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The feasibility and sustainable operation of tidal lagoons and barrages has been under scrutiny over
uncertainties with regards to their environmental impacts, potential interactions and energy output. A
numerical modelling methodology that evaluates their effects on the hydro-environment has been
refined to consider technical constraints and specifications associated with variable turbine designs and
operational sequences. The method has been employed to assess a number of proposals and their
combinations within the Bristol Channel and Severn Estuary in the UK. Operational challenges associated
with tidal range power plants are highlighted, while also presenting the capabilities of modelling tools
tailored to their assessment. Results indicate that as the project scale increases so does its relative hy-
drodynamic impact, which may compromise annual energy output expectations if not accounted for.
However, the manner in which such projects are operated can also have a significant impact on changing
the local hydro-environment, including the ecology and morphology. Therefore, it is imperative that tidal
range power plants are designed in such a way that efficiently taps into renewable energy sources, with

Resource assessment

minimal interference to the regional hydro-environment through their operation.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Tidal range power plants are designed on the principle of
creating an artificial tidal phase difference by impounding water,
and then allowing it to flow through turbines to generate energy, in
the form of electricity. The potential power (P) generated at any
instant is proportional to the impounded wetted surface area (A)
and the square of the water level difference (H) facilitated between
the upstream and downstream sides of the impoundment:

PxA-H? (1)

Historically, the first large scale tidal range structure has been
the La Rance barrage in France, in operation since 1966 [27]. This
was followed by the 20 MW single turbine Annapolis Royal
generating station in Canada (1984) and the more recent 254 MW
Lake Sihwa tidal power station in South Korea [8]. Contrary to their
successful performance for sustainable and predictable energy
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production, there are mounting concerns over the environmental
impacts induced by the presence of such renewable energy struc-
tures in estuarine and coastal waters. These impacts include alter-
ations to the regional tidal flow characteristics, with interlinked
effects on the local geomorphology, ecology and water quality
processes [20,43].

The majority of the environmental impacts to-date have been
accentuated through research and feasibility studies associated
with a Severn Barrage, a prospective impoundment that has the
potential of producing more than 5% of the UK's electricity needs
[4,6,11,12,44—47]. It has been argued that due to the sensitive
characteristics of the Bristol Channel and Severn Estuary, the
introduction of such a structure would influence the established
tidal resonance and flow structure in the basin; therefore, careful
design becomes crucial. Earlier proposals failed to address the
environmental and socio-economic concerns in a manner that
maintained both the project feasibility and the operational effi-
ciency beyond construction [31,32].

More environmentally friendly options are thought to be
delivered through the tidal lagoon concept, where it is proposed
that reduced disruption of the existing estuarine hydrodynamic
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conditions will arise [6,14,41,42]. Tidal lagoons effectively operate
on the same principles as tidal barrages. Their primary difference is
that the majority of the impounded area perimeter is artificial,
which enables their development in less environmentally sensitive
locations compared to barrages, with the latter mainly restricted to
estuary mouths and spanning the entire coastal basin width.

The assessment of tidal impoundments relies on the develop-
ment of numerical tools that can simulate their operation over
time. These span from simplified theoretical and zero-dimensional
models [6,25,26,50]; to more sophisticated multi-dimensional
hydro-environmental tools [6,12—14,36,44—48] that often require
High Performance Computing (HPC) capabilities [43] to be practi-
cally applicable.

Results from a refined 2-D hydrodynamic modelling investiga-
tion, tailored specifically to tidal power plant assessment, are
expounded upon in this study. The aims of this paper are therefore
to: (a) review the methodology adopted for the operational simu-
lation over transient conditions, (b) quantify and illustrate the cu-
mulative hydrodynamic impacts of coastally-attached tidal lagoons
and a barrage in estuarine flows, and (c) calculate the respective
annual energy generation potential for various combinations with
particular emphasis on proposals for the Severn Estuary and Bristol
Channel.

2. Methodology

Starting from first principles and neglecting losses, the
maximum potential energy over the course of a tidal period can be
given by Ref. [25]:

Emax = 4PgAh§ (2)

where g is the gravitational acceleration (= 9.807 m/s?), p the water
density (= 1025 kg/m?), h, the tidal amplitude and A the
impounded basin wetted area. According to Prandle's theory, an
initial estimate of the actual extractable energy per tidal cycle
corresponds to 0.27 x Epax and 0.37 x Epax for ebb-only and two-
way generation respectively. In practise, a more elaborate meth-
odology that provides an insight to the impoundment performance
over transient tidal conditions is required, as outlined below.

2.1. Hydraulic structure representation

The performance of tidal impoundments is dictated by the
regulation and specifications of their constituent hydraulic

Ebb Generation Modes of Operation (4):
Two-Way Generation Modes of Operation (8):

1 - Holding (HW)

1 - Holding (HW)
5 - Holding (LW)

Downstream W.L.

3 v Upstream W.L

10 . Operation Mode

z [
E .ott.ottuoT LLYYTYYYYY I 44
= nll
- RS
= 8
[ =]
§ =
o
0
0 4 16 20 24

12
Time (h)

2 - Generating

2 - Generating (Ebb)
6 - Generating (Flood)

structures, i.e. turbines and sluices. While turbines provide the
power generation facilities of the power plant, sluice gates sup-
plement the transfer of water volume at certain stages of the
operation, generating greater head potentials on the subsequent
half or full tidal phase. A straightforward approach used to calculate
the flow driven through a hydraulic structure by a water head
difference H is by the orifice equation:

Q = CyArv/2gH (3)

where Q is the flow rate in m?/s, Af the flow area in m?, and Cq4 the
discharge coefficient, given the value of unity herein as recom-
mended by Ref. [10] with more recent experimental results by
Ref. [29] indicating that Cy values for certain sluice gate designs can
exceed a value of 1 with superior performance. Further details
about the sensitivity of tidal impoundment simulations to C4 can be
found in Ref. [11]. Equation (3) has been extensively applied to
model the behaviour of sluice gates (e.g. Refs. [44,47,48]) and tur-
bines alike [4,49].

However, the representation of low head bulb turbines can be
refined to incorporate the characteristics specific to their design, as
in Ref. [13]. The speed of the turbine S, is given by:

 2-60-f,

Sp G,

(4)

where fg is the electricity grid frequency and G, the number of

generator poles. The unit speed (1n;7) of a double regulated bulb unit

can be expressed as [3] [13];:

np= — 5
11 e (5)

where D is the turbine diameter in m. The specific discharge Qy; is
normally calculated as:

Qn (6)

__Q
D2-vH

Alternatively, Q;; can be represented as a function of n;; through
the following empirical expressions [3]:

Q;1 = 0.0166-n;; + 0.4861
Q;; =4.75

if n; <255
if nyy > 255 @)

As aresult, equation (5) is transformed and the turbine flow rate
Q is calculated as:
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Fig. 1. Ebb-only and Two-way generation modes, illustrating upstream and downstream water levels over time as well as the trigger points that dictate the impoundment

operation.
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Q=0Qy-D*VH (8)

The turbine hydraulic efficiency np, according to the prototype of
[3]; can be incorporated in the analysis as:

m = —0.0019 ny; + 1.2461 9)

In turn, other losses can also be accounted for, such as the:
generator (7)), transformer (7,), gear box/drive train (7g), water
friction (7)) efficiencies and turbine availability (54). Typical values
adopted from previous studies are: 1, = 97%, n¢ = 99.5%, nw = 95%,
ng = 97.2%, nq = 95% [50]. Thus, the power P produced at any
instance for a given H is calculated as:

P = pgQHn (10)

where 7 is the overall efficiency factor. The number of generator
poles (Gp), the turbine speed (Sp), and the grid frequency (fz) can all
be treated as constants. The remaining turbine parameters are
variable and calculated as functions of H through equations 5—10,
to produce representative hill charts based on available turbine
specifications.

2.2. Operational sequences

Turbines and sluice gates are controlled over time according to
the operational sequence selected for the tidal power plant. The
operational sequence is governed by the approach proposed to
generate power and can be during: ebb (ebb-only), flood (flood-
only) or both ebb and flood (two-way) tides. However, it is prac-
tically limited by the impoundment design and hydraulic structure
specifications. To-date, ebb-only or flood-only generation have
been the standard sequences adopted for existing schemes (e.g. La
Rance barrage and Lake Sihwa), mainly due to constraints at the
sites of their development. Two-way generation is more attractive
for ongoing proposal considerations, with a view to distributing the
power generation function over a greater fraction of the tidal cycle.
On the other hand, such an operation entails additional construc-
tion investment due to the need for expanded turbine caissons. In
order to facilitate an efficient bulb turbine operation, a longer water
passage is necessary for two-way generation than for one-way
generation, as discussed by Ref. [9].

