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Tertiary lymphoid organs (TLOs) are frequently observed in tissues affected by 
 non-resolving inflammation as a result of infection, autoimmunity, cancer, and allograft 
rejection. These highly ordered structures resemble the cellular composition of lymphoid 
follicles typically associated with the spleen and lymph node compartments. Although 
TLOs within tissues show varying degrees of organization, they frequently display evi-
dence of segregated T and B cell zones, follicular dendritic cell networks, a supporting 
stromal reticulum, and high endothelial venules. In this respect, they mimic the activities 
of germinal centers and contribute to the local control of adaptive immune responses. 
Studies in various disease settings have described how these structures contribute to 
either beneficial or deleterious outcomes. While the development and architectural orga-
nization of TLOs within inflamed tissues requires homeostatic chemokines, lymphoid 
and inflammatory cytokines, and adhesion molecules, our understanding of the cells 
responsible for triggering these events is still evolving. Over the past 10–15 years, novel 
immune cell subsets have been discovered that have more recently been implicated in 
the control of TLO development and function. In this review, we will discuss the contribu-
tion of these cell types and consider the potential to develop new therapeutic strategies 
that target TLOs.

Keywords: tertiary lymphoid organs, ectopic lymphoid structures, lymphoid neogenesis, autoimmunity, infection, 
rheumatoid arthritis, cancer

iNTRODUCTiON

Adaptive immune responses are traditionally viewed as reactions that occur in secondary lymphoid 
organs (SLOs). These include encapsulated SLOs, such as the spleen and lymph nodes, and mucosal-
associated lymphoid tissues, such as Peyer’s patches, nasal-associated lymphoid tissue, bronchus-
associated lymphoid tissue (BALT), and tonsils (1). SLOs develop in pre-determined locations 
throughout the body to monitor self and non-self antigens as they drain from peripheral tissues. 
Owing to their highly organized cellular architecture, SLOs provide an optimal environment for 
cellular communication and the generation of antigen-specific effector cells against foreign antigens. 
In addition, mucosal-associated lymphoid tissues act as tissue barometers responsible for the main-
tenance of immune homeostasis and orchestrators of anti-microbial host immunity against invading 
pathogens. They, therefore, reinforce immunological tolerance within mucosal compartments and 
support tissue integrity through the maintenance of commensal microbiota (2, 3). However, it is 
increasingly evident that antigen-specific responses may also be generated at sites separate to those 
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SLOs. These responses are typically observed in tissues affected 
by non-resolving inflammation as a result of infection, cancer, 
autoimmunity, chronic allograft rejection, and environmental 
irritants, where the local inflammatory environment promotes 
the organization of lymphoid aggregates that drive adaptive 
immune reactions (4). These lymphoid organ-like structures are 
referred to as tertiary lymphoid organs [TLOs; also called ectopic 
lymphoid-like structures (ELSs); and ectopic lymphoid follicles 
(ELFs)].

Unlike SLOs that develop during embryogenesis, TLOs are 
not encapsulated and do not form in pre-determined locations 
based on developmental signals (1). Rather, TLOs are inducible 
in response to inflammatory stimuli and, therefore, have the 
potential to develop in any tissue where persistent inflammation 
features. Nevertheless studies in human disease, particularly 
cancer metastases (5), and research using transgenic mice (6) 
suggest that some tissues are more permissive to TLO develop-
ment than others. Furthermore, only a fraction of patients with 
any particular disease develop TLOs in inflamed tissues. This sug-
gests that the local inflammatory microenvironment, including 
signals provided by stromal tissue cells and resident cells, must 
provide specific cues conducive to lymphoid neogenesis for TLO 
development to occur. Importantly, TLOs can influence disease 
progression, where their effects can either be beneficial or dam-
aging. For example, in certain cancers and infections, TLOs can 
promote antigen-specific responses that promote anti-tumor and 
anti-pathogen immunity (5). However, in autoimmune diseases, 
such as rheumatoid arthritis, TLOs have been shown to support 
local autoantibody responses (e.g., rheumatoid factor, ACPA/
anti-CCP) linked with disease exacerbation and also influence 
the clinical response to mainstream biologics (e.g., anti-TNF) (4, 
7–9). The above highlight key questions that need addressing: 
What are the stromal and immune cell signals that drive TLO devel-
opment? What determines why some patients develop TLOs during 
chronic inflammation and others not? What are the most suitable 
biologics for the treatment of TLO-associated autoimmune diseases? 
Do TLOs hold promise for establishing anti-tumour immunity to 
improve cancer therapy? Do signatures of TLO development and 
activity constitute biomarkers capable of patient stratification that 
aid clinical decision-making?

While TLOs borrow developmental cues from secondary 
lymphoid organogenesis, there are also distinct immune cells, 
stromal cells, and effector cytokines implicated in TLO develop-
ment (1, 4). This suggests that during TLO development, immune 
cells, and their effector molecules can substitute for the traditional 
players involved in lymphoid organ development. Here, we review 
recent discoveries relating to the immune cells involved in TLO 
development, their functions that influence disease progression, 
and the potential of TLOs as therapeutic targets.

