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Abstract	

Despite	the	association	of	neuronal	cell	loss	with	a	wide	range	of	neurodegenerative	disorders,	the	

mechanisms	 leading	 to	 this	 cell	death	 remain	poorly	understood.	 In	 this	 thesis	 I	have	 investigated	

these	mechanisms	and	tested	whether	they	represent	viable	targets	for	therapeutic	intervention.	The	

adult	mouse	retinal	explant	is	a	popular	model	of	axotomy-induced	neuronal	degeneration	but	has	

been	limited	by	the	lack	of	morphometric	data.	Since	dendritic	pruning	is	well-evidenced	to	precede	

cell	 loss	 in	neurodegenerative	diseases,	 including	glaucoma	and	Alzheimer’s	disease,	 I	 investigated	

whether	the	quantification	of	dendritic	morphology	of	retinal	ganglion	cells	in	the	retinal	explant	could	

be	used	 as	 a	more	 sensitive	measure	of	 neuronal	 health	 after	 axotomy.	 I	 report	 here	 that	 retinal	

ganglion	cell	dendrite	loss	precedes	cell	loss	by	at	least	7	days	and	that	this	retraction	is	substantially	

retarded	 following	 treatment	 with	 brain-derived	 neurotrophic	 factor	 applied	 at	 the	 time	 of	

explantation.	Perhaps	most	importantly,	I	demonstrate	for	the	first	time	in	this	model	that	delayed	

application	of	brain-derived	neurotrophic	factor	significantly	protects	against	dendritic	retraction	of	

retinal	 ganglion	 cells.	 The	 work	 outlined	 in	 this	 thesis	 thus	 supports	 the	 targeting	 of	 dendritic	

outgrowth	and/or	synaptic	connectivity	for	the	treatment	of	neurodegenerative	disorders.	
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Chapter	1:	Introduction	

1.1	The	retina	

Retinal	 ganglion	 cells	 (RGCs)	 are	 neurons	 in	 the	 inner	 retina	 that	 collect	 information	 from	

photoreceptors.	 This	 information	 is	 transmitted	 via	 RGC	 axons,	 which	 leave	 the	 back	 of	 the	 eye	

through	the	optic	nerve	head	and	terminate	in	the	lateral	geniculate	nucleus	or	the	superior	colliculus	

in	humans.	There	are	two	parallel	pathways	in	retinal	processing,	the	ON	and	the	OFF	pathways.	In	

the	ON	pathway	bipolar	cells	and	RGCs	are	depolarised	by	light,	but	in	the	OFF	pathway	bipolar	cells	

and	 RGCs	 are	 hyperpolarised	 by	 light.	 Following	 light	 transduction,	 photoreceptors	 synapse	 to	

horizontal	 cells	 and	 bipolar	 cells.	 Cone-driven	 bipolar	 cells	 synapse	 directly	 to	 RGCs	 of	 the	 same	

ON/OFF	pathway	(i.e.	ON	bipolar	à	ON	RGC;	OFF	bipolar	à	OFF	RGC),	whereas	rod-driven	bipolar	

cells	transmit	signals	to	ON	and	OFF	RGCs	via	AII	amacrine	cells	(Figure	1.1)	(Famiglietti	and	Kolb	1976;	

Nelson	et	al.	1978).	Whilst	the	majority	of	RGCs	carry	out	a	visual	processing	role,	a	small	percentage,	

termed	 intrinsically	 photosensitive	 RGCs,	 contain	melanopsin	 and	 are	 important	 for	 the	 circadian	

rhythm	and	controlling	the	pupillary	light	reflex	(Schmidt	et	al.	2011;	Pickard	and	Sollars	2012).	
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Figure 1.1. Neural processing in the mammalian retina. Under scotopic conditions photoreceptors are 

depolarised and release glutamate, which hyperpolarised cone-driven ON bipolar cells and rod-driven 

bipolar cells via metabotropic glutamate receptors (Shiells and Falk 1990). Glutamate depolarises OFF 

bipolar cells via ionotropic glutamate receptors. Under photopic conditions glutamate release from 

photoreceptors is suppressed, resulting in depolarisation of ON bipolar cells and rod-driven bipolar cells, 

and hyperpolarisation of OFF bipolar cells (Stryer 1986). Cone-driven ON bipolar cells synapse to ON 

RGCs, and cone-driven OFF bipolar cells synapse to OFF RGCs. Bistratified RGCs receive signals 

from ON and OFF bipolar cells (Kolb 1970; Famiglietti and Kolb 1976; Nelson et al. 1978). Rod-driven 

bipolar cells synapse to AII amacrine cells, which in turn depolarise cone-driven ON bipolar cells via 

gap junctions, and hyperpolarise cone-driven OFF bipolar cells and OFF RGCs via glycine (Tagawa et 

al. 1999; Bloomfield and Dacheux 2001; Xu and Tian 2008). G (ganglion cell); A (amacrine cell); AII (AII 

amacrine cell); H (horizontal cell); B (bipolar cell); white cells in ONL (cones); black cells in ONL (rods); 

GCL (ganglion cell layer); IPL (inner plexiform layer); INL (inner nuclear layer); OPL (outer plexiform 

layer); ONL (outer nuclear layer); OS (outer segments). The IPL is divided into 5 strata (S1-S5); OFF 

cells (blue) stratify in S1-S2 (sublamina a); ON cells (red) stratify in S3-S5 (sublamina b); bistratified 

cells (purple) stratify in sublaminas a and b.	
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1.2	Classes	of	retinal	ganglion	cells	

RGCs	are	a	very	heterogeneous	population	of	neurons	in	terms	of	morphology,	as	demonstrated	in	

Figure	1.2.	Not	only	does	the	dendritic	field	size	of	RGCs	increases	with	distance	from	the	optic	nerve	

head	(Doi	et	al.	1995),	but	other	morphological	parameters,	such	as	soma	area,	branching	complexity	

and	dendritic	field	asymmetry,	vary	greatly	between	neighbouring	cells.	The	variance	in	the	mouse	is	

particularly	well	demonstrated	by	the	number	of	different	morphological	classes	of	RGCs	identified:	

14	types	by	Sun	et	al.	(2002)	and	Coombs	et	al.	(2006).	In	addition	to	classification	by	cell	shape,	RGCs	

have	recently	begun	to	be	classified	by	function,	of	which	there	has	been	found	to	be	at	least	30	types	

(Baden	et	al.	2016),	and	this	number	is	likely	to	increase	as	neuronal	recording	methods	are	optimised.	

Transgenic	mouse	lines	offer	a	method	of	labelling	specific	classes	of	RGCs,	such	as	Isl2+	RGCs	(Triplett	

et	al.	2014)	or	ON-OFF	direction-selective	RGCs	(Kay	et	al.	2011).	For	a	summary	of	available	transgenic	

mouse	lines	that	label	specific	classes	of	RGCs,	the	reader	should	refer	to	Sanes	&	Masland	(2015).	
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Figure 1.2. Example types of mouse RGCs classified by soma diameter, dendritic field diameter and 

stratification depth, demonstrating the morphological variety of these neurons. Figure adapted from Sun 

et al. (2002). 
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1.3	Normal	retinal	neurogenesis	and	dendritogenesis	

1.3.1	Retinal	neurogenesis	

The	developing	retina	contains	a	population	of	stem	cells	capable	of	differentiating	into	all	cell	types	

in	the	retina.	In	the	retinae	of	fish	and	amphibians	a	retinal	stem	cell	population	also	exists	in	the	adult	

in	the	ciliary	margin	zone	(Fischer	et	al.	2013).	While	many	groups	have	attempted	to	find	this	stem	

cell	niche	in	higher	vertebrates	for	the	application	of	stem	cell	replacement	therapies,	several	reports	

suggest	that	the	ciliary	margin	zone	is	reduced	in	more	highly	evolved	vertebrates	and	is	completely	

absent	 in	 the	mouse	 (Li	 et	 al.	 2013).	 Nevertheless,	 there	 is	 evidence	 that	 a	 population	 of	 retinal	

stem/progenitor	cells	does	exist	in	the	retinae	of	mice	(Kubota	et	al.	2002)	and	humans	(Mayer	et	al.	

2005;	Johnsen	et	al.	2012),	which	may	act	to	repair	the	tissue	following	ocular	injury.	

The	10	layers	of	the	vertebrate	retina	consist	of	7	types	of	neuronal	and	glial	cells,	which	all	originate	

from	retinal	progenitor	cells	(RPCs).	Differentiation	of	the	different	cell	types	occurs	in	waves	and	it	is	

imperative,	therefore,	that	there	is	tight	regulation	of	both	extrinsic	and	intrinsic	cues	to	ensure	the	

correct	sequence	of	differentiation	(Zhang	and	Yang	2001).	Ca2+	waves	are	important	for	controlling	

the	expression	of	specific	genes	by	binding	to	calcium	response	elements	and	for	proliferation	of	NPCs	

(Tao	et	al.	1998;	West	et	al.	2001;	Stroh	et	al.	2011).		

In	 general,	 neurons	 in	 the	 retina	 are	 formed	 from	 RPCs	 in	 descending	 size	 order,	 with	 the	

differentiation	of	RGCs	as	the	first	cell	type	(Jeffery	1997).	In	addition,	the	position	relative	to	the	optic	

nerve	seems	to	be	important;	RGCs	with	axons	deepest	in	the	optic	tract	are	formed	first	(alpha	cells	

in	rat,	beta	cells	 in	cat)	 (Reese	and	Colello	1992).	Low	sonic	hedgehog	(Shh)	concentrations	 induce	

expression	 of	 several	 genes,	 including	atonal,	 and	mitogen-activated	 kinase	 (MAPK)	waves,	which	

stimulate	 naïve	 RPCs	 to	 become	 competent	 for	 differentiation.	 RGCs	 themselves	 secrete	 Shh.	

Increased	concentration	of	Shh	inhibits	further	RGC	differentiation	and	stimulates	the	next	wave	of	

neuronal	differentiation	(amacrines)	(Zhang	and	Yang	2001).	
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1.3.2	Dendrite	and	axon	guidance	

The	processes	of	dendrite	and	axon	development	are	mediated	through	a	collection	of	extracellular	

guidance	molecules	or	receptors	and	 intracellular	signal	molecules.	A	 list	of	 the	most	 important	of	

these	molecules	can	be	found	in	Table	1.1.

Table 1.1. Summary of molecules and proteins involved in the signalling cascades upstream of dendritic 

and axonal changes during development. 

	

Once	 cells	 have	 fully	 differentiated	 into	 RGCs,	 the	 process	 of	 dendrite	 outgrowth	 and	 branching	

occurs.	After	dendrite	growth	initiation,	one	dendrite	is	selected	to	become	the	axon	and	the	process	

of	axon	guidance	to	the	midbrain	and	the	thalamus	via	the	optic	nerve	begins.	Simultaneously,	the	

remaining	primary	dendrites	continue	to	grow	and	branch	in	response	to	a	number	of	positive	and	

negative	guidance	cues	(Erskine	and	Herrera	2007).	Neurite	outgrowth	is	mediated	by	intrinsic	factors,	

such	as	intracellular	cyclic	nucleotide	concentration	(Marrs	et	al.	2006),	and	extrinsic	factors,	including	

ephrins	(Xu	and	Henkemeyer	2012)	and	neurotrophins	(Bosco	and	Linden	1999;	Lom	and	Cohen-Cory	

1999).	

Extracellular	guidance	molecules	 Transmembrane	proteins	 Intracellular	signal	molecules	

Semaphorins	(secreted)	 Integrins	 Cyclic	AMP/GMP	

Extracellular	matrix	components	 NMDA	receptor	 Calcium	

	 Cadherins	 Rho	GTPases	

	 Neuropilins	 LIM	domain	kinase	1	

	 Plexins	 Focal	adhesion	kinase	

	 	 CAMKII	
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Regulation	 of	 cytoskeleton	 dynamics	 is	 controlled	 by	 cyclic	 nucleotides	 and	 proteins	 affecting	 the	

equilibrium	between	actin	polymerisation	and	actin	depolymerisation.	Rho	GTPases	and	Ca2+	currents	

play	a	role	 in	regulation	of	actin	dynamics,	therefore	regulation	of	these	affects	dendrite	and	axon	

growth	(Shi	and	Ethell	2006).	One	protein	downstream	of	Rho	GTPases	is	LIM	domain	kinase	1,	which	

phosphorylates	cofilin,	causing	actin	polymerisation.	LIM	domain	kinase	1	activity	is	important	for	RGC	

axon	outgrowth	and	is	expressed	in	Xenopus	RGCs	at	the	time	of	axon	extension	(Hocking	et	al.	2009).	

Actin	 remodelling	 is	 important	 to	 enable	 synaptic	 plasticity,	 which	 is	 essential	 in	 the	 cortex	 for	

information	processing	(Meng	et	al.	2004).	

Integrin-extracellular	matrix	(ECM)	interactions	are	also	important	in	synaptogenesis	and	modulation	

of	dendrites	and	axons.	This	is	thought	to	be	achieved	through	integrin	interaction	with	N-methyl-D-

aspartate	(NMDA)	receptors	in	hippocampal	neurons.	In	these	neurons	dendrite	length	and	branching	

is	modulated	by	activation	of	CaMKII	by	increases	in	Ca2+	concentration	within	dendritic	spines	(Shi	

and	Ethell	2006).	Cadherin-integrin	 interaction	may	play	an	 integral	 role	 in	dendrite	development.	

Experiments	in	Drosophila	and	Xenopus	suggest	that	type	I	cadherins	and	β1	integrins	are	required	

for	dendrite	extension,	and	N-cadherin	inhibits	dendritic	branching	(Marrs	et	al.	2006).	

Semaphorins	 are	 a	 class	 of	 guidance	 cues	 that	 bind	 to	 their	 receptors	 neuropilins	 and	 plexins	

(Nakamura	et	al.	2000).	The	class	3	semaphorin	Sema3A	stimulates	dendrite	growth	and	branching	

(Fenstermaker	 et	 al.	 2004)	 by	 increasing	 focal	 adhesion	 kinase	 phosphorylation	 at	 sites	 Y397	 and	

Y576/577,	however	this	is	dependent	on	simultaneous	β1	integrin	activation.	Sema3A	signalling	also	

increases	cGMP	production	in	neurons	(axons	and	dendrites)	(Polleux	et	al.	2000;	Schlomann	et	al.	

2009).	Sema3A	causes	integrin	inhibition	in	axons	and	as	a	result	has	a	repulsive	effect	on	axon	growth	

and	causes	growth	cone	collapse	(Luo	et	al.	1993;	Nakamura	et	al.	2000;	He	et	al.	2002;	Judas	et	al.	

2003).	These	opposing	effects	of	Sema3A	in	dendrites	and	axons	is	indicative	of	bidirectional	signalling	

between	semaphorins	and	integrins	(Schlomann	et	al.	2009),	and	the	differences	may	be	due	to	cGMP	

signalling	downstream	of	the	receptors	(Nakamura	et	al.	2000).	
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1.3.3	Synaptic	formation	and	remodelling	

Throughout	development	of	 the	central	nervous	system	(CNS)	dendritic	 spines	and	axons	undergo	

stages	of	growth	and	retraction.	Dendritic	spine	stability	is	essential	for	synaptogenesis	since	both	pre-	

and	post-synaptic	partners	need	to	be	present	for	 long	enough	for	a	synapse	to	form	(Bourne	and	

Harris	2008).	Changes	to	dendrites	and	synapses	occur	in	parallel	during	CNS	development	and	in	the	

adult	to	facilitate	plasticity	 in	the	brain	(Calverley	and	Jones	1990;	Titus	et	al.	2007).	Dendritic	and	

synaptic	 remodelling	 has	 been	 observed	 in	 neurons	 in	 the	 hippocampus	 (Fischer	 et	 al.	 1998;	

Dunaevsky	et	al.	1999),	frontal	and	prefrontal	cortex	(Huttenlocher	1979;	Elston	et	al.	2009;	Petanjek	

et	al.	2011),	cat	visual	cortex	(Cragg	1975),	and	rabbit	auditory	cortex	(Rihn	and	Claiborne	1990).	In	

the	 developing	 retina	 glutamate	 signalling	 is	 important	 for	 the	 regulation	 of	 the	 final	 dendritic	

structure	and	synaptic	contacts	of	RGCs	(Bodnarenko	&	Chalupa	1993).	Glutamate	released	by	bipolar	

cells	 in	a	spontaneous	fashion	before	eye	opening	(Wong	1999)	and	as	a	result	of	 light	stimulation	

after	 eye	 opening	 causes	 increased	 calcium	 signalling	 following	 activation	 of	 the	 RGC	 glutamate	

receptors	(Xu	&	Tian	2007).	The	resultant	increased	stability	of	dendrites	and	synapses	may	be	due	to	

increased	 brain-derived	 neurotrophic	 factor	 (BDNF)	 signalling	 (Landi	 et	 al.	 2007),	 which	 regulates	

dendritic	and	synaptic	structure	and	function	in	an	activity-dependent	manner	(see	1.6	Neurotrophin	

signalling).	

In	addition	to	development	it	has	been	postulated	that	dendritic	and	synaptic	changes	are	important	

in	memory	and	learning	(De	Roo	et	al.	2008;	Woronowicz	et	al.	2010).	In	particular,	the	size	of	dendritic	

spines	 is	 an	 important	 factor	 in	 calcium	 signalling	 in	 Purkinje	 cells	 during	 memory	 formation	

(Matsuzaki	2007).	Dendritic	remodelling	in	the	hippocampus	and	amygdala	is	also	involved	in	stress	

response	(Watanabe	et	al.	1992;	Magarinos	and	McEwen	1995;	Vyas	et	al.	2002).	

Importantly,	although	the	retina	is	often	considered	an	extension	of	the	CNS	(London	et	al.	2013)	there	

is	limited	plasticity	in	adult	RGCs.	At	the	end	of	the	critical	period,	an	inhibitory	mesh-like	structure,	

termed	 the	 perineuronal	 net	 (PNN)	 (see	 1.7.1),	 is	 laid	 down	 in	 the	 visual	 cortex	 to	 stabilise	 the	
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synapses	formed	during	development	(Guimaraes	et	al.	1990;	Pizzorusso	et	al.	2002).	The	PNN	can	be	

considered	a	specialised	form	of	extracellular	matrix	and	is	predominantly	comprised	of	chondroitin	

sulphate	proteoglycans	(CSPGs),	which	are	highly	negatively	charged.	PNN	components	are	secreted	

by	 neurons	 and	 glial	 cells	 and	 the	 net-like	 structure	 is	 laid	 down	 around	 the	 soma	 and	 proximal	

dendrites	of	neurons.	It	is	interesting	to	note	that	the	secretion	of	PNN	components	is	regulated	by	

neuronal	 activity;	 inhibition	 of	 sodium	 channels	 inhibits	 the	 formation	 of	 the	 PNN	 (Reimers	 et	 al.	

2007).	The	PNN	has	been	evidenced	to	play	important	roles	in	neuronal	protection,	by	acting	as	an	ion	

buffering	system,	as	well	as	the	modulation	of	synaptic	activity,	by	restricting	the	lateral	diffusion	of	

AMPA	 receptors	 (Frischknecht	 et	 al.	 2009).	 Stabilisation	of	 synapses	 in	 this	way	 restricts	 neuronal	

plasticity,	which	has	been	demonstrated	in	several	areas	of	the	CNS,	including	the	mouse	barrel	cortex	

(Nowicka	et	al.	2009)	and	amygdala	(Gogolla	et	al.	2009).	In	addition,	ON	RGC-bipolar	synapses	may	

be	stabilised	by	light-induced	inhibition	of	AMPA	receptor	cycling	(Xia	et	al.	2007).	The	timing	of	the	

critical	period	 in	 the	visual	 cortex	may	be	modulated	by	 brain-derived	neurotrophic	 factor	 (BDNF)	

(Huang	et	al.	1999).	

1.3.4	Dendritic	arbor	tiling	of	the	retina	

During	the	process	of	dendrite	outgrowth,	contact	inhibition	occurs	between	dendrites	of	the	same	

cell/cell	type,	creating	a	mosaic	of	dendritic	arbors	across	the	retina.	The	dendritic	fields	(DFs)	of	RGCs	

partially	overlap	with	the	DFs	of	amacrine	and	bipolar	cells.	This	allows	both	excitatory	and	inhibitory	

input	to	control	the	receptive	fields	(RFs),	and	therefore	the	basics	of	spatial	detection	(Barlow	and	

Levick	 1965;	 Torre	 and	 Poggio	 1978).	 RGC	 RFs	 and	 DFs	 are	 approximately	 equal	 in	 size,	 although	

directionally	 selective	 RGCs	 show	 a	 slight	 shift	 in	 RF	 (<30%)	 relative	 to	 the	 DF,	 towards	 the	 null	

direction,	allowing	spatial	information	to	be	provided	(Yang	and	Masland	1994).	Further	information	

is	provided	by	virtue	of	the	fact	that	within	RGC	RFs	areas	of	high	activity	exist.	Both	of	these	features	

of	RFs	may	be	controlled	by	the	specific	morphology	of	each	dendritic	tree	(Amthor	et	al.	1984;	Brown	
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et	 al.	 2000).	 In	 addition	 to	 spatial	 information,	 dendritic	 tiling	 of	 the	 retina	 permits	 maximum	

sensitivity	to	light,	and	means	that	there	is	little	redundancy	in	the	system	(Han	et	al.	2012).	

1.3.5	Cell	surface	antigens	

Cells	 membranes	 contain	 a	 wide	 array	 of	 proteins.	 Cell	 sub-types	 can	 be	 defined	 by	 the	 specific	

collection	of	cell	surface	antigens	they	display.	This	is	often	useful	to	define	as	it	allows,	for	example,	

the	monitoring	of	the	health	of	a	sub-type	of	neuron	that	may	be	of	interest	under	a	given	disease	

state,	which	may	allow	predictions	in	terms	of	disease	mechanisms	or	therapeutic	targets.	Examples	

of	some	retinal	cell-specific	antigens	are	outlined	in	this	section.	

Thy-1	is	a	membrane	glycoprotein	that	binds	ECM	components,	such	as	laminin	(Liesi	et	al.	1990).	Thy-

1	is	present	on	the	cell	membrane	of	many	cell	types,	including	lymphocytes	(Aoki	et	al.	1969;	Owen	

and	Raff	1970)	and	RGCs	(Barnstable	and	Drager	1984).	Whilst	Thy-1	is	one	of	the	most	widely	used	

RGC	markers,	it	is	by	no	means	ideal;	30%	of	Thy-1	expression	in	the	retina	is	on	the	membranes	of	

cells	which	are	not	RGCs	(Perry	et	al.	1984),	and	Thy-1	does	not	allow	targeting	of	sub-types	of	RGCs.	

Further,	it	has	been	found	that	following	optic	nerve	damage,	Thy-1	may	be	downregulated	(Nash	and	

Osborne	1999;	Schlamp	et	al.	2001;	Huang	et	al.	2006)	or	upregulated	(Lee	et	al.	1998;	Astafurov	et	

al.	2014).	Thy-1	is	upregulated	in	other	cells	in	the	retina,	including	Müller	cells	(Dabin	and	Barnstable	

1995).	This	may	mark	an	important	ECM	remodelling	step	in	the	damaged	retina.	Since	amacrine	cells	

express	Thy-1	receptors	(Dreyer	et	al.	1995),	changes	in	Thy-1	expression	may	permit	amacrine-Müller	

cell	interactions.	

Brn3	is	a	transcription	factor	that	has	roles	in	axon	guidance	and	cell	survival	(Gan	et	al.	1999;	Wang	

et	al.	2000;	Badea	et	al.	2009).	In	the	mouse	approximately	70%	of	RGCs	express	Brn3b	(Erkman	et	al.	

1996;	Gan	et	al.	1996),	and	in	the	rat	70%	of	RGCs	express	at	least	2	of	Brn3a,	Brn3b	and	Brn3c	(Nadal-

Nicolas	et	al.	2012).	Brn3b	is	commonly	used	as	an	RGC-specific	marker,	for	example	in	the	study	using	

yellow	 fluorescent	 protein-tagged	 channel	 rhodopsin	 molecules	 expressed	 downstream	 of	 Thy-1	

(Zhang	et	al.	2012).	However,	as	with	Thy-1,	Brn3	does	not	allow	sub-type	targeting.	
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There	are	several	bipolar	cell	markers,	including	Bhlhb4	(Bramblett	et	al.	2004),	Irx5	(Cheng	et	al.	2005)	

and	 Gli5	 (Blackshaw	 et	 al.	 2004).	 Recently	 Grm6,	 the	 promoter	 for	 the	 gene	 encoding	 mGluR6	

(required	for	ON-bipolar	cell	response	to	glutamate	released	from	photoreceptor	cells	(Nawy	and	Jahr	

1990;	Shiells	and	Falk	1990,	1992;	Nomura	et	al.	1994;	Nawy	1999)),	has	been	found	to	stimulate	the	

expression	of	genes	that	result	in	the	translation	of	proteins	found	in	ON-bipolar	cells	(Dhingra	et	al.	

2008).	This	presents	exciting	prospects	of	sophisticated	visual	circuitry	control.	
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1.4	Aberrant	dendritic	morphology	in	ageing	and	disease	

Retinal	 degeneration	 is	 one	 of	 the	 leading	 causes	 of	 blindness	 in	 the	world	 today	 (Quigley	 1996;	

Congdon	et	al.	2004;	Quigley	and	Broman	2006).	Age-related	macular	degeneration	(AMD)	commonly	

involves	the	deposition	of	drusen	and	degeneration	of	retinal	pigment	epithelium	(RPE),	 leading	to	

photoreceptor	 damage	 (Green	 et	 al.	 1985;	 Coleman	 et	 al.	 2008).	 AMD	 is	 often	 associated	 with	

increased	oxidative	damage	and	the	presence	of	splice	variants	of	Complement	factor	H.	These	splice	

variants,	for	example	the	Y402H	mutation,	increase	the	activity	of	the	complement	pathway	and	are	

linked	to	increased	likelihood	of	AMD	development	(Rutar	et	al.	2012).	

Glaucoma	is	an	umbrella	term	for	a	group	of	diseases	associated	with	optic	nerve	damage	and	RGC	

degeneration	 (Quigley	et	al.	1995).	Glaucoma	 is	often	associated	with,	although	 is	not	defined	by,	

increased	intraocular	pressure	(IOP)	(Quigley	et	al.	1987;	Quigley	et	al.	1988).	Eyes	with	an	IOP	of	>21	

mmHg	are	classified	as	glaucomatous	(Weber	et	al.	2008).	Current	treatments	focus	on	reducing	IOP	

(Peeters	et	al.	2010),	however	future	therapies	should	aim	to	preserve	cell	function	in	the	GCL	and	

prevent	further	degeneration	since	it	is	the	RGC	loss	which	ultimately	leads	to	vision	loss	(Howell	et	

al.	2007).	

Retinitis	pigmentosa	 is	associated	with	degeneration	of	 the	photoreceptor	 layer	 (Dryja	et	al.	1990;	

Hartong	 et	 al.	 2006).	 RGCs	 are	 still	 present	 following	 photoreceptor	 death.	 However,	 it	 has	 been	

shown	that	transneuronal	degeneration	occurs	through	the	neuronal	pathway,	ultimately	resulting	in	

loss	 of	 RGCs	 (although	 this	 has	 been	 disputed	 in	 one	mouse	model),	 with	 evidence	 of	 abnormal	

electrical	 activity	 (Stone	 et	 al.	 1992;	 Strettoi	 et	 al.	 2002;	Mazzoni	 et	 al.	 2008;	 Stasheff	 2008).	 It	 is	

postulated,	 therefore,	 that	although	 introduction	of	photosensitive	 cells	or	 stimulation	of	 resident	

cells,	for	example	by	introduction	of	photosensitive	bacterial	proteins	via	gene	therapy	(Tomita	et	al.	

2009;	 Busskamp	 and	 Roska	 2011;	 Deisseroth	 2011),	 can	 still	 result	 in	 RGC	 action	 potential	 firing	

(Margolis	et	al.	2008;	Jensen	and	Rizzo	2009),	neuroprotective	agents	must	be	given	in	combination	

to	prevent	secondary	degeneration.	
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1.4.1	Dendritic	changes	

During	normal	development	of	 the	nervous	 system,	neuronal	degradation	and	dendrite	 retraction	

occurs.	Dendritic	pruning	is	an	important	process	in	ensuring	correct	neuronal	networks	are	created.	

Mice	lacking	caspase-3	have	an	abnormally	large	number	of	dendritic	spines,	implicating	caspase-3	in	

the	modulation	of	dendritic	remodelling	(Erturk	et	al.	2014).	Indeed,	numerous	studies	have	provided	

evidence	for	the	role	of	caspases	in	dendritic	pruning	in	class	IV	dendritic	arborisation	sensory	neurons	

in	 Drosophila	 melanogaster	 undergoing	 morphogenesis	 (Kuo	 et	 al.	 2006;	 Williams	 et	 al.	 2006).	

Interestingly,	the	location	of	caspases	determines	the	downstream	effects;	local	caspase	activation	in	

dendrites	 causes	 dendritic	 pruning,	 whereas	 inhibition	 of	 the	 ubiquitin-proteasome	 machinery	

permits	global	caspase	activation	and	results	 in	cell	death	 	 (Rumpf	et	al.	2011;	Erturk	et	al.	2014).	

Other	 regulatory	 factors,	 such	 as	 reactive	 oxygen	 species	 or	 duration	 of	 caspase	 activation,	 may	

modulate	 the	downstream	effects,	 i.e.	 cell	death	or	dendritic	 remodelling	 (Snigdha	et	al.	2012).	 In	

addition,	it	has	been	demonstrated	in	mice	and	Drosophila	that	a	parallel	NAD+-dependent	pathway	

may	 regulate	 axonal	 pruning	of	 neurons	 during	 development	 (Schoenmann	et	 al.	 2010).	Although	

specific	details	are	yet	to	be	determined,	it	is	likely	that	the	process	of	dendritic	retraction	involves	

destabilisation	 of	 the	 cytoskeleton,	 fragmentation	 and	 finally	 removal	 of	 debris	 by	 glial	

cells/macrophages	(Hyman	&	Yuan	2012).	

Downstream	signalling	of	the	excitatory	neurotransmitter	glutamate	has	been	shown	to	increase	the	

rate	of	dendritic	pruning	(Andres	et	al.	2008).	Since	retinal	degeneration	is	associated	with	reactive	

gliosis,	 which	 involves	 excessive	 glutamate	 signalling	 and	 activation	 of	 inflammatory	 pathways,	 it	

would	 be	 logical	 to	 predict	 that	 retinal	 degeneration	 could	 be	 associated	 with	 dendritic	 pruning.	

Further,	 it	 has	 been	 postulated	 that	 the	 degree	 of	 pruning	 could	 be	 indicative	 of	 the	 level	 of	

degeneration	within	the	retina	since	it	seems	likely	that	the	reduction	of	dendritic	branching	occurs	

before	the	onset	of	RGC	death	(Morquette	and	Di	Polo	2008).	
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Morphological	remodelling	has	been	demonstrated	in	a	range	of	disease/injury	models	affecting	the	

CNS.	Firstly,	Alzheimer�s	disease	models	show	dendritic	pruning	of	pyramidal	neurons	and	reduced	

complexity	of		glial	cells	in	the	hippocampus	and	entorhinal	cortex	(Beauquis	et	al.	2013;	Williams	et	

al.	2013b),	as	well	as	atrophy	of	astrocyte	processes	in	amyloid	cores	(Nagele	et	al.	2004).	Secondly,	

neuroblastoma	dendritic	 atrophy	 is	 one	of	 the	morphological	 changes	demonstrated	 in	models	 of	

prion	diseases,	including	Creutzfeldt-Jakob	disease	(Ishikura	et	al.	2005).	Thirdly,	structural	changes	in	

dendrites	and	synapses	of	motor	neurons	have	been	noted	in	models	of	spinal	cord	injury	(Bannerman	

et	al.	2005;	Macias	2008).	Finally,	there	is	evidence	for	neuronal	remodelling	in	retinal	degeneration	

(Jones	and	Marc	2005).	In	particular,	dendritic	pruning	in	RGCs	has	been	suggested	to	occur	prior	to	

cell	death	in	glaucoma	(Weber	et	al.	1998).	Rett	syndrome	is	associated	with	alterations	in	the	MECP2	

gene	in	patients	(Amir	et	al.	1999)	and	knockout	or	mutation	of	mecp2	produces	a	mouse	model	of	

the	disorder	(Chen	et	al.	2001;	Guy	et	al.	2001).	MECP2	is	a	protein	involved	in	the	maintenance	of	the	

structural	integrity	of	neuronal	circuits	(Dani	and	Nelson	2009;	Na	et	al.	2013),	as	well	as	the	protection	

of	neurons	from	oxidative	stress	(De	Felice	et	al.	2014).	

Reduction	in	DF	size	and	dendritic	pruning	has	been	shown	to	occur	in	cat,	rat,	and	primate	models	of	

glaucoma	before	the	cell	is	committed	to	the	fate	of	apoptosis	(Morgan	2002;	Shou	et	al.	2003;	Kisiswa	

et	al.	2010a;	Morgan	2012).	Dendritic	pruning	could	therefore	provide	an	invaluable	early	read-out	of	

cell	health	and	illuminate	the	therapeutic	window	in	which	to	prevent	the	onset	of	apoptosis	in	order	

to	maintain	some	vision	in	patients.	

1.4.2	Oxidative	damage	

In	ageing	cells,	mitochondrial	electron	transport	becomes	less	efficient,	resulting	in	an	accumulation	

of	 reactive	 oxygen	 species	 (ROS)	 (Harman	 1981;	 Liang	 and	Godley	 2003).	 ROS	 increase	 apoptosis,	

stimulate	vascular	endothelial	growth	factor-mediated	angiogenesis	through	upregulation	of	hypoxia	

inducible	factor,	and	causes	degeneration	of	membrane	lipids,	especially	those	in	outer	segments	of	

photoreceptors	(Cano	et	al.	1986).	Oxidative	damage	is	also	stimulated	by	white	light	and	results	in	
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activation	of	the	complement	pathway,	including	upregulation	of	complement	3	(Maller	et	al.	2007;	

Yates	et	al.	2007).	 Increased	activity	of	 the	complement	pathway	aids	 in	breaking	down	apoptotic	

cells,	however	dysregulated	activity	may	contribute	to	tissue	degeneration.	

High	 ROS	 levels	 activate	 secretion	 of	 matrix	 metalloproteases	 (MMPs),	 which	 break	 down	 ECM	

proteins,	 causing	 remodelling.	 Remodelling	 affects	 cell	 survival,	 for	 example	 gliosis-mediated	

upregulation	of	MMP-9	reduces	RGC	survival	and	migration	(Santos	et	al.	2012).	Similarly,	in	retinal	

degeneration	the	structure	of	the	outer	limiting	membrane	(OLM)	is	changed	to	localise	damage	by	

restricting	cell	migration.	Cell	replacement	therapies	rely	on	the	ability	of	inserted	cells	to	migrate	to	

their	 target.	 For	 these	 therapies	 it	 has	been	 found	 that	 integration	efficiency	 can	be	 increased	by	

manipulating	 ECM	 remodelling,	 for	 example	 by	 the	 addition	 of	 MMP-2,	 and	 compromising	 the	

integrity	of	the	OLM	(Zhang	et	al.	2007;	Barber	et	al.	2012).	

1.4.3	Neuroprotection	

RGC	death	 is	 the	 final	step	 in	most	cases	of	 retinal	degeneration,	and	since	they	are	the	cells	 that	

transmit	the	retinal	output	to	the	brain,	 if	this	step	can	be	prevented	some	visual	function	may	be	

preserved.	One	mechanism	contributing	to	RGC	apoptosis	in	glaucoma	is	postulated	to	be	blockage	of	

axonal	 retrograde	 transport	of	 growth	 factors	 to	 the	 soma	 (Quigley	1995),	which	may	 lead	 to	 cell	

stress.	Since	autophagy	 is	upregulated	by	oxidative	stress	and	excitotoxicity,	and	under	high	stress	

conditions	 may	 stimulate	 cell	 death,	 this	 may	 be	 implicated	 in	 glaucoma.	 On	 the	 other	 hand,	

downregulation	of	autophagy	 in	 the	Atg4B-/-	mouse	model	 is	 combined	with	 reduced	RGC	survival	

(Caprioli	et	al.	1996;	Zhu	et	al.	2005;	White	et	al.	2009;	Rodriguez-Muela	et	al.	2012),	therefore	further	

study	of	the	mechanisms	linking	cell	stress	and	neuronal	death	are	required.	

It	has	been	proposed	that	a	more	achievable	method	to	manage	retinal	degenerative	diseases	may	be	

to	provide	neuroprotection	to	the	existing	healthy	cells	(Morquette	and	Di	Polo	2008;	Bull	et	al.	2011;	

Johnson	et	al.	2011).	This	protection	could	come	from	the	addition	of	growth	factors,	such	as	ciliary	

neurotrophic	factor	(CNTF)	or	BDNF,	inhibition	of	glutamate	receptor	activation,	or	addition	of	factors	
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to	inhibit	apoptosis	(Morquette	and	Di	Polo	2008).	The	evidence	for	this	approach	in	the	literature	is	

mixed.	CNTF	reduces	photoreceptor	death	in	patients	with	retinal	degeneration	(Tibbetts	et	al.	2012),	

but	in	a	clinical	trial	with	sustained	release	of	CNTF	there	was	no	effect	on	visual	acuity	or	visual	field	

sensitivity	 (Talcott	 et	 al.	 2011).	 Neuroprotection,	 in	 theory,	 should	 retard	 disease	 progression	 by	

maintaining	 the	 connections	 between	 healthy	 cells	 and	 reducing	 gliosis,	 thereby	 preserving	 visual	

acuity.	It	should	be	noted	that	this	method	can	only	prevent	further	deterioration	of	vision,	whereas	

successful	transplantation	of	neurons	has	the	potential	to	improve	vision,	therefore	ideally	the	two	

approaches	would	be	combined.	On	the	other	hand,	application	of	an	agent	capable	of	stimulating	

regrowth	 of	 neurons	 could	 re-wire	 the	 damaged	 neuronal	 network	 and	 restore	 visual	 function	

(Morgan	2012).		
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1.5	Neurotrophin	signalling	

Growth	factors	are	small	proteins	that	act	to	regulate	cell	processes	in	every	tissue	in	the	body	via	

intracellular	signalling	pathways	or	by	binding	to	plasma	membrane	receptors.	Neurotrophic	factors	

are	generally,	although	not	exclusively,	expressed	in	the	nervous	system	(Levi-Montalcini	et	al.	1996).	

Neurotrophic	factors	consist	of	3	main	groups	of	growth	factors:	glial	cell-line	derived	neurotrophic	

factor	family	ligands,	e.g.	glial	cell-line	derived	neurotrophic	factor;	neuropoietic	cytokines,	e.g.	CNTF;	

and	neurotrophins.	The	term	‘neurotrophin’	specifically	refers	to	the	4	proteins	nerve	growth	factor	

(NGF),	BDNF,	neurotrophin-3	 (NT-3)	and	NT-4,	which	share	55%	sequence	 identity	 for	amino	acids	

(Suter	et	al.	1992)	and	most	have	low	affinity	for	the	p75	neurotrophin	receptor	(NTR).	Neurotrophins	

exert	 their	primary	downstream	effects	via	binding	to	tropomyosin	receptor	kinase	(Trk)	receptors	

(Table	 1.2).	Neurotrophins	 have	 essential	 roles	 during	 development	 and	 adult	 homeostasis	 of	 the	

nervous	 system,	particularly	with	 respect	 to	cell	 survival,	differentiation,	 synaptogenesis	and	 long-

term	potentiation.	
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Table 1.2. Summary of neurotrophins and their respective affinities for neurotrophin receptors 

(Dechant et al. 1997; Chao 2003). The relative affinities are important when considering interplay 

between Trk and p75NTR signalling (see text for explanation). 

Neurotrophin	 High	affinity	receptor	 Low	affinity	receptor(s)	

NGF	 TrkA	 P75NTR	

BDNF	 TrkB	 P75NTR	

NT-3	 TrkC;	p75NTR	 TrkA;	TrkB	

NT-4	 TrkB	 P75NTR	
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1.5.1	BDNF	gene	expression	and	regulation	

BDNF	was	first	isolated	from	porcine	brain	in	1982	(Barde	et	al.	1982).	The	bdnf	gene	is	encoded	on	

chromosome	 11p13.	 In	 the	murine	 retina	 expression	 of	mRNA	 and	 protein	 of	 both	 BDNF	 and	 its	

candidate	receptor,	TrkB,	is	predominantly	seen	in	RGCs	(Gao	et	al.	1997;	Bennett	et	al.	1999),	as	well	

as	displaced	amacrine	cells	(Cellerino	&	Kohler	1997;	Vecino	et	al.	2002).	Although	mRNA	expression	

of	the	low	affinity	receptor,	p75NTR,	is	seen	in	RGCs	(Suzuki	et	al.	1998),	at	the	protein	level	it	has	only	

been	observed	in	Muller	cells,	with	no	detectable	levels	in	RGCs	in	the	adult	murine	retina	(Hu	et	al.	

1999).	

In	the	rodent,	bdnf	contains	one	3’	protein-coding	exon	(exon	IX)	and	nine	5’	non-coding	exons	(Aid	

et	al.	2007),	each	containing	separate	promoter	sites,	which,	in	combination	with	multiple	splice	sites	

and	polyadenylation	sites,	can	result	in	the	formation	of	18	different	mRNA	transcripts,	all	of	which	

are	ultimately	translated	into	the	same	protein	(Greenberg	2010).	It	has	been	postulated	that	BDNF	

gene	expression	has	so	many	points	of	regulation	because	BDNF	signalling	is	so	important	in	neuronal	

structure,	function	and	survival,	therefore	it	is	imperative	that	BDNF	levels	are	able	to	be	modulated	

downstream	of	multiple	 cell	 signalling	 cascades.	 For	 example,	 transcripts	 that	 include	 exon	 IV	 are	

associated	with	 dendritic	 localisation,	whereas	 exon	 III	 transcripts	 are	 associated	with	 localisation	

within	the	soma	(Pattabiraman	et	al.	2005).	Post-transcriptional	modifications	offer	another	level	of	

control.	Bdnf	transcripts	are	polyadenlyated	at	2	sites,	resulting	in	a	3’	untranslated	region	(UTR).	The	

length	of	the	UTR	appears	to	be	important	for	localisation	of	the	transcript;	in	the	hippocampus	short	

UTRs	restrict	the	transcript	to	the	soma,	whereas	long	UTRs	promote	transport	to	dendrites	(An	et	al.	

2008).	

Expression	of	bdnf	is	sensitive	to	cell	signalling	and	neuronal	activity	due	to	the	presence	of	3	calcium	

response	elements	(CaRE1-3)	upstream	of	the	promoter	(Tao	et	al.	1998;	Zheng	et	al.	2012).	Increased	

intracellular	 calcium	 levels	 results	 in	 increased	 recruitment	 of	 nuclear	 binding	 proteins	 binding	 to	

CaREs	via	calcium-dependent	kinases	and	phosphatases	(Schuh	et	al.	2004),	resulting	in	an	increase	in	
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the	rate	of	transcription	of	exon	IV	(Figure	1.3).	Intracellular	calcium	concentration	can	be	increased	

through	membrane	recruitment	of	phospholipase	Cγ	(PLCγ),	which	results	in	efflux	of	calcium	from	

calcium	 stores	 via	 binding	of	 inositol	 1,4,5-trisphosphate	 to	 inositol	 1,4,5-trisphosphate	 receptors.	

Calcium	 influx	 into	 the	 cytosol	 is	 also	 increased	 through	 voltage-gated	 calcium	 channels	 following	

membrane	depolarisation.	
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Figure 1.3 Calcium response elements regulate transcription of bdnf exon IV in response to calcium. 

CaRE1 is bound by calcium responsive factor (CaRF) in response to calcium levels via signalling 

cascades including protein kinase A and PI3K. CaRE2 is bound by upstream stimulatory factor 1/2 

(USF1/2), a basic helix-loop-helix member. CaRE3 is bound by cAMP response element binding protein 

(CREB) in response to calcium levels via voltage-gated calcium channels and NMDA receptors. The 

positions of each CaRE is shown relative to the initiation site. Figure modified from Zheng et al. 2012. 
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Epigenetic	regulation	of	bdnf	is	another	level	of	control	that	is	linked	to	altered	expression	of	bdnf	in	

relation	to	neuronal	activity	and	disease.	Exon	IV	contains	a	CpG	island	–	these	are	reported	to	be	

important	sites	for	the	epigenetic	regulation	of	genes.	This	CpG	island	is	demethylated	by	activation-

induced	cytidine	deaminase	(Ratnu	et	al.	2014)	following	upregulation	of	the	CaMK	pathway	through	

either	TrkB	activation	or	membrane	depolarisation.	Neuronal	activity	is	also	associated	with	decreased	

binding	of	MeCP2	(binds	methylated	DNA)	and	increased	binding	of	CREB,	both	of	which	have	specific	

binding	sites	on	exon	IV.	These	binding	profiles	are	associated	with	increased	transcription	levels	of	

bdnf	 (Martinowich	 et	 al.	 2003;	 Boulle	 et	 al.	 2012;	 Karpova	 2014).	 Downregulation	 of	 BDNF	 in	

Schizophrenia	 and	 bipolar	 disorder	 is	 correlated	 with	 overexpression	 of	 DNA	 methyltransferase1	

(DNMT1),	which	binds	to	the	bdnf	promoter	on	exon	IX	 in	glutamatergic	neurons	of	the	prefrontal	

cortex,	and	seems	to	be	independent	of	a	methylation	mechanism	(Dong	et	al.	2014).	

1.5.2	P75NTR	receptor	signalling	

P75NTR	is	a	member	of	the	tumour	necrosis	factor	receptor	family	and	as	such	is	capable	of	activating	

downstream	signalling	pathways,	predominantly	c-JUN	N-terminal	kinase	(JNK),	NF-kappaB	and	RhoA	

(Carter	et	al.	1996;	Yamashita	et	al.	1999;	Friedman	2000;	Harrington	et	al.	2002).	These	pathways	are	

associated	with	apoptosis	induction,	long-term	depression,	neurite	retraction	and	synapse	loss	(Bamji	

et	al.	1998;	Frade	and	Barde	1999;	Woo	et	al.	2005;	Zagrebelsky	et	al.	2005;	Yang	et	al.	2009).	P75NTR	

forms	 a	 dimer,	 linked	 through	 a	 disulphide	 bond	 at	 cys257,	 which	 is	 essential	 for	 neurotrophin-

mediated	p75NTR	signalling	(Vilar	et	al.	2009).	It	has	been	proposed	that	neurotrophin	binding	to	the	

extracellular	domain	causes	separation	of	the	death	domains	inside	the	cell,	thus	permitting	binding	

of	adapter	proteins	to	the	death	domains	(Vilar	et	al.	2009).	These	adapter	proteins	are	associated	

with	cell	death	and	modulation	of	neurite	retraction	(Friedman	2000).	

Downstream	signalling	of	p75NTR	is	not	activated	in	the	absence	of	neurotrophin	binding.	Apoptosis	

may	be	mediated	 through	NGF	binding	 to	 p75NTR,	which	 facilitates	 binding	of	 the	 adapter	 protein	

p75NTR-associated	death	executor	 to	 the	death	domain	of	p75NTR	 (Mukai	et	al.	2000).	Knock-out	of	
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either	p75NTR	or	NGF	results	in	an	approximately	50%	reduction	in	cell	death	in	retinae	and	spinal	cord	

of	E15.5	mice	(Frade	and	Barde	1999).	During	development,	NGF-p75NTR	signalling	promotes	cell	death	

in	cells	that	do	not	express	TrkA	(Dechant	and	Barde	1997).	These	studies	provide	strong	evidence	for	

the	role	of	p75NTR	signalling	in	apoptosis.		

It	should	be	noted	that	p75NTR	signalling	also	has	positive	roles.	During	development	p75NTR	is	strongly	

expressed	by	neurons,	particularly	in	neurons	with	long-spanning	axons,	such	as	spinal	motor	neurons,	

and	neurons	with	dense	dendritic	arbors,	such	as	RGCs.	In	the	absence	of	neurotrophin,	RhoA,	a	small	

GTPase,	binds	 to	amino	acids	331-416	 in	 the	death	domain	of	p75NTR	 (Roux	and	Barker	2002)	and	

inhibits	neurite	outgrowth.	However,	following	neurotrophin	binding	to	p75NTR	RhoA	is	not	activated	

(Yamashita	et	al.	1999),	which	may	explain	the	expression	pattern	of	p75NTR	in	developing	neurons.	In	

the	adult	p75NTR	is	reduced	in	these	neurons	(Yan	and	Johnson	1988).	Following	axonal	injury	p75NTR	

expression	 is	 upregulated	 in	 a	 range	 of	 neuronal	 populations	 (Ibanez	 and	 Simi	 2012)	 and	 is	

subsequently	restored	to	normal	levels	following	axonal	re-growth	(Ernfors	et	al.	1989).	

1.5.3	Trk	receptor	signalling	

Neurotrophins	elicit	their	primary	effect	by	binding	to	one	of	the	3	structurally	related	receptors	TrkA,	

TrkB	and	TrkC.	BDNF	and	NT-4	bind	to	TrkB	with	picomolar	affinity,	while	NT-3	binds	with	nanomolar	

affinity.	BDNF	and	NT-4	form	a	salt	bridge	with	TrkB,	but	NGF	does	not	form	a	salt	bridge	with	TrkA,	

which	may	explain	the	relative	binding	affinities	(Banfield	et	al.	2001;	Naylor	et	al.	2002).	Upon	ligand	

binding,	the	Trk	receptors	dimerise	and	are	autophosphorylated	at	up	to	3	Tyr	residues;	Tyr670,	Tyr	

674	and	Tyr675	in	TrkA	(Middlemas	et	al.	1994).	Tyr	phosphorylation	recruits	scaffold	proteins,	such	

as	PLC	and	phosphatidylinositol	3-kinase	(PI3K)	and	MAPK	to	the	membrane	(Minichiello	et	al.	2002;	

Schratt	et	al.	2004).	Resultant	downstream	signalling	leads	to	cell	survival,	neurite	outgrowth,	synapse	

formation	and	strengthening,	and	long-term	potentiation	(Korte	et	al.	1995;	Xu	et	al.	2000;	Yacoubian	

and	Lo	2000).	Following	receptor	dimerisation,	TrkB	is	internalised	by	clathrin-mediated	endocytosis,	
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which	is	a	key	step	in	continuation	of	the	signal.	TrkB	and	p75NTR	signalling	pathways	are	summarised	

in	Figure	1.4.	

Neurotrophin	signalling	can	have	opposing	downstream	effects.	 	While	this	may	seem	nonsensical,	

one	key	 factor	 that	ultimately	determines	 the	 final	outcome	 (cell	 death	or	 survival)	 is	 the	 relative	

affinities	for	each	receptor.	As	outlined	in	Table	1.1,	with	the	exception	of	NT-3,	mature	neurotrophins	

have	higher	affinity	for	the	‘positive’	Trk	receptors	than	for	the	‘negative’	p75NTR.		For	the	unprocessed,	

pro-neurotrophins	the	reverse	affinity	pattern	exists	(Rodriguez-Tebar	et	al.	1990;	Lee	et	al.	2001).	

This	means	that	processes	like	apoptosis	can	be	subtly	modulated	on	a	temporal	scale	by	the	ratio	of	

pro-neurotrophins	 and	 mature	 neurotrophins,	 which	 may	 be	 modulated	 through	 neurotrophin	

processing	 or	 secretion,	 as	 well	 as	 the	 relative	 expression/membrane	 recruitment	 of	 each	

neurotrophin	receptor.
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Figure 1.4 Summary of signalling cascades downstream of p75NTR and TrkB receptors via ligand 

binding. Pro-BDNF binds p75NTR and mature BDNF (mBDNF) binds TrkB. Pro-BDNF binding to p75NTR 

recruits sortilin and results in downstream JNK signalling, leading to cell death. Mature BDNF can bind 

to p75NTR and may inhibit downstream TrkB signalling through JNK and RhoA (not shown), or may 

strengthen BDNF binding to TrkB, increase MAPK and Akt signalling, and promote cell survival through 

NF-kB. Mature BDNF binds TrkB and stimulates downstream signalling of PLCγ, Akt and MAPK, 

leading to cell survival, neurite outgrowth, as well as increased BDNF transcription through upregulation 

of CREB (Longo and Massa 2013).	
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The	Trk	receptor	family	is	another	group	of	proteins	that	p75NTR	can	interact	with.	Interaction	of	Trk	

receptors	 with	 p75	 may	 increase	 the	 affinity	 of	 the	 Trk	 receptor	 for	 the	 ligand,	 and	 therefore	

strengthen	downstream	signalling	(Benedetti	et	al.	1993;	Bibel	et	al.	1999).	Indeed,	sensory	deficits	

are	observed	in	animals	with	a	mutated	NGF,	which	is	able	to	bind	TrkA	but	not	p75	(Horton	et	al.	

1997;	Ryden	et	al.	1997),	or	with	a	mutated	p75	(Lee	et	al.	1992;	Lee	et	al.	1994).	TrkA	and	TrkC	are	

localised	in	lipid	rafts,	along	with	the	enzyme	γ-secretase.	In	the	absence	of	ligand	(NGF/NT-3)	TrkA/C	

associates	with	 p75	NTR	within	 the	 lipid	 raft,	 allowing	 γ-secretase	 to	 cleave	 the	 intracellular	 death	

domain	 of	 p75	 NTR	 and	 activate	 apoptosis	 signalling	 via	 stimulation	 of	 cytochrome	 c	 release	 from	

mitochondria.	In	the	presence	of	ligand	TrkA/C	dimerise,	permitting	recruitment	of	scaffold	proteins:	

Shc	recruitment	to	Tyr490	stimulates	the	Ras	pathway;	PLCγ	recruitment	to	Tyr785	stimulates	the	PKC	

pathway;	 and	 PI3K	 recruitment	 to	 Tyr751	 stimulates	 the	Akt	 pathway.	 Ras	 and	 PKC	 pathways	 are	

associated	with	neurite	outgrowth	and	differentiation,	while	the	Akt	pathway	suppresses	apoptosis	

and	promotes	cell	survival.	In	this	way,	TrkA	and	TrkC	are	‘dependence’	receptors,	that	is	they	depend	

on	the	presence	of	their	ligand	in	order	for	them	not	to	induce	programmed	cell	death		(Dekkers	et	al.	

2013).		

TrkB,	which	contains	a	structurally	different	transmembrane	domain	to	TrkA/C,	is	localised	in	the	lipid	

bilayer.	 In	 the	 absence	 of	 BDNF/NT-4,	 TrkB	 associates	 with	 p75NTR,	 however,	 since	 γ-secretase	 is	

absent	in	the	lipid	bilayer,	the	death	domain	of	p75NTR	is	not	cleaved	and	therefore	apoptosis	is	not	

induced.	Studies	have	demonstrated	that	knocking	out	BDNF/NT-4	and	not	TrkB	does	not	result	 in	

wide-spread	cell	death,	as	seen	in	similar	studies	with	TrkA/C	(Nikoletopoulou	et	al.	2010).	In	this	way,	

TrkB	is	not	a	dependence	receptor.	Dekkers	et	al.	created	a	mosaic	TrkB	receptor	that	contained	the	

transmembrane	 domain	 of	 TrkA,	 thereby	 confining	 it	 to	 lipid	 rafts,	 and	 demonstrated	 that	 in	 the	

absence	of	BDNF	this	mosaic	receptor	causes	cell	death	(Dekkers	et	al.	2013).	This	elegant	experiment	

supports	the	theory	that	membrane	localisation	is	key	to	the	downstream	effects	of	these	receptors.	
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1.5.4	BDNF	post-translational	processing	and	sorting	

In	 common	with	 other	 secreted	 peptides,	 all	 neurotrophins	 are	 translated	 as	 a	 precursor,	 or	 pro-

neurotrophin.	 As	 outlined	 above,	 pro-neurotrophins	 and	mature	 neurotrophin	 signalling	 cascades	

have	 largely	 opposing	 effects,	 therefore	 the	 relative	 amounts	 of	 precursor	 versus	 processed	

neurotrophin	is	 likely	to	be	a	determining	factor	of	whether	the	end	result	 is	pro-apoptotic	or	pro-

survival.	 Since	 the	 ratio	 can	 be	 rapidly	 modulated	 by	 pro-neurotrophin	 processing,	 this	 enables	

neurotrophin	secretion	to	be	rapidly	switched	on	and	off	–	an	essential	property	of	molecules	that	

must	 respond	 to	changes	 in	neuronal	activity.	 In	general,	precursor	proteins	are	 inactive,	but	pro-

neurotrophins	are	able	to	stimulate	intracellular	signalling	pathways.	Pro-neurotrophins	have	a	higher	

affinity	for	p75NTR	than	Trk	receptors,	therefore	pro-neurotrophin	signalling	stimulates	apoptosis	and	

neurite	retraction	(Lee	et	al.	2001).	

