameter which characterises torsion. Note that x2
1 + x2

2 = ξ2
1 + ξ2

2 and

distance is preserved under this coordinate change. The associated Jacobian matrices for

the above coordinate changes are

Jξ :=


cos(αξ3) − sin(αξ3) −αξ2

sin(αξ3) cos(αξ3) αξ1

0 0 1

 , Jx :=


cos(αx3) sin(αx3) αx2

− sin(αx3) cos(αx3) −αx1

0 0 1

 .

Let ∇x and ∇ξ denote the gradients with respect to the variables x and ξ respectively.

By the chain rule, the following relations are derived between the gradients ∇x and ∇ξ:

∇ξ = JTx ∇x, ∇x = JTξ ∇ξ.

Denote by Tαξ and Tαx the transformation matrices defined by the following relations:

Tαξ :=
JξJ

T
ξ

det Jξ
=


1 + α2ξ2

2 −α2ξ1ξ2 −αξ2

−α2ξ1ξ2 1 + α2ξ2
1 αξ1

−αξ2 αξ1 1

 , Tαx :=
JxJ

T
x

det Jx
=


1 + α2x2

2 −α2x1x2 αx2

−α2x1x2 1 + α2x2
1 −αx1

αx2 −αx1 1

 .

Note that detJξ = det Jx = 1.

Remark. Note that the transformation matrix Tαξ depends only on the variable y := αξ,

i.e., Tαξ = T (y). Moreover, Tαξ is independent of the variable ξ3.

A well known property of Maxwell’s equations is the fact that they are invariant under

coordinate transformations (see Johnson [41] for full details).
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Theorem 3.3.1. Consider the system of Maxwell equations:

curlH =
∂D

∂t
, curlE = −∂B

∂t
, (3.3.1)

D = εE, B = µH, (3.3.2)

divD = 0, divB = 0. (3.3.3)

Let x 7→ x′ := (x′1, x
′
2, x
′
3) be a coordinate transformation with Jacobian matrix Jij =

∂x′i/∂xj. Then the system of Maxwell equations in the new coordinates is given as

curl′H ′ =
∂D′

∂t
, curl′E′ = −∂B

′

∂t
, (3.3.4)

B′ = µ′H ′, D′ = ε′E′, (3.3.5)

div′D′ = 0, div′B′ = 0, (3.3.6)

where

H ′ = (JT )−1H, E′ = (JT )−1E, B′ =
JB

det J
, D′ =

JD

det J
, ε′ =

JεJT

det J
, µ′ =

JµJT

det J
,

and where curl′ and div′ are the curl and divergence with respect to the variable x′

Proof. Equation (3.3.4) will be shown only as showing the other equations is similar.

Consider equation (3.3.1) written in index notation:

εabc∂aHb = εcd
∂Ed
∂t

,

where εabc is the usual Levi-Civita symbol. Under the change in coordinates, x 7→ x′,

∂a = Jba∂
′
b, and hence

εabcJia∂
′
iJjbH

′
j = εcdJld

∂E′l
∂t

.

Noting that εabcJia∂
′
iJjb = εabc∂aJjb = 0, since ∂aJjb = ∂bJja, after multiplying both side

of the above by Jkc yields

εabcJkcJjbJia∂
′
iH
′
j = JkcεcdJld

∂E′l
∂t

.

Hence, noticing that εabcJkcJjbJia = εijk det J , back in vector notation, the above equation

may be written in the following way

curl′H ′ =
JεJT

det J

∂E′

∂t
,

as required.
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3.3.2 Formulation of the Problem and Solution by Asymptotic Expan-

sion

Consider equations (3.3.4)-(3.3.6) with the prime notation dropped for convenience and

where the transformation is x 7→ ξ. It is assumed that the vectors E and H can be

written in time harmonic form, i.e.

E(ξ, t) = Ẽ(ξ)eiωt, H(ξ, t) = H̃(ξ)eiωt, ω ∈ R.