SeCONDARY LYMPHOiD 
ORGANOGeNeSiS AS A MODeL  
FOR TLO DeveLOPMeNT

Secondary lymphoid organs display a highly organized cellular 
architecture, including segregated T cell zones and B cell follicles 

comprising active germinal centers (GCs); follicular dendritic 
cell (fDC) networks; PNAd+ high endothelial venules (HEVs) 
that allow naïve and central memory T and B cell homing; and 
stromal reticular networks. While TLOs display many of these 
features, in human diseases they can often present as less ordered 
structures ranging from simple T and B cell aggregates through to 
highly organized and segregated structures featuring HEVs and 
active GCs. This heterogeneity likely reflects the stage at which 
tissue biopsies are taken and may represent developing TLOs that 
have not fully matured. Similarly, TLOs can often be “transient” 
and regress upon successful antigen clearance or resolution of 
inflammation. Therefore, regression of TLOs may also contribute 
to the heterogeneity seen in tissues biopsied from human dis-
eases. While TLOs exhibit more heterogeneity than SLOs, much 
of our understanding of TLO development stems from studies of 
secondary lymphoid organogenesis [comprehensively reviewed 
elsewhere (1, 10)].

Secondary lymphoid organ development is initiated when 
CD3− CD4+ CD45+ lymphoid tissue inducer (LTi) cells of hemat-
opoietic origin interact with mesenchymal-derived lymphoid 
tissue organizer (LTo) cells (Figure  1). LTi cells express the 
chemokine receptor CXCR5 and IL-7R (CD127), which results 
in their accumulation at sites of lymph node development in 
response to the local production of CXCL13 and IL-7. Recruited 
LTi cells express lymphotoxin (LT)α1β2, which stimulates stromal 
LTo cells to produce the homeostatic chemokines CXCL13, 
CCL19, and CCL21 initiating the recruitment of hematopoietic 
cells. The retention of cells is further supported by the expression 
of adhesion molecules, including intracellular adhesion molecule 
1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) by 
LTo cells (11). The secretion of growth factors, such as vascular 
endothelial growth factor-C (VEGF-C), fibroblast growth fac-
tor-2 (FGF2), and hepatocyte growth factor (HGF) also promotes 
lymphangiogenesis (the formation of lymphatic vessels from pre-
existing lymphatic vessels) and HEV development (1, 12). Finally, 
LTo cells differentiate into fDCs, and fibroblastic and marginal 
reticular cells, which form stromal cell networks that provide a 
structural scaffold that supports cellular migration (13–15). Once 
initiated, the expression of homeostatic chemokines (CXCL13, 
CCL19, CCL21, and CXCL12) by LTo cells perpetuates the 
recruitment of further LTi cells and lymphocytes. This provides a 
sustained source of LTo cell stimulation through the LTβ recep-
tor (LTβR), thus ensuring the maintenance of lymphoid organ 
development.

The mechanisms of TLO development share many similarities 
with those of lymph node development (Figure 1). Perhaps the 
most prominent example is the establishment of a chemokine-
directed positive feedback loop that orchestrates lymphocyte 
recruitment and organization (4, 5). However, TLOs can form 
in the absence of LTi cells. For example, mice deficient in the 
nuclear hormone receptor retinoic acid-related orphan receptor-
γt (RORγt) and the transcriptional repressor Id2 still retain the 
capacity to develop TLOs at inflammatory sites, despite lacking 
LTi cells (16–19). This highlights one of the most striking dif-
ferences between TLO and SLO development. While both rely 
on homeostatic chemokines (e.g., CXCL13, CCL19, CCL21, 
and CXCL12) and lymphoneogenic cytokines (e.g., LTαβ) for 
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FiGURe 1 | Cellular control of lymphoid organ development. (A) LTi cells accumulate at sites of SLO development and secrete lymphotoxin (LT) αβ, which 
engages the LTβ receptor (LTβR) expressed on stromal LTo cells. LTo cells respond by releasing homeostatic chemokines (CXCL13, CXCL12, CCL21, and CCL19), 
further recruiting and spatially organizing hematopoietic cells into lymphoid organs. Release of vascular endothelial growth factor (VEGF), fibroblast growth factor 
(FGF), and hepatocyte growth factor (HGF) by stromal LTo cells promotes the development of high endothelial venules (HEVs). Expression of ICAM and VCAM on 
fDCs and resident stromal cells further supports leukocyte recruitment. Stromal LTo cells are also capable of differentiating into cell lineages (e.g., follicular DCs) that 
support SLO development. SLOs are sites for T cell activation and differentiation (e.g., into Th1, Th2, Th17, and Tfh cells). Tfh cells promote the development and 
maintenance of germinal centers and interact with B cells to generate high-affinity antibodies. (B) In TLO development, immune cells can substitute for conventional 
cells involved in lymphoid organogenesis. The accumulation of TLO-initiating immune cells at sites of inflammation, and their interaction with tissue resident and 
stromal cells initiates release of homeostatic chemokines (CXCL13, CXCL12, CCL21, and CCL19) that are involved in the recruitment and spatial organization of 
cells into TLOs. The plasticity of T cells may contribute to TLO development through the acquisition of Tfh-like effector characteristics that promote B cell activities 
and antibody generation. As in SLOs, fDCs may support TLO development and maintenance through chemokine production and provide a cellular network for B cell 
migration. LTi, lymphoid tissue inducer; LTo, lymphoid tissue organizer; ICAM, intracellular adhesion molecule; VCAM, vascular cell adhesion molecule; fDC, follicular 
dendritic cell.
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their development, the initiation of TLO development relies 
on an inducible inflammatory trigger, while SLOs are devel-
opmentally pre-programed. In this regard, immune cells may 
substitute for LTi cells and act as primary orchestrators of tertiary 
lymphoneogenesis.