Mature	 neurotrophins	 are	 generated	 by	 proteolytic	 cleavage	 of	 the	 signal	 peptide	 on	 pro-

neurotrophins,	 followed	by	dimerization	 (Heymach	and	Shooter	1995;	 Lee	et	al.	2001).	Pro-NGF	 is	

processed	 intracellularly,	processed	through	the	constitutive	pathway,	and	secreted	as	 the	mature	

NGF.	Pro-BDNF	may	be	cleaved	intracellularly	or	extracellularly.	Intracellularly,	pro-BDNF	is	cleaved	

by	furin	in	the	endoplasmic	reticulum,	or	by	proconvertases	in	secretory	vesicles	(Matsumoto	et	al.	

2008).	 In	non-neuronal	cells,	 such	as	astrocytes,	BDNF	 is	 sorted	 through	 the	constitutive	pathway.	

Neuronal	cells	use	both	 the	constitutive	pathway	and	the	regulated	pathway	 in	 the	golgi,	which	 is	

mediated	through	the	binding	of	sortilin	to	the	signal	peptide	of	pro-BDNF,	or	by	the	binding	of	CPE	

to	 a	motif	 on	 the	mature	 BDNF	 section	 of	 the	 protein.	 The	 constitutive	 pathway	 corresponds	 to	

constitutive	BDNF	release	and	the	regulated	pathway	corresponds	to	activity-dependent	secretion.	

The	precursor	and	mature	 forms	of	BDNF	are	 released	via	 secretory	vesicles	 into	 the	extracellular	

milieu,	where	pro-BDNF	can	be	processed	by	plasmin	(a	serine	protease;	Figure	1.5)	or	by	MMP-3	and	

MMP-7	(Lee	et	al.	2001;	Pang	et	al.	2004;	Dwivedi	2012).	Plasmin	is	 inhibited	by	the	blood-derived	

protein	 α-2-macroglobulin,	 which	 may	 reduce	 BDNF	 processing	 as	 well	 as	 directly	 blocking	 TrkB	
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phosphorylation	 in	 dopaminergic	 neurons	 (Hu	 and	 Koo	 1998).	 Processing	 may	 be	 particularly	

important	 in	 the	 hippocampus,	 where	 BDNF	 is	 secreted	 as	 the	 precursor	 protein	 in	 response	 to	

neuronal	activity	(Pang	et	al.	2004).	
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Figure 1.5 Extracellular BDNF processing. Extracellular pro-BDNF is cleaved at Arg-125-Val by 

plasmin, the activity of which is dependent on tPA (Lee et al. 2001; Gray and Ellis 2008). 
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1.5.5	BDNF-TrkB	signalling	and	neuronal	activity	

BDNF-TrkB	signalling	and	neuronal	activity	are	closely	linked.	BDNF	is	released	pre-synaptically	and	

binds	as	a	dimer	to	TrkB	receptors	located	on	the	post-synaptic	membrane.	BDNF	signalling	results	in	

formation	and	 stabilisation	of	 synapses	 through	 transcriptional	 changes	associated	with	 long-term	

potentiation	(LTP)	and	dendritic	spine	growth,	in	part	through	regulation	of	the	translation	of	Homer2,	

a	scaffold	protein	implicated	in	dendritic	spine	function	(Schratt	et	al.	2004),	and	upregulation	of	the	

cytoskeletal	 protein	 Arc	 (Yin	 et	 al.	 2002).	 BDNF	 also	 increases	 neurotransmitter	 release	 from	

presynaptic	terminals,	which,	along	with	stabilisation	of	synapses,	results	in	an	increase	in	neuronal	

activity.	In	turn,	neuronal	firing	causes	upregulation	of	bdnf	expression	via	increased	calcium	influx.	

Neuronal	 activity	 results	 in	 an	 increase	 in	 intracellular	 cAMP.	 In	 the	hippocampus	 cAMP	 regulates	

BDNF	 downstream	 effects	 by	 modulating	 BDNF	 phosphorylation	 of	 TrkB	 as	 well	 as	 modulating	

membrane	 recruitment	of	 TrkB,	possibly	 through	 strengthening	 the	 connection	between	TrkB	and	

Post-synaptic	 density	 95	 (PSD-95)	 (Ji	 et	 al.	 2005).	 PSD-95	 is	 recruited	 to	 dendrites	 through	 BDNF	

signalling	via	the	PI3K-Akt	pathway	(Yoshii	and	Constantine-Paton	2007),	which,	 in	turn,	stimulates	

the	 production	 of	 more	 TrkB-PSD-95	 complexes	 through	 activation	 of	 PI3K	 and	 PLCγ	 (Yoshii	 and	

Constantine-Paton	2010).	Neuronal	activity	causes	increased	release	of	tissue	plasminogen	activator	

(tPA),	resulting	in	increased	cleavage	of	pro-BDNF.	In	this	way,	BDNF	processing	and	signalling	acts	as	

a	positive	feedback	loop.	This	is	important	to	consider	when	targeting	BDNF	signalling,	as	a	change	in	

any	part	of	the	loop	will	feed	forward	to	the	rest	of	the	loop.		

1.5.6	Retinal	levels	of	neurotrophins	and	their	receptors	

In	the	retina,	protein	expression	of	TrkA,	TrkB	and	TrkC	is	low	but	widespread,	with	TrkB	expression	

strongest	in	RGCs,	amacrine	cells	and	Muller	cells	(Cui	et	al.	2002;	Harada	et	al.	2011).	In	the	rat,	axonal	

injury	results	in	a	5-fold	increase	in	TrkB	protein	expression	in	RGCs	(Cui	et	al.	2002).	However,	changes	

to	Trk	receptor	levels	likely	varies	with	the	type	of	injury.	In	the	rat	TrkB	is	upregulated	following	optic	

nerve	 injury	 (Cui	 et	 al.	 2002),	 whereas	 in	 glaucomatous	 retinas	 the	 mRNA	 level	 of	 TrkB	 remains	
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constant	(Figure	1.6)	(Rudzinski	et	al.	2004).	Although	it	is	interesting	to	map	the	transcription	profiles	

of	neurotrophins	and	their	receptors	post-injury,	levels	of	mRNA	do	not	necessarily	equate	to	levels	

of	 protein.	 Consequently,	 conclusions	 cannot	 be	 drawn	 regarding	 the	 relative	 levels	 of	 pro-

neurotrophins	 and	mature	peptides,	 nor	 the	 localisation	of	 the	 receptors	within	 the	 retina.	When	

investigating	profiles	of	Trk	receptors	it	is	also	important	to	consider	their	phosphorylation	state	since	

protein	expression	alone	is	not	sufficient	to	promote	Trk	signalling.	Under	glaucomatous	stress	TrkB	

may	be	deactivated	(dephosphorylated)	through	increased	interaction	with	the	phophatase	Shp-2	via	

hyperphosphorylation	of	caveolin	(Gupta	et	al.	2012).	
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Figure 1.6. Levels of neurotrophins and their receptors in the rat retina. mRNA levels of (A) 

neurotrophin receptors and (B) their ligands from whole retinas following injury to induce high IOP. 

Modified from (Rudzinski et al. 2004). 
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1.6	Neurotrophin	signalling	in	disease	

Given	their	 role	 in	neuronal	development	and	maintenance,	 it	 is	perhaps	not	surprising	 that	 there	

have	been	numerous	reports	of	links	between	levels	of	neurotrophins	and/or	their	receptors	in	injury	

or	disease	in	the	CNS.	A	PubMed	search	of	“BDNF”+”disease”	generates	a	result	of	474	publications	

in	2015	alone.	This	section	will	explore	some	of	these	associations.	

1.6.1	Alterations	in	neurotrophin	signalling	implicated	in	disease	

P75NTR	 is	 upregulated	 following	 injury	 (Ernfors	 et	 al.	 1989;	 Beattie	 et	 al.	 2002)	 and	 in	 disease,	

particularly	where	neuroinflammation	 is	a	component	of	 the	disorder,	such	as	Alzheimer’s	disease	

(Mufson	and	Kordower	1992)	and	multiple	sclerosis	(Dowling	et	al.	1999).	Levels	of	proneurotrophins	

have	 also	 been	 found	 to	 be	 increased	 in	 diseases	 affecting	 the	 CNS.	 Pro-NGF	 is	 upregulated	 in	

Alzheimer’s	disease	 (Fahnestock	et	al.	2001),	and	CNS	 injury	 (Beattie	et	al.	2002;	Harrington	et	al.	

2004).	There	is	evidence	that	in	depression	pro-BDNF	and	p75NTR	are	upregulated,	whilst	mature	BDNF	

and	TrkB	are	downregulated	(Zhou	et	al.	2013).	

Reduced	 expression	 and	 protein	 levels	 of	 TrkB	 and	 its	 ligands	 have	 been	 reported	 in	 a	 range	 of	

neurological	 disorders.	 Rett	 syndrome	 patients	 and	 the	Mecp2-null	 mouse	 model,	 have	 reduced	

expression	of	BDNF	(Wang	et	al.	2006;	Abuhatzira	et	al.	2007).	Schizophrenia	and	bipolar	disorder	are	

associated	with	decreased	mRNA	expression	levels	of	bdnf	and	trkb	(Weickert	et	al.	2003;	Ray	et	al.	

2014).	 In	 Huntington’s	 disease	 BDNF	 signalling	may	 be	 impaired	 (Baydyuk	 and	 Xu	 2014).	 There	 is	

evidence	 that	mutations	 in	 the	 gene	 encoding	 NT-4	may	 be	 a	 risk	 factor	 for	 primary	 open-angle	

glaucoma	 (Pasutto	 et	 al.	 2009).	 In	 the	 hippocampus	 and	 temporal	 cortex	 of	 Alzheimer’s	 disease	

patients,	the	levels	of	BDNF	mRNA	and	protein	are	reduced	(Phillips	et	al.	1991;	Connor	et	al.	1997;	

Fahnestock	et	al.	2002).	The	Val66Met	polymorphism	on	codon	66	of	the	bdnf	gene	is	associated	with	

an	increased	risk	of	Alzheimer’s	disease	and	depression.	It	has	also	been	reported	that	the	levels	of	

the	catalytic	 form	of	TrkB	are	decreased	 in	 the	 temporal	and	 frontal	 cortex	 in	Alzheimer’s	disease	
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(Allen	 et	 al.	 1999),	 which	 is	 likely	 to	 have	 important	 implications	 for	 TrkB-targeted	 treatment	

strategies.	

1.6.2	BDNF	processing	in	disease	

In	many	CNS	disorders	BDNF	levels	are	not	notably	decreased	relative	to	healthy	controls.	In	the	rat	

prefrontal	 cortex	 and	 hippocampus	 the	 normal	 ratio	 of	 pro-BDNF:BDNF	 is	 1:1	 (Tang	 et	 al.	 2014).	

Because	the	signalling	pathways	of	the	2	forms	of	BDNF	have	opposing	effects,	it	may	be	that	the	ratio	

of	 these	 2	 proteins,	 rather	 than	 absolute	 concentrations,	 ultimately	 determines	 the	 downstream	

effect,	for	example	whether	the	cell	will	be	signalled	to	survive	or	to	undergo	apoptosis.	Since	this	

ratio	 is	controlled	by	how	much	pro-BDNF	is	cleaved	to	form	BDNF,	there	 is	mounting	evidence	to	

suggest	that	the	level	of	BDNF	processing	may	be	a	major	contributing	factor	to	the	pathological	state	

of	numerous	neurological	disorders.	Indeed,	levels	of	the	tissue	inhibitor	of	MMPs	have	been	reported	

to	be	increased	in	Huntington’s	disease	and	Parkinson’s	disease	(Lorenzl	et	al.	2003).	Finally,	knockout	

of	 tPA	 accelerates	 the	 onset	 and	 increases	 the	 severity	 of	 disease	 in	 a	mouse	model	 of	multiple	

sclerosis	(East	et	al.	2005).	

As	previously	stated,	the	Val66Met	mutation	in	the	bdnf	gene	is	associated	with	neurological	disease.	

The	reduced	activity-dependent	secretion	of	BDNF	associated	with	this	mutation	is	presumably	the	

result	of	steric	hindrance	caused	by	the	bulky	sidechain	of	methionine	at	the	site	that	interacts	with	

the	binding	pocket	of	sortilin	(Egan	et	al.	2003;	Chen	et	al.	2004).	Truncation	or	siRNA	inhibition	of	

sortilin	similarly	cause	missorting	of	BDNF	to	the	constitutive	pathway,	resulting	in	reduced	activity-

dependent	release,	but	no	change	to	constitutive	release	(Chen	et	al.	2005).	This	demonstrates	the	

importance	 of	 sortilin	 in	 BDNF	 processing.	 Paradoxically,	 although	 a	 decline	 in	 activity-dependent	

BDNF	 processing	 is	 hypothesised	 to	 cause	 reduced	 plasticity,	 the	 presence	 of	 the	 Val66Met	

polymorphism	may	enable	cognitive	processing	to	override	the	decelerated	plastic	motor	response.	

This	may	explain	how	the	mutation	may	be	beneficial	in	initial	visual	adaptation	(Barton	et	al.	2014)	

as	well	as	in	memory-based	task	switching	in	elderly	subjects	(Gajewski	et	al.	2011).		
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As	discussed,	there	are	multiple	proteolytic	enzymes	involved	in	BDNF	processing,	but	one	of	the	most	

attractive	 enzymes	 to	 target	 is	 the	 serine	 protease,	 tPA.	 TPA	 cleaves	 the	 precursor	 peptide	

plasminogen	to	form	plasmin,	which	is	then	available	to	process	pro-BDNF	into	BDNF.	Reduced	plasma	

levels	of	tPA	and	BDNF	are	associated	with	depression	(Shi	et	al.	2010),	although	this	study	did	not	

distinguish	 between	 pro-BDNF	 and	 mature	 BDNF.	 A	 recent	 study	 found	 that	 the	 anti-depressant	

effects	(increased	BDNF,	CREB	phosphorylation	and	TrkB	phosphorylation)	of	a	VGF-derived	peptide	

were	essentially	eliminated	following	block	of	tPA	or	TrkB	phosphorylation	(Lin	et	al.	2014).	Knock-

down	or	overexpression	of	tPA	using	lentiviral	vectors	resulted	in	significantly	reduced	or	increased	

levels,	respectively,	of	BDNF	in	the	mouse	hippocampus	(Bahi	and	Dreyer	2012).	A	study	by	Pang	et	

al.	demonstrated	that	tPA	and	plasminogen	knockout	mice	have	reduced	late-LTP	in	the	hippocampus,	

which	can	be	rescued	with	mature	BDNF,	but	not	uncleavable	pro-BDNF.	In	a	report	by	Scaini	et	al.	

administration	of	branched	chain	amino	acids	led	to	increased	pro-BDNF:BDNF,	as	well	as	decreased	

tPA	protein	level.	Since	there	were	no	changes	in	tPA	gene	expression	level,	the	effects	were	likely	at	

a	protein-level	 –	 the	authors	postulated	 that	 the	branched	 chain	amino	acids	 generated	oxidative	

stress,	which	increased	expression	of	plasminogen	activator	inhibitor-1,	an	inhibitor	of	tPA	(Scaini	et	

al.	2015).	This	work	provides	evidence	that	oxidative	stress,	which	is	commonly	generated	in	a	number	

of	neurodegenerative	disorders,	could	reduce	levels	of	tPA,	and	therefore	decrease	BDNF.		

The	studies	outlined	above	provide	strong	evidence	that	tPA	is	one	of	the	most	important	enzymes	

involved	in	BDNF	processing	when	considering	pharmaceutical	targets.	Further,	since	tPA	already	has	

FDA-approval	 for	 the	 treatment	of	numerous	conditions,	 including	 ischemic	stroke	and	myocardial	

infarction	 (Zivin	 2009),	 this	 enzyme	 may	 have	 potential	 as	 a	 treatment	 for	 a	 range	 of	

neurodegenerative	disorders	if	delivery	can	be	optimised.	Alternatively,	drugs	that	increase	levels	of	

tPA	could	be	used.	Statins	may	be	useful	in	treatment	of	depression	due	to	their	ability	to	induce	tPA	

and	inhibit	plasminogen	activator	inhibitor-1	(a	tPA	inhibitor)	(Tsai	2007).	This	research	may	explain	

the	association	between	cases	of	major	depressive	disorder	and	cardiovascular	disease;	lowered	levels	

of	tPA	could	increase	the	likelihood	of	both	of	these	disorders	(Hou	et	al.	2009).	
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Although	tPA	is	able	to	increase	BDNF	levels	via	plasmin	activation,	the	therapeutic	effect	of	increasing	

tPA	levels	may	instead	be	mediated	through	NMDA	receptor	activation	(Rodier	et	al.	2014).	It	has	been	

proposed	that	tPA	can	proteolytically	cleave	the	N-terminus	of	the	NR1	subunit	of	the	NMDA	receptor,	

which,	in	turn,	increases	Ca2+	influx	through	the	NMDA	receptor	(Nicole	et	al.	2001;	Benchenane	et	al.	

2007).	The	increased	intracellular	Ca2+	levels	upregulate	BDNF	transcription	via	binding	to	bdnf	CREs.	

This	potential	mechanism	of	action	of	tPA	should	be	carefully	considered	when	planning	the	use	of	

tPA	 as	 a	 therapeutic	 drug,	 since	 overactivation	 of	 NMDA	 receptors	 could	 lead	 to	 NDMA-induced	

excitotoxicity	(Traynelis	and	Lipton	2001).	Adverse	effects	of	this	include	widespread	cell	death	and	

seizures.	

A	number	of	recent	publications	have	investigated	the	observed	association	between	physical	exercise	

and	increased	BDNF	levels	(Neeper	et	al.	1995;	van	Praag	et	al.	1999;	Adlard	et	al.	2004).	One	study	

used	chronic	unpredictable	mild	stress	as	a	depression	model	to	provide	evidence	that	bdnf	expression	

is	decreased	with	stress.	In	this	model	physical	exercise	(swimming)	resulted	in	a	significant	increase	

in	 transcription	 level	 of	bdnf	 in	 both	 the	 stressed	and	normal	 groups.	 The	 increase	 in	bdnf	mRNA	

correlated	with	increased	transcription	levels	of	the	anti-apoptotic	protein	Bcl-xl	with	exercise	(Jiang	

et	al.	2014).	Further	research	suggested	that	 the	 increase	 in	BDNF	with	exercise	may	be	mediated	

through	upregulation	of	tpa	(Sartori	et	al.	2011).	

Dietary	intake	of	polyunsaturated	fatty	acids	has	been	shown	to	increase	levels	of	tPA	and	BDNF	in	

the	plasma	of	diabetic	rats	(Nobukata	et	al.	2000),	and	in	the	hippocampus	and	prefrontal	cortex	of	a	

rat	model	of	depression	(Tang	et	al.	2014).	The	effect	in	the	hippocampus	was	enhanced	when	the	

treatment	was	combined	with	physical	exercise	(Wu	et	al.	2008a).	This	work	may	begin	to	explain	the	

known	beneficial	effect	of	dietary	polyunsaturated	fatty	acids	on	mental	health.	

1.6.3	Manipulating	neurotrophin	signalling	as	a	neuroprotective	therapy	

BDNF	promotes	neuronal	survival	in	vitro	(Alderson	et	al.	1990;	Cheng	and	Mattson	1994;	Wilkins	et	

al.	2009).	BDNF	treatment	can	preserve	the	structure	of	cat	RGC	dendritic	arbors	in	vivo	(Weber	and	
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Harman	2008).	Neurite	outgrowth	is	stimulated	by	BDNF	application	in	cultured	neurons	(McAllister	

et	al.	1995;	McAllister	et	al.	1996;	Bosco	and	Linden	1999;	Baquet	et	al.	2004;	Bonnet	et	al.	2004)	as	

well	as	in	the	guinea	pig	auditory	nerve	(Miller	et	al.	2007).	However,	BDNF	is	unsuitable	for	chronic	

treatment	due	 to	 its	physical	properties:	 it	has	a	very	 short	half-life	 (T1/2<1	minute);	 it	 crosses	 the	

blood-brain	 barrier	 poorly	 (Poduslo	 and	 Curran	 1996);	 it	 is	 pharmacologically	 ‘sticky’	 (its	 highly	

positively	charged	residues	restrict	its	dispersion)	(Lu	2003);	and	it	has	some	affinity	for	p75NTR.	

Vector-based	delivery	of	BDNF	is	a	method	to	provide	sustained	supply	of	BDNF	to	the	target	tissue	

(Zhang	et	al.	2011;	Rodger	et	al.	2012).	One	caveat	with	this	approach,	however,	 is	 that	 the	BDNF	

processing	enzymes	could	become	saturated,	potentially	resulting	in	a	large	supply	of	pro-BDNF.	As	

outlined	above,	pro-BDNF	signalling	is	not	desirable	in	the	context	of	ameliorating	neurodegeneration,	

and	may	in	fact	worsen	the	condition.	

BDNF	mimetics	are	small	molecules	designed	to	bind	to	the	active	site	of	TrkB	that	BDNF	binds	to	in	

order	to	stimulate	downstream	signalling	events	(Bai	et	al.	2010).	Mimetics	are	typically	modelled	on	

the	binding	domain	of	BDNF	but	with	subtle	alterations	to	improve	binding	efficiency	(TON),	decrease	

unbinding	 efficiency	 (TOFF),	 improve	 blood	 brain	 barrier	 crossing	 (by	 making	 the	 molecule	 more	

lipophilic	or	creating	a	caging	structure),	or	decrease	degradation	time	(T1/2).	Mimetics	may	also	be	

able	 to	 better	 target	 desired	 signalling	 pathways	 by	 being	 designed	 to	 have	 poorer	 efficiency	 for	

p75NTR,	whilst	maintaining	high	efficiency	for	TrkB	(Qian	et	al.	2006;	Bai	et	al.	2010;	Massa	et	al.	2010;	

Brahimi	et	al.	2014;	Liu	et	al.	2016).	Mimetics	have	already	been	shown	to	have	at	 least	 the	same	

neuroprotection	efficacy,	with	respect	to	neuronal	survival,	as	BDNF	in	the	hippocampus	and	striatum	

(Massa	et	al.	2010).	The	TrkB	agonist,	LM22A-4,	has	been	shown	to	restore	wildtype	levels	of	TrkB	

phosphorylation	in	the	medulla	and	pons	in	a	mouse	model	of	Rett	syndrome	(Schmid	et	al.	2012).	

Finally,	TrkB	agonists	have	been	evidenced	to	increase	RGC	survival	in	models	of	glaucoma	(Bai	et	al.	

2010).	
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1.7	Extracellular	matrix	manipulation	

1.7.1	Perineuronal	net	structure	

The	PNN,	first	described	by	Camillo	Golgi	in	1873,	is	a	specialised	form	of	ECM	that	contacts	the	surface	

of	neurons	around	the	soma	and	proximal	dendrites	(Golgi	1873).	The	PNN	is	primarily	composed	of	

chondroitin	 sulphate	 proteoglycans	 (CSPGs),	 keratin	 sulphate	 proteoglycans,	 tenascin,	 and	 the	

scaffolding	molecule	hyluronan.	Importantly,	the	PNN	is	not	a	homogeneous	structure;	the	types	and	

ratios	of	components	are	specific	to	each	region	of	the	CNS	(Virgintino	et	al.	2009),	indicative	of	region-

specific	roles	of	the	PNN	(Mouw	et	al.	2014).	

The	 PNN	 is	 laid	 down	during	 development	 at	 the	 end	 of	 the	 critical	 period	 following	 secretion	 of	

cartilage	link	protein	Crtl1	(Carulli	et	al.	2010)	and	acts	to	stabilise	neuronal	networks	and	synaptic	

connections	(Guimaraes	et	al.	1990;	Pizzorusso	et	al.	2002).	This	is	achieved	partly	through	CSPGs	(e.g.	

neurocan)	and	keratin	sulphate	proteoglycans,	which	act	as	physical	barriers	to	synaptic	contacts	or	

inhibit	axonal	outgrowth	via	negatively	charged	elements	(Wang	and	Fawcett	2012).	Before	the	PNN	

is	present,	neuronal	networks	are	incredibly	plastic	and	experiments,	such	as	monocular	deprivation,	

can	 have	 dramatic	 effects	 on	 the	 re-wiring	 of	 the	 visual	 processing	 pathway	 (Gordon	 and	 Stryker	

1996).	Such	changes	occurring	after	the	PNN	has	been	laid	down,	however,	do	not	result	in	the	same	

rewiring	(Sur	et	al.	1988;	Pizzorusso	et	al.	2002).	The	PNN	has	also	been	reported	to	contain	astrocyte	

cell	(a	type	of	glial	cell)	processes,	intertwined	with	the	ECM	components	of	the	net.	These	astrocytes	

provide	a	buffering	role	by	mopping	up	excess	glutamate	from	the	extracellular	space,	mainly	through	

their	Na+-dependent	glutamate	transporters	(Bruckner	et	al.	1993;	Anderson	and	Swanson	2000).	In	

addition,	the	fact	that	CSPGs	are	highly	charged	may	allow	them	to	buffer	cations.	 In	this	way,	the	

PNN	 may	 protect	 neurons,	 particularly	 those	 with	 high	 activity	 levels,	 from	 oxidative	 stress	 and	

glutamate-induced	 excitotoxicity	 (Morawski	 et	 al.	 2004).	 Finally,	 CSPGs	 have	 been	 found	 to	 have	

binding	sites	 for	growth	 factors,	 including	TGF-beta	 (Wang	et	al.	1991)	and	bFGF	 (Rapraeger	et	al.	
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1991),	suggesting	that	the	PNN	may	play	a	role	in	the	modulation	and	localisation	of	growth	factor	

signalling	(Flaumenhaft	and	Rifkin	1991).	

1.7.2	ECM	remodelling	in	injury	and	disease	

Following	 injury	 to	 the	CNS	or	 in	models	 of	 neurodegeneration,	 including	Parkinson’s	 disease	 and	

Alzheimer’s	disease,	microglia	are	activated	by	lipopolysaccharides	and	other	factors	via	JNK	and	p38	

MAPK	pathways	 (Dheen	et	al.	2007).	 Initially,	activated	microglia,	characterised	by	their	amoeboid	

shape	(Kettenmann	et	al.	2011),	are	beneficial	as	they	phagocytose	damaged	cells	and	debris.	Chronic	

activation	of	microglia	results	in	accumulation	of	pro-apoptotic	cytokines	and	reactive	oxygen	species,	

therefore	may	be	detrimental	 to	neurons.	 Indeed,	microglial	activation	 is	evidenced	to	be	a	major	

cause	of	RGC	death	in	retinal	degeneration	(Yuan	and	Neufeld	2001).	Microglial	activation	is	one	of	

the	hallmarks	of	many	neuropathologies	(Dheen	et	al.	2007).	

Both	types	of	macroglia	in	the	retina,	astrocytes	and	Muller	cells,	are	also	activated	following	injury	

or	in	disease.	Astrocytes	play	important	roles	in	Amyotrophic	lateral	sclerosis	and	Alzheimer’s	disease	

(Wiese	et	al.	2012).	Activation	of	macroglia	involves	the	upregulation	of	glial	fibrillary	acidic	protein,	

nestin	and	glutamine	synthetase,	a	key	protein	in	the	prevention	of	glutamate-induced	excitotoxicity	

(Chang	et	al.	2007).	Activated	astrocytes	secrete	matricellular	proteins,	including	glycoproteins,	which	

play	 roles	 in	synaptic	plasticity,	 remodelling,	angiogenesis,	as	well	as	 recruitment	of	 immune	cells.	

Activated	astrocytes	 are	 implicated	 in	 the	maintenance	and	 repair	 of	 the	blood	brain	barrier,	 and	

ablation	of	astrocytes	can	lead	to	damaging	oedema	in	the	brain	(Sofroniew	2005).	Hevin	is	secreted	

by	activated	astrocytes	and	is	involved	in	the	regulation	of	pre-	and	post-synaptic	connections	(Singh	

et	al.	2016),	therefore	may	help	with	neuronal	re-wiring	post-injury.	Interestingly,	there	are	multiple	

combinations	of	secreted	factors	from	activated	astrocytes	depending	on	the	specific	injury	or	disease	

profile,	giving	each	disease	its	own	activated	astrocyte	‘fingerprint’	(Jones	and	Bouvier	2014).	If	ECM	

remodelling	is	to	be	a	target	for	neuronal	injury	and	disease	it	will	likely	be	important	to	identify	the	

matricellular	protein	makeup	in	each	case	so	that	treatment	can	be	tailored	as	appropriate.	
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Chronically	activated	astrocytes	make	up	the	majority	of	glial	scars,	which	function	as	physical	barriers	

around	 the	 site	 of	 injury	 to	 protect	 nearby	 cells	 from	 inflammation	 and	 invading	 macrophages.	

Unfortunately,	 the	 highly	 negatively	 charged	 CSPG	 components	 of	 the	 glial	 scar	 inhibit	 axonal	

outgrowth,	which	limits	the	regeneration	of	native	neurons	(Ekstrom	et	al.	1988;	Fawcett	and	Asher	

1999;	Chua	et	al.	2013).	If	the	site	of	damage	is	small	enough,	adjacent	neurons	may	be	able	to	re-

form	connections	through	a	process	termed	neural	remodelling,	as	demonstrated	in	the	outer	retina	

in	retinal	degeneration	and	in	the	visual	cortex	(Marc	et	al.	2003).	Although	compensation	is	possible,	

if	scarring	is	too	widespread	or	number	of	neurons	lost	is	too	large,	neural	remodelling	may	not	be	

capable	of	re-wiring	the	neuronal	network,	resulting	in	loss	of	function	(Hausmann	2003).	

In	addition	to	restricting	migration,	gliosis	may	 increase	RGC	death	by	causing	scarring	around	the	

lamina	 cribrosa,	 leading	 to	 RGC	 axonal	 damage	 (Howell	 et	 al.	 2007).	 Activation	 of	 microglia	 and	

astrocytes	 is	evidenced	to	be	a	major	cause	of	RGC	death	in	glaucoma	and	other	models	of	retinal	

degeneration	(Tezel	et	al.	2012;	Vecino	et	al.	2015).	The	PNN	may	play	a	role	in	the	pathology	other	

neurodegenerative	disorders,	for	example	in	Alzheimer’s	disease,	where	PNN	components	(Karetko	

and	Skangiel-Kramska	2009),	such	as	tenascin-C,	are	biomarkers	for	Alzheimer’s	disease	(Hall	2012).	

CSPGs	are	upregulated	following	CNS	injury	(Morgenstern	et	al.	2002),	including	in	the	degenerating	

retina	 (Barber	et	al.	2012).	PNN	disregulation	may	be	an	underlying	cause	of	epilepsy	 (McRae	and	

Porter	2012).	Digestion	of	PNN	components,	specifically	brevican,	by	MMPs	ADAMTS1	and	4	may	be	

induced	by	kainite-induced	seizures	(Yuan	et	al.	2002).	Indeed	it	should	be	noted	that	the	PNN	is	not	

a	fixed	structure;	endogenous	MMPs	continuously	remodel	ECM	components	according	to	neuronal	

activity	and	local	environmental	changes.	TPA	is	upregulated	following	monocular	deprivation	(Wiesel	

and	Hubel	1963)	and	spinal	cord	injury	(Bukhari	et	al.	2011).	It	has	been	postulated	that	the	substrate	

for	tPA	is	components	of	the	PNN	(Mataga	et	al.	2002).	It	should	also	be	considered	that	BDNF	may	

contribute	to	this	plasticity,	since	tPA	is	an	important	enzyme	in	BDNF	processing	(see	section	1.5.4).		
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1.7.3	Is	the	PNN	an	inhibitor	of	neuronal	plasticity?		

Although	some	areas	of	the	brain	do	respond	to	injury	by	stimulating	stem	cell	differentiation	(Magavi	

et	 al.	 2000)	 or	 upregulating	 neurotrophin	 receptors	 (Cui	 et	 al.	 2002),	 complete	 repair	 following	

moderate	to	severe	injury	is	rare.	In	these	cases,	therapeutic	approaches	are	required	to	replace	lost	

neurons,	 or	 to	 stimulate	 endogenous	 repair	mechanisms.	One	method	 is	 to	 stimulate	 the	 neurite	

outgrowth	of	resident	neurons.	This	can	be	attempted	by	application	of	growth	factors	(Thanos	et	al.	

1989),	 growth	 cone	 stimulation	 via	 Sema3a	 (Fenstermaker	 et	 al.	 2004),	 or	mechanical	 elongation	

(Magdesian	et	al.	2016).	Alternatively,	cells	could	be	replaced	by	stem	cell-derived	neurons	(see	stem	

cell	section	1.8).	These	approaches	have	shown	some	success,	but	the	presence	of	inhibitory	CSPGs	in	

the	PNN	has	been	theorised	to	limit	the	regenerative	capacity	of	neurons,	particularly	in	the	case	of	

spinal	cord	injury	(Bukhari	et	al.	2011).	It	has	therefore	been	postulated	that	CSPG	remodelling	may	

be	required	in	combination	with	other	therapeutic	strategies	for	complete	recovery	to	occur.		

1.7.4	Could	PNN	digestion	permit	neuronal	regeneration	or	is	it	an	essential	component	to	

protect	neurons?	

The	highly	negatively	charged	elements	of	glycoproteins	present	in	the	PNN	and	glial	scars	inhibit	the	

positively	 charged	 growth	 cone	 of	 axons,	 and	 present	 an	 obstacle	 for	 synaptic	 and	 dendritic	

remodelling.	 CSPGs	 in	 the	 PNN	 and	 glial	 scars	 can	 be	 partially	 digested	 by	 the	 bacterial	 enzyme	

chondroitinase	 (ChABC)	 (Bradbury	 et	 al.	 2002).	 ChABC	 cleaves	 chondroitin	 sulphate	

glycosaminoglycan	 (GAG)	chains	 (the	main	 inhibitory	components	of	 the	molecules)	 to	 leave	stubs	

(Figure	1.7)	 that	 can	be	detected	by	 immunohistochemistry	 (Bradbury	et	 al.	 2002;	 Lin	et	 al.	 2008;	

Orlando	et	al.	2012).		

	



Chapter	1:	Introduction	 57	

	

	

Figure 1.7. Basic structure of CSPG (top) with interaction points. Multiple CS-GAGs may be present 

but only one is shown for clarity. GAGs can be digested using the bacterial enzyme ChABC, leaving 

epitope stubs on the core protein (below). Note that ChABC digestion removes the inhibitory sulphate 

chains. G1, globular N-terminal domain; G3, globular C-terminal domain; PTPσ, protein tyrosine 

phosphatase σ; NCAM, neural cell adhesion molecule; Ig, immunoglobulin; EGF, epidermal growth 

factor; CRD, carbohydrate recognition domain; CBP, complement binding protein. Modified from 

(Bartus et al. 2012). 
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Degradation	of	GAG	chains	with	ChABC	 increases	the	 integration	efficiency	of	 transplanted	cells	 in	

spinal	cord	and	brain	injury	models.	ChABC	treatment	has	been	shown	to	increase	axonal	regeneration	

following	spinal	cord	injury	in	rats	(Bradbury	et	al.	2002;	Massey	et	al.	2006;	Garcia-Alias	et	al.	2009).	

On	the	other	hand,	 improvement	 in	visual	cortex	plasticity	was	 limited	following	ChABC	treatment	

with	 monocular	 deprivation	 in	 cats	 (Vorobyov	 et	 al.	 2013),	 suggesting	 that	 the	 success	 of	 CSPG	

digestion	may	be	 injury-specific,	 or	may	 require	 combination	 therapy.	 It	 has	been	postulated	 that	

ChABC	 treatment	may	 be	 effective	 in	 increasing	 integration	 of	 stem	 cells	 in	 retinal	 degeneration	

(Singhal	 et	 al.	 2008;	 Barber	 et	 al.	 2012).	Ma	 et	 al	 demonstrated	 that	 ChABC	 treatment	 increases	

synaptogenesis	between	transplanted	RPCs	and	recipient	neurons	in	models	of	retinal	degeneration	

(Ma	et	al.	2011).	The	Pearson	group	used	the	Rho-/-	mouse	model	to	investigate	the	effect	of	ChABC	

treatment	on	integration	of	photoreceptor	precursor	cells	into	the	ONL	of	the	retina.	The	Rho-/-	retina	

has	an	intact	OLM	and	reactive	gliosis	present,	resulting	in	large	CSPG	production.	In	this	model,	ChABC	

treatment	alone	 resulted	 in	an	8-fold	 increase	 in	 transplanted	 cell	 integration	 relative	 to	 controls.	

When	combined	with	a	siRNA	targeting	ZO-1	to	disrupt	the	OLM,	ChABC	treatment	also	significantly	

increased	 the	 percentage	 integration	 relative	 to	 control.	 However,	 one	 should	 interpret	 the	 data	

cautiously	as	it	is	not	clear	that	the	combined	treatment	offers	a	worthwhile	increase	in	percentage	

integration,	 relative	 to	 ChABC	 treatment	 alone.	 Optokinetic	 head-tracking	 behaviour	 experiments	

were	 used	 to	 assess	 how	 percentage	 integration	 relates	 to	 improved	 visual	 function.	 These	

behavioural	 experiments	 suggested	 improved	 visual	 function	 in	 mice	 with	 combined	 treatment	

compared	to	control	mice,	however	only	7	mice	were	used;	greater	n	numbers	are	required	to	verify	

the	result	(Barber	et	al.	2012).	Further,	it	would	be	interesting	to	know	how	the	behavioural	results	

differ	in	mice	with	ChABC	treatment	alone.	

Although	PNN	digestion	is	a	promising	strategies	for	some	models,	it	is	worth	adding	a	note	of	caution.	

The	PNN	protects	neurons	from	excitotoxicity	and	oxidative	stress.	Further,	activated	microglia	may	

not	target	neurons	that	are	in	contact	with	the	PNN	(Karetko	and	Skangiel-Kramska	2009),	therefore	

removal	of	PNN	components	may	not	be	advisable	in	cases	where	microglial	activation	is	prevalent.	



Chapter	1:	Introduction	 59	

Disruption	of	glial	scars	may	expose	neighbouring	tissue	to	the	highly	toxic	 immune	response,	and	

inhibit	functional	recovery	–	this	was	demonstrated	with	mild	to	moderate	spinal	cord	injury	where	

the	usual	return	of	function	was	impeded	(Sofroniew	2005).		
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1.8	Stem	cells	

1.8.1	Stem	cell	therapy	

Stem	cell	therapy	to	introduce	new	cells	into	the	retina	has	been	trialled	in	disease	models.	To	date	

this	method	has	had	 limited	success.	Several	groups	claim	 improved	visual	acuity	 (MacLaren	et	al.	

2006;	Pearson	et	al.	2012),	however	this	is	frequently	proposed	upon	the	incorrect	assumption	that	

the	improved	light	sensitivity	of	photoreceptors	results	 in	 increased	neuronal	processing.	Neuronal	

processing	 is	 extremely	 complex,	 so	 much	 so	 that	 if	 one	 connection	 is	 not	 correct,	 the	 result	 of	

photoreceptor	cell	stimulation	may	be	no	signal	is	passed	on	to	the	next	cell,	or	a	feedback	loop	may	

be	created,	whereby	the	stimulated	cell	re-stimulates	itself	(Rao	et	al.	2000).	For	both	of	these	results,	

increasing	the	light	intensity	would	increase	photoreceptor	cell	activation,	as	measured	by	increased	

cell	membrane	depolarisation,	however	 the	signal	would	not	be	passed	to	 the	visual	centre	 in	 the	

brain,	thus	there	would	be	no	improvement	in	visual	acuity.	Reactivating	plasticity	is	likely	to	be	key	

in	the	treatment	of	neuronal	degeneration	when	attempting	to	re-wire	neuronal	circuits	(Marc	et	al.	

2003;	Grimaldi	et	al.	2005;	Hong	and	Chen	2011;	Morimoto	2012).	

There	 are	 several	 different	 stem/progenitor	 cell	 niches	 have	 been	 investigated	 for	 use	 with	 cell	

replacement	 therapy	 in	 retinal	 degeneration.	All	 of	 these	protocols	 are	 associated	with	 their	 own	

advantages	and	disadvantages,	which	will	be	explored	in	this	section.	

Embryonic	stem	cells	

Embryonic	stem	cells	(ESCs)	are	an	attractive	option	for	cell	replacement	therapies	because	they	are	

pluripotent,	meaning	that	they	have	the	potential	to	differentiate	into	any	of	the	3	germ	layers.	The	

drawbacks	of	ESCs	include	the	risk	of	tumour	formation	if	their	proliferation	becomes	uncontrolled,	

and	controversial	ethical	issues.	There	is	also	the	risk	of	immune-rejection	(Schraermeyer	et	al.	2001;	

Baker	and	Brown	2009).	Studies	to	date	have	provided	mixed	results;	a	recent	study	in	humans	with	

macular	degeneration	 involving	ESC-derived	RPE	 suggested	 that	visual	 function	could	be	 stabilised	
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(Song	W		et	al.	2015),	although	since	the	duration	of	this	study	was	only	one	year,	one	must	remain	

cautious	when	making	inferences	about	the	potential	of	ESC-derived	cells	from	this	study.	The	recent	

initiation	of	another	clinical	trial,	in	which	stem	cell-derived	RPE	cells	were	transplanted	into	retinas	

of	AMD	patients	(https://www.mrc.ac.uk/news/browse/first-patient-treated-with-stem-cell-therapy-

for-wet-age-related-macular-degeneration/,	last	accessed	16.02.16),	suggests	that	there	may	be	hope	

for	 the	 treatment	 of	 AMD.	 It	 should	 be	 noted,	 however,	 that	 transplantation	 and	 integration	 of	

neuronal	 cells,	 as	 opposed	 to	 epithelial	 cells	 described	 here,	 is	 likely	 to	 be	 a	 substantially	 greater	

challenge	for	the	future.	ESCs	also	offer	a	virtually	limitless	supply	of	cells	that	can	be	differentiated	

into	 neurons	 in	 vitro	 with	 the	 application	 of	 retinoic	 acid	 (Bibel	 et	 al.	 2004).	 This	 has	 allowed	

researchers	to	investigate	genes/proteins	involved	in	neuronal	degeneration,	and	may	highlight	target	

pathways	for	neuroprotection	and	repair.	

Induced	pluripotent	stem	cells	

Induced	pluripotent	stem	cells	 (iPSCs)	are	cells	that	have	been	reprogrammed	by	expression	of	the	

transcription	factors	Oct4,	Sox2,	Klf,	and	Myc,	to	create	an	embryonic	stem	cell-like	cell	(Takahashi	

and	Yamanaka	2006).	These	cells	are	favoured	by	many	groups	because	they	offer	the	same	level	of	

pluripotency	as	ESCs	but	come	without	the	ethical	issues	and	rejection	problems	since	the	cells	can	in	

theory	 be	 derived	 from	 the	 patient’s	 own	 cells,	 creating	 an	 explosion	 in	 the	 field	 of	 personalised	

medicine.	 Despite	 this,	 iPSCs	 are	 in	 no	 way	 ideal	 because	 the	 teratoma	 risk	 remains,	 and	 their	

production	is	a	very	lengthy	process:	approximately	2	weeks	from	mouse	fibroblasts,	and	3-4	weeks	

from	human	fibroblasts	(Sommer	and	Mostoslavsky	2013).	In	addition,	it	should	be	noted	that	if	the	

disease	genotype	is	inherited,	the	iPSCs	made	from	the	patient’s	cells	will	contain	the	same	mutation,	

therefore	 the	 affected	 gene	must	 be	 corrected	prior	 to	 generation	of	 iPSCs	 (Tibbetts	 et	 al.	 2012).	

Despite	 these	 drawbacks,	 iPSCs	 have	 proved	 an	 invaluable	 research	 tool	 for	 modelling	

neurodegenerative	disorders,	including	ALS	(Dimos	et	al.	2008),	Rett	Syndrome	(Marchetto	et	al.	2010)	
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and	Huntington’s	disease	 (Zhang	et	al.	 2010),	 elucidating	 contributory	mechanisms	 to	disease	and	

repair.		

Neural	stem	cells	

Neural	stem	cells	(NSCs)	are	multipotent	stem	cells	that	are	capable	of	generating	all	cells	in	the	neural	

lineage	(neurons	and	glia).	The	advantage	of	using	NSCs	in	place	of	ESCs	or	iPSCs	for	the	purpose	of	

cell	replacement	therapy	is	their	lineage	is	restricted	so	they	are	more	likely	to	differentiate	into	the	

correct	cell	type,	whilst	maintaining	high	self-renewal	capability.	However,	the	price	of	self-renewal	is	

the	 risk	 of	 tumour	 formation,	 so,	 as	 always,	 the	 potential	 benefits	 must	 outweigh	 the	 risks.	

Nevertheless,	NSC	transplantation	has	been	shown	to	 improve	neuronal	survival	and/or	 functional	

outcome	in	a	range	of	neurodegenerative	disease	models,	 including	Alzheimer’s	disease	(Wu	et	al.	

2008b;	Blurton-Jones	et	al.	2009)	and	amyotrophic	lateral	sclerosis	(Mitrecic	et	al.	2010).	

	NSCs	 have	 proved	 useful	 for	 researching	 genes	 and	 signalling	 pathways	 implicated	 in	

neurodegenerative	 disorders.	 It	 has	 been	 recently	 reported	 that	 the	 forced	 expression	 of	 three	

transcription	factors,	Brn2,	Ascl1	and	Myt1l,	can	convert	fibroblasts	to	induced	neuronal	cells	(Pang	

et	al.	2011).	This	is	a	faster	method	of	producing	neuronal	cells	from	somatic	cells,	therefore	this	may	

improve	 the	 availability	 of	 patient-derived	 neurons	 or	 cells	 for	 the	 investigation	 of	 neuronal	

degeneration.	

Retinal	progenitor	cells	

Retinal	progenitor	cells	are	unipotent	cells,	usually	taken	from	embryonic	tissue.	Because	they	are	not	

true	stem	cells	there	is	a	reduced	risk	of	tumour	formation,	however	trials	to	date	have	demonstrated	

poor	integration	efficiency,	particularly	in	diseased	retinas	(Klassen	et	al.	2004;	Mansergh	et	al.	2010).	

It	may	be	that	CSPG	remodelling	is	required	to	improve	integration	efficiency		(Ma	et	al.	2011).	There	

may	be	some	promise	using	ESC-derived	retinal	progenitor	cells,	which	have	been	reported	to	increase	

visual	function	in	rats	(Qu	et	al.	2015).	
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Retinal	sheets	

An	 alternative	 approach	 for	 patients	who	 have	 complete	 photoreceptor	 loss	 is	 transplantation	 of	

retinal	sheets.	Embryonic	retinal	sheets	have	been	transplanted	into	retinal	degeneration	models	but	

may	stimulate	formation	of	a	glial	scar	(Peng	et	al.	2007).	Foetal	retinal	sheets,	with	attached	RPE,	are	

able	 to	 integrate	 into	 the	host	 IPL	 (Woch	et	 al.	 2001)	 and	 in	 some	 cases	 have	been	evidenced	 to	

increase	light	sensitivity	(Sagdullaev	et	al.	2003;	Seiler	and	Aramant	2012),	while	in	others	little	effect	

on	visual	function	was	measured	(Seiler	et	al.	2009).	Greater	success	has	been	achieved	with	retinal	

sheets	 that	 contain	 both	 photoreceptors	 and	 RPE	 because	 the	 RPE	 is	 required	 to	 support	

photoreceptors.	More	recently,	retinal	sheets	constructed	from	ESCs	and	iPSCs	have	been	shown	to	

be	capable	of	 integration	 into	the	host	retina	 in	mice	(Assawachananont	et	al.	2014)	and	primates	

(Shirai	et	al.	2016).	

Retinal	prostheses	

Artificial	electrical	stimulation	of	neurons	is	one	approach	to	treat	retinitis	pigmentosa	that	may	

address	the	problem	of	trying	to	connect	new	neurons	into	an	existing	neuronal	network.	

Implantation	of	an	electronic	prosthesis	does	not	result	in	good	visual	function	by	any	means,	

however	for	blind	patients	it	may	offer	some	level	of	contrast	sensitivity	for	identifying	obstructions,	

and	motion	detection	(Dobelle	et	al.	1974;	Veraart	et	al.	1998).	It	should	be	noted	that	this	approach	

is	only	suitable	for	patients	who	have	complete	vision	loss	as	the	prosthesis	is	likely	to	interfere	with	

native	retinal	outputs.	In	addition,	the	risk	of	side	effects	is	high;	30%	of	patients	experienced	severe	

adverse	effects	in	one	clinical	trial	with	electronic	implants	(Humayun	et	al.	2012).	

1.8.2	Photoreceptor	replacement	

A	large	proportion	of	the	literature	to	date	regarding	stem	cell	therapy	to	treat	retinal	degeneration	

focuses	 on	 photoreceptor	 transplantation.	 One	 approach	 involves	 the	 transplantation	 of	Nrl-GFP	

labelled	post-mitotic	photoreceptor	precursor	cells	into	the	OLM	of	wildtype	mice.	This	is	a	promising	
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method,	 but	 will	 likely	 be	 more	 successful	 if	 the	 efficiency	 can	 be	 improved.	 The	 current	

transplantation	efficiency	is	0.01%	and	the	percentage	integration	is	even	lower	(Ma	et	al.	2011).	If	

sufficient	 cell	 numbers	 could	 be	 introduced	 into	 the	 retina,	 the	 result	 could	 be	 therapeutically	

beneficial,	however	it	has	been	estimated	that	150,000	cells	are	required	to	produce	an	ERG	response	

across	 the	 whole	 retina	 (Pearson	 et	 al.	 2012).	 Despite	 this,	 the	 question	 remains	 as	 to	 whether	

integrated	 stem	cells	 are	 capable	of	 connecting	 to	 the	visual	 circuitry	and	 improving	visual	 acuity.	

Numerous	groups	claim	 improved	 light	sensitivity	with	transplanted	photoreceptor	precursor	cells,	

however,	as	outlined	previously,	increased	photoreceptor	cell	activation	in	response	to	light	does	not	

necessarily	equate	to	increased	neuronal	firing	to	the	visual	centre	in	the	brain.	If	transplanted	cells	

are	not	able	to	reliably	connect	to	the	neuronal	circuitry,	no	increase	in	number	of	integrated	cells	will	

increase	the	therapeutic	benefit	of	any	stem	cell	therapy.	Therefore,	future	work	 in	this	field	must	

endeavour	 to	 improve	 methods	 to	 measure	 connectivity	 of	 transplanted	 cells,	 and	 also	 develop	

techniques	 to	 facilitate	 formation	 of	 functional	 synapses	 between	 host	 neurons	 and	 transplanted	

cells.	

It	should	be	noted	that	a	lot	of	the	proclaimed	success	to	date	in	photoreceptor	transplantation	has	

been	in	wildtype	retinas.	The	environment	in	the	degenerating	retina	is	very	different	to	that	of	the	

wildtype	retina	(glial	scarring	is	just	one	example),	therefore	transplantation	efforts	are	likely	to	have	

very	different	outcomes	in	disease	models	(Barber	et	al.	2012).	The	normal	retina	has	an	intact	OLM,	

which	may	mean	that	the	transplantation	efficiency	is	better	in	disease	models	with	disrupted	OLM	

compared	to	wildtype	models.	

1.8.3	Cell-based	delivery	of	agents	

Cell-based	delivery	of	drugs	is	an	attractive	method	to	target	largely	inaccessible	areas,	such	as	the	

brain.	Cells	can	be	made	to	endocytose	drug-filled	endosomes	or	they	can	be	transfected	with	genes	

encoding	a	particular	protein.	In	both	cases,	the	cells	pump	out	the	agent	and	in	this	way	can	provide	

a	 more	 sustained	 delivery	 than	 alternative	 methods	 to	 cross	 the	 blood	 brain	 barrier,	 such	 as	
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nanocarriers	or	ultrasound	beams	(Hynynen	et	al.	2001;	Koo	et	al.	2006).	NSCs	and	ESCs	have	been	

used	to	deliver	neurotrophic	agents,	such	as	NGF,	with	neuroprotective	results	in	animal	models	of	

Alzheimer’s	 disease	 (Wu	 et	 al.	 2008b)	 and	 Huntington’s	 disease	 (Kordower	 et	 al.	 1997).	 Further	

advances	in	genetic	engineering	will	enable	greater	control	of	delivery	of	agents,	for	example	with	the	

use	of	the	light-sensitive	transcription	(Stuber	and	Mason	2013).	

	

1.8.4	Future	prospects	

Different	 models	 of	 retinal	 degeneration	 have	 different	 characteristics	 regarding	 speed	 of	

degeneration,	extent	of	OLM	disruption,	and	gliosis	(Barber	et	al.	2012).	Since	all	of	these	factors	affect	

the	 migration,	 integration,	 differentiation,	 and	 stability	 of	 donor	 cells,	 the	 disease	 aetiology	 will	

determine	the	most	appropriate	line	of	treatment.	Some	animal	models	with	varied	diseases	timelines	

are	currently	available,	such	as	the	Gnat1-/-	model,	which	loses	10%	of	photoreceptors	over	a	period	

of	12	months,	and	the	PDE6βrd1	model,	which	loses	virtually	all	the	photoreceptors	in	a	period	of	3	

weeks	(Barber	et	al.	2012).	More	models	with	a	greater	variety	of	neuropathologies	are	required	to	

aid	the	development	of	tailored	therapies.		

One	problem	limiting	stem	cell	replacement	therapy	is	the	need	for	transplanted	cells	to	be	stable	for	

several	years	to	reduce	the	need	for	repeated	surgery.	The	MacLaren	group	reported	that	33.3%	of	

twelve	eyes	from	rd1	mice	had	surviving	transplanted	photoreceptor	cells	by	week	12	 (Singh	et	al.	

2013),	 which	would	 not	 be	 an	 acceptable	 percentage	 nor	 survival	 period	 in	 human	 patients.	 Cell	

survival,	and	indeed	neuronal	connectivity,	remain	key	issues	to	be	addressed	if	injected	cells	are	to	

become	and	remain	part	of	a	functional	neural	network.	On	the	other	hand,	numerous	studies	have	

shown	promise	of	functional	recovery	in	models	of	a	number	of	disorders,	however	in	some	cases	the	

therapeutic	effect	measured	may	be	due	to	a	downstream	effect,	such	as	secretion	of	BDNF	(Blurton-

Jones	et	al.	2009),	rather	than	neuronal	activity	of	transplanted	cells.	
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1.9	Manipulation	of	stem	cell	migration	

Stem	cells	have	widespread	potential	 for	 the	 treatment	of	neurodegenerative	disorders.	However,	

since	many	target	areas	of	the	CNS	are	 largely	 inaccessible	and	stem	cells	may	not	be	viable	when	

injected	directly	next	the	injury	site	(Kelly	et	al.	2004),	there	is	a	need	for	stem	cell	migration	to	be	

controlled	in	a	way	that	is	safe	and	that	allows	deep	tissue	penetration.	

1.9.1	Electrical	fields	

All	cells	have	membrane	potentials	generated	by	the	distribution	of	 ions	and	charged	molecules.	 It	

was	proposed	as	early	as	the	19th	century	that	electric	fields	could	be	used	to	stimulate	cell	migration	

(McCaig	 et	 al.	 2005).	 In	 fact,	 endogenous	 electric	 fields	 have	 shown	 to	 be	 important	 for	 guiding	

mesenchymal	stem	cells	to	wound	sites,	including	the	rat	cornea	(Reid	et	al.	2005;	Zhao	et	al.	2006),	

therefore	 there	 has	 been	 interest	 in	 the	 utilisation	 of	 external	 electrical	 fields	 to	 direct	 stem	 cell	

migration.	Electrical	activation	(0.2	V)	has	been	shown	to	stimulate	neurite	extension	of	rodent	NSCs	

(Kobelt	et	al.	2014)	and	axonal	outgrowth	of	cultured	rat	RGCs	(Goldberg	et	al.	2002).	There	is	evidence	

that	direct	current	electrical	fields	can	direct	the	migration	of	rodent	NSCs	and	human	ESCs	towards	

the	cathode	in	vitro	(Li	et	al.	2008;	Meng	et	al.	2011;	Feng	et	al.	2012),	as	well	as	promoting	neuronal	

differentiation	from	neural	precursor	cells	(Thrivikraman	et	al.	2014;	Zhao	et	al.	2015).	