An ebb-only and a two-way sequence have been considered
herein, as schematically demonstrated in Fig. 1 and using more
information on the tidal plant operation from available relevant
studies (e.g. Refs. [6,9,45]. The modes of operation, and how they
are triggered over time, are summarised in Table 1, which describes
the significant power plant functions over the course of a tidal
cycle.

Additional considerations can be incorporated into the assess-
ment methodology that reflect the plant operation. For example, in
transitional periods, the discharge and power calculated are
coupled with a ramp function f{t). This represents the gradual
opening and closing of the turbine wicket and sluice gates over a
given duration (e.g. 20 min) as in Ref. [47]. Also, in two-way gen-
eration the power output from the turbines would be further
influenced by their orientation; an efficiency factor (1, = 90%) has
been imposed once turbines are generating in reverse, although
this figure could be even lower in practise and particularly for
complex inflow conditions.

For a potential site of known tidal hydrodynamics, the selected
operational sequence in conjunction with the formulae adopted to
represent the performance characteristics of the respective hy-
draulic structures is sufficient to simulate the overall performance
of the lagoon or barrage. In the first instance, the operation can be

modelled using a water level time series as input, governed by the
downstream water levels at the project location (Fig. 1). This is
effectively the 0-D method and has been deemed sufficient under
certain conditions [1,6,12,13,36]. However, this approach, though
computationally efficient, assumes that the impact of the tidal
impoundment itself on the localised tidal levels is negligible. This
assumption can yield substantially overoptimistic results as the
scale of the project increases [6,36]. Consequently, the analysis
should be expanded to model the regional hydrodynamics to
acknowledge the tidal impoundment influence on the hydro-
environment and the adjacent water levels.

2.3. Hydrodynamic modelling

In the absence of stratification and three-dimensional patterns,
the 2D shallow water equations can be employed for the prediction
of estuarine tidal flow conditions as given by:

oU 9E oG OE oG
where U is the vector of conserved variables (i.e. mass, momentum
and solutes), E and G are the advective flux vectors, while £ and G
are the diffusive vectors in the x and y directions respectively. S is a
source term that can represent, among others, the effects of bed
friction, bed slope and the Coriolis acceleration. The terms of
Equation (11) can be expressed as:

_ hu hv
h
2,1 .9 huy
U= |hu| E=|hu+5gh G=
1
h | huw h? + jgh2
0 0 qs
E= | 7T« G = Tay S +hfv+gh <be - Sfx>
Txy Tyy —hfu + gh (Sby — Sfy>

(12)

where u, v are the depth-averaged velocities (m/s) in the x and y
directions respectively, h the total water depth (m) and gs the
source discharge per unit area. f (= 2wsing) refers to the Coriolis
acceleration, where  is the earth's angular velocity (=
7.29 x 107> rad/s) and ¢ the latitude within the domain. The var-
iables  7xx = 2hve(0u/0X), Txy = Tyx = hve(du/dy + ov/0x), and
Tyy = 2hve(0v/dy), represent components of the turbulent shear
stresses over the plane. The turbulent viscosity coefficient v; is
given by vy = fu+h, where § (=0.5) is a user-specified coefficient
typically ranging from 0 to 1 and u- is the friction velocity. The bed
and friction slopes are denoted as Sy, = —9Z),/0x, Sy, = —0Z,/0xy
and S = nfuv/u? +v2/h3, Sp, = nv\/u? +v2/h3 for x and y
directions respectively, where Zj is the bed elevation in m and n the
Manning roughness coefficient in m~'3s. These expressions are
imposed in the model as in Ref. [44] and included herein for
completeness.

In the numerical model, computational domains are discretized
into triangular cells to form unstructured meshes for the purposes
of a cell-centred Finite Volume Method (FVM). Roe's approximate
Riemann solver [28], including a Monotone Upstream Scheme for
Conservation Laws (MUSCL) [39], resolves the normal fluxes across
cell interfaces [18], following a predictor-corrector time stepping
algorithm to satisfy second-order accuracy in time and space. The
boundary conditions (i.e. land, water level and discharge
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Table 1
Ebb-only and two-way modes of operation.

Ebb-only modes of operation

m; Mode Hydraulic structure operation Trigger conditions Description

1 Holding (HW) Turbines: Closed Qt=0 mpy=4H>0 Impounding water to facilitate a sufficient head (H)
Sluice Gates: Closed Qs=0 mog=1hgy>H>0,ty<ty difference

2 Generating Turbines: Generating Qt<0 mg=1,H> hyg, t; <tp Generating Power at ebb tide by allowing flow through
Sluice Gates: Closed Qs=0 mgp=1,H> hpin tm >ty turbines, decreasing the upstream water level

my =2, H> hpin

3 Holding (LW) Turbines: Closed Qt=0 mp=2 H<hpin Ceasing power generation due to lack of sufficient head
Sluice Gates: Closed Qs=0 mog=3 hpin>H>0 difference (H)

4 Filling Turbines: Open Qt>0 mpy=3,H<O0 Operating turbines and sluice gates to maximize water level
Sluice Gates: Open Q>0 mp=4H<0 upstream for next cycle

Two-way modes of operation

m; Mode Hydraulic structure operation Trigger conditions Description
1 Holding (HW) Turbines: Closed Qt=0 mpy=8H>0 Impounding water at High Water to facilitate a sufficient
Sluice Gates: Closed Qs=0 mp=1hgy>H>0ty<ty head (H) difference for ebb generation
2 Generating (Ebb) Turbines: Generating Qt<0 mp=1,H> hy, tyy <ty Generating Power at ebb tide by allowing flow through
Sluice Gates: Closed Qs=0 mp=1,H>hpin, tm >ty turbines, decreasing the upstream water level
my =2, H> hpp ,dlg/dt < 0
3 Generating/Sluicing (Emptying)  Turbines: Generating Qt<0 my =2, H > hpn, d{g/dt > 0 Generating Power at ebb tide and allowing flow through
Sluice Gates: Open Qs<0 mg=3,H> hp sluice gates to further decrease upstream water level
4 Sluicing (Emptying) Turbines: Open Qt<0 mgo=2 H< hpin Ceasing power generation due to lack of sufficient head
Sluice Gates: Open Qs<0 mg=3, H<hpi difference (H) but continuing sluicing
mop=4,H>0
5 Holding (LW) Turbines: Closed Qt=0 mp=4H<0 Impounding water at Low Water to facilitate a sufficient
Sluice Gates: Closed Qs=0 mp=5 —hpn<H<O0,ty<t, head (H)difference for flood generation
6 Generating (Flood) Turbines: Generating Qt>0 mp=5H< —hy, ty,m <ty Generating Power at flood tide by allowing flow through
Sluice Gates: Closed Qs=0 mg=>5H< —hpip, tym >ty turbines, increasing the upstream water level
my = 6, H < —hpn ,dCq/dt > 0
7 Generating/Sluicing (Filling) Turbines: Generating Qt>0 mp =6, H< —hp;,,d{s/dt <0  Generating Power at flood tide and allowing flow through
Sluice Gates: Open Qs>0 myg=7 H< —hpi sluice gates to further increase upstream water level
8 Sluicing (Filling) Turbines: Open Q>0 myg=6H>—hpin Operating turbines and sluice gates to maximize water level
Sluice Gates: Open Qs>0 mog=7 H> —hpi upstream for next cycle

mog=8 H<0

m; = Mode of operation, my = Mode of operation at previous time step, hs = Desired head difference for turbine operation (

operation (

boundaries) are treated as in Refs. [30] and [33] with an integrated

algorithm for wetting and drying processes in intertidal regions

m), hynin = Minimum head difference for turbine

m), ty, = Duration of current mode (h), t, = maximum holding duration (h), {4 = Downstream water level, {, = Upstream water level.