T HeLPeR 17 TYPe ReSPONSeS AND 
PLASTiCiTY DRive TLO DeveLOPMeNT 
iN CHRONiC iNFLAMMATiON

T helper cells and their effector cytokines, particularly IL-17-
secreting CD4+ (Th17) cells have recently emerged as key ini-
tiators of TLO development in inflammatory diseases (Figure 2) 
(20). For example, in a model of lipopolysaccharide (LPS)-driven 
pulmonary inflammation, neonatal mice developed induc-
ible (i)  BALT associated with heightened CXCL13 and CCL19 
expression (19). Despite the presence of CD3−CD4+ LTi  cells, 

iBALT development was dependent on IL-17 production by 
CD4+ T  cells. Interestingly, antibody blockade revealed that 
IL-17 was important for initiation of iBALT development, but 
was dispensable for the maintenance of established lymphoid 
clusters. The development of iBALT has previously been shown 
in response to viral challenge (21, 22), bacterial infection (23), 
cigarette smoke (24), and protein nanoparticles (25). Notably, in 
response to infection with a replication-deficient poxvirus modi-
fied vaccinia virus Ankara, iBALT development was independent 
of both IL-17A and another Th17 effector cytokine, IL-17F (26). 
Therefore, while common mechanisms involving IL-17 may 
promote pulmonary TLO development in response to various 
inflammatory stimuli, it is also important to note that iBALT 
formation can occur independently of IL-17/Th17 involvement.

Recent studies have also highlighted roles for Th17 cells in 
TLO development in the central nervous system (CNS), inflamed 
joint tissues, and salivary glands. Peters et al. demonstrated a role 
for Th17 cells in promoting TLOs in an experimental model of 
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FiGURe 2 | Novel T cell and innate lymphocyte-derived cytokines associated with TLOs in experimental and human diseases. Due to the crucial role 
that T cells (blue) and innate lymphocyte populations (green) play in the development of TLOs, a number of their secretory cytokines have been associated with 
tertiary lymphoneogenesis. Here, we show the cytokines and transcription factors associated with positive (green arrows) and negative (red arrows) control of TLOs. 
T cell-derived IL-2 and activation of Blimp-1 result in suppression of Bcl-6 expression and inhibition of Tfh differentiation. IL-27 is produced by activated antigen-
presenting cells and potently inhibits the development of Th17 cells, which have been linked with TLO development. Experimental and human diseases where these 
cells have been linked with TLO development are shown. Tfh, T follicular helper cell; Th17, T helper 17 cell; ILC3s, group 3 innate lymphoid cells; NK cell, Natural 
Killer cell; Treg, regulatory T cell; EAE, experimental autoimmune encephalomyelitis; AIA, antigen-induced arthritis; iBALT, inducible bronchus-associated lymphoid 
tissue; RA, rheumatoid arthritis; MS, multiple sclerosis; NSCLC, non-small cell lung carcinoma; SG/SS, salivary gland infection displaying Sjögren’s syndrome-like 
characteristics.
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multiple sclerosis (27). Here, adoptive transfer of in vitro gener-
ated Th17 cells induced TLOs, which was partly IL-17 depend-
ent. Only Th17 cells differentiated in the presence of IL-23, 
which maintains Th17 effector function (28, 29), were capable 
of inducing TLOs. Notably, the adoptive transfer of Th1, Th2, 
and Th9 cells failed to induce this phenotype. Interestingly, the 
development of TLOs in this model was also partly dependent on 
the expression of podoplanin (gp38) on transferred Th17 cells. 
While an appreciation of a role for podoplanin in regulating T 
cell responses is only now emerging (30), there is significant 
evidence for a role in regulating tertiary lymphoneogenesis. For 
example, we recently described IL-27 as a negative regulator 
of TLO development in experimental inflammatory arthritis 
(31). Here, synovial TLO development in IL-27R-deficient 
mice was associated with an increased number of peripheral 
podoplanin-expressing Th17 cells and the local recruitment of 
podoplanin-positive T cells to synovial lymphoid aggregates. 
The Th17 axis and podoplanin have also been linked with TLO 
development in human diseases, including rheumatoid arthritis, 
multiple sclerosis, renal allograft rejection, and giant-cell arteri-
tis (31–35). Therefore, consistent with a key role for podoplanin 

and its ligand CLEC-2 in lymph node development (11, 27, 36), 
podoplanin expression on T cells may support the recruitment 
and retention of leukocytes within TLOs.

While IL-17 stands as the “signature” cytokine for Th17 
cells, these cells also produce IL-17F, IL-22, and IL-21. Recently, 
IL-17 and IL-22 have been shown to induce stromal produc-
tion of homeostatic chemokines resulting in TLO development 
in mucosal tissues (37, 38). For example, IL-22 promotes TLO 
development in salivary glands following local adenovirus deliv-
ery (37). Here, the major source of IL-22 was αβ+ T cells and γδ+ 
T cells, which induced the expression of CXCL13 in podoplanin+ 
stromal cells and CXCL12 in epithelial cells. Therapeutic blockade 
of IL-22 activity inhibited TLO development and maintenance, 
thus highlighting IL-22-targeted therapies as a novel approach 
for the treatment of conditions featuring TLOs and autoantibody-
driven disease.