Electrical	field-directed	cell	migration	is	promising.	However,	it	is	important	to	consider	the	potentially	

serious	drawbacks	with	this	method,	the	main	one	of	which	is	that	application	of	an	electric	current	

over	long	time	periods	result	in	an	increase	in	temperature,	which	may	cause	protein	denaturation	or	

cytotoxicity.	

1.9.2	Magnetic	fields		

Magnetic	fields	have	been	widely	researched	for	their	potential	use	in	the	direction	of	cell	migration.	

Given	that	magnetic	fields	can	penetrate	non-transparent	tissue	very	well,	can	be	controlled	remotely,	

and	 are	 relatively	 safe	 (Long	 et	 al.	 2015),	 they	 may	 offer	 a	 better	 method	 of	 targeting	 largely	

inaccessible	areas	of	the	brain	compared	to	optogenetics.	It	is	known	that	iron	is	required	by	cells	(as	
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much	as	4	g	may	be	present	in	the	body	(Bulte	2009))	and	can	be	bound	to	proteins.	Further,	since	

iron	is	ferromagnetic,	it	seems	plausible	that	there	would	be	a	way	to	control	protein	function	using	

magnetic	fields.		

Magnetic	particles		

The	basic	principle	of	magnetism	is	 that	electrons	possess	the	property	of	spin	and	orbital	angular	

momentum,	which	together	contribute	to	the	electron’s	magnetic	moment.	If	the	magnetic	moments	

are	aligned	(intrinsically	or	due	to	an	external	magnetic	field)	the	atoms	are	said	to	have	the	property	

of	magnetism.	All	materials	are	magnetic	to	a	certain	degree.	Most	materials	are	only	magnetic	when	

in	the	presence	of	an	applied	magnetic	field,	i.e.	diamagnetic	or	paramagnetic.	This	type	of	magnetism	

is	 usually	 very	 weak.	 Ferromagnetism,	 however,	 is	 a	 much	 stronger	 type	 of	 magnetism;	 the	

magnetisation	value,	M,	may	be	104	times	greater	than	that	of	a	paramagnetic	material	(Whitesides	

et	al.	1983).	The	value	of	M	is	dependent	on	the	strength	of	the	external	magnetic	field,	H,	and	on	the	

temperature	(Sattler	2010).	Superparamagnetic	nanoparticles	(iron	oxide	particles)	are	often	favoured	

in	the	context	of	medicine,	since	they	lose	their	magnetism	in	the	absence	of	an	external	magnetic	

field,	meaning	they	do	not	aggregate	following	removal	of	the	magnetic	field	(Bonnemain	1998).		

Magnetic	particles	used	in	biological	research	usually	fall	into	two	categories:	nanoparticles	(diameter	

1-100	nm)	and	microparticles	(diameter	1-1000	µm).	The	size	of	magnetic	particle	is	a	very	important	

factor.	For	instance,	to	enable	targeting	to	specific	tissue	intercellular	space,	particles	should	ideally	

be	<10	nm	diameter,	or	<1	nm	for	the	brain	and	kidney	tubules	(Berry	and	Curtis	2003).	Nanoparticles	

are	optimally	endocytosed	 if	 their	diameter	 is	<60	nm	(Zhang	et	al.	2009),	but	 this	process	can	be	

promoted	with	larger	particles	using	a	polymer	coating	(Zhang	et	al.	2002).	The	maximum	number	of	

particles	that	may	be	taken	up	by	a	cell	is	predicted	to	be	500-5000	(Zhang	et	al.	2009).	

The	basic	structure	of	magnetic	nanoparticles	(mnps)	is	shown	in	Figure	1.8.	Due	to	their	ferrite	core,	

magnetic	 nanoparticles	 have	 the	 property	 of	 superparamagnetism:	 in	 the	 absence	 of	 an	 external	
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magnetic	field	mnps	have	a	magnetisation	value	of	essentially	zero;	and	in	the	presence	of	an	external	

magnetic	 field,	 the	 particles	 are	magnetised	 (Obaidat	 et	 al.	 2015).	 In	 the	 latter	 state	 they	 can	 be	

described	as	obeying	Coulomb’s	law	and	can	be	influenced	by	the	magnetic	gradient.	The	silicon-based	

coating	of	mnps	allows	the	iron	oxide	to	be	stable	in	aqueous	solution	and	has	the	added	benefit	of	

permitting	conjugation	of	drug	molecules	(Yang	et	al.	2012).	

Due	to	their	size,	 it	should	be	possible	to	use	mnps	to	target	cells,	proteins,	and	even	specific	DNA	

sequences.	In	the	era	of	genome	sequencing	and	rapid	advances	in	genetic	engineering	mnps	have	

great	 prospects	 in	 many	 areas	 of	 biomedicine	 and	 regenerative	 medicine.	 Mnps	 can	 be	 used	 to	

introduce	DNA	or	RNA	into	cells,	and	as	such	present	a	novel	transfection	method,	magnetofection,	

to	introduce	new	DNA	or	to	knock	down	genes	using	siRNA	(Schillinger	et	al.	2005).	In	magnetofection,	

DNA	of	interest	is	mixed	with	mnps	coated	with	a	charged	polymer,	which	allows	binding	of	the	DNA	

to	 the	particle	surface	via	electrostatic	 interactions.	The	DNA-coated	particles	are	 then	 introduced	

into	cells	with	the	use	of	an	external	magnetic	field.	Advances	in	this	technology	have	shown	that	an	

oscillating	 magnetic	 field	 increases	 the	 efficiency	 of	 transfection,	 as	 outlined	 by	 the	 Nanotherics	

website	(http://www.nanotherics.com/whatismat.htm,	last	accessed	15.02.2016).		
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Figure 1.8 Structure of a magnetic nanoparticle. The ferrite core (comprised of iron oxides plus a 

mixture of oxides of nickel, manganese and zinc) is surrounded by a silica coat, to which functional 

groups (x) may be attached. Adapted from (McBain et al. 2008). 
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Uses	in	drug	targeting	and	diagnostics	

The	use	of	magnetic	particles	as	a	drug	delivery	system	is	by	no	means	a	new	idea	(Senyei	et	al.	1978;	

Widder	et	al.	1980).	There	has	been	a	great	deal	of	interest	in	the	use	of	mnps	in	cancer	treatment.	It	

has	been	theorised	that	mnps	could	be	conjugated	to	an	anti-cancer	drug	or	to	radionucleotide	atoms,	

injected	into	the	bloodstream	and	directed	towards	the	tumour	using	an	external	magnet.	NSCs	have	

been	 used	 to	 deliver	 magnetic	 discs	 (2	 µm	 diameter)	 with	 an	 external	 magnetic	 field	 to	 cause	

mechanical	 destruction	 of	 malignant	 glioma	 cells	 (Muroski	 et	 al.	 2016).	 These	 treatments	 are	

attractive	since	the	procedure	is	non-invasive	and	the	particles	can	be	easily	tracked	using	MRI	(Mejias	

et	 al.	 2011).	 Further,	 by	 combining	 knowledge	 about	 specific	 cancer	 cell	markers,	mnps	 could	 be	

targeted	to	cancer	cells	using	cell	type-specific	antibodies	(Babincova	et	al.	2002).	This	would	mean	

that	 theoretically	 the	dose	of	 the	anti-cancer	drug	could	be	 increased	while	minimising	 the	 risk	of	

adverse	effects.		

Other	uses	of	magnetic	particles	in	targeted	drug	delivery	include	treatment	of	disorders	affecting	the	

brain.	The	blood-brain	barrier	is	an	important	structure	that	impedes	the	passing	of	molecules	that	

are	larger	than	400	Da	or	are	poorly	lipohillic	(Pardridge	2012)	to	protect	the	brain,	however,	this	can	

make	it	difficult	to	deliver	drugs	to	the	target	site.	Mnps	may	circumvent	this	problem.	Drug	molecules	

can	be	encapsulated	within	magnetic	particles,	 injected	 into	 the	bloodstream,	and	directed	 to	 the	

target	site	with	an	externally	positioned	magnet	(McBain	et	al.	2008).		

Other	therapeutic	uses	

When	an	alternating	magnetic	field	is	applied	following	the	magnetic	hysteresis	loop,	mnps	generate	

heat.	Since	mnp	solutions	tend	to	pool	around	tumour	cells,	rather	than	surrounding	normal	cells,	this	

technology	can	be	used	to	target	heat	to	cancer	cells	(Babincová	et	al.	2001;	Babincova	et	al.	2004).	

In	one	study,	median	temperatures	of	approximately	50°C	in	the	centre	of	tumours	were	achieved,	

causing	death	of	the	cancer	cells	(Kumar	and	Mohammad	2011).	It	should	be	noted	that	whilst	the	
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effect	to	surrounding	cells	was	minimal,	a	2°C	increase	is	not	negligible	and	therefore	caution	should	

be	 exercised,	 particularly	 in	 vulnerable	 tissue	 such	 as	 the	 brain,	 where	 cytotoxicity	 could	 be	

devastating.	In	order	to	minimise	damage	to	non-target	cells	these	mnps	are	usually	injected	into	the	

centre	of	the	tumour.	This	method,	using	temperatures	of	43-55°C,	is	termed	magnetic	thermoblation.	

A	similar	method,	magnetic	hyperthermia,	involves	temperatures	of	45-47°C	and	although	this	also	

causes	tumour	regression,	the	regression	is	often	not	permanent	(Hilger	et	al.	2001).	Magnetic	field-

induced	warming	technology	also	has	potential	 for	the	treatment	of	hypothermia	(Pankhurst	et	al.	

2003).	

Uses	in	cell	signalling	research	

As	eluded	to	previously,	specific	proteins	can	be	conjugated	to	magnetic	particles,	which	facilitates	

the	 investigation	 of	 signalling	 pathways.	 In	 addition,	 the	 protein	 concentration,	 using	 knowledge	

about	 the	number	of	mnps	per	protein,	and	the	spatiotemporal	effects,	using	controlled	magnetic	

fields,	 may	 be	 explored.	 Further,	 conjugation	 of	 mnps	 to	 ligands/agonists	 may	 enable	 magnet-

controlled	 manipulation	 of	 signalling	 cascades,	 which	 may	 be	 useful	 as	 a	 research	 tool	 and	 as	 a	

potential	therapeutic	approach.	It	should	be	noted	that	although	some	signalling	pathways,	such	as	

those	 downstream	of	 integrins,	 are	mechanosensitive,	 the	magnetic	 force	 applied	 to	 each	mnp	 is	

similar	to	that	required	to	stimulate	downstream	signalling	(Sniadecki	2010).	

Uses	in	whole	cell	migration	

Since	cells	can	be	made	to	take	up	mnps	via	endocytosis,	it	would	be	logical	to	hypothesise	that	it	may	

be	possible	to	control	the	migration	of	cells	containing	mnps	using	a	magnet.	Indeed,	this	has	been	

demonstrated	using	mnp-containing	stem	cells	in	vitro	(Raffa	et	al.	2009;	Song	et	al.	2010)	and	in	vivo	

(Song	 et	al.,	 2010).	By	applying	 the	 same	principle	as	 is	used	 in	 cell	 sorting,	 resident	 cells	may	be	

controlled	using	a	magnet	by	using	antibody-conjugated	mnps.	Permanent	magnet-directed	migration	

of	mnp-labelled	 stem/progenitor	 cells	 in	 vivo	 has	 been	 demonstrated	 in	 the	 repair	 of	 vasculature	
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injury	and	wound	healing	 (Kyrtatos	et	al.	2009;	Riegler	et	al.	2013).	Permanent	magnets	have	also	

been	reported	to	control	the	migration	of	cells	from	the	blood	to	a	lesion	site	using	mnps	bound	via	

cell	surface	antigens	in	vivo	in	the	rabbit.	In	this	study	mnps	were	coated	with	anti-CD34	antibodies	

via	 polyethylene	 glycol,	 which	 were	 injected	 intravenously	 and	 bound	 to	 stem	 cells	 via	 their	 cell	

surface	antigen	CD34.	A	permanent	magnet	was	then	held	next	to	a	femoral	artery	and	it	was	found	

that	mnp-bound	stem	cells	accumulated	at	a	lesion	site	in	the	femoral	artery	following	application	of	

a	magnetic	field	(Chen	et	al.	2013).	This	is	an	interesting	approach	as	it	would	permit	higher	specificity.	

Although	promising,	the	reach	of	this	approach	is	 limited	by	the	fact	that	the	strength	of	magnetic	

fields	 decreases	 exponentially	 as	 a	 function	 of	 distance	 from	 the	 magnet	 surface	 (Figure	 1.9).	

Consequently,	 it	 may	 be	 difficult	 to	 control	 the	 migration	 of	 cells	 deep	 in	 the	 brain	 without	 the	

implantation	of	magnets,	which	has	been	demonstrated	in	the	spinal	cord	(Tukmachev	et	al.	2015),	

retina	(Yanai	et	al.	2012)	and	brain	(Carenza	et	al.	2014).	Alternatively,	electromagnets	can	be	used	to	

generate	large	magnetic	fields	with	controlled	gradients,	and	since	MRI	machines	are	commonplace	

in	hospitals,	the	equipment	for	magnetic	field-directed	migration	may	already	be	available	(Riegler	et	

al.	2010).
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Figure 1.9 Magnetic field strength, Br, follows the inverse square law with distance from the magnet 

surface. 
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Mnp	toxicity	

The	potential	 toxicity	of	mnps	 is	a	concern	 in	 the	 field,	and	breakdown	of	 iron	within	cells	via	 the	

Fenton	reaction	produces	free	radicals	that	can	damage	DNA	(Imlay	et	al.	1988).	Despite	this,	there	

has	been	no	reported	adverse	effects	on	the	viability	or	migration	of	stem	cells	when	nanoparticles	

are	used	at	10	pg	iron/cell	(Bulte	2009;	Loebinger	et	al.	2009;	Richards	et	al.	2012).	One	recent	study	

demonstrated	that	neuronal	activity	 is	not	affected	by	the	movement	of	magnetic	nanoparticles	 in	

brain	slices	(Ramaswamy	et	al.	2015).	Mnps	have	been	widely	used	in	medicine	for	cell	tracking	and	

imaging	 (using	MRI	 scanning),	 and	are	 rapidly	 removed	 from	circulation	within	3	hours	 (Sun	et	 al.	

2008).	The	size	of	mnp	is	an	important	consideration	since	particles	with	a	diameter	of	<5.5	nm	are	

filtered	out	of	the	body	via	the	renal	system	(Choi	et	al.	2007)	and	particles	with	a	diameter	of	>500	

nm	are	removed	from	circulation	by	phagocytes	in	the	spleen	(Chen	and	Weiss	1973).	

1.9.3	Magnetic	field-sensitive	receptors	

Magnetoreception	describes	a	phenomenon	where	organisms	are	able	to	sense	the	Earth’s	magnetic	

field.	To	date,	evidence	for	the	existence	of	a	magnetic	field-sensitive	receptor,	or	magnetoreceptor,	

has	ben	limited	to	the	cases	of	migratory	organisms.	Magnetic	field-sensitive	migratory	behaviour	has	

been	detected	in	bacteria	(Baumgartner	et	al.	2013),	Drosophila	(Qin	et	al.	2016),	Zebrafish	(Takebe	

et	al.	2012),	sea	turtles	(Lohmann	et	al.	1999),	lobsters	(Boles	&	Lohmann	2002),	and	several	species	

of	bird,	 including	homing	pigeons	 (Leask	1977;	Mora	et	 al.	 2004).	 There	have	been	 three	possible	

mechanisms	 for	 magnetoreception	 proposed:	 electromagnetic	 induction,	 magnetite	

magnetoreception,	and	chemical	magnetoreception.	Electromagnetic	induction	is	proposed	to	involve	

detection	 of	magnetic	 fields	 using	 an	 electrical	 conductor.	When	 the	 conductor	 passes	 through	 a	

magnetic	 field,	 a	 force	 Is	 applied,	 termed	 Lorentz	 force,	 the	magnitude	of	which	 is	 relative	 to	 the	

parameters	 (strength,	 direction,	 etc.)	 of	 the	 magnetic	 field	 (Johnsen	 &	 Lohmann	 2005).	 There	 is	

evidence	for	electromagnetic	induction	in	studies	with	elasmobranch	fish	(e.g.	sharks	and	rays),	for	

example	 rays	 conditioned	 to	 respond	 to	 changes	 in	 a	magnetic	 field	 had	 their	 responses	 blocked	
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following	introduction	of	magnets	in	their	nasal	cavities	(Molteno	&	Kennedy	2009).	Magnetite	(Fe3O4)	

magnetoreception	 is	 proposed	 to	 involve	 a	 molecule	 containing	 iron,	 which	 aligns	 itself	 to	 the	

geomagnetic	field	and	rotation	of	the	magnetic	field	may	result	in	opening	of	a	connected	ion	channel	

(Kirschvink	et	al.	2001).	This	could	result	in	downstream	neuronal	firing	that	may	cause	a	change	in	

migratory	behaviour.	The	chemical	magnetoreception	hypothesis	relies	on	free	radical	reactions	that	

are	 influenced	 by	 the	 Earth’s	 magnetic	 field.	 Since	 light-absorbing	 reactions,	 such	 as	 in	

photoreceptors,	 typically	 involve	 free	 radical	 reactions,	 it	 has	 been	 proposed	 that	 chemical	

magnetoreception	may	be	associated	with	light-responsive	organs	(Ritz	et	al.	2000).	In	line	with	this,	

there	is	evidence	for	crytochromes	in	migratory,	but	not	non-migratory,	songbirds	(Mouritsen	et	al.	

2004).	

There	 is	 little	 evidence	 for	 a	magnetoreceptor	 in	 non-migratory	 animals,	 however	 if	 it	 does	 exist,	

perhaps	the	alignment	of	a	molecule	with	the	geomagnetic	field	may	have	a	use	for	the	detection	of	

orientation	during	embryogenesis,	but	there	have	been	no	studies	supporting	this	theory.	Although	

debated	 to	 be	 present	 in	 humans,	 a	 recently	 presented	 two	 models	 for	 a	 magnetically-sensitive	

receptor,	the	magnetoreceptor.	In	this	report,	one	model	suggested	that	magnetite	may	help	protein	

complexes	align	with	external	magnetic	fields	and	stimulate	movement	of	stretch	receptors,	while	a	

second	model	suggested	the	involvement	of	photoreceptors	where	phototransduction	leads	to	the	

exchange	of	radicals,	leading	to	different	chemical	products	in	the	presence	or	absence	of	an	external	

magnetic	field	(Lohmann	2016).	Rat	mesenchymal	stem	cells	have	been	shown	to	migrate	in	response	

to	 a	 permanent	 magnet	 array	 without	 mnps,	 which	 provides	 evidence	 of	 a	 mammalian	

magnetoreceptor.	 In	 this	study,	mesenchymal	stem	cells	 from	rats	were	grown	on	a	microarray	of	

magnets	for	up	to	3	days	and	at	the	end	of	the	culture	period	it	was	found	that	the	cells	grew	on	the	

surface	of	the	magnets,	unlike	in	the	non-magnetic	array	control,	where	cells	grew	in	a	more	random	

fashion	(Zablotskii	et	al.	2013).		
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1.9.4	Magnetogenetics	

The	 recent	 construction	of	 iron	 containing	proteins	has	brought	 the	 advent	of	magnetogenetics	 –	

control	of	transcription	by	the	application	of	an	external	magnetic	field.	Using	these	proteins,	neuronal	

action	potential	firing	(Long	et	al.	2015)	and	calcium-regulated	insulin	release	(Leibiger	and	Berggren	

2015)	 can	 be	 remotely	 controlled.	 It	may	 be	 possible	 to	 combine	 this	 technology	with	 cell-based	

delivery	of	neurotrophins,	particularly	as	bdnf	has	calcium	response	elements.	
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1.10	The	retinal	explant:	a	model	for	neurodegeneration	

The	retinal	explant	is	an	ideal	model	to	investigate	the	mechanisms	involved	in	neuronal	degeneration.	

The	axotomy,	performed	at	the	time	of	explantation,	is	a	consistent	injury,	unlike	the	optic	nerve	crush	

(Weber	and	Harman	2008).	The	resultant	 rapid	cell	death	 is	a	major	advantage	of	 this	model	over	

similar	in	vivo	models,	as	well	as	the	minimal	contribution	of	an	immune	response.	Experiments	with	

cell	culture	and	brain	slices	are	rapid,	but	do	not	permit	investigation	of	an	intact	neuronal	network.	

In	addition,	the	fact	that	the	concentration	and	location	of	agents	can	be	controlled	relatively	easily	

has	resulted	in	the	widespread	use	of	this	model	for	the	study	of		neuroprotective	strategies	(Ogilvie	

et	al.	1999;	Wang	et	al.	2002;	Koizumi	et	al.	2007;	Moritoh	et	al.	2010;	Niyadurupola	et	al.	2011)	and	

cell	replacement	therapies	(Johnson	and	Martin	2008;	Bull	et	al.	2011;	Denk	et	al.	2015).		

Results	from	explant	experiments	are	primarily	assessed	using	cell	counts	or	viability	markers,	such	as	

propidium	iodide	and	calcein-AM	(Grieshaber	et	al.	2010),	or	terminal	deoxynucleotidyl	transferase	

dUTP	nick	end	labelling	(TUNEL)	(Gavrieli	et	al.	1992),	which	can	underestimate	tissue	health.	Recent	

reports	indicated	that	retinal	explants	are	viable	for	at	least	7	days	(Lye	et	al.	2007;	Johnson	and	Martin	

2008;	Kobuch	et	al.	2008).	However,	 it	should	be	noted	that	a	retina	containing	‘viable’	cells	 is	not	

necessarily	capable	of	transmitting	signals	along	the	entire	visual	pathway.	RGCs	that	contain	active	

esterases,	and	therefore	stain	positive	 for	calcein-AM,	may	not	be	capable	of	 receiving	 input	 from	

bipolar	cells	and	amacrine	cells	 if	dendritic	pruning	has	occurred.	Lack	of	morphometric	analysis	of	

RGCs,	from	which	functional	potential	may	be	inferred,	is	a	major	limitation	of	work	to	date.	

In	order	for	morphometric	analysis	of	RGCs	to	be	carried	out,	cells	must	be	labelled	in	a	sparse	and	

random	manner.	Golgi	staining	remains	a	gold	standard	staining	method	but	does	not	combine	well	

with	other	histological	techniques	(Golgi	1873).	Microinjection	of	dyes	is	technically	challenging	and	

is	biased	towards	larger	cells.	Retrograde	labelling	with	fluoro-gold	(Chiu	et	al.	2008)	relies	on	intact	

axons	 and	 commonly	 results	 in	 over-labelling.	 The	 use	 of	 transgenic	 animals,	 for	 example	 Thy1-

dependent	expression	of	green	fluorescent	protein	(GFP)	for	 labelling	of	RGCs,	can	produce	sparse	
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labelling	but	underreports	dendritic	pruning	(Williams	et	al.	2013a).	Ballistic	labelling	(diolistics	and	

biolistics)	 (Lo	et	al.	1994;	Christianson	and	Lo	2011)	 labels	cells	 in	a	 sparse	manner.	Diolistics	uses	

tungsten	particles	as	microcarriers	of	lipophilic	dyes,	which	are	delivered	to	cells	under	high	pressure	

helium	blasts.	The	lipophilic	dyes	diffuse	through	cell	membranes	in	a	temperature-dependent	nature,	

therefore	the	resultant	 labelling	 is	considered	random	since	 it	 is	 independent	of	cell	health	or	ATP	

machinery.	Biolistics	uses	gold	particles	to	deliver	plasmids	to	cells	using	helium	blasts.	In	addition	to	

labelling	cell	morphology	by	transfection	with,	for	example	GFP,	biolistiocs	also	permits	visualisation	

of	synaptic	or	mitochondrial	markers,	which	may	be	useful	to	monitor	in	parallel	with	changes	to	the	

whole	cell	morphology.	

	

1.10.1	TrkB	signalling	in	the	retinal	explant	

Since	 the	 retinal	 explant	 is	 an	 axotomy	model,	 it	 is	 important	 to	 consider	 the	 potential	 signalling	

pathways	initiated	by	axotomy	that	may	contribute	to	dendritic	retraction	and	neuronal	cell	death	in	

this	 model.	 Wallerian	 degeneration	 describes	 the	 degenerative	 events	 contributing	 to	 axotomy-

induced	 axonal	 retraction	 (Gerdts	 et	 al.	 2016).	 The	 study	 of	Wallerian	 degeneration	 has	 provided	

target	proteins	and	signalling	cascades	that	would	be	interesting	to	study	in	the	context	of	dendritic	

atrophy	 and/or	 neuroprotection.	 Following	 axotomy,	 Sarm1	 (a	 protein	 with	 multiple	 protein	

interaction	sites)	activation	leads	to	upregulation	of	MKK4	and	MKK7	(Gerdts	et	al.	2013;	Yang	et	al.	

2015).	A	resultant	energy	deficit,	possibly	due	to	the	disruption	of	a	stem	in	glycolysis	by	Sarm1-MAPK,	

results	in	intracellular	build-up	of	Ca2+.	Calpain	(a	cysteine	protease)	can	be	activated	by	caspases,	or	

independently	 activated	 by	 high	 intracellular	 levels	 of	 calcium	 (George	 et	 al.	 1995).	 In	 axotomy	

models,	 calpain	 is	 postulated	 to	 be	 activated	 in	 a	 caspase-independent	manner.	Activated	 calpain	

digests	actin,	resulting	in	axonal	retraction	(Yang	et	al.	2015).	MKK4	is	antagonised	by	Akt,	which	is	

upregulated	by	BDNF-TrkB	signalling.	From	this	we	can	postulate	that	BDNF	treatment	of	axotomised	

RGCs	may	retard	axonal	retraction.	Further,	BDNF	signalling	is	capable	of	inducing	neurite	extension	

via	Ras-activated	actin	polymerisation,	therefore	BDNF	treatment	has	the	potential	to	not	only	retard	
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axonal	degeneration	but	to	stimulate	outgrowth,	as	observed	in	adult	rodent	retinal	explants	(Thanos	

et	al.	1993;	Goldberg	et	al.	2002).	
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1.11	Aims	and	hypothesis	

Based	on	the	evidence	that	dendritic	retraction	precedes	cell	loss	in	neurodegenerative	disorders,	I	

hypothesise	that	morphometric	analysis	of	RGCs	in	adult	mouse	retinal	explants	will	provide	a	more	

sensitive	 readout	 of	 neuronal	 cell	 health,	 compared	 to	 cell	 counts.	 Further,	 I	 postulate	 that	 the	

quantification	 of	 dendritic	 morphology	 in	 these	 neurons	 will	 aid	 identification	 of	 mechanisms	

implicated	in	neuronal	degeneration	and	therefore	targets	for	neuroprotection	and	repair.	

	

Specific	aims	of	this	thesis	will	be:	

• To	assess	the	timeline	of	onset	of	dendritic	retraction	versus	cell	loss	of	RGCs	in	the	mouse	

retinal	explant.	

• To	test	whether	dendritic	retraction	may	be	retarded	following	treatment	with	neurotrophic	

agents	(pan-caspase	inhibitor	and	BDNF).	

• To	 investigate	 the	 potential	 inhibitory	 role	 of	 the	 PNN	 on	 neuronal	 plasticity;	 specifically,	

whether	PNN	digestion	will	facilitate	dendritic	remodelling	of	RGCs	following	axotomy.		

• To	test	whether	external	magnetic	fields	can	increase	migration	depth	of	NSCs	into	the	GCL	of	

mouse	 retinal	 explants,	 and	 thereby	 test	 this	 a	 potential	 method	 to	 deliver	 neurotrophic	

agents	to	specific	cell	layers	in	the	central	nervous	system.	

	

The	methods	to	be	used	in	this	thesis	will	now	be	outlined.



Chapter	2:	Materials	and	Methods	

	

81	

Chapter	2.	Materials	and	Methods	

2.1	Animal	use	

2.1.1	Housing	of	animals	

Mice	were	housed	in	a	12	h	light/dark	cycle	with	access	to	food	and	water	ad	libitum.	

2.1.2	Animals	used	

C57/Bl6	mice	of	either	sex	aged	6	weeks	–	8.5	months	were	used	for	all	experiments	(Table	2.1).	
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Table 2.1. Animal numbers for all experiments. 

Experiment	 Number	of	explants	 Number	of	animals	

Explant	area	measurements	 4	 4	

Nuclear	staining	 18	 15	

Immunohistochemistry	 21	 17	

TUNEL	 14	 13	

Calcein-AM	 13	 13	

Diolistics	 123	 88	

ELISA	 29	 15	

Neural	stem	cell	migration	 6	 3	
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2.2	Retinal	explant	preparation	and	culture	

Mice	were	 killed	 by	 cervical	 dislocation	 in	 accordance	with	 the	 Home	 Office	 (UK)	 and	 eyes	 were	

marked	for	nasal	orientation	using	a	sterile	18	gauge	needle.	Eyes	were	enucleated,	washed	with	1x	

phosphate-buffered	saline	(PBS,	pH	7.4)	to	remove	blood	and	hair,	and	placed	into	 ice-cold	Hanks-

balanced	 Salt	 Solution	 (Life	 Technologies	 Ltd.,	 Paisley,	 UK)	 supplemented	 with	 1%	 penicillin-

streptomycin.	Under	a	light	dissecting	microscope	(Leica	DFC	420C)	the	retina	was	rapidly	dissected	

as	outlined	in	Figure	2.1.	The	prepared	explant	was	cultured	on	a	0.4	µm	PTFE	culture	insert	(Millipore,	

Watford,	 UK)	 in	 a	 35	mm	 culture	 dish	 (Millipore)	 containing	 1.2	mL	 supplemented	Neurobasasl-A	

culture	media	(Table	2.2).	Explants	were	cultured	at	37°C,	5%	CO2.	For	culture	periods	of	>1	day	the	

media	was	changed	with	fresh	pre-warmed	(37°C)	media	to	prevent	accumulation	of	toxins.	
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Table 2.2. Components of culture media. All components were purchased from Life Technologies Ltd. 

The medium was made up in a sterile 100 mL DURAN® bottle at stored at 4°C for no longer than 2 

weeks. 

Component	 Concentration	 Role	

Neurobasal-A	 -	 Maintenance	of	adult	neurons.	

Penicillin-

Streptomycin	

1%	 (100	 U/mL	 penicillin;	

100	µg/mL	streptomycin)	

Antibiotics	to	minimise	contamination	caused	by	

both	gram-positive	and	gram-negative	bacteria.	

L-glutamine	 0.8	mM	 Amino	acid	to	improve	viability	of	cells.	

N-2	supplement	 1%	 Supports	 growth	 of	 post-mitotic	 neurons	 in	

primary	culture.	

B-27	supplement	 2%	 Supports	growth	and	viability	of	CNS	neurons.	
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Figure 2.1. Preparation of retinal explant. (A) A cut was made from the nasal mark towards the optic 

nerve head and the anterior chamber was removed by cutting around the ciliary margin zone. (B) The 

lens was removed. (C) The retina was gently separated from the retinal pigment epithelium. (D) The 

retina was transferred to a culture insert, GCL facing up. Two additional cuts were made to create a 

three leaf clover shape and permit the retina to lie flat. Dashed lines indicate cut sites. Scale bars: 1 

mm.
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2.2.1	Pan-caspase	inhibition	

Explants	were	cultured	in	the	culture	medium	as	described	previously.	The	pan-caspase	inhibitor	Q-

VD	(R&D	Systems,	Abingdon,	UK)	was	added	as	a	topical	aliquot	(100	µL)	directly	onto	each	explant	at	

a	concentration	of	100	µM	(total	concentration	7.7	µM	in	culture	medium)	in	dimethyl	sulphoxide.	

Controls	had	a	100	µL	 topical	aliquot	of	dimethyl	 sulphoxide.	After	1	day	 the	culture	medium	was	

replaced	and	fresh	aliquots	were	applied.	After	2	days	in	culture,	explants	were	labelled	diolistically	

(section	2.8).	

2.2.2	BDNF	treatment	

Explants	were	treated	with	100	ng/mL	BDNF	(Regeneron/Amgen)	for	3	d	initiated	at	day	0	(3	d	total)	

or	 at	 day	 3	 (6	 d	 total).	 Prior	 to	 BDNF	 treatment,	 delayed	BDNF-treated	 explants	were	 cultured	 in	

normal	culture	medium	for	3	d.	BDNF	was	diluted	in	1xPBS	+	0.1%	bovine	serum	albumin	(BSA)	and	

added	to	the	culture	medium	to	make	a	final	concentration	of	100	ng/mL	or	1000	ng/mL.	Controls	had	

the	same	volume	of	vehicle	added	to	the	culture	medium	(2	µL/mL	for	100	ng/mL	BDNF,	20	µL/mL	for	

1000	ng/mL	BDNF).	All	medium	was	replaced	daily	and	cells	were	labelled	diolistically	(section	2.8).	

2.2.3	ChABC	treatment	

To	digest	the	PNN,	explants	were	treated	with	ChABC	(a	kind	gift	from	Prof.	Bruce	Caterson,	Cardiff	

University)	for	1	d.	ChABC	was	stored	at	a	stock	concentration	of	10	U/mL	in	1xPBS	+	0.1%	BSA	and	

applied	as	a	topical	aliquot	(50	µL)	diluted	in	1xPBS.	Controls	had	a	topical	aliquot	(50	µL)	of	vehicle.		

To	 visualise	 chondroitin	 sulphate	 (CS)	 digestion	 explants	 were	 treated	with	 ChABC,	 and	 after	 1	 d	

explants	 were	 fixed	 and	 processed	 for	 immunohistochemistry	 as	 described	 in	 section	 2.5.	 To	

investigate	the	effect	on	RGC	dendritic	morphology	explants	were	treated	with	ChABC	for	1	d	and	

cultured	for	a	further	2	d	(3	d	total)	or	5	d	(6	d	total),	and	at	the	end	of	the	culture	period	explants	

were	 diolistically	 labelled.	 To	 investigate	 a	 potential	 synergistic	 role	 of	 CS	 digestion	 and	 BDNF	

treatment,	explants	were	treated	with	BDNF	for	3	d	from	day	0	or	from	day	3,	as	outlined	in	section	
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2.2.2,	in	conjunction	with	1	d	ChABC	treatment	initiated	at	day	0.	Explants	were	labelled	with	diolistics	

at	the	end	of	the	culture	period	(section	2.8).	

2.2.4	BDNF	blocking	with	mAb#9	

In	 order	 to	 investigate	 the	 role	 of	 endogenous	 BDNF,	 explants	were	 treated	with	 a	mouse	 IgG2b	

monoclonal	antibody	raised	against	BDNF	(as	described	by	Kolbeck	at	al.(Kolbeck	et	al.	1999)),	mAb#9	

(a	generous	gift	from	Prof.	Yves	Barde,	Cardiff	University).	MAb#9	(3.8	µg/µL)	was	added	to	the	culture	

medium	to	generate	a	final	concentration	of	10	µg/mL.	Controls	had	mAb#9	omitted.	Explants	were	

treated	with	mAb#9	±BDNF	(100	ng/mL)	for	3	d,	and	then	diolistically	labelled	(section	2.8).		

2.3	Cryosectioning	

At	the	end	of	the	culture	period	the	medium	was	replaced	with	1	mL	4%	paraformaldehyde	(PFA,	pH	

7.4).	A	topical	aliquot	(500	µL)	of	PFA	was	applied	onto	the	explant	to	ensure	complete	submersion	of	

the	tissue.	Explants	were	fixed	for	4	hours	at	4°C,	followed	by	replacement	of	PFA	with	30%	sucrose,	

including	a	topical	aliquot	(500	µL)	of	sucrose	onto	the	explant.	Explants	were	cryoprotected	overnight	

at	 4°C.	 Explants	 were	 then	 carefully	 placed	 into	 moulds	 containing	 optimal	 cutting	 temperature	

compound	 and	 labelled	 for	 orientation.	 Explants	 were	 rapidly	 frozen	 using	 liquid	 nitrogen-cooled	

isopentane	and	stored	at	-20°C.	

Explants	were	cut	using	a	cryostat	(Leica	CM	3050S).	Sagittal	sections	were	cut	(10-14	µm)	in	the	nasal-

temporal	 direction	 and	 placed	 onto	 coated	 Superfrost®	 slides	 (Scientific	 Laboratory	 Supplies	 Ltd.,	

Yorkshire,	 UK).	 Slides	 were	 left	 covered	 at	 room	 temperature	 overnight	 to	 allow	 any	 water	 to	

evaporate,	and	then	stored	at	-20°C.	

To	use	as	positive	controls	for	apoptotic	markers,	spleen	from	mice	used	for	explants	were	dissected,	

washed	with	 saline	 and	 fixed	 overnight	 in	 4%	 PFA.	 The	 spleen	was	 cryoprotected	 in	 30%	 sucrose	

overnight,	 frozen	 in	optimal	 cutting	 temperature,	 and	 stored	at	 -20°C.	 Spleen	was	 cut	 into	14	µm	

sections	using	a	cryostat,	placed	onto	coated	Superfrost®	plus	slides,	and	stored	at	-20°C.	To	use	as	
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positive	 controls	 for	 neuronal/CS	markers,	 brains	 were	 fixed,	 frozen	 and	 section	 as	 described	 for	

spleen.	The	brains	were	cut	anterior	to	posterior	in	the	coronal	plane.	

2.4	Nuclear	staining	

For	 all	 staining	 protocols	 using	 frozen	 sections	 the	 following	method	was	 used	 prior	 to	 labelling:	

sections	were	left	at	room	temperature	(RT)	for	30	min	to	allow	all	water	to	evaporate,	then	washed	

3x	with	1xPBS.	The	slides	were	carefully	dried	and	a	pap	pen	(Sigma-Aldrich,	5	mm	tip)	was	used	to	

draw	a	hydrophobic	barrier	around	each	section.	

2.4.1	Staining	method	

Sections	were	incubated	with	TO-PRO-3	(Table	2.3;	Life	Technologies	Ltd.)	for	10	min	(RT)	in	the	dark.	

Sections	were	washed	3x	with	1xPBS,	the	slides	were	carefully	dried	and	sections	were	coverslipped	

with	Prolong	Gold	anti-fade	reagent®	(Life	Technologies	Ltd.)	and	sealed	with	nail	varnish.	Sections	

were	stored	in	the	dark	to	prevent	photobleaching.	

2.4.2	Confocal	microscopy	

Sections	were	imaged	by	confocal	microscopy	(Zeiss,	LSM	510,	release	version	4.2	SP1)	using	the	633	

nm	laser	with	651-704	nm	detector.	Z-stacked	images	(1024x1024	pixels)	were	taken	in	1	µm	intervals	

through	the	entire	section.		

2.4.3	Image	analysis	

Images	were	imported	into	the	image	processing	software	FIJI	(Schindelin	et	al.	2012)	as	RGB	(8-bit)	

images.	To	prevent	inaccurate	measurements	caused	by	overlapping	cells	the	central	1	µm	z-slice	was	

analysed	in	each	case.	In	order	to	minimise	inaccuracies	introduced	by	changes	in	volume	in	the	z-

plane	of	the	tissue,	nuclear	counts	were	taken	linearly	in	two-dimensions.	The	number	of	cells	in	a	250	

µm	line	were	counted	using	the	multi-point	tool,	and	the	number	was	then	calculated	as	number	of	

cells/mm.	Cell	layer	thicknesses	were	measured	using	the	line	tool,	with	three	measurements	taken	

for	each	section.	
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2.5	Immunohistochemistry	

2.5.1	Staining	method	

All	incubations	were	at	room	temperature,	unless	stated	otherwise.	Sections	were	incubated	with	5%	

chicken	serum	in	1xPBS	(Invitrogen,	heat	 inactivated	at	56°C)	for	30	min.	Sections	were	washed	3x	

with	 1xPBS	 and	 then	 incubated	with	 primary	 antibody	 for	 4	 h	 or	 overnight	 at	 4°C.	 Sections	were	

washed	3x	with	1xPBS,	 followed	by	 incubation	with	secondary	antibody	 for	1.5	h.	For	all	antibody	

concentrations	see	Table	2.3.	Sections	were	washed	3x	with	1xPBS	and	counter-stained	with	TO-PRO-

3	as	previously	described	or	Hoechst	(Table	2.3).	Finally,	sections	were	coverslipped	with	Prolong	Gold	

anti-fade	reagent	and	stored	in	the	dark	before	imaging.	

2.5.2	Fluorescence	microscopy	

Sections	were	imaged	by	confocal	microscopy	(488	nm	argon	laser	with	500-530	nm	bandpass	filter	

for	secondary	antibodies	and	633	nm	laser	with	651-704	nm	detector	for	TO-PRO-3)	or	fluorescence	

microscopy	 (488	nm	with	 FITC	 filter	 for	 secondary	antibodies	 and	361	nm	excitation	with	497	nm	

detection	for	Hoechst).	Confocal	images	were	taken	as	z-stacks	in	1	µm	intervals.	Fluorescence	images	

were	taken	as	single	plane	images	in	the	centre	of	the	section.		

2.5.3	Image	analysis	

Images	were	imported	as	RGB	(8-bit)	images	into	FIJI	and	the	central	1	µm	z-slice	was	analysed	in	each	

case.	Fluorescence	was	quantified	either	by	counting	the	number	of	cells	double	stained	for	TO-PRO-

3	and	the	antibody	or	by	measuring	the	mean	channel	intensity	of	the	cell	layer.	The	mean	channel	

intensity	was	normalised	 for	background	 fluorescence	by	 subtracting	 the	channel	 intensity	 for	 the	

same	cell	layer	in	the	negative	control.		
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Table 2.3. Nuclear stains and antibodies used. 

Primary	antibodies	and	nuclear	stain	

Specificity	 Target	 Source	 Clone	 Working	

concentration	

Diluent	

	

Company	

Thy1.2	 RGCs	 Rat	

IgG2b	

Monoclonal	 2.5	µg/mL	 PBS	 +	 0.1%	

triton	

Abcam	

Active	

caspase-3	

Apoptotic	

cells	

Rabbit	 Polyclonal	 10	µg/mL	 PBS	 	

Chemicon	

1B5	 Unsulphated	

CS	

disaccharide	

Mouse	

IgG	

Monoclonal	 1:5	 PBS	 Bruce	

Caterson	lab	

2B6	 4-sulphated	

CS	

disaccharide	

Mouse	

IgG	

Monoclonal	 1:5	 PBS	 Bruce	

Caterson	lab	

3B3	 6-sulphated	

CS	

disaccharide	

Mouse	

IgM	

Monoclonal	 1:5	 PBS	 Bruce	

Caterson	lab	

TO-PRO-3	

iodide	642	

Nucleic	acids	 -	 -	 1	µM	 ddH2O	 Life	

Technologies	

Ltd.	

Hoechst	 Nucleic	acids	 -	 -	 20	µM	 PBS	 Life	

Technologies	

Ltd.	

Secondary	antibodies	

Specificity	 Conjugate	 Source	 Working	

concentration	

Diluent	 Company	

Rat	IgG	 AlexaFluor	

488	

Goat	 4	µg/mL	 PBS	 Abcam	

Rabbit	IgG	 AlexaFluor	

488	

Goat	 4	µg/mL	 PBS	 Life	

Technologies	

Ltd.	

Mouse	

IgG	

AlexaFluor	

488	

Goat	 4	µg/mL	 PBS	 Life	

Technologies	

Ltd.	
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Mouse	

IgM	

AlexaFluor	

488	

Goat	 4	µg/mL	 PBS	 Life	

Technologies	

Ltd.	
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2.6	TUNEL	assay	

2.6.1	Staining	method	

Sections	 were	 labelled	 for	 apoptosis	 using	 the	 TUNEL	 assay	 (Millipore)	 according	 to	 the	

manufacturer’s	instructions.	All	incubations	were	at	room	temperature,	unless	stated	otherwise,	and	

took	place	in	a	humidified	incubation	chamber.	Briefly,	sections	were	digested	with	proteinase	K	for	

20	min	at	37°C	and	incubated	with	end-labelling	cocktail	for	60	min	at	37°C.	Sections	were	blocked	

with	blocking	buffer	for	20	min	and	broken	DNA	was	labelled	by	incubation	with	Avidin-FITC	for	30	

min	at	37°C.	Sections	were	nuclear	stained	with	TO-PRO-3	and	coverslipped	with	Prolong	Gold	anti-

fade	 reagent.	 Positive	 controls	were	 sections	pre-incubated	with	proteinase	K	 for	 60	min	 at	 37°C.	

Negative	controls	had	the	Avidin-FITC	incubation	step	omitted.	Labelled	sections	were	stored	in	the	

dark	prior	to	imaging	to	prevent	photobleaching.	

2.6.2	Confocal	microscopy	

1024x1024	pixel	8-bit	 images	of	 labelled	sections	were	obtained	by	confocal	microscopy	(Zeiss).	Z-

stacked	images	were	taken	in	1	µm	steps	through	the	entire	section.	Separate	channels	were	used	for	

FITC	(488	nm	laser	with	500-530	nm	bandpass	filter)	and	TO-PRO-3.	

2.6.3	Image	analysis	

Images	 were	 imported	 into	 FIJI	 and	 the	 central	 z-slice	 was	 analysed	 in	 each	 case	 to	 prevent	

inaccuracies	 caused	 by	 overlapping	 cells.	 TUNEL	 staining	 was	 quantified	 as	 mean	 green	 channel	

intensity	for	each	cell	layer,	normalised	for	negative	control	fluorescence	in	the	respective	cell	layer.	

2.7	Calcein-AM	assay	

2.7.1	Staining	method	

At	 the	 end	of	 the	 culture	 period	 explants	were	 labelled	with	 Calcein-AM	 (Biotium,	 Inc.,	 CA,	USA),	

applied	as	a	200	µL	topical	aliquot	(10	µM	in	1xPBS)	for	30	min	at	37°C.	Controls	were	incubated	with	
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the	same	volume	aliquot	of	vehicle	only.	Explants	were	washed	3x	with	1xPBS,	counterstained	with	

TO-PRO-3,	and	coverslipped	with	Prolong	Gold	anti-fade	reagent.		

2.7.2	Confocal	microscopy	

Explants	were	imaged	immediately	after	labelling	to	prevent	fading	of	fluorescence.	TO-PRO-3	staining	

was	used	to	identify	the	GCL.	Z-stacked	images	(1024x1024	pixels)	in	1	µm	intervals	through	the	entire	

GCL	were	taken	using	separate	channels	for	calcein	(488	nm	laser	with	500-530	nm	bandpass	filter)	

and	TO-PRO-3.	Images	were	taken	at	four	locations	(Figure	2.2).	
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Figure 2.2. Locations imaged for calcein staining. X=0, Y=0 µm was set at the optic nerve and images 

were collected at the four locations indicated (x=±1000 µm, y=±850 µm). 
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2.7.3	Image	analysis	

Calcein	positive	cells	were	cells	double	stained	for	TO-PRO-3	and	calcein.	The	number	of	positive	cells	

in	a	300x300	µm2	square	were	counted	in	each	quadrant	of	each	explant	and	the	mean	count	was	

calculated	as	number	of	cells/mm2.	

2.8	Diolistics	

2.8.1	Bullet	preparation	

Diolistics	bullets	were	prepared	with	modifications	to	the	protocol	described	previously	(Gan	et	al.	

2000).	200	mg	tungsten	particles	(1.7	µm	diameter)	were	split	between	two	glass	slides.	Separately,	3	

mg	 1-1ʹ-dioctade-cyl-3,3,3ʹ,3ʹ-tetramethylindocarbocyanine	 perchlorate	 (DiI)	 and	 6	 mg	 3,3	

dioctadecyloxacarbocyanine	perchlorate	(DiO)	were	dissolved	in	800	µL	methylene	chloride	and	mixed	

with	half	of	the	tungsten	particles	to	coat.	DiI/DiO-coated	tungsten	particles	were	distributed	inside	

Tefzel	 tubing	 (Bio-rad,	Hertfordshire,	UK),	which	was	 then	 sealed	at	both	ends	and	mounted	on	a	

Tubing	Prep	station	(Bio-rad)	overnight	to	ensure	even	coating.	The	tubing	was	wrapped	in	aluminium	

foil	to	protect	from	light	and	stored	in	the	dark	to	prevent	photobleaching.	

2.8.2	Diolistic	labelling	method	

DiI/DiO-coated	tubing	was	cut	into	1.2	cm	‘bullets’,	which	were	placed	inside	the	cartridge	holder	of	

a	hand-held	Helios	gene	gun	(Bio-rad,	Figure	2.3).	The	gen	gun	was	mounted	on	a	stand	(built	in-house)	

to	ensure	that	the	barrel	was	perpendicular	to	the	retinal	surface.	DiI/DiO-coated	tungsten	particles	

were	 propelled	 at	 120	 psi	 (helium)	 through	 a	 3	 µm	 polyethylene	 terephthalate	 membrane	 filter	

(Scientific	Laboratory	Supplies	Ltd.)	to	prevent	clumping.	Explants	were	incubated	at	37°C	for	30	min	

to	allow	the	dye	to	distribute	through	the	cell	membranes.	Explants	were	cut	out	of	the	culture	inserts,	

mounted	on	glass	slides	(Scientific	Laboratory	Supplies	Ltd.),	washed	with	1xPBS,	and	fixed	in	4%	PFA	

for	10	min	in	a	moist	incubation	chamber.	Explants	were	washed	with	1xPBS	and	nuclear	stained	with	
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TO-PRO-3	 for	10	min.	Explants	were	washed	with	1xPBS,	 coverslipped	with	Prolong	gold	anti-fade	

reagent,	sealed	with	nail	varnish,	and	stored	in	the	dark	prior	to	imaging.
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Figure 2.3. Hand-held gene gun for ballistic delivery of lipophilic dye-coated tungsten particles 

(diolistics). The ‘bullets’ are loaded in the cartridge holder (white arrowhead). The particles are fired 

through a 3 µm filter (black arrowhead) into the retina (black arrow), with the barrel (white arrow) at a 

distance of 5 cm from the explant. 
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2.8.3	Confocal	microscopy	

Diolistically-labelled	explants	were	imaged	by	confocal	microscopy	(Zeiss)	within	24	hours	of	labelling	

to	prevent	 fading	of	 fluorescence.	RGCs	were	 identified	as	having	a	 soma	 in	 the	GCL	and	an	axon	

projecting	towards	the	optic	nerve.	512x512	or	1024x1024	pixel	8-bit	z-stacked	images	were	taken	in	

1	µm	intervals	through	the	entire	cell,	using	separate	channels	for	each	dye	(DiI,	523	nm	laser	and	

565-615	nm	bandpass	filter;	DiO,	488	nm	argon	laser	and	500-530	nm	bandpass	filter).	The	eccentricity	

relative	to	the	optic	nerve	head	was	recorded	for	each	cell.		

2.8.4	Neuron	tracing	and	Sholl	analysis	validation	

Images	were	imported	into	FIJI,	split	into	a	single	channel	image	(8-bit),	and	the	dendritic	arbor	was	

traced	in	three-dimensions	using	the	plug-in	Simple	Neurite	Tracer	(Longair	et	al.	2011).	The	longest	

primary	dendrite	was	extended	back	to	the	soma	centre	and	Sholl	analysis	(Sholl	1953)	was	carried	

out	in	10	µm	steps	up	to	a	maximum	radius	of	300	µm.	For	sub-type	analysis,	RGCs	were	divided	into	

ON	and	OFF	cells	based	on	their	stratification	depth.	Cells	with	dendrites	terminating	in	the	first	55%	

of	the	IPL	were	classified	as	ON,	those	with	dendrites	terminating	in	the	last	45%	of	the	IPL	were	OFF,	

and	cells	with	dendrites	in	both	layers	were	bistratified.	

In	order	to	validate	the	Simple	Neurite	Tracer	Sholl	analysis	method,	62	cells	were	also	analysed	using	

the	manual	method.	Concentric	rings	were	digitally	traced	onto	the	8-bit	tracing	image	(Figure	2.4)	

and	the	number	of	dendrites	on	each	ring	were	counted	and	plotted	as	a	function	of	eccentricity.	The	

Sholl	profiles	 for	both	methods	were	almost	 identical	and	Bland-Altman	plots	did	not	 indicate	 the	

presence	of	any	systematic	errors	(Binley	et	al.	2014).		
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Figure 2.4. 8-bit tracing of RGC with digitally overlain concentric (10 µm apart) circles centred on the 

soma centre for manual Sholl analysis. The number of dendrites on each ring were counted. Arrow 

indicates axon (not counted in analysis). Scale bar: 100 µm. 
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2.8.5	Branching	index	and	dendritic	field	area	calculations	

The	branching	index	was	calculated	using	the	Sholl	analysis	output	and	equation	2.1	(Garcia-Segura	

and	Perez-Marquez	2014),	

!"#$%ℎ'$(	'$*+, = 	 ./ −	 ./12
/345

/367

. ,	

Where	,9:2 = 10	µ> 

 ,9?/ = 300	µ>		

 $ = 10	µ> 

 ./ −	 ./12 	> 0 

Equation 2.1. Branching index calculation. 

 

The	 dendritic	 field	 area	 was	 measured	 as	 the	 area	 within	 a	 polygon	 connecting	 the	 terminal	

dendrites	of	a	dendritic	arbor	(Figure	2.5).	
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Figure 2.5. Dendritic field area was measured in FIJI by drawing a polygon connecting the terminal 

dendrites of an 8-bit tracing image. Arrow indicates axon (not included in measurement). Scale bar: 

100 µm. 
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2.9	Bacterial	culture	and	plasmid	preparation	

For	the	transformation	reaction	Luria-Bertani	(LB)	agar	(Sigma-Aldrich)	was	made	at	a	concentration	

of	32	g/L	in	a	sterile	250	mL	DURAN®	bottle.	To	dissolve,	the	mixture	was	microwaved	in	30	second	

periods	until	boiling	and	translucent,	and	autoclaved	on	a	25	min	liquid	cycle	(135°C)	to	sterilise.	The	

agar	was	allowed	to	cool	to	approximately	55°C,	at	which	point	ampicillin	(40	mg/mL	stock;	0.2	µm	

filtered	 (Scientific	 Laboratory	 Supplies	 Ltd.);	 Sigma-Aldrich)	 was	 added	 1:1000	 to	 create	 a	 final	

concentration	of	40	µg/mL.	The	plates	were	poured	(5	mm	depth)	and	allowed	to	set	(20	minutes)	

with	the	lids	slightly	off	to	allow	water	to	evaporate.	The	lids	were	replaced	and	plates	stored	inverted	

to	prevent	condensation	at	4°C.	

DH5α	cells	were	used	as	competent	cells.	The	competent	cells	and	plasmids	(PSD-95-GFP,	BDNF-myc,	

CAG-GFP)	were	put	on	ice	for	2	minutes	to	defrost.	25	µL	competent	cells	and	1	µL	plasmid	were	added	

to	the	same	tube,	followed	by	incubation	on	ice	for	30	minutes.	The	cells	were	then	heatshocked	at	

42°C	for	30	seconds,	put	on	ice	for	3	minutes,	and	50	µL	SOC	was	added	to	each	tube.	The	tubes	were	

incubated	at	37°C,	200	rpm	for	60	minutes.	Finally,	the	cells	were	plated	on	LB	agar	(as	described)	

using	glass	spreaders	(Sigma-Aldrich)	and	incubated	inverted	overnight	(17-24	hours)	at	37°C.	Sterile	

10	µL	pipette	tips	were	used	to	select	individual	colonies	that	were	uniform	in	shape	and	smaller	than	

4	mm	in	diameter.	The	tips	were	placed	in	separate	T75	flasks	containing	10	mL	LB	broth	(+80	µg/mL	

ampicillin;	Sigma-Aldrich),	which	were	incubated	on	a	rotatory	incubator	at	37°C,	170	rpm	overnight	

until	cloudy.		

For	 the	mini-prep	 reaction,	 2	mL	 culture	 broth	was	 removed	 and	 the	 plasmid	 purified	 as	 per	 the	

manufacturer’s	protocol.	The	plasmid	concentration	was	measured	using	a	nanodrop.	
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2.10	Enzyme-linked	immunosorbent	assay	(ELISA)	

2.10.1	Tissue	preparation	

Explants	were	cultured	as	described.	At	the	end	of	the	culture	period	retinas	(left	and	right	retinas	

pooled)	were	gently	placed	into	tubes	containing	50	µL	RIPA	buffer	+	10	µL	protease	inhibitor	(Roche,	

Welwyn	Garden	City,	UK)	and	snap	frozen	in	liquid	nitrogen.	Samples	were	stored	at	-80°C.	