[ |
[16]. Q@Q—_ Z, (m) :-65 -60 -55 -5‘0 -4‘5 -40 -3‘5 -3|o -2‘5-2‘0 -1‘5-1‘0 -
In terms of stability, the numerical model is based on a Total &0 ST Tagen]
Variation Diminishing (TVD) scheme, which is an explicit algorithm ok
and is therefore intrinsically stable, as long as the Courant- St
Friedrichs-Lewy (CFL) number is less than unity. Predicted hydro- & I
dynamics are therefore not susceptible to the generation of non- =) SF
physical oscillations and are suitable for modelling the high ve- - ,\@Q I
locity flows triggered through the turbine and sluice gate areas. 2 I
A domain decomposition approach is implemented to represent ST S 7
tidal power plants in the hydrodynamic model. This considers an bé\b [
upstream subdomain for each impoundment, connected to the oF
downstream domain through open boundaries that are specified in b@“ I
the region of flow control structures. Subdomains are dynamically & g @I — '§I> S e— ‘QQ', — ‘QQ" — @I -
linked using a relationship between the discharge Q and the water (g\<:>° @QQ ,’f’Q go@ ‘;\é) (000“ b,,g;“ @Q‘)
head difference H at the boundary nodes through equations (3)—(8) x(m)

and operated over time according to the sequences of Fig. 1 and
Table 1. The representation of the hydrodynamic processes through

Fig. 2. Severn Estuary and Bristol Channel bathymetry and indication of tidal
impoundment proposals and study domain boundaries (UTM coordinates).



A. Angeloudis, RA. Falconer / Renewable Energy 114 (2017) 337—351 341

the hydraulic structures is based on the supercritical flow boundary
formulation as given in Refs. [5] and [7], to preserve the flow area
and momentum through the turbines and sluices.

3. Tidal range power plant options in the Severn Estuary and
Bristol Channel

There is substantial interest in harnessing power from the sig-
nificant tidal range developed in the Bristol Channel and the Severn
Estuary, in the UK. The methodology was employed to assess a
number of potential tidal impoundments, with their location and
outline being indicated in Fig. 2. These include previous and opti-
mised versions of a Cardiff-Weston barrage and three tidal lagoon
proposals, i.e. the Swansea Bay, Cardiff and Newport lagoons.

3.1. Project background

A barrage in the Severn Estuary has been the most discussed
tidal range project in the UK, with the conceptual idea going back
over a century [40]. Numerous variants have been proposed that
have fallen short in terms of adequately addressing issues of
concern, such as: the high construction cost and the satisfactory
identification and mitigation of potential environmental impacts.
One of the most detailed proposals considered was the STPG (1989)
scheme; a Cardiff-Weston barrage (Fig. 2), consisting of
216 x 40 MW, 9.0 m diameter bulb turbines, 166 sluice gates and
ship locks among other hydraulic structures. In order to contain
construction costs, the STPG turbine caissons were solely designed
for an ebb-only operation (Fig. 1).

The Swansea Bay Lagoon (Fig. 2) project was initiated by Tidal
Lagoon Power Plc (2014) and proposed, at the time of writing, the
construction of an artificial lagoon along the Swansea Bay coast to
impound 11.6 km? for the purpose of tidal power generation. It
builds upon an earlier 5 km? proposal by Tidal Electric Inc. in 2004,
which however did not progress beyond the preliminary design
stages [10]. The Swansea Bay Lagoon project has been granted
planning consent and, if constructed, would have a potential
installed capacity of 320 MW, provided by 16 x 20 MW, 7.35 m
diameter bulb turbines. It would become the largest tidal range
project to-date and, contrary to earlier proposals, it is designed to
function through a two-way sequence to reduce power generation
intermittency.

The proposed Swansea Bay lagoon is generally perceived as a
pilot scheme for larger projects within the Severn Estuary and
beyond (such as along the North Wales coast). These include the
Cardiff and Newport Lagoons with current designs highlighted in
Fig. 2. Their location has similarly been used for previous proposals,
namely the Peterstone flats and the Welsh Grounds lagoons [51].
Both of the latter were dismissed during an earlier Department of
Energy and Climate Change (DECC) review (2008). Nonetheless,
they demonstrate the significant interest for deploying sustainable
tidal energy projects in the region.

3.2. Tidal power plant numerical models

An appreciation of the regional tidal hydrodynamics and po-
tential tidal range energy resource can be acquired through a
coastal modelling methodology. Taking into account the large tidal
range in the Bristol Channel and the Severn Estuary, it has been
reported that the estuarine conditions are well-mixed and there is
no evidence of stratification in the areas of interest [38], suggesting
that the natural tidal dynamics are predominantly two-
dimensional. Three-dimensional flow conditions will develop in
the immediate locations downstream and upstream of the turbines
and sluice gates, but for the regional scale modelling reported in the

paper these will be largely confined to the cells adjacent to the
hydraulic structures, as shown by experimental investigations [19].
Therefore a high resolution 2-D modelling approach was consid-
ered suitable for the objectives of this study.

The Bristol Channel and Severn Estuary tidal conditions were
previously modelled and validated, with details found in Xia
et al.(2010c). It should be noted that for this particular basin the
tide is known to amplify within the channel and estuary and
attention needs to be given to changes in the tidal resonance
characteristics as a result of any major project being considered in
the basin. Hence changes to boundary conditions as a result of any
large impoundments also need to be acknowledged by modelling
the far field hydrodynamics right out to the continental shelf, and
where the governing tide is generated. The seaward boundary of
the computational domain for this study (Fig. 1) was set up as a
water level boundary according to the tidal flow conditions in the
region, which were provided by the National Oceanographic
Centre, to cover both spring and neap tide conditions. The tidal
harmonics are consistent and in line with the Continental Shelf
Models of [49] and [11]; previously used to assess the effects of a
Severn Barrage. For the Severn Barrage configurations herein, the
seaward boundary conditions were defined according to the
models of [11] that extend to the edge of the Continental Shelf,
with their model set-up to focus on the far-field impacts of the
particular project. Such a boundary treatment was essential to
predict the effects of large-scale projects on the domain open
boundary, as suggested by Refs. [17] and [2]. For the tidal lagoons
which do not cross the estuary and directly impact on the tidal
resonance characteristics, it was deemed that the simulation re-
sults were independent from the far-field open boundary condi-
tions, but this assumption needs further analysis in the future. For
the refined hydraulic structure treatment that replicates the
relatively high velocities close to turbine regions [7], a higher
resolution was imposed with an element size of 25 m close to
areas of interest (Fig. 5), extending to 1000 m at the seaward
boundary. The bathymetry of these models was interpolated using
digitized data provided by Seazone Solutions with a resolution of
1 arc second. For stability, the maximum CFL number was
consistently <1.0 for the simulations, using a time step of
At = 0.5 s in all cases.

The reliability of the predictions is reaffirmed by comparisons
between the refined Severn Estuary simulations against observed
data throughout the period of 06/03/2005—06/04/2005. These
include water level time series variations from the UK Tide Gauge
Network, as shown in Fig. 3a-d, which covers the first 180h of the
lunar month. Correlation coefficients R® of 0.992, 0.993, 0.994 and
0.994 and Root Mean Square Deviation (RMSD) values of 0.36, 0.34,
0.28 and 0.26 m respectively suggest a high level of agreement
between both sets of results, which allows progression to the tidal
impoundment assessment for a value of n = 0.022. It should be
noted that the RMSD deviations are mostly attributed to discrep-
ancies in the form of slight overestimations at the prediction of
neap tides (Fig. 3) with better agreement being obtained during
spring tidal conditions. A similar pattern was observed in earlier
applications of the model [44] and can be attributed to some as-
sumptions in the modelling methodology, such as the uniform
Manning's number value imposed for simplicity.

The mean amplitude calculated from the month-long simula-
tion at the proposed sites could, in turn, be used to calculate a
preliminary estimate of the theoretical potential energy according
to equation (2) as summarised in Table 2. The results in the table are
meant to provide an appreciation of each scheme's potential and
neglect several influential aspects such as the effect of spring-neap
conditions, the implications of intertidal regions and the footprint
of the structures on tidal hydrodynamics.
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Fig. 3. Comparison between predicted and measured water level data, observed through the UK Tide Gauge Network.

Table 2
Potential Energy and Annual Energy output estimates for the tidal impoundments based on [25].
Tidal range power plants Impounded area A Mean amplitude Annual potential energy Ebb generation output Two-way generation
(km?) h, (m) Emax_yr (TWh/yr) estimate (TWh/yr) output estimate (TWh/yr)
Swansea Bay Lagoon (SBL) 11.6 3.29 0.99 0.27 0.37
Cardiff Lagoon (CL) 65 431 9.50 2.57 3.52
Newport Lagoon (NL) 32 4.43 4.96 134 1.83
Severn Barrage (STPG/HRC) 573 424 81.24 21.93 30.06
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Table 3
Tidal turbine specifications.