Hence the equations of consideration are

curl H̃ = iωεẼ, curl Ẽ = −iωµH̃, (3.3.7)

div(εẼ) = 0, div(µH̃) = 0. (3.3.8)

It is assumed further that in the original Cartesian coordinates that ε = ε0(αx3)I,

µ = µ0(αx3)I where ε0, µ0 are 1-periodic functions. Hence in the chiral coordinates the

permittivity and permeability matrices (still denoted ε and µ respectively) are given by

the formulae

ε = ε0(y3)T (y), µ = µ0(y3)T (y),

where T (y) is the transformation matrix seen in Section 3.3.1. Note that the constitutive

equations (3.3.5) have been substituted into equations (3.3.4), (3.3.6).

Assume that the vector fields H̃, Ẽ, now denoted Hα, Eα, can be expanded in asymp-

totic expansions of the torsion parameter α:

Hα(ξ) = H0(ξ, αξ) + α−1H1(ξ, αξ) +O(α−1), (3.3.9)

Eα(ξ) = E0(ξ, αξ) + α−1E1(ξ, αξ) +O(α−1). (3.3.10)

Here, the variable αξ =: y will be defined on the unit cell Q := (R2×S1)\{y1 = 0, y2 = 0}

where S1 denotes the unit circle, i.e., the interval [0, 1] with it’s end points ‘glued’ together.

In other words, functions of y will be 1-periodic in the y3-direction.

The variables ξ and y are treated indepedently, and hence the curl and divergence

operators are written

curl = curlξ + αcurly, div = divξ + αdivy.

Hence, formally substituting the asymptotic series (3.3.9) and (3.3.10), into (3.3.7) and

(3.3.8) yields

αcurlyH0 + {curlyH1 + curlξH0}+O(α−1) = iωε(E0 + α−1E1) +O(α−1), (3.3.11)

αcurlyE0 + {curlyE1 + curlξE0}+O(α−1) = −iωµ(H0 +α−1H1) +O(α−1). (3.3.12)
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αdivy(µH0) + {divy(µH1) + divξ(µH0)}+O(α−1) = 0 (3.3.13)

αdivy(εE0) + {divy(εE1) + divξ(εE0)}+O(α−1) = 0 (3.3.14)

Hence the leading order equations from (3.3.11) and (3.3.12) are given as

O(α) :


curlyH0(ξ,y) = 0,

curlyE0(ξ,y) = 0,

(ξ,y) ∈ R̃3 ×Q, (3.3.15)

O(1) :


curlyH1(ξ,y) = −curlξH0(ξ,y) + iωε(y)E0(ξ,y),

curlyE1(ξ,y) = −curlξE0(ξ,y)− iωµ(y)H0(ξ,y).

(ξ,y) ∈ R̃3 ×Q.

(3.3.16)

The solution of the first equation in (3.3.15) on the domain Q can be shown (see

Appendix 3.C) to take the form

H0(ξ,y) = αH(ξ)q(y1, y2) + βH(ξ)e3 +∇yϕH(ξ,y), (3.3.17)

where ϕH ∈ H1(R̃3 ×Q), αH , βH ∈ H1(R̃3) are to be determined and

q :=


q1

q2

0

 ,


q1 =

∂q

∂y1
,

q2 =
∂q

∂y2
,

q(y1, y2) =



tan−1

(
y2

y1

)
, y1 > 0, y2 > 0,

π/2, y1 = 0, y2 > 0,

π + tan−1

(
y2

y1

)
, y1 < 0,

3π/2, y1 = 0, y2 < 0,

2π + tan−1

(
y2

y1

)
, y1 > 0, y2 < 0.

Notice that the function q is curl-free and divergence-free and hence also harmonic on

R2\{y2 = 0, y1 > 0} as well.