Retinas	were	 re-suspended	 in	 a	 total	 of	 300	 µL	 lysis	 buffer	 (3.5	mL	 RIPA	 buffer	 +	 35	 µL	 protease	

inhibitor	 +	 35	 µL	 phosphatase	 inhibitor	 +	 17.5	 µL	 6-amihexanoic	 acid	 +	 3.5	 µL	 aprotinin	 +	 3.5	 µL	

phenotroline)	 and	 sonicated	 on	 ice	 with	 a	 probe	 sonicator	 until	 homogeneity	 was	 achieved.	

Homogenates	were	kept	on	ice	for	30	min,	sonicated	on	ice,	and	centrifuged	at	1500	rpm,	4°C	for	10	

min.	The	supernatants	were	transferred	to	clean	Eppendorf	tubes	and	the	pellets	discarded.		

2.10.2	Bicinchoninic	acid	(BCA)	assay	

The	protein	concentrations	of	homogenates	were	measured	using	a	BCA	kit	(Life	Technologies	Ltd.).	

Nine	BSA	protein	standards	(0.20	mg/mL,	0.15	mg/mL,	0.10	mg/mL,	0.075	mg/mL,	0.050	mg/mL,	0.025	

mg/mL,	0.0125	mg/mL,	0.00625	mg/mL,	0	mg/mL)	were	prepared	and	100	µL	of	each	standard	was	

added	to	100	µL	working	solution	(50	parts	reagent	A,	1	part	reagent	B),	in	triplicate,	in	a	96-well	plate.	

Tissue	samples	were	run	in	duplicate;	to	each	well	5	µL	sample	was	added	to	95	µL	dH2O	+	100	µL	

working	solution.	The	plate	was	covered	and	incubated	at	37°C	for	1	hour	and	the	absorbance	at	562	

nm	was	measured	using	a	luminometer	(Wallac	Victor2	1420	Multilabel	Counter;	Perkin	Elmer,	Akron,	

Ohio,	USA).	

2.10.3	Sandwich	ELISA	method	

The	Sandwich	ELISA	method	is	outlined	in	figure	2.6.	The	wells	of	a	96-well	plate	were	coated	with	

200	µL/well	of	3	µg/mL	mAb#1	in	coating	buffer	(50	mM	NaHCO3,	50	mM	Na2CO3,	pH	9.7).	The	plate	

was	covered	and	incubated	overnight	at	RT.	The	coating	solution	was	removed	and	the	plate	washed	

3x	with	washing	buffer	(1xPBS,	0.1%	Tween-20).	200	µL/well	blocking	buffer	(1xPBS,	4%	BSA	(Sigma-
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Aldrich))	was	incubated	for	2	hours	at	30°C.	The	plate	was	washed	3x	with	washing	buffer.	150	µL/well	

incubation	buffer	(0.1	M	KH2PO4,	0.1	M	Na2HPO4,	pH	7.6)	was	added,	along	with	50	µL/well	sample	or	

standard	 (25	ng/mL,	12.5	ng/mL,	6.25	ng/mL,	3.13	ng/mL,	1.56	ng/mL,	0.781	ng/mL,	0.391	ng/mL,	

0.195	ng/mL,	97.7	pg/mL,	48.8	pg/mL,	24.4	pg/mL,	12.2	pg/mL,	0	pg/mL)	in	triplicate,	and	incubated	

for	3	hours	on	a	rotating	platform	(300	rpm)	at	RT.	The	plate	was	washed	5x	with	washing	buffer	and	

200	µL/well	1:4000	(diluted	in	 incubation	buffer	+	4%	BSA)	mAb#9	(3.8	µg/µL	stock)	conjugated	to	

horseradish	peroxidase	 (HRP;	Roche)	was	added	and	the	plate	 incubated	for	3	hours	on	a	rotating	

platform	 (300	 rpm)	 at	 RT.	 The	 plate	 was	 washed	 5x	 with	 washing	 buffer.	 100	 µL/well	

chemiluminescent	substrate	(Roche)	was	added	and	luminescence	measured	using	a	luminometer.
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Figure 2.6. Sandwich ELISA method. (A) The plate is coated with mAb#9. (B) After blocking, the 

homogenised sample tissue is added to the plate and the target protein (BDNF) binds to the antibody. 

(C) The detecting Ab (mAb#9 conjugated to HRP) is added and binds to BDNF. (D) The substrate 

(luminol) is added and HRP catalyses the oxidation of luminol into 3-aminophthalate. This reaction is 

accompanied by a 428 nm emission, which is detected by the luminometer and can be converted into 

protein concentration. 
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2.11	NSC	culture	

All	work	with	NSCs	was	carried	out	in	a	laminar	flow	hood	using	sterile	equipment	to	minimise	risk	of	

contamination.	NSCs	were	originally	isolated	from	lysed	whole	brains	of	transgenic	C57/Bl6	mice	with	

GFP	 downstream	 of	 the	 actin	 promoter.	 NSCs	were	 cultured	 in	 12	mL	 DMEM/F-12	medium	 (+)L-

glutamine	(+)HEPES,	supplemented	as	outlined	in	Table	2.4,	at	37°C,	5%	CO2.	The	culture	medium	was	

made	up	in	a	sterile	100	mL	DURAN®	bottle	and	used	immediately.	Cells	were	cultured	in	upright	T25	

flasks	to	prevent	adherence	to	the	side	of	the	flask,	which	stimulates	auto-differentiation.	Cells	were	

grown	as	neurospheres	and	split	weekly	to	twice-weekly	to	prevent	cell	death	 in	the	centre	of	the	

neurospheres.	To	split	NSCs,	T25	flask	contents	were	decanted	into	25	mL	universal	tubes	and	spun	at	

1000	 rpm	 for	 5	min.	 The	medium	was	 aspirated,	 cells	were	 re-suspended	 in	 2	mL	Accutase®	 (Life	

Technologies	Ltd.)	and	incubated	in	a	37°C	water	bath	for	10-30	min,	or	until	the	neurospheres	were	

no	longer	visible.	Cells	were	then	spun	at	1000	rpm	for	5	min,	the	Accutase®	was	aspirated	and	cells	

were	re-suspended	in	the	previously	aspirated	12	mL	medium.	Finally,	cells	were	split	into	2	sterile	

T25	 flasks	 (6	 mL	 each)	 and	 flasks	 were	 topped	 up	 to	 12	mL	 using	 freshly	 prepared	 DMEM/F-12,	

supplemented	as	described	previously,	and	flasks	were	replaced	at	37°C,	5%	CO2.	
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Table 2.4. Culture medium and supplements for NSC culture. 

Component	 Concentration	 Role	 Company	

DMEM/F-12	(+)L-

glutamine	

(+)HEPES	

As	supplied	 Maintenance	of	mammalian	

cells	in	culture.	

Life	Technologies	

Ltd.	

Penicillin-

Streptomycin	

1%	(100	U/mL	

penicillin;	100	

µg/mL	

streptomycin)	

Antibiotics	to	minimise	

contamination	caused	by	both	

gram-positive	and	gram-

negative	bacteria.	

Life	Technologies	

Ltd.	

Non-Essential	

Amino	Acids	

Solution	

1%	 Growth	and	viability	of	cells.	 Life	Technologies	

Ltd.	

B-27	supplement	 2%	 Supports	growth	and	viability	

of	CNS	neurons.	

Life	Technologies	

Ltd.	

Fibroblast	growth	

factor	

10	ng/mL	 Maintenance	of	stem	cells	in	

an	undifferentiated	state.	

Peprotech,	London,	

UK	

Epidermal	growth	

factor	

10	ng/mL	 Mitogenic	factor.	 Peprotech	

Accutase®	 As	supplied	 Protease/collagenase	to	

dissociate	NSCs.	Gentler	action	

than	trypsin.	

Life	Technologies	

Ltd.	
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2.12	Magnetic	field	manipulation	of	NSC	migration	

Ten	 µg/mL	 laminin	was	 prepared	 by	 diluting	 1	mg/mL	 stock	 laminin	 in	 PBS	 (pH	 7.4),	 followed	 by	

filtration	through	a	0.2	µm	filter	to	sterilise.	1.5	mL	10	µg/mL	laminin	was	added	to	each	35	mm	culture	

dish	and	allowed	to	coat	the	bottom	of	the	dish	for	2	h	in	a	class	II	hood.	Dishes	were	washed	with	

sterile	PBS	and	allowed	to	dry	for	15	min.	Laminin-coated	dishes	were	stored	for	up	to	1	month,	sealed,	

at	4°C	prior	to	use.		

To	seed	NSCs,	the	laminin-coated	dishes	were	first	pre-conditioned	with	1.5	mL	DMEM/F-12	per	dish	

for	5	min	at	RT.	Meanwhile,	NSCs	were	dissociated	with	Accutase®	to	obtain	single	cells	in	suspension.	

The	medium	in	the	pre-conditioned	dishes	was	replaced	with	3	mL	NSC	suspension,	plated	at	a	density	

of	1.2-1.9	X	105	cells/cm2.	The	cells	were	incubated	overnight	at	37°C,	5%	CO2	to	allow	adherence	to	

laminin.			

Iron	 nanoparticles	 (100	 nm	 diameter;	 nTMag,	 Nanotherics	 Ltd.,	 Newcastle	 under	 Lyme,	 UK)	were	

introduced	into	the	NSCs	using	a	magnefect	nano	II	(Nanotherics).	1.5	µL	or	3	µL	mnps	were	inserted	

into	the	culture	medium	of	the	seeded	NSCs	and	the	35	mm	dish	was	placed	on	one	of	the	35	mm	

magnets	of	 the	6-well	 plate	magnefect	plate.	 The	magnefect	was	placed	at	37°C,	 5%	CO2	and	 the	

introduction	of	nanoparticles	into	the	cells	was	stimulated	for	30	min	using	0.2	mm	displacement	at	2	

Hz.	 The	medium	was	 replaced	with	Accutase®	 and	 cells	were	 incubated	 at	 37°C,	 5%	CO2	 for	 5-10	

minutes	until	>90%	of	cells	had	dissociated	from	the	laminin.	Cells	were	spun	down	at	1000	rpm	for	5	

minutes	and	resuspended	in	culture	medium	in	a	clean	35	mm	dish.	NSCs	were	immediately	imaged	

by	brightfield	microscopy	using	an	inverted	lens	(X10).	Images	of	NSCs	in	suspension	were	collected	

every	2.5	seconds	for	a	total	of	125	seconds,	and	images	of	NSCs	on	the	bottom	surface	of	the	dish	

were	collected	every	minute	for	a	total	of	9	minutes.	To	investigate	the	effect	of	magnetic	fields	on	

NSC	migration,	a	6.7	kg,	23	kg	or	38	kg-pull	permanent	NdFeB	magnet	(Supermagnete,	Germany)	or	a	

25	kg-pull	electromagnet	(EmagnetsUK,	Hertfordshire,	UK;	operated	at	0.2	A,	24	VDC)	was	positioned	

against	the	edge	of	the	culture	dish	(6.7	kg-pull	magnet)	or	10	mm	away	from	the	edge	of	the	culture	
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dish	(all	other	magnets).	The	magnet	properties	are	outlined	in	Table	2.5	and	the	theoretical	magnetic	

field	strengths	are	shown	in	Figure	2.7.	The	imaging	protocol	described	previously	in	the	absence	of	

magnet	were	then	repeated.	 Imaging	was	always	carried	out	 immediately	after	the	introduction	of	

mnps	as	nanoparticles	are	degraded	by	cells	as	part	of	their	normal	iron	metabolism	pathway	(Bulte	

and	Kraitchman	2004)	and	to	prevent	NSCs	adhering	to	the	dish	surface.	

The	 magnetic	 field	 strengths	 for	 all	 the	 magnets	 at	 the	 distances	 used	 were	 measured	 using	 a	

Gaussmeter	 (built	 in-house,	 Dr.	 Turgut	 Meydan	 group,	 Wolfson	 Centre	 for	 Magnetics,	 Cardiff	

University).	The	theoretical	field	strengths,	calculated	using	Equation	2.2,	are	shown	in	Figure	2.7.	
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Table 2.5. Magnet properties for migration of NSCs. All magnets are cylindrical. Flux density values 

from http://www.ndfeb-info.com/neodymium_grades.aspx, last accessed 27.02.16. 

Magnet	(grade)	 Diameter	(mm)	 Height	(mm)	 Residual	flux	

density,	Br	(mT)	

Pull-force	(kg)	

NdFeB	(N42)	 15	 8	 1280	 6.7	

NdFeB	(N42)	 30	 15	 1280	 23	

NdFeB	(N45)	 35	 20	 1320	 38	

Electromagnet	 18	 20	 -	 25	

 

	

! B = 	
!"

2
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−
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Where			 B	=	Magnetic	flux	density	

	 	 X	=	distance	from	magnet	surface	

	 	 Br	=	Residual	flux	density	

	 	 H	=	Height	of	magnet	

	 	 R	=	Radius	of	magnet	

	

Equation 2.2. Magnetic field strength, B, for permanent cylindrical magnets at a given distance from 

the magnet surface (https://product.tdk.com/en/products/magnet/pdf/e371_circuit.pdf, last accessed 

28.02.16). 
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Figure 2.7. Hypothetical magnetic field strengths of all NdFeB magnets used as a function of distance 

from the magnet surface calculated using the properties in Table 2.5 and Equation 2.2. 
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Images	were	exported	as	TIFF	files	and	imported	into	FIJI	for	cell	tracking	analysis.	To	measure	the	

migration	paths	of	the	cells,	the	manual	tracking	plugin	(http://fiji.sc/Manual_Tracking;	last	accessed	

14.01.16)	was	used	to	track	all	cells	present	in	the	first	1200	µm	from	the	edge	of	the	dish	next	to	the	

magnet	 surface	 (6.7	 kg-pull	 magnet)	 or	 in	 the	 first	 900	 µm	 from	 the	 edge	 of	 the	 dish	 (all	 other	

magnets).	 The	 track	 data	 were	 then	 imported	 into	 Chemotaxis	 plugin	

(http://ibidi.com/xtproducts/en/Software-and-Image-Analysis/Manual-Image-Analysis/Chemotaxis-

and-Migration-Tool;	 last	 accessed	 14.01.16),	 which	 was	 used	 to	 analyse	 the	 mean	 accumulated	

distance,	mean	euclidean	distance	(figure	2.8),	mean	velocity,	x	forward	migration	index,	y	forward	

migration	index,	x	centre	of	mass,	and	y	centre	of	mass	for	all	experiments.	Equations	S1-S4	for	all	

calculated	indices	can	be	found	in	the	Appendix.	
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Figure 2.8. The accumulated distance is calculated as the distance covered by a cell throughout its 

migration track. The euclidean distance is the straight-line distance connecting the start and end 

positions of the cell, as shown. Both distances are calculated automatically using the Chemotaxis 

plugin. 
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2.13	Cell	transplantation	into	explants	

To	test	 the	depth	and	speed	of	migration	of	NSCs	within	 tissue,	 retinal	explants	were	prepared	as	

described	in	2.2	and	a	topical	2	mL	aliquot	of	NSCs	immediately	post-splitting	(re-suspended	in	NSC	

culture	medium)	at	a	density	of	1	X	105	cells/cm2	was	placed	directly	on	the	explant.	The	explant	was	

incubated	at	37°C,	5%	CO2	for	3	h	with	the	35	mm	dish	positioned	on	top	of	a	38	kg-pull	magnet,	or	

on	the	incubator	shelf	only	as	control.	At	the	end	of	the	culture	period	the	explant	was	fixed	in	4%	PFA	

for	15	minutes,	nuclear	 stained	using	TO-PRO-3	 (10	min),	and	coverslipped	with	Slo-fade	diamond	

mountant	(Invitrogen).	Explants	were	immediately	imaged	by	confocal	microscopy	using	the	633	nm	

laser	for	TO-PRO-3	visualisation,	and	the	488	nm	argon	laser	(500-530	nm	bandpass	filter)	for	GFP.	

The	stage	was	centred	on	the	optic	nerve	(X=0,	Y=0)	and	four	z-stacked	images	in	each	quadrant	of	

the	retina	were	collected.	Z-stacked	1024x1024	pixel	8-bit	images	were	taken	in	1	µm	slices	from	the	

start	of	the	GCL	to	the	INL.	The	green	channel	settings	were	kept	constant	for	all	images.	Images	were	

imported	into	FIJI	and	in	each	case	the	depth	of	the	IPL	was	measured.	All	GFP+ve	cells	were	drawn	

around	using	the	polygon	tool	and	the	green	channel	intensity	was	measured	in	every	slice.	The	green	

channel	intensity	was	expressed	as	%	IPL	depth.
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Chapter	3:	Characterisation	of	the	Mouse	Retinal	Explant	

3.1	Introduction	

The	murine	retinal	explant	remains	a	popular	model	for	the	investigation	of	CNS	disorders	(Johnson	

and	Martin	2008;	Guerin	et	al.	2011;	Wood	et	al.	2011).	Since	the	neuronal	cell	 loss	resulting	from	

axotomy	performed	at	the	time	of	dissection	is	a	common	end	point	in	all	neurodegenerative	diseases,	

this	 model	 has	 widespread	 applications.	 Further,	 short	 experimental	 time	 and	 the	 acquisition	 of	

translatable	data	are	major	advantages	of	the	explant	over	in	vivo	and	in	vitro	models,	respectively.	

The	primary	readout	for	this	model	is	typically	cell	loss,	which	fails	to	provide	information	regarding	

synaptic	 and	 structural	 changes	 to	 the	 cells	 prior	 to	 cell	 death,	 nor	 does	 it	 allow	 investigation	 of	

mechanisms	under	a	pathological	state.	The	lack	of	morphometric	data	is	a	major	limitation	of	this	

work	to	date.		

Predicated	on	widespread	evidence	 that	dendritic	pruning	precedes	cell	 loss	 in	neurodegenerative	

diseases	 including	 Parkinson’s	 disease	 (Patt	 et	 al.	 1991),	 Alzheimer’s	 disease	 (Selkoe	 2002)	 and	

glaucoma	(Weber	et	al.	1998),	I	investigated	whether	morphometric	analysis	of	RGC	dendritic	arbors	

could	provide	information	about	neuronal	cell	health.	Sholl	analysis	(Sholl	1953)	quantifies	dendrites	

as	a	function	of	eccentricity,	with	loss	of	distal	dendrites	manifesting	as	a	leftward	shift	in	the	Sholl	

profile,	 and	 a	 reduced	peak	 amplitude	 indicates	 a	 loss	 of	 proximal	 dendrites.	 The	data	 from	Sholl	

analysis	can	be	used	to	derive	the	branching	index,	described	by	Garcia-Segura	and	Perez-Marquez	

(Garcia-Segura	and	Perez-Marquez	2014),	which	quantifies	the	shape	of	the	dendritic	arbor	(Figure	

3.1).	
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Figure 3.1. The branching index is an indicator of cell shape. A small branching index indicates a low 

number of branching events or that branching is predominantly proximal. A large branching index 

indicates a high number of branching events or that branching mainly occurs distally. Note that the two 

cells on the far right have the same number of dendrites, but due to different branching eccentricities 

they have very different branching indices. The branching index is calculated using Equation 2.1 (see 

Materials and Methods). 
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In	order	to	quantify	dendritic	arbors,	cells	must	be	discretely	labelled.	Morphologically,	RGCs	are	an	

extremely	 heterogeneous	 population	 of	 neurons;	 their	 shape	 varies	 with	 sub-type	 as	 well	 as	

eccentricity	(Sun	et	al.	2002;	Coombs	et	al.	2006).	In	order	to	reduce	bias,	it	is	essential	that	labelling	

is	random.	Techniques	such	as	the	use	of	transgenic	animals	that	rely	on	reporter	gene	expression	are	

inherently	 biased	 since	 they	 select	 for	 the	 healthiest	 cells	 that	 can	 afford	 the	 energy	 demands	 of	

translating	reporter	proteins.	Consequently,	the	unhealthiest	cells,	which	may	have	undergone	the	

greatest	 morphological	 changes,	 are	 less	 likely	 to	 express	 the	 reporter	 protein,	 thus	 resulting	 in	

underreporting	 of	 dendritic	 pruning,	 as	 demonstrated	 by	 Williams	 et	 al.	 (2013a).	 Further,	 the	

expression	of	Thy1,	a	commonly	used	driver	for	RGC-specific	expression,	has	been	found	to	be	both	

downregulated	(Huang	et	al.	2006)	and	upregulated	(Lee	et	al.	1998;	Astafurov	et	al.	2014)	following	

optic	nerve	 injury	or	 stress.	 Single	 cell	 filling	 is	 technically	 challenging	and	may	be	biased	 towards	

larger	cells.	Retrograde	labelling	commonly	results	in	dense	staining	patterns	and	requires	an	intact	

axon,	 which	may	 result	 in	 bias	 towards	 cells	 resistant	 to	 axonal	 degeneration	 or	 cells	 with	more	

efficient	 axonal	 transport	 machinery.	 Ballistic	 delivery	 of	 dye	 particles	 (diolistics)	 or	 plasmids	

(biolistics)	labels	cells	in	a	random	manner.	Since	biolistics	requires	a	2	d	incubation	period	to	permit	

sufficient	expression	 levels	of	XFP	and	 the	only	 requirement	 for	 successful	diolistics	 labelling	 is	 an	

intact	plasma	membrane,	I	used	diolistics	to	label	RGCs	for	their	morphometric	analysis	over	a	3	day	

period.	This	was	compared	to	cell	counts	data	in	order	to	delineate	degenerative	events	in	this	model.	

3.2	Gross	tissue	morphology	

En-face	photographs	were	taken	of	4	explants	immediately	after	dissection,	after	6	h,	1	d	and	daily	

thereafter	up	to	14	d.	Images	were	used	to	measure	the	surface	area	of	explants	in	order	to	account	

for	potential	oedema,	which	has	been	reported	to	occur	in	organotypic	culture	(Wurm	et	al.	2009).	

Measurements	 indicated	 no	 significant	 change	 in	 area	 (P>0.05	 by	 ANOVA	 with	 TUKEY	 post-hoc)	

throughout	the	14	d	culture	period	(Figure	3.2).
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Figure 3.2 Gross tissue area measurements of explants cultured for up to 14 d. (a) En face 

photographs of explants at each time point. (b) Mean areas of explants. P>0.05, ANOVA with TUKEY 

post-hoc. Scale bar: 1 mm. Error bars: SEM. N=4 retinas, 4 animals for all time points. 
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3.3	Retinal	layer	architecture	

Cryosections	of	18	explants	cultured	for	up	to	14	d	were	nuclear	stained,	with	half	of	sections	in	each	

group	defined	as	peripheral	and	the	remainder	as	central.	To	minimise	the	effects	of	oedema,	linear	

cell	counts	of	the	GCL	were	made.	Cell	layer	thickness	was	measured	for	the	INL	and	ONL	to	complete	

histological	analysis	of	cell	layers.		

GCL	 nuclear	 counts	 remained	 relatively	 constant	 until	 14	 d,	when	 there	was	 a	 decrease	 of	 37.5%	

(P=0.001	by	ANOVA	with	Tukey	post-hoc).	The	INL	and	ONL	both	showed	thinning	after	3	d,	which	

subsequently	plateaued.	The	INL	thickness	reduced	by	24.5%	(P<0.001	by	ANOVA	with	TUKEY	post-

hoc)	after	3	d,	and	25.2%	(P<0.001)	by	14	d.	The	ONL	thickness	reduced	by	16.4%	(P<0.001	by	Mann-

Whitney	with	Bonferroni	correction)	after	3	d,	and	by	25.3%	(P<0.001)	by	14	d	(Figure	3.3).	
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Figure 3.3. Retinal cell layer measurements for explants cultured for up to 14 days, as shown. (a) 

Confocal images of TO-PRO-3 stained sagittal cryosections. (b) Nuclei counts for GCL (left) and 

measured thicknesses of INL (middle) and ONL (right). **P<0.005, ***P<0.001, ANOVA with TUKEY 

post-hoc (GCL and INL), Mann-Whitney with Bonferroni correction (ONL). Scale bar: 100 µm. Error 

bars: SEM. N=5 retinas (0 days), n=6 retinas (3 days), n=3 retinas (7 days), n=4 retinas (14 days). 

GCL=ganglion cell layer, INL=inner nuclear layer, ONL=outer nuclear layer. At least 3 sections from 

each retina were used at each time point. 
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3.4	Thy1.2	and	active	caspase-3	levels	

Frozen	sections	of	explants	cultured	for	0	d,	3	d,	7	d	and	14	d	were	analysed	immunohistochemically	

for	the	expression	of	neuronal	marker	Thy1.2	and	apoptotic	marker	active	caspase-3.	Thy1.2	levels	

were	significantly	higher	in	the	GCL	and	IPL	relative	to	the	other	layers,	and	could	therefore	be	used	

to	 successfully	 identify	 the	GCL	 at	 all	 time	 points.	 In	 the	GCL	 and	 IPL	 Thy1.2	 staining	 significantly	

increased	after	day	0	(3.5-fold	increase	at	day	3,	P<0.005,	ANOVA	with	TUKEY	post-hoc),	and	remained	

elevated	for	the	remainder	of	the	experiment	(Figure	3.4a-b).	The	number	of	active	caspase-3	positive	

cells	in	the	GCL	and	INL	showed	a	trend	of	increasing	with	the	number	of	days	cultured	but	this	did	

not	reach	statistical	significance	(P>0.05,	Mann-Whitney	tests	with	Bonferroni	correction;	Figure	3.4c-

e).	 After	 14	 d	 active	 caspase-3	 staining	 increased	 4.4-fold	 (P<0.05,	 Mann-Whitney	 tests	 with	

Bonferroni	correction)	in	the	ONL	(Figure	3.4f).
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Figure 3.4. Immunohistochemistry staining for the neuronal marker Thy1.2 and the apoptotic marker 

active caspase-3. (a) Frozen sections of retinas cultured for up to 14 d, as indicated. White arrows 

indicate active caspase-3 positive cells in magnified sections of the above images, as indicated. Scale 

bars: 100 µm (top and middle); 10 µm (bottom). (b) Quantification of Thy1.2 staining in each layer 

measured by mean green channel intensity. **P<0.005, ***P<0.001, ANOVA with TUKEY post-hoc. (c) 

The number of active caspase-3 positive cells in the GCL. (d) The number of active caspase-3 positive 

cells in the GCL expressed as a percentage of total number of cells in the GCL. (e) The number of 

active caspase-3 positive cells in the INL. (f) The number of active caspase-3 positive cells in the ONL. 

*P<0.05, Mann-Whitney with Bonferroni correction. Error bars: SEM. Thy1.2: n=3 retinas, 2 animals (0 

d); n=3 retinas, 3 animals (3 d); n=3 retinas, 3 animals (7 d); n=5 retinas, 5 animals (14 d). Active 

caspase-3: n=5 retinas, 3 animals (0 d); n=3 retinas, 3 animals (3 d); n=3 retinas, 3 animals (7 d); n=5 

retinas, 5 animals (14 d).
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3.5	Cell	viability	in	the	degenerating	explant	

Frozen	sections	of	explants	cultured	for	0	d,	3	d,	7	d	and	14	d	were	analysed	for	DNA	breakdown,	a	

marker	of	apoptosis,	by	TUNEL	assay.	 In	all	 layers	 there	was	minimal	 staining	at	day	0.	 In	 the	GCL	

staining	peaked	at	day	3	(4.0-fold	increase,	P<0.001).	In	the	other	two	layers	staining	peaked	at	day	7	

(INL	3.5-fold	 increase,	P<0.05;	ONL	24-fold	 increase,	P<0.001,	Mann-Whitney	tests	with	Bonferroni	

correction	for	all;	Figure	3.5).
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Figure 3.5. TUNEL staining. (a) Frozen sections of retinal explants cultured for up to 14 d labelled for 

DNA breakdown using TUNEL assay. TUNEL positive cells are stained for both FITC (green) and TO-

PRO-3 nuclear stain (blue). Positive controls were sections pre-incubated in proteinase K for 1 hour. 

Negative controls had no incubation with Avidin-FITC. White arrows indicate TUNEL positive cells in 

magnified sections of the above images, as indicated. Scale bars: 100 µm (top), 10 µm (bottom). (b) 

Quantification of TUNEL staining in each layer measured by green channel fluorescence. *P<0.05, 

**P<0.005, ***P<0.001 (Mann-Whitney with Bonferroni correction). Error bars: SEM. N=4 retinas, 3 

animals (0 d); n=4 retinas, 4 animals (3 d); n=3 retinas, 3 animals (7 d); n=3 retinas, 3 animals (14 d). 
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The	number	of	viable	cells	was	quantified	in	13	whole,	unfixed	explants	cultured	for	0	d,	1	d,	7	d	and	

14	d	using	the	calcein-AM	assay.	Calcein-AM	passes	across	cell	membranes	and	if	the	cell	contains	

active	esterases,	 the	AM	is	cleaved,	allowing	the	fluorescent	protein,	calcein,	 to	be	quantified	as	a	

measure	of	cell	viability	(Decherchi	et	al.	1997).	Although	there	was	a	trend	towards	a	decrease	 in	

calcein	positive	cells	after	1	d,	this	did	not	reach	statistical	significance	at	any	point	(P>0.05,	ANOVA	

with	 TUKEY	 post-hoc).	 Indeed,	 it	 was	 noted	 that	 there	 was	 a	 large	 amount	 of	 variation	 between	

explants	at	the	same	culture	period,	as	indicated	by	the	large	error	bars	in	Figure	3.6.	
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Figure 3.6. Calcein staining. (a) En face images of retinal wholemounts stained with calcein (green) 

and TO-PRO-3 (blue) immediately after dissection (0 d) and after 1, 7 and 14 days in culture, as 

indicated. Cells stained for both calcein and TO-PRO-3 were counted in the central 300x300 µm, as 

shown. Scale bars: 100 µm. (b) Quantification of calcein staining measured as number of calcein 

positive cells per mm2 at the same locations in each explant (x=1000 µm, y=850 µm; x=1000 µm, y=-

850 µm; x=-1000 µm, y=-850 µm; x=-1000 µm, y=850 µm where the origin is the optic nerve as 

described in Figure 2.2). Error bars: SEM. N=4 retinas, 4 animals (0 d), n=3 retinas, 3 animals (1 d), 

n=3 retinas, 3 animals (7 d), n=3 retinas, 3 animals (14 d). P>0.05, ANOVA with TUKEY post-hoc. 
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3.6	Morphometric	analysis	of	RGCs	over	3	days	

One	hundred	and	ninety-five	RGCs	from	fifty	explants	(n=38	animals	of	both	sex,	aged	1.5	–	5	months)	

cultured	for	0	d,	6	h,	1	d,	2	d	and	3	d	were	labelled	diolistically	and	their	dendritic	arbors	quantified	by	

Sholl	analysis.	There	was	an	obvious	loss	of	dendrites	over	the	3	d	culture	period	(Figure	3.7a-c),	which	

was	quantified	as	a	leftward	shift	in	the	Sholl	profile	over	the	first	24	h,	proceeded	by	a	reduction	in	

peak	 amplitude	 between	 day	 1	 and	 day	 2	 (Figure	 3.7d).	 The	 Sholl	 area	 under	 the	 curve	 (AUC)	

decreased	by	14.5%	(P<0.05)	after	6	h,	and	continued	to	decrease	by	a	maximum	of	56.7%	(P<0.001,	

Mann-Whitney	tests	with	Bonferroni	correction	for	both)	at	day	3	(Figure	3.7e).	The	branching	index	

decreased	by	41.9%	(P<0.005,	ANOVA	with	TUKEY	post-hoc)	after	1	d	and	remained	relative	constant	

thereafter	(Figure	3.7f).	

In	 order	 to	 account	 for	 sub-type	 bias,	 all	 RGCs	 were	 grouped	 based	 on	 stratification	 depth	 and	

categorised	as	ON,	OFF	or	bistratified	(see	section	2.8.4).	There	was	no	significant	difference	in	Sholl	

AUC	between	sub-groups	within	the	same	culture	period	(P>0.05).	Sholl	AUC	showed	a	general	trend	

of	reducing	with	increased	culture	period,	irrespective	of	sub-group.	ON	cells	showed	a	reduction	in	

Sholl	AUC	of	49.0%	(P<0.001)	after	2	d	and	61.0%	(P<0.001)	after	3	days	(Figure	3.7g).	OFF	cells	had	a	

decreased	Sholl	AUC	of	37.9%	(P<0.005)	after	1	day	and	30.1%	(P<0.05)	after	2	days	(Figure	3.7h).	The	

Sholl	 AUC	 of	 ON-OFF	 cells	 was	 reduced	 by	 49.9%	 (P<0.05,	 Mann-Whitney	 tests	 with	 Bonferroni	

correction	for	all)	after	2	days	(Figure	3.7i).
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Figure 3.7 (previous page). Morphometric analysis of RGCs. (a) Representative fluorescent images 

of RGCs labelled by diolistics after 0 days, 6 hours, 1 day, 2 days, and 3 days explant culture, as shown. 

Images are 512x512 pixels (0 d) or 1024x1024 pixels (rest). Scale bars: 100 µm. Arrows indicate axons. 

(b) Locations of all analysed RGCs at each time point where the origin in the optic nerve. All plots show 

no evidence of bias in terms of eccentricity. (c) Diagram of prepared explant for orientation of location 

plots. D = dorsal, T = temporal. Scale bar: 1 mm. (d) Sholl profiles for RGCs at each time point, with 

the number of cells indicated. (e) Sholl AUC at each time point calculated using the trapezoidal model. 

(f) Branching index for RGCs at each time point, calculated using the Sholl analysis output as described 

in chapter 2.8.5. (g) Sholl AUC plots for ON stratifying cells only. N=28 cells (0 d), n=14 cells (6 h), n=13 

cells (1 d), n=26 cells (2 d), n=28 cells (3 d). (h) Sholl AUC plots for OFF stratifying cells only. N=12 

cells (0 d), n=4 cells (6 h), n=8 cells (1 d), n=8 cells (2 d), n=5 cells (3 d). (i) Sholl AUC plots for ON-

OFF stratifying cells only. N=11 cells (0 d), n=6 cells (6 h), n=11 cells (1 d), n=7 cells (2 d), n=4 cells (3 

d). *P<0.05, **P<0.005, ***P<0.001 (Mann-Whitney tests with Bonferroni correction for all Sholl AUC; 

ANOVA with TUKEY post-hoc for branching index). Error bars: SEM.  

	

To	check	that	labelling	was	random,	all	61	cells	labelled	at	0	d	were	classified	according	to	the	RGC	

classification	system	outlined	by	Sun	et	al.	using	soma	diameter,	DF	diameter	and	stratification	depth	

(Sun	et	al.	2002).	The	proportion	of	cells	in	each	classification	group	were	found	to	be	similar	to	those	

reported	by	Sun	et	al.	and	more	importantly,	there	was	a	good	spread	of	different	sub-types	of	RGC	

labelled	(Table	3.1).	
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Table 3.1. Proportion of RGC sub-types from 0 d explants classified according to Sun et al., 2002. 

Group	 Number	 %	of	population	 %	in	Sun	et	al.	

A1	 2	 3.3	 4.5	

A2	 8	 13.1	 5.5	

Total	A	 10	 16.4	 10.0	

B1	 4	 6.6	 4.5	

B2	 2	 3.3	 9.0	

B3	 11	 18.0	 10.6	

B4	 3	 4.9	 5.7	

Total	B	 20	 32.8	 29.8	

C1	 1	 1.6	 3.1	

C2	 8	 13.1	 10.2	

C3	 0	 0.0	 2.4	

C4	 2	 3.3	 5.9	

C5	 3	 4.9	 11.2	

C6	 4	 6.6	 4.5	

Total	C	 18	 29.5	 37.3	

D1	 3	 4.9	 7.3	

D2	 10	 16.4	 15.5	

Total	D	 13	 21.3	 22.8	
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In	order	to	check	that	there	were	no	confounding	variables	that	may	have	affected	Sholl	analysis	data,	

a	multiple	regression	analysis	was	carried	out	on	all	Sholl	AUC	results	from	all	explants	cultured	for	0	

–	3	days.	The	dependent	variable	was	AUC,	and	the	independent	variables	were	culture	period,	age,	

and	sex.	This	regression	model	was	described	to	be	a	good	fit	of	the	data	(P<0.001,	ANOVA).	Culture	

period	was	the	only	explanatory	variable	of	Sholl	AUC	(B	=	-228,	P<0.001,	Table	3.2),	indicating	that	

the	length	of	culture	period	was	the	only	factor	that	caused	a	change	in	the	RGC	dendritic	morphology.		
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Table 3.2. Multiple regression model exploring predictive factors of Sholl AUC (dependent variable). In 

this model culture period (0=0 d, 1=6 h, 2=1 d, 3=2 d, 4=3 d), age (number of months), and sex (1=male, 

2=female) were predictors. 

Variable	 Coefficient	(B)	 P	

Culture	period	 -228	 7.08	X	10-10	

Age	 93.6	 0.126	

Sex	 -82.4	 0.410	
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3.7	Pan-caspase	inhibition	

To	explore	 the	 involvement	of	pan-caspase	activation	 in	dendritic	atrophy	of	RGCs	and	to	 test	 the	

sensitivity	 of	 the	 morphometric	 readout	 in	 the	 explant	 model	 9	 explants	 (n=6	 animals,	 aged	 3-4	

months,	female)	were	cultured	with	the	pan-caspase	inhibitor	Q-VD	for	2	d.	A	2	d	treatment	window	

was	selected	based	on	the	evidence	that	there	is	substantial	dendritic	atrophy	within	this	time	frame.	

RGCs	were	diolistically	labelled	(Figure	3.8a-b)	and	their	dendritic	arbors	quantified	by	Sholl	analysis,	

as	outlined	previously.	Q-VD-treated	cells	were	partially	protected	from	dendritic	retraction;	3	points	

on	the	Sholl	profile	10-30	µm	from	the	soma	(Figure	3.8c)	were	increased	relative	to	control	(P<0.05,	

Kruskal-Wallis),	 indicating	 an	 effect	 on	 proximal	 dendrites	 only.	 Although	 none	 reached	 statistical	

significance	(P>0.05),	all	three	morphometric	parameters	measured	(Sholl	AUC,	branching	index	and	

dendritic	 field	 area)	 showed	 the	 trend	 of	 an	 increase	 with	 Q-VD	 treatment,	 relative	 to	 controls,	

although	all	measurements	for	control	and	Q-VD-treated	cells	were	significantly	reduced	(P<0.001,	

ANOVA	with	 TUKEY	 post-hoc)	 compared	 to	 0	 d	 cells	 (Figure	 3.8d-f).	 The	 experimental	 timeline	 is	

illustrated	in	Figure	3.8g.	

To	account	for	cell	sub-type	bias	and	to	investigate	any	group-specific	effects	of	pan-caspase	inhibition	

the	cells	were	split	into	ON,	OFF	and	ON-OFF,	according	to	their	stratification	depth	in	the	IPL.	There	

was	no	significant	difference	(P>0.05)	between	Sholl	AUC	for	control	cells	and	Q-VD-treated	cells	that	

were	ON	or	OFF	stratified,	however	for	both	treatment	groups	both	ON	and	OFF	subtypes	had	Sholl	

AUCs	that	were	significantly	reduced	(P<0.05,	ANOVA	with	TUKEY	post-hoc)	relative	to	0	d	cells	of	the	

same	 subtype	 (Figure	 3.8h-i).	 There	 were	 no	 control	 cells	 that	 were	 bistratified	 so	 comparisons	

between	controls	and	Q-VD-treated	cells	could	not	be	made	for	this	subtype,	however	Q-VD-treated	

ON-OFF	cells	had	a	significantly	reduced	(P<0.05,	ANOVA)	Sholl	AUC	relative	to	0	d	cells	(Figure	3.8j).	
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Figure 3.8 (previous page). Morphometric analysis of RGCs treated with the pan-caspase inhibitor Q-

VD over 2 d. (a) Representative fluorescent images (left) of diolistically labelled RGCs and their 

respective 8-bit tracing images (right) from explants treated with Q-VD or vehicle only as control. Arrows 

indicate axons. Scale bars: 100 µm. (b) Locations of all analysed cells in each treatment group plotted 

relative to the optic nerve (origin). Neither group displayed any sign of bias in terms of eccentricity. (c) 

Sholl plots for both treatment groups with the number of cells analysed for each group shown *P<0.05, 

Kruskal-Wallis. (d) Sholl AUC for both treatment groups shown with the value for 0 d cells for 

comparison. ***P<0.001, ANOVA with TUKEY post-hoc. (e) Branching index for both treatment groups 

shown with the value for 0 d cells for comparison. ***P<0.001, ANOVA with TUKEY post-hoc. (f) 

Dendritic field area for both treatment groups shown with the value for 0 d cells for comparison. 

***P<0.001, ANOVA with TUKEY post-hoc. (g) Experimental time scale. (h) Sholl AUC plots for ON 

stratifying cells only. N=28 cells (0 d), n=2 cells (control), n=10 cells (Q-VD). *P<0.05, **P<0.005, 

ANOVA with TUKEY post-hoc. (i) Sholl AUC plots for OFF stratifying cells only. N=12 cells (0 d), n=9 

cells (control), n=13 cells (Q-VD). **P<0.005, ***P<0.001, ANOVA with TUKEY post-hoc. (j) Sholl AUC 

plots for ON-OFF stratifying cells only. N=11 cells (0 d), n=0 cells (control), n=1 cell (Q-VD). *P<0.05, 

ANOVA. Error bars: SEM.	

In	order	to	check	that	age	was	not	a	confounding	factor,	a	multiple	regression	analysis	was	run	on	

Sholl	AUC	 values	 for	Q-VD-treated	 cells.	 The	model	was	 a	 good	 fit	 of	 the	data	 (p<0.005,	ANOVA).	

Culture	 condition	 (i.e.	Q-VD	 treatment)	 and	 age	were	 explanatory	 variables	 (p<0.05)	 of	 Sholl	 AUC	

(Table	3.3).	
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Table 3.3. Multiple regression model exploring predictive factors of Sholl AUC (dependent variable). In 

this model culture condition (1=control, 2=Q-VD), age (number of months), were explanatory variables. 

Variable	 Coefficient	(B)	 P	

Culture	condition	 464	 0.005	

Age	 538	 0.001	
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3.8	Conclusions	

In	this	chapter	the	aim	was	to	characterise	the	mouse	retinal	explant	in	terms	of	cellular	changes	

over	time	and	to	investigate	the	potential	of	morphometric	analysis	of	RGCs	to	quantify	neuronal	

cell	health.		

Prior	work	(Johnson	and	Martin	2008)	has	shown	that	the	retinal	architecture	can	be	maintained	for	

at	least	14	d.	Although	the	number	of	cells	in	the	INL	and	ONL	were	not	counted,	the	respective	

layer	thicknesses	can	be	used	as	a	reasonable	estimate	of	cell	loss	since	there	was	no	evidence	of	

lateral	expansion	of	the	tissue	over	time.	It	was	interesting	to	note	that	the	INL	and	ONL	begun	to	

show	signs	of	degeneration	11	days	before	the	GCL,	in	line	with	the	literature	(Mazzoni	et	al.	2008;	

Garcia-Ayuso	et	al.	2010).	This	is	likely	because	photoreceptors	are	more	susceptible	to	oxidative	

stress	and	degeneration	has	been	shown	to	pass	along	neuronal	pathways	by	a	process	termed	

‘transneuronal	degeneration’	(Lei	et	al.	2008).	

The	pattern	of	viability	markers	did	not	correlate	with	cell	loss	in	the	GCL.	Further,	the	timelines	of	

viability	assays	were	inconsistent	with	one	another;	in	the	GCL	active	caspase-3	and	calcein	staining	

did	not	change	over	14	d	but	TUNEL	staining	peaked	at	3	d.	Although	the	patterns	of	TUNEL	and	active	

caspase-3	labelling	resembled	those	in	the	literature	(Johnson	and	Martin	2008;	Ferrer-Martin	et	al.	

2014),	measurement	of	DNA	damage	may	not	be	a	good	indicator	of	apoptosis.	It	has	been	proposed	

that	it	is	the	ability	of	cells	to	repair	DNA	damage,	and	not	the	DNA	damage	itself,	that	determines	the	

likelihood	of	cell	death	(Brown	and	Wilson	2003).	Further,	the	TUNEL	assay	also	labels	DNA	breaks	

associated	 with	 normal	 DNA	 turnover	 and	 necrosis	 (Elmore	 2007),	 the	 latter	 of	 which	 has	 been	

reported	to	be	a	major	cause	of	cell	death	in	axotomy	models	(Kashimoto	et	al.	2008).	Additionally,	

active	caspase-3	may	not	be	a	reliable	marker	of	apoptosis,	particularly	as	 it	 remained	constant	 in	

every	cell	layer,	other	than	the	ONL.	This	suggests	that	active	caspase-3	was	not	implicated	in	cell	loss	

in	 the	 explant.	 This	 idea	 is	 supported	 by	 the	 evidence	 that	 cultured	 RGCs	 can	 die	 by	 caspase-

independent	apoptosis	(Tezel	and	Yang	2004;	McKernan	et	al.	2007).	The	lack	of	significant	apoptotic	
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staining	reported	here	could	 indicate	that	cell	death	occurred	rapidly,	 i.e.	the	period	 in	which	cells	

were	undergoing	apoptosis	and	would	be	 labelled	as	 such	was	 so	 short	 that	 cells	either	appeared	

healthy	or	were	completely	degraded,	however	this	seems	unlikely	since	cell	loss	in	the	GCL	was	not	

significant	 until	 14	 days.	 A	 more	 plausible	 explanation	 is	 that	 caspase-independent	 cell	 death	

pathways	had	been	triggered,	resulting	 in	DNA	damage,	but	cell	death	did	not	begin	to	occur	until	

after	7	days.	These	data	 support	 the	use	of	 cell	 loss	 to	quantify	 cell	death.	The	 lack	of	 supporting	

calcein	staining	is	likely	due	to	poor	tissue	penetration	and	therefore	would	require	future	validation	

–	 calcein	 staining	may	be	more	appropriate	 to	 test	 viability	 in	 cell-based	assays	 rather	 than	 tissue	

preparations.	Although	it	has	been	reported	in	the	rat	retinal	explant	(Grieshaber	et	al.	2010),	calcein	

staining	 is	 more	 commonly	 used	 to	 label	 cells	 (Goldberg	 et	 al.	 2002;	 Kador	 et	 al.	 2013).	 Tissue	

penetration	is	a	confounding	factor	for	assays	that	require	access	to	cells	deeper	than	40	µm,	such	as	

antibody	labelling	(Melvin	and	Sutherland	2010),	therefore	the	reliability	of	calcein	staining	in	tissues	

cannot	be	assured.	This	may	explain	some	of	the	inconsistencies	observed	between	viability	assays	

presented	here.	

Dendritic	retraction	of	RGCs	preceded	cell	loss	by	at	least	7	d.	It	should	be	kept	in	mind	that	RGCs	are	

a	heterogeneous	population	of	neurons,	as	evidenced	by	the	large	number	of	sub-types	identified	in	

the	mouse	(Coombs	et	al.	2006).	It	is	therefore	important	that	labelling	is	random	so	as	to	ensure	that	

any	 difference	 in	 morphology	 is	 not	 due	 to	 sub-type	 bias.	 Labelling	 bias	 can	 be	 discounted	 here	

because	the	distribution	of	sub-types	identified	at	0	d	closely	matched	that	reported	by	Sun	et	al.	(Sun	

et	 al.	 2002).	Other	 factors,	 such	 as	 age	 and	 sex	 of	 the	 animal,	 can	 be	 discounted	 as	 confounding	

factors,	since	culture	time	or	treatment	group	were	found	to	be	the	only	predictive	factors	of	dendritic	

arbor	morphology	(for	0-3	d	cells).		

It	 is	 important	 to	 point	 out	 that	 absence	 of	 evidence	 for	 bias	 does	 not	 necessarily	 exclude	 this	

possibility.	The	small	number	of	cells	analysed	for	some	conditions,	such	as	the	Q-VD	controls,	was	

perhaps	too	small	for	the	presence	of	bias	to	be	tested.	Indeed,	this	may	be	the	reason	that	age	was	
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an	explanatory	variable	of	cell	morphology,	despite	age	not	being	a	factor	with	any	other	set	of	cells	

analysed	(some	of	which	had	a	much	larger	age	range).	However,	since	the	Sholl	profile	for	these	cells	

was	very	similar	to	that	of	the	untreated	2	d	cells	(Figure	3.7),	it	is	likely	that	these	results	are	reliable.	

Finally,	 it	 is	 important	 to	 consider	 the	 limitations	 of	 the	 experiment	 investigating	 pan-caspase	

inhibition,	given	that	a	single	concentration	of	Q-VD	was	used.	In	the	future	a	dose-response	assay	

should	be	carried	out	to	obtain	the	most	optimal	concentration	of	Q-VD	in	order	to	validate	the	results	

presented	here.	

Given	the	well-evidenced	role	of	caspases	 in	dendritic	pruning	during	development	(Williams	et	al.	

2006;	D'Amelio	et	al.	2010;	Erturk	et	al.	2014)	it	was	surprising	to	find	that	pan-caspase	inhibition	had	

only	a	modest	protective	effect	on	dendritic	pruning	of	RGCs	in	the	explant.	There	are	several	possible	

explanations	 for	 this.	Firstly,	 the	number	of	cells	may	have	been	 insufficient	 for	a	difference	to	be	

measured.	Secondly,	2	days	may	not	have	been	a	long	enough	time	course	for	the	protective	effect	to	

have	 been	 identified.	 Thirdly,	 dilution	 of	 the	 Q-VD	 aliquot	 in	 the	 remaining	 culture	medium	may	

resulted	in	a	sub-optimal	concentration	(7.7	µM).	Finally,	the	age	distribution	may	have	masked	the	

effect	of	Q-VD.	Age	was	found	to	positively	correlate	with	an	increase	in	Sholl	AUC,	but	all	control	cells	

were	 from	mice	aged	4	months	and	Q-VD-treated	cells	were	split	equally	 from	mice	aged	3	and	4	

months.	

3.9	Summary	

Retinas	from	adult	mice	were	cultured	as	wholemounts	for	up	to	14	d.	In	the	GCL	significant	cell	loss	

was	not	observed	until	day	14,	whilst	significant	dendritic	pruning	of	RGCs	occurred	after	6	hours.	

This	suggests	a	treatment	window	between	6	hours	and	14	days	where	neuronal	structure	may	be	

restored.	In	addition,	the	sensitivity	of	this	assay	was	demonstrated	by	pan-caspase	inhibition,	which	

successfully	retarded	dendritic	retraction	of	RGCs	within	the	time	frame	investigated.
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Chapter	4:	BDNF-TrkB	Signalling	in	the	Mouse	Retinal	Explant	

4.1	Introduction	

In	chapter	3	I	provided	evidence	that	morphometric	analysis	of	axotomised	RGCs	in	the	adult	mouse	

retinal	explant	provides	a	rapid	readout	of	neuronal	cell	health.	 I	next	sought	to	use	this	model	to	

investigate	the	mechanisms	involved	in	neuronal	degeneration	and	to	test	the	utility	of	the	assay	to	

evaluate	 neuroprotective	 agents.	 In	 this	 context,	 the	 most	 promising	 agent	 to	 prevent	 dendritic	

atrophy	is	BDNF,	which	has	well-evidenced	roles	in	the	outgrowth	and	maintenance	of	dendrites	in	

the	brain	and	retina	(Thanos	et	al.	1989;	McAllister	et	al.	1995;	Bosco	and	Linden	1999).		

There	is	considerable	evidence	that	BDNF	mRNA	and	protein	levels	are	reduced	in	models	of	neuronal	

degeneration	 (Fahnestock	et	 al.	 2002;	Weickert	 et	 al.	 2003;	Baydyuk	and	Xu	2014),	 therefore	one	

therapeutic	avenue	to	explore	is	the	restoration	of	normal	levels	of	BDNF	to	repair	neuronal	function.	

Although	 the	 levels	 of	 BDNF	 in	 the	 rodent	 retinal	 explant	 have	 been	 reported	 (Seki	 et	 al.	 2003;	

Domenici	 et	 al.	 2014),	 these	 have	 not	 been	 published	 in	 parallel	 with	 morphometric	 changes.	 I	

therefore	investigated	the	temporal	relationship	between	endogenous	BDNF	protein	levels	and	RGC	

dendritic	 retraction,	 and	 then	 to	 explore	 whether	 dendrite	 loss	 could	 be	 accelerated	 by	 blocking	

endogenous	BDNF.		

BDNF	 treatment	 has	 been	 shown	 to	 be	 neuroprotective	 in	 a	 range	 of	 neurodegeneration	models	

(Weber	and	Harman	2008;	Nagahara	et	al.	2009;	Rodger	et	al.	2012),	however	the	physical	properties	

of	BDNF	(pharmacologically	‘sticky’	and	short	half-life	(Poduslo	and	Curran	1996;	Lu	2003))	make	it	

difficult	to	precisely	control	its	concentration	and	location	in	vivo.	Given	that	the	mouse	retina	is	only	

approximately	200	µm	thick	(Ferguson	et	al.	2013),	the	explant	is	an	ideal	model	in	which	to	examine	

the	effects	of	BDNF	treatment	on	axotomy-induced	neuronal	degeneration.	Finally,	given	that	a	major	

limitation	 in	 this	 field	 is	 the	 lack	 of	 clinically-relevant	 data,	 I	 sought	 to	 investigate	 whether	 the	

neuroprotective	effects	of	BDNF	could	be	achieved	when	treatment	was	initiated	after	injury.	
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4.2	Levels	of	endogenous	BDNF	in	the	retinal	explant	

Twenty-nine	adult	mouse	retinal	explants	(n=15	animals	of	both	sex,	aged	4-7	months)	were	cultured	

ex	vivo	for	0	d,	1	d,	3	d,	7	d,	and	14	d,	after	which	time	right	and	left	explants	were	pooled	and	snap	

frozen	in	RIPA	buffer	containing	20%	protease	inhibitor.	Pooled	explants	were	lysed	and	total	protein	

content	was	quantified	by	BCA	assay	and	BDNF	protein	was	quantified	by	ELISA	using	mouse	anti-

BDNF	antibody	mAb#9	(see	2.10).		

Total	retinal	protein	decreased	by	22.0%	(p<0.05)	after	1	d,	and	was	lowest	after	14	d	(50.0%	decrease,	

p<0.001,	ANOVA,	Figure	4.1a).	This	correlates	with	cell	loss	in	the	INL	and	ONL	(the	majority	protein	

components	of	the	retina)	as	shown	in	Figure	3.3	(see	Chapter	3).	BDNF	protein	levels	in	the	explant	

followed	a	similar	trend,	but	did	not	reach	significance	at	any	time	point	(p>0.05,	ANOVA,	Figure	4.1b).	