Turbine Parameters Tidal range power plants

Swansea bay Lagoon

Cardiff/Newport lagoons Severn barrage stpg/hrc

30 40
113 142
8.90 9.00
1025 1025
53.9 42.3
50 50

Turbine Capacity (MW) 20
Generator Poles G, 97
Turbine Diameter D (m) 7.35
Fluid Density p (kg/m?) 1025
Turbine Speed S, 61.9
Electricity Grid Frequency f; (Hz) 50
50 F 40 MW 9.00 m Power P (MW) 800
F 40 MW 9.00 m Discharge Q (m®/s) 1
45— 30 MW 8.90 m Power P (MW)
F—=-=-=-- 30 MW 8.90 m Discharge Q (m®/s) ]
F 20 MW 7.35 m Power P (MW) |
40 20 MW 7.35 m Discharge Q (m>/s)
o RN = 600
I -7 Se i —_—
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Fig. 4. Turbine hill charts used for: (a) Swansea Bay Lagoon (20 MW), (b) Cardiff and
Newport Lagoons (30 MW) and (c) the Severn Barrage designs (40 MW).

The impoundment shape in each case is the product of a host of
parameters that include geomorphological characteristics to allow
the embankment and hydraulic structure construction, established
shipping lanes, socio-economic activities and environmental as-
pects, such as river outflows, fish population movement etc.
Therefore, further altering the impoundment shape was not
considered here. Instead, the configuration for the STPG Severn
Barrage was adopted from available data [44,47]. Similarly, the
Swansea Bay lagoon was defined according to information provided
from the Development Consent Order application of the project
[34] and [24]. For the more recent Cardiff and Newport lagoons,
data were obtained from associated technical reports [35], com-
pany presentations and communications.Given information for
turbine specifications of each project (Table 3) were fed into
equations (3)—(8) to produce the hill charts of Fig. 4 linking H with
the turbine flow-rate Q and the generated power P.

A preliminary 0-D optimisation study was conducted using as
input tidal predictions from the Severn Estuary model (such as
Fig. 3). For the more developed proposals of the STPG scheme and
the Swansea Bay Lagoon, this was focused on identifying suitable
specifications (e.g. hg;, tp) for the sequences given in Fig. 1 and
Table 1. For the Cardiff and Newport lagoons, due to the early stage
of these proposals, it was first necessary to also establish an
appropriate number of turbines and sluice gates, taking into ac-
count the impounded surface area, the intertidal regions, hydraulic
structure specifications and the respective limitations as discussed
in Ref. [6]. A modified design for the Severn Barrage was also
assessed, hereinafter referred to as Severn Barrage HRC (Hydro-

environmental Research Centre), with more turbines distributed
across the structure, aiming for a superior two-way operation
performance, subject to constraints such as: bathymetry, caisson
size and the allocated space for ship locks and substations. The HRC
barrage is introduced here to facilitate a comparison with the more
up-to-date proposals that opt for a two-way, rather than ebb-only,
generation, while maintaining the same turbine technology as the
earlier barrage for consistency. The converged specifications for the
hydrodynamic modelling investigation are summarised in Tables 4
and 5. The project information of Table 4 demonstrates how the
scale of tidal power proposals in the Bristol Channel and Severn
Estuary varies in terms of the installed capacity and impoundment
length.

Five numerical model layouts were developed with their meshes
being refined around the hydraulic structure configurations, as
illustrated in Fig. 5. The Severn Barrages (STPG and HRC) and the
Swansea Bay Lagoon (SBL) were modelled individually, i.e. simula-
tions 2-D-STPG, 2-D-HRC and 2-D-SBL respectively. The Cardiff
Lagoon (CL) was only modelled to operate in conjunction with the
SBL scheme (2D-SBL,CL) as the proposal would only progress once
the first lagoon is already in place. Similarly, the Newport Lagoon
would follow the CL scheme, and therefore the simulation 2-D-
SBL,CL,NL encompasses all three lagoons simultaneously, providing
an insight into the cumulative impact of all the lagoons.

The numerical models were run under three different sequences
and for the same tidal conditions, to examine the effects of the
operation of the various schemes on the hydrodynamics and en-
ergy output. These were:

e An ebb-only operation (EO) with specifications hg = 4.0 m,
hmin = 1.0 m and ¢t = 2.2 h (parameters defined in Table 1) for all
projects,

e An optimised two-way operation (TW1) where each impound-
ment adopts the optimum specifications of Table 5 to maximise
energy output, and

e A conservative two-way operation (TW2) with hg = 2.5 m,
hmin = 1.0 m that aims for an increased generation time through
a reduced maximum holding time of t; = 1.5 h.

4. Results and discussion

The hydrodynamic model results were analysed to assess two
characteristics of the tidal power plant operation. Firstly, the effects
on the regional tidal flow for each scheme are investigated. In turn,
the annual energy produced from the ebb-only and two-way sce-
narios contemplated (EO, TW1 and TW2) is evaluated.

4.1. Hydrodynamic impact

Flow patterns of interest can be identified from the instanta-
neous plots in Fig. 6 for the tidal lagoons during spring ebb (top
row) and flood (bottom row) tides. For ebb generation, the lagoon
turbine sections are orientated according to the receding flow
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Fig. 5. Computational domains and tidal power plant configuration for: (a) Swansea
Bay Lagoon design, (b) Cardiff and Newport Lagoons configurations, (c) Severn Barrage
[31] configuration, and (d) modified Severn Barrage HRC configuration designed for
two-way generation. Water level Monitor points (M) in close proximity to turbine
sections used for the assessment of hydrodynamic impacts are also indicated.

direction, as suggested by the predicted streamlines in the top row
of Fig. 6. During flood generation, the water jets induced by the
turbines correspond to the development of large counter-rotating
vortices upstream (Fig. 6). These recirculation zones expand as
the momentum of the water jets dissipate, due to the gradual
decrease in the water head difference across the hydraulic struc-
tures. At holding periods the vortices (or eddies) subsequently tend
to occupy a large proportion of the impounded area. In contrast to
the high velocity currents during flood tides, the velocity magni-
tudes upstream of the structures during ebb tides away from the
hydraulic structures are consistently weaker. Therefore, it is spec-
ulated that the upstream ebb currents will be unable to flush out
sediments accumulated during the flood tide.

A similar pattern emerges with the STPG Barrage, while oper-
ating under an ebb-only sequence (Fig. 7a, left). Vortices and
stagnant regions prevail downstream as the turbines are concen-
trated only in the middle third of the impoundment and flow is
restricted from the adjacent sluice gates at this stage. With the
introduction of turbines in the HRC scheme, which replace parts of
the sluice gates (Fig. 5c—d), these effects are largely mitigated
(Fig. 7a, right). For flood tides, the STPG barrage would operate in
the filling mode (Table 1), while the HRC is generating (Fig. 7b). In
both cases, the wide distribution of hydraulic structures over the
impoundment length allows a flow direction that is almost
consistent with the status quo as long as all of the hydraulic
structures (i.e. turbines and sluices) are open.

The formation of recirculation zones can be detrimental envi-
ronmentally since scalars (e.g. suspended sediments and pollut-
ants) will be drawn to the centroid of the vortices by the imbalance
between the centrifugal force and bed friction. As a consequence of
the stagnant flow in the centre, and mainly near the bed, sediments
can settle over time and result in rapid geomorphological changes.
Apart from distributing the hydraulic structures (Fig. 7b), a more
feasible alternative to addressing this complex hydrodynamic
process would be to position sluice gates in such a manner that
targets their wake through the recirculation centroid, dissipating
the vorticity as much as possible. For the case of the STPG barrage,
this approach could be applicable at ebb tide by opening the sluice
gates as soon as the head difference restricts generation from the
turbines. The characteristics of sediment transport in particular
within the Severn Estuary have been well documented [21,22,38]
As a result, these hydrodynamic patterns developed in both la-
goons and barrages should be further studied for their implications
for sediment deposition. Otherwise, the preservation of the up-
stream geomorphology may require regular dredging operations
over the project lifetime [23]; [15].

The hydrodynamic impacts of tidal impoundments extend
beyond the flow patterns close to the turbine and sluice regions
(Figs. 6 and 7). It has been shown that for ebb-only operation, the
STPG Barrage would affect water levels and current velocities as far
as the Irish Sea [11,47,48]. However, these can otherwise be largely
confined to the Bristol Channel, subject to a two-way operation and
an optimised regulation of turbines and sluices over spring-neap
tidal conditions [49].