The function ϕH is determined via the following problem which is obtained from the

leading order equation in (3.3.13):

−divy (µ∇yϕH) = (αH + βH)µ′0, (3.3.18)

where the prime notation denotes differentiation with respect to the y3 variable. Clearly

ϕH(ξ,y) = (αH(ξ) + βH(ξ))ΦH(y) + σH(ξ)ψH(y)

where ΦH , ψH ∈ H1(Q) and solve the equations

−divy (µ∇yΦH) = µ′0, −divy (µ∇yψH) = 0. (3.3.19)

These equations will be discussed further in Section 3.3.3.
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Remark. Note that the following results also hold for the second equation in (3.3.15):

E0(ξ,y) = αE(ξ)q(y1, y2)+βE(ξ)e3+∇yϕE(ξ,y), ϕE ∈ H1(R̃3×Q), αE , βE ∈ H1(R̃3),

(3.3.20)

where ϕE solves the equation

−divy (ε∇yϕE) = (αE + βE)ε′0, (3.3.21)

and

ϕE(ξ,y) = (αE(ξ) + βE(ξ))ΦE(y) + σE(ξ)ψE(y), ΦE , ψE ∈ H1(Q),

−divy (ε∇yΦE) = ε′0, −divy (ε∇yψE) = 0. (3.3.22)

3.3.3 Homogenised System of Equations

Observe that the equations (3.3.16) are solvable if and only if the right-hand side of each

equation is orthogonal in the L2(Q) sense to all elements of the kernel of the left-hand

side. Hence, in light of equation (3.3.17), the following must hold:∫
Q
{−curlξH0 + iωεE0} · (aq + be3 + c∇yψ)︸ ︷︷ ︸

=K

dy = 0,

where a, b, c ∈ R are constants and ψ ∈ H1(Q). Notice that in light of the identity

curlξ(f(ξ)v(y)) = ∇ξf(ξ)×v(y) and the relations (3.3.17) and (3.3.20), the above integral

may be represented as

∫
Q

{
− (∇ξαH × q +∇ξβH × e3 +∇ξ(αH + βH)×∇yΦH +∇ξσH ×∇yψH) +

+iω
(
αEε0

(
(1 + |ŷ|2)q + e3

)
+βEε0(|ŷ|2q+e3)+(αE+βE)ε∇yΦE+σEε∇yψE

)}
·K dy = 0,

(3.3.23)

where ŷ = (y1, y2, 0). If a = b = 0 then the above equation is satisfied automatically in

light of the leading order equation in (3.3.14) and the identity divycurlξ = −divξcurly.

Let a = 1 b = c = 0. Note that for any two vectors u and v, the identity u ·(u×v) = 0

holds and moreover it is understood that∫
R2\{0}

q dy1dy2 = 0,

in the sense that

lim
l→∞

(∫ l

−l

∫ l

−l

y1

y2
1 + y2

2

dy1dy2

)
= lim

l→∞

(∫ l

−l

∫ l

−l

−y2

y2
1 + y2

2

dy1dy2

)
= 0.
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Hence (3.3.23) reduces to the following

(∫
Q
∇yΦH × q dy

)
︸ ︷︷ ︸

:=I
(1)
q (ΦH)

·∇ξ(αH + βH) +

(∫
Q
∇yψH × q dy

)
︸ ︷︷ ︸

:=I
(1)
q (ψH)

·∇ξσH =

= iω

(∫
Q
ε0(T∇yΦE · q + 1) dy

)
︸ ︷︷ ︸

:=I
(2)
q (ΦE)

(αE + βE) + iω

∫
Q
ε0

(
σET∇yψE · q +

αE
|ŷ|2

)
dy,︸ ︷︷ ︸

:=I
(3)
q (ψE)

(3.3.24)

Similarly, setting b = 1 and a = c = 0 yields

(∫
Q
∇yΦH × e3 dy

)
︸ ︷︷ ︸

:=I
(1)
e3

(ΦH)

·∇ξ(αH + βH) +

(∫
Q
∇yψH × e3 dy

)
︸ ︷︷ ︸

:=I
(1)
e3

(ψH)

·∇ξσH =

= iω

(∫
Q
ε0(T∇yΦE + e3) · e3 dy

)
︸ ︷︷ ︸

:=I
(2)
e3

(ΦE)

(αE + βE) + iω

(∫
Q
ε∇yψE · e3 dy

)
︸ ︷︷ ︸

:=I
(3)
e3

(ψE)

σE , (3.3.25)

If in equations (3.3.24) and (3.3.25) H 7→ E, E 7→ H, ε0 7→ µ0 and µ0 7→ ε0 then

these equations become the solvability conditions for the second equation in (3.3.16). It

is first noted that if the integral denoted I
(3)
q (ψE) is to be finite then σE ∝ αE . Hence,

σE = CEαE (σH = CHαH) where CE (CH) is a constant.