The	level	of	BDNF	protein,	when	expressed	per	mg	total	protein,	also	did	not	change	(p>0.05,	ANOVA)	

over	14	d	(Figure	4.1c-d).	
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Figure 4.1 Quantification of total protein (BCA assay) and BDNF protein (ELISA) in retinal explants 

after culture periods of up to 14 d. (a) Total protein. *p<0.05, **p<0.005, ***p<0.001, ANOVA. (b) Total 

BDNF protein levels. p>0.05, ANOVA. (c) BDNF protein relative to total protein. p<0.05, ANOVA. (d) 

BDNF protein relative to total protein, expressed as a percentage of the value at 0 d. n=6 explants, 3 

animals (0 d); n=6 explants, 3 animals (1 d); n=6 explants, 3 animals (3 d); n=6 explants, 3 animals (7 

d); n=5 explants, 3 animals (14 d). All values were calculated per retina. Means ±SD. 
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4.3	BDNF	treatment	retards	RGC	dendritic	atrophy	

Seven	explants	(n=7	mice	of	either	sex,	aged	2-5.5	months)	were	treated	with	100	ng/mL	BDNF	for	3	

d,	at	which	point	RGCs	were	diolistically	 labelled	and	their	dendritic	arbors	quantified.	The	culture	

timeline	is	shown	in	Figure	4.2a.	BDNF-treated	cells	had	visibly	more	complex	dendritic	arbors	(Figure	

4.2b-c).	 Following	 BDNF	 treatment,	 Sholl	 curve	 peaks	 were	 greatly	 increased	 20-80	 µm	 (p<0.05,	

Kruskal-Wallis)	 from	 the	 soma	 centre	 (Figure	 4.2d).	 BDNF	 treatment	 resulted	 in	 a	 75.8%	 increase	

(p<0.005,	ANOVA	with	Tukey	post-hoc)	 in	Sholl	AUC	and	an	81.0%	 increase	 (p<0.001,	ANOVA	with	

Tukey	 post-hoc)	 in	 branching	 index,	 relative	 to	 controls,	 but	 neither	 measures	 were	 significantly	

different	from	0	d	cells	(Figure	4.2e-f).	The	dendritic	field	area	of	BDNF-treated	cells	was	61.2%	larger	

(p<0.05)	than	control	cells	but	28.8%	smaller	(p<0.005,	test)	than	0	d	cells	(Figure	4.2g).	RGCs	were	

divided	into	ON,	OFF	and	ON-OFF	based	on	INL	stratification	(see	section	2.8.4)	to	check	for	sub-type-

specific	 effects	 of	 BDNF.	 Following	BDNF	 treatment,	 the	 Sholl	 AUC	of	ON	 cells	 increased	by	 109%	

(p<0.005)	relative	to	controls	but	was	not	significantly	different	(p>0.05,	ANOVA	with	Tukey	post-hoc)	

from	0	d	cells	(Figure	4.2h).	The	Sholl	AUC	for	BDNF-treated	OFF	cells	was	73.6%	increased	(p<0.05)	

relative	to	controls,	but	was	not	significantly	different	(p>0.05,	ANOVA	with	Tukey	post-hoc)	from	0	d	

cells	(Figure	4.2i).	There	was	no	significant	difference	(p>0.05,	ANOVA	with	Tukey	post-hoc)	between	

groups	for	Sholl	AUC	of	bistratified	cells	(Figure	4.2j).	
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Figure 4.2 (previous page) Morphometric analysis of RGCs from explants treated with 100 ng/mL 

BDNF for 3 d. (a) Culture timeline of experiment. (b) Fluorescent images (left) and 8-bit tracing images 

(right) of diolistically labelled RGCs. Scale bar: 100 µm. Arrows indicate axon. (c) Locations of all 

analysed RGCs relative to the optic nerve (origin). (d) Sholl profiles for control cells and BDNF-treated 

cells demonstrating increased dendritic complexity with BDNF treatment. The number of cells in each 

group is shown. *p<0.05, **p<0.005, ***p<0.001, Kruskal-Wallis. (e) Area under the Sholl profile for 

each group, shown with the value for 0 d cells for comparison. **p<0.005, ***p<0.001, ns not significant, 

test. (f) Branching index for each group, shown with the value for 0 d cells for comparison. ***p<0.001, 

ns not significant, test. (g) Dendritic field area for each group, shown with the value for 0 d cells. *p<0.05, 

**p<0.005, ***p<0.001, test. (h) Area under the Sholl profile for ON-stratifying cells in each group. 

**p<0.005, ***p<0.001, test. (i) Area under the Sholl profile for OFF-stratifying cells in each group. 

*p<0.05, test. (j) Area under the Sholl profile for bistratified cells in each group. p>0.05, test. Means 

±SEM. 
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In	order	to	check	that	age	and	sex	were	not	confounding	factors,	a	multiple	regression	analysis	was	

run	on	Sholl	AUC	values	for	BDNF-treated	cells.	The	model	provided	a	good	fit	of	the	data	(p<0.05,	

ANOVA).	Culture	condition	(i.e.	BDNF	treatment)	was	the	only	explanatory	variable	(p<0.05)	of	Sholl	

AUC	(Table	4.1).	
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Table 4.1. Multiple regression model to test the possible confounding effects of variance in age and sex 

on Sholl AUC (dependent variable). Culture condition (1=control, 2=BDNF), age (number of months), 

and sex (1=male, 2=female) were the predictors.  

Variable	 Coefficient	(B)	 P	

Culture	condition	 665	 0.008	

Age	 -29.4	 0.797	

Sex	 51.5	 0.831	
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4.4	Delayed	BDNF	treatment	retards	RGC	dendritic	atrophy	

To	investigate	the	mechanism	of	BDNF	action	and	to	test	BDNF	treatment	in	a	more	clinically	relevant	

paradigm	that	could	be	translated	to	clinical	treatment	6	explants	(n=6	mice,	male,	aged	8.5	months)	

were	cultured	 in	normal	culture	medium	for	3	d,	at	which	point	100	ng/mL	BDNF	was	added	for	a	

further	3	d	(6	d	total).	The	culture	timeline	is	outlined	in	Figure	4.3a.	Delayed	BDNF	treatment	resulted	

in	RGCs	with	more	complex	dendritic	arbors	(Figure	4.3b-c),	in	which	the	Sholl	profile	was	increased	

20-100	µm	 from	 the	 soma	 centre	 (p<0.05,	 Kruskal-Wallis)	 (Figure	 4.3d).	 The	 Sholl	 AUC	of	 delayed	

BDNF-treated	 cells	 was	 increased	 by	 136%	 (p<0.001)	 compared	 to	 controls,	 decreased	 by	 32.9%	

(p<0.05)	relative	to	0	d	cells,	and	increased	by	56.6%	(p<0.005,	ANOVA	with	Tukey	post-hoc)	compared	

to	3	d	cells	 (Figure	4.3e).	Delayed	BDNF	 treatment	 resulted	 in	a	107%	 increase	 in	branching	 index	

(p<0.05),	relative	to	controls,	but	a	45.1%	decrease	in	branching	index	(p<0.005,	ANOVA	with	Tukey	

post-hoc)	compared	to	0	d	cells	(Figure	4.3f).	The	dendritic	field	area	of	delayed	BDNF-treated	cells	

was	134%	increased	(p<0.001)	relative	to	controls	but	was	43.1%	decreased	(p<0.001,	ANOVA	with	

Tukey	post-hoc)	compared	to	0	d	cells	(Figure	4.3g).	Cells	were	split	into	ON,	OFF,	and	ON-OFF	to	check	

for	sub-type-specific	effects	of	delayed	BDNF	treatment.	Following	delayed	BDNF	treatment	the	Sholl	

AUC	of	ON	cells	was	95.8%	increased	(p<0.05)	relative	to	controls,	55.3%	increased	(p<0.05)	relative	

to	3	d	cells,	and	39.5%	decreased	(p<0.05,	ANOVA	with	Tukey	post-hoc)	compared	to	0	d	cells	(Figure	

4.3h).	The	Sholl	AUC	of	delayed	BDNF-treated	OFF	cells	was	253%	increased	(p<0.005)	compared	to	

controls	but	was	not	significantly	different	(p>0.05,	ANOVA	with	Tukey	post-hoc)	from	any	other	group	

(Figure	4.3i).	No	control	cells	were	identified	as	ON-OFF	cells	and	for	all	other	groups	the	Sholl	AUCs	

were	not	significantly	different	(p>0.05,	ANOVA	with	Tukey	post-hoc,	Figure	4.3j).	

Although	age	and	sex	were	constant	in	this	group,	a	multiple	regression	analysis	was	used	to	check	

the	predictive	effect	of	delayed	BDNF	treatment	on	Sholl	AUC.	The	model	was	a	good	fit	of	the	data	

(p=0.001,	ANOVA)	with	the	culture	condition	(i.e.	delayed	BDNF	treatment/no	BDNF)	was	a	significant	

explanatory	variable	for	the	change	in	Sholl	AUC	(B=671,	p=0.001).	
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Figure 4.3 (previous page) Morphometric analysis of RGCs from explants treated with 100 ng/mL 

BDNF initiated 3 d-post axotomy. (a) Culture timeline. (b) Fluorescent images (left) and 8-bit tracing 

images (right) of RGCs from each group. Scale bars: 100 µm. Arrows indicate axons. (c) Locations of 

all analysed RGCs relative to the optic nerve (origin) showing no evidence of labelling bias. (d) Sholl 

profiles for each group. The number of cells in each group is shown. *p<0.05, **p<0.005, ***p<0.001, 

Kruskal-Wallis. (e) Area under the Sholl profile, shown with the values for 0 d and 3 d cells for 

comparison. *p<0.05, **p<0.005, ***p<0.001, ns not significant, ANOVA with Tukey post-hoc. (f) 

Branching index with 0 d and 3 d cell values. *p<0.05, **p<0.005, ***p<0.001, ns not significant, ANOVA 

with Tukey post-hoc. (g) Dendritic field area with 0 d cell value. *p<0.05, **p<0.005, ***p<0.001, ns not 

significant, ANOVA with Tukey post-hoc. Areas under the Sholl profile split by RGC sub-type (i-k) 

provide no evidence of sub-type-specific effects of delayed BDNF treatment. (i) Sholl AUCs for ON 

cells, with the corresponding value for 0 d and 3 d cells for comparison. *p<0.05, ***p<0.001, ANOVA 

with Tukey post-hoc. (j) Sholl AUCs for OFF cells, with the corresponding value for 0 d and 3 d cells. 

**p<0.005, ***p<0.001, ANOVA with Tukey post-hoc. (k) Sholl AUCs for bistratified cells, with the 

corresponding value for 0 d and 3 d cells for comparison. p>0.05, ANOVA with Tukey post-hoc. Means 

±SEM. 
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4.5	The	effect	of	BDNF	is	dose-dependent	

To	test	for	the	presence	of	a	dose-dependent	effect	of	BDNF,	6	explants	(n=3	animals,	female,	aged	2	

months)	were	treated	with	1000	ng/mL	BDNF	for	3	d	initiated	at	day	3	(6	d	total).	At	the	end	of	the	

culture	period	RGCs	were	labelled	and	analysed	as	before.	The	culture	timeline	is	shown	in	Figure	4.4a.	

RGCs	 treated	with	1000	ng/mL	BDNF	had	visibly	 larger	and	more	complex	dendritic	arbors	 (Figure	

4.4b-c),	quantified	as	a	large	increase	in	Sholl	peak	amplitude	between	30-110	µm	and	130-160	µm	

from	the	soma	centre	(p<0.05,	Kruskal-Wallis)	as	well	as	a	rightward	shift	in	the	Sholl	profile	(Figure	

4.4d).	Delayed	1000	ng/mL	BDNF-treated	cells	had	Sholl	AUCs	that	were	119%	increased	(p<0.001)	

relative	 to	 controls	 and	 136%	 increased	 (p<0.001)	 relative	 to	 3	 d	 cells,	 but	were	 not	 significantly	

different	(p>0.05,	ANOVA	with	Tukey	post-hoc)	from	0	d	cells	(Figure	4.4e).	The	branching	index	of	

delayed	1000	ng/mL	BDNF-treated	cells	was	increased	by	83.6%	(p<0.05)	relative	to	controls	and	by	

95.1%	(p<0.005)	relative	to	3	d	cells.	The	index	did	not	differ	significantly	(p>0.05,	ANOVA	with	Tukey	

post-hoc)	compared	with	0	d	cells	(Figure	4.4f).	The	soma	diameters	of	treated	cells	were	unchanged	

(p>0.05,	ANOVA	with	Tukey	post-hoc)	compared	to	controls	(Figure	4.4g).	The	dendritic	field	area	of	

delayed	1000	ng/mL	BDNF-treated	cells	was	67.9%	increased	(p<0.05)	relative	to	controls,	but	was	

not	significantly	different	(p>0.05,	ANOVA	with	Tukey	post-hoc)	compared	to	0	d	cells	(Figure	4.4h).	
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Figure 4.4 (previous page) Morphometric analysis of RGCs from explants treated with 1000 ng/mL 

BDNF initiated at day 3. (a) Culture timeline. (b) Fluorescent images (left) and 8-bit tracings (right) of 

diolistically labelled RGCs in each treatment group. The number of cells in each group is shown. Scale 

bars: 100 µm. Arrows indicate axons. (c) Locations of all analysed cells relative to the optic nerve 

(origin) showing no evidence of labelling bias. (d) Sholl profile for each group. The number of cells in 

each group is shown. *p<0.05, **p<0.005, ***p<0.001, Kruskal-Wallis. (e) Area under the Sholl profile, 

shown with the values for 0 d and 3 d cells for comparison. ***p<0.001, ANOVA with Tukey post-hoc. 

(f) Branching index with 0 d and 3 d cell values. *p<0.05, **p<0.005, ***p<0.001, ANOVA with Tukey 

post-hoc. (g) Soma diameter. p>0.05, test. (h) Dendritic field area with 0 d cell value for reference. 

*p<0.05, ***p<0.001, ANOVA with Tukey post-hoc. Means ±SEM. 
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4.6	Blocking	endogenous	BDNF	has	no	effect	on	RGC	morphology	

To	investigate	the	effect	of	endogenous	BDNF	on	dendritic	retraction	of	RGCs,	9	explants	(n=7	animals	

of	both	sex,	aged	4-6	months)	were	cultured	for	3	d	with	the	mouse	anti-BDNF	antibody	mAb#9	(10	

µg/mL)	 to	 block	 endogenous	 BDNF.	 To	 ensure	 that	 mAb#9	 was	 binding	 to	 its	 target	 protein,	 11	

explants	(n=10	animals	of	both	sex,	aged	2-5	months)	were	cultured	for	3	d	with	100	ng/mL	BDNF	±10	

µg/mL	mAb#9.	At	the	end	of	the	culture	period	RGCs	were	labelled	and	analysed	as	before.	The	culture	

timeline	 is	 shown	 in	Figure	4.5a.	There	was	no	visible	effect	of	mAb#9	treatment	on	 the	dendritic	

arbors	 of	 RGCs,	 compared	 to	 controls,	 and	 RGCs	 treated	 with	 both	 BDNF	 and	 mAb#9	 appeared	

unchanged	relative	to	control	cells,	 in	contrast	to	the	highly	branched	arbors	of	BDNF-treated	cells	

(Figure	4.5b-c).	These	observations	were	quantified	by	Sholl	analysis,	indicating	no	difference	(p>0.05,	

Kruskal-Wallis)	in	Sholl	profile	between	controls	and	mAb#9-treated	cells	(Figure	4.5d),	and	combined	

treatment	of	mAb#9	with	BDNF	completely	abolished	the	effect	of	BDNF	on	the	Sholl	profile	(Figure	

4.5e).	 The	 area	 under	 the	 Sholl	 profile	 and	 branching	 index	 of	 BDNF-treated	 cells	were	 increased	

(p<0.05)	relative	to	the	other	three	treatment	groups,	which	were	all	unchanged	(p>0.05,	ANOVA	with	

Tukey	post-hoc)	from	each	other	(Figure	4.5f-g).	The	soma	diameter	of	RGCs	was	constant	(p>0.05,	

ANOVA	with	Tukey	post-hoc)	throughout	every	treatment	group	(Figure	4.5h).	The	dendritic	field	area	

of	BDNF-treated	cells	was	55.2%	increased	(p<0.005)	relative	to	control	cells,	but	there	were	no	other	

differences	(p>0.05,	ANOVA	with	Tukey	post-hoc)	between	treatment	groups	(Figure	4.5i).	
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Figure 4.5 (previous page) Morphometric analysis of RGCs from explants treated with BDNF blocking 

antibody mAb#9 or 100 ng/mL BDNF for 3 d. (a) Culture timeline. (b) Fluorescent images of diolistically 

labelled RGCs from each treatment group. Scale bars: 100 µm. Arrows indicate axons. (c) Locations of 

all analysed cells relative to the optic nerve (origin). (d) Sholl profiles for mAb#9-treated cells and control 

cells, showing no effect of blocking endogenous BDNF. p>0.05, Kruskal-Wallis. (e) Sholl profiles for 

BDNF-treated cells ±mAb#9, showing that mAb#9 treatment blocks the positive effect of exogenously-

applied BDNF. *p<0.05, Kruskal-Wallis. The number of cells in each treatment group (d-e) is shown. (f) 

Area under the Sholl profile for all treatment groups shows no difference between groups, except BDNF-

treated cells. **p<0.005, ANOVA	with	 Tukey	post-hoc. (g) Branching index for all groups. *p<0.05, 

**p<0.005, ANOVA	with	Tukey	post-hoc. (h) Soma diameter for each group. p>0.05, ANOVA	with	Tukey	

post-hoc. (i) Dendritic field area measurements. **p<0.005, ANOVA	with	Tukey	post-hoc. Means ±SEM.  
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4.7	Conclusions	

In	this	chapter	I	used	the	morphometric	analysis	assay	established	in	Chapter	3	to	test	the	roles	of	

exogenous	and	endogenous	BDNF	in	the	maintenance	of	dendritic	arbor	structure.	The	data	indicate	

that	 endogenous	 BDNF	 does	 not	 play	 a	 role	 in	 the	 dendritic	 retraction	 of	 RGCs	 and	 that	 BDNF	

treatment	can	retard	RGC	dendrite	loss.	In	addition,	I	present	for	the	first	time	evidence	that	delayed	

application	 of	 BDNF	 can	 not	 only	 protect	 against	 dendritic	 retraction	 but	may	 stimulate	 dendritic	

outgrowth	in	RGCs.	

The	data	presented	 in	 this	chapter	demonstrate	 that	BDNF	 is	a	potent	neuroprotective	agent	 that	

prevents	dendrite	loss	in	RGCs,	although	this	protection	was	mainly	seen	for	primary	and	secondary	

dendrites	(20-80	µm	from	the	soma)	in	the	case	of	3	d	treatment	initiated	immediately	after	axotomy	

(Figure	4.2d).	The	limited	protective	effect	on	terminal	dendrites	may	restrict	the	number	of	synaptic	

connections	 that	can	be	protected,	 therefore	may	be	 important	 to	consider	 for	 the	strategy	of	 re-

wiring	neuronal	networks	as	only	partial	restoration	of	neuronal	function	may	be	achievable.	

The	 evidence	 presented	 here	 is	 consistent	 with	 a	 neurite	 outgrowth	mechanism	 of	 BDNF.	 This	 is	

particularly	exciting	because	it	demonstrates	that	it	may	be	possible	to	treat	neuronal	degeneration	

even	after	a	significant	amount	of	neuronal	damage	has	occurred.	Application	of	a	compound	such	as	

BDNF	 could	 theoretically	 promote	 re-wiring	 of	 neuronal	 networks,	 thereby	 restoring	 neuronal	

function.	It	is	important	to	note	that	this	mechanism	of	BDNF	cannot	be	confirmed	with	the	results	

shown	here;	it	may	simply	be	a	consequence	of	biased	populations	of	cells.	As	outlined	in	section	1.2	

(Introduction),	 RGCs	 are	 an	 extremely	 heterogeneous	 population	 morphologically,	 therefore	 it	 is	

possible	that	the	evidence	for	BDNF-mediated	dendritic	outgrowth	demonstrated	here	is	a	result	of	

BDNF	selecting	for	the	survival	of	RGC	sub-types	that	are	more	highly	branched	with	larger	dendritic	

field	areas,	resulting	in	this	morphology	becoming	a	higher	proportion	of	the	remaining	population.	

Nevertheless,	the	data	are	convincing,	given	the	lack	of	evidence	of	labelling	bias	and	the	evidence	

that	age	and	sex	were	not	confounding	factors.	However,	the	absence	of	sampling	bias	may	simply	be	
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due	 to	 the	 low	 number	 of	 cells	 in	 some	 groups.	 Although	 this	 weakens	 the	 statistical	 power	 of	

differences	between	groups,	 the	Sholl	profiles	 for	 control	 cells	were	very	 similar	 to	 those	 for	 cells	

cultured	for	the	same	time	period.	Nevertheless,	time-series	imaging	is	required	in	order	to	validate	

this	mechanism.	

The	evidence	shown	here	supports	the	theory	that	endogenous	BDNF	does	not	play	a	role	in	dendritic	

retraction	of	RGCs	in	the	explant,	however	two	points	should	be	considered.	Firstly,	the	ELISA	did	not	

measure	 the	 location	of	BDNF	within	 the	 retina.	 Secondly,	mAb#9	was	 shown	 to	block	exogenous	

BDNF,	 but	 if	 it	 could	 not	 penetrate	 the	 tissue	 sufficiently,	 it	 would	 have	 been	 unable	 to	 bind	

endogenous	 BDNF.	 In	 both	 cases,	 the	 possibility	 that	 endogenous	 BDNF	 secretion	 was	 reduced	

following	axotomy	cannot	be	discounted.	

4.8	Summary	

In	 the	 retinal	explant	 total	protein	 rapidly	decreased	after	1	d,	however	 the	 level	of	BDNF	protein	

remained	constant	for	at	least	14	d.	BDNF	treatment	initiated	immediately	after	axotomy	or	3	d-post	

axotomy	retarded	RGC	dendritic	retraction	and	these	data	support	the	theory	that	BDNF	can	promote	

dendritic	outgrowth	in	RGCs.	There	was	also	evidence	of	a	dose-dependent	effect	of	BDNF.	Blocking	

endogenous	BDNF	had	no	effect	on	RGC	dendrite	loss	over	3	d.		These	data	support	the	use	of	BDNF	

a	therapeutic	agent	for	the	treatment	of	neuronal	degeneration.
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Chapter	5:	CSPG	Digestion	to	Enhance	RGC	Remodelling	in	the	

Retinal	Explant	

5.1	Introduction	

In	Chapter	4	I	demonstrated	that	application	of	BDNF	protects	RGCs	from	dendritic	retraction	and	may	

promote	dendritic	outgrowth.	However,	it	was	noted	that	the	protective	effect	of	BDNF	was	largely	

limited	 to	 the	primary	and	secondary	dendrites.	 In	order	 to	 improve	neuronal	network	 rewiring,	a	

method	was	sought	to	stimulate	outgrowth	of	terminal	dendrites.	

CSPGs	are	a	major	component	of	the	PNN,	which	is	laid	down	at	the	end	of	the	critical	period	to	limit	

neuronal	plasticity	(Pizzorusso	et	al.	2002;	Carulli	et	al.	2010;	Wang	and	Fawcett	2012).	Following	CNS	

injury,	the	secretion	of	CSPGs	is	increased	and,	along	with	activated	astrocytes,	these	form	a	glial	scar	

to	protect	neighbouring	healthy	tissue	from	an	immune	response	(Sofroniew	2005).	Although	CSPGs	

have	a	protective	role,	they	can	also	limit	remodelling	of	dendrites	and	synapses,	which	is	essential	

after	 injury	 if	 neuronal	 function	 is	 to	 be	 repaired.	 It	 has	 been	 proposed	 that	 CSPG	 digestion	may	

increase	 synaptic	 plasticity	 via	 the	 removal	 of	 inhibitory	 signals	 (Bradbury	 et	 al.	 2002),	 as	

demonstrated	in	the	kitten	visual	cortex	(Gordon	and	Stryker	1996).	However,	it	should	be	noted	that	

there	may	be	a	limit	to	plasticity	in	the	adult	(Pizzorusso	et	al.	2002).	

The	retinal	explant	is	an	excellent	model	to	test	the	effect	of	CSPG	digestion	on	dendritic	remodelling	

since	it	contains	an	intact	neuronal	network,	unlike	the	brain	slice.	In	this	chapter	I	tested	the	effect	

of	ChABC	treatment	on	RGC	dendritic	remodelling,	primarily	focussing	on	terminal	dendrites.	I	also	

explored	whether	 this	 treatment	 could	be	used	 in	 combination	with	BDNF	application	 to	enhance	

dendritic	outgrowth.	
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5.2	ChABC	digests	CSPGs	in	each	retinal	layer	

To	confirm	that	ChABC	treatment	could	be	used	to	digest	CSPGs	in	the	retinal	explant,	particularly	in	

and	around	the	GCL,	5	explants	were	treated	with	a	topical	50	µL	aliquot	of	0.25	U/mL	or	0.5	U/mL	

ChABC,	 or	 vehicle	 as	 control,	 for	 1	 d.	 Explants	 were	 then	 fixed	 and	 processed	 for	

immunohistochemistry	to	visualise	presence	of	GAG	stubs	1B5,	2B6	and	3B3.	Antibodies	to	1b5,	2B6	

and	 3B3	 bind	 to	 the	 stubs	 generated	 following	 ChABC	 digestion.	 3B3	 antibodies	 also	 bind	 to	

undigested	CSPGs.	Following	treatment	with	0.25	U/mL	ChABC	only	faint	staining	of	CS	stubs	could	be	

seen,	compared	to	the	untreated	state.	With	0.5	U/mL	ChABC	treatment	there	was	strong	staining	for	

1B5	and	2B6	in	the	GCL,	 INL	and	ONL,	and	staining	for	3B3	was	faint	but	stronger	than	in	explants	

treated	with	vehicle	only	(Figure	5.1).	These	results	support	the	use	of	a	topical	aliquot	of	0.5	U/mL	

ChABC	for	1	d	to	digest	CSPGs	in	the	GCL.		
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Figure 5.1 (previous page). Immunohistochemical staining for products of CSPG digestion in frozen 

sections of the retinal explant following 1 d treatment with 0.25 U/mL and 0.5 U/mL ChABC. CS stubs 

(1B5, 2B6 and 3B3) are visualised in green and nuclear staining (Hoechst) is displayed in monochrome 

above to the corresponding antibody staining panel. (a) Negative controls: retinal sections stained for 

the corresponding antibody with omission of either primary or secondary antibody displaying negligible 

fluorescence. (b) Positive controls (retina): explants were cultured under normal culture conditions for 

1 d and their sections were pre-incubated in 0.5 U/mL ChABC for 2 h at 37°C, 5% CO2 prior to 

immunohistochemical staining. (c) Positive controls (brain): untreated mouse brain sections to visualise 

normal levels of the CS stubs in the brain. (d) PBS control: an explant was cultured with a PBS aliquot 

for 1 d to visualise normal levels of each CS stub following 1 d ex vivo culture. N=1 explant. (e) An 

explant treated with 0.25 U/mL ChABC displays faint, dispersed staining for all epitopes in all retinal 

layers. N=1 explant. (f) Explants treated with 0.5 U/mL ChABC shows strong staining for 1B5 (left) and 

2B6 (middle) in each retinal layer. N=3 explants, 3 mice. Scale bars: 50 µm. 



Chapter	5:	CSPG	Digestion	to	Enhance	RGC	Remodelling	in	the	Retinal	Explant	

	

163	

5.3	Over	3	d	ChABC	treatment	blocks	the	protective	effect	of	BDNF	

In	order	to	verify	that	ChABC	treatment	 is	not	toxic	to	RGCs,	6	explants	 (n=4	mice,	male,	aged	2-7	

months)	were	treated	with	0.5	U/mL	ChABC	as	a	topical	aliquot,	or	vehicle	as	control,	 immediately	

after	wholemount	 preparation.	 After	 3	 d	 culture	 RGCs	were	 labelled	 and	 analysed	 as	 before.	 The	

culture	timeline	is	shown	in	Figure	5.2a.	There	was	no	visible	difference	in	morphology	of	RGCs	from	

ChABC-treated	explants	compared	to	controls	(Figure	5.2b-c)	and	this	was	confirmed	by	quantification	

with	Sholl	analysis	(p>0.05,	Kruskal-Wallis,	Figure	5.2d).	

Next,	to	test	whether	ChABC	treatment	could	enhance	the	effect	of	BDNF	on	RGC	dendritic	arbors,	7	

explants	(n=5	mice	of	either	sex,	aged	2-7	months)	were	treated	with	0.5	U/mL	ChABC	as	a	topical	

aliquot,	or	vehicle	as	control,	and	BDNF	was	added	to	the	medium	to	make	a	final	concentration	of	

100	ng/mL.	Explants	were	treated	with	BDNF	for	3	d,	at	which	point	RGCs	were	labelled	and	analysed	

as	before.	The	culture	timeline	is	shown	in	Figure	5.3a.	RGCs	from	explants	treated	with	BDNF	were	

characteristically	highly	branched,	but	 cells	with	 combined	BDNF	and	ChABC	 treatment	had	 fewer	

dendrites	 (Figure	 5.3b-c).	 This	 was	 quantified	 by	 Sholl	 analysis;	 the	 Sholl	 profile	 was	 significantly	

(p<0.05,	Kruskal-Wallis)	increased	40	µm,	210	and	220	µm	from	the	soma	centre	in	BDNF-treated	cells	

compared	to	ChABC+BDNF-treated	cells	(Figure	5.3d).		

The	outlined	patterns	in	dendritic	arbor	shape	were	supported	by	morphometric	analysis.	There	was	

no	difference	(p>0.05,	ANOVA	with	Tukey	post-hoc)	in	soma	diameter	between	groups	(Figure	5.4a).	

There	 was	 no	 significant	 difference	 (p>0.05,	 ANOVA	 with	 Tukey	 post-hoc)	 between	 groups	 for	

dendritic	field	area	(Figure	5.4b),	but	the	results	followed	the	same	trend	as	the	other	morphometric	

measures;	area	under	the	Sholl	profile	was	66.3%	increased	(p<0.05,	ANOVA	with	Tukey	post-hoc)	in	

BDNF-treated	cells	relative	to	ChABC-treated	cells	(Figure	5.4c).	The	branching	index	of	BDNF-treated	

cells	was	78.5%	increased	(p<0.05)	compared	to	ChABC-treated	cells	and	89.6%	increased	(p<0.005,	

ANOVA	with	Tukey	post-hoc)	compared	to	ChABC+BDNF-treated	cells	(Figure	5.4d).	
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Figure 5.2 (previous page) Morphometric analysis of RGCs from explants treated with 0.5 U/mL 

ChABC as a topical aliquot from day 0 for 1 d and cultured for 3 d. (a) Culture timeline. (b) 1024x1024 

pixel confocal images (top) and 8-bit tracings (bottom) of diolistically labelled RGCs from each treatment 

group show no visible difference between treatment conditions. Arrows indicate axons. Scale bars: 100 

µm. (c) Locations of all cells analysed relative to the optic nerve (origin) demonstrating no evidence of 

labelling bias. (d) Sholl profiles show no difference between treatment groups. p>0.05, Kruskal-Wallis. 

The number of cells for each group is indicated. Means ±SEM.
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Figure 5.3 (previous page) Morphometric analysis of RGCs from explants treated with 100 ng/mL 

BDNF for 3 d, combined with 0.5 U/mL ChABC applied as a topical aliquot from day 0 for 1 d. (a) Culture 

timeline. (b) 1024x1024 pixel confocal images (top) and 8-bit tracings (bottom) of diolistically labelled 

RGCs from each treatment group show increased dendritic branching in the absence of ChABC. Arrows 

indicate axons. Scale bars: 100 µm. (c) Locations of all cells analysed relative to the optic nerve (origin) 

demonstrating no evidence of labelling bias. (d) Sholl profiles show increased number of dendrites 

when ChABC was omitted. *p<0.05, Kruskal-Wallis. The number of cells for each group is indicated. 

Means ±SEM. 
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Figure 5.4 Morphometric measures of RGCs from explants treated with 0.5 U/mL ChABC, or vehicle 

as control, ±100 ng/mL BDNF over 3 d. (a) Soma diameters show no difference between groups. 

p>0.05, ANOVA with Tukey post-hoc. Measures of dendritic arbor morphology (b-d) demonstrate a 

general trend of increased dendritic arbor complexity and size with BDNF –ChABC. (b) Dendritic field 

area for each group. p>0.05, ANOVA with Tukey post-hoc. (c) Area under the Sholl profile. *p<0.05, 

ANOVA with Tukey post-hoc. (d) Branching index. *p<0.05, **p<0.005, ANOVA with Tukey post-hoc. 

Means ±SEM. 

	



Chapter	5:	CSPG	Digestion	to	Enhance	RGC	Remodelling	in	the	Retinal	Explant	

	

169	

5.4	Over	6	d	ChABC	treatment	is	neuroprotective	but	offers	no	extra	protection	in	

combination	with	BDNF	

To	investigate	whether	CSPG	digestion	is	toxic	over	a	longer	time	period,	6	explants	(n=3	animals	of	

either	sex,	aged	2-4	months)	were	treated	with	a	topical	aliquot	of	0.5	U/mL	ChABC	at	day	0,	followed	

by	culture	for	a	total	of	6	d,	at	which	point	RGCs	were	labelled	and	analysed	as	before.	The	culture	

timeline	 is	 shown	 in	 Figure	 5.5a.	 ChABC-treated	 RGCs	 had	 visibly	 larger,	 more	 densely	 branched	

dendritic	arbors,	compared	to	control	cells	(Figure	5.5b-c).	This	observation	was	quantified	by	Sholl	

analysis,	which	demonstrated	a	significant	increase	(p<0.05,	Kruskal-Wallis)	in	Sholl	peak	amplitude	

20-120	µm	from	the	soma	centre	and	a	rightwards	shift,	relative	to	controls	(Figure	5.5d).	

To	investigate	whether	ChABC	treatment	could	enhance	the	neuroprotective	effect	of	BDNF	over	a	

longer	time	period	and	to	test	a	possible	inhibitory	interaction	between	ChABC	and	BDNF	(Figure	5.3),	

6	 explants	 (n=3	 animals,	male,	 aged	 2-6	months)	were	 treated	with	 a	 topical	 aliquot	 of	 0.5	U/mL	

ChABC,	or	vehicle	as	control,	at	day	0,	followed	by	delayed	100	ng/mL	BDNF	treatment	(6	d	total).	The	

culture	timeline	 is	outlined	 in	Figure	5.6a.	RGCs	from	each	treatment	group	were	 indistinguishable	

from	each	other	(Figure	5.6b-c),	which	was	confirmed	by	Sholl	analysis	(p>0.05,	Kruskal-Wallis,	Figure	

5.6d).	

Morphometric	measures	further	supported	the	described	effects	of	ChABC	and	BDNF	treatment	over	

6	d.	There	was	no	difference	(p>0.05,	ANOVA	with	Tukey	post-hoc)	in	soma	diameter	between	groups	

(Figure	5.7a).	The	dendritic	field	area	and	Sholl	AUC	of	RGCs	in	every	group	treated	with	ChABC	or	

BDNF	were	significantly	(p<0.05,	ANOVA	with	Tukey-post	hoc)	larger	than	RGCs	treated	with	vehicle	

only	(Figure	5.7b-c).	The	branching	index	followed	the	same	trend	as	the	results	for	dendritic	field	area	

and	Sholl	AUC,	although	no	group	was	significantly	different	(p>0.05,	ANOVA	with	Tukey	post-hoc,	

Figure	5.7d).	
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To	test	whether	ChABC	treatment	affected	the	stratification	depth	of	RGC	dendrites	in	the	IPL	when	

combined	with	BDNF	treatment,	the	percentage	stratification	depth	of	ON-stratifying	(0-55%)	and	

OFF-stratifying	(55-100%)	dendrites	was	measured.	There	was	no	difference	(p>0.05,	T-test)	in	

stratification	depth	of	ON	dendrites	between	groups,	but	OFF	dendrites	stratified	10.4%	further	into	

the	IPL	(p<0.05,	T-test)	with	ChABC+BDNF	compared	to	vehicle+BDNF	cells	(Figure	5.7e-f).	
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Figure 5.5 (previous page) Morphometric analysis of RGCs from explants treated with 0.5 U/mL 

ChABC as a topical aliquot from day 0 for 1 d and cultured for 6 d. (a) Culture timeline. (b) 1024x1024 

pixel confocal images (top) and 8-bit tracings (bottom) of diolistically labelled RGCs from each treatment 

group. Arrows indicate axons. Scale bars: 100 µm. (c) Locations of all cells analysed relative to the 

optic nerve (origin) demonstrating no evidence of labelling bias. (d) Sholl profiles. *p<0.05, Kruskal-

Wallis. The number of cells for each group is indicated. Means ±SEM. 
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Figure 5.6 (previous page) Morphometric analysis of RGCs from explants treated with 0.5 U/mL 

ChABC applied as a topical aliquot on day 0 for 1 d, followed by 100 ng/mL BDNF treatment for 3 d 

initiated at day 3 (6 d total). (a) Culture timeline. (b) 1024x1024 pixel confocal images (top) and 8-bit 

tracings (bottom) of diolistically labelled RGCs from each treatment group show no difference in 

morphology between groups. Arrows indicate axons. Scale bars: 100 µm. (c) Locations of all cells 

analysed relative to the optic nerve (origin) demonstrating no evidence of labelling bias. (d) Sholl 

profiles. p>0.05, Kruskal-Wallis. The number of cells for each group is indicated. Means ±SEM. 
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Figure 5.7 (previous page) Morphometric measures of RGCs from explants treated with ±0.5 U/mL 

ChABC ±100 ng/mL BDNF over 6 d. (a) Soma diameters show no difference between groups. p>0.05, 

ANOVA with Tukey post-hoc. Measures of dendritic arbor morphology (b-d) demonstrate a general 

trend of increased dendritic arbor complexity and size with addition of BDNF or ChABC. (b) Dendritic 

field area for each group. *p<0.05, ANOVA with Tukey post-hoc. (c) Area under the Sholl profile. 

*p<0.05, **p<0.005, ANOVA with Tukey post-hoc. (d) Branching index. p>0.05, ANOVA with Tukey 

post-hoc. (e) Representative XY orthogonal views of dendritic arbors stratifying in the OFF lamina for 

cells treated with BDNF (top) or BDNF + ChABC (bottom). In each image lower black arrow indicates 

GCL, upper black arrow indicates INL, open arrow indicates stratification depth. Nuclei stained with TO-

PRO-3 (blue), dendrites stained with DiI (red) or DiO (green). (f) Quantification of stratification depth for 

ON and OFF-stratifying dendrites for cells treated with BDNF or BDNF + ChABC. Blue dotted line 

represents boundary (55%) IPL depth for classification of ON (below line) or OFF (above line). *p<0.05, 

T-test. Means ±SEM.	
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5.5	Following	ChABC	digestion,	BDNF	fails	to	protect	against	RGC	dendrite	loss,	even	

when	an	increased	concentration	of	BDNF	is	used.		

To	 test	 the	 effect	 of	 increased	 concentration	 of	 BDNF	 with	 ChABC	 treatment	 to	 see	 if	 the	

neuroprotective	effect	of	BDNF	could	be	enhanced.	Eleven	explants	(n=6	animals	of	either	sex,	aged	

6	weeks-2	months)	were	treated	with	a	topical	aliquot	of	0.5	U/mL	ChABC,	or	vehicle	as	control,	at	

day	 0,	 followed	 by	 1000	 ng/mL	 BDNF	 treatment	 initiated	 at	 day	 3	 for	 3	 d	 (6	 d	 total).	 RGCs	were	

analysed	as	before.	The	culture	 timeline	 is	 shown	 in	Figure	5.8a.	RGCs	 from	explants	 treated	with	

delayed	1000	ng/mL	BDNF	had	dendritic	arbors	that	were	visibly	larger	and	more	complex	than	control	

cells,	but	there	was	no	visible	difference	following	ChABC	treatment	(Figure	5.8b-c).	This	observation	

was	quantified	by	Sholl	analysis,	 in	which	the	Sholl	profile	peak	for	cells	treated	with	delayed	1000	

ng/mL	BDNF	was	approximately	doubled	between	30-110	µm	(p<0.05,	Kruskal-Wallis)	from	the	soma	

centre	and	was	translated	rightwards	relative	to	the	profile	for	control	cells	(Figure	5.8d).	There	was	

no	significant	difference	(p>0.05,	Kruskal-Wallis)	between	curves	at	any	distance	from	the	soma	centre	

for	cells	from	explants	treated	with	ChABC	(or	vehicle)	and	1000	ng/mL	BDNF	(Figure	5.8e).	
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Figure 5.8 (previous page) Morphometric analysis of RGCs from explants treated with 0.5 U/mL 

ChABC, or vehicle as control, applied as a topical aliquot on day 0 for 1 d, followed by 1000 ng/mL 

BDNF treatment, or vehicle as control, initiated at day 3 for 3 d (6 d total). (a) Culture timeline. (b) 

1024x1024 pixel confocal images of diolistically labelled RGCs from each treatment group show 

dramatically increased dendritic arbor branching and size following BDNF treatment. Arrows indicate 

axons. Scale bars: 100 µm. (c) Locations of all cells analysed relative to the optic nerve (origin) 

demonstrating no evidence of labelling bias. (d) Sholl profiles. *p<0.05, **p<0.005, ***p<0.001, Kruskal-

Wallis. (e) Sholl profiles. p>0.05, Kruskal-Wallis. The number of cells for each group is indicated. Means 

±SEM. 
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5.6	Pre-treatment	with	BDNF	may	benefit	combination	therapy	with	ChABC	

In	order	 to	 test	whether	 reversal	 of	 treatment	order	 could	enhance	 the	neuroprotective	effect	of	

either	BDNF	or	ChABC,	6	explants	 (n=3	animals,	male,	aged	4	months)	were	 first	 treated	with	100	

ng/mL	BDNF,	or	vehicle	as	control,	at	day	0	for	1	d,	followed	by	a	topical	aliquot	of	0.5	U/mL	ChABC	at	

day	1,	and	finally	at	day	3	RGCs	were	labelled	and	analysed	as	before.	The	culture	timeline	is	shown	

in	Figure	5.9a.	RGC	dendritic	arbors	from	explants	treated	with	BDNF	and	ChABC	appeared	larger	than	

those	treated	with	ChABC	only	(Figure	5.9b-c).	The	Sholl	peak	amplitudes	were	unchanged	between	

groups,	but	the	Sholl	profile	for	RGCs	treated	with	BDNF	and	ChABC	was	translated	rightwards	100-

120	µm	and	180	µm	from	the	soma	centre	(p<0.05,	Kruskal-Wallis),	relative	to	the	curve	for	ChABC-

treated	cells	(Figure	5.9d).	There	was	no	difference	in	soma	diameter	between	groups	(p>0.05,	T-test,	

Figure	5.9e).	Although	there	was	no	significant	difference	(p>0.05,	T-test)	between	groups	for	either	

dendritic	 field	 area	 or	 area	 under	 the	 Sholl	 profile,	 these	 results	 followed	 the	 same	 trend	 as	 the	

branching	index,	which	was	33.8%	increased	(p<0.05,	T-test)	in	BDNF+ChABC-treated	cells,	relative	to	

ChABC	only-treated	cells	(Figure	5.9f-h).
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Figure 5.9 (previous page) Morphometric analysis of RGCs from explants cultured for 3 d, treated with 

100 ng/mL BDNF at day 0 for 1d, followed by 0.5 U/mL ChABC treatment at day 1. (a) Culture timeline. 

(b) 1024x1024 pixel confocal images (left) and 8-bit tracings (right) of diolistically labelled RGCs from 

each treatment group. Arrows indicate axons. Scale bars: 100 µm. (c) Locations of all cells analysed 

relative to the optic nerve (origin) demonstrating no evidence of labelling bias. (d) Sholl profiles. 

*P<0.05, Kruskal-Wallis. The number of cells for each group is indicated. (e) Soma diameter. P>0.05, 

T-test. (f) Dendritic field area. P>0.05, T-test. (g) Area under the Sholl profile. P<0.05, T-test. (h) 

Branching index. *p<0.05, T-test. Means ±SEM. 
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5.7	Conclusions	

In	this	chapter	I	explored	the	effect	of	digesting	the	CSPG	components	of	the	PNN	with	respect	to	RGC	

plasticity	 and	 in	 combination	 with	 BDNF	 treatment.	 The	 data	 shown	 here	 suggest	 that	 ChABC	

treatment	could	facilitate	RGC	plasticity	over	longer	time	periods,	but	that	a	combination	of	ChABC	

and	BDNF	does	not	deliver	an	additional	therapeutic	benefit	in	this	model.	

There	was	no	effect	on	RGC	dendritic	morphology	of	ChABC	treatment	after	3	d	treatment,	but	after	

6	d	there	appeared	to	be	an	increase	in	dendritic	regrowth.	Over	both	of	these	time-frames	ChABC	

treatment	either	blocked	or	had	no	positive	effect	on	the	neuroprotective	effect	of	BDNF	treatment,	

even	when	the	concentration	of	BDNF	was	increased	10-fold.	This	is	perhaps	not	surprising,	given	the	

role	of	the	PNN	in	stabilising	synaptic	connections	and	dendritic	morphology.	Specifically,	CSPGs	of	

the	PNN	have	been	shown	to	bind	anchor	proteins,	such	as	neural	cell	adhesion	molecule	(NCAM),	

which	increase	the	efficiency	of	BDNF-TrkB	interaction	(Vutskits	et	al.	2001).	

It	should	be	noted	that	as	in	Chapters	3	and	4,	some	of	the	groups	in	this	chapter	had	small	number	

of	 cells	 (especially	 in	 Figure	 5.9)	 and	 that	 it	 would	 be	 prudent	 to	 undertake	 further	 work	 to	

substantiate	these	observations.	Despite	this,	the	Sholl	profiles	were	similar	for	all	groups	of	the	same	

culture	period,	 therefore	 it	 is	 likely	 that	 there	was	a	 similar	 spread	of	cell	 types	 in	each	group.	All	

groups	seemed	to	show	the	same	trend,	but	these	patterns	should	be	validated	in	the	future	with	the	

use	of	time-series	imaging.	

Structural	 analysis	 of	 RGCs	 provides	 a	 sensitive	 readout	 of	 cell	 stress	 since	 cell	 swelling/dendritic	

beading	can	be	a	marker	of	 stress	or	necrosis	 (Pasantes-Morales	and	Tuz	2006;	Liang	et	al.	2007).	

There	was	no	evidence	of	cell	stress	with	ChABC	treatment,	supporting	the	notion	that	ChABC	is	not	

toxic.	

Reversal	 of	 treatment	 timeline,	 i.e.	 BDNF	 prior	 to	 ChABC,	 may	 have	 been	 protective	 for	 distal	

dendrites.	 BDNF	 was	 only	 applied	 for	 1	 d	 during	 this	 experiment,	 which	may	 reflect	 the	modest	
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neuroprotective	 effect.	 Nevertheless,	 it	 would	 be	 interesting	 to	 further	 examine	 this	 reversed	

treatment	regime	by	applying	BDNF	for	a	longer	period	prior	to	CSPG	digestion.	In	the	future	it	would	

also	be	instructive	to	investigate	the	duration	of	the	neuroprotective	effect	of	BDNF	following	removal	

of	BDNF	from	the	culture	medium,	in	order	to	provide	information	regarding	dosing	frequencies	for	

any	resultant	treatment	regimes.		

	

5.8	Summary	

ChABC	treatment	was	not	toxic	to	RGCs	in	the	retinal	explant,	and	may	even	be	neuroprotective	over	

longer	culture	periods,	however	it	appeared	to	inhibit	the	neuroprotective	effect	of	BDNF	when	BDNF	

was	added	over	3	d.	There	was	no	evidence	of	inhibition	of	the	positive	effect	of	BDNF	with	ChABC	

treatment	over	6	d,	however	there	was	no	additional	neuroprotective	effect	when	the	two	treatments	

were	 combined,	 even	 when	 the	 concentration	 of	 BDNF	was	 increased	 10-fold.	 Finally,	 there	 was	

evidence	that	reversal	of	the	treatment	regime,	i.e.	treatment	with	BDNF	prior	to	ChABC,	may	increase	

neuroprotection	of	terminal	dendrites.
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Chapter	6:	Neural	Stem	Cell	Migration	

6.1	Introduction	

I	 have	 demonstrated	 that	 BDNF	 application	 significantly	 retards	 RGC	 dendritic	 retraction	 in	 the	

degenerating	 retinal	 explant,	 therefore	 has	 potential	 for	 the	 treatment	 of	 neurodegenerative	

disorders.	Injection	of	BDNF	is	not	suitable	therapeutically	because	BDNF	is	pharmacologically	‘sticky’	

and	has	a	short	half-life,	therefore	it	is	difficult	to	control	concentration	and	location	of	injected	BDNF	

(Poduslo	 and	 Curran	 1996;	 Lu	 2003).	 Further,	 BDNF	 application	 is	 undesirable	 due	 to	 the	 risks	

associated	with	repeat	injections	in	the	CNS,	such	as	inflammation	or	infection.	An	alternative	delivery	

route	is	via	secretion	from	donor	stem	cells	that	can	be	engineered	to	translate	and	secrete	peptides	

of	 choice.	 Cell-mediated	 delivery	 enables	 sustained	 dosing	 of	 the	 agent	 and,	 more	 importantly,	

permits	 control	 of	 agent	 release	 through	 transcription	 control	 techniques	 including	 optogenetics	

(Deisseroth	2011)	or	magnetogenetics	(Long	et	al.	2015).	

Cell-mediated	delivery	of	BDNF	is	an	exciting	method	and	stem	cells	will	migrate	into	tissue	without	

external	influences	(Jeon	et	al.	2008;	Li	and	Jiang	2011),	but	in	order	for	therapies	to	be	effective	with	

minimal	adverse	effects,	stem	cell	migration	must	be	controlled.	Endogenous	magnetic	 fields	have	

been	evidenced	 to	play	a	 role	 in	cell	migration	during	wound	healing.	Further,	magnetic	 fields	are	

deeply	penetrating	without	compromising	 safety,	and	permit	dosing	 to	be	controlled	 spatially	and	

temporally	(Kyrtatos	et	al.	2009;	Chen	et	al.	2013).	Magnetic	fields	also	have	the	advantage	of	allowing	

stem	 cells	 to	 be	 sequestered	 for	 termination	 of	 treatment.	 For	 these	 reasons	 the	 use	 of	 external	

magnetic	fields	is	an	attractive	method	to	direct	stem	cell	migration	in	the	CNS.	The	retinal	explant	is	

an	ideal	platform	to	test	whether	this	technique	can	improve	the	efficiency	of	stem	cell	migration	into	

the	IPL	with	a	view	to	providing	cell-mediated	delivery	of	BDNF	to	RGCs.	
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6.2	The	effect	of	permanent	magnetic	fields	on	NSCs	in	suspension	

To	test	the	effect	of	permanent	magnetic	fields	on	the	movement	of	NSCs	in	suspension	in	vitro,	3	mL	

GFP-expressing	 NSCs	 (passage	 39-42)	were	 seeded	 onto	 10	 µg/mL	 laminin-coated	 35	mm	 culture	

dishes	 overnight	 at	 a	 density	 of	 1.2-1.8X105	 cells/cm2.	 Volumes	 of	 1.5	 uL	 or	 3	 uL	 nTMag	 were	

introduced	into	NSCs	using	a	magnefect	at	2	Hz	for	30	min	at	37°C,	5%	CO2.	Control	dished	contained	

NSCs	with	no	nTMag.	Cells	were	disassociated	from	laminin	using	Accutase®	and	immediately	imaged	

for	 tracking	 analysis.	 NSCs	 were	 imaged	 by	 brightfield	 microscopy	 at	 10X	 using	 time-series,	 with	

images	taken	every	2.5	sec	for	a	total	of	125	sec	(6.7	kg-pull	NdFeB	magnet)	or	every	1	min	for	a	total	

of	9	min	(23	kg-pull	and	38	kg-pull	NdFeB	magnets).	The	imaging	set-up	is	shown	in	Figure	6.1.	Images	

were	taken	at	the	edge	of	the	dish	of	cells	in	suspension	(6.7	kg-pull	magnet)	or	of	cells	on	the	bottom	

surface	of	the	dish	(23	kg-pull	and	38	kg-pull	magnets).	Imaging	experiments	were	conducted	in	the	

absence	of	the	magnet	prior	to	imaging	in	the	presence	of	the	magnet,	for	each	dish.	Images	were	

exported	as	TIFFs	and	tracking	was	analysed	using	mTrack	and	Chemotaxis	in	FIJI.	

6.2.1	NSC	movement	with	6.7	kg-pull	NdFeB	magnet	

There	was	no	observable	change	in	directionality	(a	measure	of	how	systematically	the	cells	move	in	

a	 particular	 direction,	 i.e.	 towards	 a	 magnet)	 of	 the	 movement	 paths	 of	 the	 NSCs	 in	 any	 of	 the	

conditions	investigated	(Figure	6.2).	There	was	no	difference	(p>0.05,	ANOVA	with	Tukey	post-hoc)	in	

migration	 distance	 between	 experimental	 conditions	 (Figure	 6.3a-b).	 Although	 no	 group	 was	

significantly	 different	 (p>0.05,	 ANOVA	 with	 Tukey	 post-hoc),	 there	 was	 a	 trend	 of	 an	 increase	 in	

migration	velocity	in	the	presence	of	the	magnet	(Figure	6.3c).	Forward	migration	indices	and	centres	

of	mass	were	not	significant	between	groups	(p>0.05,	ANOVA	with	Tukey	post-hoc),	but	showed	a	

trend	of	an	increase	in	directionality	in	the	presence	of	the	magnet	(Figure	6.3d-e).	
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Figure 6.1 Experimental set-up for magnet-directed movement of magnetic nanoparticle-containing 

NSCs in suspension in vitro. (a) Magnetic field strength of each magnet measured using a gaussmeter 

at the surface of the magnet and at 1 mm increments up to 10 mm from the magnet surface. (b) GFP-

NSCs ±nTMag were placed in a 35 mm dish and the magnet was held directly against the edge of the 

dish (6.7 kg-pull magnet) or 10 mm from the edge of the dish (all other magnets). Cells were imaged by 

brightfield microscopy at the edge of the dish in the absence of the magnet before introduction of the 

magnet. Open arrow: light source. Black arrow: detector. The north (N) and south (S) poles are 

indicated. (c) Example image of NSCs after analysis with mTrack to show relative position of magnet. 

Each dot represents a tracked cell. Scale bar: 50 µm. 
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Figure 6.2 (previous page) Cell tracking analysis of GFP-NSCs with 6.7 kg-pull NdFeB magnet using 

the plugin mTrack. The start (top) and end (middle) frames are shown for each condition. The cell 

movement plots (bottom) show the migration track of each cell relative to its starting position (origin) 

created using the Chemotaxis plugin in FIJI. Magnet: right of each image, as indicated. (a) No magnet, 

no nTMag. (b) Magnet, no nTMag. (c) No magnet, 1.5 µL nTMag. (d) Magnet, 1.5 µL nTMag. (e) No 

magnet, 3 µL nTMag. (f) Magnet, 3 µL nTMag. Scale bars: 50 µm.
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Figure 6.3 Quantification of NSC tracking in the presence of a 6.7 kg-pull NdFeB magnet with 0 µL, 1.5 

µL or 3 µL nTMag. (a) Mean accumulated distance for each experimental condition. p>0.05, ANOVA 

with Tukey post-hoc. (b) Mean euclidean distance for each experimental condition. p>0.05, ANOVA 

with Tukey post-hoc. (c) Mean velocity for each experimental condition. p>0.05, ANOVA with Tukey 

post-hoc. (d) Mean x and y migration indices for each experimental condition. p>0.05, Mann-Whitney 

with Bonferroni correction (x forward index); p>0.05, ANOVA with Tukey post-hoc (y forward index). (e) 

Mean x and y centres of mass for each experimental condition. p>0.05, ANOVA with Tukey post-hoc. 

Error bars ±SEM. n=3 dishes for each experiment.
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6.2.2	NSC	tracking	with	23	kg-pull	NdFeB	magnet	

In	the	absence	of	the	23	kg-pull	magnet,	movement	paths	were	random,	but	directionality	appeared	

to	improve	in	the	presence	of	magnet	with	both	volumes	of	nTMag	used	(Figure	6.4).	There	was	no	

difference	in	movement	distance	or	velocity	between	groups	(p>0.05,	ANOVA	with	Tukey	post-hoc)		

	(Figure	6.5a-c).	Although	not	significant	(p>0.05,	Mann-Whitney	with	Bonferroni	correction	or	ANOVA	

with	Tukey	post-hoc),	 there	was	a	 trend	of	an	 increase	 in	directionality	 in	 the	x	axis,	measured	as	

forward	migration	indices	and	centres	of	mass,	in	the	presence	of	the	magnet	with	no	nTMag.	The	y	

forward	migration	index	was	significantly	greater	for	NSCs	with	0	µL	nTMag	no	magnet	compared	to	

3	µL	nTMag	with	magnet	(Figure	6.5d-e).	
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Figure 6.4 (previous page) Cell tracking analysis of GFP-NSCs with 23 kg-pull NdFeB magnet using 

the plugin mTrack. The start (left) and end (right) frames are shown for each condition. The cell 

movement plots (bottom) show the migration track of each cell relative to its starting position (origin). 

(a) No magnet, no nTMag. (b) Magnet, no nTMag. (c) No magnet, 3 µL nTMag. (d) Magnet, 3 µL 

nTMag. Scale bars: 50 µm.
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Figure 6.5 (previous page) Quantification of NSC movement tracking in the presence of a 23 kg-pull 

NdFeB magnet with 0 µL or 3 µL nTMag. (a) Mean accumulated distance for each experimental 

condition. p>0.05, ANOVA with Tukey post-hoc. (b) Mean euclidean distance for each experimental 

condition. p>0.05, ANOVA with Tukey post-hoc. (c) Mean velocity for each experimental condition. 

p>0.05, ANOVA with Tukey post-hoc. (d) Mean x and y migration indices for each experimental 

condition. *p<0.05, ANOVA with Tukey post-hoc. *represents 0 µL no magnet vs. 3 µL with magnet y 

forward migration index. (e) Mean x and y centres of mass for each experimental condition. p>0.05, 

ANOVA with Tukey post-hoc. Error bars ±SEM. n=≥2. 