IL-21 plays a central role in Th17 and T follicular helper 
(Tfh) cell differentiation, the development of naïve B cells into 
plasma cells or GC B cells, and the generation of high-affinity 
antibodies (39). Therefore Th17 or Tfh cell-derived IL-21 has 
potential to play an important role in TLO development and 
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function. Elevated expression of IL-21 has been observed in 
 tissues containing TLOs in experimental and clinical rheuma-
toid arthritis (31, 32), a model of salivary gland inflammation 
with Sjögren’s syndrome-like characteristics (40) and in human 
renal grafts undergoing terminal failure (34). A recent study 
also described the development of TLOs in the retina dur-
ing experimental uveitis, where TLOs were associated with 
heightened expression of Tfh cell markers (41). Interestingly, 
T helper cell plasticity may contribute to the development of 
TLOs, where T cells may transiently or fully acquire effector 
characteristics that support tertiary lymphoneogenesis. For 
example, Th17 cells that migrate and support the develop-
ment of IgA-producing GC B cells in Peyer’s patches acquire 
a Tfh-like phenotype, including the expression of IL-21, Bcl-6, 
CXCR5, and PD-1 (42). Similarly, Th17 cells that promote TLO 
development in the CNS during experimental autoimmune 
encephalomyelitis develop Tfh-like effector characteristics 
(27). While the development of TLOs in this latter model was 
independent of IL-21, the contribution of other Tfh effector 
characteristics cannot be excluded. Therefore, plasticity among 
T helper cell subsets may allow for the acquisition of Tfh-like 
effector characteristics (43, 44) that can support GC reactions 
and the development of TLOs.

ReGULATORY T CeLLS AS 
SUPPReSSORS OF TLO DeveLOPMeNT 
AND FUNCTiON

In chronic inflammatory disorders, TLOs are generally consid-
ered perpetuators of adaptive immune responses that contribute 
to pathology. A recent study describing a protective role for TLOs 
in atherosclerosis (45) raises an interesting question: How can 
TLOs in the majority of chronic inflammatory disorders be damag-
ing, yet in some be protective?

In aged apolipoprotein E (ApoE)-deficient mice with ath-
erosclerosis, smooth muscle cells beneath intimal plaques take 
on LTo-like properties and secrete CXCL13 and CCL21 to drive 
tertiary lymphoneogenesis (46). Engagement of the LTβR on 
smooth muscle cells played a central role in the induction of lym-
phoneogenic chemokines and the development of aortic TLOs, 
which were atheroprotective. These TLOs represent principal sites 
for the regulation of atherosclerotic T cell responses, including 
the development and activation of anti-inflammatory regulatory 
T (Treg) cells (45). In these aged mice, highly activated Treg cells 
within aortic TLOs may skew the local immune response toward 
anti-atherogenic outcomes by restricting the activation of effector 
and central memory T cells. Here, communication between aortic 
TLOs and vascular smooth muscle cells expressing the LTβR may 
be important in maintaining the structure, size, and composition 
of TLOs associated with protection from atherosclerosis (45). 
Notably, another recent study in ApoE-deficient mice outlines 
a role for regulatory CD8+ T cells in limiting the development 
of aortic TLOs during atherosclerosis (47). However, this study 
described a pro-atherogenic role for TLOs in both mouse and 
human atherosclerosis, where Tfh cells support GC reactions and 
the local maturation of potentially pathogenic B cells. Therefore, 

while Treg cells can prevent the development of aortic TLOs, 
further investigation is needed to determine the precise role 
played by TLOs during atherogenesis. The relative proportions of 
pro-inflammatory and Treg cell populations within aortic TLOs 
may be influenced by factors, such as age, stage of disease, and 
environmental factors, and may ultimately determine the impact 
of TLOs on disease progression.

Immunotherapies that inhibit Treg cell development or 
functionality have the potential of supporting antigen-specific 
responses against tumor antigens and prevent immune evasion 
by cancer cells. In this regard, many cancer immunotherapies 
focus on counteracting the immunosuppressive tumor environ-
ment to support tumor-specific T cell responses. The presence 
of tumor-infiltrating Treg cells is linked with immunosuppres-
sion and often correlates with poor patient prognosis (48), while 
TLOs have been associated with improved patient outcomes in 
certain cancers (5). This raises an interesting question: Do thera-
pies targeting Treg activities hold potential for supporting local 
anti-cancer responses at tumour-associated TLOs? TLO’s have 
been described in melanoma, mucosal-associated lymphoid tis-
sue lymphoma, and non-small cell lung carcinoma (NSCLC), as 
well as breast, colorectal, rectal, ovarian, and germ cell cancers 
[see Dieu-Nosjean et al. (5) for a comprehensive review of TLOs 
in cancer]. Studies have reported a correlation between the 
number of TLOs, T/B cell infiltration into tumors and improved 
patient survival (49–52). In experimental mouse models and 
human cancers, there is significant evidence that TLOs are 
functional. For example, in a mouse model of melanoma, 
tumor-infiltrating lymphocytes developed TLOs and displayed 
clonal expansion of T cells that are reactive to tumor antigens on 
melanoma cells and inhibit tumor growth through the release 
of IFNγ (53, 54). Similar activities were also observed in LTα-
deficient mice that lack peripheral lymph nodes, suggesting that 
T cell responses are primed locally within the tissue (54). In 
human NSCLC, TLOs are associated with improved patient sur-
vival. Here, enhanced anti-tumor immunity is associated with 
an increased frequency of follicular B cells and plasma cells that 
display antibody specificity to tumor-associated antigens (50). 
Therefore, TLO and HEV development in tumors may allow 
the recruitment of T and B cells that promote GC reactions and 
anti-tumor immunity.

Some recent studies support the hypothesis that targeting Treg 
cells can help establish anti-tumor immune responses locally at 
tumor-associated TLOs. In a mouse model of lung adenocarci-
noma, TLOs that included activated Treg cells were observed 
in ~90% of tumors, where Treg cells suppressed anti-tumor 
responses (55). In this study, depletion of Treg cells resulted in 
enhanced expression of costimulatory molecules on dendritic 
cells (DCs), T cell proliferation, and anti-tumor responses lead-
ing to tumor destruction. The development of HEVs, a common 
feature of TLOs, is also linked with longer remission, reduced 
metastasis, and improved patient survival (5, 56, 57). Here, HEVs 
allow for the infiltration of naïve, central memory and effector 
Th1 cells that support the local priming of antigen-specific tumor 
responses (53, 58, 59). In a model of carcinogen-induced fibro-
sarcoma, Treg cell depletion resulted in the formation of HEVs 
and reduced tumor growth associated with an increase in T cell 
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infiltration into tumors (60). Similarly improved outcomes were 
seen in a murine model of pancreatic cancer following TGFβ 
blockade, a cytokine involved in both Treg cell development and 
effector function (61).