The equations above will form a homogenised system of equations provided solutions

ΦH ,ΦE , ψH , ψE can be found to equations (3.3.18) and (3.3.21) such that the integrals in

equations (3.3.24) and (3.3.25) are finite.

The aim now is to describe the class of solutions of the equations (3.3.19) such that

ΦH , ψH are 1-periodic in the y3 variable and such that all the relevant integrals in ex-

pressions (3.3.24) and (3.3.25) are finite along with those integrals which come from the

other system of solvability conditions.

Consider the change of variables y
α=17→ ξ 7→ x. Then equations (3.3.19) can be rewrit-

ten as

−divx

(
µ0(x3)

{
∇xΦ̃H + e3

})
= 0, −divx

(
µ0(x3)∇xψ̃H

)
= 0, on Q,

where Φ̃H(x) = ΦH(y(x)), ψ̃H(x) = ψH(y(x)). The kernel of the divergence operator on

unbounded, multiply connected domains is discussed in Appendix 3.C. Hence

µ0

{
∇xΦ̃H + e3

}
= a1e3+b1q+c1curlxuH , µ0∇xψ̃H = a2e3+b2q+c2curlxvH , (3.3.26)

where ai, bi, ci ∈ R, i = 1, 2 are constants and uH ,vH ∈ H1
curl(Q).
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Consider the integrals I
(2)
q (ΦH), I

(3)
q (ψE), I

(2)
e3 (ΦH), I

(3)
e3 (ψH). Making the same change

of variables in these integrals it is found that the following integrals need to be finite:

I
(2)
q (ΦH) =

∫
Q

{
b1
|x̂|2

+ c1curlxuH · q
}

dx, I
(2)
e3 (ΦH) =

∫
Q
{a1 + c1curlxuH · e3} dx,

(3.3.27)

I
(3)
q (ψH) =

∫
Q

{
µ0CH + b2
|x̂|2

+ c2curlxvH · q
}

dx, I
(3)
e3 (ψH) =

∫
Q
{a2 + c2curlxvH · e3} dx,

(3.3.28)

Further expressing the first integral in (3.3.27) in polar coordinates and simplifying the

expression in the second integral yields∫
Q

{
b1
r

+ c1
∂u3

∂r

}
dr,

∫
Q

{
a1 + c1

(
∂u2

∂x1
− ∂u1

∂x2

)}
dx, (3.3.29)

where dr = drdθdx3 and ˜̃ΦH(r) = Φ̃(r(x)). Given that the terms a1 and b1/r will not

give finite integrals, it is concluded that a1 = b1 = 0 otherwise

uH = UH +
1

2c1


a1x2

−a1x1

−b1 ln(x2
1 + x2

2)

 ,

where UH ∈ H1
curl(Q). However, this cannot be since the vector on the right-hand side is

not in H1(Q). For the second set of integrals (3.3.28), it is concluded that a2 = 0 but it

suffices that b2 = −CH〈µ0〉 for finiteness of the first integral in (3.3.28).

The matrices Mq := JTx × q and Me3 := JTx × e3 are introduced and given explicitly

by the following expressions:

Mq =
1

|x̂|2


x2(−x1 cos(x3) + x2 sin(x3)) −x1(−x1 cos(x3) + x2 sin(x3)) −x1 cos(x3) + x2 sin(x3)

−x2(x1 sin(x3) + x2 cos(x3)) x1(x1 sin(x3) + x2 cos(x3)) −(x1 sin(x3) + x2 cos(x3))

x1 x2 0

 ,

(3.3.30)

Me3 =


sin(x3) cos(x3) 0

− cos(x3) sin(x3) 0

0 0 0

 . (3.3.31)

Noting that 〈Mqq〉 = 〈Me3q〉 = 0 and that 〈Mqe3〉 = 〈Me3e3〉 = 0, it can be shown that