	
	

6.2.3	NSC	tracking	with	38	kg-pull	NdFeB	magnet	

In	the	absence	of	the	38	kg-pull	magnet,	migration	paths	were	random,	but	there	was	more	coherent	

directionality	in	the	presence	of	the	magnet	with	both	volumes	of	nTMag	used	(Figure	6.6).	There	was	

no	difference	in	movement	distance	or	velocity	between	groups	(p>0.05,	ANOVA	with	Tukey	post-hoc)	

(Figure	6.7a-c).	Although	not	significant	(p>0.05,	ANOVA	with	Tukey	post-hoc),	there	was	a	trend	of	

improved	migration	directionality	in	the	presence	of	the	magnet	with	both	volumes	of	nTMag	(Figure	

6.7d-e).		
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Figure 6.6 (previous page). Cell tracking analysis of GFP-NSCs with 38 kg-pull NdFeB magnet using 

the plugin mTrack. The start (left) and end (right) frames are shown for each condition. The cell 

movement plots (bottom) show the movement track of each cell relative to its starting position (origin). 

(a) No magnet, no nTMag. (b) Magnet, no nTMag. (c) No magnet, 3 µL nTMag. (d) Magnet, 3 µL 

nTMag. Scale bars: 50 µm. 
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Figure 6.7 Quantification of NSC tracking in the presence of a 38 kg-pull NdFeB magnet with 0 µL or 3 

µL nTMag. The data show a trend of increased distance, speed and directionality in the presence of 

the magnet. (a) Mean accumulated distance for each experimental condition. p>0.05, ANOVA with 
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Tukey post-hoc. (b) Mean euclidean distance for each experimental condition. p>0.05, ANOVA with 

Tukey post-hoc. (c) Mean velocity for each experimental condition. p>0.05, ANOVA with Tukey post-

hoc. (d) Mean x and y migration indices for each experimental condition. p>0.05, ANOVA with Tukey 

post-hoc. (e) Mean x and y centres of mass for each experimental condition. p>0.05, ANOVA with Tukey 

post-hoc. Error bars ±SEM. n=≥2. 

	

6.3	The	effect	of	electromagnetic	fields	on	NSC	movement	

Since	electromagnets	can	be	designed	to	have	stronger	fields	than	the	same	sized	permanent	magnet,	

the	effect	of	an	electromagnet	on	the	migration	patterns	of	NSCs	was	investigated.	GFP-expressing	

NSCs	(passage	43)	were	seeded	on	laminin	and	disassociated	as	before	and	imaging	experiments	were	

repeated	as	described	in	6.2	with	no	nTMag	only,	with	NSCs	on	the	bottom	surface	of	the	dish	imaged	

for	cell	tracking	experiments.	Images	were	then	taken	with	a	25	kg	pull	electromagnet,	operated	at	

0.2	A,	24	V,	held	10	mm	from	the	edge	of	the	dish.	NSCs	were	tracked	as	before.	

In	the	absence	of	magnet,	NSC	movement	paths	were	relatively	random,	but	in	the	presence	of	the	

25	 kg-pull	 electromagnet	 movement	 directionality	 was	 improved	 (Figure	 6.8a-b).	 There	 was	 no	

difference	(p>0.05,	ANOVA	with	Tukey	post-hoc)	in	migration	distance	or	velocity	with	the	addition	of	

the	electromagnet,	but	NSC	migration	distance	and	velocity	showed	a	trend	of	decrease	compared	to	

the	data	from	experiments	with	the	23	kg-pull	and	38	kg-pull	NdFeB	magnets	(Figure	6.8c-e).	Although	

not	 significant	 (p>0.05),	 directionality	 in	 the	 x	 axis	 tended	 to	 increase	 in	 the	 presence	 of	 the	

electromagnet,	 as	 measured	 by	 forward	 migration	 indices	 and	 centres	 of	 mass.	 The	 y	 forward	

migration	 index	was	 significantly	 greater	 (p<0.05,	ANOVA	with	 Tukey	post-hoc)	 in	NSCs	with	 0	µL 

nTMag + 38 kg-pull magnet compared to every other group	(Figure	6.8f-g).
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Figure 6.8 Cell tracking analysis of GFP-NSCs with a 25 kg-pull electromagnet using the plugin mTrack. 

Cell tracking demonstrates increased directionality in the presence of the magnet. (a) Images of tracked 

cells ± the electromagnet, with the starting and final frame shown for each condition. Scale bars: 50 

µm. (b) Cell movement plots for each condition, showing the movement tracks of every cells relative to 

its starting position (origin). (c) Mean accumulated distance, shown with the values for the tracking 

experiments with the 23 kg and 38 kg-pull NdFeB magnets with no nTMag for comparison. p>0.05, 

ANOVA with Tukey post-hoc. (d) Mean euclidean distance, shown with the values for the tracking 
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experiments with the 23 kg and 38 kg-pull NdFeB magnets with no nTMag for comparison. p>0.05, 

ANOVA with Tukey post-hoc. (e) Mean velocity, shown with the values for the tracking experiments 

with the 23 kg and 38 kg-pull NdFeB magnets with no nTMag for comparison. p>0.05, ANOVA with 

Tukey post-hoc. (f) Mean x and y migration indices, shown with the values for the tracking experiments 

with the 23 kg and 38 kg-pull NdFeB magnets with no nTMag for comparison. *p<0.05, ANOVA with 

Tukey post-hoc. *represents 0 µL with 38 kg-pull magnet vs. all other groups y forward migration index. 

(g) Mean x and y centres of mass, shown with the values for the tracking experiments with the 23 kg 

and 38 kg-pull NdFeB magnets with no nTMag for comparison. p>0.05, ANOVA with Tukey post-hoc. 

Error bars ±SEM. n=3 (electromagnet); n=≥2 (23 kg-pull and 38 kg-pull NdFeB magnets). 
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6.4	Permanent	magnetic	fields	increase	integration	of	NSCs	into	the	retinal	explant	

To	test	the	effect	of	a	permanent	magnetic	field	on	the	movement	of	NSCs	in	a	more	clinically	relevant	

model,	6	explants	(3	mice,	male,	2	months	old)	were	cultured	for	3	h	with	a	2	mL	topical	aliquot	of	

1X105	NSCs/cm2	with	a	38	kg-pull	NdFeB	magnet	placed	directly	underneath	the	culture	dish	(10	mm	

from	explant)	or	no	magnet	as	control	(Figure	6.9a).	At	the	end	of	the	culture	period	the	explants	were	

fixed	and	nuclear	stained	with	TO-PRO-3.	The	entire	GCL-IPL	of	each	explant	were	imaged	by	confocal	

microscopy	in	1	um	steps	(1024x1024	pixels	images)	in	each	quadrant	of	each	explant	(Figure	6.9b).	

The	green	channel	intensity	of	every	GFP+	NSC	was	measured	in	each	slice	from	the	GCL	to	the	INL	

and	the	IPL	depth	at	each	slice	was	quantified	as	%	IPL	depth.	

In	the	presence	of	the	magnet,	more	GFP+	cells	could	be	seen	in	the	GCL	or	IPL,	whilst	GFP+	cells	in	

control	 retinas	seemed	to	be	mostly	 located	above	the	GCL	(Figure	6.9c-d).	This	was	confirmed	by	

quantification,	 in	which	explants	with	the	magnet	had	significantly	 increased	(p<0.05,	ANOVA	with	

Tukey	post-hoc)	green	channel	intensity	at	depths	of	>0%-50%	IPL	(Figure	6.9e).	
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Figure 6.9 (previous page) GFP-NSC migration into the mouse retinal explant with a permanent 38 

kg-pull magnet. (a) Experimental set-up. The magnet was placed directly underneath the culture dish 

and the NSCs were placed directly on top of the explant, as shown. (b) Locations for confocal images 

of explant following migration experiment. One area in each quadrant of the retina was imaged. (c) 

Representative images of the GCL after 3 hours of NSC migration in the absence (left) and presence 

(right) of the magnet. The orthogonal views are presented. Scale bars: 100 µm. (d) Orthogonal XZ view 

of control (top) and magnet (bottom) explants are shown in higher magnification to demonstrate 

increased depth of NSC migration in the IPL in the presence of the magnet. Scale bars: 10 µm. (e) 

Quantification of green channel intensity at different depths of the IPL with and without the magnet. 

*p<0.05, **p<0.005, ***p<0.001, ANOVA with Tukey post-hoc. Error bars: SEM. 
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6.5	Conclusions	

In	this	chapter	I	explored	the	potential	of	guiding	NSCs	using	external	magnetic	fields,	with	a	view	to	

using	NSCs	to	deliver	a	more	sustained	delivery	of	BDNF	to	RGCs	within	the	retinal	explant.	It	should	

be	noted	that	the	in	vitro	NSC	‘migration’	measured	in	this	chapter	was	the	directed	movement	of	

cells	 in	 suspension	using	magnetic	 fields,	 rather	 than	 traditional	 cell	migration	 across	 a	 substrate.	

Without	 measuring	 the	 changes	 in	 activation	 levels	 of	 proteins,	 such	 as	 Rac	 (Ridley	 et	 al.	 1999),	

following	 introduction	of	a	magnetic	 field	the	NSC	movement	 in	the	retinal	explant	also	cannot	be	

confirmed	as	cell	migration.	Nevertheless,	the	results	thus	far	are	promising	for	the	use	of	magnetic	

fields	to	direct	stem	cells	for	the	efficient	delivery	of	neurotrophic	agents.	

My	data	demonstrated	a	trend	for	movement	distance,	speed	and	directionality	 to	 increase	 in	the	

presence	of	a	magnetic	field,	both	with	and	without	addition	of	mnps,	but	no	significant	difference	in	

migration	parameters	was	measured	for	any	group.	This	may	have	been	because	the	 images	were	

taken	at	the	edge	of	the	dish	where	cell	movement	was	limited	by	the	dish	boundary.	In	the	future	it	

would	 be	 interesting	 to	 segment	migration	 analysis	 into	 smaller	 bands	 and	 examine	 the	 effect	 of	

distance	 from	magnet	surface	–	especially	as	magnetic	 field	strength	declines	exponentially	as	 the	

inverse	 square	 of	 the	 distance.	 The	 lack	 of	 significance	 also	 reflects	 large	 variability	 in	movement	

patterns	 of	NSCs	 in	 suspension,	 particularly	 in	 vitro.	 Experiments	 should	 therefore	be	 repeated	 in	

order	to	obtain	data	for	a	much	greater	number	of	cells,	and	over	longer	time	periods.	

Temperature	 is	 likely	 to	 be	 a	 factor	 that	 was	 largely	 overlooked	 in	 the	 current	 study.	 In	 the	

experiments	described	here,	the	NSCs	were	taken	from	a	37°C	incubator	and	imaged	in	a	room	that	

was	 not	 temperature	 controlled.	 These	 will	 likely	 have	 resulted	 in	 the	 formation	 of	 convection	

currents,	which	may	 have	 had	 a	 confounding	 effect	 on	 the	movement	 of	 NSCs.	 Further,	 since	 an	

alteration	in	temperature	of	only	1°C	affects	the	apparent	magnetic	field	strength	(but	not	magnetic	

flux	density)	(Reiser	et	al.	2007),	there	may	have	been	large	variations	depending	on	day,	and	even	

time	of	the	experiment.	For	these	reasons,	it	would	be	instructive	to	repeat	these	experiments	using	
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a	 temperature-controlled	 chamber.	 Heat	 production	 by	 the	 electric	 current	 of	 the	 electromagnet	

should	also	be	considered.	It	was	noted	that	there	was	considerable	heat	production	during	the	use	

of	the	electromagnet,	which	may	have	been	cytotoxic	and	should	be	checked	with	a	viability	assay.	

Although	not	significant,	it	was	observed	that	the	movement	distances	and	velocities	for	NSCs	with	

the	electromagnet,	including	control	cells,	were	generally	lower	than	controls	with	the	other	magnets.	

This	 may	 have	 been	 a	 result	 of	 low	 n	 numbers,	 which	 can	 be	 easily	 tested	 by	 repeating	 all	 the	

experiments	to	check	for	reproducibility.	Alternatively,	the	reduction	in	motility	may	have	reflected	a	

decrease	in	viability	of	the	cells,	which	were	of	higher	passage	number	for	the	experiments	with	the	

electromagnet,	compared	to	the	other	magnets.	It	is	well	known	that	stem	cell	viability	decreases	with	

passage	number	(Martin-Piedra	et	al.	2014)	and	this	could	be	tested	by	Trypan	blue	staining.	Although	

it	 has	 been	 reported	 that	 mnps	 do	 not	 adversely	 affect	 cell	 viability	 or	 migration	 behaviour	

(Ramaswamy	et	al.	2015),	this	should	be	verified	with	viability	assays.		

Although	I	measured	a	significant	increase	in	the	NSC	migration/movement	depth	with	the	magnet,	

migration	was	limited	to	the	upper	50%	of	the	IPL.	In	the	context	of	cell-mediated	delivery	of	BDNF,	

this	 may	 result	 in	 protection	 being	 given	 to	 ON-stratified	 dendrites	 only.	 However,	 since	 it	 was	

reported	in	the	rat	magnetic	field-mediated	retention	of	cardiosphere-derived	cells	in	the	coronary	

artery	took	24	hours	(Cheng	et	al.	2012),	it	is	likely	that	the	experimental	timeline	used	here	was	not	

long	enough	to	identify	the	limit	of	magnetic	field-directed	movement	of	the	cells.	In	line	with	this,	it	

would	be	valuable	to	monitor	the	movement	of	NSCs	in	the	explant	using	time-series	imaging,	so	that	

migration	speed	can	be	assessed.	

6.6	Summary	

There	was	no	 significant	effect	of	external	magnetic	 fields	 (permanent	or	electromagnetic)	on	 the	

movement	of	NSCs	in	suspension	in	vitro,	even	following	inclusion	of	mnps.	In	contrast,	application	of	

a	 permanent	magnetic	 field	 increased	 the	 depth	 of	 NSC	migration	 into	 the	 IPL	 of	 explants	 in	 the	

absence	of	mnps.	
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Chapter	7:	General	discussion	

7.1	The	retinal	explant	as	a	model	to	investigate	neuronal	degeneration	

In	this	thesis	I	have	shown	that	the	morphometric	analysis	of	RGCs	provides	a	readout	of	neuronal	cell	

health	in	a	translatable	model	of	neuronal	degeneration	that	is	rapid	and	robust,	compared	to	similar	

in	vivo	models,	in	which	neuronal	degeneration	is	markedly	slower.	I	have	highlighted	a	discrepancy	

between	cell	loss	and	dendritic	retraction,	thus	outlining	a	window	in	which	to	delineate	degenerative	

events	and	to	investigate	the	effects	of	neuroprotective	agents.	

There	 are	 a	 number	 of	 challenges	with	working	with	 this	model.	One	 problem	 is	 that	 there	 is	 no	

‘perfect’	RGC	marker.	Thy1	is	one	of	the	most	widely	used	RGC	markers,	but	only	labels	70%	of	RGCs	

(Perry	et	al.	1984)	and	 fluctuates	 in	expression	 level	 following	optic	nerve	damage	 (Schlamp	et	al.	

2001;	Astafurov	et	al.	2014).	 It	would	be	 interesting	to	compare	the	 levels	of	Thy1	to	the	 levels	of	

other	neuronal	markers,	such	as	Brn3,	NeuN	and	TUJ1	to	allow	a	more	accurate	assessment	of	the	

number	of	RGCs.	Given	that	there	is	no	perfect	marker	of	RGCs	and	viability	markers	are	not	reliable	

markers	 of	 cell	 death	 in	 this	model,	 nuclear	 staining	 likely	 provides	 the	best	 readout	 of	 RGC	 loss,	

particularly	given	that	amacrine	cells	are	resistant	to	cell	death	(Kunzevitzky	et	al.	2010)	and	so	their	

numbers	may	be	considered	 to	be	constant	 (offset).	This	model	 is	 limited	as	a	generic	CNS	model	

because,	unlike	most	neurons	in	the	brain,	RGCs	do	not	have	dendritic	spines.	Nevertheless,	the	retinal	

explant	offers	a	major	advantage	over	the	hippocampal	brain	slice	by	the	presence	of	intact	neuronal	

networks.	

Cell	sub-type	analysis	revealed	that	OFF-stratifying	RGCs	may	be	more	susceptible	to	dendritic	pruning	

than	 the	other	 sub-types,	as	 reported	 in	 the	mouse	 (El-Danaf	and	Huberman	2015;	 Johnson	et	al.	

2016).	Although	intriguing,	division	of	cells	into	sub-types	results	in	small	sample	numbers,	thereby	

making	it	difficult	to	draw	firm	conclusions.	This	is	a	problem	in	the	mouse,	where	at	least	14	different	

structural	RGC	types	(Coombs	et	al.	2006)	and	30	different	functional	types	(Baden	et	al.	2016)	have	
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been	identified.	Classification	is	further	complicated	in	disease,	where	the	measurements	required	for	

classification	 (distal	 dendrites	 and	 dendritic	 field	 size)	 are	 often	 altered.	 This	 problem	 can	 be	

circumvented	with	 the	 use	 of	 parameters	 that	 are	 resistant	 to	 change,	 such	 as	measurements	 of	

proximal	dendrites	(Tribble	et	al.	2014).	

Pan-caspase	inhibition	was	modestly	protective	against	retraction	of	proximal	dendrites	(Figure	3.8c	

in	Chapter	 3).	 This	was	 surprising,	 given	 the	breadth	of	 evidence	 for	 caspase-dependent	dendritic	

pruning	(Williams	et	al.	2006;	D'Amelio	et	al.	2010)	and	the	reported	role	of	local	caspases	activity	in	

dendritic	atrophy	in	glaucoma	(Kisiswa	et	al.	2010b;	Erturk	et	al.	2014).	One	possibility	is	that	perhaps	

caspases	do	not	play	a	major	role	in	axotomy-induced	RGC	dendropathy.	There	is	good	evidence	that	

axotomy	 activates	 calpains	 (serine-threonine	 proteases)	 in	 a	 calcium-mediated	manner	 via	 sarm1	

(Yang	2015).	Calpains	degrade	cytoskeletal	proteins,	such	as	microtubule-associated	proteins	1	and	2	

(Billger	et	al.	1988),	resulting	in	proximal	axon	retraction,	a	process	known	as	Wallerian	degeneration	

(Waller	1850;	Stoll	et	al.	2002),	and	glutamate-induced	dendritic	retraction	in	hippocampal	neurons	

(Wilson	et	al.	2000).	 It	would	be	 interesting	 to	apply	calpain	 inhibitors	 to	 investigate	whether	 this	

mechanism	exists	in	axotomy-induced	RGC	degeneration	in	the	retinal	explant.		

Absence	of	light	may	contribute	to	neuronal	degeneration	in	the	retinal	explant.	Since	light	inhibits	

the	plasticity	of	synapses	connecting	ON	bipolar	cells	to	ON	RGCs	(Xia	et	al.	2007),	scotopic	conditions	

may	remove	this	inhibition,	as	demonstrated	in	the	mouse	explant	(Xia	et	al.	2006).	In	the	absence	of	

light	retinal	neurotransmission	is	increased	due	to	permanent	photoreceptor	depolarisation	(Xu	et	al.	

2007).	This	increase	in	neuronal	activity	may	result	 in	increased	oxidative	stress	caused	by	reactive	

oxygen	 species,	 or	 glutamate-induced	 excitotoxicity	 caused	 by	 increased	 glutamate	 secretion	 that	

have	 been	 shown	 to	 induce	 dendritic	 atrophy	 in	 CA1	 and	CA3	pyramidal	 neurons	 (Christian	 et	 al.	

2011).	These	mechanisms	may	have	played	a	role	in	the	dendritic	retraction	of	RGCs	measured	here.	

	Dendrite	loss	implies	synapse	loss.	Since	synapses	are	formed	throughout	dendritic	arbors	(Spruston	

2008),	 it	 seems	 logical	 to	 infer	 that	 dendrite	 retraction	 would	 be	 associated	 with	 synapse	 loss.	
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However,	this	must	be	verified	by	future	experiments	as	it	has	not	been	explicitly	shown	in	this	study.	

This	could	be	achieved	by	immunohistochemistry	with	the	post-synaptic	marker	PSD-95,	and	the	pre-

synaptic	 markers	 VGlut1	 and	 synaptophysin	 (Johnson	 et	 al.	 2007;	 Ippolito	 and	 Eroglu	 2010).	

Alternatively,	biolistic	labelling	could	be	used	(Lo	et	al.	1994;	Morgan	et	al.	2008).	Biolistic	labelling	

would	be	preferable	since	it	would	permit	quantification	of	the	rate	of	synapse	loss	with	time-series	

imaging.	 Although	widespread	 dendrite	 loss	 is	 likely	 to	 be	 accompanied	 by	 synapse	 loss,	 the	 two	

events	may	not	occur	concurrently,	as	shown	in	a	mouse	model	of	Alzheimer’s	disease	where	dendrite	

loss	precedes	synapse	 loss	 (Williams	et	al.	2013b).	Biolistics	would	allow	the	 relationship	between	

dendrite	 loss	 and	 synapse	 loss	 to	be	delineated	 in	 the	 retinal	 explant,	 as	well	 as	validation	of	 the	

morphometric	changes	reported	here.	Labelling	of	synaptic	 locations	may	also	provide	information	

regarding	neuronal	gain.	The	combination	of	inputs	onto	specific	dendritic	compartments	can	greatly	

alter	the	functional	output	of	the	neuron,	i.e.	firing	rate	or	spike	frequency	(Silver	2010;	Pouille	et	al.	

2013).	It	is	important	to	note	that	biolistics	was	not	suitable	in	the	current	study	because	it	requires	a	

2	d	incubation	period	for	the	expression	of	transfected	DNA	and	since	DiI	and	DiO	are	toxic,	temporal	

‘snapshots’	were	the	best	way	to	quantify	dendritic	changes.	
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7.2	The	retinal	explant	as	a	model	to	investigate	the	effect	of	BDNF	

The	 application	 of	 neurotrophic	 agents	 is	 an	 appealing	 therapeutic	 strategy	 to	 combat	 neuronal	

degeneration.	The	retinal	explant	is	an	ideal	model	to	test	potential	treatment	paradigms	and	their	

effect	on	neuronal	morphology.	Since	BDNF	application	has	been	shown	to	protect	against	cell	loss	

(Chen	and	Weber	2001),	it	is	an	attractive	agent	for	neuroprotection.	However,	it	is	difficult	to	control	

the	concentration	and	location	of	BDNF	in	vivo	because	it	is	a	pharmacologically	‘sticky’	protein	that	

has	a	 short	half-life	and	does	not	 cross	 the	blood-brain	barrier	well	 (Poduslo	and	Curran	1996;	 Lu	

2003).	With	an	ex	vivo	model	BDNF	can	be	applied	directly	to	the	target	site.	Further,	since	Sarm1	

signalling	may	be	implicated	in	axotomy-induced	degeneration,	BDNF	may	target	pathways	implicated	

in	degeneration.	BDNF-TrkB	signalling	activates	Akt,	which	inhibits	MKK4,	thus	blocking	downstream	

activation	 of	 JNK	 signalling	 (Longo	 and	 Massa	 2013).	 Here	 I	 demonstrate	 that	 BDNF	 treatment,	

initiated	immediately	after	axotomy	or	3	d-post	axotomy	significantly	retarded	dendritic	atrophy	of	

RGCs.	

The	neuroprotective	effect	of	BDNF	shown	here	is	perhaps	not	surprising,	given	the	well-evidenced	

role	of	BDNF	in	maintenance	of	dendritic	arbor	morphology	in	development	(McAllister	et	al.	1996;	

Bibel	and	Barde	2000;	Yacoubian	and	Lo	2000)	and	in	the	adult	(Xu	et	al.	2000).	Many	groups	have	

demonstrated	that	BDNF	application	protects	against	cell	death	(Ma	et	al.	1998;	Mocchetti	and	Bachis	

2004).	In	the	cat	optic	nerve	crush	model	BDNF	has	been	shown	to	reduce	RGC	loss	(Chen	and	Weber	

2001)	and	retard	dendritic	retraction	of	RGCs	(Weber	and	Harman	2008))	.	This	work	is	of	interest,	but	

since	exogenous	BDNF	 is	difficult	 to	control	 in	vivo,	 the	ex	vivo	model	 is	a	more	reliable	platform.	

Further,	the	optic	nerve	crush	is	not	a	consistent	injury,	unlike	the	total	axotomy	performed	here.	In	

line	with	the	mechanism	of	BDNF	I	propose	here,	it	has	been	reported	in	the	mouse	retinal	explant	

that	 Thy1-YFP	 labelled	 RGCs	 show	 reduced	 dendrite	 loss	 with	 a	 combination	 of	 BDNF	 and	 CNTF	

(Johnson	et	al.	2016).	However,	the	true	therapeutic	effect	is	not	clear	since,	as	previously	outlined,	

Thy1	 labelling	 underreports	 dendritic	 pruning	 (Williams	 et	 al.	 2013a).	 Furthermore,	 it	 is	 uncertain	
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what	role	BDNF	had	in	the	protective	effect	shown	in	this	study	because	only	a	combination	treatment	

of	BDNF+CNTF	was	used.	

One	of	the	major	limitations	of	work	investigating	neurotrophic	support	in	neuronal	degeneration	is	

the	pathology	vs.	treatment	timescale.	In	general,	agents	are	applied	at	the	time	of,	or	even	before	

the	time	of	injury.	This	is	unlikely	to	be	possible	in	the	clinic	due	to	current	screening	methods	and	the	

ability	of	neuronal	networks	 to	compensate	 for	cell	 loss.	Here,	 I	 show	for	 the	 first	 time	that	BDNF	

treatment	 initiated	3	d-post	axotomy	offers	 significant	protection	against	dendritic	 retraction,	and	

may	 promote	 dendritic	 outgrowth.	 It	 will	 be	 important	 to	 determine	 how	 sustained	 the	

neuroprotective	effects	of	BDNF	are	in	this	model	prior	to	in	vivo	trials.	

The	morphometric	data	 from	retinal	explants	 treated	with	delayed	BDNF	 (Figure	4.3	 in	Chapter	4)	

presented	here	are	suggestive	of	a	neurite	outgrowth	mechanism	of	BDNF,	similar	to	that	reported	in	

the	 adult	 guinea	 pig	 auditory	 nerve	 (Miller	 et	 al.	 2007).	 However,	 it	 should	 be	 noted	 that	 this	

hypothesis	needs	to	be	confirmed	by	time-series	imaging.	Nevertheless,	the	prospect	of	an	agent	that	

can	 be	 applied	 post-injury	 and	 restore	 neurons	 to	 a	 native-like	morphology	 is	 exciting	 because	 it	

suggests	that	it	may	be	possible	to	re-wire	neuronal	networks	and	restore	function.	In	the	future	it	

would	be	interesting	to	investigate	synapse	formation	in	the	IPL	in	parallel	with	dendrite	outgrowth,	

since	the	presence	of	synapses	is	essential	for	dendrite	extension	to	have	a	positive	functional	effect.	

This	 could	 be	 achieved	 by	 biolistic	 labelling,	 for	 example	 using	 PSD-95,	 which	 could	 be	 used	 in	

combination	 with	 biolistic	 labelling	 of	 cytoskeletal	 markers	 in	 order	 to	 validate	 the	 dendritic	

outgrowth	mechanism	of	BDNF.	

BDNF	is	an	attractive	candidate	for	treatment	of	retinal	degeneration	because	it	has	been	reported	

that	 its	 main	 receptor,	 TrkB,	 is	 upregulated	 following	 optic	 nerve	 injury	 (Cui	 et	 al.	 2002).	 The	

neuroprotective	effect	of	cell-mediated	delivery	of	BDNF	is	potentially	 limited	by	the	availability	of	

extracellular	BDNF-processing	enzymes.	High	level	BDNF	secretion	in	the	unprocessed	pro-BDNF	form	

could	saturate	active	sites	of	enzymes	such	as	plasmin,	resulting	in	increased	pro-BDNF	signalling.	The	
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resultant	pro-apoptotic	and	pro-dendritic	 retraction	signalling	could	counterbalance	 the	protective	

effects	of	BDNF.	Fortunately,	p75NTR	is	not	expressed	by	RGCs	in	the	mouse	retinal	explant	(Hu	et	al.	

1999).	Confirmation	 that	p75NTR	 is	not	expressed	by	RGCs	 in	 the	explant	would	 support	 cell-based	

delivery	of	BDNF	because	presumably	any	secreted	pro-BDNF	would	not	have	a	negative	effect	on	

RGCs.	It	would	be	interesting	to	map	the	expression	levels	of	TrkB	and	p75NTR	over	time	in	the	retinal	

explant	 to	 verify	 that	 TrkB	 is	 a	 good	 target.	 The	 phosphorylation	 state	 of	 TrkB	 should	 also	 be	

measured,	since	there	is	evidence	that	TrkB	is	inactivated	(dephosphorylated)	following	glaucomatous	

damage	(Gupta	et	al.	2012).		
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7.3	Chondroitin	sulphate	proteoglycan	remodelling	does	not	augment	

neuroprotection	in	combination	with	BDNF	

The	PNN	is	postulated	to	be	a	barrier	to	neuronal	plasticity	and	stem	cell	integration	(Pizzorusso	et	al.	

2002;	Fawcett	2015).	I	used	morphometric	analysis	to	investigate	the	effect	of	CSPG	digestion	on	RGC	

plasticity	in	the	degenerating	explants,	as	well	as	a	potential	synergistic	effect	of	combined	ChABC	and	

BDNF	 treatment.	 Over	 longer	 culture	 periods	 (6	 d)	 ChABC	 treatment	 promoted	 RGC	 dendritic	

remodelling.	 I	 was,	 however,	 surprised	 to	 find	 that	 ChABC	 treatment	 completely	 blocked	 the	

neuroprotective	effect	of	BDNF,	even	when	the	concentration	of	BDNF	was	increased.	

Successful	CSPG	digestion	by	ChABC	was	evidenced	by	immunohistochemistry.	However,	it	is	worth	

noting	that	there	was	only	evidence	of	CSPG	digestion	around	RGC	somas	and	proximal	dendrites,	

presumably	because	the	PNN	tends	to	be	restricted	to	these	areas	(Lee	et	al.	2012).	Since	the	proximal	

dendrites	are	most	resistant	to	retraction,	this	may	begin	to	explain	the	limited	effect	on	plasticity	of	

ChABC	treatment.	Alternatively,	given	the	limited	immune	response	in	ex	vivo	preparations,	the	PNN	

may	not	be	upregulated	to	the	same	extent	as	in	vivo	models	of	CNS	damage	(Raposo	and	Schwartz	

2014).		

NCAM	has	been	reported	to	 improve	the	efficiency	of	BDNF-TrkB	binding.	NCAM	interacts	with	CS	

GAG	chains	on	CSPGs	and	also	binds	directly	to	TrkB.	NCAM	binds	directly	to	TrkB	and	the	polysialic	

acid	tail	of	NCAM	interacts	with	BDNF	(Vutskits	et	al.	2001),	thereby	increasing	the	likelihood	of	BDNF	

binding	 to	 TrkB	 (Cassens	 2010).	 NCAM	 interacts	 with	 CS	 GAGs	 on	 CSPGs	 (Figure	 1.7),	 thereby	

positioning	NCAM	close	to	neurites	where	BDNF-TrkB	signalling	occurs.	Since	CSPGs	are	upregulated	

in	response	to	CNS	injury,	it	is	possible	that	this	may	facilitate	neurotrophin	signalling	in	an	attempt	

improve	neuronal	survival	 in	the	wake	of	an	immune	response.	Interaction	between	BDNF	and	the	

PNN	may	also	be	explained	by	the	large	number	of	positively	charged	residues	on	the	BDNF	protein,	

which	enable	the	formation	of	electrostatic	bonds	with	the	highly	negatively	charged	components	of	

CSPGs.	Digestion	of	CSPGs	may	therefore	 reduce	the	binding	affinity	of	BDNF	 for	TrkB,	which	may	
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explain	 the	 inhibitory	 effect	 of	 ChABC	 treatment	 on	 BDNF-induced	 neuroprotection,	 even	 when	

ChABC	and	BDNF	were	not	present	at	the	same	time.		

The	possible	effect	of	NCAM	on	BDNF-TrkB	binding	 strengthens	 the	 case	 for	using	TrkB	activating	

agents	in	place	of	BDNF.	TrkB	agonists	improved	RGC	survival	in	models	of	optic	nerve	injury	(Hu	et	

al.	2010)	and	glaucoma	 (Bai	et	al.	2010).	 In	addition,	TrkB	agonists	 can	be	designed	 to	have	more	

favourable	properties	than	BDNF,	including	higher	binding	affinity,	higher	specificity	to	TrkB,	longer	

half-life,	and	better	ability	to	cross	the	blood-brain	barrier	(Qian	et	al.	2006;	Bai	et	al.	2010;	Massa	et	

al.	2010;	Brahimi	et	al.	2014;	Liu	et	al.	2016).	Since	these	agents	would	presumably	not	require	the	

presence	of	 CSPGs	 to	 strengthen	binding	 to	 TrkB,	 they	 could	 be	used	 in	 combination	with	ChABC	

treatment.	Finally,	these	agents	could	be	generated	as	peptides,	meaning	that	DNA	encoding	their	

sequence	could	be	used	in	conjunction	with	cell-mediated	delivery	to	secrete	the	agent	to	the	target	

cells.	
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7.4	Cell-mediated	delivery	of	neurotrophic	agents	may	be	improved	by	manipulation	

of	NSC	migration	using	external	magnetic	fields	

Here	I	present	data	that	support	of	the	use	of	external	magnetic	fields	to	guide	NSCs	in	vitro	and	into	

ex	vivo	tissue,	with	a	view	to	using	NSCs	to	deliver	BDNF	in	a	sustained	manner.	Permanent	magnets	

have	been	used	to	direct	mnp-containing	stem	cells	or	endothelial	cells	in	vitro	(Moysidis	et	al.	2015),	

as	well	as	to	lesion	sites	in	the	spinal	cord	(Vishwakarma	et	al.	2015)	and	to	the	retina	(Yanai	et	al.	

2012),	with	moderate	success.	To	date,	work	with	magnetic	field-driven	migration	in	vivo	has	generally	

only	been	applied	to	target	sites	bordering	the	bloodstream.	In	this	study	I	present	the	first	evidence	

that	this	technology	may	be	used	to	drive	migration	of	stem	cells	into	neuronal	tissue,	offering	promise	

that	it	may	finally	be	possible	to	target	previously	inaccessible	parts	of	the	brain.	

The	data	presented	here	demonstrating	increased	migration	depth	of	NSCs	in	the	absence	of	mnps	

into	a	retinal	explant	towards	the	direction	of	a	permanent	magnet	(Figure	6.9	in	Chapter	6)	supports	

the	postulated	presence	of	a	magnetoreceptor	in	mammals.	Once	a	ridiculed	idea,	the	concept	of	a	

magnetic	 field-sensitive	 receptor	 has	more	 recently	 become	 generally	 accepted	 (Lohmann	 2016).	

There	is	evidence	that	a	magnetoreceptor	may	explain	the	migratory	behaviour	of	several	organisms,	

including	bacteria,	drosophila	and	homing	pigeons	(Mora	et	al.	2004;	Baumgartner	et	al.	2013;	Qin	et	

al.	 2016)	 but	 researchers	 have	 debated	 the	 existence	 of	 such	 a	 receptor	 in	 mammals,	 including	

humans.	The	data	I	present	here	supports	the	existence	of	a	mammalian	magnetoreceptor	and	poses	

the	exciting	possibility	of	using	external	magnetic	fields	to	control	both	the	migration	and	the	selective	

gene	 expression	 of	 stem	 cells	 to	 deliver	 neurotrophic	 support	 to	 degenerating	 neurons.	 Since	

activation	of	the	magnetoreceptor	stimulates	calcium	influx	(Knoepfel	and	Akemann	2010;	Long	et	al.	

2015),	 it	 is	 easy	 to	 envisage	 how	 magnetic	 fields	 could	 be	 used	 to	 control	 BDNF	 expression	 in	

transfected	NSCs.	These	cells	could	then	be	directed	to	the	target	site,	where	the	secretion	of	BDNF	

could	be	remotely	controlled.	
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It	has	been	reported	that	CSPG	digestion	improves	integration	efficiency	of	photoreceptor	precursor	

cells	in	the	adult	mouse	retina	(Barber	et	al.	2012).	It	would	be	interesting	to	examine	the	effects	of	

ChABC	treatment	on	NSC	migration	depth	in	the	retinal	explant.	On	the	other	hand,	this	is	unlikely	to	

be	clinically	useful	if	the	NSCs	are	used	to	deliver	neurotrophic	agents,	given	the	inhibitory	effect	of	

ChABC	 treatment	 on	 the	 action	of	 BDNF.	 ChABC-digested	 PNN	 components	 are	 replaced	within	 5	

weeks	in	vivo	(Fawcett	2015).	The	CSPG	replacement	time	should	be	investigated	in	the	explant,	since	

it	may	be	that	ChABC	could	be	used	to	aid	migration	of	BDNF-expressing	NSCs	into	the	IPL,	and	after	

the	PNN	has	been	rebuilt,	BDNF	could	elicit	its	neuroprotective	effects.		

The	specifications	of	the	magnet	need	to	be	optimised	to	enable	clinical	translation.	Small	instruments	

can	 be	 placed	behind	 the	 retina	 during	 surgery,	 therefore	 the	 retina	 is	 an	 ideal	 tissue	 to	 test	 the	

potential	of	magnetic	field-directed	migration	of	stem	cells.	However,	it	should	be	noted	that	the	38	

kg-pull	magnet	used	here	is	too	large	to	fit	behind	the	retina	in	vivo.	I	have	demonstrated	a	proof-of-

principle	that	magnetic	fields	can	be	used	to	direct	migration	of	NSCs	 into	the	retinal	explant.	This	

experiment	should	be	repeated	with	a	smaller	magnet	that	could	be	placed	behind	the	retina.	Indeed,	

the	magnets	used	here	may	not	have	appropriate	magnetic	field	strengths	for	application	in	vivo.	If	

the	field	strength	is	too	low,	there	will	be	no	beneficial	effect,	but	field	strengths	that	are	too	high	

could	cause	neurotoxicity	due	to	an	increase	in	noradrenaline	levels	(Rajendra	et	al.	2004).	Further,	it	

would	be	interesting	to	test	the	migratory	effect	of	more	than	one	magnet,	either	to	shape	magnetic	

fields	outside	the	eye,	or	to	generate	magnetic	field	gradients.	

The	use	of	electromagnets	may	allow	better	control	of	cell	migration	with	the	aid	of	magnetic	field	

gradients.	As	previously	outlined,	the	electromagnet	used	in	this	study	generated	a	large	amount	of	

heat,	which	may	have	been	a	confounding	factor	in	migration	experiments.	In	the	clinic	this	problem	

could	be	alleviated	by	 the	use	of	electromagnets	 in	MRI	 scanners,	which	 contain	 cooling	 systems.	

Large	 electromagnets	 such	 as	 these	 circumvent	 the	 need	 to	 implant	 magnets,	 and	 have	 been	

demonstrated	 to	 be	 capable	 of	 directing	mnp-tagged	macrophages	 in	 vivo	 (Muthana	 et	 al.	 2015).	
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Furthermore,	MRI	scanners	can	be	used	to	track	mnp-containing	MSCs	in	a	rat	model	of	Huntington’s	

disease	(Moraes	et	al.	2012),	thereby	providing	a	visual	aid	for	the	direction	of	cells.		
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7.5	Conclusions	

The	 adult	 mouse	 retinal	 explant	 is	 an	 excellent	 model	 for	 the	 investigation	 of	 axotomy-induced	

neuronal	degeneration,	applicable	to	a	wide	range	of	CNS	disorders.	Morphometric	analysis	permits	

quantification	of	neuronal	cell	health,	as	well	as	inferred	information	regarding	synaptic	connectivity	

and	 functional	 ability.	 I	 have	 demonstrated	 that	 morphometric	 data	 can	 highlight	 a	 therapeutic	

window	in	which	to	probe	mechanisms	implicated	in	neuronal	pathology	and	neuroprotection.		In	this	

model	it	has	been	shown	that	the	activation	of	TrkB	provides	potent	neuroprotection	to	RGC	dendritic	

arbors,	 and	 may	 promote	 dendritic	 remodelling.	 Although	 CSPG	 digestion	 is	 unlikely	 to	 be	

therapeutically	useful	in	combination	with	BDNF	treatment	in	this	model,	my	data	supports	cell-based	

delivery	of	BDNF,	which	may	be	optimised	using	magnetic	fields.	

	

	

	



References	

	

219	

References	

Abuhatzira,	L.	et	al.	2007.	MeCP2	deficiency	in	the	brain	decreases	BDNF	levels	by	REST/CoREST-
mediated	repression	and	increases	TRKB	production.	Epigenetics	2(4),	pp.	214-222.	
	
Adlard,	P.	A.	et	al.	2004.	The	timecourse	of	induction	of	brain-derived	neurotrophic	factor	mRNA	and	
protein	in	the	rat	hippocampus	following	voluntary	exercise.	Neurosci	Lett	363(1),	pp.	43-48.	
	
Aid,	T.	et	al.	2007.	Mouse	and	rat	BDNF	gene	structure	and	expression	revisited.	J	Neurosci	Res	85(3),	
pp.	525-535.	
	
Alderson,	R.	F.	et	al.	1990.	Brain-derived	neurotrophic	factor	increases	survival	and	differentiated	
functions	of	rat	septal	cholinergic	neurons	in	culture.	Neuron	5(3),	pp.	297-306.	
	
Allen,	S.	J.	et	al.	1999.	Profound	and	selective	loss	of	catalytic	TrkB	immunoreactivity	in	Alzheimer's	
disease.	Biochem	Biophys	Res	Commun	264(3),	pp.	648-651.	
	
Amir,	R.	E.	et	al.	1999.	Rett	syndrome	is	caused	by	mutations	in	X-linked	MECP2,	encoding	methyl-
CpG-binding	protein	2.	Nat	Genet	23(2),	pp.	185-188.	
	
Amthor,	F.	R.	et	al.	1984.	Morphology	of	on-off	direction-selective	ganglion	cells	in	the	rabbit	retina.	
Brain	Res	298(1),	pp.	187-190.	
	
An,	J.	J.	et	al.	2008.	Distinct	role	of	long	3'	UTR	BDNF	mRNA	in	spine	morphology	and	synaptic	
plasticity	in	hippocampal	neurons.Cell.	Vol.	134.	United	States,	pp.	175-187.	
	
Anderson,	C.	M.	and	Swanson,	R.	A.	2000.	Astrocyte	glutamate	transport:	review	of	properties,	
regulation,	and	physiological	functions.	Glia	32(1),	pp.	1-14.	
	
Andres,	D.	A.	et	al.	2008.	Rit	signaling	contributes	to	interferon-gamma-induced	dendritic	retraction	
via.	J	Neurochem	107(5),	pp.	1436-1447.	
	
Aoki,	T.	et	al.	1969.	Antigenic	structure	of	cell	surfaces.	An	immunoferritin	study	of	the	occurrence	
and	topography	of	H-2'	theta,	and	TL	alloantigens	on	mouse	cells.	J	Exp	Med	130(5),	pp.	979-1001.	
	
Assawachananont,	J.	et	al.	2014.	Transplantation	of	Embryonic	and	Induced	Pluripotent	Stem	Cell-
Derived	3D	Retinal	Sheets	into	Retinal	Degenerative	Mice.	Stem	Cell	Reports	2(5),	pp.	662-674.	
	
Astafurov,	K.	et	al.	2014.	Complement	expression	in	the	retina	is	not	influenced	by	short-term	
pressure	elevation.	Mol	Vis	20,	pp.	140-152.	
	
Babincova,	M.	et	al.	2004.	In	vivo	heating	of	magnetic	nanoparticles	in	alternating	magnetic	field.	
Med	Phys	31(8),	pp.	2219-2221.	
	
Babincova,	M.	et	al.	2002.	AC-magnetic	field	controlled	drug	release	from	magnetoliposomes:	design	
of	a	method	for	site-specific	chemotherapy.	Bioelectrochemistry	55(1-2),	pp.	17-19.	
	
Babincová,	M.	et	al.	2001.	Superparamagnetic	gel	as	a	novel	material	for	electromagnetically	
induced	hyperthermia.	Journal	of	Magnetism	and	Magnetic	Materials	225(1–2),	pp.	109-112.	



References	

	

220	

	
Badea,	T.	C.	et	al.	2009.	Distinct	roles	of	transcription	factors	brn3a	and	brn3b	in	controlling	the	
development,	morphology,	and	function	of	retinal	ganglion	cells.	Neuron	61(6),	pp.	852-864.	
	
Baden,	T.	et	al.	2016.	The	functional	diversity	of	retinal	ganglion	cells	in	the	mouse.	Nature	
529(7586),	pp.	345-350.	
	
Bahi,	A.	and	Dreyer,	J.	L.	2012.	Hippocampus-specific	deletion	of	tissue	plasminogen	activator	"tPA"	
in	adult	mice	impairs	depression-	and	anxiety-like	behaviors.	Eur	Neuropsychopharmacol	22(9),	pp.	
672-682.	
	
Bai,	Y.	et	al.	2010.	An	Agonistic	TrkB	mAb	Causes	Sustained	TrkB	Activation,	Delays	RGC	Death,	and	
Protects	the	Retinal	Structure	in	Optic	Nerve	Axotomy	and	in	Glaucoma.	Investigative	
Ophthalmology	&	Visual	Science	51(9),	pp.	4722-4731.	
	
Baker,	P.	S.	and	Brown,	G.	C.	2009.	Stem-cell	therapy	in	retinal	disease.	Current	Opinion	in	
Ophthalmology	20(3),	pp.	175-181.	
	
Bamji,	S.	X.	et	al.	1998.	The	p75	Neurotrophin	Receptor	Mediates	Neuronal	Apoptosis	and	Is	
Essential	for	Naturally	Occurring	Sympathetic	Neuron	Death.	J	Cell	Biol	140(4),	pp.	911-923.	
	
Banfield,	M.	J.	et	al.	2001.	Specificity	in	Trk	receptor:neurotrophin	interactions:	the	crystal	structure	
of	TrkB-d5	in	complex	with	neurotrophin-4/5.	Structure	9(12),	pp.	1191-1199.	
	
Bannerman,	P.	G.	et	al.	2005.	Motor	neuron	pathology	in	experimental	autoimmune	
encephalomyelitis:	studies	in	THY1-YFP	transgenic	mice.	Brain	128,	pp.	1877-1886.	
	
Baquet,	Z.	C.	et	al.	2004.	Early	striatal	dendrite	deficits	followed	by	neuron	loss	with	advanced	age	in	
the	absence	of	anterograde	cortical	brain-derived	neurotrophic	factor.	Journal	of	Neuroscience	
24(17),	pp.	4250-4258.	
	
Barber,	A.	C.	et	al.	2012.	Repair	of	the	degenerate	retina	by	photoreceptor	transplantation.	Proc	Natl	
Acad	Sci	U	S	A.	
	
Barde,	Y.	A.	et	al.	1982.	Purification	of	a	new	neurotrophic	factor	from	mammalian	brain.	Embo	j	
1(5),	pp.	549-553.	
	
Barlow,	H.	B.	and	Levick,	W.	R.	1965.	The	mechanism	of	directionally	selective	units	in	rabbit's	retina.	
J	Physiol	178(3),	pp.	477-504.	
	
Barnstable,	C.	J.	and	Drager,	U.	C.	1984.	Thy-1	antigen:	a	ganglion	cell	specific	marker	in	rodent	
retina.	Neuroscience	11(4),	pp.	847-855.	
	
Barton,	B.	et	al.	2014.	Paradoxical	visuomotor	adaptation	to	reversed	visual	input	is	predicted	by	
BDNF	Val66Met	polymorphism.	J	Vis	14(9).	
	
Bartus,	K.	et	al.	2012.	Chondroitin	sulphate	proteoglycans:	key	modulators	of	spinal	cord	and	brain	
plasticity.	Exp	Neurol	235(1),	pp.	5-17.	
	



References	

	

221	

Baumgartner,	J.	et	al.	2013.	Magnetotactic	bacteria	form	magnetite	from	a	phosphate-rich	ferric	
hydroxide	via	nanometric	ferric	(oxyhydr)oxide	intermediates.Proc	Natl	Acad	Sci	U	S	A.	Vol.	110.	pp.	
14883-14888.	
	
Baydyuk,	M.	and	Xu,	B.	2014.	BDNF	signaling	and	survival	of	striatal	neurons.	Front	Cell	Neurosci	8.	
	
Beattie,	M.	S.	et	al.	2002.	ProNGF	induces	p75-mediated	death	of	oligodendrocytes	following	spinal	
cord	injury.	Neuron	36(3),	pp.	375-386.	
	
Beauquis,	J.	et	al.	2013.	Environmental	enrichment	prevents	astroglial	pathological	changes	in	the	
hippocampus	of	APP	transgenic	mice,	model	of	Alzheimer's	disease.	Exp	Neurol	239,	pp.	28-37.	
	
Benchenane,	K.	et	al.	2007.	Anti-NR1	N-terminal-domain	vaccination	unmasks	the	crucial	action	of	
tPA	on	NMDA-receptor-mediated	toxicity	and	spatial	memory.	J	Cell	Sci	120(Pt	4),	pp.	578-585.	
	
Benedetti,	M.	et	al.	1993.	Differential	expression	of	nerve	growth-factor	receptors	leads	to	altered	
binding-affinity	and	neurotrophin	responsiveness.	Proceedings	of	the	National	Academy	of	Sciences	
of	the	United	States	of	America	90(16),	pp.	7859-7863.	
	
Bennett,	J.	L.	et	al.	1999.	Patterned	expression	of	BDNF	and	NT-3	in	the	retina	and	anterior	segment	
of	the	developing	mammalian	eye.	Invest	Ophthalmol	Vis	Sci	40(12),	pp.	2996-3005.	
	
Berry,	C.	C.	and	Curtis,	A.	S.	G.	2003.	Functionalisation	of	magnetic	nanoparticles	for	applications	in	
biomedicine.	Journal	of	Physics	D-Applied	Physics	36(13),	pp.	R198-R206.	
	
Bibel,	M.	and	Barde,	Y.	A.	2000.	Neurotrophins:	key	regulators	of	cell	fate	and	cell	shape	in	the	
vertebrate	nervous	system.	Genes	Dev	14(23),	pp.	2919-2937.	
	
Bibel,	M.	et	al.	1999.	Biochemical	and	functional	interactions	between	the	neurotrophin	receptors	
trk	and	p75NTR.	Embo	j	18(3),	pp.	616-622.	
	
Bibel,	M.	et	al.	2004.	Differentiation	of	mouse	embryonic	stem	cells	into	a	defined	neuronal	lineage.	
Nat	Neurosci	7(9),	pp.	1003-1009.	
	
Billger,	M.	et	al.	1988.	Proteolysis	of	tubulin	and	microtubule-associated	proteins	1	and	2	by	calpain	I	
and	II.	Difference	in	sensitivity	of	assembled	and	disassembled	microtubules.	Cell	Calcium	9(1),	pp.	
33-44.	
	
Binley,	K.	E.	et	al.	2014.	Sholl	analysis:	a	quantitative	comparison	of	semi-automated	methods.	J	
Neurosci	Methods	225,	pp.	65-70.	
	
Blackshaw,	S.	et	al.	2004.	Genomic	analysis	of	mouse	retinal	development.	PLoS	Biol	2(9),	p.	E247.	
	
Bloomfield,	S.	A.	and	Dacheux,	R.	F.	2001.	Rod	vision:	pathways	and	processing	in	the	mammalian	
retina.	Prog	Retin	Eye	Res	20(3),	pp.	351-384.	
	
Blurton-Jones,	M.	et	al.	2009.	Neural	stem	cells	improve	cognition	via	BDNF	in	a	transgenic	model	of	
Alzheimer	disease.	Proc	Natl	Acad	Sci	U	S	A	106(32),	pp.	13594-13599.	
	



References	

	

222	

Bodnarenko,	S.	R.	and	Chalupa,	L.	M.	1993.	Stratification	of	ON	and	OFF	ganglion	cell	dendrites	
depends	on	glutamate-mediated	afferent	activity	in	the	developing	retina.	Nature	364(6433),	pp.	
144-146.	
	
Boles,	L.	C.	and	Lohmann,	K.	J.	2002.	True	navigation	and	magnetic	maps	in	spiny	lobsters.	Nature	
421,	pp.	60-63.	
	
Bonnemain,	B.	1998.	Superparamagnetic	agents	in	magnetic	resonance	imaging:	physicochemical	
characteristics	and	clinical	applications.	A	review.	J	Drug	Target	6(3),	pp.	167-174.	
	
Bonnet,	D.	et	al.	2004.	Brain-derived	neurotrophic	factor	signalling	in	adult	pig	retinal	ganglion	cell	
neurite	regeneration	in	vitro.	Brain	Research	1007(1-2),	pp.	142-151.	
	
Bosco,	A.	and	Linden,	R.	1999.	BDNF	and	NT-4	differentially	modulate	neurite	outgrowth	in	
developing	retinal	ganglion	cells.J	Neurosci	Res.	Vol.	57.	United	States:	1999	Wiley-Liss,	Inc.,	pp.	759-
769.	
	
Boulle,	F.	et	al.	2012.	Epigenetic	regulation	of	the	BDNF	gene:	implications	for	psychiatric	disorders.	
Mol	Psychiatry	17(6),	pp.	584-596.	
	
Bourne,	J.	N.	and	Harris,	K.	M.	2008.	Balancing	structure	and	function	at	hippocampal	dendritic	
spines.	Annu	Rev	Neurosci	31,	pp.	47-67.	
	
Bradbury,	E.	J.	et	al.	2002.	Chondroitinase	ABC	promotes	functional	recovery	after	spinal	cord	injury.	
Nature	416(6881),	pp.	636-640.	
	
Brahimi,	F.	et	al.	2014.	Combinatorial	assembly	of	small	molecules	into	bivalent	antagonists	of	TrkC	
or	TrkA	receptors.	PLoS	One	9(3),	p.	e89617.	
	
Bramblett,	D.	E.	et	al.	2004.	The	transcription	factor	Bhlhb4	is	required	for	rod	bipolar	cell	
maturation.	Neuron	43(6),	pp.	779-793.	
	
Brown,	J.	M.	and	Wilson,	G.	2003.	Apoptosis	genes	and	resistance	to	cancer	therapy:	what	does	the	
experimental	and	clinical	data	tell	us?	Cancer	Biol	Ther	2(5),	pp.	477-490.	
	
Brown,	S.	P.	et	al.	2000.	Receptive	field	microstructure	and	dendritic	geometry	of	retinal	ganglion	
cells.	Neuron	27(2),	pp.	371-383.	
	
Bruckner,	G.	et	al.	1993.	Perineuronal	nets	provide	a	polyanionic,	glia-associated	form	of	
microenvironment	around	certain	neurons	in	many	parts	of	the	rat	brain.	Glia	8(3),	pp.	183-200.	
	
Bukhari,	N.	et	al.	2011.	Axonal	regrowth	after	spinal	cord	injury	via	chondroitinase	and	the	tissue	
plasminogen	activator	(tPA)/plasmin	system.	J	Neurosci	31(42),	pp.	14931-14943.	
	
Bull,	N.	D.	et	al.	2011.	Use	of	an	Adult	Rat	Retinal	Explant	Model	for	Screening	of	Potential	Retinal	
Ganglion	Cell	Neuroprotective	Therapies.	Investigative	Ophthalmology	&	Visual	Science	52(6),	pp.	
3309-3320.	
	
Bulte,	J.	W.	2009.	In	vivo	MRI	cell	tracking:	clinical	studies.	AJR	Am	J	Roentgenol	193(2),	pp.	314-325.	
	



References	

	

223	

Bulte,	J.	W.	and	Kraitchman,	D.	L.	2004.	Iron	oxide	MR	contrast	agents	for	molecular	and	cellular	
imaging.	NMR	Biomed	17(7),	pp.	484-499.	
	
Busskamp,	V.	and	Roska,	B.	2011.	Optogenetic	approaches	to	restoring	visual	function	in	retinitis	
pigmentosa.	Curr	Opin	Neurobiol	21(6),	pp.	942-946.	
	