In cancerous tissues, Treg cell populations suppress the pro-
liferative expansion of CD8+ T cells responsible for delivering 
anti-tumor immunity. For example, studies have revealed that 
depletion of Treg cells contributes to CD8+ T cell proliferation 
and the development of enhanced anti-tumor responses (55, 60). 
These findings are highly relevant to human forms of cancer where 
CD8+ T cells, which are often found in tumor-associated TLOs, 
are linked with improved patient outcomes. Interestingly, NSCLC 
patients with a high frequency of CD8+ T cell infiltrates together 
with a high density of TLOs are associated with significantly 
improved survival compared to patients with high cytotoxic T cell 
infiltration without TLOs (51). Thus, tumor-associated TLOs 
enhance the prognostic value of tumor-infiltrating CD8+ T cells. 
While such studies demonstrate a correlation between CD8+ 
T cell infiltration, TLO densities, and patient survival, they also 
raise an interesting question regarding the function of cytotoxic 
T cells: Are tumour infiltrating CD8+ T cells better equipped to con-
trol cancer due to their education within tumour-associated TLOs? 
While further research is still needed in this area, a recent study of 
ovarian cancer showed that CD8+ tumor-infiltrating lymphocyte 
responses were increased in the presence of TLOs containing 
dense accumulations of plasma cells (62). Here, plasma cells 
expressed markers of active antigen-specific responses and were 
associated with heightened expression of cytotoxicity-related 
genes in tumors. TLOs may, therefore, support robust anti-tumor 
responses, where cytotoxic T cell activity and antibody-secreting 
plasma cells cooperate to improve patient survival.

Therapeutic strategies that support the development of tumor-
associated TLOs and cytotoxic T cell responses may, therefore, 
prove beneficial for patient treatment. These may include antago-
nists of Treg cell development, maintenance, or activity. Blockade 
of TGFβ has been shown to inhibit Treg cells in experimental can-
cer and autoimmunity (61, 63). Treg cells can also be selectively 
depleted by metronomic low-dose cyclophosphamide, which 
improved tumor-specific T cell responses in cancer patients 
(64, 65). Further strategies may include antibodies, such as 
ipilimumab that target the CTLA-4 immune-checkpoint receptor, 
which has been shown to effectively deplete intratumoural Treg 
cells (66–68). Novel concepts currently in pre-clinical develop-
ment may also inform next-generation approaches for inducing 
TLOs in cancer. For example, engineered adjuvant vector cells 
have been shown to promote the development of TLOs result-
ing in enhanced antigen-specific T cell responses in pre-clinical 
cancer models (69). While the majority of studies relating to Treg 
cells in TLOs are in the cancer field, these cells have also been 
implicated in suppressing iBALT development in LPS-challenged 
mice (70) and TLOs in atherosclerosis (45, 47). Where TLOs offer 
the potential of disease protection, interventions that block Treg 
cell activities or target their selective depletion may support the 
development of TLOs and promote anti-cancer or anti-pathogen 
responses. Such approaches may represent novel routes to patient 
treatment. However, such immunotherapeutic strategies must 
delicately balance establishing strong anti-cancer responses with 

minimizing the development of autoimmunity. This highlights 
the need to identify approaches for targeting Treg cells within 
the tumor microenvironment without compromising their role 
in maintaining immune tolerance.

iNNATe iMMUNe CeLLS ASSOCiATeD 
wiTH THe DeveLOPMeNT OF TLOs

Innate leukocyte subsets have also been implicated in TLO 
regulation (Figure  2). These include roles for neutrophils (70) 
and innate lymphoid cells (ILCs) (71–73). Innate lymphocytes 
have recently emerged as important effector cells with roles in 
host defense and chronic inflammatory diseases. These cells 
have been termed ILCs and include cytotoxic ILCs represented 
by conventional NK cells and three new ILC groups that parallel 
T helper cell subsets in their cytokine-producing capacity and 
transcriptional programs (ILC1, ILC2, and ILC3) (74). Of these, 
ILC3s (which includes both prenatal and adult CCR6+ LTi cells) 
mirror Th17 cells in their expression of the master transcriptional 
regulator RORγt; the chemokine receptor CCR6; secretion of 
IL-17, IL-22, and granulocyte-macrophage colony-stimulating 
factor (GM-CSF); and responsiveness to IL-23 and aryl hydro-
carbon receptor (Ahr) ligands (18, 75–77). It is perhaps these 
similarities in effector characteristics with Th17 cells that result 
in ILC3s being involved in TLO development (78). For example, 
adoptive transfer of adult CD4+CD3− LTi cells into newborn 
Cxcr5−/− mice, which phenotypically lack Peyer’s patches and 
isolated lymphoid follicles (ILFs), promoted the development of 
intestinal lymphoid tissues (73). Here, IL-7 supported the de novo 
generation, proliferation, and survival of LTi cells. In another 
study, the same group demonstrated that transgenic overexpres-
sion of IL-7 supported the development of LTi cells that formed 
Peyer’s patches, cecal patches and TLOs that displayed functional 
T cell-dependent B cell responses and GC reactions (72).