I
(1)
q (ΦH) = c1

∫
Q

µ−1
0

|x̂|2
MqcurluH dx, I

(1)
e3 (ΦH) = c1

∫
Q
µ−1

0 Me3curluH dx, (3.3.32)

I
(1)
q (ψH) = c2

∫
Q

µ−1
0

|x̂|2
MqcurlvH dx, I

(1)
e3 (ψH) = c2

∫
Q
µ−1

0 Me3curlvH dx. (3.3.33)

Note that these integrals are also vectors and therefore it is required that all three com-

ponents of each vector need to be finite. Consider the integrals I
(1)
q (ΦH) and I

(1)
e3 (ΦH).
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Expressing these integrals in polar coordnates, it can be shown that the following integrals

need to be finite:

I
(1)
q (ΦH) · e1 = c1

∫
Q
µ−1

0 (x3) cos(θ + x3)

{
∂ũ1

∂r
− 1

r

∂ũ2

∂θ
+ r

∂ũ2

∂x3
+

1

r
ũ1 + r

∂u3

∂r

}
dr,

I
(1)
q (ΦH) · e2 = c1

∫
Q
µ−1

0 (x3) sin(θ + x3)

{
∂ũ1

∂r
− 1

r

∂ũ2

∂θ
+ r

∂ũ2

∂x3
+

1

r
ũ1 + r

∂u3

∂r

}
dr,

I
(1)
q (ΦH) · e3 =

∫
Q
−µ−1

0 (x3)
∂ũ1

∂x3
dr,

I
(1)
e3 (ΦH)·e1 =

∫
Q
µ−1

0 (x3)

{
− cos(θ + x3)

∂u3

∂r
+

sin(θ + x3)

r

∂u3

∂θ
+ cos(x3)

∂u1

∂x3
− sin(x3)

∂u2

∂x3

}
dr,

I
(1)
e3 (ΦH)·e2 =

∫
Q
µ−1

0 (x3)

{
− sin(θ + x3)

∂u3

∂r
− cos(θ + x3)

r

∂u3

∂θ
+ sin(x3)

∂u1

∂x3
+ cos(x3)

∂u2

∂x3

}
dr,

I
(1)
e3 (ΦH) · e3 = 0,

where ũ1 = − sin θ u1 +cos θ u2 and ũ2 = cos θ u1 +sin θ u2. Hence, functions ΦH , ΦE , ψH ,

ψE are considered such that the integrals above (and their similar counterparts)are finite.

Moreover, define γH = αH + βH , γE = αE + βE and define by Dba the following operator:

Dba ≡
(∫

Q
∇yb× ady

)
· ∇ξ.

Then a homogenised system of equations is obtained in the form

DΦH
q γH +D

ψH
q αH = iω(εhom

q γE + jEq αE), De3γH = iω(εhom
e3 γE + jEe3αE) (3.3.34)

DqγE = −iω(µhom
q γH + jHq αH), De3γE = −iω(µhom

e3 γH + jHe3αH) (3.3.35)

where

εhom
a :=

∫
Q
ε(∇yΦE + e3) · ady, µhom

a :=

∫
Q
µ(∇yΦH + e3) · ady, (3.3.36)

jEa :=

∫
Q
ε (q +∇yψE) · a dy, jHa :=

∫
Q
µ (q +∇yψH) · ady. (3.3.37)

Note that the above set of equations is a scalar system as opposed to being a vector system

of equations.

Further Discussions

The work described in the section above was motivated by recent developments in metama-

terial science. Links have been made between materials which possess a negative refractive

index and chirality and the initial goal of this project was to make a chiral change of coor-

dinates in the governing equations and to see if a negative effective permeability and/or a

negative electric permittivity could be found. A further extension of the work carried out
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above could be to take a bounded domain and appropriate boundary conditions to see if

any further relations between chirality and metamaterials can be deduced.

Another possible extension is to use the same coordinate transformation of this chapter

but for the so called Drude-Born-Fedorov model of the Maxwell system of equations which

has been investigated with regards to metamaterials already (see Guenneau & Zolla [37]).
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Appendices

3.A Asymptotics of the tensors K
(j)
δ , j = 1, 2, . . .