Calverley,	R.	K.	S.	and	Jones,	D.	G.	1990.	CONTRIBUTIONS	OF	DENDRITIC	SPINES	AND	PERFORATED	
SYNAPSES	TO	SYNAPTIC	PLASTICITY.	Brain	Research	Reviews	15(3),	pp.	215-249.	
	
Cano,	J.	et	al.	1986.	Morphological	changes	in	the	retina	of	ageing	rats.Arch	Gerontol	Geriatr.	Vol.	5.	
Netherlands,	pp.	41-50.	
	
Caprioli,	J.	et	al.	1996.	Hyperthermia	and	hypoxia	increase	tolerance	of	retinal	ganglion	cells	to	
anoxia	and	excitotoxicity.	Invest	Ophthalmol	Vis	Sci	37(12),	pp.	2376-2381.	
	
Carenza,	E.	et	al.	2014.	In	vitro	angiogenic	performance	and	in	vivo	brain	targeting	of	magnetized	
endothelial	progenitor	cells	for	neurorepair	therapies.	Nanomedicine	10(1),	pp.	225-234.	
	
Carter,	B.	D.	et	al.	1996.	Selective	activation	of	NF-kappa	B	by	nerve	growth	factor	through	the	
neurotrophin	receptor	p75.	Science	272(5261),	pp.	542-545.	
	
Carulli,	D.	et	al.	2010.	Animals	lacking	link	protein	have	attenuated	perineuronal	nets	and	persistent	
plasticity.	Brain	133(Pt	8),	pp.	2331-2347.	
	
Cassens,	C.	2010.	Binding	of	the	Receptor	Tyrosine	Kinase	TrkB	to	the	Neural	Cell	Adhesion	Molecule	
(NCAM)	Regulates	Phosphorylation	of	NCAM	and	NCAM-dependent	Neurite	Outgrowth.	Vol.	285.	
pp.	28959-28967.	
	
Cellerino,	A.	and	Kohler,	K.	1997.	Brain-derived	neurotrophic	factor/neurotrophin-4	receptor	TrkB	is	
localized	on	ganglion	cells	and	dopaminergic	amacrine	cells	in	the	vertebrate	retina.	J	Comp	Neurol	
386(1),	pp.	149-160.	
	
Chang,	M.	L.	et	al.	2007.	Reactive	changes	of	retinal	astrocytes	and	Müller	glial	cells	in	kainate-
induced	neuroexcitotoxicity.	J	Anat	210(1),	pp.	54-65.	
	
Chao,	M.	V.	2003.	Neurotrophins	and	their	receptors:	a	convergence	point	for	many	signalling	
pathways.	Nat	Rev	Neurosci	4(4),	pp.	299-309.	
	
Chen,	H.	and	Weber,	A.	J.	2001.	BDNF	enhances	retinal	ganglion	cell	survival	in	cats	with	optic	nerve	
damage.	Invest	Ophthalmol	Vis	Sci	42(5),	pp.	966-974.	
	
Chen,	J.	et	al.	2013.	Guidance	of	stem	cells	to	a	target	destination	in	vivo	by	magnetic	nanoparticles	
in	a	magnetic	field.	ACS	Appl	Mater	Interfaces	5(13),	pp.	5976-5985.	
	
Chen,	L.	T.	and	Weiss,	L.	1973.	The	role	of	the	sinus	wall	in	the	passage	of	erythrocytes	through	the	
spleen.	Blood	41(4),	pp.	529-537.	
	
Chen,	R.	Z.	et	al.	2001.	Deficiency	of	methyl-CpG	binding	protein-2	in	CNS	neurons	results	in	a	Rett-
like	phenotype	in	mice.	Nat	Genet	27(3),	pp.	327-331.	
	



References	

	

224	

Chen,	Z.	Y.	et	al.	2005.	Sortilin	controls	intracellular	sorting	of	brain-derived	neurotrophic	factor	to	
the	regulated	secretory	pathway.	J	Neurosci	25(26),	pp.	6156-6166.	
	
Chen,	Z.	Y.	et	al.	2004.	Variant	brain-derived	neurotrophic	factor	(BDNF)	(Met66)	alters	the	
intracellular	trafficking	and	activity-dependent	secretion	of	wild-type	BDNF	in	neurosecretory	cells	
and	cortical	neurons.	J	Neurosci	24(18),	pp.	4401-4411.	
	
Cheng,	B.	and	Mattson,	M.	P.	1994.	NT-3	and	BDNF	protect	CNS	neurons	against	
metabolic/excitotoxic	insults.	Brain	Res	640(1-2),	pp.	56-67.	
	
Cheng,	C.	W.	et	al.	2005.	The	Iroquois	homeobox	gene,	Irx5,	is	required	for	retinal	cone	bipolar	cell	
development.	Dev	Biol	287(1),	pp.	48-60.	
	
Cheng,	K.	et	al.	2012.	Magnetic	enhancement	of	cell	retention,	engraftment,	and	functional	benefit	
after	intracoronary	delivery	of	cardiac-derived	stem	cells	in	a	rat	model	of	ischemia/reperfusion.	Cell	
Transplant	21(6),	pp.	1121-1135.	
	
Chiu,	K.	et	al.	2008.	Retrograde	labeling	of	retinal	ganglion	cells	by	application	of	fluoro-gold	on	the	
surface	of	superior	colliculus.	J	Vis	Exp	(16).	
	
Choi,	H.	S.	et	al.	2007.	Renal	clearance	of	quantum	dots.	Nature	Biotechnology	25(10),	pp.	1165-
1170.	
	
Christian,	K.	M.	et	al.	2011.	Chronic	stress-induced	hippocampal	dendritic	retraction	requires	CA3	
NMDA	receptors.	Neuroscience	174,	pp.	26-36.	
	
Christianson,	M.	G.	and	Lo,	D.	C.	2011.	Development	of	a	low-pressure	microtargeting	biolistic	device	
for	transfection	of	retinal	explants.Mol	Vis.	Vol.	17.	United	States,	pp.	2947-2955.	
	
Chua,	J.	et	al.	2013.	Early	remodeling	of	muller	cells	in	the	rd/rd	mouse	model	of	retinal	dystrophy.	
Journal	of	Comparative	Neurology	521(11),	pp.	2439-2453.	
	
Coleman,	H.	R.	et	al.	2008.	Age-related	macular	degeneration.	Lancet	372(9652),	pp.	1835-1845.	
	
Congdon,	N.	et	al.	2004.	Causes	and	prevalence	of	visual	impairment	among	adults	in	the	United	
States.	Arch	Ophthalmol	122(4),	pp.	477-485.	
	
Connor,	B.	et	al.	1997.	Brain-derived	neurotrophic	factor	is	reduced	in	Alzheimer's	disease.	Brain	Res	
Mol	Brain	Res	49(1-2),	pp.	71-81.	
	
Coombs,	J.	et	al.	2006.	Morphological	properties	of	mouse	retinal	ganglion	cells.	Neuroscience	
140(1),	pp.	123-136.	
	
Cragg,	B.	G.	1975.	The	development	of	synapses	in	the	visual	system	of	the	cat.	J	Comp	Neurol	
160(2),	pp.	147-166.	
	
Cui,	Q.	et	al.	2002.	Expression	of	trkA,	trkB,	and	trkC	in	injured	and	regenerating	retinal	ganglion	cells	
of	adult	rats.	Invest	Ophthalmol	Vis	Sci	43(6),	pp.	1954-1964.	
	
D'Amelio,	M.	et	al.	2010.	Neuronal	caspase-3	signaling:	not	only	cell	death.	Cell	Death	Differ	17(7),	
pp.	1104-1114.	



References	

	

225	

	
Dabin,	I.	and	Barnstable,	C.	J.	1995.	Rat	retinal	Muller	cells	express	Thy-1	following	neuronal	cell	
death.	Glia	14(1),	pp.	23-32.	
	
Dani,	V.	S.	and	Nelson,	S.	B.	2009.	Intact	LTP	but	reduced	connectivity	between	neocortical	Layer	5	
pyramidal	neurons	in	a	mouse	model	of	Rett	Syndrome.	J	Neurosci	29(36),	pp.	11263-11270.	
	
De	Felice,	C.	et	al.	2014.	Oxidative	brain	damage	in	Mecp2-mutant	murine	models	of	Rett	syndrome.	
Neurobiol	Dis	68,	pp.	66-77.	
	
De	Roo,	M.	et	al.	2008.	Spine	dynamics	and	synapse	remodeling	during	LTP	and	memory	processes.	
Prog	Brain	Res	169,	pp.	199-207.	
	
Dechant,	G.	and	Barde,	Y.	A.	1997.	Signalling	through	the	neurotrophin	receptor	p75NTR.	Curr	Opin	
Neurobiol	7(3),	pp.	413-418.	
	
Dechant,	G.	et	al.	1997.	The	neurotrophin	receptor	p75	binds	neurotrophin-3	on	sympathetic	
neurons	with	high	affinity	and	specificity.	J	Neurosci	17(14),	pp.	5281-5287.	
	
Decherchi,	P.	et	al.	1997.	Dual	staining	assessment	of	Schwann	cell	viability	within	whole	peripheral	
nerves	using	calcein-AM	and	ethidium	homodimer.	J	Neurosci	Methods	71(2),	pp.	205-213.	
	
Deisseroth,	K.	2011.	Optogenetics.Nat	Methods.	Vol.	8.	United	States,	pp.	26-29.	
	
Deisseroth,	K.	et	al.	2004.	Excitation-neurogenesis	coupling	in	adult	neural	stem/progenitor	cells.	
Neuron	42(4),	pp.	535-552.	
	
Dekkers,	M.	P.	et	al.	2013.	Cell	biology	in	neuroscience:	Death	of	developing	neurons:	new	insights	
and	implications	for	connectivity.	J	Cell	Biol	203(3),	pp.	385-393.	
	
Denk,	N.	et	al.	2015.	Development	of	a	murine	ocular	posterior	segment	explant	culture	for	the	
study	of	intravitreous	vector	delivery.	Can	J	Vet	Res	79(1),	pp.	31-38.	
	
Dheen,	S.	T.	et	al.	2007.	Microglial	activation	and	its	implications	in	the	brain	diseases.	Curr	Med	
Chem	14(11),	pp.	1189-1197.	
	
Dhingra,	A.	et	al.	2008.	Probing	neurochemical	structure	and	function	of	retinal	ON	bipolar	cells	with	
a	transgenic	mouse.	J	Comp	Neurol	510(5),	pp.	484-496.	
	
Dimos,	J.	T.	et	al.	2008.	Induced	pluripotent	stem	cells	generated	from	patients	with	ALS	can	be	
differentiated	into	motor	neurons.	Science	321(5893),	pp.	1218-1221.	
	
Dobelle,	W.	H.	et	al.	1974.	Artifical	vision	for	the	blind:	electrical	stimulation	of	visual	cortex	offers	
hope	for	a	functional	prosthesis.	Science	183(4123),	pp.	440-444.	
	
Doi,	M.	et	al.	1995.	Morphological	classification	of	retinal	ganglion	cells	in	mice.	J	Comp	Neurol	
356(3),	pp.	368-386.	
	
Domenici,	L.	et	al.	2014.	Rescue	of	retinal	function	by	BDNF	in	a	mouse	model	of	glaucoma.	PLoS	
One	9(12),	p.	e115579.	
	



References	

	

226	

Dong,	E.	et	al.	2014.	DNA-methyltransferase1	(DNMT1)	binding	to	CpG	rich	GABAergic	and	BDNF	
promoters	is	increased	in	the	brain	of	schizophrenia	and	bipolar	disorder	patients.	Schizophr	Res.	
	
Dowling,	P.	et	al.	1999.	Up-regulated	p75NTR	neurotrophin	receptor	on	glial	cells	in	MS	plaques.	
Neurology	53(8),	pp.	1676-1682.	
	
Dreyer,	E.	B.	et	al.	1995.	An	astrocytic	binding	site	for	neuronal	Thy-1	and	its	effect	on	neurite	
outgrowth.	Proc	Natl	Acad	Sci	U	S	A	92(24),	pp.	11195-11199.	
	
Dryja,	T.	P.	et	al.	1990.	A	point	mutation	of	the	rhodopsin	gene	in	one	form	of	retinitis-pigmentosa.	
Nature	343(6256),	pp.	364-366.	
	
Dunaevsky,	A.	et	al.	1999.	Developmental	regulation	of	spine	motility	in	the	mammalian	central	
nervous	system.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	America	
96(23),	pp.	13438-13443.	
	
Dwivedi,	Y.	2012.	Frontiers	in	Neuroscience	
Brain-Derived	Neurotrophic	Factor	in	Suicide	Pathophysiology.	In:	Dwivedi,	Y.	ed.	The	
Neurobiological	Basis	of	Suicide.		Boca	Raton	(FL):	CRC	Press	
Llc.	
	
East,	E.	et	al.	2005.	A	Role	for	the	Plasminogen	Activator	System	in	Inflammation	and	
Neurodegeneration	in	the	Central	Nervous	System	during	Experimental	Allergic	Encephalomyelitis.	
Am	J	Pathol	167(2),	pp.	545-554.	
	
Egan,	M.	F.	et	al.	2003.	The	BDNF	val66met	polymorphism	affects	activity-dependent	secretion	of	
BDNF	and	human	memory	and	hippocampal	function.	Cell	112(2),	pp.	257-269.	
	
Ekstrom,	P.	et	al.	1988.	Accumulation	of	glial	fibrillary	acidic	protein	in	Muller	radial	glia	during	
retinal	degeneration.	Invest	Ophthalmol	Vis	Sci	29(9),	pp.	1363-1371.	
	
El-Danaf,	R.	N.	and	Huberman,	A.	D.	2015.	Characteristic	patterns	of	dendritic	remodeling	in	early-
stage	glaucoma:	evidence	from	genetically	identified	retinal	ganglion	cell	types.J	Neurosci.	Vol.	35.	
United	States:	2015	the	authors	0270-6474/15/352329-15$15.00/0.,	pp.	2329-2343.	
	
Elmore,	S.	2007.	Apoptosis:	A	review	of	programmed	cell	death.	Toxicologic	Pathology	35(4),	pp.	
495-516.	
	
Elston,	G.	N.	et	al.	2009.	Spinogenesis	and	Pruning	Scales	across	Functional	Hierarchies.	Journal	of	
Neuroscience	29(10),	pp.	3271-3275.	
	
Erkman,	L.	et	al.	1996.	Role	of	transcription	factors	Brn-3.1	and	Brn-3.2	in	auditory	and	visual	system	
development.	Nature	381(6583),	pp.	603-606.	
	
Ernfors,	P.	et	al.	1989.	Expression	of	nerve	growth	factor	receptor	mRNA	is	developmentally	
regulated	and	increased	after	axotomy	in	rat	spinal	cord	motoneurons.	Neuron	2(6),	pp.	1605-1613.	
	
Erskine,	L.	and	Herrera,	E.	2007.	The	retinal	ganglion	cell	axon's	journey:	insights	into	molecular	
mechanisms	of	axon	guidance.Dev	Biol.	Vol.	308.	United	States,	pp.	1-14.	
	



References	

	

227	

Erturk,	A.	et	al.	2014.	Local	pruning	of	dendrites	and	spines	by	caspase-3-dependent	and	
proteasome-limited	mechanisms.	J	Neurosci	34(5),	pp.	1672-1688.	
	
Fahnestock,	M.	et	al.	2002.	Neurotrophic	factors	and	Alzheimer's	disease:	are	we	focusing	on	the	
wrong	molecule?	J	Neural	Transm	Suppl	(62),	pp.	241-252.	
	
Fahnestock,	M.	et	al.	2001.	The	precursor	pro-nerve	growth	factor	is	the	predominant	form	of	nerve	
growth	factor	in	brain	and	is	increased	in	Alzheimer's	disease.	Mol	Cell	Neurosci	18(2),	pp.	210-220.	
	
Famiglietti,	E.	V.,	Jr.	and	Kolb,	H.	1976.	Structural	basis	for	ON-and	OFF-center	responses	in	retinal	
ganglion	cells.	Science	194(4261),	pp.	193-195.	
	
Fawcett,	J.	W.	2015.	The	extracellular	matrix	in	plasticity	and	regeneration	after	CNS	injury	and	
neurodegenerative	disease.	Prog	Brain	Res	218,	pp.	213-226.	
	
Fawcett,	J.	W.	and	Asher,	R.	A.	1999.	The	glial	scar	and	central	nervous	system	repair.	Brain	Res	Bull	
49(6),	pp.	377-391.	
	
Feng,	J.	F.	et	al.	2012.	Guided	migration	of	neural	stem	cells	derived	from	human	embryonic	stem	
cells	by	an	electric	field.	Stem	Cells	30(2),	pp.	349-355.	
	
Fenstermaker,	V.	et	al.	2004.	Regulation	of	dendritic	length	and	branching	by	semaphorin	3A.	J	
Neurobiol	58(3),	pp.	403-412.	
	
Ferguson,	L.	R.	et	al.	2013.	Retinal	Thickness	Normative	Data	in	Wild-Type	Mice	Using	Customized	
Miniature	SD-OCT.	In:	Villoslada,	P.	ed.	PLoS	One.	Vol.	8.	San	Francisco,	USA.	
	
Ferrer-Martin,	R.	M.	et	al.	2014.	Microglial	cells	in	organotypic	cultures	of	developing	and	adult	
mouse	retina	and	their	relationship	with	cell	death.	Experimental	Eye	Research	121,	pp.	42-57.	
	
Fischer,	A.	J.	et	al.	2013.	The	ciliary	margin	zone	(CMZ)	in	development	and	regeneration	of	the	
vertebrate	eye.	Exp	Eye	Res	116,	pp.	199-204.	
	
Fischer,	M.	et	al.	1998.	Rapid	actin-based	plasticity	in	dendritic	spines.	Neuron	20(5),	pp.	847-854.	
	
Flaumenhaft,	R.	and	Rifkin,	D.	B.	1991.	Extracellular	matrix	regulation	of	growth	factor	and	protease	
activity.	Curr	Opin	Cell	Biol	3(5),	pp.	817-823.	
	
Frade,	J.	M.	and	Barde,	Y.	A.	1999.	Genetic	evidence	for	cell	death	mediated	by	nerve	growth	factor	
and	the	neurotrophin	receptor	p75	in	the	developing	mouse	retina	and	spinal	cord.	Development	
126(4),	pp.	683-690.	
	
Friedman,	W.	J.	2000.	Neurotrophins	induce	death	of	hippocampal	neurons	via	the	p75	receptor.	J	
Neurosci	20(17),	pp.	6340-6346.	
	
Frischknecht,	R.	et	al.	2009.	Brain	extracellular	matrixaffects	AMPA	receptor	lateral	mobility	and	
short-term	synaptic	plasticity.	Nature	Neuroscience	12,	pp.	897-904.	
	
Gajewski,	P.	D.	et	al.	2011.	The	Met-allele	of	the	BDNF	Val66Met	polymorphism	enhances	task	
switching	in	elderly.	Neurobiol	Aging	32(12),	pp.	2327.e2327-2319.	
	



References	

	

228	

Gan,	L.	et	al.	1999.	POU	domain	factor	Brn-3b	is	essential	for	retinal	ganglion	cell	differentiation	and	
survival	but	not	for	initial	cell	fate	specification.	Dev	Biol	210(2),	pp.	469-480.	
	
Gan,	L.	et	al.	1996.	POU	domain	factor	Brn-3b	is	required	for	the	development	of	a	large	set	of	
retinal	ganglion	cells.	Proc	Natl	Acad	Sci	U	S	A	93(9),	pp.	3920-3925.	
	
Gan,	W.	B.	et	al.	2000.	Multicolor	"DiOlistic"	labeling	of	the	nervous	system	using	lipophilic	dye	
combinations.Neuron.	Vol.	27.	United	States,	pp.	219-225.	
	
Gao,	H.	et	al.	1997.	Elevated	mRNA	expression	of	brain-derived	neurotrophic	factor	in	retinal	
ganglion	cell	layer	after	optic	nerve	injury.	Invest	Ophthalmol	Vis	Sci	38(9),	pp.	1840-1847.	
	
Garcia-Alias,	G.	et	al.	2009.	Chondroitinase	ABC	treatment	opens	a	window	of	opportunity	for	task-
specific	rehabilitation.	Nature	Neuroscience	12(9),	pp.	1145-U1116.	
	
Garcia-Segura,	L.	M.	and	Perez-Marquez,	J.	2014.	A	new	mathematical	function	to	evaluate	neuronal	
morphology	using	the	Sholl	analysis.	J	Neurosci	Methods	226,	pp.	103-109.	
	
Gavrieli,	Y.	et	al.	1992.	Identification	of	programmed	cell	death	in	situ	via	specific	labeling	of	nuclear	
DNA	fragmentation.	J	Cell	Biol	119(3),	pp.	493-501.	
	
George,	E.	B.	et	al.	1995.	Axotomy-induced	axonal	degeneration	is	mediated	by	calcium	influx	
through	ion-specific	channels.	J	Neurosci	15(10),	pp.	6445-6452.	
	
Gerdts,	J.	et	al.	2013.	Sarm1-Mediated	Axon	Degeneration	Requires	Both	SAM	and	TIR	Interactions.J	
Neurosci.	Vol.	33.	pp.	13569-13580.	
	
Gerdts,	J.	et	al.	2016.	Axon	self-destruction:	New	links	among	SARM1,	MAPKs,	and	NAD+	
metabolism.	Neuron	89(3),	pp.	449-460.	
	
Gogolla,	N.	et	al.	2009.	Perineuronal	nets	protect	fear	memories	from	erasure.	Science	325(5945),	
pp.	1258-1261.	
	
Goldberg,	J.	L.	et	al.	2002.	Retinal	ganglion	cells	do	not	extend	axons	by	default:	promotion	by	
neurotrophic	signaling	and	electrical	activity.	Neuron	33(5),	pp.	689-702.	
	
Golgi,	C.	1873.	Sulla	struttura	della	sostanza	grigia	del	cervello	(comunicazione	preventiva).	Gazzetaa	
Medica	Italiana	-	Lombardia	(33),	pp.	244-246.	
	
Gordon,	J.	A.	and	Stryker,	M.	P.	1996.	Experience-dependent	plasticity	of	binocular	responses	in	the	
primary	visual	cortex	of	the	mouse.	J	Neurosci	16(10),	pp.	3274-3286.	
	
Gray,	K.	and	Ellis,	V.	2008.	Activation	of	pro-BDNF	by	the	pericellular	serine	protease	plasmin.	FEBS	
Lett	582(6),	pp.	907-910.	
	
Green,	W.	R.	et	al.	1985.	Pathologic	features	of	senile	macular	degeneration.	Ophthalmology	92(5),	
pp.	615-627.	
	
Greenberg,	M.	E.	2010.	The	Harvey	Lectures.	John	Wiley	&	Sons.	
	



References	

	

229	

Grieshaber,	P.	et	al.	2010.	Staining	of	fluorogold-prelabeled	retinal	ganglion	cells	with	calcein-AM:	A	
new	method	for	assessing	cell	vitality.	J	Neurosci	Methods	192(2),	pp.	233-239.	
	
Grimaldi,	P.	et	al.	2005.	Neuronal	replacement	and	integration	in	the	rewiring	of	cerebellar	circuits.	
Brain	Res	Brain	Res	Rev	49(2),	pp.	330-342.	
	
Guerin,	M.	B.	et	al.	2011.	Age-dependent	rat	retinal	ganglion	cell	susceptibility	to	apoptotic	stimuli:	
implications	for	glaucoma.	Clin	Experiment	Ophthalmol	39(3),	pp.	243-251.	
	
Guimaraes,	A.	et	al.	1990.	Molecular	and	morphological	changes	in	the	cat	lateral	geniculate	nucleus	
and	visual	cortex	induced	by	visual	deprivation	are	revealed	by	monoclonal	antibodies	Cat-304	and	
Cat-301.	J	Neurosci	10(9),	pp.	3014-3024.	
	
Gupta,	V.	K.	et	al.	2012.	Shp-2	regulates	the	TrkB	receptor	activity	in	the	retinal	ganglion	cells	under	
glaucomatous	stress.	Biochimica	et	Biophysica	Acta	(BBA)	-	Molecular	Basis	of	Disease	1822(11),	pp.	
1643-1649.	
	
Guy,	J.	et	al.	2001.	A	mouse	Mecp2-null	mutation	causes	neurological	symptoms	that	mimic	Rett	
syndrome.	Nat	Genet	27(3),	pp.	322-326.	
	
Hall,	J.	R.	2012.	Biomarkers	of	basic	activities	of	daily	living	in	Alzheimer’s	disease.	31(2),	pp.	429-
437.	
	
Han,	C.	et	al.	2012.	Integrins	regulate	repulsion-mediated	dendritic	patterning	of	drosophila	sensory	
neurons	by	restricting	dendrites	in	a	2D	space.Neuron.	Vol.	73.	United	States:	2012	Elsevier	Inc,	pp.	
64-78.	
	
Harada,	C.	et	al.	2011.	Glia-	and	neuron-specific	functions	of	TrkB	signalling	during	retinal	
degeneration	and	regeneration.	Nat	Commun	2,	p.	189.	
	
Harman,	D.	1981.	The	aging	process.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	
States	of	America-Biological	Sciences	78(11),	pp.	7124-7128.	
	
Harrington,	A.	W.	et	al.	2002.	Activation	of	Rac	GTPase	by	p75	is	necessary	for	c-jun	N-terminal	
kinase-mediated	apoptosis.	J	Neurosci	22(1),	pp.	156-166.	
	
Harrington,	A.	W.	et	al.	2004.	Secreted	proNGF	is	a	pathophysiological	death-inducing	ligand	after	
adult	CNS	injury.	Proc	Natl	Acad	Sci	U	S	A	101(16),	pp.	6226-6230.	
	
Hartong,	D.	T.	et	al.	2006.	Retinitis	pigmentosa.	Lancet	368(9549),	pp.	1795-1809.	
	
Hausmann,	O.	2003.	Post-traumatic	inflawing	spinal	cord	injury.	Spinal	Cord	41(7),	pp.	369-378.	
	
He,	Z.	et	al.	2002.	Knowing	how	to	navigate:	mechanisms	of	semaphorin	signaling	in	the	nervous	
system.	Sci	STKE	2002(119),	p.	re1.	
	
Heymach,	J.	V.,	Jr.	and	Shooter,	E.	M.	1995.	The	biosynthesis	of	neurotrophin	heterodimers	by	
transfected	mammalian	cells.	J	Biol	Chem	270(20),	pp.	12297-12304.	
	
Hilger,	I.	et	al.	2001.	Electromagnetic	heating	of	breast	tumors	in	interventional	radiology:	in	vitro	
and	in	vivo	studies	in	human	cadavers	and	mice.	Radiology	218(2),	pp.	570-575.	



References	

	

230	

	
Hocking,	J.	C.	et	al.	2009.	LIMK1	acts	downstream	of	BMP	signaling	in	developing	retinal	ganglion	cell	
axons.	Dev	Biol	330(2),	pp.	273-285.	
	
Hong,	Y.	K.	and	Chen,	C.	2011.	Wiring	and	rewiring	of	the	retinogeniculate	synapse.	Curr	Opin	
Neurobiol	21(2),	pp.	228-237.	
	
Horton,	A.	et	al.	1997.	NGF	binding	to	p75	enhances	the	sensitivity	of	sensory	and	sympathetic	
neurons	to	NGF	at	different	stages	of	development.	Mol	Cell	Neurosci	10(3-4),	pp.	162-172.	
	
Hou,	S.	J.	et	al.	2009.	Is	dysfunction	of	the	tissue	plasminogen	activator	(tPA)-plasmin	pathway	a	link	
between	major	depression	and	cardiovascular	disease?	Med	Hypotheses	72(2),	pp.	166-168.	
	
Howell,	G.	R.	et	al.	2007.	Axons	of	retinal	ganglion	cells	are	insulted	in	the	optic	nerve	early	in	
DBA/2J	glaucoma.J	Cell	Biol.	Vol.	179.	United	States,	pp.	1523-1537.	
	
Hu,	B.	et	al.	1999.	Expression	of	p75	neurotrophin	receptor	in	the	injured	and	regenerating	rat	
retina.	Neuroreport	10(6),	pp.	1293-1297.	
	
Hu,	Y.	et	al.	2010.	Neurotrophic	Effect	of	a	Novel	TrkB	Agonist	on	Retinal	Ganglion	Cells.Invest	
Ophthalmol	Vis	Sci.	Vol.	51.	pp.	1747-1754.	
	
Hu,	Y.	Q.	and	Koo,	P.	H.	1998.	Inhibition	of	phosphorylation	of	TrkB	and	TrkC	and	their	signal	
transduction	by	alpha2-macroglobulin.	J	Neurochem	71(1),	pp.	213-220.	
	
Huang,	W.	et	al.	2006.	Downregulation	of	Thy1	in	retinal	ganglion	cells	in	experimental	glaucoma.	
Curr	Eye	Res	31(3),	pp.	265-271.	
	
Huang,	Z.	J.	et	al.	1999.	BDNF	regulates	the	maturation	of	inhibition	and	the	critical	period	of	
plasticity	in	mouse	visual	cortex.	Cell	98(6),	pp.	739-755.	
	
Humayun,	M.	S.	et	al.	2012.	Interim	results	from	the	international	trial	of	Second	Sight's	visual	
prosthesis.	Ophthalmology	119(4),	pp.	779-788.	
	
Huttenlocher,	P.	R.	1979.	Synaptic	density	in	human	frontal	cortex	-	developmental	changes	and	
effects	of	aging.	Brain	Res	163(2),	pp.	195-205.	
	
Hyman,	B.	T.	and	Yuan,	J.	2012.	Apoptotic	and	non-apoptotic	roles	of	caspases	in	neuronal	
physiology	and	pathophysiology.	Nat	Rev	Neurosci	13(6),	pp.	395-406.	
	
Hynynen,	K.	et	al.	2001.	Noninvasive	MR	imaging-guided	focal	opening	of	the	blood-brain	barrier	in	
rabbits.	Radiology	220(3),	pp.	640-646.	
	
Ibanez,	C.	F.	and	Simi,	A.	2012.	p75	neurotrophin	receptor	signaling	in	nervous	system	injury	and	
degeneration:	paradox	and	opportunity.	Trends	Neurosci	35(7),	pp.	431-440.	
	
Imlay,	J.	A.	et	al.	1988.	Toxic	DNA	damage	by	hydrogen	peroxide	through	the	Fenton	reaction	in	vivo	
and	in	vitro.	Science	240(4852),	pp.	640-642.	
	
Ippolito,	D.	M.	and	Eroglu,	C.	2010.	Quantifying	Synapses:	an	Immunocytochemistry-based	Assay	to	
Quantify	Synapse	Number.J	Vis	Exp.	



References	

	

231	

	
Ishikura,	N.	et	al.	2005.	Notch-1	activation	and	dendritic	atrophy	in	prion	disease.Proc	Natl	Acad	Sci	
U	S	A.	Vol.	102.	United	States,	pp.	886-891.	
	
Jeffery,	G.	1997.	The	albino	retina:	An	abnormality	that	provides	insight	into	normal	retinal	
development.	Trends	in	Neurosciences	20(4),	pp.	165-169.	
	
Jensen,	R.	J.	and	Rizzo,	J.	F.,	3rd.	2009.	Activation	of	ganglion	cells	in	wild-type	and	rd1	mouse	retinas	
with	monophasic	and	biphasic	current	pulses.	J	Neural	Eng	6(3),	p.	035004.	
	
Jeon,	J.	Y.	et	al.	2008.	Migration	of	human	neural	stem	cells	toward	an	intracranial	glioma.	
Experimental	and	Molecular	Medicine	40(1),	pp.	84-91.	
	
Ji,	Y.	et	al.	2005.	Cyclic	AMP	controls	BDNF-induced	TrkB	phosphorylation	and	dendritic	spine	
formation	in	mature	hippocampal	neurons.	Nat	Neurosci	8(2),	pp.	164-172.	
	
Jiang,	P.	et	al.	2014.	The	Impacts	of	Swimming	Exercise	on	Hippocampal	Expression	of	Neurotrophic	
Factors	in	Rats	Exposed	to	Chronic	Unpredictable	Mild	Stress.	Evid	Based	Complement	Alternat	Med	
2014,	p.	729827.	
	
Johnsen,	E.	O.	et	al.	2012.	Activation	of	neural	progenitor	cells	in	human	eyes	with	proliferative.	Exp	
Eye	Res	98,	pp.	28-36.	
	
Johnsen,	S.	and	Lohmann,	K.	J.	2005.	The	physics	and	neurobiology	of	magnetoreception.	Nat	Rev	
Neurosci	6(9),	pp.	703-712.	
	
Johnson,	J.	et	al.	2007.	Vesicular	Glutamate	Transporter	1	Is	Required	for	Photoreceptor	Synaptic	
Signaling	But	Not	For	Intrinsic	Visual	Functions.	J	Neurosci	27(27),	pp.	7245-7255.	
	
Johnson,	T.	V.	et	al.	2011.	Neurotrophic	factor	delivery	as	a	protective	treatment	for	glaucoma.	
Experimental	Eye	Research	93(2),	pp.	196-203.	
	
Johnson,	T.	V.	and	Martin,	K.	R.	2008.	Development	and	characterization	of	an	adult	retinal	explant	
organotypic	tissue	culture	system	as	an	in	vitro	intraocular	stem	cell	transplantation	model.	
Investigative	Ophthalmology	&	Visual	Science	49(8),	pp.	3503-3512.	
	
Johnson,	T.	V.	et	al.	2016.	Time-Lapse	Retinal	Ganglion	Cell	Dendritic	Field	Degeneration	Imaged	in	
Organotypic	Retinal	Explant	Culture.	Invest	Ophthalmol	Vis	Sci	57(1),	pp.	253-264.	
	
Jones,	B.	W.	and	Marc,	R.	E.	2005.	Retinal	remodeling	during	retinal	degeneration.Exp	Eye	Res.	Vol.	
81.	England,	pp.	123-137.	
	
Jones,	E.	V.	and	Bouvier,	D.	S.	2014.	Astrocyte-secreted	matricellular	proteins	in	CNS	remodelling	
during	development	and	disease.	Neural	plasticity	2014,	pp.	321209-321209.	
	
Judas,	M.	et	al.	2003.	Complex	patterns	and	simple	architects:	molecular	guidance	cues	for	
developing	axonal	pathways	in	the	telencephalon.	Prog	Mol	Subcell	Biol	32,	pp.	1-32.	
	
Kador,	K.	E.	et	al.	2013.	Tissue	Engineering	the	Retinal	Ganglion	Cell	Nerve	Fiber	Layer.	Biomaterials	
34(17),	pp.	4242-4250.	
	



References	

	

232	

Kageyama,	R.	et	al.	2005.	Roles	of	bHLH	genes	in	neural	stem	cell	differentiation.Exp	Cell	Res.	Vol.	
306.	United	States,	pp.	343-348.	
	
Karetko,	M.	and	Skangiel-Kramska,	J.	2009.	Diverse	functions	of	perineuronal	nets.	Acta	Neurobiol	
Exp	(Wars)	69(4),	pp.	564-577.	
	
Karpova,	N.	N.	2014.	Role	of	BDNF	epigenetics	in	activity-dependent	neuronal	plasticity.	
Neuropharmacology	76	Pt	C,	pp.	709-718.	
	
Kashimoto,	R.	et	al.	2008.	Cilostazol	promotes	survival	of	axotomized	retinal	ganglion	cells	in	adult	
rats.	Neurosci	Lett	436(2),	pp.	116-119.	
	
Kay,	J.	et	al.	2011.	Retinal	ganglion	cells	with	distinct	directional	preferences	differ	in	molecular	
identity,	structure	and	central	projections.	J	Neurosci	31(21),	pp.	7753-7762.	
	
Kelly,	S.	et	al.	2004.	Transplanted	human	fetal	neural	stem	cells	survive,	migrate,	and	differentiate	in	
ischemic	rat	cerebral	cortex.	Proc	Natl	Acad	Sci	U	S	A	101(32),	pp.	11839-11844.	
	
Kettenmann,	H.	et	al.	2011.	Physiology	of	microglia.	Physiol	Rev	91(2),	pp.	461-553.	
	
Kirschvink,	J.	L.	et	al.	2001.	Magnetite-based	magnetoreception.	Curr	Opin	Neurobiol	11(4),	pp.	462-
467.	
	
Kisiswa,	L.	et	al.	2010a.	Cellular	inhibitor	of	apoptosis	(cIAP1)	is	down-regulated	during	retinal	
ganglion.	Exp	Eye	Res	91(5),	pp.	739-747.	
	
Kisiswa,	L.	et	al.	2010b.	Retinal	ganglion	cell	death	postponed:	giving	apoptosis	a	break?	Ophthalmic	
Res	43(2),	pp.	61-78.	
	
Klassen,	H.	J.	et	al.	2004.	Multipotent	retinal	progenitors	express	developmental	markers,	
differentiate	into	retinal	neurons,	and	preserve	light-mediated	behavior.	Investigative	
Ophthalmology	&	Visual	Science	45(11),	pp.	4167-4173.	
	
Knoepfel,	T.	and	Akemann,	W.	2010.	NANOBIOTECHNOLOGY	Remote	control	of	cells.	Nature	
Nanotechnology	5(8),	pp.	560-561.	
	
Kobelt,	L.	J.	et	al.	2014.	Short	duration	electrical	stimulation	to	enhance	neurite	outgrowth	and	
maturation	of	adult	neural	stem	progenitor	cells.	Ann	Biomed	Eng	42(10),	pp.	2164-2176.	
	
Kobuch,	K.	et	al.	2008.	Maintenance	of	adult	porcine	retina	and	retinal	pigment	epithelium	in	
perfusion	culture:	characterisation	of	an	organotypic	in	vitro	model.	Exp	Eye	Res	86(4),	pp.	661-668.	
	
Koizumi,	A.	et	al.	2007.	Organotypic	culture	of	physiologically	functional	adult	mammalian	retinas.	
PLoS	One	2(2),	p.	e221.	
	
Kolb,	H.	1970.	Organization	of	the	outer	plexiform	layer	of	the	primate	retina:	electron	microscopy	
of	Golgi-impregnated	cells.	Philos	Trans	R	Soc	Lond	B	Biol	Sci	258(823),	pp.	261-283.	
	
Kolbeck,	R.	et	al.	1999.	Brain-derived	neurotrophic	factor	levels	in	the	nervous	system	of	wild-type	
and	neurotrophin	gene	mutant	mice.	J	Neurochem	72(5),	pp.	1930-1938.	
	



References	

	

233	

Koo,	Y.	E.	et	al.	2006.	Brain	cancer	diagnosis	and	therapy	with	nanoplatforms.	Adv	Drug	Deliv	Rev	
58(14),	pp.	1556-1577.	
	
Kordower,	J.	H.	et	al.	1997.	Grafts	of	EGF-responsive	neural	stem	cells	derived	from	GFAP-hNGF	
transgenic	mice:	trophic	and	tropic	effects	in	a	rodent	model	of	Huntington's	disease.	J	Comp	Neurol	
387(1),	pp.	96-113.	
	
Korte,	M.	et	al.	1995.	Hippocampal	long-term	potentiation	is	impaired	in	mice	lacking	brain-derived	
neurotrophic	factor.	Proc	Natl	Acad	Sci	U	S	A	92(19),	pp.	8856-8860.	
	
Kubota,	R.	et	al.	2002.	A	comparative	study	of	neurogenesis	in	the	retinal	ciliary	margin	zone	of	
homeothermic	vertebrates.	Brain	Res	Dev	Brain	Res	134(1-2),	pp.	31-41.	
	
Kumar,	C.	and	Mohammad,	F.	2011.	Magnetic	Nanomaterials	for	Hyperthermia-based	Therapy	and	
Controlled	Drug	Delivery.	Adv	Drug	Deliv	Rev	63(9),	pp.	789-808.	
	
Kunzevitzky,	N.	J.	et	al.	2010.	Amacrine	Cell	Gene	Expression	and	Survival	Signaling:	Differences	from	
Neighboring	Retinal	Ganglion	Cells.Invest	Ophthalmol	Vis	Sci.	Vol.	51.	pp.	3800-3812.	
	
Kuo,	C.	T.	et	al.	2006.	Identification	of	E2/E3	ubiquitinating	enzymes	and	caspase	activity	regulating	
Drosophila	sensory	neuron	dendrite	pruning.	Neuron	51(3),	pp.	283-290.	
	
Kyrtatos,	P.	G.	et	al.	2009.	Magnetic	tagging	increases	delivery	of	circulating	progenitors	in	vascular	
injury.	JACC	Cardiovasc	Interv	2(8),	pp.	794-802.	
	
Landi,	S	et	al.	2007.	Environmental	enrichment	effects	on	development	of	retinal	ganglion	cell	
dendritic	tratification	require	retinal	BDNF.	PLoS	One	2(4),	e346.	
	
Leask,	M.	J.	M.	1977.	A	physiochemical	mechanism	for	magnetic	field	detection	by	migratory	birds	
and	homing	pigeons.	Nature	267,	pp.	144-145.	
	
Lee,	H.	et	al.	2012.	Perineuronal	nets	play	a	role	in	regulating	striatal	function	in	the	mouse.	PLoS	
One	7(3),	p.	e32747.	
	
Lee,	K.	F.	et	al.	1994.	p75-deficient	embryonic	dorsal	root	sensory	and	neonatal	sympathetic	neurons	
display	a	decreased	sensitivity	to	NGF.	Development	120(4),	pp.	1027-1033.	
	
Lee,	K.	F.	et	al.	1992.	Targeted	mutation	of	the	gene	encoding	the	low	affinity	NGF	receptor	p75	
leads	to	deficits	in	the	peripheral	sensory	nervous	system.	Cell	69(5),	pp.	737-749.	
	
Lee,	R.	et	al.	2001.	Regulation	of	cell	survival	by	secreted	proneurotrophins.	Science	294(5548),	pp.	
1945-1948.	
	
Lee,	W.	S.	et	al.	1998.	Thy-1,	a	novel	marker	for	angiogenesis	upregulated	by	inflammatory	
cytokines.	Circ	Res	82(8),	pp.	845-851.	
	
Leibiger,	I.	B.	and	Berggren,	P.	O.	2015.	Regulation	of	glucose	homeostasis	using	radiogenetics	and	
magnetogenetics	in	mice.	Nat	Med	21(1),	pp.	14-16.	
	
Levi-Montalcini,	R.	et	al.	1996.	Nerve	growth	factor:	from	neurotrophin	to	neurokine.	Trends	
Neurosci	19(11),	pp.	514-520.	



References	

	

234	

	
Li,	L.	et	al.	2008.	Direct-current	electrical	field	guides	neuronal	stem/progenitor	cell	migration.	Stem	
Cells	26(8),	pp.	2193-2200.	
	
Li,	L.	and	Jiang,	J.	2011.	Regulatory	factors	of	mesenchymal	stem	cell	migration	into	injured	tissues	
and	their	signal	transduction	mechanisms.	Front	Med	5(1),	pp.	33-39.	
	
Li,	T.	et	al.	2013.	Multipotent	stem	cells	isolated	from	the	adult	mouse	retina	are	capable	of	
producing	functional	photoreceptor	cells.	Cell	Research	23,	pp.	788-802.	
	
Liang,	D.	et	al.	2007.	Cytotoxic	edema:	mechanisms	of	pathological	cell	swelling.	Neurosurgical	focus	
22(5),	pp.	E2-E2.	
	
Liang,	F.	Q.	and	Godley,	B.	F.	2003.	Oxidative	stress-induced	mitochondrial	DNA	damage	in	human	
retinal	pigment	epithelial	cells:	a	possible	mechanism	for	RPE	aging	and	age-related	macular	
degeneration.	Exp	Eye	Res	76(4),	pp.	397-403.	
	
Liesi,	P.	et	al.	1990.	Thy-1	is	a	neuronal	and	glial	surface	antigen	which	interacts	with	matrix	proteins	
and	plasminogen	activator.	Exp	Brain	Res	79(3),	pp.	642-650.	
	
Lin,	B.	et	al.	2008.	Restoration	of	visual	function	in	retinal	degeneration	mice	by	ectopic	expression	
of	melanopsin.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	America	
105(41),	pp.	16009-16014.	
	
Lin,	P.	et	al.	2014.	The	VGF-derived	peptide	TLQP62	produces	antidepressant-like	effects	in	mice	via	
the	BDNF/TrkB/CREB	signaling	pathway.	Pharmacol	Biochem	Behav	120,	pp.	140-148.	
	
Liu,	C.	et	al.	2016.	7,8-dihydroxyflavone,	a	small	molecular	TrkB	agonist,	is	useful	for	treating	various	
BDNF-implicated	human	disorders.	Transl	Neurodegener	5,	p.	2.	
	
Lo,	D.	C.	et	al.	1994.	Neuronal	transfection	in	brain	slices	using	particle-mediated	gene	transfer.	
Neuron	13(6),	pp.	1263-1268.	
	
Loebinger,	M.	R.	et	al.	2009.	Magnetic	resonance	imaging	of	mesenchymal	stem	cells	homing	to	
pulmonary	metastases	using	biocompatible	magnetic	nanoparticles.	Cancer	Res	69(23),	pp.	8862-
8867.	
	
Lohmann,	K.	J.	1999.	Long-distance	navigation	in	sea	turtles.	Ethol	Ecol	Evol	11(1),	pp.	1-23.	
	
Lohmann,	K.	J.	2016.	PROTEIN	COMPLEXES	A	candidate	magnetoreceptor.	Nature	Materials	15(2),	
pp.	136-138.	
	
Lom,	B.	and	Cohen-Cory,	S.	1999.	Brain-derived	neurotrophic	factor	differentially	regulates	retinal	
ganglion	cell	dendritic	and	axonal	arborization	in	vivo.	J	Neurosci	19(22),	pp.	9928-9938.	
	
London,	A.	et	al.	2013.	The	retina	as	a	window	to	the	brain-from	eye	research	to	CNS	disorders.	Nat	
Rev	Neurol	9(1),	pp.	44-53.	
	
Long,	X.	et	al.	2015.	Magnetogenetics:	remote	non-invasive	magnetic	activation	of	neuronal	activity	
with	a	magnetoreceptor.	Sci	Bull	(Beijing)	60,	pp.	2107-2119.	
	



References	

	

235	

Longair,	M.	H.	et	al.	2011.	Simple	Neurite	Tracer:	open	source	software	for	reconstruction,	
visualization	and	analysis	of	neuronal	processes.	Bioinformatics	27(17),	pp.	2453-2454.	
	
Longo,	F.	M.	and	Massa,	S.	M.	2013.	Small-molecule	modulation	of	neurotrophin	receptors:	a	
strategy	for	the	treatment	of	neurological	disease.	Nat	Rev	Drug	Discov	12(7),	pp.	507-525.	
	
Lorenzl,	S.	et	al.	2003.	Tissue	inhibitors	of	matrix	metalloproteinases	are	elevated	in	cerebrospinal	
fluid	of	neurodegenerative	diseases.	J	Neurol	Sci	207(1-2),	pp.	71-76.	
	
Lu,	B.	2003.	BDNF	and	activity-dependent	synaptic	modulation.	Learn	Mem	10(2),	pp.	86-98.	
	
Luo,	Y.	L.	et	al.	1993.	Collapsin	-	a	protein	in	brain	that	induces	the	collapse	and	paralysis	of	neuronal	
growth	cones.	Cell	75(2),	pp.	217-227.	
	
Lye,	M.	H.	et	al.	2007.	Organotypic	culture	of	adult	rabbit	retina.	J	Vis	Exp	(3),	p.	190.	
	
Ma,	J.	et	al.	2011.	Combining	chondroitinase	ABC	and	growth	factors	promotes	the	integration	of	
murine	retinal	progenitor	cells	transplanted	into	Rho(-/-)	mice.	Molecular	Vision	17(193).	
	
Ma,	Y.	T.	et	al.	1998.	BDNF	injected	into	the	superior	colliculus	reduces	developmental	retinal	
ganglion	cell	death.	J	Neurosci	18(6),	pp.	2097-2107.	
	
Macias,	M.	2008.	Injury	induced	dendritic	plasticity	in	the	mature	central	nervous	system.	Acta	
Neurobiologiae	Experimentalis	68(2),	pp.	334-346.	
	
MacLaren,	R.	E.	et	al.	2006.	Retinal	repair	by	transplantation	of	photoreceptor	precursors.	Nature	
444(7116),	pp.	203-207.	
	
Magarinos,	A.	M.	and	McEwen,	B.	S.	1995.	Stress-induced	atrophy	of	apical	dendrites	of	
hippocampal	CA3c	neurons:	comparison	of	stressors.	Neuroscience	69(1),	pp.	83-88.	
	
Magavi,	S.	S.	et	al.	2000.	Induction	of	neurogenesis	in	the	neocortex	of	adult	mice.	Nature	
405(6789),	pp.	951-955.	
	
Magdesian,	M.	H.	et	al.	2016.	Rapid	Mechanically	Controlled	Rewiring	of	Neuronal	Circuits.	J	
Neurosci	36(3),	pp.	979-987.	
	
Maller,	J.	B.	et	al.	2007.	Variation	in	complement	factor	3	is	associated	with	risk	of	age-related	
macular	degeneration.	Nature	Genetics	39(10),	pp.	1200-1201.	
	
Mansergh,	F.	C.	et	al.	2010.	Loss	of	photoreceptor	potential	from	retinal	progenitor	cell	cultures,	
despite	improvements	in	survival.	Experimental	Eye	Research	91(4),	pp.	500-512.	
	
Marc,	R.	E.	et	al.	2003.	Neural	remodeling	in	retinal	degeneration.Prog	Retin	Eye	Res.	Vol.	22.	
England,	pp.	607-655.	
	
Marchetto,	M.	C.	et	al.	2010.	A	model	for	neural	development	and	treatment	of	Rett	syndrome	using	
human	induced	pluripotent	stem	cells.	Cell	143(4),	pp.	527-539.	
	
Margolis,	D.	J.	et	al.	2008.	Functional	stability	of	retinal	ganglion	cells	after	degeneration-induced	
changes	in	synaptic	input.	J	Neurosci	28(25),	pp.	6526-6536.	



References	

	

236	

	
Marrs,	G.	S.	et	al.	2006.	Dendritic	arbors	of	developing	retinal	ganglion	cells	are	stabilized	by	beta	1-
integrins.Mol	Cell	Neurosci.	Vol.	32.	United	States,	pp.	230-241.	
	
Martin-Piedra,	M.	A.	et	al.	2014.	Cell	viability	and	proliferation	capability	of	long-term	human	dental	
pulp	stem	cell	cultures.	Cytotherapy	16(2),	pp.	266-277.	
	
Martinowich,	K.	et	al.	2003.	DNA	methylation-related	chromatin	remodeling	in	activity-dependent	
BDNF	gene	regulation.	Science	302(5646),	pp.	890-893.	
	
Massa,	S.	M.	et	al.	2010.	Small	molecule	BDNF	mimetics	activate	TrkB	signaling	and	prevent	
neuronal	degeneration	in	rodents.	J	Clin	Invest	120(5),	pp.	1774-1785.	
	
Massey,	J.	M.	et	al.	2006.	Chondroitinase	ABC	digestion	of	the	perineuronal	net	promotes	functional	
collateral	sprouting	in	the	cuneate	nucleus	after	cervical	spinal	cord	injury.	J	Neurosci	26(16),	pp.	
4406-4414.	
	
Mataga,	N.	et	al.	2002.	Permissive	proteolytic	activity	for	visual	cortical	plasticity.	Proc	Natl	Acad	Sci	
U	S	A	99(11),	pp.	7717-7721.	
	
Matsumoto,	T.	et	al.	2008.	Biosynthesis	and	processing	of	endogenous	BDNF:	CNS	neurons	store	and	
secrete	BDNF,	not	pro-BDNF.	Nat	Neurosci	11(2),	pp.	131-133.	
	
Matsuzaki,	M.	2007.	Factors	critical	for	the	plasticity	of	dendritic	spines	and	memory	storage.	
Neurosci	Res	57(1),	pp.	1-9.	
	
Mayer,	E.	J.	et	al.	2005.	Neural	progenitor	cells	from	postmortem	adult	human	retina.	Br	J	
Ophthalmol	89(1),	pp.	102-106.	
	
Mazzoni,	F.	et	al.	2008.	Retinal	Ganglion	Cells	Survive	and	Maintain	Normal	Dendritic	Morphology	in	
a	Mouse	Model	of	Inherited	Photoreceptor	Degeneration.	Journal	of	Neuroscience	28(52),	pp.	
14282-14292.	
	
McAllister,	A.	K.	et	al.	1996.	Neurotrophin	regulation	of	cortical	dendritic	growth	requires	
activity.Neuron.	Vol.	17.	United	States,	pp.	1057-1064.	
	
McAllister,	A.	K.	et	al.	1995.	Neurotrophins	regulate	dendritic	growth	in	developing	visual	
cortex.Neuron.	Vol.	15.	United	States,	pp.	791-803.	
	
McBain,	S.	C.	et	al.	2008.	Magnetic	nanoparticles	for	gene	and	drug	delivery.	International	Journal	of	
Nanomedicine	3(2),	pp.	169-180.	
	
McCaig,	C.	D.	et	al.	2005.	Controlling	cell	behavior	electrically:	current	views	and	future	potential.	
Physiol	Rev	85(3),	pp.	943-978.	
	
McKernan,	D.	P.	et	al.	2007.	A	key	role	for	calpains	in	retinal	ganglion	cell	death.	Invest	Ophthalmol	
Vis	Sci	48(12),	pp.	5420-5430.	
	
McRae,	P.	A.	and	Porter,	B.	E.	2012.	The	perineuronal	net	component	of	the	extracellular	matrix	in	
plasticity	and	epilepsy.	Neurochem	Int	61(7),	pp.	963-972.	
	



References	

	

237	

Mejias,	R.	et	al.	2011.	Dimercaptosuccinic	acid-coated	magnetite	nanoparticles	for	magnetically	
guided	in	vivo	delivery	of	interferon	gamma	for	cancer	immunotherapy.	Biomaterials	32(11),	pp.	
2938-2952.	
	
Melvin,	N.	R.	and	Sutherland,	R.	J.	2010.	Quantitative	Caveats	of	Standard	Immunohistochemical	
Procedures:	Implications	for	Optical	Disector–based	Designs.J	Histochem	Cytochem.	Vol.	58.	pp.	577-
584.	
	
Meng,	X.	et	al.	2011.	PI3K	mediated	electrotaxis	of	embryonic	and	adult	neural	progenitor	cells	in	
the	presence	of	growth	factors.	Exp	Neurol	227(1),	pp.	210-217.	
	
Meng,	Y.	et	al.	2004.	Regulation	of	ADF/cofilin	phosphorylation	and	synaptic	function	by	LIM-
kinase.Neuropharmacology.	Vol.	47.	England,	pp.	746-754.	
	
Middlemas,	D.	S.	et	al.	1994.	Identification	of	TrkB	autophosphorylation	sites	and	evidence	that	
phospholipase	C-gamma	1	is	a	substrate	of	the	TrkB	receptor.	J	Biol	Chem	269(7),	pp.	5458-5466.	
	
Miller,	J.	M.	et	al.	2007.	Delayed	neurotrophin	treatment	following	deafness	rescues	spiral	ganglion	
cells	from	death	and	promotes	regrowth	of	auditory	nerve	peripheral	processes:	effects	of	brain-
derived	neurotrophic	factor	and	fibroblast	growth	factor.	J	Neurosci	Res	85(9),	pp.	1959-1969.	
	
Minichiello,	L.	et	al.	2002.	Mechanism	of	TrkB-mediated	hippocampal	long-term	potentiation.	
Neuron	36(1),	pp.	121-137.	
	
Mitrecic,	D.	et	al.	2010.	Distribution,	differentiation,	and	survival	of	intravenously	administered	
neural	stem	cells	in	a	rat	model	of	amyotrophic	lateral	sclerosis.	Cell	Transplant	19(5),	pp.	537-548.	
	
Mocchetti,	I.	and	Bachis,	A.	2004.	Brain-derived	neurotrophic	factor	activation	of	TrkB	protects	
neurons	from	HIV-1/gp120-induced	cell	death.	Crit	Rev	Neurobiol	16(1-2),	pp.	51-57.	
	
Molteno,	T.	C.	A.	and	Kennedy,	W.	L.	2009.	Navigation	by	induction-based	magnetoreception	in	
elasmobranch	fishes.	J	Biophys	2009,	pp.	1-7.	
	
Mora,	C.	V.	et	al.	2004.	Magnetoreception	and	its	trigeminal	mediation	in	the	homing	pigeon.	Nature	
432(7016),	pp.	508-511.	
	