Recently, ILC3s have also been associated with tumor-
associated TLOs (71). In NSCLC, natural cytotoxicity receptor 
(NCR)-expressing ILC3s localized to the edge of TLOs and 
produced IL-22, TNF, IL-8, and IL-2. These NCR+ ILC3s inter-
acted with tumor cells and tumor-associated fibroblasts via their 
NKp44 receptor to trigger production of LTαβ, which resulted in 
the activation of endothelial cells and mesenchymal stem cells, 
including upregulation of ICAM-1 and VCAM-1. Thus, ILC3s 
correlate with the presence of TLOs in NSCLC and may drive 
the development of lymphoid structures linked with improved 
patient survival (49).

Innate lymphoid cells have now been associated with TLO 
development in a number of experimental models of inflamma-
tion or infection. While their presence and generation of pro-
lymphoneogenic cytokines at TLOs is undisputed, their precise 
role in tertiary lymphoneogenesis remains to be fully elucidated. 
For example, ILCs and NK cells contribute to an early produc-
tion of IL-22 that supports TLO development in salivary glands 
(37). However, while ILCs may contribute to TLO development 
in this context, the predominant source of IL-22 in this model 
were αβ and γδ T cells. Likewise, LTi cells have been found in 
inflamed lungs that develop iBALT. However, development of 
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these lymphoid aggregates was not reliant on LTi cell activity 
(19). Intestinal TLOs also develop in response to microbiota 
in RORγt-deficient mice that lack LTi cells (17). Thus, despite 
mounting evidence for the presence of ILC3s at TLOs, further 
research is required to determine a precise role in the initiation 
of tertiary lymphoneogenesis, where tissue- and disease-specific 
factors may affect their input. Nevertheless given their presence 
at TLOs, ILC3s may contribute to the function of TLOs where 
crosstalk with LTβR-expressing stromal cells and the stimulation 
of B cells via B cell-activation factor (BAFF) and the ligand of 
costimulatory receptor CD40 (CD40L) has been shown to sup-
port antibody production (79–81).

In a similar fashion to ILC3s, γδ T cells can also share effector 
characteristics with activated Th17 cells, including the secretion 
of IL-17A, IL-17F, IL-22, IL-21, and GM-CSF (78). While the 
precise role of γδ T cells in TLO development is also unclear, there 
is evidence that they contribute to early tertiary lymphoneo-
genesis. In mice displaying iBALT in response to Pseudomonas 
aeruginosa infection, IL-17 triggered stromal cell differentiation 
into podoplanin+ follicular cells that express CXCL12 (38). Here, 
γδ T cells were the main source of IL-17. Similarly, development 
of iBALT in LPS-challenged neonatal mice is also IL-17 depend-
ent, where both γδ and αβ T cells secrete IL-17 (19). Adoptive 
transfer experiments revealed that while γδ T cells facilitated the 
development of iBALT, αβ T cells formed larger areas of lymphoid 
aggregates. It has, therefore, been proposed that an early innate 
γδ T cell response initiates the development of iBALT, which is 
later maintained by infiltrating αβ T cells (19, 82). A similar role 
for γδ T cells in TLO development may occur in salivary glands, 
where an early prominent IL-22-producing γδ T cell response is 
later replaced by αβ T cells (37).

Fat-associated lymphoid clusters (FALCs) are TLO-like 
structures that develop within adipose tissues, including the 
mesentery, pericardial fat, and milky spots of the omentum (3). 
Interestingly, milky spots of the omentum increase in number 
and size during peritoneal dialysis (83, 84). During treatment, 
catheter insertion, exposure to peritoneal dialysis solution and 
particularly peritonitis associated with infection results in the 
expansion and alteration of the cellular composition of milky 
spots. This suggests an active role for milky spots in peritoneal 
immunity. Studies in mice demonstrate that the omentum 
senses peritoneal antigens and represents a site for generating 
adaptive T cell (CD4+ and CD8+) and B cell responses, including 
antibody class switching and somatic hypermutation (85, 86). In 
these studies, the development of milky spots was independent 
of LTi/ILC3s and LTαβ, but required stromal CXCL13 for the 
recruitment of B-1 cells. Interestingly, TNF-expressing myeloid 
cells, NKT cells, and IL-4R signaling were required for FALC 
formation following inflammatory challenge (86). This study and 
others have also demonstrated that FALCs can contain ILC2 cells. 
For example, during helminth infection, Lin−c-Kit+Sca-1+ cells 
produce Th2-type cytokines that support B-1 cell proliferation 
and drive goblet cell hyperplasia (87). Therefore, FALCs, includ-
ing milky spots, play a role in regulating local immune responses. 
However, while they display similarities to TLOs, they are often 
less organized structures with fewer T cells and fDCs and are 
highly enriched for B-1 cells (3, 85).

Dendritic cells prime adaptive immune responses via antigen 
processing and presentation to T cells. While DCs are a com-
mon feature of TLOs, relatively little is known regarding their 
precise role in tertiary lymphoneogenesis. This gap in knowledge 
was addressed by two investigations. First, CD11chi DCs were 
identified as being essential for the long-term maintenance and 
function of iBALT following influenza virus infection (22). Here, 
depletion of DCs resulted in a loss of LTβ, CXCL13, CCL21, 
CCL19, and CXCL12 expression that disrupted the structural 
integrity and cellular organization of iBALT. This was associated 
with a reduced number of class-switched plasma cells in the lung 
and a lowering of antiviral serum IgG titers. In a similar approach, 
Halle et al. used a replication-deficient modified vaccinia virus 
Ankara to demonstrate that antigen-loaded DCs migrate into 
iBALT to support the activation of antigen-specific T cells (21). 
Thus, TLO-associated DCs are a major source of homeostatic 
chemokines and lymphoid cytokines that support the long-term 
maintenance of TLOs and encourage the generation of adaptive 
immune responses through local T cell priming and control of 
GC reactions.