The asymptotics for the tensors K
(j)
δ will now be analysed. Recall that the tensors K

(j)
δ ,

j = 1, 2, . . . satisfy a system of equations which derive from the divergence condition

divuε = 0. The system of equations is (c.f. equation 1.1.22)

∆y(K
(j+1)
δ ∇j+1

x v)+2∆xy(K
(j)
δ ∇

j
xv)+∆x(K

(j−1)
δ ∇j−1

x v)+divx(N
(j)
δ ∇

j−1
x curlxv) = 0,

(3.A.1)

for j = 1, 2, . . . .Together with the conditions K
(j)
δ is Q-periodic and 〈K(j)

δ 〉 = 0, these

tensors are determined uniquely.

The δ-asymptotic behaviour of the tensor K
(j)
δ is dependent on the δ-asymptotic be-

haviour of the tensor N
(j−1)
δ , j = 1, 2, . . . which can be observed from the equations above.

Noting once again that K
(1)
δ = 0, the first non-trivial tensor K

(2)
δ = (K

(2)
δ )ijk satisfies the

following (index) equation:

∂i∂i(K
(2)
δ )jkl = −(N

(1)
δ )jmεmkl.

It becomes apparent that because N
(1)
δ = O(1) that K

(2)
δ = O(1). Advancing this proce-

dure, it can also be shown that

K
(2j+1)
δ = K

(2j+2)
δ = O(δ−j), j = 1, 2, . . . .

Therefore, substituting these δ-asymptotics for the tensors K
(j)
δ into the asymptotic ex-

pansion for the solution uε along with the asymptotics for N
(j)
δ yields

uε ∼ v + εN (1)curlxv + ε2
{
δ−1Ñ (2)∇xcurlyv +∇y

(
K̃(2)∇2

xv
)}

+

+ ε3
{
δ−1Ñ (3)∇2

xcurlxv + δ−1∇y
(
K̃(3)∇3

xv
)

+∇x
(
K̃(2)∇2

xv
)}

+

+ ε4
{
δ−2Ñ (4)∇3

xcurlxv + δ−1∇y
(
K̃(4)∇4

xv
)

+ δ−1∇x
(
K̃(3)∇3

xv
)}

+ . . .

This expansion reveals no further scalings that could be considered as “critical” other than

the scaling δ = ε2.
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3.B A Result on Potential Vectors

Lemma 3.B.1. Let P (x,y) ∈ L2(Ω, Vpot). Then for any b(y) ∈ Vpot and any constant

vector c(x), ∫
Q

(c(x)× P (x,y)) · b(y) dλ(y) = 0.

Proof. Note that since vectors of the form∇ψ, ψ ∈ C∞per(Q) are dense in Vpot, it is sufficient

to prove the result for b = ∇ψ. Hence∫
Q

(c× P ) · ∇ψ dλ =

∫
∂Q

(c× P )ψ · ndλ−
∫
Q

div (c× P )ψ dλ,

where n is the unit outward pointing normal to the boundary of Q. Since Q is a unit

cube and both P and ψ are periodic, the boundary integral vanishes. Moreover, using the

identity div(a× b) = a · curl b− b · curla, it follows that∫
Q

div (c× P )ψ dλ =

∫
Q

(c · curlP − P · curl c)ψ dλ = 0.

The last equality is true since P is potential and c is constant.

3.C Kernel of the curl and div Operators on Multiply Con-

nected, Unbounded Domains

Let Ω ⊂ R3. When Ω is bounded and simply connected, the solutions v ∈ [L2(Ω)]3 of the

problem

curlv(x) = 0, v × n = 0 on ∂Ω, x ∈ Ω,

are elements of the set

ker curl := ker{curl, L2(Ω)} = ∇H1(Ω) := {v(x) = ∇w(x) | w ∈ H1(Ω)}.

The extension of this result to unbounded, simply connected domains is achieved by im-

posing a sufficient decay at infinity (see Ledger & Zaglmayr[45]).

The case when Ω is bounded and multiply connected will now be outlined. For full

details, see Dautray & Lions [26, Chapter IX]. Let Ω be a 3-dimensional, bounded con-

nected domain which lies wholly on one side of it’s boundary ∂Ω which has dimension 2

and is furthermore of the class Ck where k ≥ 2. Let ∂Ω have a finite number of connected

components denoted Γ0, . . . ,Γn where Γ0 denotes the boundary of the infinite connected

component of Ω′ = R3\Ω.