The contour plots of Fig. 8 examine the implications of tidal
lagoons and the HRC Barrage, all operated under the TW2 specifi-
cations. A Swansea Bay lagoon on its own (Fig. 8a) has a negligible
impact on the hydrodynamic characteristics in the Bristol Channel
due to its relatively small size. The lagoon footprint is contained
primarily within the Swansea Bay region and features flow accel-
erations in areas affected by turbine and sluice gate wakes. On the
upstream side, a reduction by approximately 0.65 m in maximum
water levels and an increase of 0.35 m in minimum water levels was
predicted, which is an expected characteristic of a two-way gen-
eration scheme (Fig. 1).
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Table 4
Tidal range energy project case studies specifications.

Specifications Tidal range power plants

Swansea bay Lagoon (SBL)

Cardiff Lagoon (CL)

Newport Lagoon (NL) Severn barrage (STPG) Severn barrage (HRC)

Turbine Number 16 67
Turbine Capacity (MW) 20 30
Turbine Diameter (m) 7.35 8.9
Turbine Flow Area (m?) 679 4168
Sluice Flow Area (m?) 800 2400
Total Capacity (MW) 320 2010
Length of Impoundment (km) 9.6 20.8

Primary Operational Sequence Considered Two-Way

Two-Way

40 216 400

30 40 40

8.9 9.0 9.0

2488 13,741 25,447
1200 35,000 10,000
1200 8640 16,000
16.4 16.1 16.1
Two-Way Ebb Two-Way

Table 5

Operation specifications for two-way operation following a 0-D optimisation study for maximum power output.

Tidal range power plants Generation starting head

Minimum generation head

Maximum holding duration Annual 0-D energy generated

hge (m) hmin (M) ty (h) E (TWh/yr)
Swansea Bay Lagoon (SBL) 4.10 1.00 3.80 0.615
Cardiff Lagoon (CL) 4.50 1.00 3.60 5.28
Newport Lagoon (NL) 4.70 1.00 3.80 3.05
Severn Barrage (STPG) 2.50 1.00 1.50 25.01
Severn Barrage (HRC) 3.60 1.00 2.50 36.06
(a)
J | \ Cardiff Lagoon (CL)

U,, (m/s) : 0.00 0.25 050 0.75 1.00 1.25 150
Swansea Bay Lagoon (SBL)
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Ebb Generation
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Two-Way (TW2)

Cardiff Lagoon (CL)
Two-Way (TW2)

Flood Generation Flood Generation

2km 7 [Newport Lagoon (NL) 2km
Two-Way (TW2)

Flood Genera

Fig. 6. Instantaneous streamlines and velocity vectors during ebb and flood tides following the introduction of tidal energy lagoons.

As the scale of the projects increases, so do the relative hydro-
dynamic impacts. Once the Cardiff Lagoon is introduced, current
accelerations can be observed along the main Severn Estuary
channel (Fig. 8b). In contrast, the maximum current velocity up-
stream of the Cardiff impoundment is markedly reduced within the
majority of the impounded area. Implications for the water level
maxima present themselves far-field, with increases surpassing the

0.05 m contour threshold in parts of the Bristol Channel. The
operation of all three lagoons simultaneously (Fig. 8c) features a
reduction in the maximum water levels of the order of 0.25 m
within the estuary during high spring tides, primarily due to the
influence of the structures on the estuarine tidal resonance. This is
accompanied with an increase of approximately 0.1 m in the
Swansea Bay region, indicating a cumulative hydrodynamic impact
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Fig. 7. Instantaneous streamlines and velocity vectors during: (a) ebb and (b) flood tides for the ebb-only Severn Barrage (STPG) and the modified Severn Barrage (HRC) designed for

two-way operation.

when developing multiple lagoons in close proximity. Nonetheless,
the combined effects of the lagoons are still noticeably less than the
comparable effects of an HRC barrage (Fig. 8d). Specifically, the
barrage features an increase of the maximum water levels at
Swansea Bay by around 0.3—0.4 m and a decrease by up to
approximately 4.0 m close to Avonmouth during high spring tides.
However, these values are heavily dependent upon the operational
sequence and could be improved in all cases following de-
velopments in turbine technologies focused on expanding their
versatility over generating head differences and pumping
possibilities.

In turn, Fig. 9 demonstrates how the operational procedures can
also be accountable for far-field and near-field hydrodynamic im-
pacts. Taking simulation 2-D-SBL, CL, NL as an example, an ebb-only
sequence (EO) influences conditions downstream differently from
the TW?2 operation (Fig. 8c). Maximum water levels upstream are
better preserved at the expense of a greater difference in minimum
water levels (Fig. 9a). The effects of an optimised two-way opera-
tion for power output (TW1) similarly correspond to deviant results
from TW2 (Fig. 8c) demonstrating the importance of appropriate
parameter selection (i.e. t, and hg). Indicatively, for the upstream
monitoring points in Fig. 9, a TW2 sequence corresponds to
maximum water level reductions of approximately 0.7, 2.1 and
1.6 m for SBL, CL and NL respectively.

A more quantitative assessment on the hydro-environment
footprint is feasible through the introduction of the indicators in
Table 6. For downstream conditions, the RMSD value from the
Mean Water Levels (MWL) was calculated with and without the

impoundments in the numerical models at the downstream
monitor points indicated in Fig. 5. The influence of the Swansea Bay
lagoon appears insignificant as it changes from an RMSD of 2.22 m
before construction to 2.20—2.21m after. The greatest effect on tidal
levels is reflected by the STPG Barrage under a two-way sequence
due to the opening of the sluice gates (As _stpc = 35,000 m?) for a
water head difference of =1.0 m between modes 3—4 and 7—8
(Table 1). The heightened momentum flow through these hydraulic
structures generates instantaneous perturbations despite their
gradual opening represented numerically using ramp functions for
a smoother transition. The RMSD value is altered from 2.79 to
1.97m, i.e. by 0.82m. For the HRC variant on the other hand, the
modified configuration corresponds to a reduction by 0.35 m on the
RMSD, indicating less interference.

With regards to upstream conditions, three indicators are
introduced. The first one calculates changes to the upstream MWL
in m at the monitoring points directly upstream of the turbine
sections illustrated in Fig. 5. Under an ebb-only operation (EO), the
MWL increases. Such changes can relate to local groundwater levels
and, in turn, threaten adjacent vulnerable communities to flooding.
For two-way sequences (TW1, TW2) this indicator is redundant as
it remains unaltered as long as appropriate specifications have been
imposed (Table 4). The second indicator refers to the quantification
of the upstream tidal range lost at the monitoring points shown in
Fig. 5. The minimum change is predicted for the Swansea Bay
lagoon with a value of 14% while operating under TW2. In contrast,
the greatest reduction is presented by the barrage (41% -STPG EO)
which could be reduced (to 30% -HRC EO) if the design is optimised.
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Fig. 8. Cumulative Impact of Tidal Lagoons and the Severn Barrage HRC on maximum velocities (left column) and maximum water levels (right column) under the TW2 operation

sequence.

The intertidal area loss is also of interest and appears to be closely
linked with the operational sequence and was calculated by
comparing the area subjected to wetting and drying before and
after the introduction of the tidal power plants. EO corresponds to
significant losses, which range from 24 to 50%. In contrast, the more
balanced TW2 minimises this loss to 14—22%, illustrating how a
careful regulation of the turbines and sluice gates can effectively
mitigate environmental issues associated with the proposed tidal
range power plants.

4.2. Annual energy potential

A critical aspect motivating the consideration of tidal power
plants is the annual energy produced for the various schemes post-
construction. For this assessment, simulations were undertaken for
spring-neap cycles over a lunar month period (=29.53 days), based
on the specifications given in Tables 3 and 4. The manner in which
energy is generated from the tidal power plants is the focus of
Fig. 10, which demonstrates the power generated over a simulation

time of 180 h and during a transition period from neap to spring
tide conditions. A lower energy production is calculated for neap
tides, which gradually increases proportionally with the amplitude
at spring tides. For the tidal lagoons operating under the same
sequence (TW2) in Fig. 10a, the power generation intermittency is
shared since the phase of the tides does not change substantially
within the Bristol Channel and the Severn Estuary. In Fig. 10b, the
power generation output from an ebb-only (EO) STPG barrage is
plotted against the two-way (TW2) HRC barrage, highlighting the
significance of the sequence and the impoundment design on
harnessing power from the same resource.

A large fraction of the generation gaps in Fig. 10 could be filled
through either potential tidal stream arrays or other tidal im-
poundments developed in areas of a different tidal phase, such as
along the North Wales coast [6] and in the Irish Sea [3,36]. Alter-
natively, introducing turbine pumping on the operational sequence
in the presence of multiple projects could provide some flexibility
on the generation time, as well as net energy gains [37]. Unfortu-
nately, opportunities presented by tidal turbine pumping have
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Fig. 9. Operation sequence effect on maximum velocity (left column) and water levels (right column) regionally: (a) Ebb-only (EO) and (b) Two-way (TW1).