FOLLiCULAR B CeLLS DRive 
AUTOANTiBODY-MeDiATeD  
DiSeASeS AT TLOs

For TLOs to fully recapitulate the function of SLOs they must 
provide an environment for B cells to undergo affinity maturation 
and differentiation into memory B cells and antibody-secreting 
plasma cells (Figure 3). Active GCs express activation-induced 
cytidine deaminase (AID; also known as AICDA), which pro-
motes somatic hypermutation and class-switch recombination 
to fine-tune antibody specificity and expand antibody-mediated 
effector functions (88, 89). In support of TLOs being factories for 
the development of adaptive immune responses, AID is expressed 
at TLOs in autoimmunity (7, 90–92), infection (93), and trans-
plant rejection (34). Indeed, analysis of the variable (V)-gene 
repertoires in TLOs from inflamed tissues reveals a restricted 
profile of encoded sequences, indicating a clonal expansion of 
antigen-specific B cells within these lymphoid aggregates (91, 
94–96). Furthermore, analysis of Iγ–Cμ and Iα–Cμ circular 
transcript expression reveals on-going class-switch recombina-
tion from IgM to IgG and IgA respectively at TLOs (7, 91, 97). 
Therefore, significant evidence exists to demonstrate that TLOs 
can contain functional GCs.

While TLOs may generally be considered protective in 
infection and cancer, GC activity at TLOs in autoimmunity can 
result in the local generation of disease-specific autoantibodies 
that perpetuate disease progression. For example, autoreactive 
plasma cells release autoantibodies, such as anti-citrullinated 
protein antibodies (ACPA/anti-CCP) in rheumatoid arthritis (7); 
antibodies targeting ribonucleoproteins Ro (Sjögren’s syndrome 
antigen A; SSA) and La (Sjögren’s syndrome antigen B; SSB) in 
Sjögren’s syndrome (98); anti-thyroglobulin and thyroperoxidase 
antibodies in Hashimoto’s thyroiditis (99); and nicotinic acetyl-
choline receptor-specific antibodies in myasthenia gravis (100). 
The mechanisms that allow autoreactive B cells to accumulate 
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within TLOs (101), when they are efficiently eliminated from 
GCs in SLOs are currently unclear. In SLOs autoreactive B cells 
become anergic and are excluded from follicular entry through 
downregulation of CXCR5, the receptor for CXCL13 (102). 
Emerging evidence points to a potential role for latent Epstein–
Barr virus (EBV) in the development of autoimmunity at 
TLOs. EBV is a life-long infection, and infected B cells display 
increased proliferation and survival (103). EBV-infected cells are 
often observed within TLOs in the inflamed tissues of patients 
affected by autoimmunity, including rheumatoid arthritis, 
Sjögren’s syndrome, multiple sclerosis, and myasthenia gravis 
(92, 104–106). For example, infected B cells display autoreactiv-
ity toward citrullinated fibrinogen and ribonucleoprotein Ro, 
the disease-specific autoantigens for rheumatoid arthritis and 
Sjögren’s syndrome, respectively (105, 106). Therefore, EBV-
infected autoreactive B cells may migrate to target tissues where 
they differentiate into autoantibody secreting plasma cells and 
perpetuate autoimmunity.

In addition to their classical role in generating antibody 
responses, B cells also support local immune cell activation within 
inflamed tissues. Using an experimental model where synovial 
biopsies comprising TLOs from rheumatoid arthritis patients are 
transplanted into severe combined immunodeficient mice (the 
HuRA-SCID model), Takemura and co-workers demonstrated 
that depletion of B cells from grafted synovial tissue resulted in 
a reduction in T cell derived IFNγ production and IL-1β secre-
tion (107). Hence, synovial B cells contribute to T helper cell 
effector responses in rheumatoid synovitis to influence disease 
progression.

Typically when addressing the role of B cells in TLOs, the 
development of antigen-specific antibody responses is the 
primary consideration. However, B cells have long been known 
to produce LTαβ, which suggested a potential role in lymphoid 
neogenesis or the maintenance of lymphoid organs (108). More 
recently, a role for B cells in promoting the development of ILFs 
in the small intestine was described (109). Studies using bone 
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marrow chimeric mice demonstrated that LTαβ-producing B cells 
were required for the development of these TLO-like structures. 
Similarly, Lochner et al. describe a LTαβ-dependent LTi-like role 
for B cells in the development of TLOs in dextran sulfate sodium 
(DSS)-induced colitis (17). This suggests that deploying B cell 
targeted therapies for the treatment of TLO-associated autoim-
mune diseases, such as rheumatoid arthritis has the potential to 
interfere with both early initiation of TLO development and the 
long-term maintenance of autoantibody responses and local T cell 
priming. However, in this context, an improved understanding of 
B cell targeted therapies (e.g., rituximab) is needed, where studies 
evaluate the peripheral effect on SLOs as well as the local impact 
on TLOs in inflamed tissues.