Moraes,	L.	et	al.	2012.	Neuroprotective	effects	and	magnetic	resonance	imaging	of	mesenchymal	
stem	cells	labeled	with	SPION	in	a	rat	model	of	Huntington's	disease.	Stem	Cell	Res	9(2),	pp.	143-155.	
	
Morawski,	M.	et	al.	2004.	Perineuronal	nets	potentially	protect	against	oxidative	stress.	Exp	Neurol	
188(2),	pp.	309-315.	
	
Morgan,	J.	E.	2002.	Retinal	ganglion	cell	shrinkage	in	glaucoma.	J	Glaucoma	11(4),	pp.	365-370.	
	
Morgan,	J.	E.	2012.	Retina	ganglion	cell	degeneration	in	glaucoma:	an	opportunity	missed?	A	review.	
Clin	Experiment	Ophthalmol	40(4),	pp.	364-368.	
	
Morgan,	J.	L.	et	al.	2008.	Developmental	patterning	of	glutamatergic	synapses	onto	retinal	ganglion	
cells.Neural	Develop.	Vol.	3.	p.	8.	
	



References	

	

238	

Morgenstern,	D.	A.	et	al.	2002.	Chondroitin	sulphate	proteoglycans	in	the	CNS	injury	response.	Prog	
Brain	Res	137,	pp.	313-332.	
	
Morimoto,	T.	2012.	Role	of	electrical	activity	of	neurons	for	neuroprotection.	Int	Rev	Neurobiol	105,	
pp.	19-38.	
	
Moritoh,	S.	et	al.	2010.	Organotypic	tissue	culture	of	adult	rodent	retina	followed	by	particle-
mediated	acute	gene	transfer	in	vitro.	PLoS	One	5(9),	p.	e12917.	
	
Morquette,	B.	et	al.	2015.	REDD2-mediated	inhibition	of	mTOR	promotes	dendrite	retraction	
induced	by	axonal	injury.Cell	Death	Differ.	Vol.	22.	England,	pp.	612-625.	
	
Morquette,	J.	B.	and	Di	Polo,	A.	2008.	Dendritic	and	synaptic	protection:	is	it	enough	to	save	the	
retinal	ganglion	cell.	J	Neuroophthalmol	28(2),	pp.	144-154.	
	
Mouritsen,	H.	et	al.	2004.	Cryptochromes	and	neuronal-activity	markers	colocalize	in	the	retina	of	
migratory	birds	during	magnetic	orientation.	Proc	Natl	Acad	Sci	USA	101(39),	pp.	14294-14299.	
	
Mouw,	J.	K.	et	al.	2014.	Extracellular	matrix	assembly:	a	multiscale	deconstruction.	Nat	Rev	Mol	Cell	
Biol	15(12),	pp.	771-785.	
	
Moysidis,	S.	N.	et	al.	2015.	Magnetic	field-guided	cell	delivery	with	nanoparticle-loaded	human	
corneal	endothelial	cells.	Nanomedicine	11(3),	pp.	499-509.	
	
Mufson,	E.	J.	and	Kordower,	J.	H.	1992.	Cortical	neurons	express	nerve	growth	factor	receptors	in	
advanced	age	and	Alzheimer	disease.	Proc	Natl	Acad	Sci	U	S	A	89(2),	pp.	569-573.	
	
Mukai,	J.	et	al.	2000.	NADE,	a	p75NTR-associated	cell	death	executor,	is	involved	in	signal	
transduction	mediated	by	the	common	neurotrophin	receptor	p75NTR.	J	Biol	Chem	275(23),	pp.	
17566-17570.	
	
Muroski,	M.	E.	et	al.	2016.	Controlled	Payload	Release	by	Magnetic	Field	Triggered	Neural	Stem	Cell	
Destruction	for	Malignant	Glioma	Treatment.	PLoS	One	11(1),	p.	e0145129.	
	
Muthana,	M.	et	al.	2015.	Directing	cell	therapy	to	anatomic	target	sites	in	vivo	with	magnetic	
resonance	targeting.	Nature	Communications	6.	
	
Na,	E.	S.	et	al.	2013.	The	Impact	of	MeCP2	Loss-	or	Gain-of-Function	on	Synaptic	Plasticity.	
Neuropsychopharmacology	38(1),	pp.	212-219.	
	
Nadal-Nicolas,	F.	M.	et	al.	2012.	Whole	number,	distribution	and	co-expression	of	brn3	transcription	
factors	in	retinal	ganglion	cells	of	adult	albino	and	pigmented	rats.	PLoS	One	7(11),	p.	e49830.	
	
Nagahara,	A.	H.	et	al.	2009.	Neuroprotective	effects	of	brain-derived	neurotrophic	factor	in	rodent	
and	primate	models	of	Alzheimer's	disease.	Nat	Med	15(3),	pp.	331-337.	
	
Nagele,	R.	G.	et	al.	2004.	Contribution	of	glial	cells	to	the	development	of	amyloid	plaques	in	
Alzheimer's	disease.Neurobiol	Aging.	Vol.	25.	United	States,	pp.	663-674.	
	
Nakamura,	F.	et	al.	2000.	Molecular	basis	of	semaphorin-mediated	axon	guidance.J	Neurobiol.	Vol.	
44.	United	States:	2000	John	Wiley	&	Sons,	Inc.,	pp.	219-229.	



References	

	

239	

	
Nash,	M.	S.	and	Osborne,	N.	N.	1999.	Assessment	of	Thy-1	mRNA	levels	as	an	index	of	retinal	
ganglion	cell	damage.	Invest	Ophthalmol	Vis	Sci	40(6),	pp.	1293-1298.	
	
Nawy,	S.	1999.	The	metabotropic	receptor	mGluR6	may	signal	through	G(o),	but	not	
phosphodiesterase,	in	retinal	bipolar	cells.	J	Neurosci	19(8),	pp.	2938-2944.	
	
Nawy,	S.	and	Jahr,	C.	E.	1990.	Suppression	by	glutamate	of	cGMP-activated	conductance	in	retinal	
bipolar	cells.	Nature	346(6281),	pp.	269-271.	
	
Naylor,	R.	L.	et	al.	2002.	A	discrete	domain	of	the	human	TrkB	receptor	defines	the	binding	sites	for	
BDNF	and	NT-4.	Biochem	Biophys	Res	Commun	291(3),	pp.	501-507.	
	
Neeper,	S.	A.	et	al.	1995.	Exercise	and	brain	neurotrophins.	Nature	373(6510),	p.	109.	
	
Nelson,	R.	et	al.	1978.	Intracellular	staining	reveals	different	levels	of	stratification	for	on-	and	off-
center	ganglion	cells	in	cat	retina.	J	Neurophysiol	41(2),	pp.	472-483.	
	
Nicole,	O.	et	al.	2001.	The	proteolytic	activity	of	tissue-plasminogen	activator	enhances	NMDA	
receptor-mediated	signaling.	Nature	Medicine	7(1),	pp.	59-64.	
	
Nikoletopoulou,	V.	et	al.	2010.	Neurotrophin	receptors	TrkA	and	TrkC	cause	neuronal	death	whereas	
TrkB	does	not.	Nature	467(7311),	pp.	59-63.	
	
Niyadurupola,	N.	et	al.	2011.	The	development	of	human	organotypic	retinal	cultures	(HORCs)	to	
study	retinal	neurodegeneration.	Br	J	Ophthalmol	95(5),	pp.	720-726.	
	
Nobukata,	H.	et	al.	2000.	Long-term	administration	of	highly	purified	eicosapentaenoic	acid	ethyl	
ester	prevents	diabetes	and	abnormalities	of	blood	coagulation	in	male	WBN/Kob	rats.	Metabolism	
49(7),	pp.	912-919.	
	
Nomura,	A.	et	al.	1994.	Developmentally	regulated	postsynaptic	localization	of	a	metabotropic	
glutamate	receptor	in	rat	rod	bipolar	cells.	Cell	77(3),	pp.	361-369.	
	
Nowicka,	D.	et	al.	2009.	Parvalbumin-containing	neurons,	perineuronal	nets	and	experience-
dependent	plasticity	in	murine	barrel	cortex.	Eur	J	Neurosci	30(11),	pp.	2053-2063.	
	
Obaidat,	I.	M.	et	al.	2015.	Magnetic	Properties	of	Magnetic	Nanoparticles	for	Efficient	Hyperthermia.	
Nanomaterials	5(1),	pp.	63-89.	
	
Ogilvie,	J.	M.	et	al.	1999.	A	reliable	method	for	organ	culture	of	neonatal	mouse	retina	with	long-
term	survival.	J	Neurosci	Methods	87(1),	pp.	57-65.	
	
Orlando,	C.	et	al.	2012.	Perisynaptic	chondroitin	sulfate	proteoglycans	restrict	structural	plasticity	in	
an	integrin-dependent	manner.	J	Neurosci	32(50),	pp.	18009-18017,	18017a.	
	
Owen,	J.	J.	and	Raff,	M.	C.	1970.	Studies	on	the	differentiation	of	thymus-derived	lymphocytes.	J	Exp	
Med	132(6),	pp.	1216-1232.	
	
Pang,	P.	T.	et	al.	2004.	Cleavage	of	proBDNF	by	tPA/plasmin	is	essential	for	long-term	hippocampal	
plasticity.	Science	306(5695),	pp.	487-491.	



References	

	

240	

	
Pang,	Z.	P.	et	al.	2011.	Induction	of	human	neuronal	cells	by	defined	transcription	factors.	Nature	
476(7359),	pp.	220-223.	
	
Pankhurst,	Q.	A.	et	al.	2003.	Applications	of	magnetic	nanoparticles	in	biomedicine.	Journal	of	
Physics	D-Applied	Physics	36(13),	pp.	R167-R181.	
	
Pardridge,	W.	M.	2012.	Drug	transport	across	the	blood-brain	barrier.	J	Cereb	Blood	Flow	Metab	
32(11),	pp.	1959-1972.	
	
Pasantes-Morales,	H.	and	Tuz,	K.	2006.	Volume	changes	in	neurons:	hyperexcitability	and	neuronal	
death.	Contrib	Nephrol	152,	pp.	221-240.	
	
Pasutto,	F.	et	al.	2009.	Heterozygous	NTF4	mutations	impairing	neurotrophin-4	signaling	in	patients	
with	primary	open-angle	glaucoma.	Am	J	Hum	Genet	85(4),	pp.	447-456.	
	
Patt,	S.	et	al.	1991.	Pathological	changes	in	dendrites	of	substantia	nigra	neurons	in	Parkinson's	
disease:	a	Golgi	study.	Histol	Histopathol	6(3),	pp.	373-380.	
	
Pattabiraman,	P.	P.	et	al.	2005.	Neuronal	activity	regulates	the	developmental	expression	and	
subcellular	localization	of	cortical	BDNF	mRNA	isoforms	in	vivo.	Mol	Cell	Neurosci	28(3),	pp.	556-570.	
	
Pearson,	R.	A.	et	al.	2012.	Restoration	of	vision	after	transplantation	of	photoreceptors.	Nature	
485(7396),	pp.	99-103.	
	
Peeters,	A.	et	al.	2010.	Quantifying	the	effect	of	intraocular	pressure	reduction	on	the	occurrence	of	
glaucoma.	Acta	Ophthalmol	88(1),	pp.	5-11.	
	
Peng,	Q.	et	al.	2007.	Structure	and	function	of	embryonic	rat	retinal	sheet	transplants.	Curr	Eye	Res	
32(9),	pp.	781-789.	
	
Perry,	V.	H.	et	al.	1984.	Is	Thy-1	expressed	only	by	ganglion	cells	and	their	axons	in	the	retina	and	
optic	nerve?	J	Neurocytol	13(5),	pp.	809-824.	
	
Petanjek,	Z.	et	al.	2011.	Extraordinary	neoteny	of	synaptic	spines	in	the	human	prefrontal	cortex.	
Proc	Natl	Acad	Sci	U	S	A	108(32),	pp.	13281-13286.	
	
Phillips,	H.	S.	et	al.	1991.	BDNF	mRNA	is	decreased	in	the	hippocampus	of	individuals	with	
Alzheimer's	disease.	Neuron	7(5),	pp.	695-702.	
	
Pickard,	G.	E.	and	Sollars,	P.	J.	2012.	Intrinsically	photosensitive	retinal	ganglion	cells.	Rev	Physiol	
Biochem	Pharmacol	162,	pp.	59-90.	
	
Pizzorusso,	T.	et	al.	2002.	Reactivation	of	ocular	dominance	plasticity	in	the	adult	visual	cortex.	
Science	298(5596),	pp.	1248-1251.	
	
Poduslo,	J.	F.	and	Curran,	G.	L.	1996.	Permeability	at	the	blood-brain	and	blood-nerve	barriers	of	the	
neurotrophic	factors:	NGF,	CNTF,	NT-3,	BDNF.	Brain	Res	Mol	Brain	Res	36(2),	pp.	280-286.	
	
Polleux,	F.	et	al.	2000.	Semaphorin	3A	is	a	chemoattractant	for	cortical	apical	dendrites.	Nature	
404(6778),	pp.	567-573.	



References	

	

241	

	
Pouille,	F.	et	al.	2013.	The	contribution	of	synaptic	location	to	inhibitory	gain	control	in	pyramidal	
cells.	Physiol	Rep	1(5),	p.	e00067.	
	
Qian,	M.	D.	et	al.	2006.	Novel	agonist	monoclonal	antibodies	activate	TrkB	receptors	and	
demonstrate	potent	neurotrophic	activities.	J	Neurosci	26(37),	pp.	9394-9403.	
	
Qin,	S.	et	al.	2016.	A	magnetic	protein	biocompass.	Nat	Mater	15(2),	pp.	217-226.	
	
Qu,	Z.	et	al.	2015.	Transplantation	of	rat	embryonic	stem	cell-derived	retinal	progenitor	cells	
preserves	the	retinal	structure	and	function	in	rat	retinal	degeneration.	Stem	Cell	Res	Ther	6,	p.	219.	
	
Quigley,	H.	A.	1995.	Ganglion	cell	death	in	glaucoma:	pathology	recapitulates	ontogeny.	Aust	N	Z	J	
Ophthalmol	23(2),	pp.	85-91.	
	
Quigley,	H.	A.	1996.	Number	of	people	with	glaucoma	worldwide.	British	Journal	of	Ophthalmology	
80(5),	pp.	389-393.	
	
Quigley,	H.	A.	and	Broman,	A.	T.	2006.	The	number	of	people	with	glaucoma	worldwide	in	2010	and	
2020.	Br	J	Ophthalmol	90(3),	pp.	262-267.	
	
Quigley,	H.	A.	et	al.	1988.	Chronic	human	glaucoma	causing	selectively	greater	loss	of	large	optic-
nerve	fibers.	Ophthalmology	95(3),	pp.	357-363.	
	
Quigley,	H.	A.	et	al.	1995.	Retinal	ganglion-cell	death	in	experimental	glaucoma	and	after	axotomy	
occurs	by	apoptosis.	Investigative	Ophthalmology	&	Visual	Science	36(5),	pp.	774-786.	
	
Quigley,	H.	A.	et	al.	1987.	Chronic	glaucoma	selectively	damages	large	optic	nerve	fibers.	Invest	
Ophthalmol	Vis	Sci	28(6),	pp.	913-920.	
	
Raffa,	V.	et	al.	2009.	Cell	creeping	and	controlled	migration	by	magnetic	carbon	nanotubes.	
Nanoscale	Res	Lett	5(1),	pp.	257-262.	
	
Rajendra,	P.	et	al.	2004.	Biological	effects	of	power	frequency	magnetic	fields:	Neurochemical	and	
toxicological	changes	in	developing	chick	embryos.Biomagn	Res	Technol.	Vol.	2.	London,	p.	1.	
	
Ramaswamy,	B.	et	al.	2015.	Movement	of	magnetic	nanoparticles	in	brain	tissue:	mechanisms	and	
impact	on	normal	neuronal	function.	Nanomedicine	11(7),	pp.	1821-1829.	
	
Rao,	A.	et	al.	2000.	Mismatched	appositions	of	presynaptic	and	postsynaptic	components	in	isolated	
hippocampal	neurons.	J	Neurosci	20(22),	pp.	8344-8353.	
	
Raposo,	C.	and	Schwartz,	M.	2014.	Glial	scar	and	immune	cell	involvement	in	tissue	remodeling	and	
repair	following	acute	CNS	injuries.	Glia	62(11),	pp.	1895-1904.	
	
Rapraeger,	A.	C.	et	al.	1991.	Requirement	of	heparan	sulfate	for	bFGF-mediated	fibroblast	growth	
and	myoblast	differentiation.	Science	252(5013),	pp.	1705-1708.	
	
Ratnu,	V.	S.	et	al.	2014.	Activation-induced	cytidine	deaminase	regulates	activity-dependent	BDNF	
expression	in	post-mitotic	cortical	neurons.	Eur	J	Neurosci.	
	



References	

	

242	

Ray,	M.	T.	et	al.	2014.	Decreased	BDNF	and	TrkB	mRNA	expression	in	multiple	cortical	areas	of	
patients	with	schizophrenia	and	mood	disorders.	Transl	Psychiatry	4,	p.	e389.	
	
Reese,	B.	E.	and	Colello,	R.	J.	1992.	Neurogenesis	in	the	retinal	ganglion	cell	layer	of	the	
rat.Neuroscience.	Vol.	46.	England,	pp.	419-429.	
	
Reid,	B.	et	al.	2005.	Wound	healing	in	rat	cornea:	the	role	of	electric	currents.	Faseb	j	19(3),	pp.	379-
386.	
	
Reimers,	S.	et	al.	2007.	Formation	of	perineuronal	nets	in	organotypic	mouse	brain	slice	cultures	is	
independent	of	neuronal	glutamatergic	activity.	Eur	J	Neurosci	25(9),	pp.	2640-2648.	
	
Reiser,	M.	F.	et	al.	2007.	Magnetic	Resonance	Tomography.	Springer	Science	and	Business	Media.	
	
Richards,	J.	M.	et	al.	2012.	In	vivo	mononuclear	cell	tracking	using	superparamagnetic	particles	of	
iron	oxide:	feasibility	and	safety	in	humans.	Circ	Cardiovasc	Imaging	5(4),	pp.	509-517.	
	
Ridley,	A.	J.	et	al.	1999.	Rho	family	proteins	and	cell	migration.	Biochem	Soc	Symp	65,	pp.	111-123.	
	
Riegler,	J.	et	al.	2013.	Superparamagnetic	iron	oxide	nanoparticle	targeting	of	MSCs	in	vascular	
injury.	Biomaterials	34(8),	pp.	1987-1994.	
	
Riegler,	J.	et	al.	2010.	Targeted	magnetic	delivery	and	tracking	of	cells	using	a	magnetic	resonance	
imaging	system.	Biomaterials	31(20),	pp.	5366-5371.	
	
Rihn,	L.	L.	and	Claiborne,	B.	J.	1990.	Dendritic	growth	and	regression	in	rat	dentate	granule	cells	
during	late	postnatal	development.	Brain	Res	Dev	Brain	Res	54(1),	pp.	115-124.	
	
Ritz,	T.	et	al.	2000.	A	model	for	photoreceptor-based	magnetoreception	in	birds.	Biophys	J	78(2),	pp.	
707-718.	
	
Rodger,	J.	et	al.	2012.	Long-term	gene	therapy	causes	transgene-specific	changes	in	the	morphology	
of	regenerating	retinal	ganglion	cells.	PLoS	One	7(2),	p.	e31061.	
	
Rodier,	M.	et	al.	2014.	Exogenous	t-PA	administration	increases	hippocampal	mature	BDNF	levels.	
plasmin-	or	NMDA-dependent	mechanism?	PLoS	One	9(3),	p.	e92416.	
	
Rodriguez-Muela,	N.	et	al.	2012.	Autophagy	promotes	survival	of	retinal	ganglion	cells	after	optic	
nerve	axotomy	in	mice.	Cell	Death	Differ	19(1),	pp.	162-169.	
	
Rodriguez-Tebar,	A.	et	al.	1990.	Binding	of	brain-derived	neurotrophic	factor	to	the	nerve	growth	
factor	receptor.	Neuron	4(4),	pp.	487-492.	
	
Roux,	P.	P.	and	Barker,	P.	A.	2002.	Neurotrophin	signaling	through	the	p75	neurotrophin	receptor.	
Prog	Neurobiol	67(3),	pp.	203-233.	
	
Rudzinski,	M.	et	al.	2004.	Changes	in	retinal	expression	of	neurotrophins	and	neurotrophin	receptors	
induced	by	ocular	hypertension.	J	Neurobiol	58(3),	pp.	341-354.	
	
Rumpf,	S.	et	al.	2011.	Neuronal	remodeling	and	apoptosis	require	VCP-dependent	degradation	of	
the.	Development	138(6),	pp.	1153-1160.	



References	

	

243	

	
Rutar,	M.	et	al.	2012.	670-nm	light	treatment	reduces	complement	propagation	following	retinal	
degeneration.J	Neuroinflammation.	Vol.	9.	England,	p.	257.	
	
Ryden,	M.	et	al.	1997.	Differential	modulation	of	neuron	survival	during	development	by	nerve	
growth	factor	binding	to	the	p75	neurotrophin	receptor.	Journal	of	Biological	Chemistry	272(26),	pp.	
16322-16328.	
	
Sagdullaev,	B.	T.	et	al.	2003.	Retinal	transplantation-induced	recovery	of	retinotectal	visual	function	
in	a	rodent	model	of	retinitis	pigmentosa.	Invest	Ophthalmol	Vis	Sci	44(4),	pp.	1686-1695.	
	
Sanes,	J.	R.	and	Masland,	R.H.	2015.	The	types	of	retinal	ganglion	cells:	current	status	and	
implications	for	neuronal	classification.	Annu	Rev	Neurosci	38,	pp.	221-246.	
	
Santos,	A.	R.	et	al.	2012.	beta1	Integrin-Focal	Adhesion	Kinase	(FAK)	Signaling	Modulates	Retinal	
Ganglion.	PLoS	One	7(10),	p.	e48332.	
	
Sartori,	C.	R.	et	al.	2011.	The	antidepressive	effect	of	the	physical	exercise	correlates	with	increased	
levels	of	mature	BDNF,	and	proBDNF	proteolytic	cleavage-related	genes,	p11	and	tPA.	Neuroscience	
180,	pp.	9-18.	
	
Sattler,	K.	D.	2010.	Handbook	of	Nanophysics.	Principles	and	Methods.	CRC	Press.	
	
Scaini,	G.	et	al.	2015.	Acute	Administration	of	Branched-Chain	Amino	Acids	Increases	the	Pro-
BDNF/Total-BDNF	Ratio	in	the	Rat	Brain.	Neurochem	Res.	
	
Schillinger,	U.	et	al.	2005.	Advances	in	magnetofection	-	magnetically	guided	nucleic	acid	delivery.	
Journal	of	Magnetism	and	Magnetic	Materials	293(1),	pp.	501-508.	
	
Schindelin,	J.	et	al.	2012.	Fiji:	an	open-source	platform	for	biological-image	analysis.	Nat	Methods	
9(7),	pp.	676-682.	
	
Schlamp,	C.	L.	et	al.	2001.	Changes	in	Thy1	gene	expression	associated	with	damaged	retinal	
ganglion	cells.	Molecular	Vision	7(27),	pp.	192-201.	
	
Schlomann,	U.	et	al.	2009.	The	stimulation	of	dendrite	growth	by	Sema3A	requires	integrin	
engagement	and	focal	adhesion	kinase.J	Cell	Sci.	Vol.	122.	England,	pp.	2034-2042.	
	
Schmid,	D.	A.	et	al.	2012.	A	TrkB	small	molecule	partial	agonist	rescues	TrkB	phosphorylation	deficits	
and	improves	respiratory	function	in	a	mouse	model	of	Rett	syndrome.	J	Neurosci	32(5),	pp.	1803-
1810.	
	
Schmidt,	T.	M.	et	al.	2011.	Intrinsically	photosensitive	retinal	ganglion	cells:	many	subtypes,	diverse	
functions.	Trends	Neurosci	34(11),	pp.	572-580.	
	
Schoenmann,	Z.	2010.	Axonal	degeneration	is	regulated	by	the	apoptotic	machinery	or	a	NAD+-
sensitive	pathway	in	insects	and	mammals.	J	Neurosci	30(18),	pp.	6375-6386.	
	
Schraermeyer,	U.	et	al.	2001.	Subretinally	transplanted	embryonic	stem	cells	rescue	photoreceptor	
cells	from	degeneration	in	the	RCS	rats.	Cell	Transplant	10(8),	pp.	673-680.	
	



References	

	

244	

Schratt,	G.	M.	et	al.	2004.	BDNF	regulates	the	translation	of	a	select	group	of	mRNAs	by	a	
mammalian	target	of	rapamycin-phosphatidylinositol	3-kinase-dependent	pathway	during	neuronal	
development.	J	Neurosci	24(33),	pp.	7366-7377.	
	
Schuh,	R.	A.	et	al.	2005.	Calcium-dependent	dephosphorylation	of	brain	mitochondrial	
calcium/cAMP	response	element	binding	protein	(CREB).	J	Neurochem	92(2),	pp.	388-394.	
	
Seiler,	M.	J.	and	Aramant,	R.	B.	2012.	Cell	replacement	and	visual	restoration	by	retinal	sheet	
transplants.	Prog	Retin	Eye	Res	31(6),	pp.	661-687.	
	
Seiler,	M.	J.	et	al.	2009.	Functional	and	structural	assessment	of	retinal	sheet	allograft	
transplantation	in	feline	hereditary	retinal	degeneration.	Vet	Ophthalmol	12(3),	pp.	158-169.	
	
Seki,	M.	et	al.	2003.	BDNF	is	upregulated	by	postnatal	development	and	visual	experience:	
quantitative	and	immunohistochemical	analyses	of	BDNF	in	the	rat	retina.	Invest	Ophthalmol	Vis	Sci	
44(7),	pp.	3211-3218.	
	
Selkoe,	D.	J.	2002.	Alzheimer's	disease	is	a	synaptic	failure.	Science	298(5594),	pp.	789-791.	
	
Senyei,	A.	et	al.	1978.	Magnetic	guidance	of	drug-carrying	microspheres.	Journal	of	Applied	Physics	
49(6),	pp.	3578-3583.	
	
Shi,	Y.	and	Ethell,	I.	M.	2006.	Integrins	control	dendritic	spine	plasticity	in	hippocampal	neurons	
through	NMDA	receptor	and	Ca2+/calmodulin-dependent	protein	kinase	II-mediated	actin	
reorganization.J	Neurosci.	Vol.	26.	United	States,	pp.	1813-1822.	
	
Shi,	Y.	et	al.	2010.	Plasma	BDNF	and	tPA	are	associated	with	late-onset	geriatric	depression.	
Psychiatry	Clin	Neurosci	64(3),	pp.	249-254.	
	
Shiells,	R.	A.	and	Falk,	G.	1990.	Glutamate	receptors	of	rod	bipolar	cells	are	linked	to	a	cyclic	GMP	
cascade	via	a	G-protein.	Proc	Biol	Sci	242(1304),	pp.	91-94.	
	
Shiells,	R.	A.	and	Falk,	G.	1992.	The	glutamate-receptor	linked	cGMP	cascade	of	retinal	on-bipolar	
cells	is	pertussis	and	cholera	toxin-sensitive.	Proc	Biol	Sci	247(1318),	pp.	17-20.	
	
Shirai,	H.	et	al.	2016.	Transplantation	of	human	embryonic	stem	cell-derived	retinal	tissue	in	two	
primate	models	of	retinal	degeneration.	Proc	Natl	Acad	Sci	U	S	A	113(1),	pp.	E81-90.	
	
Sholl,	D.	A.	1953.	Dendritic	organization	in	the	neurons	of	the	visual	and	motor	cortices	of	the	cat.	
Journal	of	Anatomy	87(4),	pp.	387-&.	
	
Shou,	T.	et	al.	2003.	Differential	dendritic	shrinkage	of	alpha	and	beta	retinal	ganglion	cells	in	cats	
with	chronic	glaucoma.	Invest	Ophthalmol	Vis	Sci	44(7),	pp.	3005-3010.	
	
Silver,	R.	A.	2010.	Neuronal	arithmetic.	Nat	Rev	Neurosci	11(7),	pp.	474-489.	
	
Singh,	M.	S.	et	al.	2013.	Reversal	of	end-stage	retinal	degeneration	and	restoration	of	visual	function	
by	photoreceptor	transplantation.Proc	Natl	Acad	Sci	U	S	A.	
	
Singh,	S.	K.	et	al.	2016.	Astrocytes	Assemble	Thalamocortical	Synapses	by	Bridging	NRX1alpha	and	
NL1	via	Hevin.	Cell	164(1-2),	pp.	183-196.	



References	

	

245	

	
Singhal,	S.	et	al.	2008.	Chondroitin	sulfate	proteoglycans	and	microglia	prevent	migration	and	
integration.	Stem	Cells	26(4),	pp.	1074-1082.	
	
Sniadecki,	N.	J.	2010.	Minireview:	A	Tiny	Touch:	Activation	of	Cell	Signaling	Pathways	with	Magnetic	
Nanoparticles.	Endocrinology	151(2),	pp.	451-457.	
	
Snigdha,	S.	et	al.	2012.	Caspase-3	activation	as	a	bifurcation	point	between	plasticity	and	cell	death.	
Neurosci	Bull	28(1),	pp.	14-24.	
	
Sofroniew,	M.	V.	2005.	Reactive	astrocytes	in	neural	repair	and	protection.	Neuroscientist	11(5),	pp.	
400-407.	
	
Sommer,	C.	A.	and	Mostoslavsky,	G.	2013.	The	evolving	field	of	induced	pluripotency:	Recent	
progress	and	future	challenges.	Journal	of	Cellular	Physiology	228(2),	pp.	267-275.	
	
Song,	M.	et	al.	2010.	Using	a	neodymium	magnet	to	target	delivery	of	ferumoxide-labeled	human	
neural	stem	cells	in	a	rat	model	of	focal	cerebral	ischemia.	Hum	Gene	Ther	21(5),	pp.	603-610.	
	
Song	W	,	K.	et	al.	2015.	Treatment	of	Macular	Degeneration	Using	Embryonic	Stem	Cell-Derived	
Retinal	Pigment	Epithelium:	Preliminary	Results	in	Asian	Patients.Stem	Cell	Reports.	Vol.	4.	pp.	860-
872.	
	
Spruston,	N.	2008.	Pyramidal	neurons:	dendritic	structure	and	synaptic	integration.	Nat	Rev	Neurosci	
9(3),	pp.	206-221.	
	
Stasheff,	S.	F.	2008.	Emergence	of	sustained	spontaneous	hyperactivity	and	temporary	preservation	
of	OFF	responses	in	ganglion	cells	of	the	retinal	degeneration	(rd1)	mouse.	Journal	of	
Neurophysiology	99(3),	pp.	1408-1421.	
	
Stoll,	G.	et	al.	2002.	Degeneration	and	regeneration	of	the	peripheral	nervous	system:	from	
Augustus	Waller's	observations	to	neuroinflammation.	J	Peripher	Nerv	Syst	7(1),	pp.	13-27.	
	
Stone,	J.	L.	et	al.	1992.	Morphometric	analysis	of	macular	photoreceptors	and	ganglion	cells	in	
retinas	with	retinitis	pigmentosa.	Arch	Ophthalmol	110(11),	pp.	1634-1639.	
	
Strettoi,	E.	et	al.	2002.	Morphological	and	functional	abnormalities	in	the	inner	retina	of	the	rd/rd	
mouse.	J	Neurosci	22(13),	pp.	5492-5504.	
	
Stroh,	A.	et	al.	2011.	Tracking	Stem	Cell	Differentiation	in	the	Setting	of	Automated	Optogenetic	
Stimulation.	Stem	Cells	29(1),	pp.	78-88.	
	
Stryer,	L.	1986.	Cyclic	GMP	cascade	of	vision.	Annu	Rev	Neurosci	9,	pp.	87-119.	
	
Stuber,	G.	D.	and	Mason,	A.	O.	2013.	Integrating	optogenetic	and	pharmacological	approaches	to	
study	neural	circuit	function:	current	applications	and	future	directions.	Pharmacol	Rev	65(1),	pp.	
156-170.	
	
Sun,	C.	et	al.	2008.	Magnetic	nanoparticles	in	MR	imaging	and	drug	delivery.	Adv	Drug	Deliv	Rev	
60(11),	pp.	1252-1265.	
	



References	

	

246	

Sun,	W.	Z.	et	al.	2002.	Large-scale	morphological	survey	of	mouse	retinal	ganglion	cells.	Journal	of	
Comparative	Neurology	451(2),	pp.	115-126.	
	
Sur,	M.	et	al.	1988.	Expression	of	a	surface-associated	antigen	on	Y-cells	in	the	cat	lateral	geniculate	
nucleus	is	regulated	by	visual	experience.	J	Neurosci	8(3),	pp.	874-882.	
	
Suter,	U.	et	al.	1992.	NGF	BDNF	chimeric	proteins	-	analysis	of	neurotrophin	specificity	by	homolog-
scanning	mutagenesis.	Journal	of	Neuroscience	12(1),	pp.	306-318.	
	
Suzuki,	A.	et	al.	1998.	Localization	of	mRNA	for	trkB	isoforms	and	p75	in	rat	retinal	ganglion	cells.	J	
Neurosci	Res	54(1),	pp.	27-37.	
	
Tagawa,	Y.	et	al.	1999.	Immunohistological	studies	of	metabotropic	glutamate	receptor	subtype	6-
deficient	mice	show	no	abnormality	of	retinal	cell	organization	and	ganglion	cell	maturation.	J	
Neurosci	19(7),	pp.	2568-2579.	
	
Takahashi,	K.	and	Yamanaka,	S.	2006.	Induction	of	pluripotent	stem	cells	from	mouse	embryonic	and	
adult	fibroblast	cultures	by	defined	factors.	Cell	126(4),	pp.	663-676.	
	
Takebe,	A.	et	al.	2012.	Zebrafish	respond	to	the	geomagnetic	field	by	bimodal	and	group-dependent	
orientation.	Sci	Rep	2,	pp.	727.	
	
Talcott,	K.	E.	et	al.	2011.	Longitudinal	Study	of	Cone	Photoreceptors	during	Retinal	Degeneration	and	
in	Response	to	Ciliary	Neurotrophic	Factor	Treatment.Invest	Ophthalmol	Vis	Sci.	Vol.	52.	pp.	2219-
2226.	
	
Tang,	M.	et	al.	2014.	Antidepressant-like	effect	of	n-3	PUFAs	in	CUMS	rats:	role	of	tPA/PAI-1	system.	
Physiol	Behav	139c,	pp.	210-215.	
	
Tao,	X.	et	al.	1998.	Ca2+	influx	regulates	BDNF	transcription	by	a	CREB	family	transcription	factor-
dependent	mechanism.	Neuron	20(4),	pp.	709-726.	
	
Tezel,	G.	and	Yang,	X.	2004.	Caspase-independent	component	of	retinal	ganglion	cell	death,	in	vitro.	
Invest	Ophthalmol	Vis	Sci	45(11),	pp.	4049-4059.	
	
Tezel,	G.	et	al.	2012.	An	astrocyte-specific	proteomic	approach	to	inflammatory	responses	in	
experimental	rat	glaucoma.	Invest	Ophthalmol	Vis	Sci	53(7),	pp.	4220-4233.	
	
Thanos,	S.	et	al.	1989.	Survival	and	axonal	elongation	of	adult-rat	retinal	ganglion-cells	-	invitro	
effects	of	lesioned	sciatic-nerve	and	brain	derived	neurotrophic	factor.	European	Journal	of	
Neuroscience	1(1),	pp.	19-26.	
	
Thanos,	S.	et	al.	1993.	Treatment	of	the	adult	retina	with	microglia-suppressing	factors	retards	
axotomy-induced	neuronal	degradation	and	enhances	axonal	regeneration	in	vivo	and	in	vitro.	J	
Neurosci	13(2),	pp.	455-466.	
	
Thrivikraman,	G.	et	al.	2014.	Intermittent	electrical	stimuli	for	guidance	of	human	mesenchymal	
stem	cell	lineage	commitment	towards	neural-like	cells	on	electroconductive	substrates.	
Biomaterials	35(24),	pp.	6219-6235.	
	



References	

	

247	

Tibbetts,	M.	D.	et	al.	2012.	Stem	cell	therapy	for	retinal	disease.	Current	Opinion	in	Ophthalmology	
23(3),	pp.	226-234.	
	
Titus,	A.	D.	et	al.	2007.	Hypobaric	hypoxia-induced	dendritic	atrophy	of	hippocampal	neurons	is	
associated	with	cognitive	impairment	in	adult	rats.Neuroscience.	Vol.	145.	United	States,	pp.	265-
278.	
	
Tomita,	H.	et	al.	2009.	Channelrhodopsins	provide	a	breakthrough	insight	into	strategies	for	curing	
blindness.	Journal	of	Genetics	88(4).	
	
Torre,	V.	and	Poggio,	T.	1978.	Synaptic	mechanism	possibly	underlying	directional	selectivity	to	
motion.	Proceedings	of	the	Royal	Society	Series	B-Biological	Sciences	202(1148),	pp.	409-416.	
	
Traynelis,	S.	F.	and	Lipton,	S.	A.	2001.	Is	tissue	plasminogen	activator	a	threat	to	neurons?	Nat	Med	
7(1),	pp.	17-18.	
	
Tribble,	J.	R.	et	al.	2014.	A	novel	system	for	the	classification	of	diseased	retinal	ganglion	cells.	Vis	
Neurosci	31(6),	pp.	373-380.	
	
Triplett,	J.	W.	et	al.	2014.	Dendritic	and	axonal	targeting	patterns	of	a	genetically-specified	class	of	
retinal	ganglion	cells	that	participate	in	image-forming	circuits.	Neural	Dev	9(2),	pp.	1749-8104.	
	
Tsai,	S.	J.	2007.	Statins	may	enhance	the	proteolytic	cleavage	of	proBDNF:	implications	for	the	
treatment	of	depression.	Med	Hypotheses	68(6),	pp.	1296-1299.	
	
Tukmachev,	D.	et	al.	2015.	An	effective	strategy	of	magnetic	stem	cell	delivery	for	spinal	cord	injury	
therapy.	Nanoscale	7(9),	pp.	3954-3958.	
	
van	Praag,	H.	et	al.	1999.	Running	enhances	neurogenesis,	learning,	and	long-term	potentiation	in	
mice.Proc	Natl	Acad	Sci	U	S	A.	Vol.	96.	pp.	13427-13431.	
	
Vecino,	E.	et	al.	2002.	Rat	retinal	ganglion	cells	co-express	brain-derived	neurotrophic	factor	(BDNF)	
and	its	receptor	TrkB.	Vision	Res	42(2),	pp.	151-157.	
	
Vecino,	E.	et	al.	2015.	Glia-neuron	interactions	in	the	mammalian	retina.	Prog	Retin	Eye	Res.	
	
Veraart,	C.	et	al.	1998.	Visual	sensations	produced	by	optic	nerve	stimulation	using	an	implanted	
self-sizing	spiral	cuff	electrode.	Brain	Res	813(1),	pp.	181-186.	
	
Vilar,	M.	et	al.	2009.	Activation	of	the	p75	neurotrophin	receptor	through	conformational	
rearrangement	of	disulphide-linked	receptor	dimers.	Neuron	62(1),	pp.	72-83.	
	
Virgintino,	D.	et	al.	2009.	Differential	distribution	of	aggrecan	isoforms	in	perineuronal	nets	of	the	
human	cerebral	cortex.	J	Cell	Mol	Med	13(9b),	pp.	3151-3173.	
	
Vishwakarma,	S.	K.	et	al.	2015.	Magnetic	nanoparticle	tagged	stem	cell	transplantation	in	spinal	cord	
injury:	A	promising	approach	for	targeted	homing	of	cells	at	the	lesion	site.Neurol	India.	Vol.	63.	
India,	pp.	460-461.	
	
Vorobyov,	V.	et	al.	2013.	Effects	of	digesting	chondroitin	sulfate	proteoglycans	on	plasticity	in	cat	
primary	visual	cortex.	J	Neurosci	33(1),	pp.	234-243.	



References	

	

248	

	
Vutskits,	L.	et	al.	2001.	PSA-NCAM	modulates	BDNF-dependent	survival	and	differentiation	of	
cortical	neurons.	Eur	J	Neurosci	13(7),	pp.	1391-1402.	
	
Vyas,	A.	et	al.	2002.	Chronic	stress	induces	contrasting	patterns	of	dendritic	remodeling	in	
hippocampal	and	amygdaloid	neurons.	J	Neurosci	22(15),	pp.	6810-6818.	
	
Waller,	A.	1850.	Experiments	on	the	Section	of	the	Glossopharyngeal	and	Hypoglossal	Nerves	of	the	
Frog,	and	Observations	of	the	Alterations	Produced	Thereby	in	the	Structure	of	Their	Primitive	
Fibres.	Philosophical	Transactions	of	the	Royal	Society	of	London	140,	pp.	423-429.	
	
Wang,	D.	and	Fawcett,	J.	2012.	The	perineuronal	net	and	the	control	of	CNS	plasticity.	Cell	Tissue	Res	
349(1),	pp.	147-160.	
	
Wang,	H.	et	al.	2006.	Dysregulation	of	brain-derived	neurotrophic	factor	expression	and	
neurosecretory	function	in	Mecp2	null	mice.	J	Neurosci	26(42),	pp.	10911-10915.	
	
Wang,	S.	W.	et	al.	2000.	Abnormal	polarization	and	axon	outgrowth	in	retinal	ganglion	cells	lacking	
the	POU-domain	transcription	factor	Brn-3b.	Mol	Cell	Neurosci	16(2),	pp.	141-156.	
	
Wang,	S.	W.	et	al.	2002.	Retinal	ganglion	cell	differentiation	in	cultured	mouse	retinal	explants.	
Methods	28(4),	pp.	448-456.	
	
Wang,	X.	F.	et	al.	1991.	Expression	cloning	and	characterization	of	the	TGF-beta	type	III	receptor.	Cell	
67(4),	pp.	797-805.	
	
Watanabe,	Y.	et	al.	1992.	Stress	induces	atrophy	of	apical	dendrites	of	hippocampal	ca3	pyramidal	
neurons.	Brain	Research	588(2),	pp.	341-345.	
	
Weber,	A.	J.	and	Harman,	C.	D.	2008.	BDNF	preserves	the	dendritic	morphology	of	alpha	and	beta	
ganglion	cells	in	the	cat	retina	after	optic	nerve	injury.Invest	Ophthalmol	Vis	Sci.	Vol.	49.	United	
States,	pp.	2456-2463.	
	
Weber,	A.	J.	et	al.	2008.	Effects	of	optic	nerve	injury,	glaucoma,	and	neuroprotection	on	the	survival,	
structure,	and	function	of	ganglion	cells	in	the	mammalian	retina.J	Physiol.	Vol.	586.	England,	pp.	
4393-4400.	
	
Weber,	A.	J.	et	al.	1998.	Morphology	of	single	ganglion	cells	in	the	glaucomatous	primate	retina.	
Invest	Ophthalmol	Vis	Sci	39(12),	pp.	2304-2320.	
	
Weickert,	C.	S.	et	al.	2003.	Reduced	brain-derived	neurotrophic	factor	in	prefrontal	cortex	of	
patients	with	schizophrenia.	Mol	Psychiatry	8(6),	pp.	592-610.	
	
West,	A.	E.	et	al.	2001.	Calcium	regulation	of	neuronal	gene	expression.	Proc	Natl	Acad	Sci	U	S	A	
98(20),	pp.	11024-11031.	
	
White,	K.	E.	et	al.	2009.	OPA1	Deficiency	Associated	with	Increased	Autophagy	in	Retinal	Ganglion	
Cells	in	a	Murine	Model	of	Dominant	Optic	Atrophy.	Investigative	Ophthalmology	&	Visual	Science	
50(6),	pp.	2567-2571.	
	



References	

	

249	

Whitesides,	G.	M.	et	al.	1983.	Magnetic	separations	in	biotechnology.	Trends	in	Biotechnology	1(5),	
pp.	144-148.	
	
Widder,	K.	J.	et	al.	1980.	In	vitro	release	of	biologically	active	adriamycin	by	magnetically	responsive	
albumin	microspheres.	Cancer	Res	40(10),	pp.	3512-3517.	
	
Wiese,	S.	et	al.	2012.	Astrocytes	as	a	source	for	extracellular	matrix	molecules	and	cytokines.	Front	
Pharmacol	3,	p.	120.	
	
Wiesel,	T.	N.	and	Hubel,	D.	H.	1963.	Effects	of	visual	deprivation	on	morphology	and	physiology	of	
cells	in	cats	lateral	geniculate	body.	Journal	of	Neurophysiology	26(6),	pp.	978-&.	
	
Wilkins,	A.	et	al.	2009.	Human	bone	marrow-derived	mesenchymal	stem	cells	secrete	brain-derived	
neurotrophic	factor	which	promotes	neuronal	survival	in	vitro.	Stem	Cell	Res	3(1),	pp.	63-70.	
	
Williams,	D.	W.	et	al.	2006.	Local	caspase	activity	directs	engulfment	of	dendrites	during	pruning.	
Nat	Neurosci	9(10),	pp.	1234-1236.	
	
Williams,	P.	A.	et	al.	2013a.	Retinal	ganglion	cell	dendritic	atrophy	in	DBA/2J	glaucoma.PLoS	One.	
Vol.	8.	United	States,	p.	e72282.	
	
Williams,	P.	A.	et	al.	2013b.	Retinal	ganglion	cell	dendritic	degeneration	in	a	mouse	model	of	
Alzheimer's	disease.	Neurobiol	Aging	34(7),	pp.	1799-1806.	
	
Wilson,	M.	T.	et	al.	2000.	Glutamate-induced	changes	in	the	pattern	of	hippocampal	dendrite	
outgrowth:	a	role	for	calcium-dependent	pathways	and	the	microtubule	cytoskeleton.	J	Neurobiol	
43(2),	pp.	159-172.	
	
Woch,	G.	et	al.	2001.	Retinal	transplants	restore	visually	evoked	responses	in	rats	with	
photoreceptor	degeneration.	Invest	Ophthalmol	Vis	Sci	42(7),	pp.	1669-1676.	
	
Wong,	R.	O.	1999.	Retinal	waves	and	visual	system	development.	Annu	Rev	Neurosci	22,	pp.	29-47.	
	
Woo,	N.	H.	et	al.	2005.	Activation	of	p75NTR	by	proBDNF	facilitates	hippocampal	long-term	
depression.	Nat	Neurosci	8(8),	pp.	1069-1077.	
	
Wood,	J.	P.	et	al.	2011.	Nanosecond	pulse	lasers	for	retinal	applications.	Lasers	Surg	Med	43(6),	pp.	
499-510.	
	
Woronowicz,	A.	et	al.	2010.	Carboxypeptidase	E	knockout	mice	exhibit	abnormal	dendritic	
arborization	and	spine	morphology	in	central	nervous	system	neurons.	J	Neurosci	Res	88(1),	pp.	64-
72.	
	
Wu,	A.	et	al.	2008a.	Docosahexaenoic	acid	dietary	supplementation	enhances	the	effects	of	exercise	
on	synaptic	plasticity	and	cognition.	Neuroscience	155(3),	pp.	751-759.	
	
Wu,	S.	et	al.	2008b.	Neural	stem	cells	improve	learning	and	memory	in	rats	with	Alzheimer's	disease.	
Pathobiology	75(3),	pp.	186-194.	
	
Wurm,	A.	et	al.	2009.	Involvement	of	A(1)	adenosine	receptors	in	osmotic	volume	regulation	of	
retinal	glial	cells	in	mice.	Mol	Vis	15,	pp.	1858-1867.	



References	

	

250	

	
Xia,	Y.	et	al.	2006.	State-dependent	AMPA	receptor	trafficking	in	the	mammalian	retina.	Journal	of	
Neuroscience	26(19),	pp.	5028-5036.	
	
Xia,	Y.	et	al.	2007.	Activity-dependent	synaptic	plasticity	in	retinal	ganglion	cells.	Journal	of	
Neuroscience	27(45),	pp.	12221-12229.	
	
Xu,	B.	et	al.	2000.	Cortical	degeneration	in	the	absence	of	neurotrophin	signaling:	dendritic	
retraction	and	neuronal	loss	after	removal	of	the	receptor	TrkB.Neuron.	Vol.	26.	United	States,	pp.	
233-245.	
	
Xu,	H.	P.	and	Tian,	N.	2007.	Retinal	ganglion	cell	dendrites	undergo	a	visual	activity-dependent	
redistribution	after	eye	opening.	J	Comp	Neurol	503(2),	pp.	244-259.	
	
Xu,	H.	P.	and	Tian,	N.	2008.	Glycine	receptor-mediated	synaptic	transmission	regulates	the	
maturation	of	ganglion	cell	synaptic	connectivity.	J	Comp	Neurol	509(1),	pp.	53-71.	
	
Xu,	N.	J.	and	Henkemeyer,	M.	2012.	Ephrin	reverse	signaling	in	axon	guidance	and	synaptogenesis.	
Semin	Cell	Dev	Biol	23(1),	pp.	58-64.	
	
Xu,	Y.	et	al.	2007.	Energy	sources	for	glutamate	neurotransmission	in	the	retina:	absence	of	the	
aspartate/glutamate	carrier	produces	reliance	on	glycolysis	in	glia.	J	Neurochem	101(1),	pp.	120-131.	
	
Yacoubian,	T.	A.	and	Lo,	D.	C.	2000.	Truncated	and	full-length	TrkB	receptors	regulate	distinct	modes	
of	dendritic	growth.	Nat	Neurosci	3(4),	pp.	342-349.	
	
Yamashita,	T.	et	al.	1999.	Neurotrophin	binding	to	the	p75	receptor	modulates	Rho	activity	and	
axonal	outgrowth.	Neuron	24(3),	pp.	585-593.	
	
Yan,	Q.	and	Johnson,	E.	M.,	Jr.	1988.	An	immunohistochemical	study	of	the	nerve	growth	factor	
receptor	in	developing	rats.	J	Neurosci	8(9),	pp.	3481-3498.	
	
Yanai,	A.	et	al.	2012.	Focused	magnetic	stem	cell	targeting	to	the	retina	using	superparamagnetic	
iron	oxide	nanoparticles.	Cell	Transplant	21(6),	pp.	1137-1148.	
	
Yang,	F.	et	al.	2009.	Pro-BDNF-induced	synaptic	depression	and	retraction	at	developing	
neuromuscular	synapses.	J	Cell	Biol	185(4),	pp.	727-741.	
	
Yang,	G.	and	Masland,	R.	H.	1994.	Receptive-fields	and	dendritic	structure	of	directionally	selective	
retinal	ganglion-cells.	Journal	of	Neuroscience	14(9),	pp.	5267-5280.	
	
Yang,	H.	W.	et	al.	2012.	Potential	of	magnetic	nanoparticles	for	targeted	drug	delivery.Nanotechnol	
Sci	Appl.	Vol.	5.	pp.	73-86.	
	
Yang,	J.	et	al.	2015.	Pathological	Axonal	Death	through	a	MAPK	Cascade	that	Triggers	a	Local	Energy	
Deficit.	Cell	160(1-2),	pp.	161-176.	
	
Yates,	J.	R.	W.	et	al.	2007.	Complement	C3	variant	and	the	risk	of	age-related	macular	degeneration.	
New	England	Journal	of	Medicine	357(6),	pp.	553-561.	
	



References	

	

251	

Yin,	Y.	et	al.	2002.	The	brain-derived	neurotrophic	factor	enhances	synthesis	of	Arc	in	
synaptoneurosomes.	Proc	Natl	Acad	Sci	U	S	A	99(4),	pp.	2368-2373.	
	
Yoshii,	A.	and	Constantine-Paton,	M.	2007.	BDNF	induces	transport	of	PSD-95	to	dendrites	through	
PI3K-AKT	signaling	after	NMDA	receptor	activation.	Nat	Neurosci	10(6),	pp.	702-711.	
	
Yoshii,	A.	and	Constantine-Paton,	M.	2010.	Postsynaptic	BDNF-TrkB	signaling	in	synapse	maturation,	
plasticity,	and	disease.	Dev	Neurobiol	70(5),	pp.	304-322.	
	
Yuan,	L.	and	Neufeld,	A.	H.	2001.	Activated	microglia	in	the	human	glaucomatous	optic	nerve	head.	J	
Neurosci	Res	64(5),	pp.	523-532.	
	
Yuan,	W.	et	al.	2002.	Association	between	protease-specific	proteolytic	cleavage	of	brevican	and	
synaptic	loss	in	the	dentate	gyrus	of	kainate-treated	rats.	Neuroscience	114(4),	pp.	1091-1101.	
	
Zablotskii,	V.	et	al.	2013.	Life	on	magnets:	stem	cell	networking	on	micro-magnet	arrays.	PLoS	One	
8(8),	p.	e70416.	
	
Zagrebelsky,	M.	et	al.	2005.	The	p75	neurotrophin	receptor	negatively	modulates	dendrite	
complexity	and	spine	density	in	hippocampal	neurons.	J	Neurosci	25(43),	pp.	9989-9999.	
	
Zhang,	J.	et	al.	2012.	Visual	map	development	depends	on	the	temporal	pattern	of	binocular	activity	
in	mice.	Nat	Neurosci	15(2),	pp.	298-307.	
	
Zhang,	J.	et	al.	2011.	rAAV-mediated	delivery	of	brain-derived	neurotrophic	factor	promotes	neurite	
outgrowth	and	protects	neurodegeneration	in	focal	ischemic	model.	Int	J	Clin	Exp	Pathol	4(5),	pp.	
496-504.	
	
Zhang,	N.	et	al.	2010.	Characterization	of	Human	Huntington's	Disease	Cell	Model	from	Induced	
Pluripotent	Stem	Cells.	PLoS	currents	2,	pp.	RRN1193-RRN1193.	
	
Zhang,	S.	et	al.	2009.	Size-Dependent	Endocytosis	of	Nanoparticles.	Adv	Mater	21,	pp.	419-424.	
	
Zhang,	X.	M.	and	Yang,	X.	J.	2001.	Regulation	of	retinal	ganglion	cell	production	by	Sonic	hedgehog.	
Development	128(6),	pp.	943-957.	
	
Zhang,	Y.	et	al.	2007.	CNS	progenitor	cells	promote	a	permissive	environment	for	neurite	outgrowth	
via	a.	J	Neurosci	27(17),	pp.	4499-4506.	
	
Zhang,	Y.	et	al.	2002.	Surface	modification	of	superparamagnetic	magnetite	nanoparticles	and	their	
intracellular	uptake.	Biomaterials	23(7),	pp.	1553-1561.	
	
Zhao,	H.	et	al.	2015.	Specific	Intensity	Direct	Current	(DC)	Electric	Field	Improves	Neural	Stem	Cell	
Migration	and	Enhances	Differentiation	towards	betaIII-Tubulin+	Neurons.	PLoS	One	10(6),	p.	
e0129625.	
	
Zhao,	M.	et	al.	2006.	Electrical	signals	control	wound	healing	through	phosphatidylinositol-3-OH	
kinase-gamma	and	PTEN.	Nature	442(7101),	pp.	457-460.	
	
Zheng,	F.	et	al.	2012.	Regulation	of	brain-derived	neurotrophic	factor	expression	in	neurons.	Int	J	
Physiol	Pathophysiol	Pharmacol	4(4),	pp.	188-200.	



References	

	

252	

	
Zhou,	L.	et	al.	2013.	Upregulation	of	blood	proBDNF	and	its	receptors	in	major	depression.	J	Affect	
Disord	150(3),	pp.	776-784.	
	
Zhu,	C.	et	al.	2005.	The	influence	of	age	on	apoptotic	and	other	mechanisms	of	cell	death	after	
cerebral	hypoxia-ischemia.	Cell	Death	Differ	12(2),	pp.	162-176.	
	
Zivin,	J.	A.	2009.	Acute	stroke	therapy	with	tissue	plasminogen	activator	(tPA)	since	it	was	approved	
by	the	U.S.	Food	and	Drug	Administration	(FDA).	Ann	Neurol	66(1),	pp.	6-10.	
	
	



Appendix	

	

253	

Appendix	

Chemotaxis	measurements	equations	

All	Chemotaxis	equations	from	Chemotaxis	and	Migration	Tool	Version	1.01,	Ibidi,	accessed	from	

http://ibidi.com/xtproducts/en/Software-and-Image-Analysis/Manual-Image-Analysis/Chemotaxis-

and-Migration-Tool,	last	accessed	28.02.16. 
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Equation S1. X forward migration index 
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Equation S2. Y forward migration index 
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y	centre	of	mass = 	
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Equation S4. Y centre of mass 
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