Table 6

Implications of different operational sequences and specifications on regional tidal conditions and plant performance according to simulations 2D-SBL, CL, NL, 2-D-STPG and 2-
D-HRC. Descriptions and values in italics refer to the established conditions, i.e. in the absence of tidal lagoons or barrages at the respective sites.

Operation impacts Operation Tidal power plants
sequence Swansea bay Lagoon  Cardiff Lagoon Newport Lagoon Severn barrage Severn barrage
(SBL) (CL) (NL) (STPG) (HRC)
RMSD of Water Levels from MWL. (m) - 222 2.89 2.97 2.79 2.79
RMSD of downstream Water Levels from EO 2.20 2.79 2.84 244 247
M.W.L. (m) TW1 2.20 2.78 2.82 1.97 2.44
TW2 2.21 2.81 2.88 1.97 2.48
MWL according to Ordnance Datum(m) - 0 0 0 0 0
Upstream Mean Water Level change (m) EO 0.84 1.06 0.94 2.36 0.96
TW1 0.05 -0.01 -0.19 0.09 -0.01
TW2 0.03 0.02 —0.06 0.09 0.01
Maximum Tidal Range predicted (m) — 10.55 13.82 14.35 13.45 13.45
Upstream Tidal Range Reduction (%) EO 14% 17% 15% 41% 30%
TW1 16% 23% 26% 38% 33%
TW2 14% 17% 20% 38% 31%
Intertidal area at the proposed region (km?) - 4.6 204 22.7 237.0 237.0
Intertidal area Loss (%) EO 50% 42% 47% 34% 24%
TW1 24% 18% 27% 22% 17%
TW2 20% 14% 22% 22% 15%
Power Generation time per year (%) - 0% 0% 0% 0% 0%
Power Generation time per year (%) EO 38% 34% 34% 51% 38%
TW1 47% 54% 54% 73% 62%
TW2 63% 70% 70% 73% 69%

been limited (e.g. La Rance barrage) due to the pumping efficiency,
substantial energy storage and electricity grid infrastructure
required to support such functions. Pumping has consequently not
been considered in the sequences of Fig. 1, but does invariably
promise future dimensions to dynamically adjust the operation and
match more efficiently the energy demands of the electricity grid.

The energy output results were extrapolated to a yearly period
(=365 days) and are summarised in Table 7 for each plant and
operational sequence (EO, TW1 and TW?2). It is noted that these
extrapolations are tailored to the particular spring-neap water level
input used over the lunar period and therefore the annual energy
output could be influenced by the varying tidal conditions devel-
oped over the rest of the year. Nonetheless, the boundary condi-
tions over the two same spring-neap tidal cycles were deemed
sufficient for representative and comparative results. As expected,

the optimised specifications associated with TW1 (Table 5) corre-
spond to the highest energy yield, followed by the more generic
TW?2 and finally EO. An exception to this rule is the STPG barrage,
which performs better under an ebb-only rather than a two-way
operation in terms of its energy output. This is aligned with find-
ings reported from previous studies of the STPG scheme [45].
Preliminary estimates from a refined 0-D modelling tool [6] are
provided (Fig. 10 and Table 7) as a benchmark of how much energy
can be generated if the hydrodynamic influences are neglected. The
manner in which 0-D models overestimate energy levels can be
appreciated in Fig. 10 where results are plotted along with the
outputs from hydrodynamic models. Deviations are attributed
mainly to (a) the 0-D model inability to capture the effects of the
pronounced flowrates through turbines and sluices on the Water
head differences that dictate the instantaneous power output and
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Fig. 10. Power Generation and cumulative energy over the transition from neap to spring tides according to the 0-D and 2-D models for: (a) the combined Swansea Bay, Cardiff and
Newport lagoon operation and (b) the ebb-only Severn Barrage (STPG) and the modified version for two-way generation (HRC).

(b) the difficulty to accurately parametrising 2-D and 3-D effects
such as wetting and drying through a simplified function of water
level variations against surface area. With a combination of all three
tidal lagoons 0-D estimates suggest that 8.95 TWh/yr can be har-
nessed under TW1, which would at present cover approximately
2.8% of the UK's annual electricity needs (=323 TWh/yr). On the
other hand, this percentage is decreased to 2.3% (7.37 TWh/yr)
based on 2-D modelling (2-D-SBL, CL, NL), that gives a 17.5% loss
due to regional hydrodynamic impacts. This is even more pro-
nounced for the HRC Barrage, where 0-D results estimate a pro-
duction of more than 11.2% (36.06 TWh/yr) of the UK's current
energy needs, with the 2-D model yielding 6.8% (22.05 TWh/yr).
This represents a more substantial 38.9% loss in energy through
greater hydrodynamic effects (Fig. 8d). Nonetheless, an HRC Bar-
rage could produce approximately three times the energy of the
combined tidal lagoons.

Earlier studies adopting a 0-D modelling approach for the
Swansea Bay Lagoon predicted 0.478 and 0.596 TWh/yr for two-
way and ebb-only generation respectively [24]. Equivalent values
estimated here were 0.315, 0.615 and 0.507 TWh/yr for EO, TW1
and TW2 respectively. However, the more accurate 2-D-SBL model
results correspond to 0.292, 0.586 and 0.474 TWh/yr for the
Swansea Bay lagoon, closely matching the current value quoted by
TLP of 0.495 TWh/yr [35] for two-way operation.

The Cardiff Lagoon impounds 5.6 times the area of the
Swansea Bay Lagoon (Table 2), but produces = 8 times the
energy. The energy output is enhanced relatively to the
impounded area due to the tidal resonance and advective flow
effects that facilitate greater H differences over the tidal cycle
within the estuary. On the other hand, as additional lagoons are
introduced regionally, the performance of individual lagoons is
undermined due to their cumulative hydrodynamic impacts
(Fig. 8b—c). In the simulations, for both the Swansea Bay and
Cardiff lagoons (2-D-SBL,CL), additional losses are reported for
SBL (Table 7) attributed to the influence of the larger lagoon. It
can be observed in Fig. 8b how the presence of the Cardiff
Lagoon affects the water levels and velocity maxima beyond the
Severn Estuary and even as far as Swansea Bay. The combination
of the three lagoons further accentuates these interactions and
features a substantially lower energy output by as much as
30.5% (Table 7) for the Newport lagoon. This deviation
compared to the 0-D results is not only accredited to the lagoon
interactions, but also to the more comprehensive manner
intertidal areas are represented in the 2-D model. It is therefore
demonstrated how a 0-D modelling approach can substantially
overestimate the potential of schemes featuring both large
intertidal regions (e.g. Newport Lagoon) and the upstream sur-
face area (e.g. the Severn Barrages).
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Table 7
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Annual energy results for the tidal range structures in the Severn Estuary and Bristol Channel under the EO, TW1 and TW2 operational sequences.

Numerical Tidal range project annual energy (TWh/yr) Hydrodynamic impact (%)? Total energy (TWh/yr)
simulations Swansea bay Lagoon (SBL)  Cardiff Newport Severn  Severn SBL CL NL STPG  HRC

Lagoon (CL) Lagoon(NL) barrage barrage

(STPG)  (HRC)

EO: Ebb Generation: hg = 4.0m, hyin = 1.0m, t,=2.2 h
0-D 0.315 3.07 1.57 23.03 23.01 — — — — — -
2-D — SBL 0.292 - — - - -73 - — — — 0.29
2-D — SBL,CL 0.291 2.89 — - - -76 =59 - — — 3.18
2-D — SBL,CL,NL 0.290 2.77 1.25 - - -79 -98 204 - — 431
2-D — STPG — - — 15.77 - - — — -315 - 15.77
2-D — HRC — — — - 16.35 — — — — -289 1635
TW1: Two-way generation (1) — Max Power: Specifications of Table 5
0-D 0.615 528 3.05 25.01 36.06 — — — — — -
2-D — SBL 0.586 - — - - -48 — — — — 0.59
2-D — SBL,CL 0.577 4.68 — — — -62 -114 - — — 5.26
2-D — SBL,CLNL 0.575 4,55 225 - - -6.5 -139 -263 -— — 737
2-D — STPG — - — 15.31 - - - — -388 — 1531
2-D — HRC — - — - 22.05 — — — — -389 22.05
TW2: Two-way generation (2) — Reduced holding time:: hg = 2.5 m, hyin = 1.0m, t, = 1.5 h,
0-D 0.507 437 249 25.01 33.76 — — — — — —
2-D — SBL 0474 - — - - -65 — — — — 047
2-D — SBL,CL 0.464 3.94 — — — -85 -99 - — — 4.40
2-D — SBL,CLNL 0.462 3.87 1.73 - - -89 -114 -305 -— — 6.06
2-D — STPG — - — 15.31 - - - — -388 — 15.31
2-D — HRC — - - - 21.53 — — — — -36.2 2153

2 The hydrodynamic impact refers to the deviation from 0-D annual energy results which discount the tidal impoundment impact on the hydro-environment.