iMMUNe CeLL–STROMAL CeLL 
CROSSTALK iS CeNTRAL TO TLO 
DeveLOPMeNT AND FUNCTiON

Our understanding of immune cells in the development, func-
tion, and maintenance of TLOs has greatly expanded in recent 
years. While this review is primarily focused on the role of 
immune cells, it is also important to emphasize the importance 
of immune cell–stromal cell crosstalk in the development and 
function of TLOs [comprehensively reviewed elsewhere (110)]. 
While immune cells adopt LTi-like functions to drive the 
development of TLOs during inflammation, activated resident 
stromal cells must phenotypically respond like LTo cells. For 
example, lung inflammation resulting in the development of 
iBALT in mice is dependent on immune cell derived IL-17, 
which triggers CXCL13 and CCL19 expression to recruit and 
organize lymphocytes (19). While early induction of CXCL13 
and CCL19 expression was LTα-independent, once established, 
homeostatic chemokines and engagement of the LTβR was 
required for the maintenance of iBALT. Such observations sug-
gest that the dual targeting of both IL-17 and LT signaling may 
be beneficial for the management of diseases where TLOs are 
a feature of local pathology. Similar studies using an influenza 
infection model revealed PNAd+ HEVs and stromal cells are the 
primary source of CXCL13, CCL21, and CCL19 during iBALT 
development (111). In other infection models that feature TLOs, 
effector cytokines, such as IL-17 and IL-22, have been shown 
to drive stromal cell differentiation toward podoplanin-positive 
CXCL12 and CXCL13 expressing cells (37, 38). Such experi-
mental observations also translate into human disease, where 
the stromal cell response to inflammation contributes to TLO 
development. For example, in rheumatoid arthritis patients 
who display TLOs in inflamed joint tissue, synovial fibroblasts 
display LTo-like properties including the production of homeo-
static chemokines and the induction of BAFF, which supports 
synovial B cell responses (112–114). Recently, several illustrative 
examples have further emphasized the significance of immune 
cell–stromal cell interactions. A highly novel role for TLOs as 
niches for the maturation of malignant hepatocellular carcinoma 
progenitor cells was recently described (115). Here, carcinoma 
progenitor cells exiting TLOs supported tumor growth and out-
line a detrimental role for TLOs in cancer. Consequently, further 

work is required to establish the context in which TLOs con-
tribute to the tumor microenvironment. Crosstalk between Th17 
cells and stromal cells was also recently shown to be important 
in an experimental model of multiple sclerosis, where stromal 
LTβR signaling promoted extracellular matrix deposition, T cell 
effector cytokine responses, and chemokine production that 
supported leukocyte retention in the meninges (116). Similarly, 
in experimental atherosclerosis, vascular smooth muscle cells 
provided LTo-like function within atherosclerotic aortas to 
support the development and maintenance of protective TLOs 
(45). Thus, while immune cells provide a trigger for the develop-
ment of TLOs in inflamed tissues, the response of stromal cells 
is equally important in providing an environment conducive to 
lymphoid neogenesis.

CONCLUDiNG ReMARKS

Studies in recent years have increasingly highlighted potent 
roles for TLOs in regulating local immune responses in condi-
tions featuring chronic inflammation. Experimental models 
of disease have provided mechanistic insight and identified 
novel immune cell subsets involved in TLO regulation, as well 
as verifying a role for TLOs in pathologic processes. Similarly, 
studies in human diseases have clearly demonstrated the 
presence, function, and correlative associations of TLOs with 
disease severity. However, further research is required to better 
define the precise role of TLOs in these clinical conditions. Here, 
it will be important to evaluate the prognostic and diagnostic 
potential of TLOs in specific diseases, their potential as novel 
therapeutic targets, as well as to determine how diseases with 
significant TLO involvement respond to the current arsenal of 
biologic interventions used in routine clinical practice. In this 
regard, research into the impact of TLOs in rheumatoid arthritis 
has provided valuable insight. For example, evidence suggests 
that rheumatoid arthritis patients with TLOs in inflamed joint 
tissues display an inferior response to frontline biological thera-
pies that target TNF (8). Therefore, patients with synovial TLOs 
may be managed better using alternative biological therapies. 
Given the central role played by TLO B cells in the production 
of disease-specific autoantibodies, rituximab (an anti-CD20 
B cell depleting antibody) may be a better alternative. While 
further research is needed in this area, two studies oppose this 
prediction. The first demonstrates that while rituximab treat-
ment results in a reduction of disease-specific autoantibodies 
(rheumatoid factor and ACPA/anti-CCP) in patient serum, this 
treatment failed to reduce the local production of these autoan-
tibodies in lymphoid aggregate-containing joint tissue (9). The 
second study in chronic renal allograft rejection similarly dem-
onstrates that while rituximab treatment depleted peripheral B 
cells, surprisingly, intragraft B cells in TLOs evaded depletion 
(117). Thus, B cells residing within the TLO microenvironment 
may receive signals that allow them to survive rituximab treat-
ment (117). Given the recent emergence of IL-17, and Th17- and 
Tfh-associated cytokines in the development of TLOs, it will 
now be interesting to see how targeting these axes fares in the 
management of TLO-associated diseases. While IL-17-targeted 
modalities have shown limited clinical efficacy in inflammatory 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


10

Jones et al. Immune Cell Control of TLOs

Frontiers in Immunology | www.frontiersin.org October 2016 | Volume 7 | Article 401

arthritis (118, 119), these clinical trials did not stratify patients 
for the presence of synovial TLOs. In inflammatory arthritis, 
sampling of synovial tissue through ultrasound-directed biop-
sies has become more common in clinical trial design, and have 
provided new insight into the impact of intervention on TLOs 
(120). Such approaches may pave the way to identifying opti-
mal strategies for the clinical management of TLO-associated 
diseases. The success of such approaches may prove important 
is shaping how clinicians evaluate the diagnosis and treatment 
of other chronic conditions.
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