Definition 3.C.1. Let Σ1, . . . ,Σm be a collection of smooth surfaces such that

1. Σ1, . . . ,Σm are open subsets of smooth manifolds M1, . . . ,Mm respectively,
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2. the boundary of each Σi is contained in ∂Ω,

3. the intersection of any two cuts is empty, i.e., Σi ∩ Σj = ∅, i 6= j,

4. the open set Ω′ = Ω\
⋃m
i=1 Σi is simply connected and pseudo-Lipschitz1.

Then we call Σ1, . . . ,Σm a collection of cuts for the domain Ω.

The purpose of these cuts is to make every curl-free field on Ω′ the gradient of some

scalar field.

Proposition 3.C.1. Let Ω be an open set which is bounded and multiply connected in R3

such that there are cuts satisfying the assumptions of Defintion 3.C.1. Then the kernel

of the curl operator in [L2(Ω)]3 is the sum of two orthogonal spaces; ∇H1(Ω) and H1(Ω)

where the latter is the vector space of dimension m (the number of cuts required to make

Ω simply connected) defined by

H1(Ω) =
{
v ∈ [L2(Ω)]3

∣∣∣ v = ∇w, in the classical sense2 in Ω with w ∈ H1(Ω′) a solution of (3.C.1)
}
,

where the problem in question is

∆w = 0, in Ω′,

∂w

∂n

∣∣∣
Γ

= 0,

[w]Σi = constant, i = 1, . . . ,m,[∂w
∂n

]
Σi

= 0, i = 1, . . . ,m.

(3.C.1)

where [w]Σi = w|Σ+
i
− w|Σ−i .

Elements of the kernel of the divergence operator on a multiply connected domain Ω

can be shown to be of the form

u = h1 + curlw, w × n|Γ = 0, (3.C.2)

where h1 ∈ H1(Ω) and w ∈ [H1(Ω)]3.

The domain Q := (R2\{0})×S1 is multiply connected but is also unbounded and hence

the above result cannot be applied right away since the condition
∂w

∂n

∣∣∣
Γ

= 0 in (3.C.1)

and the condition w × n|Γ = 0 in (3.C.2) make no sense. These conditions are replaced

by the conditions that the limits

lim
R→∞

{
∂w

∂n

∣∣∣
y21+y22=R2

}
= 0, ∀y3 ∈ S1, (3.C.3)

1For the definition of pseudo-Lipschitz, see Amrouche, Bernadi, Dauge & Girault [2]
2in the sense of distributions on Ω′
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lim
R→∞

{
w × n

∣∣
y21+y22=R2

}
= 0, ∀y3 ∈ S1. (3.C.4)

Hence the kernel of the curl operator on the domain Q is determined. Two cuts Σ1

and Σ2 are made such that every curl-free field becomes the gradient of a scalar function

and, without loss of generality, the first cut Σ1 is made in the y3 = 0 plane and the second

cut Σ2 is made in the y1 > 0, y2 = 0 plane. It can be confirmed that the solution of

problem (3.C.1) with the condition (3.C.3) replacing the requirement that ∂w
∂n |Γ = 0 is a

linear combination of the functions

w1(y) = y3, w2(y) = tan−1

(
y2

y1

)
, (3.C.5)

Hence, the kernel of the curly operator on R̃3 ×Q is given by vector fields of the form

v(ξ,y) = ∇yϕH(ξ,y)+α(ξ)∇yw1(y)+β(ξ)∇yw2(y) = ∇yϕH(ξ,y)+α(ξ)e3+β(ξ)q(y1, y2),

as required. Moreover, functions in the kernel of the div operator on R̃3×Q take the form

u(ξ,y) = α(ξ)e3 + β(ξ)q(y1, y2) + curlyw(ξ,y), (3.C.6)

Note that the vector field w can be found uniquely provided

divw = 0, lim
R→∞

∫
B(0,R)

w · ndy1dy2 = 0, ∀y3 ∈ S1, ∀ξ ∈ R̃3.
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