5. Conclusions

Details have been provided on the refinement and application of
a two-dimensional hydrodynamic model for the assessment of tidal
range structure operations. Following preliminary optimisation and
validation studies, the model was employed to assess a number of
tidal barrage and lagoon proposals within the Severn Estuary and
Bristol Channel, in the UK.

Tidal lagoons generally have less of an overall environmental
impact than previous tidal range structure proposals in the region.
However, there are still noticeable alterations to the estuary hy-
drodynamics, with local advective accelerations and turbulent
wakes close to the turbine/sluice sections, and flow stagnation
upstream of the lagoons leading to the creation of pronounced
recirculation zones. Lagoons in the Severn Estuary lead to increased
currents in the channel reaches passing the lagoon, which will
inevitably lead to increased turbidity in the region. Some implica-
tions on the tidal level maxima are reported, with relative re-
ductions in the Severn Estuary and increases in the levels in the
Bristol Channel. The barrage options featured more pronounced
hydro-environmental impacts, but a more significant annual en-
ergy production. Pumping has not been considered in the studies
reported herein, but if introduced at low and high water it could
reduce the degree of hydro-environmental change.

It was considered that predictions can vary according to the
power plant operation over time, and therefore specifications were
converged through optimisation analyses for ebb-only and two-
way operational sequences. The combined potential of the la-
goons has been predicted from model simulations to produce
approximately 2.3% of current UK electricity needs from the
Swansea Bay, Cardiff and Newport lagoons respectively. In contrast,
a modified Cardiff-Weston barrage for two-way generation could
produce from the same region approximately three times the en-
ergy yield (i.e. 6.8% of current UK electricity needs).

Certain implications can be drawn with regards to tidal range
structures from the analysis. As with other types of marine
renewable energy platforms (e.g. wave energy converters and tidal
stream technologies), tidal barrages and lagoons are similarly

subject to co-location issues. Addressing the interactions which
correspond to detrimental impacts on the performance of indi-
vidual schemes will be critical for the success of this tidal energy
industry. For example, adopting different operational sequences for
each scheme to enable nearby lagoons to generate at different
times may reduce these losses. However, it is shown that ebb-only
or flood-only generation sequences will have their respective im-
plications, such as greater intertidal area losses and far-field effects.
Therefore, variable operational sequences and specifications should
be tested to facilitate an efficient performance that takes into ac-
count both individual and surrounding renewable energy plat-
forms, as well as their hydro-environmental impacts. Consequently,
it might be advantageous to opt for an operation that prefers a more
conservative approach on the grounds of minimising power gen-
eration intermittency and hydrodynamic impacts, instead of one
that has been exclusively optimised to maximise annual energy
production but features more adverse effects.

Acknowledgements

The authors acknowledge the support through the MAREN2
project, part funded by the European Regional Development Fund
(ERDF) through the Atlantic Area Transnational Programme
(INTERREG) under contract No. 2013-1/225, during which parts of
the numerical model were developed. The authors would also like
to express their gratitude to Prof Chris Binnie for his insightful
comments over the course of this research.

References

[1] T.A.A. Adcock, S. Draper, T. Nishino, Tidal Power generation — a review of
hydrodynamic modelling, in: Proceedings of the Institute of Mechanical En-
gineers Part a: Journal of Power and Energy, 2015, http://dx.doi.org/10.1177/
0957650915570349.

T.A.A. Adcock, A.G.L. Borthwick, G.T. Houlsby, The open boundary problem in
tidal basin modelling with energy extraction, in: G.A. Aggidis, D.S. Benzon
(Eds.), In Proceedings of the 9th European Wave and Tidal Energy Conference.
Southampton, UK, 2011.

G.A. Aggidis, O. Feather, Tidal range turbines and generation on the Solway
Firth, Renew. Energy 43 (2012) 9—17.

[4] R. Ahmadian, R.A. Falconer, B. Lin, Hydro-environmental modelling of the

[2]

3]


http://dx.doi.org/10.1177/0957650915570349
http://dx.doi.org/10.1177/0957650915570349
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref2
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref2
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref2
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref2
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref3
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref3
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref3
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref4

[5

(6

[71
(8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

A. Angeloudis, RA. Falconer / Renewable Energy 114 (2017) 337—351

proposed Severn barrage, UK, Proc. Institution Civ. Eng. - Energy 163 (3)
(2010) 10—-17.

K. Anastasiou, C.T. Chan, Solution of the 2D shallow water equations using the
finite volume method on unstructured triangular meshes, Int. J. Numer.
Methods Fluids 24 (1997) 1225—1245.

A. Angeloudis, R. Ahmadian, R.A. Falconer, B. Bockelmann-Evans, Numerical
model simulations for optimisation of tidal lagoon schemes, Appl. Energy 165
(2016) (2016a) 522—536.

A. Angeloudis, R.A. Falconer, S. Bray, R. Ahmadian, Representation and oper-
ation of tidal energy impoundments in a coastal hydrodynamic model, Renew.
Energy 99 (2016b) 1103—1115.

Y.H. Bae, O.K. Kyeong, H.C. Byung, Lake Sihwa tidal power plant project,
Ocean. Eng. 37 (5—6) (2010) 454—463.

A.C. Baker, Tidal power, Proc. Institution Electr. Eng. 134 (A5) (1987) 392—398.
A.C. Baker, ]J. Walbancke, P. Leache, Tidal lagoon power generation scheme in
Swansea Bay, A Rep. behalf Dep. Trade Industry Welsh Dev. Agency (2006).
S. Bray, R. Ahmadian, R.A. Falconer, Impact of representation of hydraulic
structures in modelling a Severn barrage, Comput. Geosciences 89 (2016)
(2016) 96—106.

R. Burrows, L.A. Walkington, N.C. Yates, T.S. Hedges, J. Wolf, J. Holt, The tidal
range energy potential of the West Coast of the United Kingdom, Appl. Ocean
Res. 31 (4) (2009a) 229—-238.

R. Burrows, .A. Walkington, N.C. Yates, T.S. Hedges, M. Li, J.G. Zhou, ]. Wolf,
J. Holt, R. Proctor, Tidal energy potential in UK waters. Proceedings of the
institution of civil engineers, Marit. Eng. 162 (MA4) (2009b) 155—164.

A. Cornett, J. Cousineau, I. Nistor, Assessment of hydrodynamic Impacts from
tidal power lagoons in the Bay of Fundy, Int. J. Mar. Energy 1 (2013) (2013)
33-54.

Department of Energy and Climate Change (DECC), Severn tidal Power
Feasibility Study:conclusions and Summary Report. Ref:10D/808, 2010.

R.A. Falconer, Y. Chen, An improved representation of flooding and drying and
wind stress effects in a 2D tidal numerical model, in: Proceedings of the
Institution of Civil Engineers Part 2 2, 1991, pp. 659—672.

C. Garrett, D. Greenberg, Predicting changes in tidal regime: the open
boundary problem, J. Phys. Oceanogr. 7 (1977) 171—181.

S.K. Godunov, A Difference Method for the Numerical Calculation of Discon-
tinuous Solutions of Hydrodynamic Equations. Matemsticheskly Sboraik 47,
US Joint Publications Research Service, 1959.

P. Jeffcoate, P. Stansby, D. Apsley, Flow due to multiple jets downstream of a
barrage: experiments, 3D Computational Fluid Dynamics and depth-averages
modelling, ]. Hydraulic Eng. 139 (7) (2013) 754—762.

M. Kadiri, R. Ahmadian, B. Bockelmann-Evas, W. Rauen, R.A. Falconer,
A review of the potential water quality impacts of tidal renewable energy
systems, Renew. Sustain. Energy Rev. 16 (1) (2012) 329—341.

R. Kirby, The evolution of the fine sediment regime of the Severn Estuary and
Bristol Channel, Biol. J. Limnean Soc. 51 (1994) 37—44.

R. Kirby, W.R. Parker, Distribution and behaviour of the fine sediment in the
severn estuary and inner Bristol Channel, UK. Can. ]. Fish. Aquatic Sci. 40 (1)
(1983) 83—-95.

C. Peters, Severn Estuary Tidal Power. National Assembly for Wales Paper
Number 10/010, 2010.

S. Petley, G. Aggidis, Swans. Bay tidal lagoon Annu. energy estimation' Ocean.
Eng. 111 (2016) (2016) 348—357.

D. Prandle, Simple theory for designing tidal power schemes, Adv. Water
Resour. 7 (1) (1984) 21-27.

D. Prandle, Design of tidal barrage power schemes. Proceedings of the insti-
tution of civil engineers, Marit. Eng. 162 (MA4) (2009) 147—153.

A. Roberts, B. Thomas, P. Sewell, Z. Khan, S. Balmain, J. Gillman, Current tidal
power technologies and their suitability for applications in coastal and marine
areas, J. Ocean Eng. Mar. Energy 2 (2) (2016) 227—-245.

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]
[41]

[42]

351

P.L. Roe, Approximate Riemann solvers, parameter vectors and difference
schemes, ]. Comput. Phys. 43 (1981) 357—372.

0. Sang-Ho, K.S. Lee, W. Jeung, Three-dimensional experiment and numerical
simulation of the discharge performance of sluice passageway for tidal power
plant, Renew. Energy 92 (2016) (2016) 462—473.

B.F. Sanders, Non-reflecting boundary flux function for finite volume shallow-
water models, Adv. Water Resour. 25 (2002) (2002) 195—2002.

Severn Tidal Power Group, The Severn Barrage Project: General Report, 1989.
Energy Paper Number 57, Department of Energy, HMSO, London.

Severn Embryonic Technologies Scheme (SETS) Summary report, Concept Des.
a very-low head dual generation, tidal scheme Severn barrage 1 (2010)
(2010). DNS 159636, Issue 1.

P.A. Sleigh, P.H. Gaskell, M. Berzins, N.G. Wright, An unstructured finite-
volume algorithm for predicting flow in rivers and estuaries, Comput. Fluids
27 (4) (1998) 479—508.

Tidal Lagoon Power, Tidal Lagoon Swansea Bay Project Information, 2015.
Online]. Available, http://tidallagoon.opendebate.co.uk/files/TidalLagoon/
Project_introdutiontoTidal_Lagoon_Swansea_Bay.pdf. accessed 26.02.16.
Tidal Lagoon Power, Welcome to Tidal Lagoon Cardiff's Website, 2014, 2015.
Online]. Available, http://www.tidallagooncardiff.com. accessed 26.02.16.

N. Yates, I. Walkington, R. Burrows, J. Wolf, Appraising the extractable tidal
energy resource of the UK's western coastal waters, Philosophical Trans. R.
Soc. A 371 (2013a) 20120181.

N. Yates, I. Walkington, R. Burrows, J. Wolf, The energy gains realisable
through pumping for tidal range energy schemes, Renew. Energy 58 (2013)
(2013b) 79—-84.

RJ. Uncles, Physical properties and processes in the Bristol Channel and
severn estuary, Mar. Pollut. Bull. 61 (2010) 5—20.

B. van Leer, Towards the ultimate conservative difference scheme, ]. Comput.
Phys. 135 (2) (1997) 229—-248.

S. Waters, G. Aggidis, Over 2000 years in review: revival of the archimedes
screw from pump to turbine, Renew. Sustain. Energy Rev. 51 (2015) 497—505.
S. Waters, G. Aggidis, Tidal range technologies and state of the art in review,
Renew. Sustain. Energy Rev. 59 (2016) (2016a) 514—529.

S. Waters, G. Aggidis, A world first: Swansea Bay tidal lagoon in review,
Renew. Sustain. Energy Rev. 56 (2016) (2016b) 916—921.

[43] J. Wolf, LA. Walkington, J. Holt, R. Burrows, Environmental impacts of tidal

power schemes. Proceedings of the Institution of Civil Engineers, Marit. Eng.
162 (MA4) (2009) 165—177.

[44] ]. Xia, RA. Falconer, B. Lin, Impact of different tidal renewable energy projects

on the hydrodynamic processes in the Severn Estuary, UK, Ocean. Model. 32
(1-2) (2010a) 86—104.

[45] ]. Xia, R.A. Falconer, B. Lin, Impact of different operating modes for a Severn

Barrage on the tidal power and flood inundation in the Severn Estuary, Appl.
Energy 87 (7) (2010b) 2374—2391.

[46] ]. Xia, RA. Falconer, B. Lin, Hydrodynamic impact of a tidal barrage in the

Severn Estuary, UK, Renew. Energy 35 (7) (2010c) 1455—1468.

[47] ]. Zhou, R.A. Falconer, B. Lin, Refinements to the EFDC model for predicting the

hydro-environmental impacts of a barrage across the Severn Estuary, Renew.
Energy 62 (2014) (2014a) 490—505.

[48] J. Zhou, S. Pan, R.A. Falconer, Effects of open boundary location on the far-field

hydrodynamics of a Severn Barrage, Ocean. Model. 73 (2014) (2014b) 19—-29.

[49] ]. Zhou, S. Pan, R.A. Falconer, Optimisation modelling of the impacts of a

[50]

[51]

Severn Barrage for a two-way generation scheme using a Continental Shelf
model, Renew. Energy 72 (2014) (2014c) 415—427.

G.A. Aggidis, D.S. Benzon, Operational optimisation of a tidal barrage across
the Mersey Estuary using 0-D modelling, Ocean Eng. 66 (2013) 69—81.

R.A. Falconer, ]. Xia, B. Lin, R. Ahmadian, The Severn Barrage and other tidal
energy options: hydrodynamic and power output modelling, Sci. China Ser. E
Technol. Sci. 52 (11) (2009) 3414—3424.


http://refhub.elsevier.com/S0960-1481(16)30734-0/sref4
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref4
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref4
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref5
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref5
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref5
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref5
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref6
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref6
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref6
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref6
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref7
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref7
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref7
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref7
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref8
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref8
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref8
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref8
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref9
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref9
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref10
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref10
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref11
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref11
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref11
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref11
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref12
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref12
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref12
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref12
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref13
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref13
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref13
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref13
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref14
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref14
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref14
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref14
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref15
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref15
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref16
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref16
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref16
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref16
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref17
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref17
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref17
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref18
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref18
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref18
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref19
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref19
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref19
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref19
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref20
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref20
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref20
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref20
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref21
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref21
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref21
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref22
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref22
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref22
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref22
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref23
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref23
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref24
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref24
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref24
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref25
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref25
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref25
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref26
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref26
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref26
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref27
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref27
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref27
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref27
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref28
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref28
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref28
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref29
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref29
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref29
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref29
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref30
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref30
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref30
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref32
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref32
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref32
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref33
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref33
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref33
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref33
http://tidallagoon.opendebate.co.uk/files/TidalLagoon/Project_introdutiontoTidal_Lagoon_Swansea_Bay.pdf
http://tidallagoon.opendebate.co.uk/files/TidalLagoon/Project_introdutiontoTidal_Lagoon_Swansea_Bay.pdf
http://www.tidallagooncardiff.com
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref36
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref36
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref36
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref37
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref37
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref37
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref37
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref38
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref38
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref38
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref39
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref39
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref39
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref40
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref40
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref40
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref41
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref41
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref41
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref42
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref42
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref42
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref43
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref43
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref43
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref43
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref44
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref44
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref44
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref44
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref44
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref45
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref45
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref45
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref45
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref46
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref46
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref46
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref47
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref47
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref47
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref47
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref48
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref48
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref48
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref49
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref49
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref49
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref49
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref50
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref50
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref50
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref51
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref51
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref51
http://refhub.elsevier.com/S0960-1481(16)30734-0/sref51

	Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics
	1. Introduction
	2. Methodology
	2.1. Hydraulic structure representation
	2.2. Operational sequences
	2.3. Hydrodynamic modelling

	3. Tidal range power plant options in the Severn Estuary and Bristol Channel
	3.1. Project background
	3.2. Tidal power plant numerical models

	4. Results and discussion
	4.1. Hydrodynamic impact
	4.2. Annual energy potential

	5. Conclusions
	Acknowledgements
	References


